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Abstract 

Memory for everyday experience shapes our representation of the structure of the 

world, while retrieval of these experiences is fundamental for informing our future 

decisions. The fine-grained neurophysiological mechanisms that support such retrieval 

are largely unknown. We studied participants who first experienced, without repetition, 

unique multi-component episodes. One day later, they engaged in cued retrieval of 

these episodes whilst undergoing magnetoencephalography (MEG). By decoding 

individual episode elements, we found that trial-by-trial successful retrieval was 

supported by sequential replay of episode elements, with a temporal compression factor 

greater than 60. The direction of replay supporting this retrieval, either backward or 

forward, depended on whether a participant’s goal was to retrieve elements of an 

episode that followed or preceded a retrieval cue, respectively. This sequential replay 

was weaker in very high performing participants, where instead we found evidence for 

simultaneous clustered reactivation. Our results demonstrate that memory-mediated 

decisions are supported by a rapid replay mechanism that can flexibly shift in direction 

in response to task requirements. 

 

One Sentence Summary 

Recall of extended episodes of experience is supported by compressed replay of 

memory elements that flexibly changes direction depending on task temporal 

orientation. 
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Main Text 1 

Although a subject of intense study, the fine-grained mechanisms underlying how 2 

we retrieve episodes of experience are unknown (1). Understanding the supporting 3 

neurophysiological processes can reveal how episodes are represented in memory, and 4 

how they are subsequently retrieved to guide behavior (2, 3). Here we investigate 5 

whether episodes of experience are represented in a way that yields compressed 6 

sequential replay at retrieval, whether such replay supports successful retrieval, and 7 

whether the directionality of replay is flexibly tuned by internal goals. 8 

Observations from animal studies have identified offline reactivation of 9 

sequences of hippocampal place cells that reflect past and future trajectories, thought to 10 

support memory consolidation, retrieval, and planning (4-6). Recently, animal studies 11 

have established a relationship between such replay strength and successful 12 

performance on spatial navigation tasks (4, 5). It has also been speculated that 13 

compressed replay might also support episodic memory retrieval in humans (7). 14 

Human neuroimaging studies provide evidence for rapid cue-elicited reactivation 15 

of stimulus associations at retrieval (8-17) including overlapping replay of episode 16 

elements (18). A limitation of these studies is their inability to probe mechanisms 17 

supporting structured and temporally compressed reactivation, i.e. replay that proceeds 18 

at a rate faster than the original experience. An advance in human neuroimaging 19 

research has been a recent identification of rapid sequential replay of internal state 20 

representations (19, 20). Here, we leverage these same methods to ask whether 21 

sequential replay supports memory based decisions in humans.  22 
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We tested a hypothesis that episodic memory retrieval depends on rapid 23 

compressed replay of memory elements. Previous research demonstrating replay, 24 

which did not link replay to behavior, identified a short 40-50 ms lag between states 25 

(elements of a sequence) either during tasks involving lengthy planning periods or 26 

during undemanding rest periods (19, 20). Under similar conditions in rodents replay is 27 

known to occur preferentially during brief high-frequency sharp-wave ripple (SWR) 28 

events in the hippocampus (21-23). In contrast, theta-related sequence events are 29 

observed during active navigation and decision making (21, 22, 24, 25). The latter led 30 

us to expect that, during active memory retrieval, performance would be supported by 31 

replay events with a different and potentially longer lag between states.  32 

Replay direction, forward or backward, is not always associated with particular 33 

task requirements in rodent research, though some studies show it is influenced by 34 

conditions such as active movement and reward receipt (20, 26, 27), potentially serving 35 

different computational functions (28). Recent MEG studies in humans have found 36 

reverse direction replay (19), or both forward and reverse replay (20). Based on these 37 

observations we expected replay direction would change flexibly based on internal 38 

states or task demands. In relation to our study design, we predicted replay would 39 

switch direction depending on whether the current goal was to retrieve memory 40 

components that followed a cued element, compared to having to retrieve memory 41 

components that preceded a cued element. In humans, replay onset has been 42 

associated with high-frequency power increases in the medial temporal lobe (MTL) 43 

(MTL) (20), and while we did not expect similar high-frequency changes, we 44 
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nevertheless expected that the onset of memory replay events, irrespective of 45 

directionality, would be coupled to increased power in the medial temporal lobe (MTL).  46 

Further, we reasoned that the strength of encoding, as reflected in better memory 47 

performance, would relate to enhanced memory consolidation (1, 7). Greater 48 

experience is associated with less marked replay in rodents (25, 29), and this predicts a 49 

less dominant expression of replay in participants who show near-ceiling memory 50 

performance. In these participants, theoretical proposals suggest a form of clustered 51 

pattern completion for episode elements (9, 30, 31). Importantly, this predicts that, 52 

within participants, trial-by-trial sequenceness strength should relate positively to trial-53 

by-trial retrieval success. At the same time, if very high performing participants do not 54 

rely to the same degree on a replay mechanism for retrieval, then across participants 55 

this entails that mean sequenceness strength could be negatively related to mean 56 

memory performance.  57 

We designed a novel episodic memory task and combined this with our recently-58 

developed MEG analytic methods (19, 20). In brief, on day 1 participants experienced 59 

temporally extended self-oriented episodes, where each single-exposure episode was 60 

itself composed of five discrete and unique picture stimuli that were assembled into a 61 

narrative story (Fig. 1a and Fig S1). Following an overnight consolidation period, we 62 

then elicited cued retrieval of these episodes whilst obtaining MEG data to index fast 63 

neural dynamics supporting retrieval (Fig. 1b).  64 
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 65 

Fig. 1. Experimental design and decoding of the episode elements. (a) On day 1, in the 66 

episodic encoding phase we presented subjects with eight extended non-spatial 67 

episodes, with a single exposure per episode. Episodes contained five stimulus 68 

elements. The first four episode elements were selected from six distinct picture 69 
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categories. Participants were incentivised to encode the precise order of the episode 70 

elements. (b) On day 2, in the episodic memory test phase, participants retrieved 71 

episodes in two conditions. In the ‘after’ condition, participants were asked to identify 72 

whether a subsequent probe element came after the cue element. Following a 5.5 s 73 

retrieval period, a test probe presented. The sequential order referred to any stimulus 74 

from the same episode that followed this cue; here, the depicted answer would be 75 

‘correct’. By contrast, in the ‘before’ condition, participants were asked to identify 76 

whether a subsequent probe element came before the cue element. (c) Mean memory 77 

performance in the after and before conditions. Purple dots represent individual data 78 

points for regular performance participants with sufficient incorrect response (error) 79 

trials free from MEG artifacts for accuracy analyses (after, n = 17; before, n = 18); the 80 

remaining very high performance participants are shown in orange (see also Fig. S1). 81 

(d) Classifier performance for episode element categories presented during the localizer 82 

phase, training and testing at all time points, showing good discrimination of the 6 83 

categories used to compose the first four episode elements. In localizer trials, note that 84 

a word naming the upcoming stimulus appeared 2 s before the stimulus, contributing to 85 

above-chance classification at 0 ms. (e) Peak classifier performance at 200 ms after 86 

stimulus onset in the localizer phase (depicting the diagonal extracted from panel d; see 87 

also Fig. S3). Dashed line represents the mean across time 95 % level of randomly 88 

shuffled classifier labels. (f) Application of the trained classifier (at 200 ms) to cue onset 89 

in memory retrieval trials demonstrated above chance decoding of the current on-90 

screen category during retrieval. Dashed line represents the maximum value of 91 

classifier during pre-trial baseline; performance was compared to this baseline value. 92 

(Error bars and shaded error margins represent standard error of the mean (SEM).) 93 

 94 

As a first step we confirmed we could reliably identify neural patterns associated 95 

with individual episode elements, each drawn from one of six different stimulus 96 

categories. Note that the final element of each episode was not taken from a decoded 97 

category. A classifier trained on the localizer phase showed successful discrimination of 98 
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the categories that made up the episodes with peak decoding at 200 ms after stimulus 99 

onset (Fig. 1d-e; Fig. S3-S4), in line with previous reports (19, 20). In an exploratory 100 

low-powered analysis of single stimuli, we found that these categories were also evident 101 

as clusters of similarity in trained sensory weights (Fig. S3; Supp. Results). The trained 102 

classifier generalized to the memory retrieval phase, showing significant across-phase 103 

classification of cue category (peaking at 210 ms after the cue; compared to chance at 104 

200 ± 10 ms (the peak timepoint in localizer phase) t(24) = 9.80, p < 0.001; Fig. 1f). 105 

To test specific predictions of a replay mechanism underlying episodic retrieval, 106 

we next sought evidence for compressed sequential reactivation of episode elements 107 

during the retrieval period. In this analysis, we first derived measures of category 108 

evidence – representing reactivation of memory elements – at each timepoint by 109 

applying the trained classifiers to retrieval period MEG data. We then tested for lagged 110 

cross-correlations between episode element reactivations across the retrieval period, 111 

yielding a measure of ‘sequenceness’ in both forward and backward directions (19, 20) 112 

(Fig. S2; Methods). Following an approach used in previous reports, to identify time 113 

lags showing potential sequenceness and examine a relationship to individual 114 

differences in memory performance, we tested for a difference between forward and 115 

reverse direction components (19, 20). Our initial analyses focused on memory retrieval 116 

in the after condition. Here participants are asked to identify whether a probe element 117 

came sequentially after the cue element, a condition we considered would be easier 118 

and more naturalistic than the before condition. 119 

For the individual differences analysis, we identified a state-to-state time lag of 120 

interest by focusing on correct trials, where we expected stronger sequenceness. In the 121 
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after condition, we identified an overall dominance of reverse replay (backwards > 122 

forwards sequenceness) during correct trials, peaking between 100-120 ms (Fig. 2a). 123 

The peak lag between 100-120 used for the independent individual difference analyses 124 

does not survive correction for the number of tests across lags, so it should not be 125 

interpreted on their own. Of interest, this time window for rapid online retrieval 126 

represents a longer state-to-state time lag than the 40-50 ms lag found in other 127 

experiments reporting replay during extended planning or rest (19, 20). As in rodents, 128 

these fast resting replay events (with 40-50 ms state-to-state time lag) have been 129 

associated with sharp-wave ripples in humans (20). However, rodents also show 130 

sequence events during ongoing behaviour that are associated with ongoing 131 

hippocampal theta rhythms (24, 25), though heretofore such online sequence events 132 

have not yet been identified in humans. 133 

To provide an initial test of an association between replay and episodic retrieval, 134 

we examined the relationship between replay strength in correct trials and overall 135 

memory performance. We found that differential sequenceness correlated with mean 136 

memory performance (100-120 ms lag; r = 0.4254, p = 0.034; Fig. 2b). As 137 

sequenceness was on average negative – showing predominantly a reverse direction of 138 

replay – this suggests that stronger reverse replay is a characteristic of individuals with 139 

weaker performance. Notably, this relationship between replay and memory strength is 140 

in line with the findings in rodents showing stronger sequenceness during initial 141 

acquisition compared to later high performance (25, 29).  142 

As an initial test of our prediction that internal goals – whether looking forward or 143 

backward in time through an experience – are important for retrieval and replay, we 144 
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examined whether the relationship between replay and individual differences in 145 

performance changed from the after compared to the before condition. If task goal 146 

affected replay, we would expect stronger forward sequenceness to be related to 147 

weaker performance. Indeed, in the before condition we found the degree of dominantly 148 

forward sequenceness correlated negatively with mean memory performance (100-120 149 

ms lag; r = -0.4077; p = 0.0431; Fig. 2c). We then examined the strength of these 150 

correlations using a conservative permutation approach, where the goal was to test for 151 

a potential influence of a decreasing number of correct trials per mean datapoint going 152 

from high to low performing participants. In the after condition the correlation between 153 

sequenceness and mean performance exceeded the conservative permutation 154 

threshold (adjusted 5 % level 0.041, versus p = 0.034) while the strength of the before 155 

condition effect fell just outside the permutation threshold (adjusted 5 % level 0.0395, 156 

versus p = 0.043). 157 

Comparing the after and before results, we found that the correlation between 158 

sequenceness and performance in the after condition differed significantly from that in 159 

the before condition (z = 2.411; p = 0.0159; two-tailed, conservatively using the test for 160 

dependent correlations). This provides initial support for our prediction that retrieval 161 

orientation influences the characteristics of replay that support behaviour. Importantly, 162 

the results in the after and before conditions both indicated that replay was stronger in 163 

participants with lower overall performance, with replay playing a lesser role in retrieval 164 

for participants with near-ceiling levels of performance. However, these results do not 165 

indicate per se whether sequenceness is positively or negatively related to trial-by-trial 166 

retrieval success. 167 
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We found no across-participant relationship between mean sequenceness and 168 

behavior in the shorter 40-50 ms state-to-state time lag as identified in previous studies 169 

