

Episodic memory retrieval success is associated with rapid replay of episode content

Authors: G. Elliott Wimmer^{1,2,*†}, Yunzhe Liu^{1,2,*}, Neža Vehar^{1,2}, Timothy E.J. Behrens^{2,3}, Raymond J. Dolan^{1,2}

Affiliations:

¹Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.

²Wellcome Centre for Human Neuroimaging, University College London, London, UK.

³Wellcome Centre for Integrative Neuroimaging, Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, Oxford, UK.

* These authors contributed equally to this work.

† Corresponding author. Email: e.wimmer@ucl.ac.uk (G.E.W.)

Abstract

Memory for everyday experience shapes our representation of the structure of the world, while retrieval of these experiences is fundamental for informing our future decisions. The fine-grained neurophysiological mechanisms that support such retrieval are largely unknown. We studied participants who first experienced, without repetition, unique multi-component episodes. One day later, they engaged in cued retrieval of these episodes whilst undergoing magnetoencephalography (MEG). By decoding individual episode elements, we found that trial-by-trial successful retrieval was supported by sequential replay of episode elements, with a temporal compression factor greater than 60. The direction of replay supporting this retrieval, either backward or forward, depended on whether a participant's goal was to retrieve elements of an episode that followed or preceded a retrieval cue, respectively. This sequential replay was weaker in very high performing participants, where instead we found evidence for simultaneous clustered reactivation. Our results demonstrate that memory-mediated decisions are supported by a rapid replay mechanism that can flexibly shift in direction in response to task requirements.

One Sentence Summary

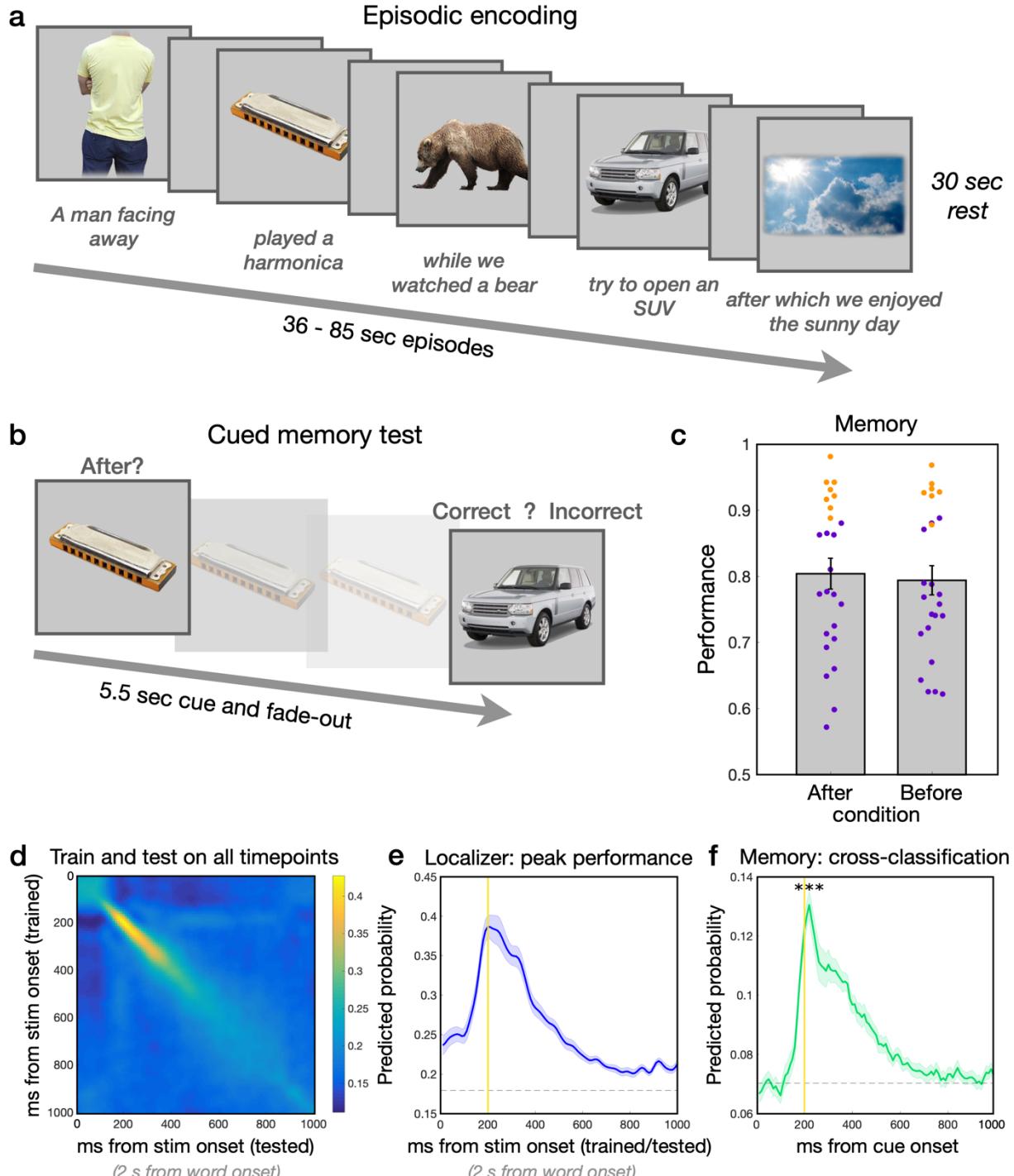
Recall of extended episodes of experience is supported by compressed replay of memory elements that flexibly changes direction depending on task temporal orientation.

1 **Main Text**

2 Although a subject of intense study, the fine-grained mechanisms underlying how
3 we retrieve episodes of experience are unknown (1). Understanding the supporting
4 neurophysiological processes can reveal how episodes are represented in memory, and
5 how they are subsequently retrieved to guide behavior (2, 3). Here we investigate
6 whether episodes of experience are represented in a way that yields compressed
7 sequential replay at retrieval, whether such replay supports successful retrieval, and
8 whether the directionality of replay is flexibly tuned by internal goals.

9 Observations from animal studies have identified offline reactivation of
10 sequences of hippocampal place cells that reflect past and future trajectories, thought to
11 support memory consolidation, retrieval, and planning (4-6). Recently, animal studies
12 have established a relationship between such replay strength and successful
13 performance on spatial navigation tasks (4, 5). It has also been speculated that
14 compressed replay might also support episodic memory retrieval in humans (7).

15 Human neuroimaging studies provide evidence for rapid cue-elicited reactivation
16 of stimulus associations at retrieval (8-17) including overlapping replay of episode
17 elements (18). A limitation of these studies is their inability to probe mechanisms
18 supporting structured and temporally compressed reactivation, i.e. replay that proceeds
19 at a rate faster than the original experience. An advance in human neuroimaging
20 research has been a recent identification of rapid sequential replay of internal state
21 representations (19, 20). Here, we leverage these same methods to ask whether
22 sequential replay supports memory based decisions in humans.


23 We tested a hypothesis that episodic memory retrieval depends on rapid
24 compressed replay of memory elements. Previous research demonstrating replay,
25 which did not link replay to behavior, identified a short 40-50 ms lag between states
26 (elements of a sequence) either during tasks involving lengthy planning periods or
27 during undemanding rest periods (19, 20). Under similar conditions in rodents replay is
28 known to occur preferentially during brief high-frequency sharp-wave ripple (SWR)
29 events in the hippocampus (21-23). In contrast, theta-related sequence events are
30 observed during active navigation and decision making (21, 22, 24, 25). The latter led
31 us to expect that, during active memory retrieval, performance would be supported by
32 replay events with a different and potentially longer lag between states.

33 Replay direction, forward or backward, is not always associated with particular
34 task requirements in rodent research, though some studies show it is influenced by
35 conditions such as active movement and reward receipt (20, 26, 27), potentially serving
36 different computational functions (28). Recent MEG studies in humans have found
37 reverse direction replay (19), or both forward and reverse replay (20). Based on these
38 observations we expected replay direction would change flexibly based on internal
39 states or task demands. In relation to our study design, we predicted replay would
40 switch direction depending on whether the current goal was to retrieve memory
41 components that followed a cued element, compared to having to retrieve memory
42 components that preceded a cued element. In humans, replay onset has been
43 associated with high-frequency power increases in the medial temporal lobe (MTL)
44 (MTL) (20), and while we did not expect similar high-frequency changes, we

45 nevertheless expected that the onset of memory replay events, irrespective of
46 directionality, would be coupled to increased power in the medial temporal lobe (MTL).

47 Further, we reasoned that the strength of encoding, as reflected in better memory
48 performance, would relate to enhanced memory consolidation (1, 7). Greater
49 experience is associated with less marked replay in rodents (25, 29), and this predicts a
50 less dominant expression of replay in participants who show near-ceiling memory
51 performance. In these participants, theoretical proposals suggest a form of clustered
52 pattern completion for episode elements (9, 30, 31). Importantly, this predicts that,
53 within participants, trial-by-trial sequenceness strength should relate positively to trial-
54 by-trial retrieval success. At the same time, if very high performing participants do not
55 rely to the same degree on a replay mechanism for retrieval, then across participants
56 this entails that mean sequenceness strength could be negatively related to mean
57 memory performance.

58 We designed a novel episodic memory task and combined this with our recently-
59 developed MEG analytic methods (19, 20). In brief, on day 1 participants experienced
60 temporally extended self-oriented episodes, where each single-exposure episode was
61 itself composed of five discrete and unique picture stimuli that were assembled into a
62 narrative story (**Fig. 1a** and **Fig S1**). Following an overnight consolidation period, we
63 then elicited cued retrieval of these episodes whilst obtaining MEG data to index fast
64 neural dynamics supporting retrieval (**Fig. 1b**).

65

66 **Fig. 1.** Experimental design and decoding of the episode elements. **(a)** On day 1, in the
 67 episodic encoding phase we presented subjects with eight extended non-spatial
 68 episodes, with a single exposure per episode. Episodes contained five stimulus
 69 elements. The first four episode elements were selected from six distinct picture

70 categories. Participants were incentivised to encode the precise order of the episode
71 elements. **(b)** On day 2, in the episodic memory test phase, participants retrieved
72 episodes in two conditions. In the ‘after’ condition, participants were asked to identify
73 whether a subsequent probe element came after the cue element. Following a 5.5 s
74 retrieval period, a test probe presented. The sequential order referred to any stimulus
75 from the same episode that followed this cue; here, the depicted answer would be
76 ‘correct’. By contrast, in the ‘before’ condition, participants were asked to identify
77 whether a subsequent probe element came before the cue element. **(c)** Mean memory
78 performance in the after and before conditions. Purple dots represent individual data
79 points for regular performance participants with sufficient incorrect response (error)
80 trials free from MEG artifacts for accuracy analyses (after, $n = 17$; before, $n = 18$); the
81 remaining very high performance participants are shown in orange (see also **Fig. S1**).
82 **(d)** Classifier performance for episode element categories presented during the localizer
83 phase, training and testing at all time points, showing good discrimination of the 6
84 categories used to compose the first four episode elements. In localizer trials, note that
85 a word naming the upcoming stimulus appeared 2 s before the stimulus, contributing to
86 above-chance classification at 0 ms. **(e)** Peak classifier performance at 200 ms after
87 stimulus onset in the localizer phase (depicting the diagonal extracted from panel d; see
88 also **Fig. S3**). Dashed line represents the mean across time 95 % level of randomly
89 shuffled classifier labels. **(f)** Application of the trained classifier (at 200 ms) to cue onset
90 in memory retrieval trials demonstrated above chance decoding of the current on-
91 screen category during retrieval. Dashed line represents the maximum value of
92 classifier during pre-trial baseline; performance was compared to this baseline value.
93 (Error bars and shaded error margins represent standard error of the mean (SEM).)

94

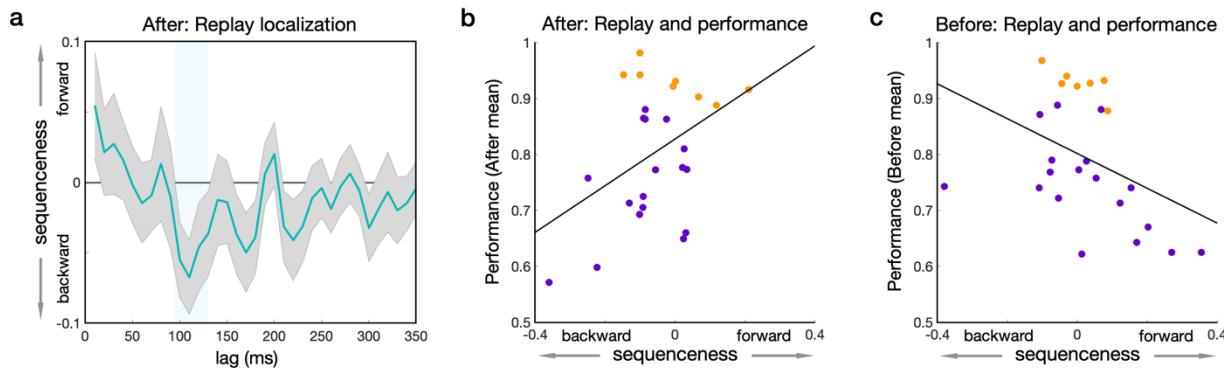
95 As a first step we confirmed we could reliably identify neural patterns associated
96 with individual episode elements, each drawn from one of six different stimulus
97 categories. Note that the final element of each episode was not taken from a decoded
98 category. A classifier trained on the localizer phase showed successful discrimination of

99 the categories that made up the episodes with peak decoding at 200 ms after stimulus
100 onset (**Fig. 1d-e; Fig. S3-S4**), in line with previous reports (19, 20). In an exploratory
101 low-powered analysis of single stimuli, we found that these categories were also evident
102 as clusters of similarity in trained sensory weights (**Fig. S3**; Supp. Results). The trained
103 classifier generalized to the memory retrieval phase, showing significant across-phase
104 classification of cue category (peaking at 210 ms after the cue; compared to chance at
105 200 ± 10 ms (the peak timepoint in localizer phase) $t_{(24)} = 9.80$, $p < 0.001$; **Fig. 1f**).

106 To test specific predictions of a replay mechanism underlying episodic retrieval,
107 we next sought evidence for compressed sequential reactivation of episode elements
108 during the retrieval period. In this analysis, we first derived measures of category
109 evidence – representing reactivation of memory elements – at each timepoint by
110 applying the trained classifiers to retrieval period MEG data. We then tested for lagged
111 cross-correlations between episode element reactivations across the retrieval period,
112 yielding a measure of ‘sequenceness’ in both forward and backward directions (19, 20)
113 (**Fig. S2; Methods**). Following an approach used in previous reports, to identify time
114 lags showing potential sequenceness and examine a relationship to individual
115 differences in memory performance, we tested for a difference between forward and
116 reverse direction components (19, 20). Our initial analyses focused on memory retrieval
117 in the *after* condition. Here participants are asked to identify whether a probe element
118 came sequentially after the cue element, a condition we considered would be easier
119 and more naturalistic than the *before* condition.

120 For the individual differences analysis, we identified a state-to-state time lag of
121 interest by focusing on correct trials, where we expected stronger sequenceness. In the

122 *after* condition, we identified an overall dominance of reverse replay (backwards >
123 forwards sequenceness) during correct trials, peaking between 100-120 ms (**Fig. 2a**).
124 The peak lag between 100-120 used for the independent individual difference analyses
125 does not survive correction for the number of tests across lags, so it should not be
126 interpreted on their own. Of interest, this time window for rapid online retrieval
127 represents a longer state-to-state time lag than the 40-50 ms lag found in other
128 experiments reporting replay during extended planning or rest (19, 20). As in rodents,
129 these fast resting replay events (with 40-50 ms state-to-state time lag) have been
130 associated with sharp-wave ripples in humans (20). However, rodents also show
131 sequence events during ongoing behaviour that are associated with ongoing
132 hippocampal theta rhythms (24, 25), though heretofore such online sequence events
133 have not yet been identified in humans.


134 To provide an initial test of an association between replay and episodic retrieval,
135 we examined the relationship between replay strength in correct trials and overall
136 memory performance. We found that differential sequenceness correlated with mean
137 memory performance (100-120 ms lag; $r = 0.4254$, $p = 0.034$; **Fig. 2b**). As
138 sequenceness was on average negative – showing predominantly a reverse direction of
139 replay – this suggests that stronger reverse replay is a characteristic of individuals with
140 weaker performance. Notably, this relationship between replay and memory strength is
141 in line with the findings in rodents showing stronger sequenceness during initial
142 acquisition compared to later high performance (25, 29).

143 As an initial test of our prediction that internal goals – whether looking forward or
144 backward in time through an experience – are important for retrieval and replay, we

145 examined whether the relationship between replay and individual differences in
146 performance changed from the *after* compared to the *before* condition. If task goal
147 affected replay, we would expect stronger forward sequenceness to be related to
148 weaker performance. Indeed, in the before condition we found the degree of dominantly
149 forward sequenceness correlated negatively with mean memory performance (100-120
150 ms lag; $r = -0.4077$; $p = 0.0431$; **Fig. 2c**). We then examined the strength of these
151 correlations using a conservative permutation approach, where the goal was to test for
152 a potential influence of a decreasing number of correct trials per mean datapoint going
153 from high to low performing participants. In the after condition the correlation between
154 sequenceness and mean performance exceeded the conservative permutation
155 threshold (adjusted 5 % level 0.041, versus $p = 0.034$) while the strength of the before
156 condition effect fell just outside the permutation threshold (adjusted 5 % level 0.0395,
157 versus $p = 0.043$).

158 Comparing the after and before results, we found that the correlation between
159 sequenceness and performance in the after condition differed significantly from that in
160 the before condition ($z = 2.411$; $p = 0.0159$; two-tailed, conservatively using the test for
161 dependent correlations). This provides initial support for our prediction that retrieval
162 orientation influences the characteristics of replay that support behaviour. Importantly,
163 the results in the after and before conditions both indicated that replay was stronger in
164 participants with lower overall performance, with replay playing a lesser role in retrieval
165 for participants with near-ceiling levels of performance. However, these results do not
166 indicate per se whether sequenceness is positively or negatively related to trial-by-trial
167 retrieval success.

168 We found no across-participant relationship between mean sequenceness and
169 behavior in the shorter 40-50 ms state-to-state time lag as identified in previous studies
170 (**Fig. S4**). In an exploratory analysis that examined evidence for sequences of episode
171 elements present in any of the other 7 episodes (but not present in the current episode),
172 we found a numerically negative sequenceness effect at 40 ms, but again found no
173 relationship to memory performance (**Fig. S4**).
174

175

176

177 **Fig. 2.** Mean sequenceness (replay) in the *after* condition and the relationship between
178 sequenceness and performance in the *after* and *before* memory retrieval conditions
179 respectively. (a) In the *after* condition, mean forward minus backwards sequenceness
180 for correct memory trials (when participants accurately answered the memory question).
181 On correct trials, a peak of reverse sequenceness was observed at lags from 100-120
182 ms. This time window was used for subsequent analyses. (Shaded error margins
183 represent SEM.) (b) In the *after* condition, stronger mean reverse sequenceness on
184 correct trials correlated negatively with overall mean memory performance (percentage
185 of correct trials). As in **Fig. 1c** the data points for the regular performance participants
186 are shown in purple; high performance participants are shown in orange. (c) In the
187 *before* condition, stronger forward sequenceness related to lower performance. The
188 overall results in the *after* and *before* conditions support a stronger role for replay in
189 retrieving weaker memory traces.

