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Abstract

This work concerns the analysis of chaotic multi-variate time-series from spatio- 

temporal dynamical systems (STS). Such systems can be thought of as consisting 

of a collection of sub-systems at different spatial locations coupled together into 

one large system. These arise in many applications throughout science and en

gineering including most types of fluid flow, pattern formation in chemical and 

biological systems, dynamics of ecosystems, road traffic, vibration of structures 

such as beams, plates and shells, and many others. In many situations there is 

a desire to analyse data from STS in situations where little is known about the 

system generating the data. In particular one may have no idea of the system’s 

structure, or even its state space. It has until now been an open question how 

to characterise, control and predict the future evolution of STS in these circum

stances. To answer these questions this thesis builds on the chaotic time-series 

analysis framework that has been successfully developed for the analysis of low

dimensional systems. Coupled map lattices (CML) are used as model systems 

since these feature many of the characteristics of STS. Several new results that 

apply to spatio-temporal systems are presented and can be summarised as follows.

By using a mix of temporal and spatial embedding techniques one is able 

to carry out reconstruction and cross-prediction on a time-series generated by a 

CML and the results show that spatio-temporal delay reconstructions give better 

predictability than standard methods using either time delays or spatial delays 

only. A framework for embedding spatio-temporal systems is proposed.

Results also show that by using spatio-temporal embedding techniques with 

local observations one cannot detect the presence of spatial extent in CML’s thus 

suggesting the impossibility of reconstructing the whole system from localised in

formation.

New methods for calculating Lyapunov spectra for STS, and for extracting 

related quantities such as KS entropy density and Lyapunov dimension density, 

have been developed both for the case where the underlying dynamics is known 

and directly from time-series.
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Chapter 1

Introduction

Historically, the vast majority of the theory of nonlinear dynamical systems was 

developed under the assumption that one knew the state space and evolution equa

tions of the system under consideration. In principle the application of these results 

to real problems thus required the simultaneous observation of all the state space 

variables. This is obviously not possible in many practical applications, where all 

that one can manage to do is to make a sequence of repeated measurements of 

one or more observables whose relationship to the state variables is at best uncer

tain. It is then of fundamental importance to understand how much information 

about the original dynamical system can be extracted from such a time-series of 

measurements.

Remarkably enough, it turns out that in the case of systems with low dimen

sional state space it is possible to reconstruct the whole system just from the 

observed time-series, using the so called method of delays. The systematic use of 

this technique was first suggested by Packard et.al. (Packard, Crutchfield, Farmer 

& Shaw 1980), who attributed the basic idea to Ruelle, though a number of other 

authors around that time were beginning to experiment with it for specific systems 

(e.g. (Ott, Sauer & Yorke 1994)). The theoretical justification for this approach is 

given by Takens Embedding Theorem (Takens 1981). This implies that for generic 

finite dimensional systems and observables, essentially no dynamical information 

is lost in passing from the state space to the time-series. This result has stimu
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lated a vast range of applications in fields ranging from fluid dynamics, through 

electrical engineering to biology, medicine and economics. It has led to both a 

re-examination of old data sets, and to the construction of new experiments, with 

the aim of detecting and perhaps even taking advantage of deterministic behaviour 

in time-series which were previously thought to be random. In particular, algo

rithms now exist to characterize and predict such time-series, to remove noise or 

detect weak signals and more recently to control the original dynamical system 

(e.g. (Eckmann & Ruelle 1985; Abarbanel, Brown, Sidorowich & Tsimring 1993; 

Ott, Sauer & Yorke 1994)). In appropriate circumstances, such algorithms are 

capable of achieving levels of performance which are far superior to those obtained 

using classical linear signal processing techniques.

Despite the obvious success of this approach, its relevance is currently con

fined to relatively simple systems whose asymptotic dynamics is low dimensional. 

There is therefore a need to extend such techniques to more complex systems and 

in particular to spatio-temporal systems. These can be thought of as consisting 

of a collection of sub-systems at different spatial locations coupled together into 

one large system. These arise in many applications throughout science and en

gineering including most types of fluid flow, pattern formation in chemical and 

biological systems, dynamics of ecosystems, road traffic, vibration of structures 

such as beams, plates and shells, and many others. In some cases (such as weather 

prediction) there is a reasonably good understanding of the underlying determin

istic processes, and one is able to directly observe the necessary state variables. 

One then has an a priori model to which the observations can be fitted in order 

to estimate parameters and/or initial conditions. In such cases, there is a sound 

theoretical basis for carrying out the data analysis, and usually a great deal of 

experience with numerical algorithms.

Increasingly, however, there is a desire to analyse data from spatio-temporal 

systems in situations where little is known about the system generating the data. 

In particular one may have no idea of the system’s structure, or even its state 

space. It is then natural to try approaches analogous to those for low-dimensional 

systems and in particular to attempt to use the method of delays to reconstruct



C H A P TER  1. INTRODUCTION  16

the unknown dynamics. In many such situations we are able to measure several 

observables simultaneously giving rise to a multivariate time-series. Often each 

component of such a time-series corresponds to the measurement of the same ob

servable at different spatial locations. Unfortunately there is almost no theoretical 

framework in this case; the standard Takens Theorem rarely being applicable since 

measurement functions depending on only a single spatial location are not generic. 

Furthermore, it is far from clear that embedding the whole state space, or even 

the whole attractor is the correct approach, since these objects will often be very 

high-dimensional. There is currently therefore little understanding of what delay 

reconstruction methods are actually doing, what their fundamental limits are, and 

how much information they preserve.

Theoretical considerations apart, there are also many practical questions posed 

by this approach. How much data do we need to collect and how often should 

we sample in both time and space? How do we choose amongst the different 

reconstructions that are possible? Can we analyse parts of the system separately, 

or do we need to always consider it in its entirety? These have considerable 

relevance to many real problems such as the analysis of electrocardiograms (EGG), 

electroencephalograms (EEC), remote sensing satellite data, and turbulent fluids.

In this thesis we try to answer some of the questions posed above. In particular 

we will focus on how we can effectively reconstruct a spatio-temporal system to 

optimise predictability and to estimate invariant quantities, such as the Lyapunov 

spectrum.

1.1 Thesis Outline

In chapter 2 we introduce the necessary background, theory and tools we need, 

and which this thesis is extending; chaotic time-series analysis and embedding 

techniques. We explore their application to prediction and the characterisation of 

chaotic systems through the Lyapunov spectrum. We also introduce coupled map 

lattices as the model system we will use throughout this thesis.



C H A P TER  1. INTROD UCTIO N  17

In chapter 3 we use a mix of temporal and spatial delay embedding techniques 

to carry out reconstruction and cross-prediction on time-series generated by a cou

pled map lattice. We find that spatio-temporal delay reconstructions give better 

predictability than standard methods using either time delays only or spatial de

lays only. We also observe that in all these cases it is completely infeasible to 

rigorously embed the original spatio-temporal system since this would require im- 

practically large embedding dimensions. Despite this, it proves possible to make 

good short term predictions in embedding dimensions as low as 4. We discuss a 

possible explanation of this apparent paradox and also describe a tentative theo

retical framework for reconstructing high-dimensional systems that this suggests.

In chapter 4 we extend the results from the previous chapter. We compare 

the behaviour of a small truncated coupled map lattice with random inputs at 

the boundaries with that of a large deterministic lattice essentially at the ther

modynamic limit. We find exponential convergence for the probability density, 

predictability, power spectrum, and two-point correlation with increasing trun

cated lattice size. This suggests that spatio-temporal embedding techniques using 

local observations cannot detect the presence of spatial extent in such systems and 

hence they may equally well be modelled by a local low dimensional stochastically 

driven system.

The most common and useful tool for the characterisation of chaos is given by 

the Lyapunov exponents. From the Lyapunov spectrum it is possible to estimate 

bounds for the effective number of degrees of freedom of the system (i.e. the dimen

sion of the attractor). The computation of the Lyapunov spectrum involves matrix 

manipulation techniques that soon become prohibitive (in terms of both comput

ing time and memory storage) as the original number of system variables gets large 

(e.g. a few hundred). In chapter 5 we study the possibility of reconstructing the 

Lyapunov spectrum of a spatio-temporal system by using information from a small 

sub-system, thereby reducing considerably the computer resources involved in the 

computations. We propose a new rescaling method leading to better estimates of
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the Lyapunov spectrum and examine the interlacing properties of Lyapunov spec

tra for consecutive sub-system sizes. In the process we propose a natural method 

for constructing the Jacobian of systems on high-dimensional lattices.

Chapter 6 is a further investigation of the results described in the previous 

chapter, but here we explore whether the same characteristics can be found when 

the only information we have is the time-series themselves. We find that by using 

spatial delay reconstrucion we are able to extract the Lyapunov spectrum of the 

whole system and from this we calculate related measures such as Lyapunov di

mension density and KS entropy density.

In chapter 7 we discuss the results presented in this thesis and suggest ways in 

which this work can be taken forward.
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Chapter 2

Background and theory

2.1 Chaotic time-series analysis

Given a time-series from a dynamical system we wish to use this information 

to model, characterise and predict the system’s behaviour. However, most real- 

life systems involve complex interactions of numerous sub-systems, which makes 

attempts at such an analysis very difficult. If, as usually is the case, the system 

(through the time-series) features consistent aperiodicity and its deviations from 

periodicity cannot be explained by conventional linear models, we usually assume 

either that the system is perturbed by stochastic noise or that it is deterministic 

and chaotic. Let us start by considering a (discrete) dynamical system given by 

the equation

^k+l — f i^k) (2.1)

where G m > 0 describes the state of the system after k-\-l  units of time 

and /  is the evolution law, determining exactly the state of the system at any 

point in time, given its state in the previous time period. This means that given 

an initial condition zq, any future state of the system can be exactly predicted and 

is given recursively by the values f{zo), P { zq), ■ • •, f^{zo).

However, from the seminal paper by Lorenz (Lorenz 1963) we know that sim

ple deterministic dynamical systems such as eq. (2.1) can generate time-series 

with a degree of randomness equal to those generated by purely stochastic pro
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cesses. This randomness-generating feature is shared by a wide family of systems 

called chaotic dynamical systems which often generate orbits that in the station

ary regime wander over complex geometric structures called strange attractors. 

Thus, an empirically collected time-series which seemingly comes from a stochas

tic source could be generated by a chaotic (and deterministic) dynamical system. 

This could give us the opportunity to utilise the methods of nonlinear dynamics 

theory to predict, model and characterise the system. This involves the concepts 

of reconstruction and embedding which we will discuss in the next section.

2.1.1 Reconstruction and embedding

Consider, as above, a deterministic finite-dimensional dynamical system which at 

each point in time is determined by a point z lying on a m-dimensional manifold 

M  c  The time evolution is given by a map p  \ M  ^  M  such that if the 

system is in state z at to it is in state /*(z) at time Iq -f t. We usually do not 

have access to the state z and can only measure some function h : M  ^  R . The 

evolution of this quantity is given by h(/*(z)). In practice we only observe this at 

discrete time intervals, and when these are the same we in fact observe the sequence 

= h(z”) for n =  1,2, . . .  where z” =  /"^(z) and r  > 0 is the sampling interval. 

By rescaling time if necessary, we may take without loss of generality r  =  1 and 

write /  =  /^ . Takens (Takens 1981) showed that generically it is possible to use the 

time-series {a;”} to reconstruct /* up to some unknown smooth coordinate change. 

More precisely, if we fix some d (called the embedding dimension) and consider the 

map : M  —)■ R^ given by $(z) =  . . . ,  h{f~^{z))) then

under suitable smoothness and genericity assumptions on /  and h, the map 0  is an 

embedding for d > 2m-t-1. In particular 0  is smooth and has a smooth inverse on 

its image and hence we can define the map F  = ^  o f  o on the image of 0. F  

can be seen as the same dynamical system as /  under the coordinate change given 

by 0. In particular all the coordinate independent properties (invariant sets and 

geometric invariants such as the correlation dimension and Lyapunov spectrum 

(which we will introduce in the next sections) are the same.



C H A P TER  2. BACKGROUND AND TH E O R Y  21

The advantage of this is that F  can be directly expressed in terms of the 

observed time-series x'  ̂ = /i(z”). Define the point x ” G by the delay coordinates 

x ” =  ^ x^~^). Clearly x” =  0(z") and hence x ” is in the image of

0  so we can apply F  to it. F (x ”) =  0 o /o 0 "^ (x '^ )  =  $ o / ( z ”) =  =  x”'+ .̂

Thus F  describes the dynamics of x” in and this dynamics is just the image 

under the invertible coordinate change 0  of the dynamics of z”' under / ,  i.e. the 

dynamics of x ” is equivalent to the dynamics of z” except for a smooth invertible 

coordinate transformation. We can rewrite the map F (x ”) =  in terms of T" 

as F{x^~^,x^~^'^^,. . .  . . .  ,x^).  Thus, unlike the map /

we can estimate the map F  from the time series Furthermore, if we restrict

F  to its last coordinate we get a map G : R^ —> R that determines x'  ̂ in terms of 

the values x^~^, ^  x^~^, i.e.

Thus, Takens Theorem allows us to determine x^ from some finite number d of 

previous observations. In practice G will not be known explicitly. However, given 

a sample of the time-series, a variety of methods can be used to find an approxi

mation G to G. This can then be used for prediction and characterisation, or as 

the basis of more sophisticated processing of the time-series, e.g. noise reduction. 

In the next section we describe how to approximate G and use it in prediction.

2.1.2 Local predictors

Given how do we approximate G to get an estimate dF' of x^. One way is to 

use local predictors. The idea is based on the fact that points close together in 

the embedding space map to points that are still close together. Thus, we search 

for the k nearest neighbours of x” , x ” (j), j  =  1 , . . . ,  A;. Denote the first entry in 

x ”+^(j) as x^{j).  We expect x” (j) to be close to x^. In fact, Lorenz (Lorenz 1969) 

suggested to use T^(I), the nearest neighbour, as an estimate of x'  ̂ (the method 

of analogoues). We could also use the average of x^{j)  as our estimate. A more 

refined approach, which we will use in this thesis, is to suppose that the local
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relationship G is linear or quadratic. In the linear case we then have

x" = G{x’' - “, x " -“+ \  x "-i)  =  ao +  ax". (2 .2)

To fit the parameters we again consider the k nearest neighbours x"(j) of x". 

Define

X  —

^ l " ( l )

,a =
0.1

$  =

\O d  /

{  1 x"(l) ^

1 X"(A:) yV y
Then we can rewrite eq. 2.2 in matrixform

X =  ^ a .

To determine G we solve for a, a =  ^~^x. ^  might be ill-conditional so we use 

singular value decomposition to find (the pseudo-inverse). The fitted a  then 

gives us an estimate of by eq. 2.2. One question that has to be addressed in 

the practical implementation of the method is the size of the neighbourhood that 

should be used and this will be discussed later.

The accuracy of the predictions is measured by the root-mean-square error 

CTrms = <  {x^{n) —x ^ y  and normalised by dividing by the standard deviation 

ax of the time-series, that is

E  = <̂ rms
a.

(2.3)

When E  = 1 the prediction error is no different from predicting the mean, 

while E' =  0 is perfect prediction.

2.1.3 Lyapunov spectrum and related quantities

The Lyapunov exponents are an important invariant of nonlinear dynamical sys

tems and are closely related to other quantities of interest. Consider a discrete 

dynamical system with m  state variables. For such an m-dimensional system there 

exist m Lyapunov exponents corresponding to the rates of expansion and/or con

traction of nearby orbits in the tangent space in each dimension. Let us look at 

this in more detail.
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Assume a dynamical system as in eq. (2.1). Consider an orbit displaced from 

the original orbit by an infitesimal vector ôzk  ̂ z* +  Szk- The evolution of ôzk 

is described by differentiating eq. (2.1), i.e.

ôzk+i = Df{zk)ôzk (2.4)

where Df{x)  denotes the m x m  Jacobian matrix (of partial derivatives of f{z)  

with respect to the m  components of z).

Let Uk = ôzk/\Szo\, (i.e. we normalise for convenience). The vector yk is called 

a tangent vector and the space in which yk lies is called the tangent space. The 

evolution equation for yk is

yk+i = Df(zk)yk- (2.5)

Clearly the evolution of yk depends on both the orbit {zk} determined by the 

initial condition zo, and on the initial orientation of the unit tangent vector ?/o- 

We are interested in the exponential rate at which the magnitude of y grows or 

shrinks per iterate of the map. Let

Xizo,yo) = lim \ { z o , y o , k )  (2 .6)
k->oo

where

X{zo,yQ,k) = ^\n\yk\.  (2.7)

We call A(zo,2/o) the Lyapunov exponents. Let L = e^. L  represents an average 

factor by which the magnitude of the infitesimal vector displacement is multiplied 

on each iterate. Combining eqs. (2.5) and (2.7) we get

X{zQ,yQ,k) = iln|D /^(zo)2/o|

where D f ’̂ (zo) is the Jacobian matrix of the map /^. Applying Df^{zo)  to all 

unit tangent vectors yo results in an ellipsoid, whose m  principal radii are given 

by Li{zo, k) for z =  1, 2, . . .  ,m. The principal directions of the ellipsoid are the 

m  perpendicular eigenvectors of the real symmetric matrix [Df^{zo)] • [D/*(zo)]^ 

where [-]  ̂denotes the transpose. The principal radii of the ellipsoid are the square
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roots of the m eigenvalues (the singular values) of Df'^{zo). Taking the k ^  oo 

limit in eq. (2.6), we get m  possible values of the Lyapunov exponents depending 

on the initial orientation of the vector yo. Denote these values A*(zo) and assign 

the index i such that

Ai(%o) ^  ^2(20) >  ■ ' ' >  Ani(zo)- (2 .8)

Then Oseledec’s Multiplicative Ergodic Theorem (Oseledec 1968) guarantees that 

if the orbit from zq generates an ergodic probability measure then the limit in 

eq. (2.6) exists and the values of A*(zo) are the same for almost every zq with 

respect to the ergodic measure. Since the m  numbers Xi{zo) will be the same for 

all Zq on the attractor (except for a possible set of natural measure zero) we can 

drop the zq dependence of the Lyapunov exponent and A (̂zo) A, (understanding 

that Xi is that value of A*(zo) obtained for almost every z q ) .  The set of all the 

Lyapunov exponents arranged in decreasing order is called the Lyapunov spectrum 

(LS).

Thus, a chaotic attractor can now be defined by the condition that there is 

a net average stretching for at least one orientation of yo, and almost every zo: 

Ai > 0. In general the A%, 2 > 2 can be positive or negative, if Ai > • • • > Aj > 0 > 

Aj+i > . . .  > A^ we have j  stretching directions and ( m —j)  contracting directions. 