(Fig. S4). In an exploratory analysis that examined evidence for sequences of episode 170 

elements present in any of the other 7 episodes (but not present in the current episode), 171 

we found a numerically negative sequenceness effect at 40 ms, but again found no 172 

relationship to memory performance (Fig. S4). 173 

 174 

 175 

 176 

Fig. 2. Mean sequenceness (replay) in the after condition and the relationship between 177 

sequenceness and performance in the after and before memory retrieval conditions 178 

respectively. (a) In the after condition, mean forward minus backwards sequenceness 179 

for correct memory trials (when participants accurately answered the memory question). 180 

On correct trials, a peak of reverse sequenceness was observed at lags from 100-120 181 

ms. This time window was used for subsequent analyses. (Shaded error margins 182 

represent SEM.) (b) In the after condition, stronger mean reverse sequenceness on 183 

correct trials correlated negatively with overall mean memory performance (percentage 184 

of correct trials). As in Fig. 1c the data points for the regular performance participants 185 

are shown in purple; high performance participants are shown in orange. (c) In the 186 

before condition, stronger forward sequenceness related to lower performance. The 187 

overall results in the after and before conditions support a stronger role for replay in 188 

retrieving weaker memory traces.  189 
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 190 

 191 

We next exploited analytic techniques that simultaneously examined the 192 

influence of forward and backward sequenceness on memory performance. First, we 193 

examined the relationship between sequenceness and individual differences in 194 

performance. This confirmed the above results, namely that weaker memory 195 

performance related to stronger reverse replay in the after condition, and to stronger 196 

forward replay in the before condition (see Supp. Results). 197 

To examine whether trial-by-trial forward and reverse sequenceness related 198 

positively or negatively to retrieval success, we utilized multilevel regression analyses. 199 

These analyses include more than a hundred datapoints per participant and are thus 200 

the most highly powered analyses in the current experiment. For these analyses we 201 

excluded very high performing participants, as they have too few incorrect trials to 202 

support reliable estimates. We first independently localized a time lag of interest using 203 

leave-one-participant-out cross-validation procedure, again identifying a peak time lag 204 

of 110 ms in all participants except one very high performing participant (who showed a 205 

lag of 170 ms); thus, we used a 110 ± 10 ms lag for all regular performance participants 206 

with sufficient incorrect trials for analysis. 207 

In the after condition, we found that reverse sequenceness from 100-120 ms 208 

related positively to trial-by-trial retrieval success (multilevel regression on accuracy in n 209 

= 17 participants with sufficient incorrect trials; forward β = -0.1336 [-0.299 -0.020]; z = -210 

1.714; p = 0.0920; reverse β 0.1881 [0.042 0.338]; z = 2.416; p = 0.0176; Fig. 3a). An 211 

example of a reverse sequence in the after condition for a single participant is shown in 212 

Fig. 3c. By contrast, in the before condition forward, but not reverse, sequenceness 213 
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related positively to accuracy (regression in n = 18 participants with sufficient incorrect 214 

trials; forward β = 0.160 [0.014 0.305]; z = 2.202; p = 0.0264; reverse β = -0.0564 [-215 

0.207 0.091]; z = -0.763; p = 0.470; Fig. 3A). An example of a forward sequence in the 216 

before condition for a single participant is shown in Fig. 3d. In the after and before 217 

conditions, the forward or reverse direction of sequenceness that related to trial-by-trial 218 

retrieval success was the same as the performance-related direction identified in the 219 

individual difference analyses. The same relationships between sequenceness and 220 

retrieval success were also found in models where we included all participants (Table 221 

S3). Importantly, we found a significant interaction between both forward and reverse 222 

replay and the after versus before goal condition (condition by forward replay β = -223 

0.1608 [-0.271 -0.049]; z = -2.865; p = 0.0032; condition by reverse replay β = 0.1408 224 

[0.029 0.250]; z = 2.499; p = 0.0096; Fig. 3b; n = 15 participants with sufficient incorrect 225 

trials in both the after and before conditions). 226 

As in the individual differences analyses, in the trial-by-trial analyses, we did not 227 

find any relationship between the sequenceness measure derived from the alternative 7 228 

episodes (‘other episode’ sequenceness) and retrieval success at a 40-50 ms lag 229 

(identified via leave-one-out cross-validation on this sequenceness measure; p-values > 230 

0.35; Supp. Results; Fig. S6; Table S5), while sequenceness derived from the current 231 

episode transitions remained significant. An additional other episode sequenceness 232 

measure derived from a 100-120 ms lag was also not related to behavior (Fig. S6;Table 233 

S6). 234 

It is possible that the underlying representations of episodes may change across 235 

the many cued retrieval events, despite the original episodes not being actually re-236 
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experienced. To investigate this possibility, and in particular whether our results were 237 

driven by effects that appear after extensive practice, we examined whether the 238 

sequenceness-accuracy relationship changed over the course of the retrieval task. We 239 

found, if anything, a tendency for a numerical decrease in the sequenceness-accuracy 240 

relationship over the course of the experiment, and this was true for both the after and 241 

before conditions (Table S3). It is also possible that participants developed strategies to 242 

sequentially reactivate items in different orders with respect to the after and before 243 

conditions. However, we found no evidence for this in participant self-reports (Table 244 

S2). 245 

In a final control analysis, we address concerns about potential bias in our 246 

analyses. Thus, we conducted simulations of the full processing and analysis pathway, 247 

from the generation of localizer data through to the final step of multilevel regressions 248 

that relate sequenceness to retrieval success. The simulation results confirmed that the 249 

relationship between randomly generated MEG data and behavioral measures was 250 

what would expected by chance: the false positive rate was near an expected 5 % level 251 

in both the after condition (0.055) and before condition (0.04; Fig. S7).  252 

The relationship between sequenceness and successful memory retrieval in both 253 

the after and before conditions provides a clear link between sequenceness and 254 

behavior. While the initial individual differences analyses found relatively stronger 255 

sequenceness in regular performing participants, these trial-by-trial results demonstrate 256 

that within regular performance participants, sequenceness strength is positively related 257 

to retrieval success. Incorporating the results of the individual difference analyses and 258 

the trial-by-trial analyses, we establish a double dissociation between replay direction 259 

.CC-BY-NC-ND 4.0 International licensenot certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which wasthis version posted December 10, 2019. . https://doi.org/10.1101/758185doi: bioRxiv preprint 

https://doi.org/10.1101/758185
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

and a participant’s internal goal condition during retrieval. These findings demonstrate a 260 

flexibility in replay directionality that goes beyond previously reported effects of external 261 

events such as reward receipt (20, 27). 262 

 263 

Fig. 3. Relationship between forward and backward sequenceness and trial-by-trial 264 

memory retrieval success in the after and before conditions. (a) In the after condition 265 

(left), successful memory retrieval was supported by reverse sequenceness. In the 266 

before condition (right), retrieval was supported by forward sequenceness. See also 267 

Fig. S6 for individual participant regression coefficients derived from a single level 268 
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analysis. (b) Interaction of replay direction (forward, backward) by condition (after, 269 

before) showing a stronger effect of forward replay on trial-by-trial successful memory 270 

retrieval in the before condition, and a stronger effect of backward replay on successful 271 

memory retrieval in the after condition. (The regular performance group in the combined 272 

sequenceness analysis included n = 15 participants common to the regular performance 273 

group across the after and before conditions.) (c) Example of reverse sequenceness in 274 

the after condition. (d) Example of forward sequenceness in the before condition. (s = 275 

participant; trl = trial; *p < 0.05; **p < 0.01; error bars represent SEM). 276 

 277 

Inspired by neurophysiological studies showing that the hippocampus is a source 278 

for replay events, we next examined whether replay event onset related to power 279 

increases within the medial temporal lobe (20). Candidate replay onsets were identified 280 

by locating sequential reactivation events showing a 110 ms lag, applying a stringent 281 

threshold to these events, and using beamforming analysis to localize broadband 1-45 282 

Hz power changes related to replay event onsets. For reverse replay events (in the after 283 

condition) and for forward replay events (in the before condition), this analysis localized 284 

activity at replay onset to a region of right anterior MTL, encompassing the 285 

hippocampus and entorhinal cortex (after: z = 3.72, p <0.001 whole-brain FWE; before: 286 

z = 3.73, p < 0.001 whole-brain FWE; Fig. 4a-b; Table S2), consistent with human fMRI 287 

results during rest in a cognitive paradigm (32). The increase in MTL power was 288 

selective to replay onset, with an additional secondary peak in the after condition 1 lag 289 

later at 110 ms (Fig. S8). In the after condition, replay onset also related to activity in 290 

two significant clusters in the right visual cortex (Fig. S8; Table S2). Finally, we found 291 

evidence for stronger power immediately preceding replay onset in the left anterior MTL 292 

in participants with lower performance (z = 3.82, p = 0.003 whole-brain FWE; Fig. S8).  293 
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 294 

 295 

Fig. 4. Beamforming analysis of power increases at the onset of sequenceness events 296 

and time-frequency analyses of replay onset. (a) In the after condition, power in the right 297 

anterior MTL increased at onset of reverse sequenceness events (n = 25). (b) In the 298 

before condition, power in the right anterior MTL increased at the onset of forward 299 

sequenceness events (n = 25). (Statistical maps thresholded at p < 0.001 uncorrected, 300 

for display; for unthresholded statistical maps see: 301 

https://neurovault.org/collections/6088/) (c) Time-frequency analysis showing power 302 

change relative to replay onset across the after and before conditions in frequencies up 303 

to 50 Hz. 0 ms represents the onset of putative replay events. (d) Time-frequency 304 
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analysis of replay onset showing no high frequency power change relative to replay 305 

onset across the after and before conditions (using data sampled at 600 Hz). 306 

 307 

Replay onset was associated with broadband power increases from 308 

approximately 8 Hz up to 45 Hz in across the after and before conditions (Fig. 4c and 309 

Fig. S9). In the frequency range of our element-to-element lag (8-12 Hz, approximately 310 

human alpha), we found an increase in power at replay onset (t(24) = 4.267 [0.003 311 