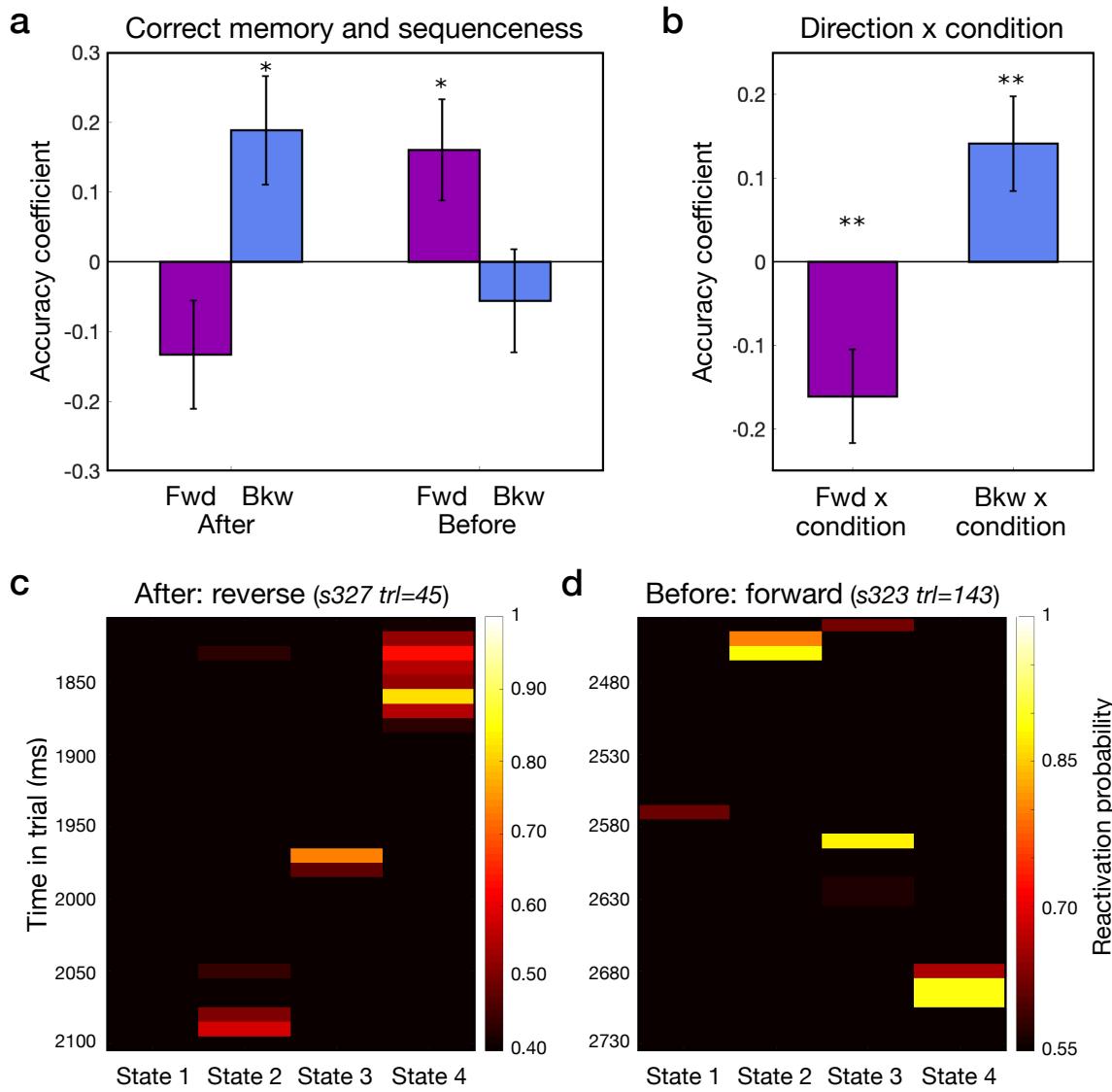
190
191
192 We next exploited analytic techniques that simultaneously examined the
193 influence of forward and backward sequenceness on memory performance. First, we
194 examined the relationship between sequenceness and individual differences in
195 performance. This confirmed the above results, namely that weaker memory
196 performance related to stronger reverse replay in the after condition, and to stronger
197 forward replay in the before condition (see **Supp. Results**).
198

199 To examine whether trial-by-trial forward and reverse sequenceness related
200 positively or negatively to retrieval success, we utilized multilevel regression analyses.
201 These analyses include more than a hundred datapoints per participant and are thus
202 the most highly powered analyses in the current experiment. For these analyses we
203 excluded very high performing participants, as they have too few incorrect trials to
204 support reliable estimates. We first independently localized a time lag of interest using
205 leave-one-participant-out cross-validation procedure, again identifying a peak time lag
206 of 110 ms in all participants except one very high performing participant (who showed a
207 lag of 170 ms); thus, we used a 110 ± 10 ms lag for all regular performance participants
with sufficient incorrect trials for analysis.

208 In the after condition, we found that reverse sequenceness from 100-120 ms
209 related positively to trial-by-trial retrieval success (multilevel regression on accuracy in n
210 = 17 participants with sufficient incorrect trials; forward $\beta = -0.1336$ [-0.299 -0.020]; $z = -$
211 1.714; $p = 0.0920$; reverse $\beta = 0.1881$ [0.042 0.338]; $z = 2.416$; $p = 0.0176$; **Fig. 3a**). An
212 example of a reverse sequence in the *after* condition for a single participant is shown in
213 **Fig. 3c**. By contrast, in the before condition forward, but not reverse, sequenceness

214 related positively to accuracy (regression in $n = 18$ participants with sufficient incorrect
215 trials; forward $\beta = 0.160$ [0.014 0.305]; $z = 2.202$; $p = 0.0264$; reverse $\beta = -0.0564$ [-
216 0.207 0.091]; $z = -0.763$; $p = 0.470$; **Fig. 3A**). An example of a forward sequence in the
217 before condition for a single participant is shown in **Fig. 3d**. In the after and before
218 conditions, the forward or reverse direction of sequenceness that related to trial-by-trial
219 retrieval success was the same as the performance-related direction identified in the
220 individual difference analyses. The same relationships between sequenceness and
221 retrieval success were also found in models where we included all participants (**Table**
222 **S3**). Importantly, we found a significant interaction between both forward and reverse
223 replay and the after versus before goal condition (condition by forward replay $\beta = -$
224 0.1608 [-0.271 -0.049]; $z = -2.865$; $p = 0.0032$; condition by reverse replay $\beta = 0.1408$
225 [0.029 0.250]; $z = 2.499$; $p = 0.0096$; **Fig. 3b**; $n = 15$ participants with sufficient incorrect
226 trials in both the after and before conditions).

227 As in the individual differences analyses, in the trial-by-trial analyses, we did not
228 find any relationship between the sequenceness measure derived from the alternative 7
229 episodes ('other episode' sequenceness) and retrieval success at a 40-50 ms lag
230 (identified via leave-one-out cross-validation on this sequenceness measure; p -values $>$
231 0.35; **Supp. Results; Fig. S6; Table S5**), while sequenceness derived from the current
232 episode transitions remained significant. An additional other episode sequenceness
233 measure derived from a 100-120 ms lag was also not related to behavior (**Fig. S6; Table**
234 **S6**).

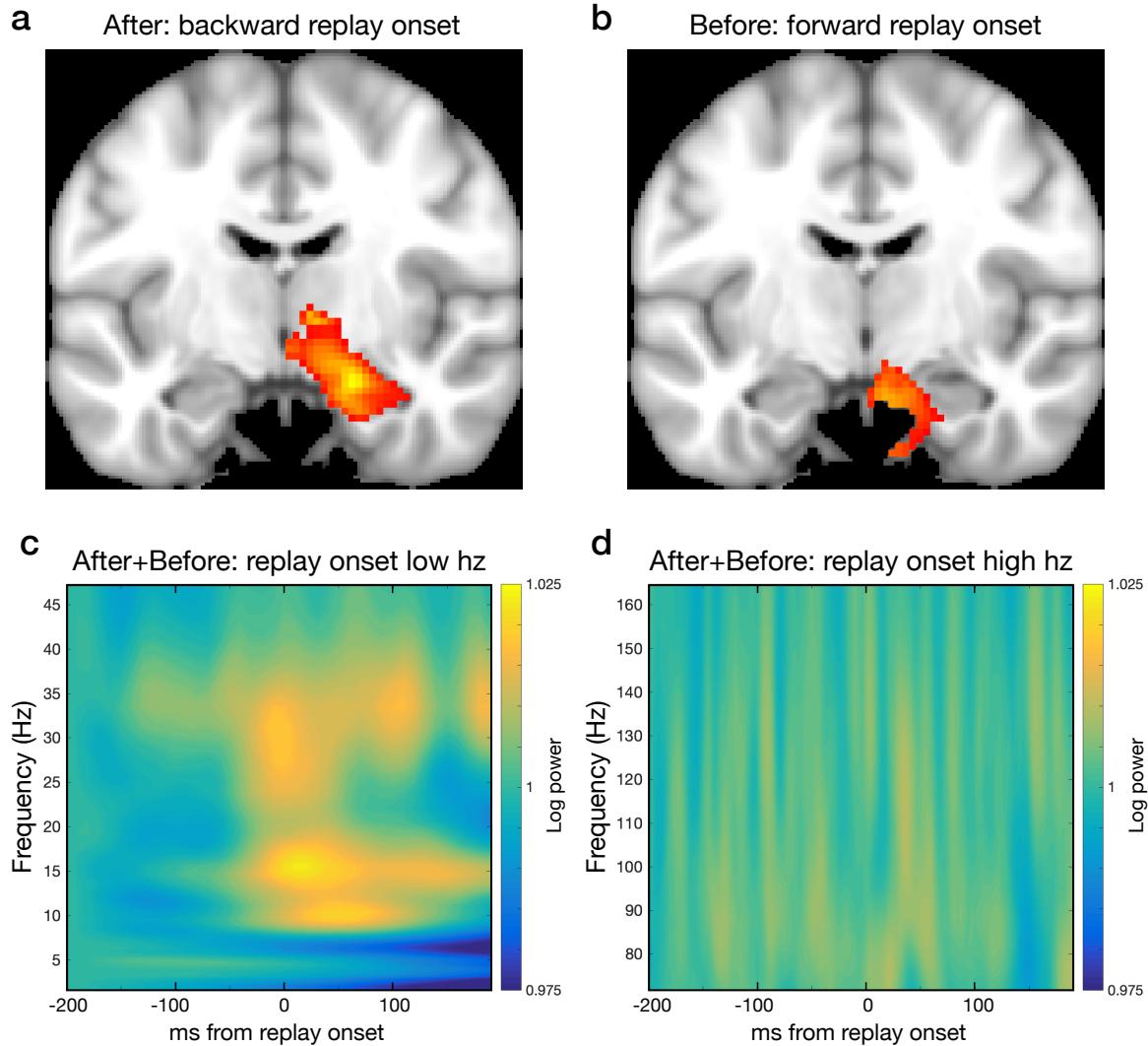

235 It is possible that the underlying representations of episodes may change across
236 the many cued retrieval events, despite the original episodes not being actually re-

237 experienced. To investigate this possibility, and in particular whether our results were
238 driven by effects that appear after extensive practice, we examined whether the
239 sequenceness-accuracy relationship changed over the course of the retrieval task. We
240 found, if anything, a tendency for a numerical decrease in the sequenceness-accuracy
241 relationship over the course of the experiment, and this was true for both the after and
242 before conditions (**Table S3**). It is also possible that participants developed strategies to
243 sequentially reactivate items in different orders with respect to the after and before
244 conditions. However, we found no evidence for this in participant self-reports (**Table**
245 **S2**).

246 In a final control analysis, we address concerns about potential bias in our
247 analyses. Thus, we conducted simulations of the full processing and analysis pathway,
248 from the generation of localizer data through to the final step of multilevel regressions
249 that relate sequenceness to retrieval success. The simulation results confirmed that the
250 relationship between randomly generated MEG data and behavioral measures was
251 what would be expected by chance: the false positive rate was near an expected 5 % level
252 in both the after condition (0.055) and before condition (0.04; **Fig. S7**).

253 The relationship between sequenceness and successful memory retrieval in both
254 the after and before conditions provides a clear link between sequenceness and
255 behavior. While the initial individual differences analyses found relatively stronger
256 sequenceness in regular performing participants, these trial-by-trial results demonstrate
257 that within regular performance participants, sequenceness strength is positively related
258 to retrieval success. Incorporating the results of the individual difference analyses and
259 the trial-by-trial analyses, we establish a double dissociation between replay direction

260 and a participant's internal goal condition during retrieval. These findings demonstrate a
261 flexibility in replay directionality that goes beyond previously reported effects of external
262 events such as reward receipt (20, 27).


263

264 **Fig. 3.** Relationship between forward and backward sequenceness and trial-by-trial
265 memory retrieval success in the after and before conditions. **(a)** In the *after* condition
266 (left), successful memory retrieval was supported by reverse sequenceness. In the
267 *before* condition (right), retrieval was supported by forward sequenceness. See also
268 **Fig. S6** for individual participant regression coefficients derived from a single level

269 analysis. **(b)** Interaction of replay direction (forward, backward) by condition (after,
270 before) showing a stronger effect of forward replay on trial-by-trial successful memory
271 retrieval in the before condition, and a stronger effect of backward replay on successful
272 memory retrieval in the after condition. (The regular performance group in the combined
273 sequenceness analysis included $n = 15$ participants common to the regular performance
274 group across the after and before conditions.) **(c)** Example of reverse sequenceness in
275 the after condition. **(d)** Example of forward sequenceness in the before condition. (s =
276 participant; trl = trial; * $p < 0.05$; ** $p < 0.01$; error bars represent SEM).

277

278 Inspired by neurophysiological studies showing that the hippocampus is a source
279 for replay events, we next examined whether replay event onset related to power
280 increases within the medial temporal lobe (20). Candidate replay onsets were identified
281 by locating sequential reactivation events showing a 110 ms lag, applying a stringent
282 threshold to these events, and using beamforming analysis to localize broadband 1-45
283 Hz power changes related to replay event onsets. For reverse replay events (in the *after*
284 condition) and for forward replay events (in the *before* condition), this analysis localized
285 activity at replay onset to a region of right anterior MTL, encompassing the
286 hippocampus and entorhinal cortex (after: $z = 3.72$, $p < 0.001$ whole-brain FWE; before:
287 $z = 3.73$, $p < 0.001$ whole-brain FWE; **Fig. 4a-b; Table S2**), consistent with human fMRI
288 results during rest in a cognitive paradigm (32). The increase in MTL power was
289 selective to replay onset, with an additional secondary peak in the after condition 1 lag
290 later at 110 ms (**Fig. S8**). In the after condition, replay onset also related to activity in
291 two significant clusters in the right visual cortex (**Fig. S8; Table S2**). Finally, we found
292 evidence for stronger power immediately preceding replay onset in the left anterior MTL
293 in participants with lower performance ($z = 3.82$, $p = 0.003$ whole-brain FWE; **Fig. S8**).

294
295
296 **Fig. 4.** Beamforming analysis of power increases at the onset of sequenceness events
297 and time-frequency analyses of replay onset. (a) In the after condition, power in the right
298 anterior MTL increased at onset of reverse sequenceness events ($n = 25$). (b) In the
299 before condition, power in the right anterior MTL increased at the onset of forward
300 sequenceness events ($n = 25$). (Statistical maps thresholded at $p < 0.001$ uncorrected,
301 for display; for unthresholded statistical maps see:
302 <https://neurovault.org/collections/6088/>) (c) Time-frequency analysis showing power
303 change relative to replay onset across the after and before conditions in frequencies up
304 to 50 Hz. 0 ms represents the onset of putative replay events. (d) Time-frequency

305 analysis of replay onset showing no high frequency power change relative to replay
306 onset across the after and before conditions (using data sampled at 600 Hz).

307

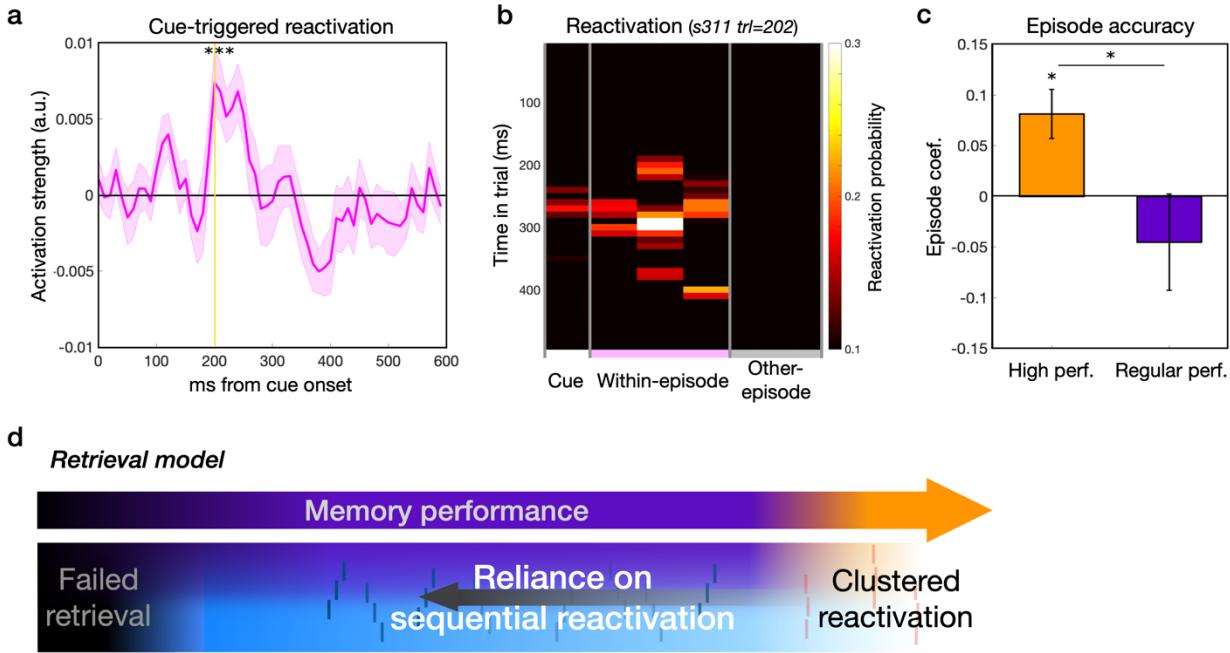
308 Replay onset was associated with broadband power increases from
309 approximately 8 Hz up to 45 Hz in across the after and before conditions (**Fig. 4c** and
310 **Fig. S9**). In the frequency range of our element-to-element lag (8-12 Hz, approximately
311 human alpha), we found an increase in power at replay onset ($t(24) = 4.267$ [0.003
312 0.008], $p < 0.001$). However, we found no evidence for power increases in the high
313 gamma frequency range that have been associated with replay events during rest
314 (events that may be related to sharp-wave-ripple events; 120-150 Hz; $t(24) = 1.150$ [-
315 0.001 0.005], $p = 0.262$) (20) (**Fig. 4d** and **Fig. S9**).