Think of an infitesimal m-dimensional ball in phase space mapped forward in time 

by k iterates resulting in an infitesimal ellipsoid with m  principal radii. The ratio 

of these to the initial radius will be of the order .

The Lyapunov exponents characterise the dynamics on the attractor, in that 

they say something about stability. An alternative characterisation which by con

trast is purely a geometric measure are the attractor dimension. There is a range of 

different definitions of dimensions in dynamical systems, such as Hausdorff dimen

sion, box-counting dimension, information dimension and correlation dimension 

(see (Ott, Sauer & Yorke 1994)). The correlation dimension, introduced by Grass- 

berger and Procaccia (1983), is the one most used when calculating the dimension 

of an underlying system directly from time-series.

There is though a close relationship between these geometric measures and the



CHAPTER 2. BACKGROUND AND THEORY  25

Lyapunov spectrum as conjectured by Kaplan and Yorke (Kaplan & Yorke 1979; 

Schuster 1988)).

Kaplan and Yorke define the Lyapunov dimension, D^, as

+ (2.9)
lY+il

where j  is the largest integer for which XlLi ^  0.

Another useful invariant that can be derived from the LS is the so called 

Kolmogorov-Sinai (KS) entropy^ h, that can be bounded from above by the sum 

of the positive Lyapunov exponents Ad and that in many cases can be well ap

proximated by (Eckmann & Ruelle 1985)

h = Y ^ X ^ .  (2.19)

The KS entropy quantifies the mean rate of information production in a system,

or alternatively the mean rate of growth of uncertainty in a system subjected to

small perturbations.

If we know the map /  then the calculation of the LS is a straightforward task. 

But it has been shown that it is also possible to calculate the LS of a system when 

all the information available is a time-series sampled from it. To do this we need 

to reconstruct the dynamical system underlying the time-series.

2.1.4 Lyapunov spectrum from time-series

The Lyapunov exponents of a dynamical system can be found by applying the al

gorithm introduced by Eckmann and Ruelle [1985]. The method consists of finding 

the Jacobians along a trajectory and reorthogonalising using QR decomposition 

as described below. In the case where only a time-series of the system is known 

to us, then this require us to estimate the Jacobian from the time-series at each 

time step.

Assume that we have given a time-series {2"}, n = 1, 2 , . . . ,  Af, sampled from a 

dynamical system as described above. From the data we construct d-dimensional 

time delay vectors n" =  {x^ ~ ^ L e t  us denote by v ^ , j  = 1 , . . . ,  A:
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the k nearest neighbours of e” , using the /2-norm as distance metric. We can then 

define k distance vectors z" =  1;" — v^. The neighbourhood matrix Bn at time n is 

then defined by

The image of this matrix is simply given by

_  ( ^ n + l  n+1 n+l\T
J^n+l — 1 '^2 / ’

and the Jacobian W at time n is then estimated by

where (•)+ denotes the pseudo-inverse.

Now, in order to find the Lyapunov exponents recall that we look at the growth 

of d-volumes under the action of Jn{v^)- Let Qq be a unit ri-cube (matrix) defined 

by orthogonal vectors {<71, . . . ,  The Lyapunov exponents are then given by 

the logarithms of the eigenvalues of Jn(v^^)Qo as n ^  00. A problem is that this 

matrix is ill-conditioned. To avoid this we use the trick suggested in [Eckmann 

and Ruelle, 1985] and reorthogonalize at each step as described below.

A matrix A can be uniquely factorised into A =  QR  where Q is an orthonor

mal matrix and R, is upper triangular with positive values on the diagonal. The 

diagonal elements of R, Ra, are the eigenvalues of A. Let ToQo =

QiRi,TiQi = Qi^iRi^i which by the chain rule gives

T»Qo = - TiToQo

=  T n - l T n - 2  ’ ' ' T i Q i R i

=  T n - l T n - 2  ■ ■ ' Q 2 R 2 R - I  

= TnRnRn-l ' ' ' ^2^1
n

—  Q n  ^ i -
i = l

Without loss of generality, the matrix Qq can be chosen to be the identity 

matrix. We then have ra = 0^=1 , where is the ith diagonal element of Rj
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and the Lyapunov exponents are then given by

Ai =  lim log I ni I =  lim y^log |r[^
n—̂ oo n —>00  ̂ ^

;=i

Since the amount of data is limited, we do not take the limit to infinity but hope 

that by including enough iterations the convergence to the Lyapunov exponents 

is achieved. Moreover, the method require us to find nearby neighbours in d 

dimension thus the data requirements soon become prohibite for large d. Therefore 

the method has usually been applied to time-series from low-dimensional systems 

where d < 5 ~  6.

2.2 Spatio-temporal dynamical system s

Spatio-temporal systems give rise to a wide range of interesting phenomena that 

cannot occur in dynamical systems with only a few degrees of freedom.

An interesting feature of spatio-temporal systems is that it can exhibit spatio- 

temporal chaos. This is characterised by exponentially decaying correlations both 

in time and space directions.

The most common approach to modelling complex spatio-temporal behaviour 

is through the use of partial differential equations (PDE’s). The analysis and even 

the numerical integration of PDE’s is usually quite intricate. Thus, if one desires 

to study the full range of complex spatio-temporal behaviour whilst conserving a 

relatively simple dynamical framework, a better approach is to consider discrete 

spatio-temporal systems. By this we mean a collection of coupled simple low

dimensional dynamical units arranged on a spatial lattice. The coupling is usually 

(but not always) restricted to a finite neighbourhood. An immediate advantage 

of such systems is their straightforward computational implementation. Another 

possible advantage is that the local dynamics at each lattice site in the uncoupled 

limit can be thoroughly analysed. The knowledge of such local dynamics in the 

uncoupled limit can help to provide some insight of the complexity of the coupled 

system.
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2.2.1 Coupled map lattices

To formalise this, we will consider coupled map lattices (CML’s) (Kaneko 1983; 

Kaneko 1984). A CML is a discrete space-time dynamical system with a continuous 

state space, in contrast to cellular automata where the state space is discrete. Let 

us denote by the state of the ith site at time n, where the integer index i runs 

from 1 to N.  The CML dynamics is defined by

r

=  (1 -  e ) f ( x 1 )  + Y ,  (2.11)
k=—l

where typically we use periodic boundary conditions, / i s  a real function and we 

ask =  6 as a conservation law. The general CML (2.11) couples I > 0 left 

neighbours and r  > 0 right neighbours with coefficients Gf

The appeal of CML’s is due on one hand to their computational simplicity 

and on the other to the fact that they display a wide variety of spatio-temporal 

phenomena ranging from spatio-temporal periodic states (Cade & Amritkar 1993; 

Zhilin, Gang, Benkun & Gang 1994) and travelling interfaces (Carretero-Gonzalez, 

Arrowsmith & Vivaldi 1997; Kapral, Livi, Oppo & Politi 1994) to intermittency 

(Keeler & Farmer 1986) and turbulence (Beck 1994; Willeboordse & Kaneko 1995).

2.3 Summary

In this chapter we have desribed the background and theory for how to predict 

and characterise a low-dimensional dynamical system when the only information 

available is a time-series sampled from it.

In the remainder of the thesis we will study more complex systems, that is 

spatio-temporal systems as examplified by coupled map lattices. These systems 

will typically be high-dimensional and we will investigate to which extent the above 

methods still apply and how we can overcome the problems when they do not.
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Chapter 3 

Reconstruction and cross 

prediction using spatio-tem poral 

em bedding techniques

This chapter aims to initiate a systematic study of the kinds of questions asked in 

the introduction, and in particular investigate how different choices affect the qual

ity of a reconstruction and of resulting predictions in spatio-temporal dynamical 

systems. In itself, we do not expect this to deepen our theoretical understanding of 

the structure of spatio-temporal chaos. Instead, we intend to develop and evaluate 

techniques which can be used to analyse data from real spatio-temporal systems 

and relate them to existing models and theories of spatio-temporal behaviour. We 

shall restrict ourselves to a simple model of complex spatio-temporal behaviour, 

namely a coupled map lattice (CML). As mentioned in chapter 2, these have been 

widely studied as a paradigm spatio-temporal system, and have been shown to 

exhibit a wide range of interesting properties (see (Kaneko 1993) for a comprehen

sive review). More specifically we study a ID coupled map lattice of size L  with 

nearest neighbour coupling

=  (1 -  e ) / W )  +  | ( / W - i )  +  / W + i ) )  (3.1)

where denotes the state of site i at time n (with 1 < i < L). We use periodic 

boundary conditions (x” =  The map creating the local dynamics was chosen
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to be the logistic map

f (x )  = 1 — ax^

since this is the most widely studied example. The resulting CML has been shown 

to exhibit a very complex range of behaviour as e and a are varied, ranging from pe

riodic solutions in space and time through intermittency to fully developed spatio- 

temporal chaos (Zhilin & Gang 1994; Kaneko 1993). For simplicity, we shall use 

the state of each lattice site as an observable giving rise to L simultaneous time- 

series.

The main difficulty introduced by the spatial degrees of freedom (through the 

coupling) is the high dimension of the full system. One could in principle take only 

one observable from one space location and attem pt to reconstruct the dynamics 

of the system in the usual way using delay variables. Strictly speaking the current 

version of Takens Theorem does not apply to this case, since measurement func

tions depending on only one site are far from generic. However, an appropriate 

theorem could almost certainly be proved using the techniques developed in (Stark 

1999). This would ensure that as long as the system is totally coupled any mea

surement should reveal the full structure of all the degrees of freedom. However, 

given the high dimensionality, such an approach is not always feasible and is likely 

to require unrealistically large quantities of very high quality data to be available 

at one spatial location (e.g. see (Lorenz 1991; Kantz & Olbrich 1997)).

It seems intuitive that rather than treating the system as purely temporal it 

would be better to include the spatial information in the reconstruction process. 

Indeed several different approaches have been attempted e.g. by using time delays 

of spatial averages (Little, Ellner, Pascual, Neubert, Kaplan, Sauer, Caswell & 

Solow 1996; Rand & Wilson 1995) or reconstructing in space instead of time (Essex, 

Lookman & Nerenberg 1987; Pritchard & Theiler 1994; Afraimovich, Ezersky, 

Rabinovich, Shereshevsky & Zheleznyak 1992; Rombouts, Keunen & Stam 1995). 

These studies have shown that spatial embedding techniques perform equally well 

as time delay embeddings. In this chapter we build further on these ideas and use 

spatio-temporal reconstructions, i.e. we utilise measurements at different spatial
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locations as well as time delays. A similar idea was used by Zheleznyak and Chua 

(Zheleznyak & Chua 1994) to calculate spatio-temporal correlation dimensions, 

though note that they assumed that one can observe the state space variables 

directly. In that case the issue of reconstruction does not arise, and hence a 

Takens type embedding theorem is not required.

The hope is that this technique will yield better reconstructions compared to 

purely temporal or spatial approaches. One can also ask what spatial information 

should be included, i.e. what is the effect of increasing the distance between loca

tions used in a spatial or spatio-temporal delay reconstruction. This is analogous 

to the choice of time delay in the temporal embedding case.

As a measure of the relative quality of different reconstructions we use pre

dictability. Other possible measures exist, but prediction error appears to give 

best overall performance, is less data intensive, and more robust in the presence 

of noise (Schreiber & Schmitz 1997). For an interesting discussion of the relation 

between Lyapunov exponents and predictability in spatio-temporal systems see 

(Boffetta, Giuliani, Paladin & Vulpiani 1998).

Another question that arises naturally in the context of spatially extended 

systems is whether we can use time-series from an observable in one part of the 

system to say something about the evolution of observables in other parts of the 

system. Here we will look at cross-prediction, i.e. we use data from one location 

to either reconstruct or predict data at other locations. As mentioned above, this 

depends on the coupling between different parts of the system. If the system can 

be split into two noninteracting (uncoupled) sub-systems and we only observe one 

of these sub-systems, the other sub-system is unobservable and nothing can be 

deduced about its behaviour. Another possibility is two sub-systems where one is 

forcing the other. Given the nature of coupled sub-systems there are in effect a 

whole architecture of different possibilities. This raises the question if the embed

ding theorem still applies to these situations and indeed Stark (Stark 1999; Stark, 

Broomhead, Davies Sc Huke 1997) has extended Takens Embedding Theorem to 

forced systems. Cross-prediction has been investigated by Muldoon et.al. (Mul- 

doon, Broomhead Sc Huke 1994) who studied 32 channels of laboratory data from a
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rotating annulus experiment and were able to use data from one channel to recon

struct all the other channels. Schiff et.al. (Schiff, So, Chang, Burke & Sauer 1996) 

used mutual prediction to characterize the dynamical interdependence between 

systems.

Lastly we look at how predictability scales with different prediction parameters. 

Earlier work has shown that a decay in predictability with prediction time suggests 

a low-dimensional attractor (Sugihara & May 1990; Wales 1991; Tsonis & Eisner 

1992). We want to see if this still holds for our high-dimensional coupled map 

lattice system and if the scaling has the same form.

3.1 Spatio-temporal embeddings

We are interested in the case where we have more than one measurement at each 

time interval sampled from the coupled map lattice. Suppose we have I measure

ments. Now each of these measurements will be a component of a /-dimensional 

vector given by the measurement function u : M  —>■ Rb Thus we have I time- 

series {%p} with 2 =  1 , . . . , /  where v{f^{z)) = {x^, x j , . . . ,  xf)  =  x” . It has to be 

borne in mind, that as mentioned in the introduction, Takens Theorem will not 

necessarily apply to this case, since the functions v found in many applications 

will not be generic observations of M. We believe, however, that appropriate gen

eralisations of Takens Theorem could be proved and hence that this approach to 

spatio-temporal data analysis is a reasonable one.

A more serious difficulty is raised by the high dimensionality of the systems we 

seek to study. Thus in our numerical work we typically use lattice sizes of 100, or 

even larger. Takens Theorem thus gives an embedding dimension of 201, which is 

clearly impractical. Of course, the condition d > 2m +  l i n  the theorem is only 

a sufficient condition (see section 2.1.1), and may not be necessary. However, in 

any case we must have at least d > m for an embedding, which is still unusably 

large. One might thus instead only attempt to reconstruct the attractor. Sauer 

et.al. (Sauer, Yorke & Casdagli 1991) give a theorem appropriate to this case, 

which shows that if d > 2Db , where Db is the box-counting dimension of the
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attractor of /  then 0  restricted to this attractor is 1-1 and an embedding on 

any compact manifold contained in the attractor (such as a bounded part of an 

unstable manifold). Unfortunately, this does not help a great deal either, since 

as we shall see in chapter 5 there is good numerical evidence that the Lyapunov 

dimension of the attractor in our case is around 70. It is thus likely that the box- 

counting dimension is also large and hence there is little hope of embedding even 

just the attractor. We thus conclude that for the systems under consideration in 

this chapter, the delay map 0  defined above is never an embedding in any rigorous 

sense. The same holds for its spatial and spatio-temporal analogues. Note that, 

despite this, the literature often refers to time delay or spatial embeddings, even 

when it is clear that the relevant $  is not an embedding. To avoid such confusion, 

we shall refer to $  as a reconstruction or delay map.

The previous paragraph seems to lead to the pessimistic conclusion that the 

delay reconstruction methods that have developed out of Takens Theorem are 

simply not relevant to spatio-temporal systems. Yet, as indicated, some of the 

attem pts to apply such techniques to spatio-temporal data have met with reason

able success. As an example, we shall see in this chapter that time-series generated 

by the lattice described above exhibit a great deal of predictability in embedding 

dimensions as low as 4. This suggests that the extent of the attractor in many 

of its dimensions is small and hence that in some sense the system is reasonably 

well approximated by a low dimensional one. We thus believe that although the 

framework based on Takens Theorem described above is strictly speaking not rel

evant to spatio-temporal systems, it does provide the correct intuition. We thus 

expect that the delay reconstruction techniques that it has inspired should have a 

valid basis even for spatio-temporal systems, at least in some approximate sense. 

More precisely, it ought to be possible to generalize Takens Theorem to systems 

which are only ’’approximately low dimensional” . We suggest a possible way of 

doing this in the discussion of this chapter.
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3.2 Cross prediction

We will also consider cross-prediction between observations at différent sites. This 

term is actually somewhat of a misnomer, since often we wish to estimate the 

current value of an observation at a different site, rather than forecasting its fu

ture evolution. However, the term cross-prediction has now been adopted in the 

literature, and hence we shall conform to this usage. The procedure may be mo

tivated as follows. Given simultaneous measurements Vi at more than one site let 

us assume that delay embedding of each Vi gives rise to an embedding This 

gives the relation x” =  for the zth measurement site. But since each 0^

gives an embedding of M  we can think of the measurements x” at site j  {j ^  i) 

as functions on the reconstructed object i.e. given measurements from one

site we should be able to reconstruct and predict signals at other measurement 

sites:

=  C ./x D  (3.2)

Even when embedding is rigorously not feasible, it seems reasonable to look for 

a relationship of this form. To approximate Gij we use local linear and quadratic 

approximations as described in chapter 2.1.2.

3.3 Results of predictions

We first used the logistic map to create the local dynamics with a = 2.0 and strong 

coupling e =  0.45. The lattice size was L = 100. For this choice of e, a we are in 

the chaotic region. We used random initial conditions and discarded the first 10  ̂

steps. We then recorded the next 20000 data at each site. This was then divided 

into two sets of equal length to give a sample set of length Ns = 10000 and a 

testing set of length Nt = 10000. The data was normalised to [0,1]. We used 

linear fitting in all calculations unless otherwise specified.

Since this is a homogeneous system, in the sense that every site has the same 

dynamics, it does not matter which site we study. Here we have chosen an arbitrary
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900 1000

Figure 3.1: Time history of the first 1000 points of the sample set at j  = 0.

reference site (j = 0) and will refer to other sites relative to this.

Figure 3.1 gives the time history of the first 1000 points of the sample set from 

one site. We clearly see the irregular behaviour. Note that the system often spends 

long periods around the point 1/2 which is the unstable fixed point for the single 

map (e =  0) at a = 2.0.

In figure 3.2 we have plotted two consecutive values of xq against each other. 

We see that much of the structure given in the case of a single map (superimposed 

as the graph of 1 -  2x' )̂ is retained.

We now turn to the problem of doing predictions on the system. Since we 

have past values in both space and time available we can (as described in the 

introduction) include both in the reconstruction. Three natural choices are either 

the usual time delay map

n  1 n - { T n d n - I )
■> (3.3)

where d = dn is the embedding dimension or, secondly, a spatial delay map 

given by
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Figure 3.2: Time delay reconstruction at one node.