0.008], p < 0.001). However, we found no evidence for power increases in the high 312 

gamma frequency range that have been associated with replay events during rest 313 

(events that may be related to sharp-wave-ripple events; 120-150 Hz; t(24) = 1.150 [-314 

0.001 0.005], p = 0.262) (20) (Fig. 4d and Fig. S9). 315 

 316 

Finally, as very high performing participants did not show any relationship 317 

between replay and performance, we examined the hypothesis that retrieval for strongly 318 

encoded memories is based on clustered pattern completion. Across all participants, 319 

with a rapid appearance following cue onset, we found significant evidence for 320 

reactivation of within-episode elements compared to other-episode elements, none of 321 

which were displayed on the screen (average across timepoints showing the strongest 322 

classification of on-screen cues, 210 ±10 ms post-cue t(24) = 3.978, p < 0.001; Fig. 5a). 323 

A reactivation event from a single participant is shown in Fig. 5b.  324 

To examine the relationship between the cue-evoked reactivation effect and 325 

memory in very high performance participants, instead of a contrast of correct versus 326 

incorrect trials, we used a measure of mean performance for the episode cued on the 327 

current trial (a graded measure from 0 to 1). Cue-evoked reactivation was averaged 328 
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across the 200-250 ms peak difference of current versus other episode elements. 329 

Reactivation positively related to performance on a given episode in very high 330 

performing participants (n = 10; β = 0.0795 [0.0321 0.1250]; t = 3.442; p < 0.0008; Fig. 331 

5c), an effect stronger in high compared to regular performance participants (regular β = 332 

-0.0440 [-0.1387 0.0512]; t = -0.918; p = 0.3568; difference β = 0.125 [0.005 0.244]; t = 333 

2.035; p = 0.0376; Fig. 5c). In a follow-up analysis, we found that the effect in very high 334 

performance participants related positively to evidence for within-episode elements (p < 335 

0.04) and related negatively to evidence for other-episode elements (p < 0.06); neither 336 

measure related to accuracy in the regular performing participants (p-values > 0.29). 337 

Additionally, although based on a very low number of trials, in very high 338 

performing participants we found that correct trials related to higher cue-evoked 339 

reactivation as compared to incorrect trials (β = 2.497 [0.4009 4.444]; t = 2.409; p = 340 

0.024; Fig. S10). We found no significant relationship between cue-evoked responses 341 

and accuracy in regular performance participants (regular β = 0.6291 [-0.3483 1.6681]; t 342 

= 1.281; p = 0.2072; difference β = 1.872 [-0.052 4.385]; t = 1.633; p = 0.116). 343 

Importantly, in regular performing participants, the trial-by-trial relationship between 344 

sequenceness and accuracy in both the after and before conditions remained significant 345 

when including cue-evoked reactivation in the same model while the cue-evoked 346 

reactivation measure was not significant (Fig. S10; Table S5).  347 

In additional control analyses, we examined the relationship between memory 348 

and responses to the cued category itself as well as overall classifier strength 349 

throughout the remainder of the retrieval period. First, responses to the cued element 350 

on the screen did not relate to mean episode performance or accuracy across 351 

.CC-BY-NC-ND 4.0 International licensenot certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which wasthis version posted December 10, 2019. . https://doi.org/10.1101/758185doi: bioRxiv preprint 

https://doi.org/10.1101/758185
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

conditions (from 200-250 ms; p-values > 0.13). However, in regular performing 352 

participants in the after condition (where all cues are decodable) a positive relationship 353 

was evident between accuracy and cue responses (p = 0.0016; Fig. S10; Table S6). 354 

Importantly, however, the relationship between backward sequenceness and memory 355 

remained significant in a model that included cued category responses, suggesting 356 

potential independent mechanisms contributing to performance. We found no 357 

relationship between responses to the cued category and forward or backward 358 

sequenceness itself in either the after or before conditions (p-values > 0.42). 359 

In the post-cue retrieval period (following the initial 200-250 ms cue-evoked 360 

response period), we found no relationship between successful retrieval and classifier 361 

evidence for the on-screen cue stimulus, the within-episode categories, or the other 362 

episode categories (on average across the remaining 250 – 3670 ms time window, p-363 

values > 0.19). The classifier results also did not show differential evidence for the 364 

fading cue: we found no overall difference in classifier evidence between the cued on-365 

screen stimulus, the within-episode categories, and other episode categories (p-366 

values > 0.83). Finally, in an exploratory analysis of simultaneous joint reactivation of 367 

different categories, while we could identify putative simultaneous reactivation events 368 

during the retrieval period, we found no relationship between these events and 369 

performance in regular performance participants (Fig. S10), supporting the importance 370 

of sequential reactivation for successful episodic memory retrieval. 371 
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 372 

Fig. 5. The relationship between cue-evoked reactivation and performance. (a) Across 373 

both the after and before conditions, we found evidence for cue-evoked reactivation of 374 

the elements present in the episode, peaking 200-250 ms after cue onset. (Shaded 375 

error margins represent SEM.) (b) Example of cue-evoked reactivation of within-episode 376 

elements in a single trial in a single participant. (c) Cue-evoked reactivation related to 377 

mean performance in a given episode for the high performance participants, but not 378 

regular performance participants (group breakdown based on number of incorrect trials 379 

across both the after and before conditions; high n = 10; regular n = 15; error bars 380 

represent standard error.) (d) Retrieval model illustrating the relationship between 381 

memory and sequenceness across- and within-participants. Across participants, higher 382 

mean memory performance was associated with weaker sequenceness and stronger 383 

cue-evoked reactivation of episode elements (‘clustered retrieval’). Within-participants, 384 

in regular performing participants, stronger trial-by-trial sequenceness positively related 385 

to trial-by-trial retrieval success. 386 

 387 

During episodic memory retrieval in humans, we show that a rapid sequential 388 

replay of episode elements relates to differences in memory performance. Our primary 389 
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finding is a demonstration that stronger trial-by-trial sequenceness relates to retrieval 390 

success across conditions. Across-participants, we found that regular performance 391 

participants exhibited stronger sequenceness than high performance participants. As 392 

illustrated in the memory retrieval schematic (Fig. 5d), these results are complementary 393 

and a seeming contradiction is a reflection of Simpson’s paradox (33). Given the 394 

dominance of replay in regular performing participants, replay may play a functional role 395 

in “piecing together” individual retrieved elements. Additionally, we find that replay 396 

proceeds in the opposite direction to what might be expected, i.e. replay flows from 397 

distal episode elements to the proximal cued element (34). In general, our results 398 

indicate an important role for replay in online memory retrieval, with an element-to-399 

element lag of 100-120 ms, establishing a novel connection between replay and 400 

ongoing behaviour in humans that has only recently been demonstrated in animal 401 

research (4, 5, 29).  402 

Replay events spanned a temporal horizon of seconds during retrieval, in 403 

contrast to a single instance of clustered pattern completion (9, 30). The latter pattern 404 

characterised very high performing participants alone, where cue-evoked reactivation 405 

closely resembled pattern completion. We cannot exclude a possibility that an absence 406 

of sequential replay in very high performing participants might reflect a difficulty in 407 

detection, perhaps due to a sparse distribution or rapid decay of replay event frequency. 408 

Similarly, our results could be biased towards detecting stronger sequenceness in 409 

regular performing participants, who exhibit a stronger engagement of retrieval 410 

processes, which in turn could provide greater evidence for classification of sequential 411 

activation. Alternatively, when episodes are strongly encoded during an experience 412 
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itself, different representations might begin to form, where retrieved order information is 413 

no longer represented by sequential replay but instead by the clustered reactivation 414 

pattern we observed. A potentially related finding of a decreasing expression of replay 415 

with increasing experience has been reported in rodents (25, 29). Here we speculate 416 

that in high performing participants, episodes are more strongly encoded and potentially 417 

enhanced by spontaneous reactivation and replay during post-learning rest and sleep 418 

(6, 35-38), and these representations may be differentially supported by cortical 419 

systems (30, 31, 39, 40). 420 

Replay in the current experiment showed an element-to-element lag of 421 

approximately 110 ms, representing a temporal compression factor of 60 to 150. This 422 

compression is in line with, or exceeds, the degree reported in offline place cell 423 

sequences in rodents (41, 42). Previous MEG research examining replay in humans 424 

report a shorter 40-50 ms lag between replayed elements for very well-learned 425 

sequences (19, 20). These studies allowed for tens of seconds of planning or involved 426 

acquisition over minutes of rest; further, replay during rest was related to putative SWR 427 

events (20). This contrasts with our current experiment where there was a requirement 428 

for relatively rapid ‘online’ decisions.  429 

These different effects, influenced by task demands, parallel well-established 430 

results in animals. Thus, theta-related sequence events are found predominantly during 431 

active navigation, while replay events during high-frequency SWRs are found during 432 

rest and sleep (21-25). Based on a close association between animal and human replay 433 

during putative SWR events, as demonstrated recently (20), and the important 434 

distinction between the previous results pertaining to rest and current results that reflect 435 
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active behavior, it is instructive to speculate on connections between our current 436 

findings and an expression of sequenceness observed in rodents, specifically that which 437 

relates to theta sequences. However, any suggested connection needs to be tempered 438 

by substantial differences between animal spatial navigation and human episodic 439 

memory. More extensive research is needed to fully explore any potential connection. 440 

Episodic memory experimental designs utilizing actual extended sequences of 441 

experiences as episodes, instead of a more traditional use of multiple different static 442 

images, trade off benefits of increased ecological validity against a potential 443 

disadvantage of necessitating repeated testing of episodes. The use of repeated probes 444 

of episodes is often necessary when using decoding approaches, where the analyses 445 

require many exposures to the episode elements during training of a decoder. In some 446 

cases, experiments include re-exposures to the original episodes (18). As in real-life 447 

experiences outside of the lab, memory episodes in our experiment were experienced 448 

only a single time at encoding. Repeated testing on the other hand may alter the 449 

underlying memory trace or lead to increasing reliance on retrieval strategies, and we 450 

acknowledge this as an important caveat to studies of this type. Importantly, we found 451 

no change in the positive trial-by-trial sequenceness-memory relationship over the 452 

course of the experiment. 453 

Individual episodes of experience are important building blocks for creating a 454 

representation of the structure of the world (2). Episodic representations that support 455 

replay are likely to be important for how we successfully navigate spatial, social, and 456 

abstract environments (3, 6, 43-47). In turn, memory closely interacts with decision 457 

making (e.g. 10, 46). The ability to reactivate episodes in a highly compressed manner 458 
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provides a novel mechanism for very rapid retrieval and replay of previous experiences 459 

during choice (48-50), and our findings can motivate new directions of research into the 460 

relationship of memory encoding, consolidation and decision making. Further, the 461 

flexible direction of episodic retrieval replay events that we identify may affect choice 462 

dynamics. We speculate that sequential replay flexibility and strength might serve as 463 

markers for an impaired associative binding between memory elements caused by 464 

negative emotional events. Impaired, or pathologically disturbed, memory organization 465 

has a strong negative impact on well-being and behaviour, and future human research 466 

into memory replay might also provide novel insights into memory disturbances seen in 467 

psychiatric disorders such as post-traumatic stress disorder and schizophrenia (51, 52).   468 
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Methods 622 

Twenty-eight healthy volunteers participated and completed both sessions of the 623 

experiment. Participants were recruited from the UCL Institute of Cognitive 624 

Neuroscience Subject Database. Data from three participants were excluded due to 625 

poor memory performance (described below) leaving data from 25 participants for 626 

analyses (14 female; mean age 24 (range 18-32). Participants were required to meet 627 

the following criteria: age between 18-35, fluent English speaker, normal or corrected-628 

to-normal vision, without current neurological or psychiatric disorders, no non-629 

removable metal, and no participation in an MRI scan in the two days preceding the 630 