316

317 Finally, as very high performing participants did not show any relationship
318 between replay and performance, we examined the hypothesis that retrieval for strongly
319 encoded memories is based on clustered pattern completion. Across all participants,
320 with a rapid appearance following cue onset, we found significant evidence for
321 reactivation of within-episode elements compared to other-episode elements, none of
322 which were displayed on the screen (average across timepoints showing the strongest
323 classification of on-screen cues, 210 ± 10 ms post-cue $t_{(24)} = 3.978$, $p < 0.001$; **Fig. 5a**).
324 A reactivation event from a single participant is shown in **Fig. 5b**.

325 To examine the relationship between the cue-evoked reactivation effect and
326 memory in very high performance participants, instead of a contrast of correct versus
327 incorrect trials, we used a measure of mean performance for the episode cued on the
328 current trial (a graded measure from 0 to 1). Cue-evoked reactivation was averaged

329 across the 200-250 ms peak difference of current versus other episode elements.
330 Reactivation positively related to performance on a given episode in very high
331 performing participants ($n = 10$; $\beta = 0.0795$ [0.0321 0.1250]; $t = 3.442$; $p < 0.0008$; **Fig.**
332 **5c**), an effect stronger in high compared to regular performance participants (regular $\beta =$
333 -0.0440 [-0.1387 0.0512]; $t = -0.918$; $p = 0.3568$; difference $\beta = 0.125$ [0.005 0.244]; $t =$
334 2.035; $p = 0.0376$; **Fig. 5c**). In a follow-up analysis, we found that the effect in very high
335 performance participants related positively to evidence for within-episode elements ($p <$
336 0.04) and related negatively to evidence for other-episode elements ($p < 0.06$); neither
337 measure related to accuracy in the regular performing participants (p -values > 0.29).


338 Additionally, although based on a very low number of trials, in very high
339 performing participants we found that correct trials related to higher cue-evoked
340 reactivation as compared to incorrect trials ($\beta = 2.497$ [0.4009 4.444]; $t = 2.409$; $p =$
341 0.024; **Fig. S10**). We found no significant relationship between cue-evoked responses
342 and accuracy in regular performance participants (regular $\beta = 0.6291$ [-0.3483 1.6681]; t
343 $= 1.281$; $p = 0.2072$; difference $\beta = 1.872$ [-0.052 4.385]; $t = 1.633$; $p = 0.116$).

344 Importantly, in regular performing participants, the trial-by-trial relationship between
345 sequenceness and accuracy in both the after and before conditions remained significant
346 when including cue-evoked reactivation in the same model while the cue-evoked
347 reactivation measure was not significant (**Fig. S10; Table S5**).

348 In additional control analyses, we examined the relationship between memory
349 and responses to the cued category itself as well as overall classifier strength
350 throughout the remainder of the retrieval period. First, responses to the cued element
351 on the screen did not relate to mean episode performance or accuracy across

352 conditions (from 200-250 ms; p-values > 0.13). However, in regular performing
353 participants in the after condition (where all cues are decodable) a positive relationship
354 was evident between accuracy and cue responses ($p = 0.0016$; **Fig. S10; Table S6**).
355 Importantly, however, the relationship between backward sequenceness and memory
356 remained significant in a model that included cued category responses, suggesting
357 potential independent mechanisms contributing to performance. We found no
358 relationship between responses to the cued category and forward or backward
359 sequenceness itself in either the after or before conditions (p-values > 0.42).

360 In the post-cue retrieval period (following the initial 200-250 ms cue-evoked
361 response period), we found no relationship between successful retrieval and classifier
362 evidence for the on-screen cue stimulus, the within-episode categories, or the other
363 episode categories (on average across the remaining 250 – 3670 ms time window, p-
364 values > 0.19). The classifier results also did not show differential evidence for the
365 fading cue: we found no overall difference in classifier evidence between the cued on-
366 screen stimulus, the within-episode categories, and other episode categories (p-
367 values > 0.83). Finally, in an exploratory analysis of simultaneous joint reactivation of
368 different categories, while we could identify putative simultaneous reactivation events
369 during the retrieval period, we found no relationship between these events and
370 performance in regular performance participants (**Fig. S10**), supporting the importance
371 of sequential reactivation for successful episodic memory retrieval.

372
373 **Fig. 5.** The relationship between cue-evoked reactivation and performance. (a) Across
374 both the *after* and *before* conditions, we found evidence for cue-evoked reactivation of
375 the elements present in the episode, peaking 200-250 ms after cue onset. (Shaded
376 error margins represent SEM.) (b) Example of cue-evoked reactivation of within-episode
377 elements in a single trial in a single participant. (c) Cue-evoked reactivation related to
378 mean performance in a given episode for the high performance participants, but not
379 regular performance participants (group breakdown based on number of incorrect trials
380 across both the after and before conditions; high $n = 10$; regular $n = 15$; error bars
381 represent standard error.) (d) Retrieval model illustrating the relationship between
382 memory and sequenceness across- and within-participants. Across participants, higher
383 mean memory performance was associated with weaker sequenceness and stronger
384 cue-evoked reactivation of episode elements ('clustered retrieval'). Within-participants,
385 in regular performing participants, stronger trial-by-trial sequenceness positively related
386 to trial-by-trial retrieval success.

387
388 During episodic memory retrieval in humans, we show that a rapid sequential
389 replay of episode elements relates to differences in memory performance. Our primary

390 finding is a demonstration that stronger trial-by-trial sequenceness relates to retrieval
391 success across conditions. Across-participants, we found that regular performance
392 participants exhibited stronger sequenceness than high performance participants. As
393 illustrated in the memory retrieval schematic (**Fig. 5d**), these results are complementary
394 and a seeming contradiction is a reflection of Simpson's paradox (33). Given the
395 dominance of replay in regular performing participants, replay may play a functional role
396 in "piecing together" individual retrieved elements. Additionally, we find that replay
397 proceeds in the opposite direction to what might be expected, i.e. replay flows from
398 distal episode elements to the proximal cued element (34). In general, our results
399 indicate an important role for replay in online memory retrieval, with an element-to-
400 element lag of 100-120 ms, establishing a novel connection between replay and
401 ongoing behaviour in humans that has only recently been demonstrated in animal
402 research (4, 5, 29).

403 Replay events spanned a temporal horizon of seconds during retrieval, in
404 contrast to a single instance of clustered pattern completion (9, 30). The latter pattern
405 characterised very high performing participants alone, where cue-evoked reactivation
406 closely resembled pattern completion. We cannot exclude a possibility that an absence
407 of sequential replay in very high performing participants might reflect a difficulty in
408 detection, perhaps due to a sparse distribution or rapid decay of replay event frequency.
409 Similarly, our results could be biased towards detecting stronger sequenceness in
410 regular performing participants, who exhibit a stronger engagement of retrieval
411 processes, which in turn could provide greater evidence for classification of sequential
412 activation. Alternatively, when episodes are strongly encoded during an experience

413 itself, different representations might begin to form, where retrieved order information is
414 no longer represented by sequential replay but instead by the clustered reactivation
415 pattern we observed. A potentially related finding of a decreasing expression of replay
416 with increasing experience has been reported in rodents (25, 29). Here we speculate
417 that in high performing participants, episodes are more strongly encoded and potentially
418 enhanced by spontaneous reactivation and replay during post-learning rest and sleep
419 (6, 35-38), and these representations may be differentially supported by cortical
420 systems (30, 31, 39, 40).

421 Replay in the current experiment showed an element-to-element lag of
422 approximately 110 ms, representing a temporal compression factor of 60 to 150. This
423 compression is in line with, or exceeds, the degree reported in offline place cell
424 sequences in rodents (41, 42). Previous MEG research examining replay in humans
425 report a shorter 40-50 ms lag between replayed elements for very well-learned
426 sequences (19, 20). These studies allowed for tens of seconds of planning or involved
427 acquisition over minutes of rest; further, replay during rest was related to putative SWR
428 events (20). This contrasts with our current experiment where there was a requirement
429 for relatively rapid 'online' decisions.

430 These different effects, influenced by task demands, parallel well-established
431 results in animals. Thus, theta-related sequence events are found predominantly during
432 active navigation, while replay events during high-frequency SWRs are found during
433 rest and sleep (21-25). Based on a close association between animal and human replay
434 during putative SWR events, as demonstrated recently (20), and the important
435 distinction between the previous results pertaining to rest and current results that reflect

436 active behavior, it is instructive to speculate on connections between our current
437 findings and an expression of sequenceness observed in rodents, specifically that which
438 relates to theta sequences. However, any suggested connection needs to be tempered
439 by substantial differences between animal spatial navigation and human episodic
440 memory. More extensive research is needed to fully explore any potential connection.

441 Episodic memory experimental designs utilizing actual extended sequences of
442 experiences as episodes, instead of a more traditional use of multiple different static
443 images, trade off benefits of increased ecological validity against a potential
444 disadvantage of necessitating repeated testing of episodes. The use of repeated probes
445 of episodes is often necessary when using decoding approaches, where the analyses
446 require many exposures to the episode elements during training of a decoder. In some
447 cases, experiments include re-exposures to the original episodes (18). As in real-life
448 experiences outside of the lab, memory episodes in our experiment were experienced
449 only a single time at encoding. Repeated testing on the other hand may alter the
450 underlying memory trace or lead to increasing reliance on retrieval strategies, and we
451 acknowledge this as an important caveat to studies of this type. Importantly, we found
452 no change in the positive trial-by-trial sequenceness-memory relationship over the
453 course of the experiment.

454 Individual episodes of experience are important building blocks for creating a
455 representation of the structure of the world (2). Episodic representations that support
456 replay are likely to be important for how we successfully navigate spatial, social, and
457 abstract environments (3, 6, 43-47). In turn, memory closely interacts with decision
458 making (e.g. 10, 46). The ability to reactivate episodes in a highly compressed manner

459 provides a novel mechanism for very rapid retrieval and replay of previous experiences
460 during choice (48-50), and our findings can motivate new directions of research into the
461 relationship of memory encoding, consolidation and decision making. Further, the
462 flexible direction of episodic retrieval replay events that we identify may affect choice
463 dynamics. We speculate that sequential replay flexibility and strength might serve as
464 markers for an impaired associative binding between memory elements caused by
465 negative emotional events. Impaired, or pathologically disturbed, memory organization
466 has a strong negative impact on well-being and behaviour, and future human research
467 into memory replay might also provide novel insights into memory disturbances seen in
468 psychiatric disorders such as post-traumatic stress disorder and schizophrenia (51, 52).

469

References and Notes

- 470 1. H. Eichenbaum, N. J. Cohen, *From Conditioning to Conscious Recollection: Memory Systems of the Brain*. (Oxford University Press, New York, 2001).
- 471 2. G. Buzsaki, E. I. Moser, Memory, navigation and theta rhythm in the hippocampal-entorhinal system. *Nat Neurosci* **16**, 130 (Feb, 2013).
- 472 3. H. Eichenbaum, The role of the hippocampus in navigation is memory. *J Neurophysiol* **117**, 1785 (Apr 1, 2017).
- 473 4. B. E. Pfeiffer, D. J. Foster, Hippocampal place-cell sequences depict future paths to remembered goals. *Nature* **497**, 74 (May 2, 2013).
- 474 5. S. P. Jadhav, C. Kemere, P. W. German, L. M. Frank, Awake hippocampal sharp-wave ripples support spatial memory. *Science* **336**, 1454 (Jun 15, 2012).
- 475 6. H. F. Olafsdottir, D. Bush, C. Barry, The Role of Hippocampal Replay in Memory and Planning. *Current biology : CB* **28**, R37 (Jan 8, 2018).
- 476 7. M. F. Carr, S. P. Jadhav, L. M. Frank, Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. *Nat Neurosci* **14**, 147 (Feb, 2011).
- 477 8. S. M. Polyn, V. S. Natu, J. D. Cohen, K. A. Norman, Category-specific cortical activity precedes retrieval during memory search. *Science* **310**, 1963 (Dec 23, 2005).
- 478 9. A. J. Horner, J. A. Bisby, D. Bush, W. J. Lin, N. Burgess, Evidence for holistic episodic recollection via hippocampal pattern completion. *Nat Commun* **6**, 7462 (Jul 2, 2015).
- 479 10. G. E. Wimmer, D. Shohamy, Preference by association: how memory mechanisms in the hippocampus bias decisions. *Science* **338**, 270 (Oct 12, 2012).
- 480 11. M. E. Wheeler, S. E. Petersen, R. L. Buckner, Memory's echo: vivid remembering reactivates sensory-specific cortex. *Proc Natl Acad Sci U S A* **97**, 11125 (Sep 26, 2000).
- 481 12. Z. Kurth-Nelson, G. Barnes, D. Sejdinovic, R. Dolan, P. Dayan, Temporal structure in associative retrieval. *Elife* **4**, (Jan 23, 2015).
- 482 13. S. Michelmann, H. Bowman, S. Hanslmayr, The Temporal Signature of Memories: Identification of a General Mechanism for Dynamic Memory Replay in Humans. *PLoS Biol* **14**, e1002528 (Aug, 2016).

499

500

501

502 14. T. I. Brown *et al.*, Prospective representation of navigational goals in the human
503 hippocampus. *Science* **352**, 1323 (Jun 10, 2016).

504 15. G. E. Wimmer, C. Buchel, Learning of distant state predictions by the
505 orbitofrontal cortex in humans. *Nature Communications* **10**, (Jun 11, 2019).

506 16. R. B. Yaffe, A. Shaikhouni, J. Arai, S. K. Inati, K. A. Zaghloul, Cued Memory
507 Retrieval Exhibits Reinstatement of High Gamma Power on a Faster Timescale
508 in the Left Temporal Lobe and Prefrontal Cortex. *J Neurosci* **37**, 4472 (Apr 26,
509 2017).

510 17. A. Jafarpour, L. Fuentemilla, A. J. Horner, W. Penny, E. Duzel, Replay of very
511 early encoding representations during recollection. *J Neurosci* **34**, 242 (Jan 1,
512 2014).

513 18. S. Michelmann, B. P. Staresina, H. Bowman, S. Hanslmayr, Speed of time-
514 compressed forward replay flexibly changes in human episodic memory. *Nature
515 Human Behaviour* **3**, 143 (Feb, 2019).

516 19. Z. Kurth-Nelson, M. Economides, R. J. Dolan, P. Dayan, Fast Sequences of Non-
517 spatial State Representations in Humans. *Neuron* **91**, 194 (Jul 06, 2016).

518 20. Y. Liu, R. J. Dolan, Z. Kurth-Nelson, T. Behrens, Human replay spontaneously
519 reorganises experience. *Cell*, (2019).

520 21. A. E. Papale, M. C. Zielinski, L. M. Frank, S. P. Jadhav, A. D. Redish, Interplay
521 between Hippocampal Sharp-Wave-Ripple Events and Vicarious Trial and Error
522 Behaviors in Decision Making. *Neuron* **92**, 975 (Dec 7, 2016).

523 22. G. Pezzulo, F. Donnarumma, D. Maisto, I. Stoianov, Planning at decision time
524 and in the background during spatial navigation. *Curr Opin Beh Sci* **29**, 69
525 (2019).

526 23. G. Buzsaki, Hippocampal sharp wave-ripple: A cognitive biomarker for episodic
527 memory and planning. *Hippocampus* **25**, 1073 (Oct, 2015).

528 24. A. M. Wikenheiser, A. D. Redish, Hippocampal theta sequences reflect current
529 goals. *Nat Neurosci* **18**, 289 (Feb, 2015).

530 25. A. Johnson, A. D. Redish, Neural ensembles in CA3 transiently encode paths
531 forward of the animal at a decision point. *J Neurosci* **27**, 12176 (Nov 7, 2007).

532 26. K. Diba, G. Buzsaki, Forward and reverse hippocampal place-cell sequences
533 during ripples. *Nat Neurosci* **10**, 1241 (Oct, 2007).

534 27. R. E. Ambrose, B. E. Pfeiffer, D. J. Foster, Reverse Replay of Hippocampal
535 Place Cells Is Uniquely Modulated by Changing Reward. *Neuron* **91**, 1124 (Sep
536 7, 2016).

537 28. D. J. Foster, M. A. Wilson, Reverse replay of behavioural sequences in
538 hippocampal place cells during the awake state. *Nature* **440**, 680 (Mar 30, 2006).

539 29. A. C. Singer, M. F. Carr, M. P. Karlsson, L. M. Frank, Hippocampal SWR activity
540 predicts correct decisions during the initial learning of an alternation task. *Neuron*
541 **77**, 1163 (Mar 20, 2013).

542 30. J. L. McClelland, B. L. McNaughton, R. C. O'Reilly, Why there are
543 complementary learning systems in the hippocampus and neocortex: insights
544 from the successes and failures of connectionist models of learning and memory.
545 *Psychol Rev* **102**, 419 (Jul, 1995).

546 31. D. Marr, Simple memory: a theory for archicortex. *Philos Trans R Soc Lond B
547 Biol Sci* **262**, 23 (Jul 1, 1971).

548 32. N. W. Schuck, Y. Niv, Sequential replay of nonspatial task states in the human
549 hippocampus. *Science* **364**, (2019).

550 33. R. A. Kievit, W. E. Frankenhuis, L. J. Waldorp, D. Borsboom, Simpson's paradox
551 in psychological science: a practical guide. *Frontiers in psychology* **4**, 513 (2013).

552 34. M. W. Howard, M. J. Kahana, A distributed representation of temporal context.
553 *Journal of mathematical psychology* **46**, 269 (Jun, 2002).

554 35. A. Tambini, L. Davachi, Persistence of hippocampal multivoxel patterns into
555 postencoding rest is related to memory. *Proc Natl Acad Sci U S A* **110**, 19591
556 (Nov 26, 2013).

557 36. A. Ben-Yakov, Y. Dudai, Constructing realistic engrams: poststimulus activity of
558 hippocampus and dorsal striatum predicts subsequent episodic memory. *J
559 Neurosci* **31**, 9032 (Jun 15, 2011).

560 37. L. Deuker *et al.*, Memory consolidation by replay of stimulus-specific neural
561 activity. *J Neurosci* **33**, 19373 (Dec 4, 2013).

562 38. A. C. Schapiro, E. A. McDevitt, T. T. Rogers, S. C. Mednick, K. A. Norman,
563 Human hippocampal replay during rest prioritizes weakly learned information and
564 predicts memory performance. *Nat Commun* **9**, 3920 (Sep 25, 2018).

565 39. D. Kumaran, D. Hassabis, J. L. McClelland, What Learning Systems do
566 Intelligent Agents Need? Complementary Learning Systems Theory Updated.
567 *Trends Cogn Sci* **20**, 512 (Jul, 2016).

568 40. D. Tse *et al.*, Schemas and memory consolidation. *Science* **316**, 76 (Apr 6,
569 2007).

570 41. A. K. Lee, M. A. Wilson, Memory of sequential experience in the hippocampus
571 during slow wave sleep. *Neuron* **36**, 1183 (Dec 19, 2002).

572 42. Z. Nadasdy, H. Hirase, A. Czurko, J. Csicsvari, G. Buzsaki, Replay and time
573 compression of recurring spike sequences in the hippocampus. *J Neurosci* **19**,
574 9497 (Nov 1, 1999).