^0 — (^0 » • • • 5 ^-(Tsds-l)) (3-4)

where now the embedding dimension is d = dg. Thirdly, we can think of mixing 

the two types, creating a spatio-temporal delay map

n-{Tndn-l) 
" '■ 0    V‘̂ 0  5 * ^ 0  5 • • • 5 ’

n n - 1

,y.n-l n-\Tnan-i)\n—{rndn — l)'
(3.5)

(3.6)

Here the embedding dimension is d = dndg (we set the time delay =  1 and 

spatial delay Tg = 1 unless otherwise specified).

Note that we are using spatial coordinates only from the left of (i.e. z" 

such that j  < i). An obvious choice of spatio-temporal delay would be a symmetric 

one such as x" =  cr", However, this would give artificially good results

(for both the full and truncated lattices) since depends only on these variables 

(c.f. eq. (3.1)). This is an artefact of the choice of coupling and observable and 

could not be expected to hold in general. Therefore, we use the delay map as
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Figure 3.3: One-step prediction error (E) for increasing number of nearest neighbours 

{k = 1, . . . ,  3000) and for different choices of delay maps (d„, dg). The top three curves 

are for usual time delay map giving a minimum error for dn = 4. When we instead use 

dn = dg = 2 i.e. the same embedding dimension size but including spatial information 

the predictions are substantially better. We see that the error is minimized for small 

values of k. The line .4 is a fit of the scaling law in eq.(3.8).

defined above in order to “hide” some dynamical information affecting the future 

state and hence make the prediction problem a non-trivial one.

In figure 3.3 we have plotted the prediction error E  as we increase the number of 

neighbours k for some different embedding dimensions. The neighbours were found 

using the box-search algorithm described in (Schreiber 1995). The plot of E  against 

k has been suggested as a way of distinguishing between low-dimensional chaos 

and stochastic noise in the sense that a low-dimensional deterministic system will 

have a minimum prediction error for a low number of nearest neighbours (Casdagli 

1991). The figure shows that for time delay reconstruction the minimum prediction 

error is found using d =  =  4. For all reconstructions the minimum error is

found using a low number of nearest neighbours, typically k = 20 — 50. The figure
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0.2

Figure 3.4: One-step prediction error for different reconstruction designs using 50 near

est neighbours.

clearly shows the positive effect of using a spatio-temporal reconstruction with 

dn = ds = 2 (i.e. the same embedding dimension d =  4 as for the best time delay 

reconstruction).

In figure 3.4 we have employed all three types of reconstruction for a one-step 

prediction while varying dn and dg. We chose the number of nearest neighbours as 

k = bO which is close to the optimum for the different embedding dimensions (see 

figure 3.3). From figure 3.4 we see that we are able to predict even in one dimension 

{dn = ds = 1). This is obvious given the shape of the time-delay reconstruction 

in fig.3.2. This predictability is a result of having such simple local dynamics and 

becomes less apparent if replace the logistic map by a higher dimensional one. 

Note also that the error is much worse than it would be for the uncoupled case.

The prediction gets better when we employ time delay reconstruction {dn > 

l ,ds = 1) or spatial delay reconstruction {dn = l,ds > 1) up until =  4 and 

ds = 4 respectively. However, the predictability is clearly increased if we allow both 

time and spatial delays together in the delay map. In this case the predictions are
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Figure 3.5: One-step prediction error for different reconstruction designs using quadratic 

fit and 150 nearest neighbours.

best for =  ds = 2, i.e. an embedding dimension of d =  4. We see that for 

dji ^  dg > 3 or dg > dn > 3 the predictability gets worse.

In figure 3.5 we have repeated this but now using a quadratic fit. Such a 

fit requires more data and hence we had to increase the number of neighbours 

to k = 150. This also meant that we were unable to perform a quadratic fit 

at the largest embedding dimensions, i.e. dg = 3 ot dn = 5. We see that the 

qualitative conclusions are the same, and we again obtain the least prediction 

error for dn = dg = 2. As we would expect from using a more flexible set of fitting 

functions, quantitatively the predictions are slightly better than for linear fits. 

However it is dangerous to make direct quantitative comparisons, since quadratic 

flts are much more data intensive, particularly at larger embedding dimensions. 

Given the qualitative agreement between the two types of fit we restrict ourselves 

to linear flts for the remainder of the chapter.

The extent of predictability is clearly shown in figure 3.6 where we have plotted 

the predicted values together with the actual values for the first 150 points in the
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Figure 3.6: Predicted (o) and actual (—) values for the first 150 points in the test set, 

A; = 50,p = 2, (+) denotes predicted minus actual values.

fitting set {dn = dg = 2, k = 50). We see that the errors are generally less than 1 

percent.

When we let Tg > 1 i.e. we reconstruct using sites whose distance apart is 

greater than one, the error for a one-step prediction at the reference node gets worse 

as shown in figure 3.7 for the cases (d„, dg) = (1, 2), (2, 2), (3, 2). We see that as the 

distance between the nodes Tg increases the prediction error grows. For sufficiently 

large Tg the error actually exceeds that for pure time delay reconstructions {dg = 

l ,dn = 1,2,3).

Now we turn to the question of cross-prediction, that is to what extent can we 

predict the evolution at other locations than the ones used in the reconstruction. 

In particular, given a delay vector x j  we want to find for T > 0 and j  > 0. 

In the case of T  =  0, j  > 1 what we are actually doing is reconstructing values at 

other locations, while for T  > l , j  > 1 we are predicting values in the future at 

such locations.

The results are given in figure 3.8 where we have used in all cases dn = 2,dg =
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Figure 3.7: Prediction error as we increase the spatial delay. Here we have plotted the 

cases {dn,ds) = (1,2), (2,2), (3, 2). We used k = 50 neighbours. The horizontal lines 

depict the error when we have reconstruction in time only (the top one is for dn = I, 

the middle is = 2 and the bottom is for dn = 3).

0.1

Figure 3.8: Prediction error for j  = 1 — 6, T = 0 — 5 using dn = 2,dg = 2,k = 19.
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Figure 3.9: Absolute value of space-time two-point correlations. Actually we have 

plotted 1 — \C\ against Aj and r.

2, k = 19. We see that for cross prediction ât j  = 1 the predictability decreases as 

we increase T  and is lost for T > 5. For T =  0 the ability to reconstruct is lost 

for j  > 3. This then defines a triangle 0 < T  < 4 , 0 < j < 2  where reconstruction 

and cross-prediction is possible.

It is interesting to compare this to the two-point space-time correlation i.e. the 

correlation C  between two time-series separated by a time r  and space ^ defined 

by

C{r,U =
< u v >  — < u X v >  

(Tû v
(3,7)

where u” =  x'  ̂ and uf =  ^1+7’ and cr„ are the standard deviations of u and 

V.  This relationship is given in figure 3.9. We see that the absolute value of C  has 

the same form as the prediction errors in figure 3.8.

Finally we have repeated the above experiments using a variety of other cou

pling strengths. The results remain qualitatively the same, i.e. spatio-temporal 

reconstructions give the best predictions for all coupling strengths considered.
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Figure 3.10: One-step prediction error for increasing Ns and for different choices of 

{dn,ds). 20 nearest neighbours were used in all cases. The imposed lines all have slope 

-0 .11.

3.4 Scaling Laws

It has been suggested (Casdagli 1991) that the prediction error E  scales with k, d 

and Nç as

Ei{k,Ns)^s{klN,)<^+^'>l° (3,8)

for k/Ns  —)■ 0. Here s is a ’curvature’ constant, p is the order of the fitting, and D 

denotes the dimension of the attractor. Thus an estimate of D is given by the slope 

in a log-log plot of E  against k or Ng. The line (A) in figure 3.3 is an approximation 

to such a fit and has slope 0.4 suggesting an attractor size of D =  5. In figure 3.10 

we plot the prediction error against the number of points Ns in the sample set. 

The figure shows that for (d„ > 4, dg =  1) and for (d„ = 2,dg = 2) the prediction 

error follows the scaling law (3.8) with slope -0.11 suggesting an attractor size of 

approximately 18. Thus this scaling law gives inconclusive answers.

The second important dependence of the prediction error on the prediction
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Figure 3.11: E{T)/E{1) versus T on a semi-log scale. (-I-): e = 0.45, A: = 2 0 , =  

2,c?s = 2. (o): Single logistic map (e = 0.0, a = 2.0) using k = 20, = 4, (fg = 1. The

lines depict: (A) scaling (3.10) with h = 0.7, (B) scaling (3.10) with h = 0.6, (C) scaling 

(3.10) with h = 0.35, (D) scaling (3.11) with H = 0.75, (E) Scaling (3.11) with H = 0.5.
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Figure 3.12: Same as figure 3.11 but with E{T)/E{1) versus T on a log-log scale.
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parameters is the prediction time T. Farmer and Sidorowich (Farmer & Sidorowich 

1987) suggest that for direct prediction E  scales with T  as

E{T)  rv j^-iP+i)/d^ip+i)hT (3.9)

where h is the metric entropy. Thus for h > 0 the error E  grows exponentially 

with T.

Sugihara and May (Sugihara & May 1990) noticed that the decay in E{T)  

for increasing T  did not occur for uncorrelated noise and hence saw the decay 

as a sign of determinism. However, Tsonis and Eisner (Tsonis & Eisner 1992) 

showed that coloured noise also exhibits this decay, but that it scales differently. 

More specifically, we expect the error in a deterministic system to scale with T  as 

E{T) = where c =  This implies

log -  1) (3.10)

Coloured noise, on the other hand, has the scaling

E(T) = E{1)T^^  (3.11)

for small T  where 77 is a scaling exponent related to the decay of the power 

spectrum, i.e. to the degree of correlation, or ’colour’ in the noise (see (Osborne 

& Provenzale 1989)). This suggests that deterministic chaos can be detected by 

a linear correlation in a semi-log plot of E{T)/E{1)  against T  rather that by a 

log-log plot where linear correlation would imply a stochastic process.

In figure 3.11 we have plotted E{T)/E{1)  versus T on a semi-log scale. The 

prediction errors for the CML are depicted by (4-) and we have also included the 

prediction errors for a single logistic map (with a = 2.0) for comparison as (o). We 

see that the errors for the single map seem to fit a straight line, while this is not 

the case for the CML. However, in the corresponding log-log plot in figure 3.12 we 

see the opposite, here the CML has a straight line fit whilst this is not the case 

for the single map. The correlation coefficient (r^) was calculated for the pairs 

{T, E{T)/E{1))  and is shown in table 3.1.
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the semi-log the log-log

plot plot
y.2 2̂

single map 1.000 0.945

CML 0.891 0.992

Table 3.1: Degrees of linearity (r^) of the semi-log and the log-log plots for the single 

logistic map (e = 0.00) and the coupled map lattice with e = 0.45. See figures 3.11 

and 3.12

We thus see that the prediction error of the CML scales with T  in the same 

way as coloured noise. Since we know that the system is actually deterministic, 

this strongly suggests that it must be high dimensional and provides an excellent 

illustration of the widely held view that high dimensional deterministic systems 

and stochastic systems are indistinguishable. We also remark that the power law 

scaling that we observe is a little reminiscent of that seen by Keeler and Farmer 

(Keeler & Farmer 1986).

The scaling eq. (3.10) can be used to estimate the largest Lyapunov expo

nent (Wales 1991). We know that the Lyapunov exponent for the single logistic 

map is A =  In 2 while we will see in chapter 5 that the CML have Amax ~  0.35. 

Looking again at figure 3.11 the lines A and C have slopes 0.7 and 0.35 respectively. 

The fit through the first 6 points for the single map (line B) in figure 3.11 gives 

h = 0.6 i.e. an estimate of the Lyapunov exponent for the single map close to the 

real value. The CML however does not follow the scaling law (3.10) but instead 

follows the scaling law (3.11) with H = 0.75 (given by line D in figure 3.12). We 

are not thus able to extract the Lyapunov exponents in this case.

3.5 Discussion

We have shown that spatio-temporal reconstructions can increase predictability 

when compared to standard temporal or spatial delay maps. This seems natural 

because spatio-temporal techniques better capture the dynamics in a system with
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local couplings. We would therefore like to encourage their use in the practical 

analysis of real spatio-temporal time-series. We have also found tha t increasing 

the spatial sampling interval gives decreasing predictability and demonstrated the 

close relation between cross predictability and space-time correlations.

Perhaps the most surprising aspect of our results is that the best predictions 

were obtained for low embedding dimensions (i.e. d =  4). This is despite the fact 

that there is considerable numerical evidence that the attractor of the system is 

high dimensional. In order to investigate this apparent discrepancy further we 

have computed a number of other measures of dimensionality commonly used in 

the analysis of chaotic time-series. The false nearest neighbour algorithm (Ken

nel, Brown & Abarbanel 1992) suggests an attractor dimension of 4. Given that 

this algorithm essentially tests for optimal prediction using a locally constant pre

dictor, this is not unexpected given our predictability results. The correlation 

dimension (Grassberger & Procaccia 1983), on the other hand, does not converge 

to give a low-dimensional estimate. The scaling of prediction error with k and Ns, 

given above, yields dimension estimates of 5 and 18 respectively, whilst the Tso

nis and Eisner criterion based on scaling with prediction time suggests a coloured 

stochastic process (i.e. an infinite dimensional system). Finally, the Lyapunov di

mension density calculated using the sub-space Lyapunov spectrum (see chapter 

5) is pL =  0.707 giving an estimate for the Lyapunov dimension of approximately 

70 for a lattice size of L =  100.

Our interpretation of these apparently contradictory results is that the at

tractor of the system is indeed high dimensional, and we would expect the value 

obtained from the Lyapunov dimension density to be the most reliable estimate of 

this. However, the vast majority of these dimensions are relatively small in extent, 

and the preponderance of the significant dynamics occurs in only a few dimensions. 

This permits us to make relatively good predictions using only a small embedding 

dimension.

This raises the question of an appropriate framework for embedding and recon

structing such systems. As indicated, we have no practical hope of rigorously em

bedding a 70 dimensional object, no matter how clever we are in the choice of em-
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bedding variables. Yet clearly, in some approximate sense, reconstruction using de

lay variables does work. Our intuitive picture of this is that we can think of the sys

tem as a low dimensional local system, weakly coupled to a high dimensional global 

system, representing the rest of the CML. If we regard the latter as essentially 

stochastic, we can envisage the local system as a stochastically forced low dimen

sional deterministic system. A version of Takens Theorem applicable to this case 

has recently been proved (Stark, Broomhead, Davies & Huke 1997). More precisely 

let be a dynamical system on a A: dimensional manifold M  driven by a stochastic 

process cu = ..., w», ..., so that =  /(z " , As before

(see chapter 2.1.1), let h \ M ^  M be an observable on M, and construct a delay

inai) ° ° ° ° (z)), ■ • ■. U D l ,  (z)))-
This gives x ” =  4>^(z” ) where x" =  (z^"^, . . . ,  a;""^) is a delay vector

reconstructed from the observed time-series. Under reasonable technical condi

tions it turns out that generically is an embedding for almost every u  if 

d > 2rn +  1. We can then define a random map on the embedding space by 

Fui =  o /  o where cr : D —)• D is the shift [a{uj)]n = and is the

space of all possible noise realisations (i.e. all possible sequences w). Unravelling 

the definitions gives iT (x ”) =  x ”+̂  and the last component of F  can be written 

as . . . ,  T""^) =  z" giving a time-series model appropriate to this

case. Where w is known (e.g. for input-output systems, or where it represents 

irregular sampling times) this directly leads to a prediction algorithm. Where it 

is unknown, it can potentially be estimated using Bayesian techniques, or if the 

noise level is low, the dependence of G on w can be ignored, leading to an ’’average 

prediction” function;

Returning to our case of a CML, it is not strictly true that the high-dimensional 

global system is a random one. But suppose that we can divide the whoWystem 

into a low dimensional M , which we observe via /i : M —> R and a high dimensional 

il, so that the dynamics is given by
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= f{z^,UJn)

(Jn+l= (j{z^,UJn)

Note that something similar appears to be suggested in the last two sentences 

of (Kantz & Olbrich 1997). As usual, one can construct a delay map 0̂  ̂ : M  —̂ 

which is now defined by

^w(z) =  (h{7r{f,a)~^{z,uj))),h{7r(f,aY~\z,uj))),. . .  ,h {7r{ f ,a ) - \z ,u ) ) ) ) ,

where 7r(z, w) =  z. Working through the definitions (see chapter 2.1.1) shows 

that we have 4>£̂ (̂z”) =  x ”, where x” is the reconstructed delay vector x" =  

{x^~^, , . . .  ,x^~^). Note that the dynamics on Q is now no longer a simple

shift, and more significantly it is no longer independent of z. Nevertheless, in 

view of the results in ((Stark, Broomhead, Davies & Huke 1997; Stark 1999)), it 

seems reasonable to conjecture that under suitable technical assumptions, is an 

embedding for generic w if d > 2m +  l. This would then imply essentially the same 

conclusions as for the stochastic theorem described above. In particular, the time- 

series should satisfy an equation of the form x^ = . . .  ,a;”“ )̂.

Note the double dependence of G on x” =  {x'^~^, , . . . ,  x'^~^) through its

arguments and through the subscript. The latter is due to the dependence of 

the dynamics of u  on z. Assuming the interaction between tu and z is weak, we 

can ignore the subscripts on G in an analogous fashion to eq. (3.12) to yield an 

’’approximate” prediction function a;" =  G{x^~^, , x^~^). The existence

of such a function is presumably what allows us to carry out reasonable predictions 

on the example presented in this chapter, and provides a rigorous framework for 

delay reconstruction approaches to spatio-temporal time-series.
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Chapter 4 

Truncated lattices and the  

therm odynam ic limit

If we have a physical process whose evolution is governed by a large number of 

variables, whose precise interactions are a priori unknown, then we may be unable 

to decide on the basis of observed data whether the system is fundamentally de

terministic or not. This has led to an informal classification of dynamical systems 

into two categories: low-dimensional deterministic systems and all the rest. The 

main aim of this chapter is to demonstrate that using observed data we may be 

unable to distinguish a spatio-temporal system from a local low-dimensional sys

tem perturbed by noise. Since the latter is much simpler, it may in many cases 

provide a preferable model of the observed data. On one hand this suggests that 

efforts to reconstruct the spatio-temporal dynamics of extended systems may be 

misplaced, and we should instead focus on developing methods to locally embed 

observed data. A preliminary framework for this was described in chapter 3 of 

this thesis. On the other hand, these results may help to explain why standard 

time-series methods sometimes work surprisingly well on data generated by high

dimensional spatio-temporal systems, where a priori they ought to fail: in effect 

such methods only see the “noisy” local system, and as long as the “noise level” 

is reasonably low can still perform at an acceptable level. Overall we see that we 

add a third category to the above informal classification: namely that of low di
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mensional systems driven by noise and we need to adapt our approach to observed 

time-series to take account of this.