MEG session. The study was approved by the University College London Research 631 

Ethics Committee (Approval ID Number: 9929/002). All participants provided written 632 

informed consent before the experiment. Participants were paid for their time, for 633 

memory performance (up to £10 based on percent correct performance above chance), 634 

in addition to a bonus for localizer phase target detection performance (up to £2). 635 

Participants were excluded from analysis if two of the following three criteria were 636 

met: (1) accuracy below 50 % on the cued retrieval task on the second day, (2) 637 

accuracy below 50 % in the episode component re-ordering task on the second day, 638 

and (3) indication on the post-experiment questionnaire that the participant had mentally 639 

reordered the episodes from their original day 1 order. As the MEG analyses tested for 640 

reactivation of sequences of episode elements based on the original order, relatively 641 

poor memory for the order of episode elements (in the post-test) and/or a report of re-642 

ordering the episodes (in the post-questionnaire) were part of the exclusion criteria. As 643 

noted above, 3 participants from the initial 28 were excluded based on these criteria. In 644 
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the current sample, no participants were excluded based on MEG decoding 645 

performance, specifically, the classification of the 6 categories in the MEG localizer 646 

phase data. 647 

 648 

Experimental Task 649 

We designed our memory experiment to investigate the neural processes supporting 650 

retrieval of episodic experiences where the original episodes were only experienced 651 

once, similar to many experiences outside the lab; this is in explicit contrast to 652 

paradigms with many repetitions of the same (sequence of) stimuli. Retrieval was also 653 

separated from encoding by approximately 24 hours, again to increase ecological 654 

validity. Episodes were designed such that they were made up of elements from 6 655 

different categories. In order to be able to classify many varying episode elements, 656 

without pushing the limits of pattern classification or participant alertness for long-657 

duration scans, we designed our experiment using well-identified categories deployed in 658 

previous fMRI and MEG studies of memory and perception (e.g. 10, 12, 15, 52). 659 

Participants were explicitly instructed that memory episodes were made up of 6 660 

categories of stimuli (faces, buildings, body parts, objects, animals, and cars), and then 661 

shown examples of these categories. Note that we did not expect participants to think of 662 

abstract category-level information during retrieval but instead expected participants to 663 

retrieve individual elements, without explicitly categorizing the items. We utilized 664 

categories of stimuli because we predicted that category-level information would provide 665 

the largest source of across-stimulus variability in neural responses. 666 

 667 
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On the first day of the experiment, in a testing room environment participants 668 

experienced 8 different temporally extended episodes with one single exposure per 669 

episode (Fig. 1a). Participants were told their performance on memory questions that 670 

tested their knowledge of the correct sequential order of stimuli would influence the 671 

amount of a monetary bonus. Episodes were composed of 5 discrete picture elements 672 

and an accompanying story written from a first-person perspective. On the second day, 673 

participants returned for an MEG scanning session where they completed a cued 674 

retrieval phase and a category localizer phase during the acquisition of MEG data (Fig. 675 

1b). Behavioral piloting in a separate sample of participants was used to optimize the 676 

design and ensure that memory retrieval performance on day 2 was both reliably above 677 

chance but below ceiling in the majority of participants. 678 

 679 

Episodic encoding session procedure 680 

On the first day, participants completed the episodic encoding phase. This phase 681 

presented eight episodes each composed of five unique sequential picture components. 682 

Episode components were accompanied with a text segment of a story to encourage 683 

the maintenance of the true episode order in memory. The story was written in first-684 

person perspective to better align with veridical personal episodic memories. The first 685 

four elements of each episode were taken from 6 potential categories of stimuli: faces, 686 

buildings, body parts, objects, animals, and cars. The final element in each episode was 687 

not taken from these categories; instead, it represented a unique ending element. 688 

Participants were instructed to try to remember the order of the episodes and informed 689 

that a bonus would be tied to their performance on questions which tested their memory 690 
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for the sequential order of the episode elements. A practice episode was presented in 691 

the first instance, after which participants were asked to type in the name of the 1st 692 

stimulus element presented in an episode, then the 2nd, 3rd, 4th, and 5th elements.  693 

In each episode, participants were presented with the initial picture element 694 

along with a segment of story text shown below (Fig. 1a; Table S1). A grey screen 695 

background was used for all experimental phases. The stimulus faded in over 0.5 sec 696 

and was then presented with the story text for 2 sec. The text then disappeared and for 697 

the remaining 2.5 sec, participants performed a target detection task, pressing the ‘1’ 698 

key whenever they saw a small grey square appear at any location over the stimulus 699 

(mean of 1 target per stimulus). The stimulus then faded out for 0.5 sec. Total stimulus 700 

duration, including fade-in and fade-out, was ~ 5.5 sec. A grey ‘bokeh’ image faded in 701 

as the stimulus faded out. After the stimulus disappeared, participants responded with 702 

the ‘up arrow’ key to a series of 1-3 arrow indicators (‘^ ^ ^’) in order to progress to the 703 

next element of the episode. If participants did not respond to an arrow within 6 sec, a 704 

warning appeared instructing the participant to respond faster. The mean inter-stimulus 705 

interval was 6.5 sec (1 sec for short duration episodes; 12 sec for long duration 706 

episodes). For the final component of the episode, a white square initially occluded the 707 

stimulus and participants then pressed the ‘space’ key to reveal the stimulus and 708 

associated story text. After the final component of the episode, a delay of 2 sec was 709 

followed by text “Positive ending: you won +£1.00!” or “Negative ending: you lost - 710 

£0.50!” depending on whether the story ended in a positive or negative way. 711 

Participants were then presented with a probe requiring them to type in the name of a 712 

particular episode element (selected pseudo-randomly from elements 1-4). A 30 sec 713 
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rest period followed each episode. After the completion of the 8 episodes, participants 714 

were instructed not to rehearse the episodes or to record the episodes in any way. 715 

Episodes were constructed from a pseudo-random combination of category 716 

elements in addition to a final component that was not taken from any of these 717 

categories. A brief story text connected the sequence of stimuli into a short story (Table 718 

S1). The stimuli consisted 40 photographs, taken either from the internet or previous 719 

studies from our group, encompassing the following categories: human faces (6), 720 

buildings (6), body parts (5), objects (5), animals (5), automobiles (5), and eight final 721 

component pictures (4 negative and 4 positive). As noted above, half of the episodes 722 

were of a longer duration, achieved via manipulating the inter-stimulus-interval (1 sec or 723 

12 sec). The story in half of the episodes ended in a positive element and half ended in 724 

a negative element (Table S1). The ordering of long versus short and positive versus 725 

non-positive episodes was pseudo-randomized in two counterbalanced orders. 726 

After a 5 min break to obviate a potential influence of temporal proximity on 727 

performance for the last episodes, participants completed a short cued retrieval phase 728 

that tested recall of the order of the elements presented in each episode. The memory 729 

test was brief to minimize additional ‘exposure’ to episode stimuli. Following a practice 730 

trial (using stimuli from the practice episode), participants completed 8 trials in the 731 

“after” condition and then 8 trials in the “before” condition. Each mini-block of 8 trials 732 

was preceded by text indicating the current condition. Participants were shown a picture 733 

cue and instructed to retrieve the associated episode in order to make a response about 734 

the sequential order of the subsequent answer stimulus. In the after condition, 735 

participants attempted to remember what came after (at any point) the cue in the same 736 

.CC-BY-NC-ND 4.0 International licensenot certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which wasthis version posted December 10, 2019. . https://doi.org/10.1101/758185doi: bioRxiv preprint 

https://doi.org/10.1101/758185
http://creativecommons.org/licenses/by-nc-nd/4.0/


 36 

episode (Fig. 1b). In the example after condition trial in Fig. 1b, the participant is cued 737 

with the harmonica from the above episode. The presented answer, the SUV, indeed 738 

followed the harmonica in the episode, so if the participant remembered the episode 739 

and order, she should respond with ‘Correct.’ If the sunny sky or bear was presented as 740 

the answer, the participant should also responds with ‘Correct.’ If the answer was the 741 

man or a stimulus from any other episode, the participant should respond with 742 

‘Incorrect.’ Answers were ‘correct’ for any position after the cue, not just immediately 743 

after it. In the before condition, participants attempted to remember what came before 744 

(at any point) the cue in the same episode. In both conditions, when the answer picture 745 

was presented, participants were shown the response options “Correct” and “Incorrect” 746 

in text below the picture. Cues in this memory test were only taken from the second 747 

state 2 (of 5 total episode states) in the after condition or the fourth state in the before 748 

condition. The answer on half of the trials was correct. 749 

On each cued retrieval trial, the cue picture was presented in full opacity for 0.5 750 

sec and then faded to 0 % opacity across the remaining 5 sec of the retrieval period 751 

(Fig. 1). Then the response picture was presented. The answer text indicated the 752 

mapping between key responses and answers, e.g. “Correct (1)” and “Incorrect (2)”; the 753 

left and right text locations were randomly selected on each trial. There was no time 754 

constraint on the answer period. After an answer was recorded, following a brief 0.1 sec 755 

pause, a 2-level confidence scale (“High” and “Low”) was presented, with the left and 756 

right location of options randomized. After a 0.1 sec pause, a fixation period of mean 1.5 757 

sec followed (randomly sampled from the values [1.0, 1.5, 2.0]). 758 

 759 
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MEG session procedure 760 

 Participants returned for the MEG scan on the following day. After initial setup in 761 

the MEG room, participants were reminded of the instructions for the cued memory 762 

phase and completed 4 practice questions (based on the practice episode from the 763 

previous day). During scanning, the memory response period was time-constrained. 764 

This limit was added to encourage participants to retrieve as much information from 765 

memory as possible during the cue period and to facilitate later MEG analysis of neural 766 

processes underlying successful retrieval. Participants were instructed to retrieve as 767 

best as possible the episodes during the presentation of the cue picture, and in this way 768 

they could respond faster (and avoid missed responses) when the answer appeared. 769 

Participants were again reminded of the performance bonus based on memory 770 

accuracy. 771 

As described above for the memory test on the first day, on each cued retrieval 772 

trial, the cue picture was presented in full opacity for 0.5 sec and then faded to 0 % 773 

opacity across the remaining 5 sec of the retrieval period (Fig. 1). The gradual fade of 774 

the cue across the retrieval period was designed to avoid any sharp stimulus offset 775 

effects which could negatively affect MEG decoding. Then the answer stimulus was 776 

displayed. The text indicating the key response, e.g. “Correct (1)” and “Incorrect (2)”, 777 

was randomly presented on the left and right of the screen. If a response was not made 778 

in this time period, the warning “Please try to respond more quickly!” was presented for 779 

2 sec. The response picture was presented for 1-3 sec with the duration based on the 780 

recent rate of missed trials in the past 20 trials. If participants made no response on 781 

more than 14 % of recent trials, the response period was increased in duration by 0.25 782 
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sec (with a ceiling of 3 sec). If participants made no response on less than 5 % of recent 783 

trials, the answer period was decreased in duration by 0.25 sec (with a floor of 1 sec). 784 

After the answer period, following a brief 0.1 sec pause, a 2-level confidence scale 785 

(“High” and “Low”) was presented, with the left and right location of options randomized. 786 