575 43. E. C. Tolman, Cognitive maps in rats and men. *Psychol Rev* **55**, 189 (Jul, 1948).

576 44. T. E. J. Behrens *et al.*, What Is a Cognitive Map? Organizing Knowledge for
577 Flexible Behavior. *Neuron* **100**, 490 (Oct 24, 2018).

578 45. R. Kaplan, N. W. Schuck, C. F. Doeller, The Role of Mental Maps in Decision-
579 Making. *Trends Neurosci* **40**, 256 (May, 2017).

580 46. D. Shohamy, N. D. Daw, Integrating memories to guide decisions. *Curr Opin*
581 *Behav Sci* **5**, 85 (Oct, 2015).

582 47. R. J. Dolan, P. Dayan, Goals and habits in the brain. *Neuron* **80**, 312 (Oct 16,
583 2013).

584 48. M. N. Shadlen, D. Shohamy, Decision Making and Sequential Sampling from
585 Memory. *Neuron* **90**, 927 (Jun 1, 2016).

586 49. A. Bakkour, A. Zylberberg, M. N. Shadlen, D. Shohamy, Value-based decisions
587 involve sequential sampling from memory. *bioRxiv*, (2018).

588 50. G. E. Wimmer, C. Buechel, Reactivation of reward-related patterns from single
589 past episodes supports memory-based decision making. *J Neurosci* **36**, 2868
590 (2016).

591 51. C. R. Brewin, J. D. Gregory, M. Lipton, N. Burgess, Intrusive images in
592 psychological disorders: characteristics, neural mechanisms, and treatment
593 implications. *Psychol Rev* **117**, 210 (Jan, 2010).

594 52. J. Suh, D. J. Foster, H. Davoudi, M. A. Wilson, S. Tonegawa, Impaired
595 hippocampal ripple-associated replay in a mouse model of schizophrenia.
596 *Neuron* **80**, 484 (Oct 16, 2013).

597 53. E. K. Braun, G. E. Wimmer, D. Shohamy, Retroactive and graded prioritization of
598 memory by reward. *Nat Commun* **9**, 4886 (Nov 20, 2018).

599 54. B. D. Van Veen, W. Van Drongelen, M. Yuchtman, A. Suzuki, Localization of
600 brain electrical activity via linearly constrained minimum variance spatial filtering.
601 *IEEE Transactions on biomedical engineering* **44**, 867 (1997).

602

603

604 **Acknowledgments:** The authors thank Zeb Kurth-Nelson for helpful discussions. This
605 work was supported by a Wellcome Trust Investigator Award (098362/Z/12/Z) to R.J.D.
606 Y.L. is supported by a UCL Graduate Research Scholarship and an Overseas Research
607 Scholarship. The Max Planck University College London Centre is a joint initiative
608 supported by University College London and the Max Planck Society. The Wellcome
609 Centre for Human Neuroimaging is supported by core funding from the Wellcome Trust
610 (203147/Z/16/Z).

611
612 **Author contributions:** G.E.W., Y.L., and N.V. designed the experiment. G.E.W. and
613 N.V. collected the data. G.E.W and Y.L. wrote the analysis code, analyzed, and
614 interpreted the data. T.E.J.B. and R.D. contributed to data interpretation. G.E.W. wrote
615 the paper with input from Y.L., N.V., T.E.J.B., and R.J.D.

616
617 **Competing interests:** Authors declare no competing interests.

622

Methods

623 Twenty-eight healthy volunteers participated and completed both sessions of the
624 experiment. Participants were recruited from the UCL Institute of Cognitive
625 Neuroscience Subject Database. Data from three participants were excluded due to
626 poor memory performance (described below) leaving data from 25 participants for
627 analyses (14 female; mean age 24 (range 18-32). Participants were required to meet
628 the following criteria: age between 18-35, fluent English speaker, normal or corrected-
629 to-normal vision, without current neurological or psychiatric disorders, no non-
630 removable metal, and no participation in an MRI scan in the two days preceding the
631 MEG session. The study was approved by the University College London Research
632 Ethics Committee (Approval ID Number: 9929/002). All participants provided written
633 informed consent before the experiment. Participants were paid for their time, for
634 memory performance (up to £10 based on percent correct performance above chance),
635 in addition to a bonus for localizer phase target detection performance (up to £2).

636 Participants were excluded from analysis if two of the following three criteria were
637 met: (1) accuracy below 50 % on the cued retrieval task on the second day, (2)
638 accuracy below 50 % in the episode component re-ordering task on the second day,
639 and (3) indication on the post-experiment questionnaire that the participant had mentally
640 reordered the episodes from their original day 1 order. As the MEG analyses tested for
641 reactivation of sequences of episode elements based on the original order, relatively
642 poor memory for the order of episode elements (in the post-test) and/or a report of re-
643 ordering the episodes (in the post-questionnaire) were part of the exclusion criteria. As
644 noted above, 3 participants from the initial 28 were excluded based on these criteria. In

645 the current sample, no participants were excluded based on MEG decoding
646 performance, specifically, the classification of the 6 categories in the MEG localizer
647 phase data.

648

649 **Experimental Task**

650 We designed our memory experiment to investigate the neural processes supporting
651 retrieval of episodic experiences where the original episodes were only experienced
652 once, similar to many experiences outside the lab; this is in explicit contrast to
653 paradigms with many repetitions of the same (sequence of) stimuli. Retrieval was also
654 separated from encoding by approximately 24 hours, again to increase ecological
655 validity. Episodes were designed such that they were made up of elements from 6
656 different categories. In order to be able to classify many varying episode elements,
657 without pushing the limits of pattern classification or participant alertness for long-
658 duration scans, we designed our experiment using well-identified categories deployed in
659 previous fMRI and MEG studies of memory and perception (e.g. 10, 12, 15, 52).

660 Participants were explicitly instructed that memory episodes were made up of 6
661 categories of stimuli (faces, buildings, body parts, objects, animals, and cars), and then
662 shown examples of these categories. Note that we did not expect participants to think of
663 abstract category-level information during retrieval but instead expected participants to
664 retrieve individual elements, without explicitly categorizing the items. We utilized
665 categories of stimuli because we predicted that category-level information would provide
666 the largest source of across-stimulus variability in neural responses.

667

668 On the first day of the experiment, in a testing room environment participants
669 experienced 8 different temporally extended episodes with one single exposure per
670 episode (**Fig. 1a**). Participants were told their performance on memory questions that
671 tested their knowledge of the correct sequential order of stimuli would influence the
672 amount of a monetary bonus. Episodes were composed of 5 discrete picture elements
673 and an accompanying story written from a first-person perspective. On the second day,
674 participants returned for an MEG scanning session where they completed a cued
675 retrieval phase and a category localizer phase during the acquisition of MEG data (**Fig.**
676 **1b**). Behavioral piloting in a separate sample of participants was used to optimize the
677 design and ensure that memory retrieval performance on day 2 was both reliably above
678 chance but below ceiling in the majority of participants.

679

680 *Episodic encoding session procedure*

681 On the first day, participants completed the episodic encoding phase. This phase
682 presented eight episodes each composed of five unique sequential picture components.
683 Episode components were accompanied with a text segment of a story to encourage
684 the maintenance of the true episode order in memory. The story was written in first-
685 person perspective to better align with veridical personal episodic memories. The first
686 four elements of each episode were taken from 6 potential categories of stimuli: faces,
687 buildings, body parts, objects, animals, and cars. The final element in each episode was
688 not taken from these categories; instead, it represented a unique ending element.
689 Participants were instructed to try to remember the order of the episodes and informed
690 that a bonus would be tied to their performance on questions which tested their memory

691 for the sequential order of the episode elements. A practice episode was presented in
692 the first instance, after which participants were asked to type in the name of the 1st
693 stimulus element presented in an episode, then the 2nd, 3rd, 4th, and 5th elements.

694 In each episode, participants were presented with the initial picture element
695 along with a segment of story text shown below (Fig. 1a; Table S1). A grey screen
696 background was used for all experimental phases. The stimulus faded in over 0.5 sec
697 and was then presented with the story text for 2 sec. The text then disappeared and for
698 the remaining 2.5 sec, participants performed a target detection task, pressing the '1'
699 key whenever they saw a small grey square appear at any location over the stimulus
700 (mean of 1 target per stimulus). The stimulus then faded out for 0.5 sec. Total stimulus
701 duration, including fade-in and fade-out, was ~ 5.5 sec. A grey 'bokeh' image faded in
702 as the stimulus faded out. After the stimulus disappeared, participants responded with
703 the 'up arrow' key to a series of 1-3 arrow indicators ('^ ^ ^') in order to progress to the
704 next element of the episode. If participants did not respond to an arrow within 6 sec, a
705 warning appeared instructing the participant to respond faster. The mean inter-stimulus
706 interval was 6.5 sec (1 sec for short duration episodes; 12 sec for long duration
707 episodes). For the final component of the episode, a white square initially occluded the
708 stimulus and participants then pressed the 'space' key to reveal the stimulus and
709 associated story text. After the final component of the episode, a delay of 2 sec was
710 followed by text "Positive ending: you won +£1.00!" or "Negative ending: you lost -
711 £0.50!" depending on whether the story ended in a positive or negative way.
712 Participants were then presented with a probe requiring them to type in the name of a
713 particular episode element (selected pseudo-randomly from elements 1-4). A 30 sec

714 rest period followed each episode. After the completion of the 8 episodes, participants
715 were instructed not to rehearse the episodes or to record the episodes in any way.

716 Episodes were constructed from a pseudo-random combination of category
717 elements in addition to a final component that was not taken from any of these
718 categories. A brief story text connected the sequence of stimuli into a short story (**Table**
719 **S1**). The stimuli consisted 40 photographs, taken either from the internet or previous
720 studies from our group, encompassing the following categories: human faces (6),
721 buildings (6), body parts (5), objects (5), animals (5), automobiles (5), and eight final
722 component pictures (4 negative and 4 positive). As noted above, half of the episodes
723 were of a longer duration, achieved via manipulating the inter-stimulus-interval (1 sec or
724 12 sec). The story in half of the episodes ended in a positive element and half ended in
725 a negative element (**Table S1**). The ordering of long versus short and positive versus
726 non-positive episodes was pseudo-randomized in two counterbalanced orders.

727 After a 5 min break to obviate a potential influence of temporal proximity on
728 performance for the last episodes, participants completed a short cued retrieval phase
729 that tested recall of the order of the elements presented in each episode. The memory
730 test was brief to minimize additional ‘exposure’ to episode stimuli. Following a practice
731 trial (using stimuli from the practice episode), participants completed 8 trials in the
732 “after” condition and then 8 trials in the “before” condition. Each mini-block of 8 trials
733 was preceded by text indicating the current condition. Participants were shown a picture
734 cue and instructed to retrieve the associated episode in order to make a response about
735 the sequential order of the subsequent answer stimulus. In the after condition,
736 participants attempted to remember what came after (at any point) the cue in the same

737 episode (**Fig. 1b**). In the example after condition trial in **Fig. 1b**, the participant is cued
738 with the harmonica from the above episode. The presented answer, the SUV, indeed
739 followed the harmonica in the episode, so if the participant remembered the episode
740 and order, she should respond with ‘Correct.’ If the sunny sky or bear was presented as
741 the answer, the participant should also respond with ‘Correct.’ If the answer was the
742 man or a stimulus from any other episode, the participant should respond with
743 ‘Incorrect.’ Answers were ‘correct’ for any position after the cue, not just immediately
744 after it. In the before condition, participants attempted to remember what came before
745 (at any point) the cue in the same episode. In both conditions, when the answer picture
746 was presented, participants were shown the response options “Correct” and “Incorrect”
747 in text below the picture. Cues in this memory test were only taken from the second
748 state 2 (of 5 total episode states) in the after condition or the fourth state in the before
749 condition. The answer on half of the trials was correct.

750 On each cued retrieval trial, the cue picture was presented in full opacity for 0.5
751 sec and then faded to 0 % opacity across the remaining 5 sec of the retrieval period
752 (**Fig. 1**). Then the response picture was presented. The answer text indicated the
753 mapping between key responses and answers, e.g. “Correct (1)” and “Incorrect (2)”; the
754 left and right text locations were randomly selected on each trial. There was no time
755 constraint on the answer period. After an answer was recorded, following a brief 0.1 sec
756 pause, a 2-level confidence scale (“High” and “Low”) was presented, with the left and
757 right location of options randomized. After a 0.1 sec pause, a fixation period of mean 1.5
758 sec followed (randomly sampled from the values [1.0, 1.5, 2.0]).

759

760 *MEG session procedure*

761 Participants returned for the MEG scan on the following day. After initial setup in
762 the MEG room, participants were reminded of the instructions for the cued memory
763 phase and completed 4 practice questions (based on the practice episode from the
764 previous day). During scanning, the memory response period was time-constrained.
765 This limit was added to encourage participants to retrieve as much information from
766 memory as possible during the cue period and to facilitate later MEG analysis of neural
767 processes underlying successful retrieval. Participants were instructed to retrieve as
768 best as possible the episodes during the presentation of the cue picture, and in this way
769 they could respond faster (and avoid missed responses) when the answer appeared.
770 Participants were again reminded of the performance bonus based on memory
771 accuracy.

772 As described above for the memory test on the first day, on each cued retrieval
773 trial, the cue picture was presented in full opacity for 0.5 sec and then faded to 0 %
774 opacity across the remaining 5 sec of the retrieval period (**Fig. 1**). The gradual fade of
775 the cue across the retrieval period was designed to avoid any sharp stimulus offset
776 effects which could negatively affect MEG decoding. Then the answer stimulus was
777 displayed. The text indicating the key response, e.g. “Correct (1)” and “Incorrect (2)”,
778 was randomly presented on the left and right of the screen. If a response was not made
779 in this time period, the warning “Please try to respond more quickly!” was presented for
780 2 sec. The response picture was presented for 1-3 sec with the duration based on the
781 recent rate of missed trials in the past 20 trials. If participants made no response on
782 more than 14 % of recent trials, the response period was increased in duration by 0.25

783 sec (with a ceiling of 3 sec). If participants made no response on less than 5 % of recent
784 trials, the answer period was decreased in duration by 0.25 sec (with a floor of 1 sec).
785 After the answer period, following a brief 0.1 sec pause, a 2-level confidence scale
786 (“High” and “Low”) was presented, with the left and right location of options randomized.
787 If a response was not made in time, the warning “Please try to respond more quickly!”
788 was presented for 2 sec. After a 0.1 sec pause, a fixation period of mean 1.5 sec
789 followed (randomly sampled from the values [1.0, 1.5, 2.0]).

790 In each of 5 blocks in the cued retrieval phase, trials of after and before
791 conditions were separated into mini-blocks of 10-12 trials. Each mini-block was
792 preceded by an instruction screen: “Next: What picture came after (before)?” along with
793 the instruction to press the ‘1’ key to continue. At the mid-point of each block,
794 participants were given a 30 sec pause, followed by a reminder of the current condition
795 and an instruction to press the ‘1’ key to continue. Each of the five blocks of cued
796 retrieval included 43 trials and lasted for approximately 8 minutes. Brief rest breaks
797 were inserted between blocks. In the cued retrieval phase, we collected ~ 27 trials per
798 episode and ~ 43 trials per state (episode positions 1 to 5) for a total of 215 trials. For
799 one participant, MEG data were lost for the final memory retrieval block; the remaining
800 172 trials were analyzed. All trials with a cue from state 1 were after condition trials. All
801 trials with a cue from state 5 were before condition trials. Trials with a cue from state 3
802 were composed of equal numbers of after and before condition trials, while trials with a
803 cue from state 2 and state 4 were a weighted mixture of after and before condition trials.

804 The presented answer was correct on ~ 39 % of trials. The remaining 61 % of
805 trials were incorrect: on 52 % of total trials, the incorrect answer came from another

806 episode and on the remaining ~ 9 % of total trials, a 'lure' answer was presented that
807 was from the same episode but in the incorrect direction as the current condition. For
808 example, in an after condition trial where the cue was from state 3, a picture from that
809 episode in state 1 was presented as the answer. Note that on the first day participants
810 are exposed to the complete episode only one single time. During the memory test,
811 participants see all episode elements again, but at this stage they are provided in an
812 order that mixes elements between different episodes, or elements within the same
813 episode that are out of the true order, and only very rarely are pairs of elements
814 presented in the original order. Trials were presented in a pseudo-random order with the
815 constraint that no episode was queried on sequential trials.

816 The cued retrieval phase was followed by a functional localizer to derive
817 participant-specific sensor patterns that discriminated each of the 6 categories that
818 made up the episodes by repeatedly presenting each of the 32 unique stimuli. The
819 localizer design was based on previous studies (19, 20). In brief, participants were
820 instructed to read a word shown on the screen, pay attention to the picture that
821 followed, and respond if any grey square targets appeared superimposed over the
822 picture. The instructions were followed by 4 practice trials.

823 In detail, in a localizer trial, participants were presented with a brief name
824 corresponding to one of the pictures, presented in text on the center of the screen for 2
825 sec. Participants were instructed to imagine the corresponding picture. The text then
826 disappeared and the named picture appeared on the screen for 0.75 sec. During picture
827 presentation, participants performed a target detection task, responding with a '1' button
828 press if the picture contained a small grey square. Targets were rare events, appearing

829 on 15.4 % of trials. A mean 0.75 sec fixation ITI followed (range 0.25 – 1.25) during
830 which responses were still recorded. If performance on the target detection task fell
831 below 70 % correct (across missed responses and false alarms), a warning was
832 presented: “Please improve your detection of the grey squares!” Finally, as in the cued
833 retrieval phase, a mid-block rest of 30 sec was inserted during each block. After each
834 localizer block, participants were shown yellow ‘stars’ on the screen, ranging from 0-4,
835 depending on their target detection accuracy in the preceding block.

836 The stimulus pictures were presented in a pseudo-random order, with the
837 constraint that no category repeat in subsequent trials. Each picture from a given
838 category was presented an equivalent number of times, with 78 repetitions per picture
839 category. The localizer was presented in 5 blocks, with 94 trials in the first four blocks
840 and 92 trials in the last block for a total of 468 trials.

841 Following scanning, participants completed a post-experiment questionnaire that
842 assessed memory strategy and potential mental reordering of the episodes, and also
843 asked participants to try to write down a brief version of each story. The re-ordering
844 question asked “Did you change the order of the stories to make your own story order?
845 1= never, 5=always”. Participants who responded with a 4 or 5 were considered for
846 exclusion, in conjunction with performance on the memory and sequence memory test.
847 We observed a negative correlation in the full group (prior to exclusions) between
848 response to this question and memory performance in the MEG session.

849 Finally, participants completed a computerized sequence memory test where
850 they attempted to place the stimuli from a given episode in the correct order. In this
851 phase, stimuli from an episode were presented in a random order on the left side of the

852 computer screen. Participants then moved each stimulus from the left side (starting from
853 the top) into one of 5 empty boxes spread from the left to the right across the screen.
854 Stimuli were moved using the left and right arrow keys and the space bar was used to
855 confirm placement. Accuracy was measured as the mean rate of correct replacement
856 across each location across all episodes.