Again consider the one-dimensional array of diffusively coupled logistic maps 

which we studied in chapter 3:

=  (1 — e) f[x i)  4- -{ f{Xi-i )  +  /W +i))? (4-1)

where x'  ̂ denotes the discrete time dynamics at discrete locations i =  1, . . .  ,L, 

e G [0,1] is the coupling strength and the local map /  is the fully chaotic logistic 

map f{x)  = 4z(l — x). Recent research has focused on the thermodynamic limit, 

L  -4- oo, of such dynamical systems (Pikovsky & Kurths 1994). Many interesting 

phenomena arise in this limit, including the rescaling of the Lyapunov spectrum 

(which we will discuss in chapters 5 and 6) and the linear increase in dimension 

(Lyapunov dimension (Parekh, Kumar & Kulkarni 1998) and fractal dimension 

(Puccioni, Torcini, Politi & G.D’Alessandro 1991)). The physical interpretation 

of such phenomena is that a long array of coupled systems may be thought of as 

a concatenation of small-size sub-systems that evolve almost independently from 

each other (Ruelle 1982; Kaneko 1989). As a consequence, the limiting behaviour of 

an infinite lattice is extremely well approximated by finite lattices of quite modest 

size. In our numerical work, we thus approximate the thermodynamic limit by a 

lattice of size L  =  100 with periodic boundary conditions.

We mentioned in chapter 3 that numerical evidence suggests that the attractor 

in such a system is high-dimensional (Lyapunov dimension approximately 70). If 

working with observed data it is clearly not feasible to use an embedding dimension 

of that order of magnitude. On the other hand, we have shown that it is possible 

to make quite reasonable predictions of the evolution of a site using embedding 

dimensions as small as 4. This suggests that a significant part of the dynamics is 

concentrated in only a few degrees of freedom and that a low-dimensional model 

may prove to be a good approximation of the dynamics at a single site. In order to 

investigate this we further introduce the following truncated lattice. Let us take 

N  sites {i = 1 , N)  coupled as in equation (4.1) and consider the dynamics at 

the boundaries zg and to be produced by two independent driving inputs.
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Figure 4.1: Distance between (a) the probability density and (b) the power spectra 

in the thermodynamic limit and its truncated lattice counterpart as the number 

of sites N  in the latter is increased.

The driving input is chosen to be white noise equally distributed in the interval 

[0,1]. We are interested in comparing the dynamics of the truncated lattice to the 

thermodynamic limit case.

4.1 Results

We begin the comparison between the two lattices by examining their respective 

invariant probability density at the central site (if the number of sites is even, 

either of the two central sites is equivalent). For a semi-analytic treatment of the 

probability density of large arrays of coupled logistic maps see (Lemaître, Chaté 

& Manneville 1997). Let us denote by poo{x) the single site probability density 

in the thermodynamic limit and Pn {t ) the central site probability density of the 

truncated lattice of size N.  We compare the two densities in the Ci norm by 

computing

A p { N ) = f  \poo{x) -  pN{x)\dx (4.2)
Jo

for increasing N.  The results are summarised in figure 4.1.a where \og{Ap{N)) is 

plotted for increasing N  for different values of the coupling. The figure suggests 

that the difference between the densities decays exponentially as N  is increased
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(see straight lines for guidance). Similar results were obtained for intermediate 

values of the coupling parameter. The densities used to obtain the plots in figure

4.1.a were estimated by a box counting algorithm by using 100 boxes and 10  ̂points 

(10^ different orbits with 10® iterations each). The maximum resolution typically 

achieved by using these values turns out to be around Ap{N)  ~  exp(—6.5) ~  

0.0015. This explains the saturation of the distance corresponding to 6 =  0.2. 

For 6 =  0.8 the saturation would occur for approximately N  = 35 given enough 

computing power (more refined boxes and more iterations). Nonetheless, densities 

separated by a distance of approximately exp(—3) 0.05 (see horizontal threshold

in figure 4.1.a), or less, capture almost all the structure. Therefore, one recovers 

the essence of the thermodynamic limit probability density with a reasonable small 

truncated lattice (see figures 4.2.a,b).

Next we compare temporal correlations in the truncated lattice with those in 

the full system. Denote by Soo{^) the power spectrum of the thermodynamic 

limit and S n {cj) its counterpart for the truncated lattice. Figure 4.1.b shows the 

difference AS{T)  in the £ i norm between the power spectra of the truncated 

lattice and of the thermodynamic limit for e =  0.2 and 0.8 (similar results were 

obtained for intermediate values of s). As for the probability density, the power 

spectra appear to converge exponentially with the truncated lattice size. Note 

that for large N,  particularly for small s, the difference tends to saturate around 

exp(—12) % 10“®, this is because the accuracy of our power spectra computations 

reaches its limit (with more iterations one can reduce the effects of the saturation). 

Our results were obtained by averaging 10® spectra (|DFT|^) of 1024 points each. 

In figures 4.2.c,d we depict the comparison between the spectra corresponding to 

the thermodynamic limit and to the truncated lattice. As can be observed from 

the figure, the spectra for the truncated lattice give a good approximation to the 

thermodynamic limit. It is worth mentioning that the spectra depicted in figures

4.2.c,d are plotted in logarithmic scale so to artificially enhance the discrepancy 

of the distance between the thermodynamic limit and the truncated lattice. The 

distance corresponding to these plots lies well below AS{T)  < exp(—7.5) % 5 x 

10“4. The convergence of the power spectrum is much faster than the one for the
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Figure 4.2: Approximating (a,b) the probability density and (c,d) the power spec

tra of the thermodynamic limit (thick lines) using a truncated lattice (thin lines).
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Figure 4.3: Difference of the two-point correlation between the truncated lattice 

and the thermodynamic limit for two neighbours at the same iteration (C(^ =  

l , r  = 0)).

probability density (compare both scales in figures 4.1).

To complete the comparison picture we compute the two-point correlation 

which we defined in eq. (3.7). C(^, r) corresponds to the correlation of two points 

in the lattice dynamics separated by f  sites and r  time steps. To obtain the two- 

point correlation for the truncated lattice we consider the two points closest to the 

central site separated by (. We then compute AC^^r{N) defined as the absolute 

value of the difference of the correlation in the thermodynamic limit with that 

obtained using the truncated lattice of size N.  In figure 4.3 we plot ACi^o(^) 

a function of for & =  0.2 and 0.8. For e = 0.2, due to limited accuracy of our 

calculations, the saturation is reached around N  = 10. Nonetheless it is possible 

to observe an exponential decrease (straight lines in the linear-log plot) before 

the saturation. For larger values of s the exponential convergence is more evident 

(see figure 4.3.b). Similar results were obtained for intermediate s-values. Note 

that because the correlation oscillates, it is not possible to have a point by point 

exponential decay for ACifi{N),  however, the upper envelope clearly follows an 

exponential decay (see straight lines for guidance). Similar results were obtained
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Figure 4.4: Normalised one-step prediction error difference (4.3) between a trun

cated lattice and the thermodynamic limit for two spatio-temporal embeddings 

{{ds.dn) = (2,1) and {ds,dn) = (2,2)) and different couplings strengths.

for different values of (^, r).

The above comparisons were carried out by using the data produced by the 

known system (4.1). Often, in practice, one is deprived of the evolution laws of the 

system. In such cases, the only way to analyse the system is by using time-series 

reconstruction techniques. This is particularly appropriate when dealing with real 

spatio-temporal systems where, typically, only a fraction of the set of variables 

can be measured or when the dynamics is only indirectly observed by means of 

a scalar measurement function. In the following we suppose that the only data 

available about the system is provided by the time-series of a set of variables in a 

small region of space. We would like to study the effects on predictability when 

using a truncated lattice instead of the thermodynamic limit.

Instead of limiting ourselves to one-dimensional time-series (temporal embed

ding) we use the mix of temporal and spatial delay embeddings (spatio-temporal 

embedding) that we introduced in chapter 3. Therefore we use the delay map 

eq. (3.6) (with = Ts = I). The delay map is used to predict a;” . Recall from 

chapter 3 that the best one-step predictions using the delay map (3.6) are typi-
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cally obtained for dg = dn = 2. Here we use the two cases (ds,dn) = (2,1) and 

(ds,dn) = (2,2); almost identical results are obtained for higher dimensional em

beddings ((dsjdn) G [1,4]^). Denote by E(N)  the normalised root-mean square 

error for the one step prediction using the delay map at the central portion of 

the truncated lattice of size N.  The comparison between E(N)  and E ( N  —> oo) 

is shown in figure 4.4 where we plot the absolute value of the normalised error 

difference

A E (N )  = \(E(N)  -  E(oo))/E(oo)| (4.3)

for increasing N  and for different spatio-temporal embeddings and coupling strengths. 

The figure shows a rapid decay of the prediction error difference for small N  and 

then a saturation region where the limited accuracy of our computation hinders 

any further decay. For e = 0.2 the drop to the saturation region is almost immedi

ate while for the large coupling value £ = 0.8 the decay is slow enough to observe 

an apparently exponential decay (see fitted line corresponding to dg = dn = 2 for 

N  = 1 , ,  20), thereafter the saturation region is again reached. For intermediate 

values of the coupling £, the saturation region is reached between N  = 5 and 20. 

Before this saturation it is possible to observe a rapid (exponential) decrease of 

the normalised error difference. This corroborates again the fact that it seems 

impossible in practice to differentiate between the dynamics of the relatively small 

truncated lattice and the thermodynamic limit.

All the results in this chapter where obtained from the simulation of a trun

cated lattice with white noise inputs at the boundaries. Other kinds of inputs 

did not change our observations in a qualitative way. It is worth mentioning that 

a truncated lattice with random inputs with the same probability density as the 

thermodynamic limit (poo(^)) produces approximatively the same exponential de

cays as above with just a downward vertical shift (i.e. same decay but smaller 

initial difference).

The numerical results shown here correspond to locally coupled map lattices. It 

is clear that the nature of the coupling plays an important role in the phenomenol

ogy hereby presented. In order to check the effects of including a more global
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coupling we also studied the dynamics of large lattices of coupled maps with an 

exponentially decreasing coupling: 3"+  ̂ =  (1 -  /))/(! +  /?) Z l^ -00  

where P G (0,1) measures the decay of the coupling. We found that for small 

P[P < 0.3) it is possible to model the dynamics at a single site for the thermo

dynamic limit with a relatively small truncated lattice. However, as the coupling 

becomes more global for larger values of P, a subtle collective coherence emerges 

and we were unable to obtain promising results from approximating a large lattice 

by a truncated one. It is well known that globally coupled maps are prone to a 

subtle collective behaviour even though coherence of individual sites is not present 

(Kaneko 1992; Sinha, Biswas, Azam & Lawande 1992). In such cases, the idea of 

replacing a potentially infinite lattice with a truncated lattice with random inputs 

breaks down. In particular, the violation of the law of large numbers reported 

in (Kaneko 1992; Sinha, Biswas, Azam & Lawande 1992) will not occur for the 

truncated lattice.

4.2 Discussion

The properties of the thermodynamic limit of a coupled logistic lattice we have 

considered here (probability densities, power spectra, two-point correlations and 

predictability) were approximated remarkably well (exponentially close) by a trun

cated lattice with random inputs. Therefore, when observing data from a limited 

spatial region, given a finite accuracy in the computations and a reasonably small 

truncated lattice size, it would be impossible to discern any dynamical difference 

between the thermodynamic limit lattice and its truncated counterpart. The im

plications from a spatio-temporal systems time-series perspective are quite strong 

and discouraging: even though in theory one should be able to reconstruct the dy

namics of the whole attractor of a spatio-temporal system from a local time-series 

(Takens theorem), it appears that due to the limited accuracy (due to machine 

precision, CPU time and memory limitations, measurement errors, limited amount 

of data) it would be impossible to test for definite high-dimensional determinism 

in practice.
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The evidence presented here suggests the impossibility of reconstructing the 

state of the whole lattice from localised information. It is natural to ask whether 

we can do any better by observing the lattice at many (possibly all) different sites. 

Whilst in principle this would yield an embedding of the whole high-dimensional 

system, it is unlikely to be much more useful in practice. This is because the 

resulting embedding space will be extremely high-dimensional and any attem pt to 

characterise the dynamics, or fit a model will suffer from the usual ’’curse of high 

dimensionality” . In particular, with any realistic amount of data, it will be very 

rare for typical points to have close neighbours. Hence, for instance, predictions 

are unlikely to be much better than those obtained from just observing a localised 

part of the lattice.

If one actually wants to predict the behaviour at many or all sites, the results 

suggest that the best approach is to treat the data as coming from a number 

of uncoupled small noisy systems, rather than a single large system. Then one 

would have to decide the optimal size of the local system. One way of doing this 

would be to choose the embedding dimension for which the predictability is highest 

(cfr. chapter 3). Of course, if one has good reason to suppose that the system is 

spatially homogeneous, one should fit the same local model simultaneously at all 

spatial locations, thereby substantially increasing the amount of available data. 

If one had data from I neighbouring sites and had found that the optimal local 

size to be d sites, then the potential neighbours would increase up by a maximum 

multiple of (/ — d -I-1).
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Chapter 5 

Interleaving and rescaling of the  

Lyapunov spectrum

The computation of the entire Lyapunov spectrum for spatio-temporal dynamical 

systems is a very time consuming task. The high number of variables, and even 

the number of effective degrees of freedom, often leads to severe difficulties because 

of the large amount of resources (computing time and memory space) required for 

many computations. Therefore it is useful, and often crucial, to develop techniques 

that derive information about the whole system by analyzing a comparatively small 

sub-system.

We saw in chapter 2 that for dynamical systems with only a few degrees of 

freedom the computation of the LS is a straightforward task; however, when the 

number of degrees of freedom gets large (e.g. a few hundred) it becomes a painstak

ing process (Grassberger 1989; Puccioni, Torcini, Politi & G.D’Alessandro 1991; 

Bauer, Heng & Martienssen 1993). In particular, any algorithm to compute the 

LS must contain two fundamental procedures; one to multiply by the Jacobian at 

each time step and the other to perform some kind of reorthonormalisation (Geist, 

Parlitz & Lauterborn 1990). The latter is required to prevent the Jacobian matrix 

progressively getting more ill-conditioned, until the largest Lyapunov exponent 

swamps all the others. Such orthogonalisation procedures are based upon the fac

torisation of the Jacobian matrix into a product of an orthogonal matrix Q and an
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upper triangular matrix R. The two most widespread methods for achieving such 

orthogonalisation are based upon modified Gram-Schmidt (MGS) orthogonalisa

tion and the so-called HQR decomposition that uses Householder transformations. 

The MGS-based methods are widely used because of their quite simple numerical 

implementation though they are known to introduce small errors due to the fact 

that the orthogonality of the matrix Q may fail. The HQR-based methods are 

more difficult to implement but they give a better approximation of the LS (von 

Bremen, Udwadia & Proskurowski 1997) since they do not have the problem of 

losing orthogonality of the matrix Q. The difficulty in using any of these methods 

for computing the LS of systems with a high number of degrees of freedom N  is 

that they require 0{N^)  operations (von Bremen, Udwadia & Proskurowski 1997). 

The usual naive algorithm for matrix multiplication is also 0{N^) ,  so that overall 

computing the full LS is an 0{N^)  process (in principle matrix multiplication can 

be done faster than 0{N^)  using specialized techniques, but this hardly seems 

worth doing under the circumstances). As an example, the computation of the LS 

using a HQR method for a logistic coupled map lattice with N  = 100 takes a few 

hours on a standard workstation. When the system size is an order of magnitude 

larger (e.g. for two or more spatial dimensions) and/or the convergence of the 

Lyapunov exponents is rather slow, the task quickly becomes infeasible. Therefore 

one must rely on other techniques to approximate the LS for large systems.

One such technique to estimate the LS in a fully spatio-temporal chaotic regime 

is to take a principal sub-matrix of the Jacobian and compute the LS for this sub

system. It has been observed in a wide range of spatio-temporal systems that such 

a sub-system LS converges to the spectrum of the whole system under appropri

ate rescaling. In a number of specialized cases e.g. turbulent Navier-Stokes flows 

(Ruelle 1982) and hard sphere gases (Sinai & Chernov 1982; Sinai 1996) there are 

rigorous results for this phenomenon. However is seems difficult to prove its occur

rence more generally, and certainly there are many systems where it is observed 

numerically but no rigorous analysis exists. These include coupled logistic maps 

(Grassberger 1989), chaotic neural networks (Bauer & Martienssen 1991), coupled 

map lattices (Kaneko 1989; Kaneko 1986), reaction-diffusion systems (Parekh,
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Kumar & Kulkarni 1996; Parekh, Kumar & Kulkarni 1997) (lattice of ODEs), tur

bulent fluids (Ruelle 1983), the Kuramoto-Sivashinsky model (Manneville 1985) 

(PDE’s), and others.

Such a rescaling approach consists of evolving the whole 77-dimensional system 

under the equations of motion, taking a subsystem of size Ns to compute the LS 

and then rescaling it to obtain an estimate of the original LS. This method relies 

on the linear increase of Lyapunov dimension Dl and KS entropy h (see chapter 

2 for deflnitions) with the sub-system size (see above references). A physical 

interpretation of this phenomenon can be given in terms of the thermodynamic 

limit of the system. A spatio-temporal system in a fully chaotic regime will possess 

a typical correlation length ^ such that elements further apart than ^ evolve almost 

independently from each other. The whole system can then be thought of in some 

sense as the union of several almost independent sub-systems of size In the limit 

when these sub-systems are completely uncoupled the LS repeats itself in each one 

of them. If an interaction between the sub-systems is introduced, one may expect 

the overall LS not to be signiflcantly altered. Thus in the limit of a large number 

of degrees of freedom, a number of Lyapunov exponents per ^-volume may be 

deflned. One expects such an intuitive picture to become more accurate in the 

limit of a large number of degrees of freedom and a small correlation length.