If a response was not made in time, the warning “Please try to respond more quickly!” 787 

was presented for 2 sec. After a 0.1 sec pause, a fixation period of mean 1.5 sec 788 

followed (randomly sampled from the values [1.0, 1.5, 2.0]). 789 

In each of 5 blocks in the cued retrieval phase, trials of after and before 790 

conditions were separated into mini-blocks of 10-12 trials. Each mini-block was 791 

preceded by an instruction screen: “Next: What picture came after (before)?” along with 792 

the instruction to press the ‘1’ key to continue. At the mid-point of each block, 793 

participants were given a 30 sec pause, followed by a reminder of the current condition 794 

and an instruction to press the ‘1’ key to continue. Each of the five blocks of cued 795 

retrieval included 43 trials and lasted for approximately 8 minutes. Brief rest breaks 796 

were inserted between blocks. In the cued retrieval phase, we collected ~ 27 trials per 797 

episode and ~ 43 trials per state (episode positions 1 to 5) for a total of 215 trials. For 798 

one participant, MEG data were lost for the final memory retrieval block; the remaining 799 

172 trials were analyzed. All trials with a cue from state 1 were after condition trials. All 800 

trials with a cue from state 5 were before condition trials. Trials with a cue from state 3 801 

were composed of equal numbers of after and before condition trials, while trials with a 802 

cue from state 2 and state 4 were a weighted mixture of after and before condition trials.  803 

The presented answer was correct on ~ 39 % of trials. The remaining 61 % of 804 

trials were incorrect: on 52 % of total trials, the incorrect answer came from another 805 
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episode and on the remaining ~ 9 % of total trials, a ‘lure’ answer was presented that 806 

was from the same episode but in the incorrect direction as the current condition. For 807 

example, in an after condition trial where the cue was from state 3, a picture from that 808 

episode in state 1 was presented as the answer. Note that on the first day participants 809 

are exposed to the complete episode only one single time. During the memory test, 810 

participants see all episode elements again, but at this stage they are provided in an 811 

order that mixes elements between different episodes, or elements within the same 812 

episode that are out of the true order, and only very rarely are pairs of elements 813 

presented in the original order. Trials were presented in a pseudo-random order with the 814 

constraint that no episode was queried on sequential trials. 815 

The cued retrieval phase was followed by a functional localizer to derive 816 

participant-specific sensor patterns that discriminated each of the 6 categories that 817 

made up the episodes by repeatedly presenting each of the 32 unique stimuli. The 818 

localizer design was based on previous studies (19, 20). In brief, participants were 819 

instructed to read a word shown on the screen, pay attention to the picture that 820 

followed, and respond if any grey square targets appeared superimposed over the 821 

picture. The instructions were followed by 4 practice trials. 822 

In detail, in a localizer trial, participants were presented with a brief name 823 

corresponding to one of the pictures, presented in text on the center of the screen for 2 824 

sec. Participants were instructed to imagine the corresponding picture. The text then 825 

disappeared and the named picture appeared on the screen for 0.75 sec. During picture 826 

presentation, participants performed a target detection task, responding with a ‘1’ button 827 

press if the picture contained a small grey square. Targets were rare events, appearing 828 
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on 15.4 % of trials. A mean 0.75 sec fixation ITI followed (range 0.25 – 1.25) during 829 

which responses were still recorded. If performance on the target detection task fell 830 

below 70 % correct (across missed responses and false alarms), a warning was 831 

presented: “Please improve your detection of the grey squares!” Finally, as in the cued 832 

retrieval phase, a mid-block rest of 30 sec was inserted during each block. After each 833 

localizer block, participants were shown yellow ‘stars’ on the screen, ranging from 0-4, 834 

depending on their target detection accuracy in the preceding block.  835 

The stimulus pictures were presented in a pseudo-random order, with the 836 

constraint that no category repeat in subsequent trials. Each picture from a given 837 

category was presented an equivalent number of times, with 78 repetitions per picture 838 

category. The localizer was presented in 5 blocks, with 94 trials in the first four blocks 839 

and 92 trials in the last block for a total of 468 trials. 840 

Following scanning, participants completed a post-experiment questionnaire that 841 

assessed memory strategy and potential mental reordering of the episodes, and also 842 

asked participants to try to write down a brief version of each story. The re-ordering 843 

question asked “Did you change the order of the stories to make your own story order? 844 

1= never, 5=always”. Participants who responded with a 4 or 5 were considered for 845 

exclusion, in conjunction with performance on the memory and sequence memory test. 846 

We observed a negative correlation in the full group (prior to exclusions) between 847 

response to this question and memory performance in the MEG session. 848 

Finally, participants completed a computerized sequence memory test where 849 

they attempted to place the stimuli from a given episode in the correct order. In this 850 

phase, stimuli from an episode were presented in a random order on the left side of the 851 
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computer screen. Participants then moved each stimulus from the left side (starting from 852 

the top) into one of 5 empty boxes spread from the left to the right across the screen. 853 

Stimuli were moved using the left and right arrow keys and the space bar was used to 854 

confirm placement. Accuracy was measured as the mean rate of correct replacement 855 

across each location across all episodes. 856 

 857 

MEG acquisition  858 

Participants were scanned while sitting upright inside an MEG scanner located at the 859 

Wellcome Centre for Human Neuroimaging, at UCL. A whole-head axial gradiometer 860 

MEG system (CTF Omega, VSM MedTech) recorded data continuously at 600 samples 861 

per second, utilizing 273 channels (2 original channels of the 275 channels are not 862 

operational). Three head position indicator coils were used to locate the position of 863 

participant's head in the three-dimensional space with respect to the MEG sensor array. 864 

They were placed on the three fiducial points: the nasion and left and right pre-auricular 865 

areas. The coils generate a small magnetic field used to localize the head and enable 866 

continuous movement tracking. We also used an Eyelink eye-tracking system to monitor 867 

participant's eye movements and blinks. The task was projected onto a screen 868 

suspended in front of the participants. The participants responded during the task using 869 

a 4-button response pad to provide their answers (Current Designs), responding with 870 

self-selected digits to the first and second buttons. 871 

 872 

MEG Pre-processing  873 
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 MEG data were processed using MATLAB packages SPM12 (Wellcome Trust 874 

Centre for Neuroimaging) and FieldTrip. The CTF data were imported using OSL (the 875 

OHBA Software Library, from OHBA Analysis Group, OHBA, Oxford, UK) and down-876 

sampled from 600 Hz to 100 Hz (yielding 10 ms per sample) for improved signal to 877 

noise ratio and to conserve processing time. Slow drift was removed by applying a first 878 

order IIR high-pass filter at 0.5 Hz. 879 

Preprocessing was conducted separately for each block. An initial preprocessing 880 

step in OSL identified potential bad channels whose characteristics fell outside the 881 

normal distribution of values for all sensors. Then independent component analysis 882 

(FastICA, http://research.ics.aalto.fi/ica/fastica) was used to decompose the sensor data 883 

for each session into 150 temporally independent components and associated sensor 884 

topographies. Artifact components were classified by automated inspection of the 885 

combined spatial topography, time course, kurtosis of the time course, and frequency 886 

spectrum for all components. For example, eye-blink artifacts exhibited high kurtosis 887 

(>20), a repeated pattern in the time course and consistent spatial topographies. Mains 888 

interference had extremely low kurtosis and a frequency spectrum dominated by 50 Hz 889 

line noise. The maximum number of potential excluded components was set to 20. 890 

Artifacts were then rejected by subtracting them out of the data. All subsequent 891 

analyses were performed directly on the filtered, cleaned MEG signal, in units of 892 

femtotesla. 893 

In the cued retrieval blocks, an 8.5 second epoch was extracted for potential 894 

analysis for each trial, encompassing 500 ms preceding cue onset and continuing past 895 

the answer response. In the analyses below, we analyzed the first two-thirds of the cued 896 
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retrieval period. Given the speeded response demands to the response stimulus, the 897 

end of the period is likely to involve increasing response preparation that could 898 

decrease the ability to detect sequenceness events. We excluded also the initial 160 ms 899 

following cue presentation to allow time for early stimulus processing. Thus, our retrieval 900 

period analysis window focused on 160 - 3667 ms of the full 5500 ms period. In the 901 

localizer blocks, a 4.5 second epoch was extracted for potential analysis for each trial, 902 

encompassing 500 ms preceding text onset through the end of the picture presentation 903 

period. In both the retrieval and localizer blocks, preceding the analysis steps described 904 

below, we excluded time periods within individual channels that exhibited extreme 905 

outlier events (determined by values > 7x the mean absolute deviation). 906 

 907 

MEG data decoding and cross-validation  908 

 Lasso-regularized logistic regression models were trained for each category. 909 

Methods followed those used in previous studies (19, 20). Only the sensors that were 910 

not rejected across all scanning sessions in the preprocessing step were used to train 911 

the decoding models. A trained model k consisted of a single vector with length of good 912 

sensors n consisting of 1 slope coefficient for each of the sensors together with an 913 

intercept coefficient. Decoding models were trained on MEG data elicited by direct 914 

presentations of the visual stimuli. 915 

For each category we trained one binomial classifier. Positive examples for the 916 

classifier were trials on which that category was presented. Negative examples 917 

consisted of two kinds of data: trials when another category was presented, and data 918 

from the fixation period before the text pre-cue appeared. An equal number of events of 919 
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null data were included as there were actual events. The null data were included to 920 

reduce a potential correlation between different classifiers – enabling all classifiers to 921 

report low probabilities simultaneously. 922 

 To examine localizer performance we used cross-validation. We computed the 923 

number of included trials per category (after exclusion of trials due to MEG artifacts). 924 

We then calculated the number of cross-validation folds by subtracting the minimum 925 

number of trials included across categories plus one; the number of folds per participant 926 

was usually between 15-20. Classifier performance was estimated on the included data 927 

and tested on randomly determined left-out data for N folds; performance was then 928 

averaged across folds to derive a mean value.  929 

Separately, for classifying memory retrieval data a different classifier was trained. 930 

This classifier was trained on all localizer trial data with no cross-validation; cross-931 

validation is not used for across-phase analyses as no inferences are made based on 932 

the localizer performance itself. Prediction accuracy was estimated by treating the 933 

highest probability output among all classifiers as the predicted category. Sensor 934 

distributions of beta estimates are shown in Fig. S2 and prediction performance of 935 

classifiers trained on 200 ms on left-out trials in functional localizer task are shown in 936 

Fig. S3. 937 

To determine whether the categories used in the experiment were reflective of 938 

how these stimuli were actually represented in the MEG data as participants viewed the 939 

stimuli, we conducted a supplemental classification analysis that trained a separate 940 

classifier for each of the 32 stimuli (4 category-level stimuli for each of 8 episodes). This 941 

analysis used cross-validation as described above. Also as above, a second 942 
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classification analysis did not use cross-validation but instead trained on the full 943 

localizer phase and tested on the memory test phase cue-evoked responses. An 944 

alternative classification analysis trained each stimulus versus all other stimuli but left 945 

out the other members of that stimulus’ category (e.g. training for face1 omitted trials 946 

with face2-face6). Note that the classification of individual stimuli was under-powered 947 

given the low number of repetitions per stimulus, and our localizer phase was not 948 

designed to produce robust single-stimulus classifiers for use on the sequenceness 949 

analyses. These results are detailed in Supplemental Results. 950 

 951 

Sequenceness measure 952 

 The decoding models described above allowed us to measure spontaneous 953 

reactivation of task-related representations during memory retrieval. We next defined a 954 