857

858 **MEG acquisition**

859 Participants were scanned while sitting upright inside an MEG scanner located at the
860 Wellcome Centre for Human Neuroimaging, at UCL. A whole-head axial gradiometer
861 MEG system (CTF Omega, VSM MedTech) recorded data continuously at 600 samples
862 per second, utilizing 273 channels (2 original channels of the 275 channels are not
863 operational). Three head position indicator coils were used to locate the position of
864 participant's head in the three-dimensional space with respect to the MEG sensor array.
865 They were placed on the three fiducial points: the nasion and left and right pre-auricular
866 areas. The coils generate a small magnetic field used to localize the head and enable
867 continuous movement tracking. We also used an Eyelink eye-tracking system to monitor
868 participant's eye movements and blinks. The task was projected onto a screen
869 suspended in front of the participants. The participants responded during the task using
870 a 4-button response pad to provide their answers (Current Designs), responding with
871 self-selected digits to the first and second buttons.

872

873 **MEG Pre-processing**

874 MEG data were processed using MATLAB packages SPM12 (Wellcome Trust
875 Centre for Neuroimaging) and FieldTrip. The CTF data were imported using OSL (the
876 OHBA Software Library, from OHBA Analysis Group, OHBA, Oxford, UK) and down-
877 sampled from 600 Hz to 100 Hz (yielding 10 ms per sample) for improved signal to
878 noise ratio and to conserve processing time. Slow drift was removed by applying a first
879 order IIR high-pass filter at 0.5 Hz.

880 Preprocessing was conducted separately for each block. An initial preprocessing
881 step in OSL identified potential bad channels whose characteristics fell outside the
882 normal distribution of values for all sensors. Then independent component analysis
883 (FastICA, <http://research.ics.aalto.fi/ica/fastica>) was used to decompose the sensor data
884 for each session into 150 temporally independent components and associated sensor
885 topographies. Artifact components were classified by automated inspection of the
886 combined spatial topography, time course, kurtosis of the time course, and frequency
887 spectrum for all components. For example, eye-blink artifacts exhibited high kurtosis
888 (>20), a repeated pattern in the time course and consistent spatial topographies. Mains
889 interference had extremely low kurtosis and a frequency spectrum dominated by 50 Hz
890 line noise. The maximum number of potential excluded components was set to 20.
891 Artifacts were then rejected by subtracting them out of the data. All subsequent
892 analyses were performed directly on the filtered, cleaned MEG signal, in units of
893 femtotesla.

894 In the cued retrieval blocks, an 8.5 second epoch was extracted for potential
895 analysis for each trial, encompassing 500 ms preceding cue onset and continuing past
896 the answer response. In the analyses below, we analyzed the first two-thirds of the cued

897 retrieval period. Given the speeded response demands to the response stimulus, the
898 end of the period is likely to involve increasing response preparation that could
899 decrease the ability to detect sequenceness events. We excluded also the initial 160 ms
900 following cue presentation to allow time for early stimulus processing. Thus, our retrieval
901 period analysis window focused on 160 - 3667 ms of the full 5500 ms period. In the
902 localizer blocks, a 4.5 second epoch was extracted for potential analysis for each trial,
903 encompassing 500 ms preceding text onset through the end of the picture presentation
904 period. In both the retrieval and localizer blocks, preceding the analysis steps described
905 below, we excluded time periods within individual channels that exhibited extreme
906 outlier events (determined by values $> 7 \times$ the mean absolute deviation).

907

908 **MEG data decoding and cross-validation**

909 Lasso-regularized logistic regression models were trained for each category.
910 Methods followed those used in previous studies (19, 20). Only the sensors that were
911 not rejected across all scanning sessions in the preprocessing step were used to train
912 the decoding models. A trained model k consisted of a single vector with length of good
913 sensors n consisting of 1 slope coefficient for each of the sensors together with an
914 intercept coefficient. Decoding models were trained on MEG data elicited by direct
915 presentations of the visual stimuli.

916 For each category we trained one binomial classifier. Positive examples for the
917 classifier were trials on which that category was presented. Negative examples
918 consisted of two kinds of data: trials when another category was presented, and data
919 from the fixation period before the text pre-cue appeared. An equal number of events of

920 null data were included as there were actual events. The null data were included to
921 reduce a potential correlation between different classifiers – enabling all classifiers to
922 report low probabilities simultaneously.

923 To examine localizer performance we used cross-validation. We computed the
924 number of included trials per category (after exclusion of trials due to MEG artifacts).
925 We then calculated the number of cross-validation folds by subtracting the minimum
926 number of trials included across categories plus one; the number of folds per participant
927 was usually between 15-20. Classifier performance was estimated on the included data
928 and tested on randomly determined left-out data for N folds; performance was then
929 averaged across folds to derive a mean value.

930 Separately, for classifying memory retrieval data a different classifier was trained.
931 This classifier was trained on all localizer trial data with no cross-validation; cross-
932 validation is not used for across-phase analyses as no inferences are made based on
933 the localizer performance itself. Prediction accuracy was estimated by treating the
934 highest probability output among all classifiers as the predicted category. Sensor
935 distributions of beta estimates are shown in **Fig. S2** and prediction performance of
936 classifiers trained on 200 ms on left-out trials in functional localizer task are shown in
937 **Fig. S3.**

938 To determine whether the categories used in the experiment were reflective of
939 how these stimuli were actually represented in the MEG data as participants viewed the
940 stimuli, we conducted a supplemental classification analysis that trained a separate
941 classifier for each of the 32 stimuli (4 category-level stimuli for each of 8 episodes). This
942 analysis used cross-validation as described above. Also as above, a second

943 classification analysis did not use cross-validation but instead trained on the full
944 localizer phase and tested on the memory test phase cue-evoked responses. An
945 alternative classification analysis trained each stimulus versus all other stimuli but left
946 out the other members of that stimulus' category (e.g. training for face1 omitted trials
947 with face2-face6). Note that the classification of individual stimuli was under-powered
948 given the low number of repetitions per stimulus, and our localizer phase was not
949 designed to produce robust single-stimulus classifiers for use on the sequenceness
950 analyses. These results are detailed in **Supplemental Results**.

951

952 **Sequenceness measure**

953 The decoding models described above allowed us to measure spontaneous
954 reactivation of task-related representations during memory retrieval. We next defined a
955 'sequenceness' measure in terms of the degree to which these representations were
956 reactivated in a well-defined sequential order (19, 20). Here we utilized an updated
957 general linear model approach (20). This analysis approach is illustrated in **Fig. S2**.
958 Briefly, the method approximates a lagged cross-correlation between category evidence
959 for transitions in a given episode. As such, the method utilizes the full period of analysis
960 in the calculation and produces a single statistic representing the strength of
961 sequenceness across this full period. Discrete sequential events are not identified,
962 though in theory each retrieval period could include numerous events.

963 First, we applied each of the six category decoding models to the cued retrieval
964 period MEG data. This yielded six timeseries of reactivation probabilities for each trial,
965 each with length N, where N is the number of time samples included in the retrieval

966 period analysis window. Below, we use the term “stimulus” for simplicity to refer to the
967 category-level information.

968 We then used a linear model to ask whether particular sequences of stimulus
969 activations appeared above chance in these timeseries. For each stimulus i , at each
970 possible time lag Δt , we estimated a separate linear model:

971

972
$$Y_i = X(\Delta t) * \beta_i(\Delta t)$$

973

974 The predictors $X(\Delta t)$ were time-lagged copies of the six reactivation timeseries. The
975 model predicted Y_i , the reactivation of stimulus i . The linear model had N rows, with
976 each row a time sample. We estimated $\beta_i(\Delta t)$, a vector of coefficients that described the
977 degree to which stimulus i ’s reactivation was predicted by activation of each other
978 stimulus at time lag Δt . By repeating this procedure for each stimulus i , we obtained
979 $\beta_i(\Delta t)$, a 6×6 matrix that can be viewed as an empirical transition matrix between the six
980 stimuli (categories) at lag Δt .

981 Specifically:

982
$$Y_i = \sum_{j=1}^s X_j(\Delta t) \beta_{ij}(\Delta t)$$

983

984 Where $X_j(\Delta t)$ are time-lagged copies of Y_j , s is the number of states, and therefore:

985
$$Y_i(t) = \sum_{j=1}^s Y_j(t - \Delta t) \beta_{ij}(\Delta t)$$

986

987 The matrix $\beta_i(\Delta t)$ is obtained by solving the following set of equations for each stimulus
988 i , up to state s .

989

$$Y_{i=1}(t) = \sum_{j=1}^s Y_j(t - \Delta t) \beta_{ij}(\Delta t)$$

990

991

$$Y_{i=2}(t) = \sum_{j=1}^s Y_j(t - \Delta t) \beta_{ij}(\Delta t)$$

992

993

$$Y_{i=s}(t) = \sum_{j=1}^s Y_j(t - \Delta t) \beta_{ij}(\Delta t)$$

994

995 We next asked whether the $\beta_i(\Delta t)$ was consistent with a specified 6x6 transition matrix
996 by taking the Frobenius inner product between these two matrices (the sum of element-
997 wise products of the two matrices). This resulted in a single number $Z_{\Delta t}$, which
998 pertained to lag Δt . Finally, differential forward – backward sequenceness was defined
999 as $Z_{f\Delta t} - Z_{b\Delta t}$. In our initial analyses and individual differences analyses, we used the
1000 difference between correlations in the forward ($Z_{f\Delta t}$) and backward ($Z_{b\Delta t}$) direction in
1001 order to remove common autocorrelation which would otherwise add significant
1002 variance. In the analyses testing for a relationship between sequenceness and trial-by-
1003 trial accuracy, we entered the separate forward ($Z_{f\Delta t}$) and backward ($Z_{b\Delta t}$)
1004 sequenceness measures into the regression analyses. As our analysis was on trial-
1005 based data and not rest, we did not need to control for alpha rhythm (20).

1006 The transition matrix was defined as the stimulus (category) order in each
1007 episode. Our primary results focus on comparisons of sequenceness on correct versus
1008 incorrect retrieval trials; as such, we do not conduct comparisons to a null value. Here,
1009 as category orders were pseudo-randomly shuffled across episodes, we did not conduct
1010 permutation tests. To ensure that the results were not overfit to the regularization
1011 parameter of the logistic regression, all results were obtained with the lasso
1012 regularization parameter that yielded the strongest mean decoding in the localizer ($l1 =$
1013 0.002). The decoding models used to evaluate sequenceness were trained on
1014 functional localizer data taken from 200 ms following stimulus onset. The 200 ms time
1015 point exhibited the strongest decoding accuracy during the localizer; notably, this time
1016 point of category decoding was also consistent with the individual stimulus decoding
1017 findings of Kurth-Nelson et al. (19) and Liu et al. (20). We only included trials with a
1018 button response to the probe stimulus; all trials with no response were excluded from
1019 analysis.

1020 In an initial step, prior to the multilevel modelling analyses, we localized a time
1021 lag of interest in the after condition over correct trials using a leave-one-participant-out
1022 cross-validation procedure. For a given held-out participant, the absolute value of the
1023 peak response across the remaining participants determined the lag for the held-out
1024 participant. The analysis included lags from 40-350 ms. These peak times ± 10 ms were
1025 used to select trial-by-trial sequenceness values.

1026

1027 **Identifying Replay Onsets**

1028

1029 Replay onsets were defined as moments when a strong reactivation of a stimulus was
1030 followed by a strong reactivation of the next (or preceding) stimulus in the sequence
1031 from an episode (20). In this analysis, we first found the stimulus-to-stimulus time lag Δt
1032 at which there was maximum evidence for sequenceness (as described above), time
1033 shifted the reactivation matrix X up to this time lag Δt , obtaining $X(\Delta t)$. We then
1034 multiplied X by the transition matrix P , corresponding to the unscrambled sequences: X
1035 $\times P$. Next, we element-wise multiplied $X(\Delta t)$ by $X \times P$. The resulting matrix had a
1036 column for each stimulus, and a row for each time point in the cue period for each trial.
1037 We then summed over columns to obtain a long vector R , with each element indicating
1038 the strength of replay at a given moment in time (across trials). Finally, we thresholded
1039 R at its 95th percentile to only include high-magnitude putative replay onset events
1040 across all trials. We also imposed that constraint that a replay onset event must be
1041 preceded by 100 ms of replay-onset-free time.

1042 Specifically:

1043
$$Proj = X(\Delta t)$$

1044
1045 Matrix $Proj$ is obtained by time shifting the reactivation matrix X to time lag Δt .

1046
1047
$$Orig = X \times P$$

1048
1049 Matrix $Orig$ is obtained by matrix multiplication between reactivation matrix X and
1050 transition matrix P .

1051

1052

$$R_t = \sum_i^s Orig_{ti} * Proj_{ti}$$

1053

1054 Vector R is obtained by elementwise multiplication between matrix $Orig$ and $Proj$, and
1055 then summing over columns.

1056

1057 **Cue-triggered reactivation analyses**

1058 In the cued retrieval period, we tested for cue-triggered reactivation of episode
1059 elements. This analysis compared evidence for categories present in a cued episode
1060 versus categories not present in a cued episode. The analysis utilized the raw classifier
1061 evidence vectors (n categories by t trial timepoints) to investigate differential activity
1062 near the peak stimulus response at ~ 200 ms. For each episode, the within-episode
1063 categories that were not presented as a cue were averaged to derive a measure of
1064 reactivation of within-episode elements. In the after condition, there were 3 within-
1065 episode categories; in before condition, trials where the cue came from state 5 had 4
1066 categories entered into the within-episode analysis. The 2 categories that were not
1067 members of the cued episode were averaged to derive a measure of other-episode
1068 reactivation. The timepoints showing the strongest difference between these two
1069 measures were averaged for each trial to derive trial-by-trial reactivation measures
1070 representing relative within- versus other-element activity. These values were
1071 subsequently entered into multilevel regression analyses. We examined a relationship
1072 between the trial-by-trial reactivation measure and mean episode accuracy: the average
1073 performance across trials for the episode cued on a given trial. We also examined the
1074 relationship to trial-by-trial accuracy, but this analysis was under-powered in the very

1075 high performing participants. The reactivation analyses collapsed across the after and
1076 before conditions.

1077

1078 **Time-frequency analyses**

1079 A frequency decomposition (wavelet transformation) was computed for the memory
1080 retrieval period in every trial. From this data, we extracted power changes surrounding
1081 putative replay onset events.

1082

1083 **Zero-lag correlation analysis**

1084 In a supplemental analysis, we examined the relationship between reactivation of
1085 within-episode elements compared to other-episode elements with a zero time lag. This
1086 measure was a basic correlation between the time series of category evidence: the
1087 average of 3 correlations for the within-episode elements and 2 correlations for the
1088 other-episode elements. We did not find a greater correlation between within-episode
1089 elements than between other-episode elements. Through thresholding of the category
1090 evidence time series, we found that correlations were driven by increases in evidence
1091 and that these increases were brief (**Fig. S10**). However, we found no relationship
1092 between the correlation of within-episode elements across the retrieval period and
1093 behavior (**Fig. S10**).

1094

1095 **Multilevel modelling**

1096 We conducted all pre-processing of behavioral and MEG data for multilevel
1097 modelling in Matlab. Multilevel models were implemented in R, following previous

1098 procedures (53). We used a multi-level logistic regression model (glmer, in the lmer4
1099 package) to predict correct memory responses. A correct response in the cued retrieval
1100 phase was an answer stimulus correctly identified as coming after the cue in a given
1101 episode, an answer stimulus correctly rejected as coming after the cue in a given
1102 episode, etc. All missed response trials (where no response was recorded within the
1103 response time window) were excluded from analysis.

1104 The primary models included sequenceness derived from the current episode
1105 transition matrix. Additional control models examined the effect of sequenceness
1106 derived from transitions present in all other episodes but not present in the current
1107 episode.

1108 For trial-by-trial accuracy analyses, we included only participants with greater
1109 than 10 MEG artifact-free trials in each condition. In general, our exclusion was
1110 intended to be conservative and to align with practices in fMRI research regarding
1111 approximately sufficient numbers of trials in a condition. We also had a conceptual
1112 reason to exclude participants with very few miss trials. In the very high performing
1113 participants, miss trials are more likely to be dominated by lapses in attention and
1114 resulting error button presses than in regular performing participants; including miss
1115 trials in these participants then would add noise to the analyses.

1116 In the main sequenceness analyses, we fit separate intercept, forward
1117 sequenceness, and backward sequenceness effects for each participant. In the model,
1118 we also included control variables representing performance in neighboring trials. These
1119 variables were included because we found that performance 1 and 2 trials in the past
1120 and performance 1 and 2 trials in the future was positively related to current trial

1121 performance, an effect similar to what we have observed in previous memory studies. In
1122 analyses of continuous variables such as mean correct performance for the episode
1123 cued on the current trial, we used multi-level regression (lmer).

1124 For all models, to ensure convergence, models were run using the bobyqa
1125 optimizer set to 10^6 iterations. We estimated confidence intervals using the
1126 confint.merMod function and p-values using the bootMer function (both from the lmer4
1127 package) using 2500 iterations. All reported p-values are two-tailed.

1128

1129 **MEG Source Reconstruction**

1130 All source reconstruction was performed in SPM12 and FieldTrip utilizing OAT.
1131 Forward models were generated on the basis of a single shell using superposition of
1132 basis functions that approximately corresponded to the plane tangential to the MEG
1133 sensor array.

1134 Linearly constrained minimum variance beamforming (54) was used to
1135 reconstruct the epoched MEG data to a grid in MNI space, sampled with a grid step of 5
1136 mm. The sensor covariance matrix for beamforming was estimated using data in
1137 broadband power across all frequencies.

1138 For the category localizer analysis, the baseline activity was the mean power
1139 averaged over 50 ms following stimulus onset. All non-artifactual trials were baseline
1140 corrected at source level. We estimated the main effect of each category and contrasts
1141 of each category versus all other categories and extracted the peak 200 ms after onset
1142 for display.

1143 For the replay onsets analysis, the baseline activity was the mean power
1144 averaged over -100 ms to -50 ms relative to replay onset. All non-artifactual trials were
1145 baseline corrected at source level. We looked at the main effect of the initialization of
1146 replay. This analysis was conducted separately to investigate backward replay events in
1147 the after condition and forward replay events in the before condition.

1148 The statistical significance of clusters identified in the beamforming analysis was
1149 calculated using SPM12. An initial cluster-forming threshold of $p < 0.001$ was applied
1150 and regions exceeding $p < 0.05$ whole-brain family-wise-error corrected (FWE) at the
1151 cluster level are reported. The timepoint preceding replay onset (- 10 ms) was
1152 additionally investigated to explore whether individual differences in memory
1153 performance related to differential MTL power preceding replay onset.

1154

1155 Individual differences

1156 We tested for a relationship between MEG measures of sequenceness and
1157 mean memory performance in the after and before conditions. For sequenceness, we
1158 used differential (forward-backward) sequenceness given the strong decaying
1159 autocorrelation evident in the raw forward and backward sequenceness estimates (19,
1160 20). In a supplemental analysis, we estimated the relationship between replay and
1161 memory performance using a regression, separately entering forward and backward
1162 sequenceness as predictor variables. These analyses used Pearson correlations,
1163 reporting two-tailed p -values. A statistical comparison of the correlations between
1164 sequenceness and behavior in the after condition and the before condition was
1165 conducted using a test for the difference between two dependent correlations. This test

1166 is conservative, as the performance measures in the after condition and the before
1167 condition were not identical, while the test assumes full dependence.