As we will see shortly, when examining closer the Lyapunov spectra in the fully 

chaotic regime for several spatio-temporal systems we found that the Lyapunov 

exponents of two consecutive sub-system sizes Ns and Ns~\-l were interleaved. In 

other words, the ith Lyapunov exponent for the sub-system Ns lies between the Rh 

and (%4-l)th Lyapunov exponents of the sub-system 77s+  1. The interleaving of the 

eigenvalues for a single matrix is a well-known fact (Cauchy’s interlace theorem) 

and is common in many areas such as Sturm sequences of polynomials (Parlett 

1980). Unfortunately there appears to be no obvious generalisation which would 

imply the same fact for sub-system Lyapunov Spectra.
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5.1 Interleaving and rescaling for homogeneous 

states

In order to gain some insight into interleaving and rescaling behaviour of the 

Lyapunov spectrum in extended dynamical systems let us start with the simplest 

case of all: homogeneous evolution. Recall the coupled map lattice equation 2.11. 

We define homogeneous states as states of the form where x f  = x"

is the same for all i. It is trivial that by setting the initial state of the lattice to a 

homogeneous state = x^ one has that =  {f^{x^)}  for all i at any future time 

n. In other words the homogeneity of the initial state is preserved under iteration 

by (2.11).

Let us take a simple form for the coupling by using the most widespread model 

of a CML, the so called diffusive CML:

=  (1 -  e ) f { x 7 )  +  I  ( / « i )  +  / % . ) ) ,  (5.1)

where the coupling is symmetric and only between nearest neighbours. We shall 

perform a linear stability analysis of homogeneous states in this system. Such an 

analysis for more general CML’s has also served as the starting point for the study 

of signal propagation (Carretero-Gonzalez 1997) and pattern formation (Cade & 

Amritkar 1993). Since (5.1) preserves homogeneity under iteration it is natural to 

ask whether the stability of /  completely determines the stability of the homoge

neous state. The answer turns out to be yes.

Recall from chapter 2 that the Lyapunov exponents are given by the loga

rithms of the eigenvalues of the matrix

r =  lim [P{nY^ ■ P{n)Y^""" (5.2)
n—̂oo

where

P(n) =  J (n ) .  J ( n - 1 ) - - - J ( 2 ) .  J ( l )

and where J(s) is the Jacobian matrix of the CML dynamics at time s and ( • 

denotes matrix transpose. For the homogeneous lattice

J{n) = fjin ' M  (5.3)
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where /Tn =  f '{x^)  is the multiplier of the local map and M  is the constant matrix

(  l - e  e/2

M  =

6/2 0 ' e/2

1 - 6  6/2 0

e/2 1 — 6 0

V e/2 0 6/2 1 — £ J

The matrix M  is not only symmetric but also circulant Recall that a matrix is 

circulant if in each successive row the elements move to the right one position (with 

wrap-around at the edges) (Davis 1979). It is straightforward to prove (Bellman 

1960) that the eigenvalues of a circulant matrix

C =

( Co Cl  

6/c — 1 Cq

Ck—1

Ck- 2

\

y Cl C2 Co y

are given by Cq T Cir  ̂ H h Ck-iv^ \  where Tj = exp(27rij/7V) is an Nth  root of

unity. Thus, the eigenvalues /3j{n) of J(n) are given by

Pj{n) — /i„ 1̂ (1 -  6) +  - { V j  - \ - T j  

— A^n0j(c,A^),

N - 1

where

N) = { 1 -£ ) - \ -£  c o s  . (5.4)

It is important to notice that ^j{s, N)  does not depend on the iteration n: the time 

dependence has been decoupled (factorized) into The Lyapunov exponents are
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then given by

Xi = lim In JT  |A(n)|^/*
t—¥oo

n = l

=  ^hmln M0i(£,A^)|
V n = l

1 *
=  ln\(j)i{£,N) \ +  lim - ^ l n | / i

t-^oo t -̂-
n = l

Thus by defining Aq to be the Lyapunov exponent of a typical orbit of a single, 

uncoupled, local map, starting at x^: Aq =  limt_^oo(lA) lii l/̂ nl? one obtains 

the following expression for the Lyapunov exponents of a homogeneous evolution:

= '̂ o +  In |0i(£, A^)|. (5.5)

Note that the Lyapunov exponents defined by (5.5) are not arranged in decreasing 

order. Re-indexing them in decreasing order they become

(Ao + In  I(/>*{£, A/") I A: even
(5.6)

Ao +  In |(;6^(e, N")| k odd 

where A: =  1 to Æ. It is clear that Â  =  A^+i when k is even, so most of the 

exponents occur in degenerate pairs, apart from the largest, and, if N  is even, the 

smallest. The linear stability of a homogeneous orbit is then characterized by the 

Lyapunov exponent Aq of a single site in the uncoupled case (6 =  0). In particular, 

if the local map is not chaotic then the homogeneous evolution is not chaotic either 

since Xk < Aq (|(/>a:(£, Â )| < 1 for all k).

It is interesting to notice that the same shape for the LS of a homogeneous 

CML {cf. (5.5)) is obtained for a lattice of coupled Bernoulli shifts (Vannitsem 

& Nicolis 1996) for any orbit. There is however an important difference: while 

in the CML the LS dependence on the actual orbit was decoupled thanks to the 

homogeneity, in the case of coupled Bernoulli shifts, the LS is decoupled from the 

orbit because the derivative of the local map at any point is constant. Examining 

further this similarity, if one takes the fully chaotic logistic map (4 a: (1 — a:)) as 

the local map for the diffusive CML, the LS for the homogeneous evolution is

Ai =  ln 2 -f In |( î(6, N")|. (5.7)
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In fact, any one-dimensional map whose Lyapunov exponent is Aq =  ln2 gives rise 

to the LS (5.7) under homogeneous evolution. The LS (5.7) corresponds exactly 

to the LS of a lattice of coupled Bernoulli shifts and thus the results described 

below for the rescaling of the sub-system LS are valid for the case of a lattice of 

coupled Bernoulli shifts.

Now let us perform the LS analysis for a sub-system of the original CML. Thus 

instead of taking all the sites i = 1 , . . . ,  N  we take Ns sites starting at any position 

j .  The choice of j  is not important since we are dealing with periodic boundary 

conditions and because the state is homogeneous; from now on we choose j  = I. 

Thus, we take a principal sub-matrix J' of size Ns x Ng from the whole Jacobian 

J . In matrix terms J' = 7t(J) where tt is the following projection

7t (  J) =  11/ • J  • Ilr 

with the left (II/) and right (Hr) projection matrices defined as

(5.8)

n, = I

I  \
I

where, from now on, I  is the Ng x Ng identity matrix and Z  is the N g X (N —Ng) null 

matrix. Therefore, in order to compute the Lyapunov exponents for the truncated 

system one has to compute the following product of projected matrices

p'{n) = ( n / j ( n ) n , ) . . . ( n / j ( 2 ) n , ) ( n / j ( i ) n , )
(5.9)

where

lie =  Ilr • 11/ =

— 1) • •• j(2)n,j(i)n„

/
I

\
z

V
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Multiplying equation (5.9) from the left by the identity matrix obtained by 11̂ 11̂  =  

I  yields
p'[n) = n ^ n ,n iJ ( n ) n e J ( n - 1 ) - - - j ( 2 ) n e J ( i ) n ,

=  YiiiicJ iP' — 1) ' • • J (2 )r[cJ(i)n ,

=  7T (P (n ))  ,

(5.10)

where we define the new product P{n) = K[n) • • • K{2)K{1)  of the projected 

matrices K(i) = IicJ(i).

Using the above description we obtain the sub-system LS for the homogeneous 

evolution. The projected Jacobian for the homogeneous evolution at time n  is

(5.11)=  7r (J(n) )  = //„7r(Tl/f) — j ifi • M '

, X TVg c o n s t a n t  m a t r i x

1 — 6 e / 2 0 • • • 0

6 / 2 1 — 6 6 / 2 0

0 e / 2 1 — 6 • • * 0M ’ =

y 0 • • • 0 6/2 1 — £ j

if Ns < N,  and Mjy = M  if Ns = N . From now on we only use the notation M'  

when Ns < N.  It is important to notice that by taking a sub-Jacobian matrix the 

periodicity of the boundary conditions is lost. The dynamics of the sub-system at 

the boundaries could be thought as being coupled to some external noise coming 

from the adjacent sites. Thus, in contrast to M, the matrix M'  is not circulant, 

however its eigenvalues are well known to be (Barnett 1990)

7tJ
(f)'j£,Ns) = ( l - e )  + 6  cos (5.12)

(where j  =  1 to Ns)] and so the eigenvalues l3j{n) of J'{n) are Pj{n) = jin ÿj(e, Ns). 

The sub-system LS is given by

A'- — Ao +  In ^ s ) \ ‘ (5.13)
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One can immediately infer from this that the Lyapunov exponents for the 

homogeneous evolution are interleaved for two consecutive sub-system sizes. More 

precisely, suppose that we take two sub-systems, one of size Ng and the other of 

size Â 5 -f 1. It is then trivial to see that their respective Lyapunov exponents 

X'i(Ns) and A'(A 5̂ 4- 1) satisfy;

A'(iV, +  l ) <  A'(iV,)<A'+i(iV, +  l) V l < « < % ,  (5.14)

see figure 5.1.a. Interleaving of the sub-system LS with respect to the whole LS 

Xi{N) also occurs:

<  A|(Ar,) < A,+;v_Ar.M VI < 2 < TV,.

This interleaving of the eigenvalues is a consequence of Cauchy’s interlace the

orem (Parlett 1980) that gives bounds on the eigenvalues of a principal sub-matrix 

given the eigenvalues of the original matrix. It is important to notice that the 

interleaving property of the Lyapunov exponents for the homogeneous case is a 

straightforward consequence of the decoupling of the time dependence of the Ja

cobian matrix leaving us with the constant matrices M  and M'.  In a typical non- 

homogeneous evolution the time dependence of the Jacobian cannot be factorized 

and an equivalent constant matrix for the Jacobian does not exist. Therefore, 

Cauchy’s interlace theorem cannot be applied in this general case and there is no 

reason a priori for the interleaving property to hold for a generic extended dynami

cal system. It is true that, at any particular time, there is interleaving between the 

eigenvalues of the whole Jacobian and those of a sub-system. However, when com

puting the LS, one has to compute the product of the Jacobian matrices while for 

the sub-system LS one uses the product of the sub-Jacobian matrices and therefore 

the interleaving of the matrix product is no longer assured. The only way, a priori, 

for the interleaving to work would be to take the product of the whole Jacobians 

first and only then extract the sub-Jacobian. The problem with this procedure 

is that one has to rely again on re-orthonormalisation procedures involving the 

original matrix size N,  making the task impossible for large N.  Nevertheless, as 

we shall see in the following section, the interleaving of the sub-system LS does 

hold to a great extent in the thermodynamic limit.
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Another important point to note from equations (5.12) and (5.13) is that the 

LS of the sub-systems all have the same shape. The best way to see this is to 

rescale the indices of the Lyapunov exponents so that they lie in the range [0,1]: 

so instead of plotting A against j  we plot it against j /{Ns  +  1). Equations (5.12) 

and (5.13) then show that the points always lie on the graph of the function

X{z)  =  Ao +  In [(1 — e) e cos(Trz)], (5.15)

irrespective of the value of Ng. This observation suggests another way of looking 

at the interleaving property. For a given Ns, the z values of the sub-system LS 

are equally spaced in the interval [0,1]; if we increase Ns by 1 the new z values 

interleave with the old. Since A is a monotone function the fact that the z values 

interleave means that the \ ( z )  values interleave also. It is worthwhile mentioning 

that we are considering the simple case 1 — 26 > 0 so the absolute value inside 

the logarithm in equation (5.13) can be omitted. For 1 — 26 < 0 the eigenvalues 

need further re-indexing in order to maintain their decreasing order and a similar 

construction as below is possible.

To compare the sub-system LS with that of the full system we should similarly 

rescale the indices for the latter, so now we plot the full system Lyapunov exponents 

against j  /  (A" 4-1) instead of j .  The points of this spectrum do not lie on the graph of 

A(z); however, equation (5.6) shows that they do lie on the graphs of the functions

Aeven(-2:) =  A (z (1 4- l/A ))

(for exponents with even indices) and

-̂ odd('2:) =  A (z (1 -f 1/A) — 1/A)

(for exponents with odd indices), where the function A(z) is given by equation 

(5.15). Since z { l  4- 1/A) — 1/A  < z  < z ( l  1/A) (0 < z < 1) and A(z) is a 

decreasing function we see that Agven(z) < \ { z )  < Aodd(^)- Thus Aeven and Aodd are 

bounding curves for A (see thin dashed lines in figure 5.1.b) and converge to it as 

A  — oo; the differences between A and the other curves are 0{1 /N) .

The similarities between the shapes of the Lyapunov spectra of the sub-systems 

and of the whole system mean we can use the sub-system LS to estimate the
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Figure 5.1: Lyapunov spectrum for a homogeneous evolution in a diffusive CML: 

a) interleaving for sub-system sizes Ng = 1 , . . . , 20 (TV =  20); b) rescaled sub

system LS, the circles represent the whole LS (TV =  30), the thin dashed lines 

represent the functions Aodd and Agven passing through the eigenvalues for even 

and odd indexes respectively, while the thick lines represent the rescaled LS with 

TVs =  10 using the conventional rescaling r' = TV/TVg (thick dashed line) and the 

new rescaling obtained in section 5.1 r = (TV 4- l)/(TVg + 1) (thick solid line).
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whole LS: to do this we rescale the indices of the sub-system exponents, plotting 

Xj against r j  where r  is a factor chosen so that the rescaled sub-system LS lies 

as close as possible to the plot of the full system LS. The above discussion shows 

that if we choose

then the rescaled sub-system LS differs from the full system LS by an amount of 

0(1/7V).

The scaling given by (5.16) differs from that used conventionally, which is 

performed by scaling by

see (Grassberger 1989; Bauer & Martienssen 1991; Kaneko 1989; Kaneko 1986; 

Mayer-Kress & Kaneko 1989). It is clear however that using r' will give results 

that differ from those using r  by terms of 0{1/Ns),  and since this is larger than 

0 { l / N )  the errors in the exponents will also be 0{1/Ns).  This suggests that 

scaling (5.16) should give more accurate results than the conventional scaling; this 

is certainly true in the homogeneous case. As an example figure 5.1.b shows the 

original LS for a homogeneous CML with N  = SO (circles) along with the rescaled 

LS with Ns = 10 using the conventional rescaling r' (dashed line) and the new 

rescaling r obtained above (solid line). It is clear that the new rescaling gives a 

much better approximation to the original LS.

5.2 Interleaving and rescaling for coupled logis

tic maps

As mentioned in the previous section, the interleaving property for the homoge

neous evolution relies on the fact that the Jacobian matrices can be factorized into 

a time dependent scalar and a time independent matrix (see equations (5.3) and

(5.11)). For a non-homogeneous evolution the Jacobians cannot be factorized in 

such a way and thus a priori one does not expect interleaving to occur. Surpris

ingly enough the numerical evidence points towards interleaving of the sub-system
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LS for almost every Lyapunov exponent in the fully developed chaotic regime. In 

this section we shall present such evidence for the familiar logistic CML, and dis

cuss why such behaviour might be expected to occur. More general systems will 

be considered in the following section.

We thus consider the diffusive CML (5.1) with the fully chaotic logistic map 

f{x)  = Ax (1 — x) as we have in the earlier chapters and compute its LS for several 

values of the coupling parameter e. As with all numerical work in this chapter we 

employ a fast HQR algorithm for the computation of Lyapunov exponents (von 

Bremen, Udwadia & Proskurowski 1997). We then calculate the sub-system LS 

using principal sub-matrices J' of size Ng =  1 , . . . ,  30 of the Jacobian. In doing 

so one is not taking into account the dynamics of the neighbouring sites next 

to the boundary and their effects are considered as noise. Thus, the algorithm 

consists in computing the LS of the sub-Jacobian J'  by truncating the actual 

Jacobian J  at each time step and then applying the HQR algorithm. The results 

are shown in figure 5.2 where we plot the sub-system LS for increasing sub-system 

size {Ng = 1 , . . . ,30)  for 3 different values of the coupling parameter. In the 

figure, the filled circles represent the Lyapunov exponents that do not fulfil the 

interleaving condition. Strikingly, the LS corresponding to 6 =  0.05 and e = 0.45 

(figures a and b) are very well interleaved, with the exception of a couple of points. 

On the other hand, for e =  0.95 (figure 5.2.c) the LS is not that well interleaved 

for the smallest Lyapunov exponents, although for the large ones the interleaving 

is as good as for the previous two figures. The reason for this failure for the 

smallest Lyapunov exponents is that in the limit e: 1 the lattice decouples into

two independent sub-lattices: one for odd i and the other for even i. Thus, when 

successively increasing the sub-system size, one is including in turn contributions 

from the even and the odd sub-lattice. This is reflected in a variation in the smallest 

Lyapunov exponents every time we increase the sub-system size by one, hence the 

bi-periodic nature of the interleaving failure. In fact, by removing the sub-system 

LS for odd sizes one ends up with almost perfect interleaving. The exact reasons 

and conditions for the interleaving of the sub-system LS to happen are not yet 

understood, however we believe that they are connected with the convergence of
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Figure 5.2: Sub-system Lyapunov spectra for the fully chaotic coupled logistic 

lattice N  = 100 for sub-system sizes 1 to 30 (left to right) for a) e = 0.05, b) 

£ = 0.45 and c) e =  0.95. The filled circles represent those Lyapunov exponents 

which fail to interleave.
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the sub-system LS to the full system LS—a convergence which may be expected 

in the thermodynamic limit, see below.

As mentioned in the introduction to this chapter, it has been observed for some 

time that under appropriate rescaling the sub-system LS approximates the whole 

LS. The usual argument for this rescaling behaviour makes use of the thermody

namic limit. In the previous section, while studying the interleaving of sub-system 

LS for the homogeneous case, a new rescaling was suggested (see equation (5.16)). 

Let us test this for the case of the fully chaotic coupled logistic lattice. In figure 5.3 

we compare, for e = 0.05 and e = 0.45, the rescaled sub-system LS using the new 

rescaling r = (7V-I- l)/(Æg 4-1) (5.16) (circles) and the conventional one r' = N/Ng 

(crosses) to the whole LS (lines) for different sub-system sizes {Ng =  15, . . . ,  25). 

As is clear from the figures, the new rescaling r gives a much better fit to the 

original LS than the conventional rescaling.