‘sequenceness’ measure in terms of the degree to which these representations were 955 

reactivated in a well-defined sequential order (19, 20). Here we utilized an updated 956 

general linear model approach (20). This analysis approach is illustrated in Fig. S2. 957 

Briefly, the method approximates a lagged cross-correlation between category evidence 958 

for transitions in a given episode. As such, the method utilizes the full period of analysis 959 

in the calculation and produces a single statistic representing the strength of 960 

sequenceness across this full period. Discrete sequential events are not identified, 961 

though in theory each retrieval period could include numerous events. 962 

First, we applied each of the six category decoding models to the cued retrieval 963 

period MEG data. This yielded six timeseries of reactivation probabilities for each trial, 964 

each with length N, where N is the number of time samples included in the retrieval 965 
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period analysis window. Below, we use the term “stimulus” for simplicity to refer to the 966 

category-level information. 967 

We then used a linear model to ask whether particular sequences of stimulus 968 

activations appeared above chance in these timeseries. For each stimulus i, at each 969 

possible time lag ∆𝑡, we estimated a separate linear model:  970 

    971 

				Y% = X(∆𝑡) ∗ β%(∆𝑡)  972 

 973 

The predictors X(∆𝑡) were time-lagged copies of the six reactivation timeseries. The 974 

model predicted Y%, the reactivation of stimulus i. The linear model had N rows, with 975 

each row a time sample. We estimated β%(∆𝑡), a vector of coefficients that described the 976 

degree to which stimulus i’s reactivation was predicted by activation of each other 977 

stimulus at time lag ∆𝑡. By repeating this procedure for each stimulus i, we obtained 978 

β%(∆𝑡), a 6x6 matrix that can be viewed as an empirical transition matrix between the six 979 

stimuli (categories) at lag ∆𝑡. 980 

 Specifically: 981 

        Y% = ∑ X-(∆𝑡)β%-(∆𝑡).
-/0   982 

 983 

Where X-(∆𝑡) are time-lagged copies of Y-, s is the number of states, and therefore: 984 

                  Y%(𝑡) = ∑ Y-(𝑡 − ∆𝑡)β%-(∆𝑡).
-/0   985 

 986 
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The matrix β%(∆𝑡) is obtained by solving the following set of equations for each stimulus 987 

i, up to state s. 988 

Y%/0(𝑡) =2Y-(𝑡 − ∆𝑡)β%-(∆𝑡)
.

-/0

 989 

 990 

Y%/3(𝑡) =2Y-(𝑡 − ∆𝑡)β%-(∆𝑡)
.

-/0

 991 

 992 

Y%/.(𝑡) =2Y-(𝑡 − ∆𝑡)β%-(∆𝑡)
.

-/0

 993 

 994 

We next asked whether the β%(∆𝑡) was consistent with a specified 6x6 transition matrix 995 

by taking the Frobenius inner product between these two matrices (the sum of element-996 

wise products of the two matrices). This resulted in a single number 𝑍∆5, which 997 

pertained to lag ∆𝑡. Finally, differential forward – backward sequenceness was defined 998 

as 𝑍6∆5 −	𝑍7∆5. In our initial analyses and individual differences analyses, we used the 999 

difference between correlations in the forward (𝑍6∆5)	and backward (𝑍7∆5)	direction in 1000 

order to remove common autocorrelation which would otherwise add significant 1001 

variance. In the analyses testing for a relationship between sequenceness and trial-by-1002 

trial accuracy, we entered the separate forward (𝑍6∆5)	and backward (𝑍7∆5) 1003 

sequenceness measures into the regression analyses. As our analysis was on trial-1004 

based data and not rest, we did not need to control for alpha rhythm (20). 1005 
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The transition matrix was defined as the stimulus (category) order in each 1006 

episode. Our primary results focus on comparisons of sequenceness on correct versus 1007 

incorrect retrieval trials; as such, we do not conduct comparisons to a null value. Here, 1008 

as category orders were pseudo-randomly shuffled across episodes, we did not conduct 1009 

permutation tests. To ensure that the results were not overfit to the regularization 1010 

parameter of the logistic regression, all results were obtained with the lasso 1011 

regularization parameter that yielded the strongest mean decoding in the localizer (l1 = 1012 

0.002). The decoding models used to evaluate sequenceness were trained on 1013 

functional localizer data taken from 200 ms following stimulus onset. The 200 ms time 1014 

point exhibited the strongest decoding accuracy during the localizer; notably, this time 1015 

point of category decoding was also consistent with the individual stimulus decoding 1016 

findings of Kurth-Nelson et al. (19) and Liu et al. (20). We only included trials with a 1017 

button response to the probe stimulus; all trials with no response were excluded from 1018 

analysis. 1019 

In an initial step, prior to the multilevel modelling analyses, we localized a time 1020 

lag of interest in the after condition over correct trials using a leave-one-participant-out 1021 

cross-validation procedure. For a given held-out participant, the absolute value of the 1022 

peak response across the remaining participants determined the lag for the held-out 1023 

participant. The analysis included lags from 40-350 ms. These peak times ±10 ms were 1024 

used to select trial-by-trial sequenceness values. 1025 

 1026 

Identifying Replay Onsets 1027 

 1028 
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Replay onsets were defined as moments when a strong reactivation of a stimulus was 1029 

followed by a strong reactivation of the next (or preceding) stimulus in the sequence 1030 

from an episode (20). In this analysis, we first found the stimulus-to-stimulus time lag ∆𝑡 1031 

at which there was maximum evidence for sequenceness (as described above), time 1032 

shifted the reactivation matrix X up to this time lag ∆𝑡, obtaining X(∆𝑡). We then 1033 

multiplied X by the transition matrix P, corresponding to the unscrambled sequences: X 1034 

× P. Next, we element-wise multiplied X(∆𝑡) by X × P. The resulting matrix had a 1035 

column for each stimulus, and a row for each time point in the cue period for each trial. 1036 

We then summed over columns to obtain a long vector R, with each element indicating 1037 

the strength of replay at a given moment in time (across trials). Finally, we thresholded 1038 

R at its 95th percentile to only include high-magnitude putative replay onset events 1039 

across all trials. We also imposed that constraint that a replay onset event must be 1040 

preceded by 100 ms of replay-onset-free time.  1041 

Specifically: 1042 

        𝑃𝑟𝑜𝑗 = 𝑋(∆𝑡) 1043 

 1044 

Matrix Proj is obtained by time shifting the reactivation matrix X to time lag ∆𝑡. 1045 

 1046 

        𝑂𝑟𝑖𝑔 = 𝑋 × 𝑃 1047 

 1048 

Matrix Orig is obtained by matrix multiplication between reactivation matrix X and 1049 

transition matrix P. 1050 

 1051 
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    				𝑅5 = 	∑ 𝑂𝑟𝑖𝑔5% ∗ 	𝑃𝑟𝑜𝑗5%.
%  1052 

 1053 

Vector R is obtained by elementwise multiplication between matrix Orig and Proj, and 1054 

then summing over columns. 1055 

 1056 

Cue-triggered reactivation analyses 1057 

In the cued retrieval period, we tested for cue-triggered reactivation of episode 1058 

elements. This analysis compared evidence for categories present in a cued episode 1059 

versus categories not present in a cued episode. The analysis utilized the raw classifier 1060 

evidence vectors (n categories by t trial timepoints) to investigate differential activity 1061 

near the peak stimulus response at ~ 200 ms. For each episode, the within-episode 1062 

categories that were not presented as a cue were averaged to derive a measure of 1063 

reactivation of within-episode elements. In the after condition, there were 3 within-1064 

episode categories; in before condition, trials where the cue came from state 5 had 4 1065 

categories entered into the within-episode analysis. The 2 categories that were not 1066 

members of the cued episode were averaged to derive a measure of other-episode 1067 

reactivation. The timepoints showing the strongest difference between these two 1068 

measures were averaged for each trial to derive trial-by-trial reactivation measures 1069 

representing relative within- versus other-element activity. These values were 1070 

subsequently entered into multilevel regression analyses. We examined a relationship 1071 

between the trial-by-trial reactivation measure and mean episode accuracy: the average 1072 

performance across trials for the episode cued on a given trial. We also examined the 1073 

relationship to trial-by-trial accuracy, but this analysis was under-powered in the very 1074 
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high performing participants. The reactivation analyses collapsed across the after and 1075 

before conditions. 1076 

 1077 

Time-frequency analyses 1078 

A frequency decomposition (wavelet transformation) was computed for the memory 1079 

retrieval period in every trial. From this data, we extracted power changes surrounding 1080 

putative replay onset events. 1081 

 1082 

Zero-lag correlation analysis 1083 

In a supplemental analysis, we examined the relationship between reactivation of 1084 

within-episode elements compared to other-episode elements with a zero time lag. This 1085 

measure was a basic correlation between the time series of category evidence: the 1086 

average of 3 correlations for the within-episode elements and 2 correlations for the 1087 

other-episode elements. We did not find a greater correlation between within-episode 1088 

elements than between other-episode elements. Through thresholding of the category 1089 

evidence time series, we found that correlations were driven by increases in evidence 1090 

and that these increases were brief (Fig. S10). However, we found no relationship 1091 

between the correlation of within-episode elements across the retrieval period and 1092 

behavior (Fig. S10). 1093 

 1094 

Multilevel modelling 1095 

 We conducted all pre-processing of behavioral and MEG data for multilevel 1096 

modelling in Matlab. Multilevel models were implemented in R, following previous 1097 
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procedures (53). We used a multi-level logistic regression model (glmer, in the lmer4 1098 

package) to predict correct memory responses. A correct response in the cued retrieval 1099 

phase was an answer stimulus correctly identified as coming after the cue in a given 1100 

episode, an answer stimulus correctly rejected as coming after the cue in a given 1101 

episode, etc. All missed response trials (where no response was recorded within the 1102 

response time window) were excluded from analysis.  1103 

 The primary models included sequenceness derived from the current episode 1104 

transition matrix. Additional control models examined the effect of sequenceness 1105 

derived from transitions present in all other episodes but not present in the current 1106 

episode. 1107 

For trial-by-trial accuracy analyses, we included only participants with greater 1108 

than 10 MEG artifact-free trials in each condition. In general, our exclusion was 1109 

intended to be conservative and to align with practices in fMRI research regarding 1110 

approximately sufficient numbers of trials in a condition. We also had a conceptual 1111 

reason to exclude participants with very few miss trials. In the very high performing 1112 

participants, miss trials are more likely to be dominated by lapses in attention and 1113 

resulting error button presses than in regular performing participants; including miss 1114 

trials in these participants then would add noise to the analyses. 1115 

In the main sequenceness analyses, we fit separate intercept, forward 1116 

sequenceness, and backward sequenceness effects for each participant. In the model, 1117 

we also included control variables representing performance in neighboring trials. These 1118 

variables were included because we found that performance 1 and 2 trials in the past 1119 

and performance 1 and 2 trials in the future was positively related to current trial 1120 
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performance, an effect similar to what we have observed in previous memory studies. In 1121 

analyses of continuous variables such as mean correct performance for the episode 1122 

cued on the current trial, we used multi-level regression (lmer).  1123 

For all models, to ensure convergence, models were run using the bobyqa 1124 

optimizer set to 106 iterations. We estimated confidence intervals using the 1125 

confint.merMod function and p-values using the bootMer function (both from the lmer4 1126 

package) using 2500 iterations. All reported p-values are two-tailed. 1127 

 1128 

MEG Source Reconstruction  1129 

 All source reconstruction was performed in SPM12 and FieldTrip utilizing OAT. 1130 