1168 We conducted an additional conservative permutation analysis since it is
1169 possible that under certain circumstances, having increasing variability in the underlying
1170 data toward one end of a distribution across participants might impact on the chance
1171 rate of finding a correlation – whether positive or negative – between two variables.
1172 Specifically, because lower performing participants have fewer correct trials entered into
1173 the mean value than is the case for higher performing participants, the mean values for
1174 low performing participants may show higher random variation by chance. (Note that
1175 any observed differences in correlation direction between the after and before
1176 conditions would not be explained by any such effect.) To conduct the simulation, we
1177 pooled all empirical trial-by-trial sequenceness values across participants, separately for
1178 the after and before conditions, and mean-corrected the data. From this set of values,
1179 we randomly extracted (without replacement) values to match the number of included
1180 trials per participant. In each simulated participant, these values were then scaled to
1181 match the standard deviation of an actual participant's trial-by-trial sequenceness data.
1182 Across each of 500k simulations, we computed the correlation between mean memory
1183 performance and the permuted and scaled sequenceness measure. The resulting p-
1184 values were used to determine a conservative permutation-based threshold
1185

1186 **Simulation of MEG analyses and relationship to performance**

1187 To provide additional support for our results, we conducted simulations to confirm
1188 that the relationship between randomly generated MEG data and behavioral measures

1189 is what would be expected by chance. All processing and analysis steps were as described
1190 above, beyond the generation of simulated MEG data. The simulation proceeded in 3
1191 steps: 1) generation of MEG localizer data and training of classifiers, 2) generation of
1192 MEG memory retrieval data, applications of classifiers, and calculation of sequenceness
1193 for each trial, and 3) multilevel modelling to relate sequenceness to behavior.

1194 In step 1, we first estimated a sensor covariance matrix based on random data
1195 (here and below using the randn function in Matlab), constructed sensor patterns per
1196 category, and generated category training data for each category based on random
1197 data plus the generated sensor patterns. Classifiers (one per each of 6 categories) were
1198 trained on these data.

1199 In step 2, for each trial, MEG data were generated across all sensors using the
1200 mvnrnd function in Matlab. Across time, an estimated temporal auto-correlation derived
1201 from the actual data (0.65) was applied, as well as the previously derived covariance
1202 across sensors. Then the sequenceness analysis was applied per trial as in the main
1203 analysis described above. This produced a sequenceness measure in the forward and
1204 backward direction for each lag up to 350 ms.

1205 In step 3, the values for the simulated after condition on simulated correct trials
1206 were extracted for each participant. We then applied a leave-one-out cross-validation
1207 procedure for time lag selection. As in the analysis of real data, the lag selected for the
1208 left-out participant was based on the peak absolute magnitude of forward minus
1209 backward (or differential) sequenceness at lags from 40-350 ms. Across all trials, the
1210 mean sequenceness in the forward and backward directions at this peak ± 10 ms were
1211 entered into the multilevel logistic regression analyses.

1212 One set of simulations utilized all potential behavioral variables from the actual
1213 counterbalancing assignment and data (accuracy per trial, exclusion / exclusion of MEG
1214 data per trial, after/before condition, and cued episode transition matrix). A second set
1215 of simulations approximated the behavioral variables (similar distribution of mean
1216 performance across simulated participant, equal number of excluded MEG trials, and
1217 equal sampling of each of the episodes). The two simulations based on real behavioral
1218 data and simulated behavioral data were each run 10000 times.

1219

1220 **Data availability**

1221 Complete behavioral data will be publicly available on the Open Science
1222 Framework (<https://osf.io/qaewv/>). Unthresholded group beamforming statistical
1223 parametric maps of replay onset power changes and category responses during the
1224 localizer can be found on NeuroVault (<https://neurovault.org/collections/6088/>). The full
1225 MEG dataset will be publicly available on openneuro.org.

1226

1227 **Code availability**

1228 Code for the sequenceness analysis, as included in the full processing pathway
1229 simulation, is available at: <https://github.com/gewimmer-neuro/memory-sequences>.

1230

Supplementary Materials for

Episodic memory retrieval success is associated with rapid replay of episode content

G. Elliott Wimmer*, Yunzhe Liu*, Neža Vehar, Timothy E.J. Behrens, Raymond J. Dolan

This file includes:

Supplementary Results

Figs. S1 to S10

Tables S1-S8

Supplemental Results

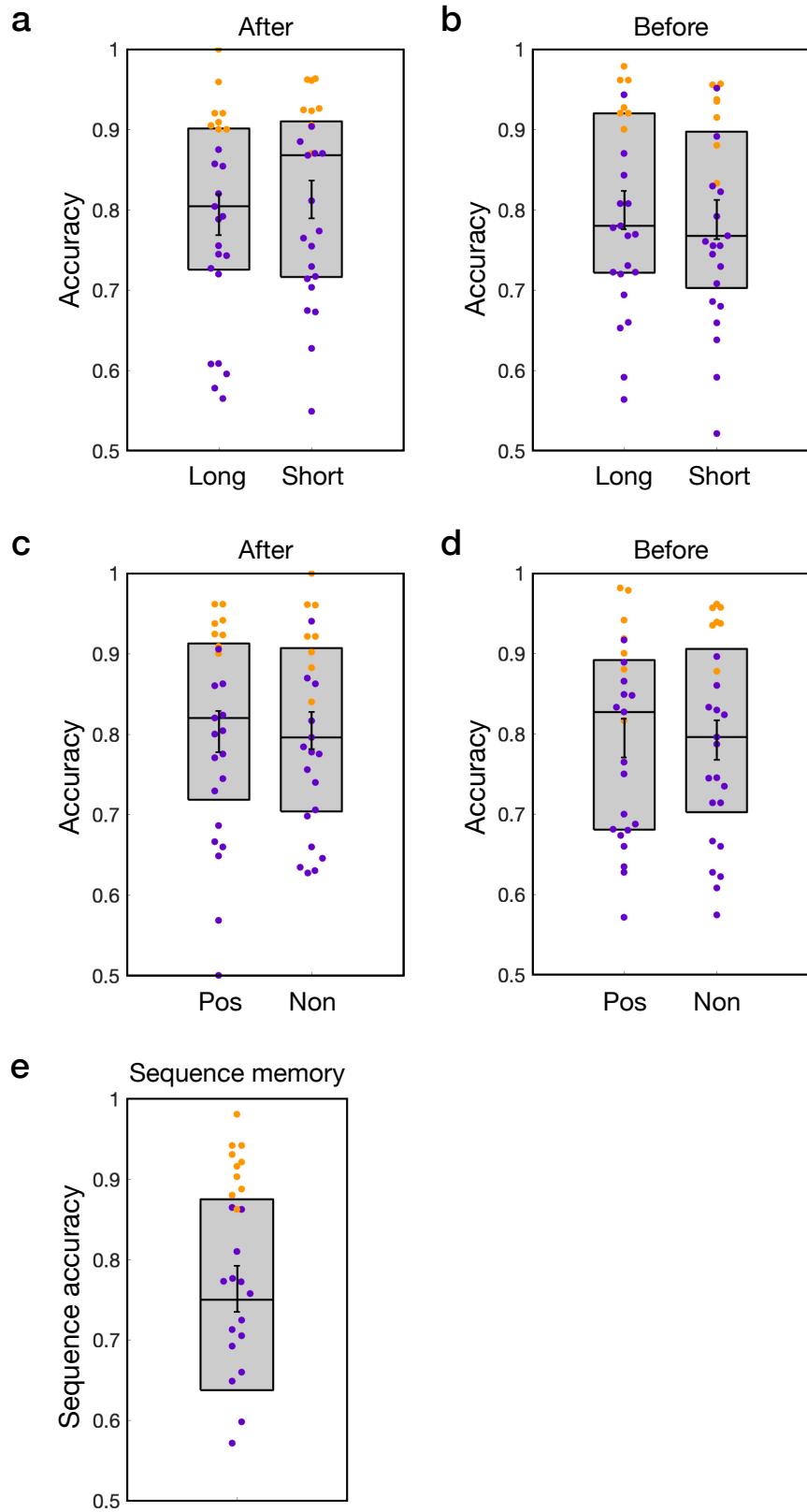
Sequenceness and individual differences in memory performance

The primary analysis of the relationship between sequenceness and individual differences in memory performance utilized the differential sequenceness measure (fwd – bkw sequenceness; **Fig. 2b-c**). This measure provides a summary of the overall evidence for sequenceness and finds that the same sequenceness direction is important as the trial-by-trial analysis of accuracy. However, given the specific relationship between backwards versus forwards sequenceness in the trial-by-trial analysis of accuracy, we verified that the individual difference relationship was also selective. In the after condition, we found that reverse sequenceness was negatively related to average performance (fwd $t_{(23)} = 2.265$, $p = 0.0337$; bkw $t_{(23)} = -2.9111$, $p = 0.0081$). In the before condition, we found that forward sequenceness was related to average performance (fwd $t_{(23)} = -2.2419$, $p = 0.0354$; bkw $t_{(23)} = 1.0456$, $p = 0.3071$). Results from both the after and before conditions show stronger sequenceness in lower-performing participants (reverse sequenceness in the after condition; forward sequenceness in the before condition). These analyses give qualitatively similar results as those reported in the main analysis (**Fig. 2b-c**) which used differential forward-backward sequenceness.

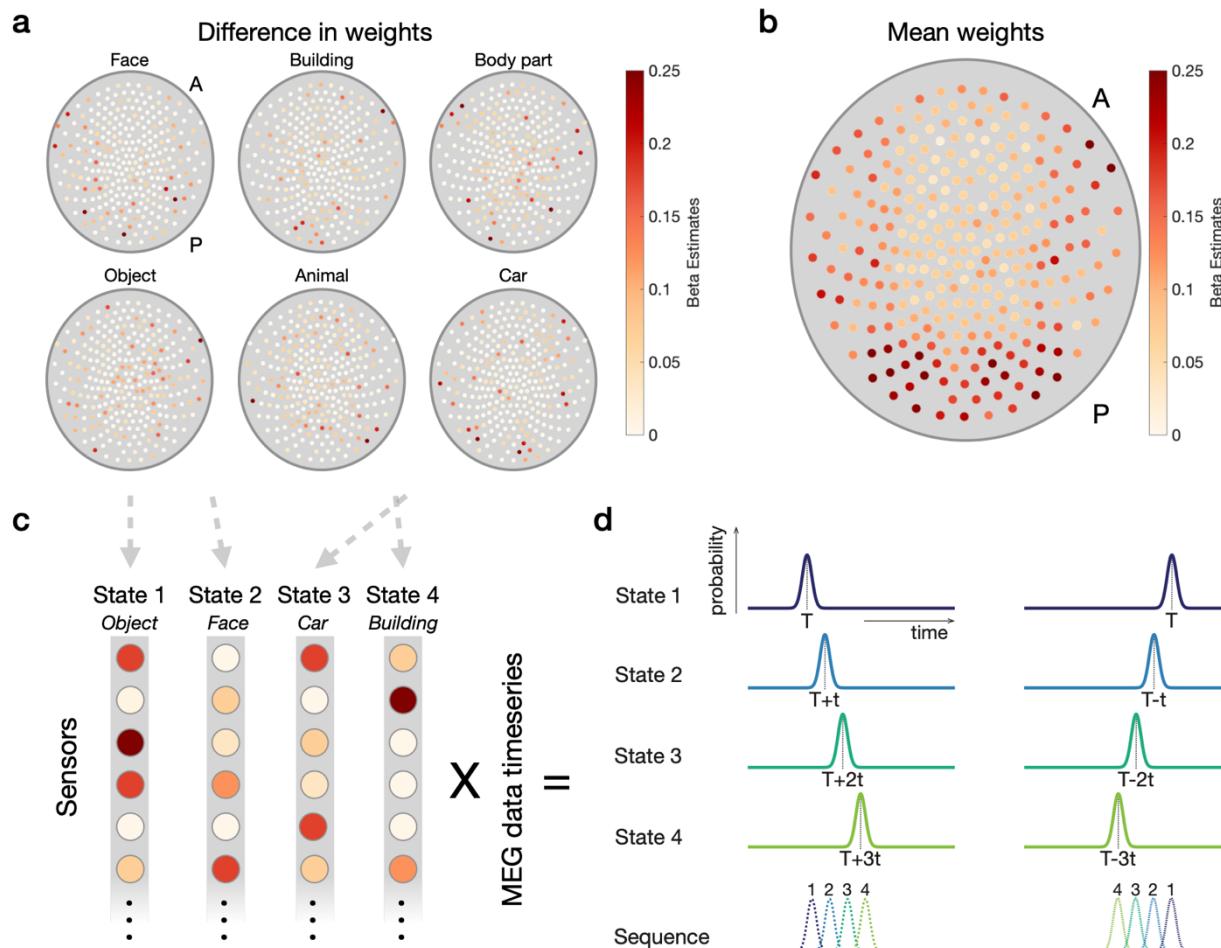
Sequenceness for ‘other episode’ transitions and trial-by-trial performance

For other episode transitions (including transitions found across the other 7 episodes but not in the currently cued episode), we found that the peak response in correct trials in the after condition using the leave-one-participant-out cross-validation procedure was between 40 and 50 ms (23 participants at 40 ms; 2 participants at 50 ms). We thus examined other episode sequenceness from 40-50 ms. In the model including the other episode sequenceness measure derived from a 40-50 ms lag, we found no significant effects for the other episode measure while the main sequenceness measure remained significant (**Fig. S6, Table S4**). We also examined a model including the other episode

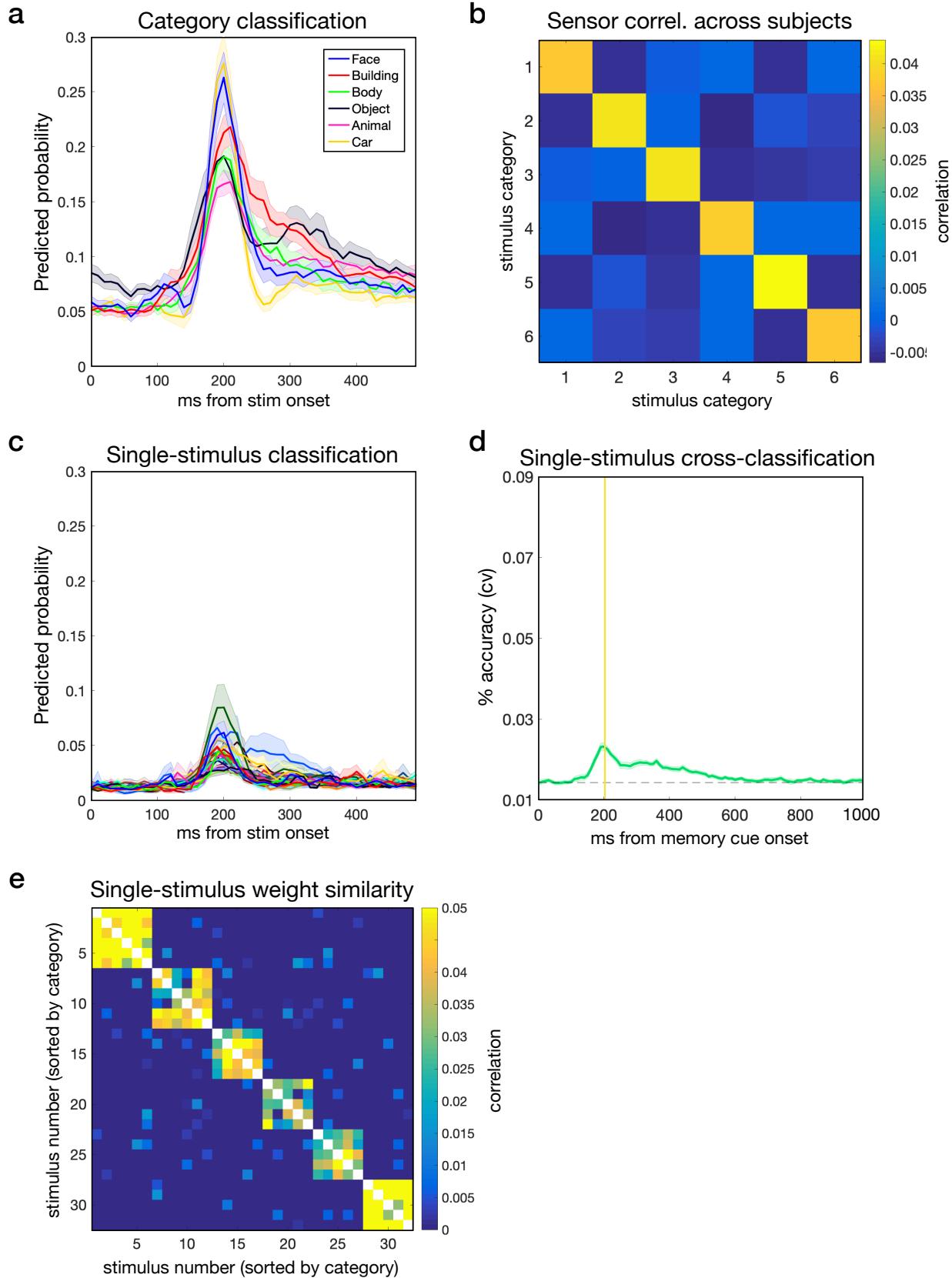
sequenceness measure from 100-120 ms as a comparison to the main sequenceness lag. Here we also found no significant effects for the other transition measure while the main sequenceness measure remained significant (**Fig. S6, Table S5**). Finally, in a separate model looking only at current episode sequenceness at the 40-50 ms lag identified in previous studies and for the other episode measure, we find no relationship between sequenceness and retrieval success in the after condition (p-values > 0.17) or before condition (p-values > 0.52).