Let us explore the idea of rescaling the sub-system LS in the thermodynamic 

limit a bit further. The correspondence between the rescaled LS and the whole LS 

in figure 5.3 is astonishingly good. The rescaled spectra lie almost perfectly on top 

of a decreasing curve, therefore, as with the homogeneous case discussed above, 

it is not surprising that they are interleaved. In general, if the rescaled Lyapunov 

spectra of the sub-systems converge sufficiently quickly to the whole system LS 

we expect to have good interleaving of the sub-system Lyapunov spectra. On the 

other hand, if the rescaled sub-system LS do not approximate the whole system 

LS well, it is not clear that interleaving will occur. To illustrate this we present 

the rescaled LS using the new rescaling r  for e =  0.95 in figure 5.4. In this 

case, the rescaled LS do not give such a good approximation to the whole LS 

(in particular for the smallest Lyapunov exponents) as seen in the other cases 

{e = 0.05 and e = 0.45). As explained above, this is due to the decoupling of 

the whole lattice into two sub-lattices when e —>■ 1. Therefore it appears that the 

non-interleaving of the smallest Lyapunov exponents in figure 5.2.c is related to 

the lack of convergence of the sub-system LS. In general we suppose that failure 

to interleave is an indication that the sub-system LS have not converged. Clearly 

however, the presence of interleaving is not a sure indication that convergence has
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Figure 5.3: Comparison of the whole Lyapunov spectrum (solid line) and the 

rescaled sub-system Lyapunov spectrum using the new rescaling r (circles) and the 

conventional rescaling r' (crosses) in the fully chaotic logistic lattice with =  100 

for several sub-system sizes {Ns = 1 5 , ,  25). a) 6 =  0.05 and b) 6 =  0.45.
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Figure 5.4: Rescaled Lyapunov spectrum (circles) for the coupled logistic lattice 

with e = 0.95 for sub-system sizes =  15, . . . ,  30. The solid line represents the 

whole Lyapunov spectrum Æ =  100.

occurred; this is illustrated by the two-dimensional logistic lattice discussed later.

We believe that the key point in understanding the interleaving behaviour is 

that although in computing the sub-system LS one is using the product of projected 

matrices (5.10), one does not modify the original dynamics in any way. Recall that 

similar matrices share eigenvalues. Thus a feasible explanation for the occurrence 

of interleaving is to hypothesize that the product of the projected matrices P'{n) 

is a projection of a A/" x AT matrix Q(oo) which is similar to the limit as n ^  oo of 

the original product P{n) of the whole Jacobians. In other words, we conjecture 

that there exists an invertible N  x N  matrix S  such that

Q(oo) =  lim S ^P{n)S, (5.17)

where the product of the projected matrices P'{n) in the limit is obtained by 

projecting Q(oo):

P'(oo) =  7T (Q (oo)).
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Figure 5.5: Interleaving of the sub-system LS, =  1 , . . . ,  30, for the fully chaotic 

logistic lattice with e = 0.45 using the more general projection matrices (5.18) to 

extract the sub-system Jacobians: a) IIi and b) II2.
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Informally, this is saying that in some sense in equation (5.10) the projection 

matrices commute on average with the Jacobians in the n —)■ oo limit. We be

lieve that it might be possible to make this statement rigorous by an appropriate 

generalisation of the multiplicative ergodic theorem.

One might then also ask what is so special about the projection lie. Is it 

possible for interleaving to occur for more general projections? The following two 

examples suggest that this is indeed the case. Consider the following projection 

matrices

111 =

IIo =

n ; %

^tr 0

%

^tr 0

\

(5.18)

where Z  is the Ns x (N — Ng) null matrix and the Ns x Ns matrices II  ̂ and llg 

are
(

n; =

n' =

1 1 1 • • •  1 ^

0  1 1 • • •  1

0  0  1 • • •  1

0  0  0  ' * ' 1 y

1 0'12 CK13 ' • '

0  1 CK23 Oi2Ns

0  0  1 • • • (^3Ns

0 0 0 /
where the OLij are random numbers chosen from the interval [0,1] with equal 

probability. Note that we are still using the term projection matrices for TIi and IÏ2 

which in a strict sense is not correct, since they do not satisfy 11̂  =  II? (j =  1, 2). 

We use this terminology to stress the fact that they completely remove some of 

the entries of the original Jacobian. Thus, instead of taking the projection matrix
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Figure 5.6: Rescaled sub-system LS corresponding to figure 5.2 using the projection 

matrices Hi (crosses) and 112 (circles). The continuous line corresponds to the 

original LS computed with the whole Jacobian.

Lie let us take Hi and II2. For the projection II2 we randomise its entries every 

time-step; similar results were obtained by randomising only at the beginning and 

keeping the same projection matrix thereafter. In figure 5.5 we depict the non

rescaled sub-system LS using both projection matrices for the fully chaotic logistic 

lattice. The figure strongly suggests that in these cases interleaving still occurs. 

It thus appears that the choice of projection matrix is not a crucial ingredient for 

interleaving. Nonetheless it is important to say that we do not expect interleaving 

to hold if one uses a series of projection matrices such that when computing the LS 

one does not get convergence. In the above examples, TIi and II2, we do have the 

required convergence. For the fl2 case, the convergence of the LS of their product 

is a well known fact (Furstenberg & Kesten 1960; Johnson, Palmer & Sell 1987).

On the other hand, when we turn to rescaling we find that although for IIi 

and II2 we still get convergence of the rescaled sub-system LS to a definite limit, 

this limit is not the original LS for the full system (figure 5.6). The reason for this 

discrepancy is easy to understand since the new projections IIi and II2 combine the
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entries of the projected Jacobians and thus one expects the eigenvalues to change.

5.3 Estimation of quantities derived from the Lya

punov spectrum

As illustrated in the previous section, the LS can be well approximated by the 

rescaled sub-system LS in the thermodynamic limit. We now use the new rescaling 

in order to approximate the original LS by extrapolating from the sub-system LS. 

We estimate the largest Lyapunov exponent, Lyapunov dimension and KS entropy 

and we compare our method to the results obtained with the whole LS and with 

the conventional rescaling.

The first method to approximate quantities derived from the LS in the thermo

dynamic limit is by defining intensive quantities from the extensive ones by simply 

using the corresponding densities (Parekh, Kumar & Kulkarni 1998; Parekh, Ku

mar & Kulkarni 1997; Bauer & Martienssen 1991; Mayer-Kress & Kaneko 1989; 

Puccioni, Torcini, Politi & G.D’Alessandro 1991). Let us define the densities of 

eqs. (2.9) and (2.10):

Pd{Ns) =
(5.19)

Pk{N.) = ^
corresponding to the Lyapunov dimension density and the KS entropy density 

respectively. In the thermodynamic limit these densities are intensive quantities 

(i.e. they do not depend on the sub-system size taken). One then estimates their 

extensive counterpart when Ns ^  N  hy multiplying the densities (5.19) by N.  To 

estimate the largest Lyapunov exponent for the whole system we directly take the 

value of the largest Lyapunov exponent of the sub-system (the Lyapunov exponents 

are not extensive quantities). It is worth mentioning that in order to use these 

intensive densities to estimate extensive ones we are supposing the size N  of the 

original system to be known.

The second method, which we believe is more accurate, consists of taking the 

sub-system LS, rescaling it, extrapolating a curve through it to obtain an approx-
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imation to the whole LS and only then computing the desired quantities. There 

are several ways to extrapolate the whole LS from the sub-system LS; here we 

have chosen a piece-wise linear approximation for simplicity. One could use more 

accurate methods such as cubic splines but the aim here is to compare both kinds 

of rescaling and thus a piece-wise linear fit is the most straightforward approach. 

Therefore, take the rescaled LS Xi(Ns), obtained with either rescaling for a sub

system of size Ns, and consider the polygon V  through all the points (z, Xi{Ns)). To 

estimate a Lyapunov exponent of the whole LS lying between Ai(A^s) and Xn^(Ns) 

one simply uses the fit given by the polygon V.  For Lyapunov exponents lying 

to the left (right) of the polygon use linear extrapolation from the first (last) two 

points of the rescaled LS. Here again one could use more sophisticated extrap

olation methods but for simplicity we restrict ourselves to the linear one. Once 

the whole LS is estimated using the above method, or a more complicated one, 

quantities such as the largest Lyapunov exponent Ai(A^), the Lyapunov dimension 

D l and the KS entropy h are easily extracted.

In figure 5.7 we compare the estimates of a) the largest Lyapunov exponent 

Ai(77), b) the Lyapunov dimension D i  and c) the KS entropy h obtained from 

the intensive densities (diamonds) and the piece-wise linear fitting for both rescal

ings (conventional rescaling with crosses and the proposed new one with circles) 

as the sub-system size increases for the coupled logistic lattice. The actual val

ues of these quantities calculated with the whole LS correspond to the horizontal 

lines. For the largest Lyapunov exponent, figure 5.7.a, we notice that the esti

mates are almost identical for both rescalings (crosses and circles). This is due to 

the fact that both rescalings tend to coincide for small i (see figure 5.7.b). The 

estimate of the largest Lyapunov exponent by just taking the largest Lyapunov 

exponent of the sub-system (diamonds) shows a slower convergence than the lin

ear fit methods. For the Lyapunov dimension, figure 5.7.b, the method with the 

slowest convergence corresponds to the conventional rescaling (crosses), while the 

approximations derived from densities (diamonds) and from a linear fit with the 

new rescaling (circles) are quite good (note that the new rescaling method does 

better than the approach using densities). Finally, for the KS entropy, figure
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Figure 5.7: Estimation of a) the largest Lyapunov exponent, b) the Lyapunov 

dimension and c) the KS entropy as a function of the sub-system size Ns in the 

coupled logistic lattice with N  = 100 and e = 0.45. The estimates obtained by 

using a) the largest Lyapunov exponent of the sub-system and b-c) the associated 

densities from the sub-system are presented with diamonds, and the estimate ob

tained from the piece-wise linear fit to the rescaled LS is presented with crosses 

for the conventional rescaling and circles for the proposed new one. The values 

obtained with the whole LS are represented by the horizontal line.



C H A P T E R  5. INTERLEAVING AND  RESCALING OF THE LYAPU NOV S P EC TR U M  83

5.7.C, the estimates using the density (diamonds) and the conventional rescaling 

(crosses) have similar convergence rates while the new rescaling method (circles) 

does considerably better. The evidence given by this set of plots tends to indicate 

that the new rescaling method gives better convergence to the quantities derived 

from the sub-system LS.

5.4 More general extended dynamical system s

So far we have only considered interleaving and rescaling in systems in one spa

tial dimension with nearest neighbour coupling, corresponding to tridiagonal Ja

cobians. In this section we turn to more general kinds of extended dynamical 

systems by allowing a larger coupling range (e.g. chaotic neural networks) and by 

taking a different topology for the lattice (e.g. lattice with two spatial dimensions). 

The results presented in this section suggest that the interleaving and rescaling 

properties observed for the simpler one-dimensional CML persist for more general 

extended dynamical systems.

5.4.1 Chaotic neural networks

We now consider a chaotic neural network (Bauer & Martienssen 1991) of the form

= tanh i g ^  , (5.20)
V l = i - k  J

where p is a real number called the gain parameter, k represents the connectivity 

(essentially playing the same role as the range of the coupling in a CML) and 

the weight matrix Cij has entries chosen randomly from [—1,1] with a uniform 

probability distribution for (i — j)  (mod Â ) < k and Cij = 0 otherwise.

Both the CNN and CML dynamics work in two stages—nonlinearity and 

coupling—but their order is inverted. The CML dynamics applies the nonlinear 

mapping /  first and then the coupling, while the CNN first applies the coupling 

via a linear weighted combination of neighbouring sites, and then a nonlinear map 

(the sigmoid). This inversion is reflected in the Jacobian matrix of the transfer-
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Figure 5.8: a) Interleaving of the sub-system LS in the chaotic neural network 

(5.20) with k = 10 and g = 2. b) Comparison between the conventional rescaling 

of the sub-system Lyapunov spectrum (crosses) and the new rescaling obtained in 

section 5.1 (circles), the whole LS is depicted by the solid line.



C H A P T E R  5. INTERLEAVING AND RESCALING OF THE LYAPU N O V SPEC TRUM  85

mation: while each entry of the CML Jacobian (5.3) depends on a single site, each 

entry of the CNN Jacobian depends on a neighbourhood of sites:

cosh"

The CNN Jacobian (5.21) inherits the zeros of the coupling matrix Cij, i.e. Jij{n) = 

0 if {i—j)  (mod TV) > k. Another difference between the CNN that we will consider 

and the diffusive CML discussed before is that the CNN involves coupling with a 

larger neighbourhood than just the left and right nearest neighbours.

Let us now analyze the interleaving and rescaling for a CNN with a large k. In 

figure 5.8 we show the interleaving and rescaling with A: =  10 and g = 2. As we 

can see, the interleaving is quite good with the exception of a few small Lyapunov 

exponents. In figure 5.8.b we plot the rescaled sub-system LS for several sub

system sizes using both rescalings (circles: new rescaling and crosses: conventional 

rescaling) along with the whole LS (solid line). Clearly the new rescaling gives a 

better estimate of the whole LS. Similar results were obtained for other values of 

the parameters k and g.

5.4.2 Two-dimensional logistic lattice

The interleaving and rescaling properties of the sub-system LS were obtained in 

section 5.2 for a one-dimensional array of coupled maps. Here we put to the 

test the interleaving and rescaling for a two-dimensional CML. Let us take a two- 

dimensional square lattice of size L x  L. The local dynamics xfj at each node {i,j) 

and any time n  is governed by the fully chaotic logistic map

f i j i ^ )  =  / W  = ^ X { 1 -  X) .

As in the one-dimensional CML the local dynamics is applied first 

and then the coupling dynamics

=  (1 -  ^) 2/z” +  ̂VAfij,
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where yjlj-.. is the average of the i/g in the neighbourhood J\fij of site The

neighbourhood J\fij is taken to be the eight adjacent sites to (z, j)  with periodic 

boundary conditions.

The Jacobian J{n) at time n for this two-dimensional lattice is defined through 

its elements:

where the indices Uk and ct/ refer to the position in the actual lattice of the chosen 

A:th and Ith state variables of the system. If one just wants to compute eigenvalues 

of the whole Jacobian, the order in which the state variables are taken is not 

relevant. However we are interested in extracting sub-Jacobian matrices from the 

whole system and thus the ordering choice of the state variables does matter. 

There are different ways to choose the ordering, but the simplest way consists 

of taking the site (1,1) as the first state variable and then proceeding horizontally 

to the right until the end of the lattice is reached and then proceeding to the 

bottom of the lattice by rows:

1 2 3 L - 1 L

L 1 T -f- 2 L 2) 2 L -  1 2L

‘IL  J - 1 2Z/ 4- 2 2L -l- 3 3 L -  1 3L

that is ak = {k — [ k /L \ , [ k /L \ )  where [z\ denotes the largest integer smaller 

than or equal to z. From now on this kind of ordering will be called horizontal 

wraparound. There is obviously a vertical counterpart where the order is taken 

by columns. The problem with this type of ordering is that it does not build 

up the Jacobian in a natural way. The propagation of a perturbation typically 

grows equally in both of the two spatial dimensions (in particular for our choice 

of coupling since all the neighbours contribute with the same weight e/S). In 

contrast, with horizontal or vertical wraparound one has to wait until a complete 

wrap is taken to fall again near the perturbed area. A more natural approach 

might thus be to attem pt to mimic the spatial growth of perturbations by taking
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an ordering that fills up a two-dimensional area from the centre outwards. For 

that purpose, we use the following ordering technique:

1 2 5 10

4 3 6 11

9 8 7 12

16 15 14 13 • • •

We call this square wraparound.

In figure 5.9 we show the non-rescaled sub-system LS for the two wraparound 

methods, a) square and b) horizontal, and we plot with solid circles the Lyapunov 

exponents that fail to interleave. Observe that interleaving failure occurs for only 

a very few Lyapunov exponents. After a careful examination of these Lyapunov 

exponents one notices that they are very close to interleaving, suggesting that 

the failure is due to numerical error in the computation of the exponents (and in 

particular poor convergence). Therefore, we shall consider a Lyapunov exponent 

to be interleaved if it falls in the interval defined by the inequality (5.14) with an 

error

+  1) — < Xi{Ns) < Xi^i(Ns +  1) +  (̂ A, (5.22)

where A =  Xi^i{Ng 4- 1) — Xi(Ns +  1). From now on we redefine ô such that the 

errors are given in percentages. Using such a definition, if one allows a small error 

of 2.5% — =  0.025 in (5.22)— for the Lyapunov exponents in figure 5.9, one 

obtains perfect interleaving for the whole spectrum.

The interleaving seen in figure 5.9 suggests that the ordering choice for the 

Jacobian entries does not play an important role in this phenomenon. However, 

as can be seen in figure 5.10, where we plot the rescaled LS for both wraparound 

methods along with the whole LS, the choice of ordering method is crucial in 

obtaining good rescaling behaviour. Square wraparound (figure 5.10.a) yields im

mediate convergence towards the whole LS: even for a very small sub-system size
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10 15 20 25 30 35

Figure 5.9: Sub-system Lyapunov spectra for the two-dimensional 20 x 20 coupled 

logistic lattice for sub-system sizes 1 to 40 (left to right) for 6 =  0.45 and for the 

two wraparound methods for building up the Jacobian: a) square wraparound and 

b) horizontal wraparound. The filled circles represent the Lyapunov exponents 

where interleaving fails.
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Figure 5.10: Rescaled sub-system LS for the two-dimensional coupled logistic 

lattice (same parameters as in figure 5.9) using a) square and b) horizontal 

wraparound methods.
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the rescaled LS is almost exactly superimposed on top of the whole LS. On the 

other hand, horizontal wraparound (figure 5.10.b) gives a rescaled sub-system LS 

that seems to converge to a different curve for sub-system sizes Ng = 1, . . .  ,20 

(aligned points in the lower part of the curve for the first Lyapunov exponents). 

For sub-system sizes larger than 20 the rescaled LS starts a new convergence to

wards something closer to the whole LS. The explanation for this phenomenon 

is quite simple. The Jacobian for the horizontal wraparound consists of a main 

diagonal of non-zero elements coming from the neighbours in the same row of the 

square lattice, however, the neighbours in the row above and below give rise to 

two sub-diagonals of non-zero elements. The sub-diagonals start when a whole 

wraparound has been completed, that is when Ng = L where L  is the side length 

of the square lattice. Thus for sub-system sizes Ng < L the sub-Jacobian only 

extracts the main diagonal elements and does not capture the two sub-diagonals 

with vital information about the neighbouring sites in the rows above and be

low. When Ng > L the sub-Jacobian starts capturing these forgotten neighbours 

and the rescaled sub-system LS now begins to converge to the desired LS. For 

the example in figure 5.10.b this behaviour starts at Âs =  L =  20. This effect 

of horizontal wraparound is reflected when one tries to extract information from 

the sub-system LS. As an example, we depict in figure 5.11 an estimate of the 

largest Lyapunov exponent by extrapolating the whole LS from its rescaled ver

sion as the sub-system size increases. The results are depicted with circles for 

square wraparound and with crosses for horizontal wraparound. The vertical solid 

line corresponds to the largest Lyapunov exponent from the whole LS. The es

timate using horizontal wraparound seems to converge to a much smaller value 

than the desired one for sub-system sizes Ng < L = 20. When the sub-system 

size is increased further, horizontal wraparound performs better but still lacks the 

desired convergence. On the other hand, the square wraparound converges rapidly 

in a smooth way: this is because it was designed to build up the Jacobian entries 

in a more natural way. Therefore, although the interleaving for both wraparound 

methods is very good it is considerably more reliable to use the square wraparound 

for rescaling purposes of the sub-system LS.