Forward models were generated on the basis of a single shell using superposition of 1131 

basis functions that approximately corresponded to the plane tangential to the MEG 1132 

sensor array. 1133 

Linearly constrained minimum variance beamforming (54) was used to 1134 

reconstruct the epoched MEG data to a grid in MNI space, sampled with a grid step of 5 1135 

mm. The sensor covariance matrix for beamforming was estimated using data in 1136 

broadband power across all frequencies.  1137 

For the category localizer analysis, the baseline activity was the mean power 1138 

averaged over 50 ms following stimulus onset. All non-artifactual trials were baseline 1139 

corrected at source level. We estimated the main effect of each category and contrasts 1140 

of each category versus all other categories and extracted the peak 200 ms after onset 1141 

for display. 1142 
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For the replay onsets analysis, the baseline activity was the mean power 1143 

averaged over -100 ms to -50 ms relative to replay onset. All non-artifactual trials were 1144 

baseline corrected at source level. We looked at the main effect of the initialization of 1145 

replay. This analysis was conducted separately to investigate backward replay events in 1146 

the after condition and forward replay events in the before condition. 1147 

The statistical significance of clusters identified in the beamforming analysis was 1148 

calculated using SPM12. An initial cluster-forming threshold of p < 0.001 was applied 1149 

and regions exceeding p < 0.05 whole-brain family-wise-error corrected (FWE) at the 1150 

cluster level are reported. The timepoint preceding replay onset (- 10 ms) was 1151 

additionally investigated to explore whether individual differences in memory 1152 

performance related to differential MTL power preceding replay onset. 1153 

 1154 

Individual differences 1155 

 We tested for a relationship between MEG measures of sequenceness and 1156 

mean memory performance in the after and before conditions. For sequenceness, we 1157 

used differential (forward-backward) sequenceness given the strong decaying 1158 

autocorrelation evident in the raw forward and backward sequenceness estimates (19, 1159 

20). In a supplemental analysis, we estimated the relationship between replay and 1160 

memory performance using a regression, separately entering forward and backward 1161 

sequenceness as predictor variables. These analyses used Pearson correlations, 1162 

reporting two-tailed p-values. A statistical comparison of the correlations between of 1163 

sequenceness and behavior in the after condition and the before condition was 1164 

conducted using a test for the difference between two dependent correlations. This test 1165 
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is conservative, as the performance measures in the after condition and the before 1166 

condition were not identical, while the test assumes full dependence. 1167 

We conducted an additional conservative permutation analysis since it is 1168 

possible that under certain circumstances, having increasing variability in the underlying 1169 

data toward one end of a distribution across participants might impact on the chance 1170 

rate of finding a correlation – whether positive or negative – between two variables. 1171 

Specifically, because lower performing participants have fewer correct trials entered into 1172 

the mean value than is the case for higher performing participants, the mean values for 1173 

low performing participants may show higher random variation by chance. (Note that 1174 

any observed differences in correlation direction between the after and before 1175 

conditions would not be explained by any such effect.) To conduct the simulation, we 1176 

pooled all empirical trial-by-trial sequenceness values across participants, separately for 1177 

the after and before conditions, and mean-corrected the data. From this set of values, 1178 

we randomly extracted (without replacement) values to match the number of included 1179 

trials per participant. In each simulated participant, these values were then scaled to 1180 

match the standard deviation of an actual participant’s trial-by-trial sequenceness data. 1181 

Across each of 500k simulations, we computed the correlation between mean memory 1182 

performance and the permuted and scaled sequenceness measure. The resulting p-1183 

values were used to determine a conservative permutation-based threshold 1184 

 1185 

Simulation of MEG analyses and relationship to performance 1186 

To provide additional support for our results, we conducted simulations to confirm 1187 

that the relationship between randomly generated MEG data and behavioral measures 1188 
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is what would expected by chance. All processing and analysis steps were as described 1189 

above, beyond the generation of simulated MEG data. The simulation proceeded in 3 1190 

steps: 1) generation of MEG localizer data and training of classifiers, 2) generation of 1191 

MEG memory retrieval data, applications of classifiers, and calculation of sequenceness 1192 

for each trial, and 3) multilevel modelling to relate sequenceness to behavior.  1193 

In step 1, we first estimated a sensor covariance matrix based on random data 1194 

(here and below using the randn function in Matlab), constructed sensor patterns per 1195 

category, and generated category training data for each category based on random 1196 

data plus the generated sensor patterns. Classifiers (one per each of 6 categories) were 1197 

trained on these data.  1198 

In step 2, for each trial, MEG data were generated across all sensors using the 1199 

mvrnd function in Matlab. Across time, an estimated temporal auto-correlation derived 1200 

from the actual data (0.65) was applied, as well as the previously derived covariance 1201 

across sensors. Then the sequenceness analysis was applied per trial as in the main 1202 

analysis described above. This produced a sequenceness measure in the forward and 1203 

backward direction for each lag up to 350 ms.  1204 

In step 3, the values for the simulated after condition on simulated correct trials 1205 

were extracted for each participant. We then applied a leave-one-out cross-validation 1206 

procedure for time lag selection. As in the analysis of real data, the lag selected for the 1207 

left-out participant was based on the peak absolute magnitude of forward minus 1208 

backward (or differential) sequenceness at lags from 40-350 ms. Across all trials, the 1209 

mean sequenceness in the forward and backward directions at this peak ±10 ms were 1210 

entered into the multilevel logistic regression analyses. 1211 
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One set of simulations utilized all potential behavioral variables from the actual 1212 

counterbalancing assignment and data (accuracy per trial, exclusion / exclusion of MEG 1213 

data per trial, after/before condition, and cued episode transition matrix). A second set 1214 

of simulations approximated the behavioral variables (similar distribution of mean 1215 

performance across simulated participant, equal number of excluded MEG trials, and 1216 

equal sampling of each of the episodes). The two simulations based on real behavioral 1217 

data and simulated behavioral data were each run 10000 times. 1218 

 1219 

Data availability 1220 

Complete behavioral data will be publicly available on the Open Science 1221 

Framework (https://osf.io/qaewv/). Unthresholded group beamforming statistical 1222 

parametric maps of replay onset power changes and category responses during the 1223 

localizer can be found on NeuroVault (https://neurovault.org/collections/6088/). The full 1224 

MEG dataset will be publicly available on openneuro.org. 1225 

 1226 

Code availability  1227 

Code for the sequenceness analysis, as included in the full processing pathway 1228 

simulation, is available at: https://github.com/gewimmer-neuro/memory-sequences. 1229 

 1230 
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Supplemental Results 
 

Sequenceness and individual differences in memory performance 

 

The primary analysis of the relationship between sequenceness and individual 

differences in memory performance utilized the differential sequenceness measure (fwd 

– bkw sequenceness; Fig. 2b-c). This measure provides a summary of the overall 

evidence for sequenceness and finds that the same sequenceness direction is 

important as the trial-by-trial analysis of accuracy. However, given the specific 

relationship between backwards versus forwards sequenceness in the trial-by-trial 

analysis of accuracy, we verified that the individual difference relationship was also 

selective. In the after condition, we found that reverse sequenceness was negatively 

related to average performance (fwd t(23) = 2.265, p = 0.0337; bkw t(23) = -2.9111, p = 

0.0081). In the before condition, we found that forward sequenceness was related to 

average performance (fwd t(23) = -2.2419, p = 0.0354; bkw t(23) = 1.0456, p = 0.3071). 

Results from both the after and before conditions show stronger sequenceness in lower-

performing participants (reverse sequenceness in the after condition; forward 

sequenceness in the before condition). These analyses give qualitatively similar results 

as those reported in the main analysis (Fig. 2b-c) which used differential forward-

backward sequenceness. 

 

Sequenceness for ‘other episode’ transitions and trial-by-trial performance 

 

For other episode transitions (including transitions found across the other 7 episodes 

but not in the currently cued episode), we found that the peak response in correct trials 

in the after condition using the leave-one-participant-out cross-validation procedure was 

between 40 and 50 ms (23 participants at 40 ms; 2 participants at 50 ms). We thus 

examined other episode sequenceness from 40-50 ms. In the model including the other 

episode sequenceness measure derived from a 40-50 ms lag, we found no significant 

effects for the other episode measure while the main sequenceness measure remained 

significant (Fig. S6, Table S4). We also examined a model including the other episode 
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sequenceness measure from 100-120 ms as a comparison to the main sequenceness 

lag. Here we also found no significant effects for the other transition measure while the 

main sequenceness measure remained significant (Fig. S6, Table S5). Finally, in a 

separate model looking only at current episode sequenceness at the 40-50 ms lag 

identified in previous studies and for the other episode measure, we find no relationship 

between sequenceness and retrieval success in the after condition (p-values > 0.17) or 

before condition (p-values > 0.52). 

 

Analyses using single-stimulus classification 

 

As expected, performance of stimulus-level classification during the localizer phase for 

the cross-validated analysis was markedly lower than performance for the category-

level classification during the localizer phase (Fig. S3). We also examined cross-

classification to the memory retrieval phase (Fig. S3). While performance was above 

the pre-trial baseline level and significant (t(24) = 9.20, p<1e-8), in comparison to the 

category-level cross-classification results in Fig. 1f, the magnitude of the effect versus 

baseline is much weaker: the effect for the category across-phase classification of 

memory cues was significantly stronger than the single-stimulus across-phase 

classification (t(24) = 12.47, p<1e-11). This relatively poor performance when category 

was ignored during training was expected, given that category information is likely to 

account for the most variance in stimulus responses. 

 

Even though the classifier showed cross-classification performance that was 

numerically close to chance, we nevertheless examined whether a sequenceness 

measure derived from single-stimulus classification might show a relationship to 

memory retrieval success. In the after condition, we found no relationship between 

single-stimulus backward sequenceness and retrieval success (p = 0.447). However, in 

the before condition we found a positive, but non-significant, relationship between 

single-stimulus forward sequenceness and retrieval success (p = 0.0913). 