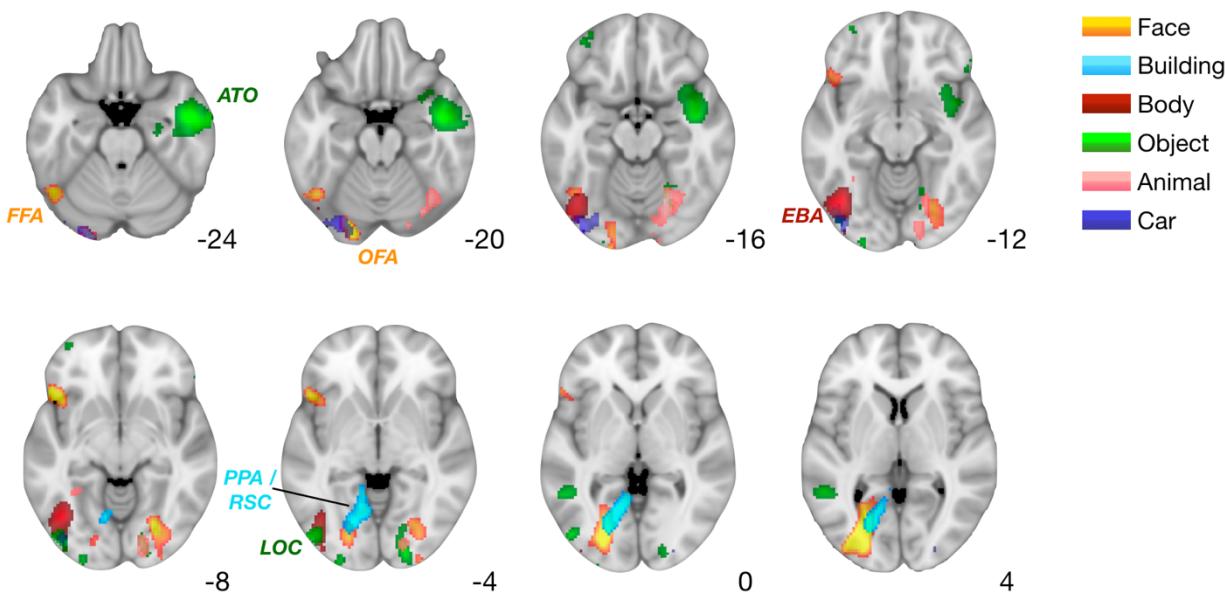

Analyses using single-stimulus classification

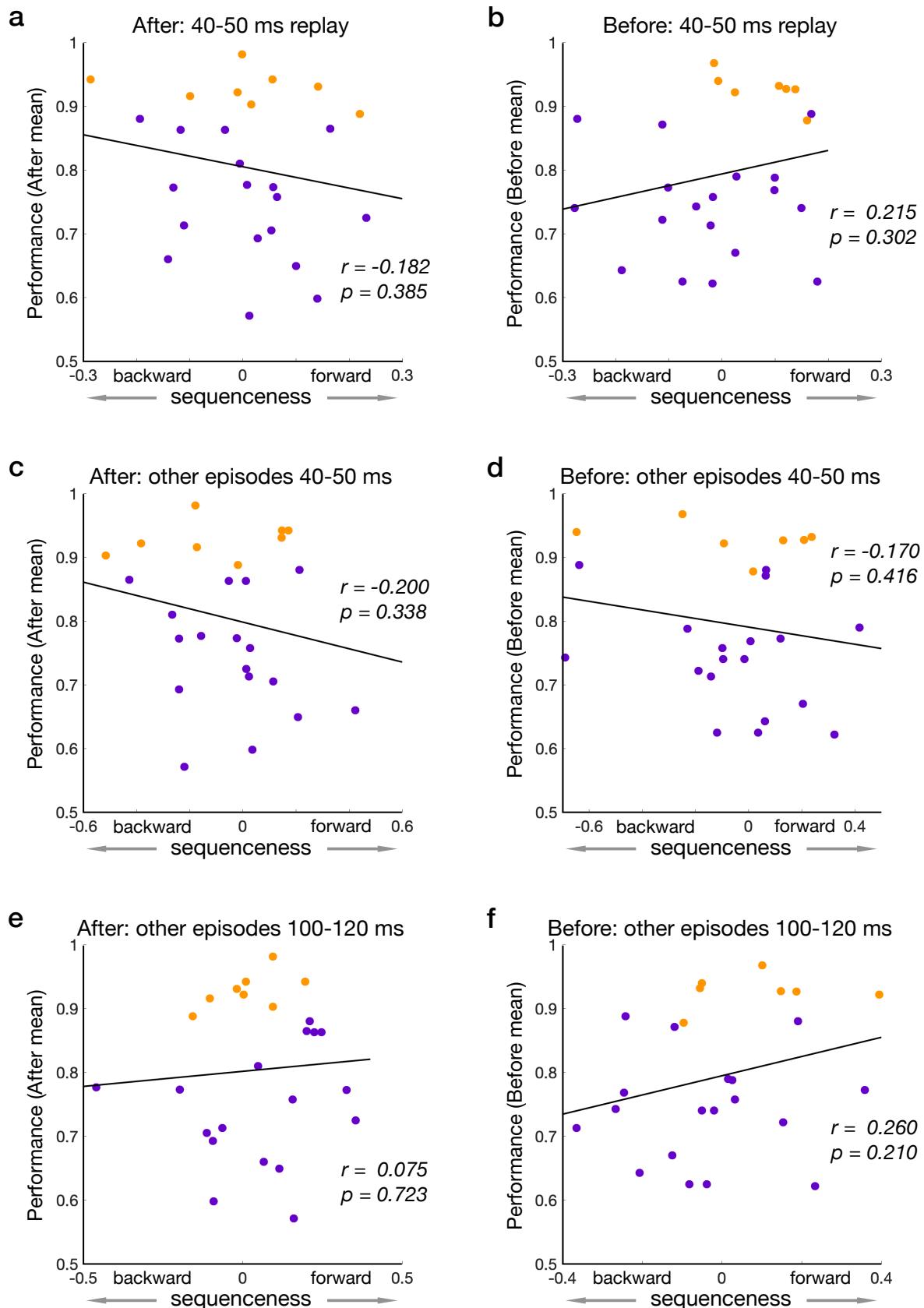
As expected, performance of stimulus-level classification during the localizer phase for the cross-validated analysis was markedly lower than performance for the category-level classification during the localizer phase (**Fig. S3**). We also examined cross-classification to the memory retrieval phase (**Fig. S3**). While performance was above the pre-trial baseline level and significant ($t_{(24)} = 9.20$, $p < 1e-8$), in comparison to the category-level cross-classification results in **Fig. 1f**, the magnitude of the effect versus baseline is much weaker: the effect for the category across-phase classification of memory cues was significantly stronger than the single-stimulus across-phase classification ($t_{(24)} = 12.47$, $p < 1e-11$). This relatively poor performance when category was ignored during training was expected, given that category information is likely to account for the most variance in stimulus responses.

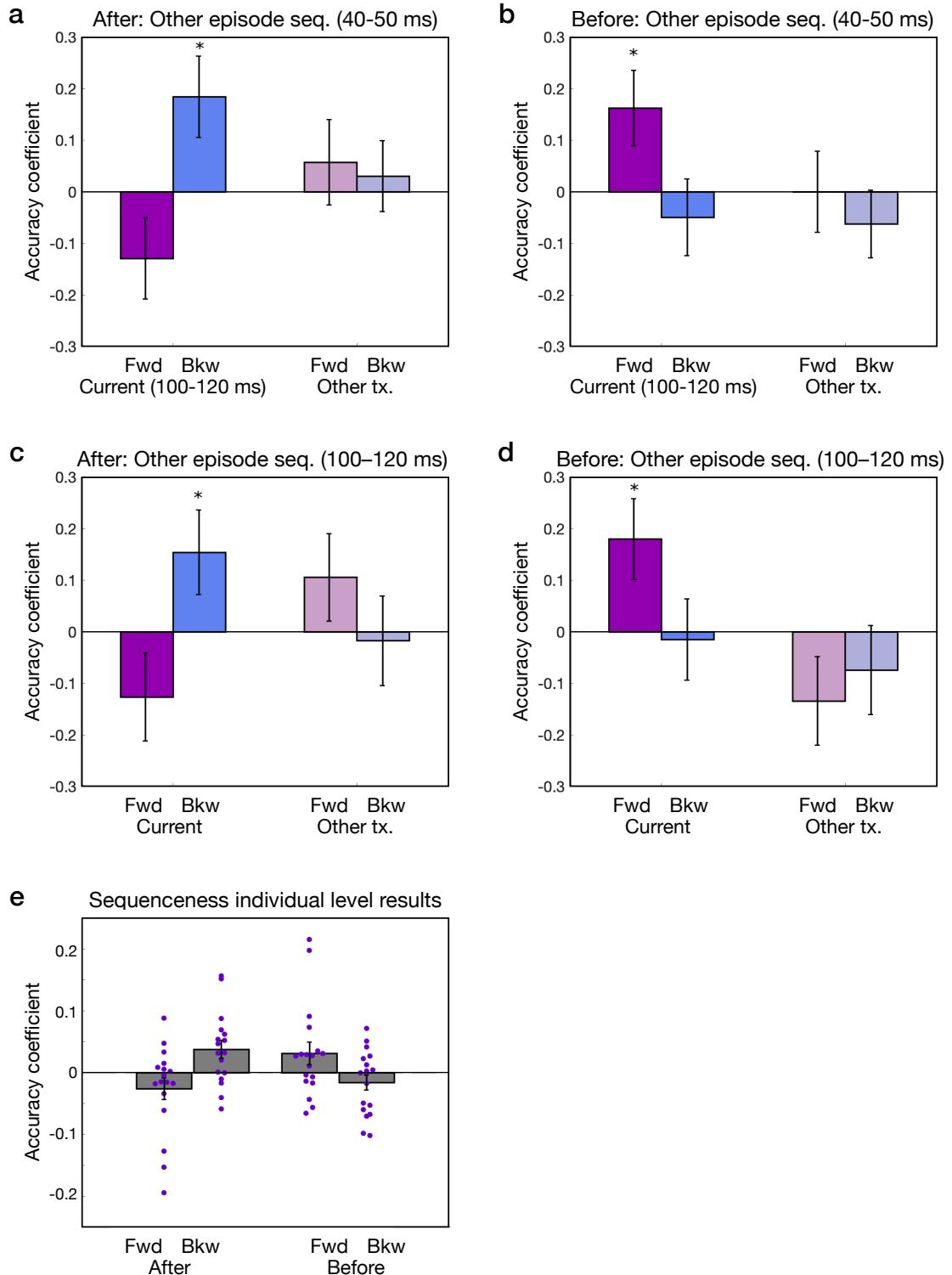

Even though the classifier showed cross-classification performance that was numerically close to chance, we nevertheless examined whether a sequenceness measure derived from single-stimulus classification might show a relationship to memory retrieval success. In the after condition, we found no relationship between single-stimulus backward sequenceness and retrieval success ($p = 0.447$). However, in the before condition we found a positive, but non-significant, relationship between single-stimulus forward sequenceness and retrieval success ($p = 0.0913$).

Supplementary Figures and Tables


Figure S1. Memory performance as a function of episode length and whether the episode ended in a positive or negative element and performance on final episode re-ordering test. As in **Fig. 1c**, the data points for regular performance participants are represented in purple and very high performance participants are represented in orange. **(a and b)** Memory did not significantly differ in the after condition by length ($t_{(24)} = -1.389$; $p = 0.178$; TOST equivalence test $p = p = 0.065$, thus we are unable to rule out the presence of a medium-sized effect) or the before condition by length ($t_{(24)} = 0.661$; $p = 0.515$; TOST equivalence test $p = 0.0156$). **(c and d)** Memory did not differ in the after condition by end valence ($t_{(24)} = -0.068$; $p = 0.946$; TOST equivalence test $p = 0.004$) or the before condition by end valence ($t_{(24)} = 0.1478$; $p=0.88$; TOST equivalence test $p = 0.005$). Given the null behavioral differences, primary MEG analysis collapsed across these variables. **(e)** Performance on the post-scan episode sequence memory re-ordering test ($n=24$ participants with sequence test data). Individual scores were the average of accurate placements of each element within each episode. Sequence memory did not have a condition, so regular performance participants (purple) represent those participants included in both the after and before condition regular performance groups ($n = 15$); the data points for the remaining high performance participants are depicted in orange. (Error bars represent SEM.)


Figure S2. Sequenceness analysis schematic and classifier sensor weighting. **(a)** Classifiers were trained on the 6 categories that made up the episodes. The mean weighting (approximate importance) of each sensor for a given category, minus the mean across all other categories, for illustration only. (Anterior = top; posterior = bottom.) **(b)** Mean sensor weighting across all categories. **(c)** Illustration of how the trained classifiers are applied to the MEG data timeseries for each cued retrieval period, where state 1 - 4 represents episode components 1-4 from **Fig. 1a**. **(d)** The sequenceness analysis detects systematic time shifts (T) in category evidence. A forward sequence illustration is shown on the left; a backward sequence illustration is shown on the right.


Figure S3. Illustration of localizer classifier performance for the six stimulus categories that made up the first 4 components of episodes (face, building, body part, object, animal, and car) and performance of a classifier trained for each of the 32 individual stimuli from these categories. (a) Cross-validated classification performance for each category. Results represent training on the 200 ms time point and testing across all time points. (b) Classifier sensor weight correlations across participants within and between-categories reveal strong within-category similarity, suggesting similar sensor importance across participants for the same categories. Categories are sorted as in the legend for panel a: face, building, body part, object, animal, and car. (Lasso regularization parameter set to 1e-6 to maximize sensor inclusion.) (c) Classification performance for each of 32 stimuli. Results represent training on the 200 ms time point and testing across all time points. (Colors were randomly assigned.) (d) Cross-classification performance for 32 individual stimuli where the classifier was trained on the localizer phase (at 200 ms) and tested on the cues in the memory phase. Compare to the category level cross-classification in **Fig 1f** (y-axis range is matched across figures for comparison). The dashed line represents the maximum classifier value during pre-trial baseline; in statistical tests performance was compared to this baseline value. (e) Trained classifier beta weight correlation across sensors across all 32 individual stimuli depict natural emergence of category structure. The image represents that average of individual participant correlation matrices. (Lasso regularization parameter set to 1e-6 to maximize sensor inclusion.) Categories are sorted as in the legend for panel a: face, building, body part, object, animal, and car. (Shaded error margins represent SEM.)


Figure S4. Source localization results for the six categories of stimuli in the localizer phase. Below, each category was contrasted versus all other categories. We found expected patterns of activation for the 4 categories that have received the most investigation in the literature: faces, buildings, body parts, and objects. For faces, activation peaked in a region roughly consistent with the fusiform face area (FFA) as well as the occipital face area (OFA). Activation for building stimuli was located between the well-known parahippocampal place area (PPA) and the retrosplenial cortex (RSC), a region also known to respond to scene and building stimuli. Activation for body part stimuli was in a region consistent with the extrastriate body area (EBA). Activation for objects was in a region consistent with the object-associated lateral occipital cortex (LOC) as well as an anterior temporal cluster that may relate to conceptual processing of objects. Activity for the two less-studied categories, animals and cars, was localized to different areas of the ventral and posterior occipital cortex. Individual category maps thresholded to display localized peaks for illustration. Full unthresholded maps can be found at <https://neurovault.org/collections/6088/>.

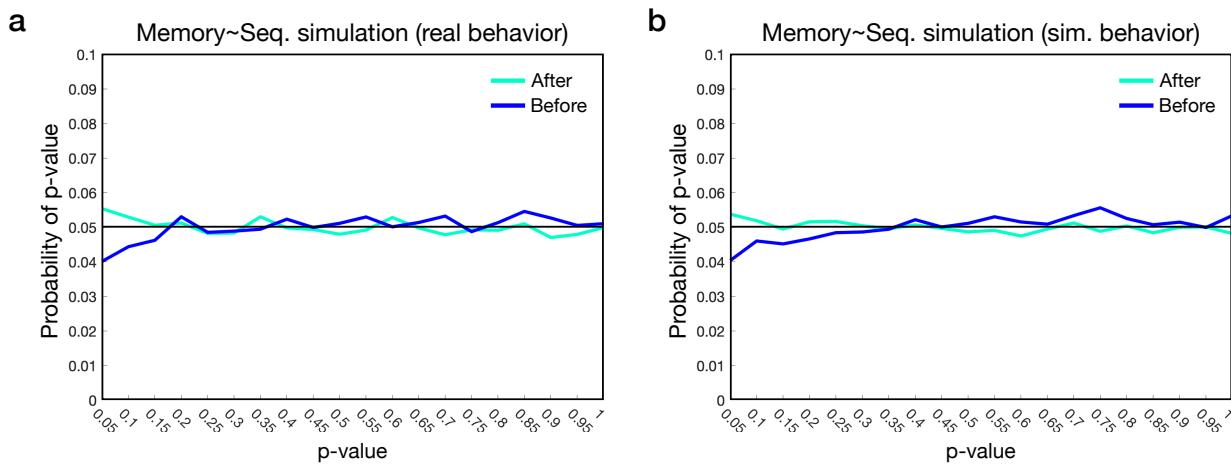

Figure S5. No significant relationship between sequenceness and trial-by-trial behavior at other time lags and in the analysis testing for sequences present in other (non-cued) episodes. **(a-b)** In the after and before conditions, mean sequenceness strength (forward-backward) with a 40-50 ms lag did not relate to overall mean memory performance (percentage of correct trials). As in **Fig. 1c** the data points for the regular performance participants are shown in purple; high performance participants are shown in orange. **(c)** As in panel a, here for the before condition. **(c-d)** In the after and before conditions, mean 40-50 ms sequenceness for other episode transitions (excluding the current episode) did not relate to mean memory performance. **(e-f)** In the after and before conditions, mean 100-120 ms sequenceness for other episode transitions did not relate to mean memory performance.


Figure S6. Analyses relating both current episode sequenceness and ‘other episode’ sequenceness to accuracy; individual participant regression results. **(a)** In the after condition, current episode sequenceness (100-120 ms; left, darker color) remains significant (left) while other episode sequenceness at a lag of 40-50 ms shows no relationship to successful retrieval (right, lighter color; **Table S5**). **(b)** As in panel a, but for the before condition. **(c)** In the after condition, sequenceness derived from current episode sequenceness (100-120 ms; left) remains significant while other episode sequenceness (derived from all other transitions excluding the current episode transitions) at a lag of 100-120 ms shows no relationship to successful retrieval (right; **Table S5**). **(d)** As in panel c, but for the before condition. **(e)** Individual regression coefficients for the trial-by-trial relationship between sequenceness and successful retrieval in the after and before conditions as in **Fig. 3a.**, but derived from a single-level GLM.