C H A P TER  5. INTERLEAVING AND RESCALING OF THE LYAPU N O V SPEC TRUM 91

0.7

0.68

0.66

0.64

^  0.62

0.6

0.58

0.56 ÂTIF
square: X^i^Ns 

horizontal: Ai (TV,
0.54

4030 355 10 252015

Figure 5.11: Estimation of the largest Lyapunov exponent as a function of the 

sub-system size Ng in a two-dimensional logistic lattice of size 20 x 20 and with 

€ = 0.45 using a linear fit for the rescaled sub-system LS. The circles correspond 

to building up the Jacobian by square wraparound whilst the crosses correspond 

to horizontal wraparound. The value of the largest Lyapunov exponent for the 

whole lattice is represented by the horizontal solid line.
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5.4.3 Host-parasitoid system

We now consider a more general type of two dimensional lattice, namely the Host- 

Parasitoid lattice model (Hassell, Comins & May 1991; Comins, Hassell & May 

1992; Wilson & Rand 1997). For this system the local dynamics is no longer one

dimensional but two-dimensional: hosts and parasites. The model evolves again 

in two phases. First there is at each site {i,j) a local dynamics given by

nfj  =
(5.23)

Ij — ij

where and P ” are respectively the population size of hosts and parasitoids at 

time n, a is the per capita parasitoid attack rate, b is the host reproductive rate 

and c is the conversion efficiency of parasitised hosts into female parasitoids in the 

next generation. The second phase involves dispersal into a neighbourhood Afij of 

site (i, j) ,  i.e. a fraction /ih of hosts and /ip of parasitoids disperse equally into the 

eight neighbouring sites:

(5.24)

where and V^.. are, respectively, the average of the hosts and the parasitoids 

(after local dynamics (5.23)) in the neighbourhood Mij of site (i, j) . We take a 

square lattice (i, j )  G [1, and periodic boundary conditions. The total size of 

the system is then N  = 2L^. Let us build up the whole Jacobian with host-parasite 

blocks of size 2 x 2 :

J  =

i (T2

'(T2

T'O'2
0̂-̂ 2

J(Tl2
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where the host-parasite blocks are given by

—

d p n + l  Q p n + l

The indices cri 2,2 refer to the actual position in the two-dimensional lattice 

of a particular local population. As for the two-dimensional CML the ordering 

choice of the Jacobian entries plays an important role for the rescaling.

Given a reasonable lattice size (L > 15) and depending on the dispersal param

eters fih and fjLp the evolution of model (5.24) is spatio-temporally chaotic (Rohani 

& Miramontes 1995). Here we choose L =  20, a =  1, 5 =  2, c =  1, =  0.2

and fip = 0.6. The full system is thus N  = 2LP‘ = 800 dimensional. We start 

the system with random initial conditions and discard a transient of 10  ̂ iterations 

before computing the sub-system LS. In figure 5.12we depict the interleaving of 

the sub-system LS for sub-system sizes =  1, . . . ,  40 where we allow a 5% error 

in the interleaving — 5 = 0.05 in (5.22). Figures 5.12.a and 5.12.b correspond 

to square wraparound whilst figures 5.12.C and 5.12.d correspond to horizontal 

wraparound. As the figure shows, interleaving is quite good even for the upper 

region (see amplifications in figures 5.12.b and 5.12.d) where the density of Lya

punov exponents is very high and the intervals for interleaving are small and thus 

the margin for error in the inequality (5.22) is reduced. Square wraparound does 

better for large Lyapunov exponents (figure 5.12.b) whilst horizontal wraparound 

does better for small ones. However, overall both methods have approximately 

similar performance.

While the choice of wraparound method is not crucial for interleaving, figure 

5.13.a shows that it leads to significant differences in rescaling behaviour. Note 

that the LS for the whole system Ng = N  — 800 is not depicted since it would take 

an enormous amount of time to compute. In figure 5.13.a we depict the rescaled 

LS for sub-system sizes Ns = 1, . . . ,  40 for both wraparound methods (square 

wraparound with circles and horizontal wraparound with crosses). As for the two- 

dimensional lattice of coupled logistic maps, horizontal wraparound converges to
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Figure 5.12: Interleaving of the sub-system LS for the host-parasite system in a 

two-dimensional lattice of size 20 x 20. The Jacobian was built using a)-b) square 

wraparound and c)-d) horizontal wraparound. Figures b) and d) correspond, 

respectively, to amplifications of figures a) and c) for the top half of the spectrum.



CHAPTER 5. INTERLEAVING AND RESCALING OF THE LYAPUNOV SPECTRUM 95

-0.05

- 0.1

-0.15

g
i  -0,25

-0 .3

-0.35

-0 .4

-0.45
0 50 100 150 200 250 300 350 400

-0.05

- 0.1

-  -0.15

■< - 0.2

-0.25

-0 .3

-0.35
0 50 100 150 200 250 300 350 400

Figure 5.13: First half of the rescaled Lyapunov spectrum for a host-parasitoid sys

tem in a two-dimensional lattice for sub-system sizes Âs =  1, . . . ,  40. a) Using both 

the host and parasite variables and b) using only the hosts when building up the 

Jacobian. The circles (crosses) correspond to the square (horizontal) wraparound.
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a different curve than does square wraparound. The reason is again that for the 

horizontal wraparound one has to wait until a complete wrap is finished until 

falling again into the neighbouring region. In this case, a horizontal wrap of the 

Jacobian is achieved when Ns = 2L = 40. Moreover, for Ng = 2L = 40 one is 

only including partial derivatives of hosts with respect to hosts and parasitoids. In 

order to include dependences of parasitoids with respect to hosts and parasitoids 

one should take a further wrap of the Jacobian, i.e. Ng = 4:L = 80.

Therefore, the horizontal wraparound technique for sub-system sizes Ns < 

40 does not pick up the dynamics of the neighbours situated in adjacent rows. 

This problem for horizontal wraparound becomes worse as the dimension of the 

local dynamics is increased. A partial solution to this problem is to build up 

the Jacobian by using just one of the local variables of the system. Particularly 

in the host-parasite system where the parasitoid dynamics is slaved to the host 

dynamics, one should be able to reproduce the LS from only the host variables. We 

then build up the Jacobian by taking only host variables using both wraparound 

methods. The results are shown in figure 5.13.b where again the circles correspond 

to square wraparound and the crosses to horizontal wraparound. We only plot the 

first half of the spectrum, the second half of the spectrum differs considerably for 

both methods (host-parasites variables and only host variables) since the small 

Lyapunov exponents are more sensitive to the loss of information contained in the 

parasite variables. On the other hand, the first half of the spectrum is quite similar 

independently of the choice of host-parasite or only host variables. As we can see 

in figure 5.13.b, horizontal wraparound seems to converge to a different curve than 

square wraparound for sub-system sizes Ng < 20 (see aligned crosses in the lower 

part of the spectrum). Since we are only taking the host population (20 x 20), 

when Ng > 20 the horizontal wraparound has finished a complete wrap and it 

starts to pick up the neighbours in adjacent rows and thus the rescaled spectrum 

begins to converge closer to the square wraparound.
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5.5 Discussion

When studying high dimensional extended dynamical systems in a spatio-temporal 

chaotic regime it is possible to rescale the sub-system Lyapunov spectrum to ob

tain the original Lyapunov spectrum. In this thermodynamic limit, a sub-system 

of comparatively small size Ng contains a sufficient amount of information to re

construct the Lyapunov spectrum of the whole system. Usually, when coupling dif

ferent sub-systems in a lattice one chooses a coupling with a finite neighbourhood 

(localized coupling) or at least with decreasing eflPect for further away neighbours. 

In the context of discrete spatio-temporal systems, this restriction on the choice 

of coupling causes the Jacobian of the dynamics to be a banded (or quasi-banded) 

matrix. In the limit of only nearest neighbours interaction in a one-dimensional 

lattice, the Jacobian is a tridiagonal matrix. If one considers the homogeneous 

evolution under this dynamical system, the Lyapunov spectrum of sub-Jacobian 

matrices will inherit the rescaling and interleaving properties described in section 

5.1. The evidence presented in this chapter shows that the new rescaling method of 

the sub-system Lyapunov spectrum gives a much better fit than the conventional 

rescaling N/Ng for one-dimensional lattices.

We have also observed interleaving of the Lyapunov spectra for consecutive 

sub-system sizes. We showed that for two-dimensional lattices the rescaling and 

interleaving are still valid. However, the choice of variables used to build up 

the sub-Jacobian matrices appears to be crucial to achieve good rescaling proper

ties. In particular one has to choose an ordering method of the system variables 

that mimics the propagation of information in the particular lattice topology of 

the system. In two dimensions we showed that choosing the system variables in 

‘concentric’ sub-squares gave a much better rescaled Lyapunov spectrum than by 

choosing them in a row or column-wise fashion. Generalizing this idea to higher

dimensional lattices one should take the system variables by filling up ‘concentric’ 

hyper-cubes.

Another point to take into account when choosing the system variables in 

high-dimensional lattices is the anisotropy of the coupling. The two-dimensional
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systems studied here have an equal relative contribution from all the neighbouring 

directions (isotropic coupling). It is possible to choose the coupling in order to 

give more weight to one of the directions (vertical or horizontal) and thus the 

propagation of information to be faster in that direction. Therefore, instead of 

building the system variables by ‘concentric’ squares it should be more natural to 

take rectangles, the ratio of the rectangle sides being related to the ratio of velocity 

propagation of disturbances in both directions.

For a continuous spatio-temporal system a similar reconstruction may be used 

by sampling in a grid of a sub-system at regular time intervals and by reconstruct

ing the Jacobian from time series in the usual manner. The same procedure can be 

applied for a discrete spatio-temporal system where the dynamics is not explicitly 

given and the only available dynamic information comes from time series taken at 

several spatial locations. We expect that rescaling and interleaving should still be 

observed in these cases. This aspect is investigated in the next chapter.
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Chapter 6 

Estim ation of intensive quantities 

in spatio-tem poral system s from  

tim e-series

As we saw in chapter 2, in low-dimensional systems an ample framework has been 

developed for the characterisation of the corresponding attractor, such as the frac

tal dimension (by calculating the correlation dimension) and the estimation of 

the Lyapunov spectrum. Spatio-temporal systems, on the other hand, are typi

cally high-dimensional and moreover the dimension of the chaotic attractor grows 

with the system size. Since the methods mentioned in chapter 2 require the avail

able data to increase exponentially with the dimension of the attractor (Kantz & 

Olbrich 1997) it is not clear how they can be utilised in the context of spatially 

extended systems. One approach, as suggested by (Grassberger 1989; Mayer-Kress 

& Kaneko 1989), is to use the correlation dimension algorithm to calculate dimen

sion densities and use this to distinguish between spatio-temporal chaos and noise. 

This approach has been further studied by (Bauer, Heng & Martienssen 1993; 

Tsimring 1993). However, (Puccioni, Torcini, Politi & G.D’Alessandro 1991) has 

questioned the ability of this method to distinguish between chaos and noise. Also 

remember that, as we showed in chapter 4, even a small truncated lattice can 

model, exponentially close, the dynamics of a potentially oo-lattice. Thus at least



C H A P T E R  6. ESTIM ATIO N OF INTENSIVE QUANTITIES IN SPATIO-TEM PORAL S Y S T E M S  ... 100

time-delay embedding techniques are bound to fail in spatio-temporal systems.

In this chapter another approach to characterise a spatially extended system is 

adopted, namely we use time-series of sub-systems to estimate the Lyapunov spec

trum  (LS) of the full system. From this we are able to estimate related quantities 

such as the Lyapunov dimension density and KS entropy density. The approach 

was first suggested by (Kaneko 1989). There are, however, some shortcomings 

to this method as it was described there. Firstly the method relies on a local 

approximation of the tangent map, which involves finding close neighbours in a 

reconstructed state space. Since we have to work in dimensions at least up to 20 

it is not clear how this may be achievable with limited data. Furthermore, Kaneko 

was not able to estimate the negative part of the LS accurately enough to be able 

to calculate the Lyapunov dimension density, thus only the KS entropy density 

(which only relies on the positive part of the LS) was calculated. We address these 

shortcomings and suggest ways in which they may be overcome.

6.1 Lyapunov spectrum and related densities

As already mentioned in chapter 5, in the case of spatially extended systems, 

e.g. in the case of a turbulent flow, is has been pointed out that sub-systems 

should be weakly correlated thus the Lyapunov spectrum of the whole system 

should be approximately equal to the union of exponents from each non-interacting 

sub-system (Ruelle 1982). This implies that the LS should be intensive in that 

Aj =  F ( i /V )  is a function of an intensive index i /V ,  where V  is the volume of the 

system. To recall, as a consequence the Lyapunov dimension and KS entropy are 

extensive quantities that grow linearly with increasing system size V. Thus we 

can define the corresponding Lyapunov dimension density pi as

p̂ {V) =  lim di/V, (6.1)V-^oo

and entropy density pu as

pu{V) = lim h/V.  (6.2)
V —¥oo
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The densities defined in eq. (6.1) and eq. (6.2) are thus intensive quantities that 

do not vary with system size. These quantities were first found experimentally in 

(Manneville 1985).

We saw in chapter 5 that for spatially extended system, and in particular by 

analysing coupled map lattices, the sub-system LS converges rapidly towards the 

LS of the whole system for increasing sub-system size (also see (Kaneko 1989; 

Parekh, Kumar & Kulkarni 1998)). Instead of using all the N  variables of the 

system to build the Jacobian we only took a subset Ng of these variables (from 

Ng neighbouring sites) and built the Jacobian for this A(s-dimensional sub-system 

without changing the underlying dynamics for the whole original system. When 

calculating the sub-system LS for increasing Ng, we found that Lyapunov ex

ponents for two consecutive sizes were interleaved and that the sub-system LS 

converges to the LS for the whole system when using a suitable rescaling.

The convergence to a limiting LS suggested that the Lyapunov dimension and 

KS entropy scale with sub-system size and this gave us the opportunity to estimate 

pd and ph as

and

Pi{N)= l imdUNs)/K,  (6.3)Ns-^N

PA(jV) == ^lrni^/t(;V,)/7V„ (6.4)

respectively for large enough Ng.

Recall that there are two ways of doing this from sub-system information. 

Firstly one could use eq. (6.3) and eq. (6.4) and plot pd{Ng) and Ph{Ng) for in

creasing Ng. In the thermodynamic limit (infinite number of lattice sites) these 

densities are intensive quantities (they do not depend on sub-system size). One 

can then estimate the Lyapunov dimension and KS entropy by multiplying by 

N.  The second method, as suggested in chapter 5, is to take the sub-system LS, 

rescale it, and then extrapolate a curve through it to obtain an approximation of 

the whole LS. A simple choice of extrapolation method is to use piece-wise linear 

fits.
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Figure 6.1: Convergence to the limit curve using the new rescaling. The real LS is 

super-imposed as a continuous curve. The area A  equals the KS entropy density 

and the value of (5 that makes area A  equal to area B  is an estimate of the Lypunov 

dimension density.

Now consider the case where only one or more time-series sampled from the 

system are available. As an example, consider the logistic coupled map lattice 

with N  = 100 and e = 0.45 as before.

In figure 6.1 we have plotted the rescaled sub-system LS for sub-system sizes 

Ns = 1, . . .  ,40 (this corresponds to figure 5.3.b but for a slighly different index 

axis range. The reason for this change will become apparent below). Is it possible 

to get the same information as in the examples in chapter 5 without knowing the 

dynamical equations governing the system? Ideally we would like to be able to 

calculate Lyapunov exponents for sub-systems directly from time-series with some 

accuracy and one would hope that they converge to some limit curve for increasing 

sub-system sizes. It is clear that in this case we would not know the size of the 

full system, N.  Hence we would not be able to use the rescaling in eq. (5.16) to 

produce the limit curve that would approximate the whole LS. In eq. (5.16) the 

rescaling confines the index axis to the range [1, A]. Instead choose the index axis



C H A P T E R  6. E STIM ATIO N  OF INTENSIVE QUANTITIES IN  SPATIO-TEM PO RAL S Y S T E M S  . . .  103

to lie in the range [0,1] by dividing eq. (5.16) by N  to get the rescaling

N{Ns + i y

However, since typically N  is big, we could assume (Â  +  l ) / N  % 1 and therefore 

it seems plausible to use the approximated rescaling

'  =  ÏV ^ T I’ (G.5)

when the system size N  is unknown. Further, not knowing N  would mean that we 

will only be able to estimate densities (and not the extensive quantities Lyapunov 

dimension and LS entropy for the whole system). We could choose to plot pd and 

ph for increasing Ns using eq. (6.3) and eq. (6.4) and hope to observe a convergence 

for Ns large enough. Again, another method would be to use the polygon method 

introduced in chapter 5 but modified as follows. The polygon can be described as

an approximation of the function F{i/N),  i.e. the whole LS. In the thermodynamic

limit we can define ph as

PA =  Jfini jf* JT(%/Ar), (6.6)
A=1

such that F {a) = 0. Note that the value of this integral corresponds to the area 

A  in figure 6.1. Thus to get an approximation of ph, ph(^s)^ from sub-system 

LS estimated from time-series, we calculate the area A  as given by the polygon. 

Similarly we can find pd by solving for (3 the equation

'/3

J
F(i /N)  = 0. (6.7)

' i = 0

This is equivalent to finding (3 such that areas A  and B  in figure 6.1 satisfy A — B. 

The corresponding j3 is then an estimate of pd- We will refer to this way of 

computing ph and pd, from areas, as the polygon method and call the estimation 

of pd and ph from eqs. (6.3) and (6.4) as the direct method.
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6 .2  Sub-system Lyapunov spectrum from time- 

series

In the previous section we discussed a possible way of how to utilise sub-system 

LS from time-series. Before presenting the results we need to discuss how to find 

the sub-system Lyapunov exponents themselves.