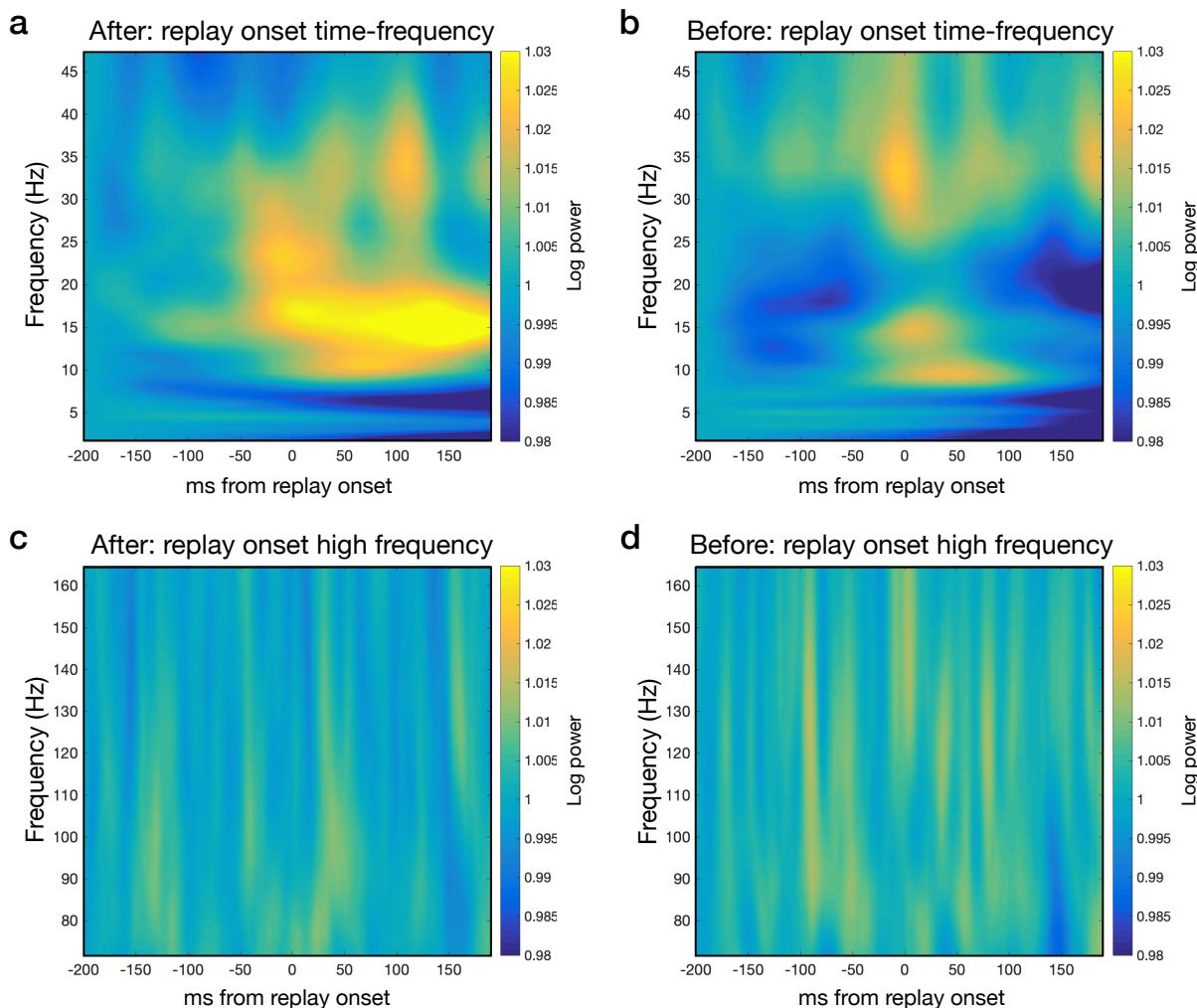

Figure S7. Results of simulating the complete MEG processing and analysis pipeline, showing the relationship between sequenceness and trial-by-trial retrieval success. The panels show the resulting distribution of p-values derived from the sequenceness-retrieval success multilevel regression model across 10k simulations. Simulated p-values were near the 5 % level using both real or simulated behavioral data. (a) In the simulations with behavioral variables taken from actual participant data, p-values were equal to or less than 5% in the *after* condition at a rate of 0.055 and in the *before* condition at a rate of 0.04. (After condition in cyan; before condition in blue) (b) In the simulations with simulated behavioral variables, the simulated p-value was equal to or less than 5% in the *after* condition at a rate of 0.054 and in the *before* condition at a rate of 0.040.


Figure S8. Additional replay onset beamforming results. (a) Timecourse of power changes relative to replay onset in the anterior hippocampus in the after (cyan) and before (blue) conditions. (Shaded error margins represent SEM.) (b) Power in the right visual cortex at replay onset in the after condition, displaying a different view of the whole-brain results shown in a coronal section in **Fig. 4a**. (Statistical maps thresholded at $p < 0.001$ uncorrected, for display.) (c) Power in the left MTL 10 ms before the onset of reverse sequenceness events correlated with performance, such that lower performing participants showed the strongest increase in power (<https://neurovault.org/images/306232/>). (d) Illustration of performance – power relationship in the right anterior hippocampus. Data are for visualization purposes only and represent the peak coordinate as in panel c. High performance participants in orange; regular performance participants in purple.

Figure S9. Time-frequency analysis of replay onsets in the after and before conditions separately **(a)** Time-frequency analysis showing power increases at replay onset in the after condition showing frequencies up to ~ 50 Hz. 0 ms represents the onset of putative replay events. (Average across all n=25 participants in correct trials.) **(b)** Time-frequency analysis as in panel a, here in the before condition. **(c)** Time-frequency analysis of high frequencies in the after condition (using data sampled at 600 Hz) relative to replay onset **(d)** Time-frequency analysis of high frequencies as in panel c, here in the before condition.

Figure S10. Relationship between accuracy, cue-evoked reactivation, cue response, and zero-lag correlation between within-episode category evidence during the retrieval period. **(a-b)** Cue-evoked reactivation of within-episode elements minus other-episode elements from 200-250 ms and retrieval success in the after condition **(a)** and before condition **(b)**, included in the regression model with forward and backward sequenceness. The effects of cue-evoked reactivation were non-significant (**Table S6**); the relationships between sequenceness and memory were unaffected. **(c-d)** Cue response from 200-250 ms and retrieval success in the after condition **(c)** and before condition **(d)**, included in the regression model with forward and backward sequenceness. The effect of cue response was significant in the after condition but not the before condition (**Table S6**); the relationships between sequenceness and memory were unaffected. **(e-f)** The correlation between evidence for within-episode categories minus the correlation between all other pairings (zero-lag correlation) across the 160 ms – 3667 ms cue period of analysis **(e)** is not related to trial-to-trial accuracy in very high or regular performance participants: High performance (-0.534 ± 0.644 ; $z = -0.829$, $p = 0.407$); regular performance (-0.093 ± 0.354 ; $z = -0.263$, $p = 0.792$). **(f)** The correlation between within-episode category evidence is driven by high-magnitude events ($\geq 95\%$ of mean), and activity for these events peaks and falls rapidly. The purple line represents the mean across participants in the after condition. **(g-h)** The zero-lag correlation between evidence for within-episode categories minus the correlation between all other pairings included in the regression model with forward and backward sequenceness in the after condition **(g)** and in the before condition **(h)**. The effect of clustered reactivation was non-significant (after: 0.137 ± 0.463 ; $z = 0.296$, $p = 0.767$; before: -0.721 ± 0.494 ; $z = -1.460$, $p = 0.144$); the relationships between sequenceness and memory were unaffected. (Error bars represent SEM.)

Table S1. Story text example used in the episodic memory encoding phase on the first day. The stimuli for the first 4 components were taken from the categories: face, building, body part, object, animal, and car. The alternative counterbalance order changed component 5 across episodes from positive to negative.

Episode	Component 1	Component 2	Component 3	Component 4	Component 5
1	I had a big elephant	and guided it to the barn	a freckled woman was waiting there	and cleaned it with a toothbrush	then we all had birthday cake.
2	A man facing away	played a harmonica	while we watched a bear	try to open an SUV	after which we enjoyed the sunny day.
3	I was sitting outside the stone house	trying to fix a computer mouse	when a sports car pulled up	and a young Asian man	gave me a pile of gold coins for my work.
4	I found the key I needed	to get into the warm cabin	an Asian woman	massaged my sore shoulder	and we celebrated her graduation with balloons.
5	I was playing with a girl	outside her big white mansion	when a turtle appeared	and walked over her feet	but we had to hide from the thunderstorm.
6	I called for a taxi	to give my tired knees a rest	and rode with a guy in my class	to go look at a deer	but then I had to go study for an exam.
7	I was using scissors	to trim the man's beard	then we took a mini car	to the pastel hotel	but I slipped and fell on some marbles.
8	At the greenhouse	my friend pressed her hand to the glass	then I saw a pickup truck drive by	and noticed a horse getting groomed outside	but then we had to drag out the trash.

Table S2. Post-experiment written questionnaire answers to questions about memory retrieval. The second column represents the free-form answers to the question "How were you able to remember the associations for the memory questions?". The third column, labeled 'Static', represents the answers to the question "Today, did your memories appear in mind as a sequence or story through time, or did the pictures all appear together as a single combined "static" memory? Single(static) = 1, Sequence (story)=5". The fourth column, labeled 'Cue', represents the answer to the question "When remembering, did you mostly use the period during the initial (fading) picture "cue" to remember, or more the time when the answer option appeared? During the cue = 1, at the answer=5".

Num	How were you able to remember the associations for the memory questions?	Q: Static	Q: Cue
311	I tried to quickly "say" to myself the pictures before/after the one on the screen. Then I concentrated whether I see them.	2	2
312	Mostly "gut" feeling.	2	2
313	Relating some pictures.	1	3
314	Some stories that were more relatable to my life were easier to recall.	5	3
315	pretty well, it improved over time, but sometimes my concentration slipped, or I pushed wrong button.	3	1
316	Trying to recall the story and the order in which the pictures occurred in said episode.	4	1
317	I just briefly recalled the stories and quickly ran through the associated images in the episode before seeing the question.	4	2
318	Based on the "stories".	4	4
319	My own creations/storyline.	-	1
320	Using stories, mnemonics.	4	2
322	By remembering the stories or scene which linked the 5 pictures and their order.	4	2
323	From the story/associations.	2	4
324	Trying to remember the story.	2	1
325	I don't think I am able to remember the whole episode, but most of the time, I would remember half.	4	3
326	I remember parts of the story line but also remembering which picture was connected to the specific episode.	4	1
327	Remember the sequence of events per scenario as a story.	5	1
328	I tried to remember the stories and the names you gave to the faces. I only remembered some stories so I guessed the other ones through a process of elimination.	4	4
329	I tried to remember the stories with the episode.	2	1
331	Using the stories from yesterday.	5	1
333	For around half of the stories, it was by eidetic recall. For the other, gut instinct.	3	3
334	I tried my best to remember the provided story lines.	4	2
335	Based on the stories I made up from the day before.	5	2
336	Tried to remember the stories.	4	2
337	Own story, verbal encoding e.g. faces looked like some people I knew, etc.	2	3
338	Pictured by picture recall and occasionally gut feeling.	5	2

Table S3. Multilevel modeling results for the inclusion of all participants in the model relating sequenceness and accuracy and effect of task time (trial). Top: model including all participants (with lag selecting using leave-one-out cross validation). Bottom: model including interaction of sequenceness and task time (trial) in regular performing participants.

After condition (all n = 25)				
Accuracy ~	coef.	ste	z-stat	p-value
<i>Intercept</i>	1.2226	0.1594	7.671	<0.0001
SeqFwd	-0.1543	0.0718	-2.148	0.0280*
SeqBkw	0.1676	0.0713	2.35	0.0168*
Before condition (all n = 25)				
<i>Intercept</i>	1.374	0.1698	8.091	<0.0001
SeqFwd	0.176	0.0685	2.571	0.0152*
SeqBkw	-0.0456	0.069	-0.661	0.4912
After condition: interaction with trial				
<i>Intercept</i>	0.8586	0.1139	7.539	<0.0001
SeqFwd	-0.1403	0.0788	-1.78	0.0744
SeqBkw	0.1705	0.0791	2.155	0.0296*
Trial	-0.1274	0.1351	-0.943	0.3696
SeqFwd * Trial	-0.0937	0.1288	-0.728	0.4704
SeqBkw * Trial	-0.1573	0.1337	-1.176	0.2496
Before condition: interaction with trial				
<i>Intercept</i>	0.9672	0.112	8.634	<0.0001
SeqFwd	0.1643	0.0735	2.235	0.0248*
SeqBkw	-0.0548	0.0746	-0.734	0.4232
Trial	0.1543	0.1359	1.135	0.2544
SeqFwd * Trial	-0.0885	0.1197	-0.739	0.4408
SeqBkw * Trial	-0.1147	0.1209	-0.949	0.3544

Table S4. Multilevel modeling results for the relationship between sequenceness from all transitions found in ‘other’ episodes (40-50 ms; excluding transitions from the current episode) to accuracy. Bottom: the preceding model plus the primary measure of sequenceness from current episode transitions (100-120 ms).

After condition: Other transition measure (40-50 ms)				
Accuracy ~	coef.	ste	z-stat	p-value
<i>Intercept</i>	0.0617	0.08417	7.696	<0.0001
SeqFwd ‘Other’ Tx	0.06168	0.08417	0.733	0.4592
SeqBkw ‘Other’ Tx	0.03377	0.06787	0.498	0.6176
Before condition: Other transition measure (40-50 ms)				
<i>Intercept</i>	0.9713	0.11101	8.749	<0.0001
SeqFwd ‘Other’ Tx	0.00049	0.07813	0.006	0.9792
SeqBkw ‘Other’ Tx	-0.05764	0.06532	0.882	0.3856
After condition: Current + other transition (40-50 ms)				
<i>Intercept</i>	0.86205	0.11319	7.616	<0.0001
SeqFwd	-0.12962	0.07888	-1.643	0.1024
SeqBkw	0.18399	0.07862	2.340	0.0240*
SeqFwd ‘Other’ Tx	0.05676	0.08312	0.683	0.5024
SeqBkw ‘Other’ Tx	0.03009	0.06877	0.438	0.6848
Before condition: Current + other transition (40-50 ms)				
<i>Intercept</i>	0.97577	0.11245	8.677	<0.0001
SeqFwd	0.16231	0.07315	2.219	0.0360*
SeqBkw	-0.04968	0.07465	-0.666	0.4968
SeqFwd ‘Other’ Tx	-0.00061	0.07878	-0.008	0.9936
SeqBkw ‘Other’ Tx	-0.06276	0.06570	-0.955	0.3528

Table S5. Multilevel modeling results relating the effect of sequenceness from all transitions found in ‘other’ episodes (100-120 ms; excluding transitions from the current episode) to successful retrieval. Bottom: the preceding model plus the primary measure of sequenceness from current episode transitions (100-120 ms).

After condition: other transition measure (100-120 ms)				
Accuracy ~	coef.	ste	z-stat	p-value
<i>Intercept</i>	0.8522	0.1112	7.662	<0.0001
SeqFwd ‘Other’ Tx	0.1414	0.0791	1.788	0.0832
SeqBkw ‘Other’ Tx	-0.0527	0.0787	-0.669	0.4968
Before condition: other transition measure (100-120 ms)				
<i>Intercept</i>	0.9657	0.1109	8.712	<0.0001
SeqFwd ‘Other’ Tx	-0.1115	0.0812	-1.373	0.1480
SeqBkw ‘Other’ Tx	-0.0013	0.0802	-0.016	0.9712
After condition: current + other transition (100-120 ms)				
<i>Intercept</i>	0.8549	0.1127	7.589	<0.0001
SeqFwd	-0.1268	0.0853	-1.488	0.1248
SeqBkw	0.1540	0.0823	1.872	0.0472*
SeqFwd ‘Other’ Tx	0.1053	0.0850	1.239	0.2320
SeqBkw ‘Other’ Tx	-0.0176	0.0870	-0.203	0.8368
Before condition: current + other transition (100-120 ms)				
<i>Intercept</i>	0.9728	0.1128	8.627	<0.0001
SeqFwd	0.1796	0.0782	2.296	0.0160*
SeqBkw	-0.0153	0.0790	-0.194	0.8352
SeqFwd ‘Other’ Tx	-0.1346	0.0862	-1.562	0.1240
SeqBkw ‘Other’ Tx	-0.0745	0.0865	-0.861	0.3536

Table S6. Multilevel modeling results relating cue-evoked responses (200 – 250 ms post-onset) and sequenceness to accuracy. Top: inclusion of cue-evoked representation of current episode categories (omitting the on-screen category) minus other-episode categories. Bottom: inclusion of the response to the cue category itself.

After condition: Current-other episode reactivation				
Accuracy ~	coef.	ste	z-stat	p-value
<i>Intercept</i>	0.8534	0.1128	7.562	<0.0001
SeqFwd	-0.1366	0.0779	-1.753	0.0816
SeqBkw	0.1862	0.0779	2.39	0.0160*
Current-Other coef.	0.8489	0.6786	1.251	0.2040
Before condition: Current-other episode reactivation				
<i>Intercept</i>	0.962	0.112	8.586	<0.0001
SeqFwd	0.1601	0.0727	2.202	0.0256*
SeqBkw	-0.0574	0.0739	-0.777	0.4240
Current-Other coef.	0.5279	0.7212	0.732	0.4400
After condition: Cued category response				
<i>Intercept</i>	0.847	0.1123	7.541	<0.0001
SeqFwd	-0.1276	0.078	-1.636	0.0984
SeqBkw	0.1882	0.0779	2.415	0.018*
Cue response coef.	1.5659	0.5896	2.656	0.0016*
Before condition: Cued category response				
<i>Intercept</i>	0.9615	0.1118	8.597	<0.0001
SeqFwd	0.16	0.0727	2.202	0.0256*
SeqBkw	-0.0564	0.074	-0.763	0.4464
Cue response coef.	0.0133	0.7267	0.018	0.8424

Table S7. Multilevel modeling results for the interaction between sequenceness and episode length (long, short) or episode end valence (positive, negative) on accuracy.

After condition: Length				
Accuracy ~	coef.	ste	z-stat	p-value
<i>Intercept</i>	0.8415	0.1129	7.456	<0.0001
SeqFwd	-0.1375	0.0782	-1.757	0.0808
SeqBkw	0.1948	0.0783	2.487	0.0080*
Length	-0.0909	0.0822	-1.105	0.2912
SeqFwd * Length	0.013	0.0783	0.166	0.8680
SeqBkw * Length	0.0105	0.0786	0.134	0.8938
Before condition: Length				
<i>Intercept</i>	0.9602	0.1127	8.517	<0.0001
SeqFwd	0.1612	0.0732	2.204	0.0296*
SeqBkw	-0.0616	0.0741	-0.831	0.4152
Length	0.0744	0.08	0.929	0.3672
SeqFwd * Length	-0.0849	0.0732	-1.159	0.2664
SeqBkw * Length	0.0529	0.0744	0.711	0.4728
After condition: End valence				
<i>Intercept</i>	0.8702	0.1166	7.463	<0.0001
SeqFwd	-0.1175	0.079	-1.488	0.1208
SeqBkw	0.1821	0.0789	2.307	0.0200*
Reward	-0.0873	0.0842	-1.037	0.3000
SeqFwd * Valence	0.1108	0.079	1.402	0.1760
SeqBkw * Valence	-0.2005	0.08	-2.505	0.0128*
Before condition: End valence				
<i>Intercept</i>	0.964	0.1116	8.638	<0.0001
SeqFwd	0.1561	0.0733	2.129	0.0304*
SeqBkw	-0.0541	0.0744	-0.726	0.4624
Reward	-0.005	0.0915	-0.055	0.9648
SeqFwd * Valence	-0.0071	0.0734	-0.097	0.9104
SeqBkw * Valence	-0.0047	0.0745	-0.062	0.9344

Table S8. Whole-brain beamforming MEG results for replay onset in the after and before conditions. Clusters significant whole-brain FWE-corrected after an initial threshold of $p < 0.001$ to provide interpretable clusters.

Contrast	Regions	Cluster size	x	y	z	Peak z stat
After backward replay onset	L Lingual Gyrus		-14	-86	-4	
	L Lingual Gyrus	5495	-22	-70	2	4.69
	L Middle Occipital Gyrus		-32	-84	6	
	R Calcarine Sulcus		26	-58	20	
	R Parietal Lobe	1198	36	-60	32	3.9
	R Calcarine Sulcus		28	-46	4	
	R Anterior Hippocampus		20	-10	-18	
	R Ventral Thalamus	2151	4	-20	-6	3.72
	R Anterior Hippocampus		20	-2	-22	
Before forward replay onset	R Midbrain		2	-32	-18	
	R Parahippocampal Gyrus	1707	14	0	-34	3.73
	R Entorhinal Cortex		14	-2	-24	
After backward -10 ms & performance	L Entorhinal Cortex		-22	-8	-32	
	L Entorhinal Cortex	1046	-18	-16	-26	3.82
	L Anterior Hippocampus		-34	-12	-24	