Usually the LS is calculated from an observed time series using the method 

of time delays as described in chapter 2 and 3. However, using the method of 

delays to obtain good estimates of the LS is known to be difficult in practice, even 

for low-dimensional systems. Spatially extended systems, which we are interested 

in here, are typically high-dimensional and thus the extraction of the LS is even 

more difficult. Takens theorem (Takens 1981) require us to work in dimensions 

larger than 2M where M  is the dimension of the attractor of the system. Since the 

method involves finding neighbouring points in high dimensions this means that we 

require an enormous amount of data to have any hope of decently reconstructing 

the dynamics.

Here we will consider the case where Ns time series are observed at Ng different 

neighbouring spatial locations simultaneously. Spatial delay vectors are built up 

using data from neighbouring sites as entries. Intuitively one would expect that 

the added information included by utilising several sites at once would increase 

our ability to estimate the LS.

Consider spatial delay vectors of size d. We can treat these as sub-systems 

of size Ng = d and from its corresponding reconstruction we hope to estimate 

the densities. It should be emphasized that when using time-series we assume 

the size of the original system to be unknown. Therefore, only densities may 

be approximated since they do not depend on the system size. Their extensive 

counterparts d i and h can obviously not be estimated without knowing N.

In chapter 2 we described how the Jacobian may be estimated by a local linear 

fit. It is also possible to include higher order terms in the neighbourhood matrix 

e.g. by considering second order terms. The hope is that by including these, the 

estimate of the Jacobian will improve, hence giving us a better approximation of
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the Lyapunov exponents. As a special case let us choose the spatial delay vectors 

as

x” =  Xd,  X^ ,  %2, ' ' -, %d), (6.8)

where all entries are evaluated at time n and where we deliberately excluded cross 

terms for simplicity. The neighbours and neighbourhood matrices are now found 

using these vectors and the Jacobian is given by the upper-left d x d sub-matrix 

of Jn (see chapter 2.1.4). The problem with including higher order terms is that 

the number of neighbours needed to fit the Jacobian grows rapidly for increasing 

embedding dimension d and the data requirements soon get too large. In fact, the 

minimal number of neighbours required to fit the Jacobian (including cross-terms) 

with an embedding dimension d is 11̂ =1 [ ^ ]  “  1-

A further improvement in the calculation of the sub-system LS can be made 

by careful consideration of the nature of the Jacobian and of what happens at 

the edges of the sub-system. In a lattice with nearest neighbour coupling, a per

turbation will travel with only finite velocity in the lattice (this is not the case 

for globally coupled maps). Thus the entries in the Jacobian should be non-zero 

only along the diagonal and in its vicinity. (Note that this is in the case of a 

system with nearest neighbour coupling. If the coupling is over more than one 

site, more near-diagonals will be non-zero. In practice we treat the input at the 

edges of the sub-system as noise affecting the estimation of the Jacobian in that 

the whole of the first and last row will be non-zero. This ‘noisy’ Jacobian leads to 

a less accurate estimation of the sub-system LS. We thus discard the outer layer 

of the Jacobian to eliminate this noise and get better estimates for the sub-system 

LS, i.e. disregard the information from the nodes at the edges. This leads to an 

estimate of {Ns — 2) Lyapunov exponents when considering a sub-system of size 

Ng for nearest neighbour coupling.
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6.3 Numerical results for the estim ation of the 

LS from time-series

In this section we present the numerical results when the LS is determined from 

time-series. Let us first compare the results obtained before for the known dy

namics of the coupled logistic lattice with their reconstructed counterpart. Thuse 

we are again using the logistic map lattice with local dynamics f{x )  = 4x{l — x), 

coupling e =  0.45 and lattice size N  = 100. We sample 20 neighbouring sites after 

discarding transient behaviour and keep 11000 time steps. Our sample set is thus 

20 X 11000 long.

Using spatial delay reconstructions d = 1 , . . . ,  20 we calculated sub-system LS 

using either linear fits (L-fit) or linear-quadratic fit (LQ-fit) as in eq. (6.8) and in 

each case with and without discarding the outer layer of the Jacobians. In all these 

cases we used data from 10000 time steps in the fitting, 1000 time steps to assure 

convergence of the sub-system LS and d -t- 20 nearest neighbours in the L-fits and 

2d 4- 20 nearest neighbours in the LQ-fits.

In figure 6.2 we depict the interleaving properties for the different ways of 

calculating the Jacobians. The interleaving works better for the LQ-fit (Figs. 6.2.c 

and 6.2.d) than for the L-fit (Figs. 6.2.a and 6.2.b) and even better when using 

discarded outer layers in the Jacobians (figure 6.2.d). This is especially clear for 

the most negative exponents.

In figure 6.3 we have plotted the corresponding convergence to the limit curve 

for the 4 possible methods using the rescaling in eq. (6.5). In all the cases the 

upper part of the spectrum is well approximated when d is large enough. It is 

clear though, that using discarded Jacobians give a much faster convergence for 

the upper part of the sub-system LS (compare Figs. 6.3.b and 6.3.d to Figs. 6.3.a 

and 6.3.c). Using the LQ-fit with discarded Jacobians leads to a very good ap

proximation to the whole LS even for small d (figure 6.3.d).

Now we use these approximations of the limit curve to extract estimates of the 

largest Lyapunov exponent, Lyapunov dimension density and KS entropy density 

using both the direct method and the polygon method discussed earlier.
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Figure 6.2: Interleaving properties using spatial delay reconstructions with dimen

sions d — 1 , . . . ,  20 and using different ways of estimating the Jacobians. a) L-fit 

without discarding the edges of the Jacobians; b) LQ-fit without discarding; c) 

L-fit with discarding; d) LQ-fit with discarding.
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Figure 6.3: Estimated sub-system LS using spatial delay reconstructions with 

dimensions d = 1 , . . . ,  20 and using the 4 different ways of estimating the Jacobians; 

a) L-fit without discarding the edges of the Jacobians; b) LQ-fit without discarding; 

c) L-fit with discarding; d) LQ-fit with discarding.
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Figure 6.4: Estimated largest Lyapunov exponent using a) the direct method; b) 

the polygon method. ((+) L-fit without discarded edges, (x) L-fit with discarded 

edges, (*) LQ-fit without discarded edges, (□) LQ-fit with discarded edges).

In figure 6.4 we have plotted estimates of the largest Lyapunov exponent using

a) the direct method and b) the polygon method. We see that the largest Lyapunov 

exponent is well approximated using both approaches. Either by using the direct 

method with non-discarded Jacobians (4- and * in figure 6.4.a) or by using the 

polygon method and discarded Jacobians (x and □ in figure 6.4.b). Both L- 

fits and LQ-fits work well in these cases. The success of the direct method in low 

dimensions can be explained by considering the fits that we are actually performing 

when approximating the Jacobians. When d is low we are able to find true nearest 

neighbours, and are indeed doing a local approximation of the dynamics, hence 

finding Jacobians in some reconstructed space. When d is higher this is not longer 

possible. However, if the map are approximated globally by the chosen basis, the 

Jacobians are still well approximated in high dimensions.

The fact that the largest Lyapunov exponent can be approximated well in low 

dimensions by local fits suggest that we can use these estimates as an upper bound 

for the estimates of the whole LS from the global fit.

20
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Figure 6.5: Estimated Lyapunov dimension density using a) the direct method; b) 

the polygon method. ((+) L-fit without discarded edges, (x) L-fit with discarded 

edges, (*) LQ-fit without discarded edges, (□) LQ-fit with discarded edges).

Similarly we compare the efficiency of different approaches in the estimation of 

the Lyapunov dimension density as depicted in figure 6.5. We see that only when 

using the polygon method as in figure 6.5.b are we able to get a good estimate of 

pd and the estimate is improved further by discarding the edges of the Jacobians. 

The failure of the direct method to estimate pd comes from the second term in 

eq. (2.9) which are used in eq. (6.3). A small error in the denominator in eq. (2.9) 

amplify the error in the estimate of pd- This implies that the polygon method is 

preferable to the direct method when estimating pd from time-series.

In the case of KS entropy density (see figure 6.6), the polygon method works 

best, but in this case the direct method also gives good estimates. The discarded 

edges in the Jacobians improve the estimate for both methods.

The results suggest that when trying to approximate the whole LS we should 

consider the fitting as global, and therefore it becomes important to disregard the 

outer layer of the approximated Jacobian and use the polygon method.

Typically, the underlying system will not be contained in the chosen basis. To
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Figure 6.6: Estimated KS entropy density using a) the direct method; b) the 

polygon method. ((+) L-fit without discarded edges, (x) L-fit with discarded 

edges, (*) LQ-fit without discarded edges, (□) LQ-fit with discarded edges).

investigate this further we looked at time-series taken from two other spatially 

extended systems where the local map is not contained in the fitting basis. First, 

we used the skewed logistic map as the local dynamics f{x ), i.e.

— 1 +  (xb(2x — 1) 4- V (1 4" — AOybx
2ab‘̂

(6.9)

where a is a nonlinearity parameter (it comes from the a in aa;(l — a;)) and b a 

skewness parameter. When 6 =  0 we recover the familiar logistic map studied 

above and as b is moved away from this value the map is then skewed to one side. 

The parameter is bounded by —1/a < b < 1/a as in these limits the derivative 

becomes infinite at 0 and 1. We study here the case 6 =  0.2 corresponding to a 

high degree of skewness.

As a further example we also study the following local map

using r = 4.5. In both cases we used coupling parameter e =  0.40.

(6.10)
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Figure 6.7; Time-delay plot of system with local dynamics: a) Logistic map ;

b) Skewed logistic map with b = 0.2; c) Exponential map. The local maps are 

super-imposed as dashed lines.
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In figure 6.7 we show time-delay plots of one site for the three systems we 

are looking at (i.e. plots of vs. x"). The local maps are super-imposed as 

continuous lines. We see that the time-delay plots retain some of the shape of the 

respective local maps.

We sampled 20 neighbouring sites as before and repeated the calculations to get 

approximations of sub-system LS and from there extract estimates of Xi,pd and ph- 

We used the same choice of basis as before (L-fit and LQ-fit). As previously noted, 

using the polygon method and Jacobians with discarded edges gave consistently 

better results, thus we restrict our next analysis to this method.

In figure 6.8 we depict the interleaving and convergence to the limiting LS 

curve for the CML with local skewed logistic maps. As it can be noticed from a 

careful examination of Figs. 6.8.a and 6.8.b the interleaving in this case is not fully 

achieved. Moreover, from Figs. 6.8.C and 6.8.d we note that the convergence to

wards the real limit curve of the LS fails, especially for the most negative Lyapunov 

exponents.

The estimates for Xi, pd and ph for the skewed logistic lattice are given in 

figure 6.9. The estimate for Ai is a bit higher than the real value (0.427) and 

the LQ-fit does not perform significantly better than the L-fit (figure 6.9.b). The 

estimates for pd and ph are also worse than when using the (un-skewed) logistic 

map as the underlying local dynamics. However, the real value of pd (0.844) is 

not too badly approximated (figure 6.9.b). In the case of ph the L-fit is better 

that the LQ-fit. In general we see that as the used basis (L-fit or LQ-fit) does not 

contain the underlying dynamics, the results deteriorate. In this particular case, 

the results are not too bad since the skewed logistic map is not far from being 

reproduced by the LQ basis.

To enhance the effects of the choice of the underlying system we now consider 

an exponential map as local dynamics. We continue using L-fit and LQ-fit to 

estimate Jacobians (discarding the outer layer as before). In this case it is clear 

that the basis is far from being a reasonable representation for the dynamics.

Again we calculated sub-system LS for increasing spatial delay reconstructions. 

The resulting interleaving and convergence is shown in figure 6.10. The interleaving
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Figure 6.8: Estimated sub-system LS from time-series for increasing spatial delay 

reconstructions for the system using the skewed logistic map as local dynamics, 

a) Interleaving when using L-fit; b) interleaving using LQ-fit; c) convergence for 

L-fit; d) convergence for LQ-fit. In c) and d) the exact LS for the whole system is 

super-imposed as a continuous curve.
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Figure 6.9: Estimation of a) largest Lyapunov exponent; b) Lyapunov dimension 

density; c) KS entropy density for the skewed system. (A) L-fit with discarded 

edges, (•) LQ-fit with discarded edges.
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Figure 6.10: Estimated sub-system LS from time-series for increasing spatial delay 

reconstructions for the system using the exponential map as local dynamics, a) 

Interleaving when using L-fit; b) interleaving using LQ-fit; c) convergence for L- 

fit; d) convergence for LQ-fit. In c) and d) the exact LS for the whole system is 

super-imposed as a continuous curve.
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Figure 6.11: Estimation of a) largest Lyapunov exponent; b) Lyapunov dimension 

density; c) KS entropy density for the exponential system. (A) L-fit with discarded 

edges, (•) LQ-fit with discarded edges.
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(figures 6.10.a and b), is still good for small d but starts to fail as d % 10 or 

greater. This result reflect that in small dimensions the approximation is local (so 

it is good). For large d the approximation is global and obviously bad for this 

exponential map. This is reflected in the convergence plots (figures 6.10.C and d). 

There is no convergence for the negative part of the LS. The L-fit perform much 

better than the LQ-fit and seems to converge to the whole LS in the upper part.

As before, we use the convergence plots with the polygon method to estimate 

Xi,Pd and ph as shown in figure 6.11. Here we clearly see that in all three cases 

the LQ-fit does not give any sensible results.

6.4 Discussion

The results given here can be summarized as follows.

We find that in certain circumstances it is possible to estimate intensive mea

sures such as the largest Lyapunov exponent, Lyapunov dimension density and 

KS entropy density in spatially extended systems from time-series sampled from 

sufficiently large sub-systems. The success is governed by several factors. Firstly, 

the fitting of the Jacobians is done by a global fit, and care must go into choosing 

the right basis. The time-delay plots might be one way to get an idea of the kind 

of basis that should work better. Secondly, we find that discarding the outer layer 

of the Jacobian at each time step allow us to eliminate what would otherwise be 

noise input. We suggest to use a specific rescaling to form a convergence to the 

right limit curve depicting an approximation of the LS of the whole system and 

to use the described polygon method or a variant of this to extract the intensive 

quantities.

It seems clear that the usual method of local fitting of Jacobians does not let 

us estimate the Lyapunov dimension density and KS entropy density in that we 

cannot find close neighbours when we work in higher dimensions. The special 

shape of the Jacobians for the type of systems we have considered here, with non

zero entries only along the tri-diagonal, suggest that we might be able to estimate 

these using low-dimensional local approximations.
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Chapter 7

Conclusions

Spatio-temporal dynamical systems are inherently very complex, not least because 

of their high dimensionality. Since these types of systems are so widespread and 

incorporate so many real-life systems and phenomena, understanding them is of 

great importance.

In this thesis we started out by describing the theory for the analysis of time- 

series from low-dimensional chaotic systems. It was our hope that we would be 

able to utilise these methods in the context of high-dimensional spatio-temporal 

dynamical systems. We feel that we have succeeded in this.

By using coupled map lattices as our model system we have been able to show 

that predictability is best achieved by using combination of time- and spatial delays 

locally. Remarkably, the predictability is best achieved in small dimensions, even 

if the dimension of the chaotic attractor is high-dimensional. We therefore suggest 

that one should think of such a system as a low dimensional local system, weakly 

coupled to a high dimensional system (i.e. ‘the rest of the system’). A framework 

for doing this has been introduced.

Building on these results we compared a truncated lattice with noise inputs 

at the edges with a large deterministic lattice (essentially at the thermodynamic 

limit). As we increased the truncated lattice size we found an exponential conver

gence for measures such as the probability density, predictability, power spectrum 

and two-point correlation. This suggested that spatio-temporal embedding tech-
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niques cannot detect the presence of spatial extent, suggesting the impossibility of 

reconstructing the whole system from localised information.

The most common tool to characterise chaos in a dynamical system is theLya- 

punov exponents which together give the Lyapunov spectrum (LS). Since spatio- 

temporal systems are high-dimensional the calculation of the LS becomes pro

hibitive. While studying sub-systems of coupled map lattices we noticed that the 

sub-system Lyapunov spectrum soon converged to the limit curve for the LS of the 

full system. We found a new rescaling that leads to better estimates of the real LS 

from sub-system information. It was inspired by the stability analysis of the ho

mogeneous evolution in a one-dimensional coupled map lattice but appears to be 

equally valid in a much wider range of cases. We evaluated the performance of our 

rescaling method by comparing it to the conventional rescaling (dividing by the rel

ative sub-system volume) for one and two-dimensional lattices in spatio-temporal 

chaotic regimes. In doing so we noticed that the Lyapunov spectra for consecutive 

sub-system sizes are interleaved and we discussed the possible ways in which this 

may arise. A full theoretical understanding of this phenomen is not given and 

should be subject to further research. We used the new rescaling to approximate 

quantities derived from the Lyapunov spectrum (largest Lyapunov exponent, Lya

punov dimension and Kolmogorov-Sinai entropy) finding better convergence as the 

sub-system size is increased than with conventional rescaling. We also proposed 

a natural method for constructing the Jacobian of systems on high-dimensional 

lattices.

The success of estimating the full LS from sub-system information led us to 

believe that we could achieve the same results when only time-series of the system 

was available. We found that by using increasing spatial embeddings, and given 

that the local map was suitable reflected in the basis when approximating the 

Jacobian, the LS was estimated remarkably well from time-series. We discussed 

how the new rescaling that we introduced for systems where the dynamics and 

system size is known a priori^ could be modified in the case when only time- 

series is available. Using this modified version we suggested a geometric way of 

calculating the Lyapunov dimension density and KS entropy density. We found
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that local linear approximations of the Jacobians along a trajectory may not work 

when calculating sub-system LS from time-series, but that by using an appropriate 

global basis the Jacobians might be extracted. We also considered a way of dealing 

with boundary effects in the sub-systems.

The special shape of the Jacobians for the type of systems we have considered, 

with non-zero entries only along the tri-diagonal, suggests that we might be able 

to estimate these using low-dimensional local approximations. This should be 

considered in future research.

All the results in this thesis were based on the analysis of coupled map lattices 

(and in most cases by using the one dimensional logistic map lattice). It would be 

interesting to see if the results are as good for other model systems, e.g. for coupled 

map lattices with higher-dimensional local dynamics, longer range coupling or in 

a partial differential equation framework.

Even more interesting would be to test the methods proposed in this thesis 

on data taken from a real system. Suitable data could e.g. be taken from a fluid 

flows, EEG recordings or remote satellite data. Only if the methods could show 

consistent results in these cases would they be entirày successful.
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