 
Supplementary Figures and Tables 
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Figure S1. Memory performance as a function of episode length and whether the 

episode ended in a positive or negative element and performance on final episode re-

ordering test. As in Fig. 1c, the data points for regular performance participants are 

represented in purple and very high performance participants are represented in 

orange. (a and b) Memory did not significantly differ in the after condition by length (t(24) 

= -1.389; p = 0.178; TOST equivalence test p = p = 0.065, thus we are unable to rule 

out the presence of a medium-sized effect) or the before condition by length (t(24) = 

0.661; p = 0.515; TOST equivalence test p = 0.0156). (c and d) Memory did not differ in 

the after condition by end valence (t(24) = -0.068; p = 0.946; TOST equivalence test p = 

0.004) or the before condition by end valence (t(24) = 0.1478; p=0.88; TOST equivalence 

test p = 0.005). Given the null behavioral differences, primary MEG analysis collapsed 

across these variables. (e) Performance on the post-scan episode sequence memory 

re-ordering test (n=24 participants with sequence test data). Individual scores were the 

average of accurate placements of each element within each episode. Sequence 

memory did not have a condition, so regular performance participants (purple) represent 

those participants included in both the after and before condition regular performance 

groups (n = 15); the data points for the remaining high performance participants are 

depicted in orange. (Error bars represent SEM.) 
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 6 

Figure S2. Sequenceness analysis schematic and classifier sensor weighting. (a) 

Classifiers were trained on the 6 categories that made up the episodes. The mean 

weighting (approximate importance) of each sensor for a given category, minus the 

mean across all other categories, for illustration only. (Anterior = top; posterior = 

bottom.) (b). Mean sensor weighting across all categories. (c) Illustration of how the 

trained classifiers are applied to the MEG data timeseries for each cued retrieval period, 

where state 1 - 4 represents episode components 1-4 from Fig. 1a. (d) The 

sequenceness analysis detects systematic time shifts (T) in category evidence. A 

forward sequence illustration is shown on the left; a backward sequence illustration is 

shown on the right. 
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Figure S3. Illustration of localizer classifier performance for the six stimulus categories 

that made up the first 4 components of episodes (face, building, body part, object, 

animal, and car) and performance of a classifier trained for each of the 32 individual 

stimuli from these categories. (a) Cross-validated classification performance for each 

category. Results represent training on the 200 ms time point and testing across all time 

points. (b) Classifier sensor weight correlations across participants within and between-

categories reveal strong within-category similarity, suggesting similar sensor importance 

across participants for the same categories. Categories are sorted as in the legend for 

panel a: face, building, body part, object, animal, and car. (Lasso regularization 

parameter set to 1e-6 to maximize sensor inclusion.) (c) Classification performance for 

each of 32 stimuli. Results represent training on the 200 ms time point and testing 

across all time points. (Colors were randomly assigned.) (d) Cross-classification 

performance for 32 individual stimuli where the classifier was trained on the localizer 

phase (at 200 ms) and tested on the cues in the memory phase. Compare to the 

category level cross-classification in Fig 1f (y-axis range is matched across figures for 

comparison). The dashed line represents the maximum classifier value during pre-trial 

baseline; in statistical tests performance was compared to this baseline value. (e) 

Trained classifier beta weight correlation across sensors across all 32 individual stimuli 

depict natural emergence of category structure. The image represents that average of 

individual participant correlation matrices. (Lasso regularization parameter set to 1e-6 to 

maximize sensor inclusion.) Categories are sorted as in the legend for panel a: face, 

building, body part, object, animal, and car. (Shaded error margins represent SEM.) 
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Figure S4. Source localization results for the six categories of stimuli in the localizer 

phase. Below, each category was contrasted versus all other categories. We found 

expected patterns of activation for the 4 categories that have received the most 

investigation in the literature: faces, buildings, body parts, and objects. For faces, 

activation peaked in a region roughly consistent with the fusiform face area (FFA) as 

well as the occipital face area (OFA). Activation for building stimuli was located between 

the well-known parahippocampal place area (PPA) and the retrosplenial cortex (RSC), a 

region also known to respond to scene and building stimuli. Activation for body part 

stimuli was in a region consistent with the extrastriate body area (EBA). Activation for 

objects was in a region consistent with the object-associated lateral occipital cortex 

(LOC) as well as an anterior temporal cluster that may relate to conceptual processing 

of objects. Activity for the two less-studied categories, animals and cars, was localized 

to different areas of the ventral and posterior occipital cortex. Individual category maps 

thresholded to display localized peaks for illustration. Full unthresholded maps can be 

found at https://neurovault.org/collections/6088/. 
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Figure S5. No significant relationship between sequenceness and trial-by-trial behavior 

at other time lags and in the analysis testing for sequences present in other (non-cued) 

episodes. (a-b) In the after and before conditions, mean sequenceness strength 

(forward-backward) with a 40-50 ms lag did not relate to overall mean memory 

performance (percentage of correct trials). As in Fig. 1c the data points for the regular 

performance participants are shown in purple; high performance participants are shown 

in orange. (c) As in panel a, here for the before condition. (c-d) In the after and before 

conditions, mean 40-50 ms sequenceness for other episode transitions (excluding the 

current episode) did not relate to mean memory performance. (e-f) In the after and 

before conditions, mean 100-120 ms sequenceness for other episode transitions did not 

relate to mean memory performance. 
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Figure S6. Analyses relating both current episode sequenceness and ‘other episode’ 

sequenceness to accuracy; individual participant regression results. (a) In the after 

condition, current episode sequenceness (100-120 ms; left, darker color) remains 

significant (left) while other episode sequenceness at a lag of 40-50 ms shows no 

relationship to successful retrieval (right, lighter color; Table S5). (b) As in panel a, but 

for the before condition. (c) In the after condition, sequenceness derived from current 

episode sequenceness (100-120 ms; left) remains significant while other episode 

sequenceness (derived from all other transitions excluding the current episode 

transitions) at a lag of 100-120 ms shows no relationship to successful retrieval (right; 

Table S5). (d) As in panel c, but for the before condition. (e) Individual regression 

coefficients for the trial-by-trial relationship between sequenceness and successful 

retrieval in the after and before conditions as in Fig. 3a., but derived from a single-level 

GLM. 
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Figure S7. Results of simulating the complete MEG processing and analysis pipeline, 

showing the relationship between sequenceness and trial-by-trial retrieval success. The 

panels show the resulting distribution of p-values derived from the sequenceness-

retrieval success multilevel regression model across 10k simulations. Simulated p-

values were near the 5 % level using both real or simulated behavioral data. (a) In the 

simulations with behavioral variables taken from actual participant data, p-values were 

equal to or less than 5% in the after condition at a rate of 0.055 and in the before 

condition at a rate of 0.04. (After condition in cyan; before condition in blue) (b) In the 

simulations with simulated behavioral variables, the simulated p-value was equal to or 

less than 5% in the after condition at a rate of 0.054 and in the before condition at a rate 

of 0.040. 
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Figure S8. Additional replay onset beamforming results. (a) Timecourse of power 

changes relative to replay onset in the anterior hippocampus in the after (cyan) and 

before (blue) conditions. (Shaded error margins represent SEM.) (b) Power in the right 

visual cortex at replay onset in the after condition, displaying a different view of the 

whole-brain results shown in a coronal section in Fig. 4a. (Statistical maps thresholded 

at p < 0.001 uncorrected, for display.) (c) Power in the left MTL 10 ms before the onset 

of reverse sequenceness events correlated with performance, such that lower 

performing participants showed the strongest increase in power 

(https://neurovault.org/images/306232/). (d) Illustration of performance – power 

relationship in the right anterior hippocampus. Data are for visualization purposes only 

and represent the peak coordinate as in panel c. High performance participants in 

orange; regular performance participants in purple. 
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Figure S9. Time-frequency analysis of replay onsets in the after and before conditions 

separately (a) Time-frequency analysis showing power increases at replay onset in the 

after condition showing frequencies up to ~ 50 Hz. 0 ms represents the onset of putative 

replay events. (Average across all n=25 participants in correct trials.) (b) Time-

frequency analysis as in panel a, here in the before condition. (c) Time-frequency 

analysis of high frequencies in the after condition (using data sampled at 600 Hz) 

relative to replay onset (d) Time-frequency analysis of high frequencies as in panel c, 

here in the before condition. 
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Figure S10. Relationship between accuracy, cue-evoked reactivation, cue response, 

and zero-lag correlation between within-episode category evidence during the retrieval 

period. (a-b) Cue-evoked reactivation of within-episode elements minus other-episode 

elements from 200-250 ms and retrieval success in the after condition (a) and before 

condition (b), included in the regression model with forward and backward 

sequenceness. The effects of cue-evoked reactivation were non-significant (Table S6); 

the relationships between sequenceness and memory were unaffected. (c-d) Cue 

response from 200-250 ms and retrieval success in the after condition (c) and before 

condition (d), included in the regression model with forward and backward 

sequenceness. The effect of cue response was significant in the after condition but not 

the before condition (Table S6); the relationships between sequenceness and memory 

were unaffected. (e-f) The correlation between evidence for within-episode categories 

minus the correlation between all other pairings (zero-lag correlation) across the 160 ms 

– 3667 ms cue period of analysis (e) is not related to trial-to-trial accuracy in very high 

or regular performance participants: High performance (-0.534 ± 0.644; z = -0.829, p = 

0.407); regular performance (-0.093 ± 0.354; z = -0.263, p = 0.792). (f) The correlation 

between within-episode category evidence is driven by high-magnitude events (>= 95 % 

of mean), and activity for these events peaks and falls rapidly. The purple line 

represents the mean across participants in the after condition. (g-h) The zero-lag 

correlation between evidence for within-episode categories minus the correlation 

between all other pairings included in the regression model with forward and backward 

sequenceness in the after condition (g) and in the before condition (h). The effect of 

clustered reactivation was non-significant (after: 0.137 ± 0.463; z = 0.296, p = 0.767; 

before: -0.721 ± 0.494; z = -1.460, p = 0.144); the relationships between sequenceness 

and memory were unaffected. (Error bars represent SEM.) 
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Table S1. Story text example used in the episodic memory encoding phase on the first 

day. The stimuli for the first 4 components were taken from the categories: face, 

building, body party, object, animal, and car. The alternative counterbalance order 

changed component 5 across episodes from positive to negative. 
 
 

Episode Component 1 Component 2 Component 3 Component 4 Component 5 

1 I had a big 
elephant 

and guided it to 
the barn 

a freckled 
woman was 
waiting there 

and cleaned it 
with a toothbrush 

then we all had 
birthday cake. 

2 A man facing 
away 

played a 
harmonica 

while we 
watched a bear 

try to open an 
SUV 

after which we 
enjoyed the sunny 
day. 

3 
I was sitting 
outside the 
stone house 

trying to fix a 
computer mouse 

when a sports 
car pulled up 

and a young 
Asian man 

gave me a pile of 
gold coins for my 
work. 

4 I found the 
key I needed 

to get into the 
warm cabin an Asian woman massaged my 

sore shoulder 

and we celebrated 
her graduation with 
balloons. 

5 I was playing 
with a girl 

outside her big 
white mansion 

when a turtle 
appeared 

and walked over 
her feet 

but we had to hide 
from the 
thunderstorm. 

6 I called for a 
taxi 

to give my tired 
knees a rest 

and rode with a 
guy in my class 

to go look at a 
deer 

but then I had to go 
study for an exam. 

7 I was using 
scissors 

to trim the man's 
beard 

then we took a 
mini car 

to the pastel 
hotel 

but I slipped and fell 
on some marbles. 

8 At the 
greenhouse 

my friend 
pressed her 
hand to the 
glass 

then I saw a 
pickup truck 
drive by 

and noticed a 
horse getting 
groomed outside 

but then we had to 
drag out the trash.  
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Table S2. Post-experiment written questionnaire answers to questions about memory 

retrieval. The second column represents the free-form answers to the question “How 

were you able to remember the associations for the memory questions?”. The third 

column, labeled ‘Static’, represents the answers to the question “Today, did your 

memories appear in mind as a sequence or story through time, or did the pictures all 

appear together as a single combined "static" memory? Single(static) = 1, Sequence 

(story)=5”. The fourth column, labeled ‘Cue’, represents the answer to the question 

“When remembering, did you mostly use the period during the initial (fading) picture 

"cue" to remember, or more the time when the answer option appeared? During the cue 

= 1, at the answer=5”. 
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Num How were you able to remember the associations for the memory 
questions? 

Q: 
Static 

Q: 
Cue 

311 I tried to quickly "say" to myself the pictures before/after the one on the 
screen. Then I concentrated whether I see them. 2 2 

312 Mostly "gut" feeling. 2 2 
313 Relating some pictures. 1 3 
314 Some stories that were more relatable to my life were easier to recall. 5 3 

315 pretty well, it improved over time, but sometimes my concentration 
slipped, or I pushed wrong button.  3 1 

316 Trying to recall the story and the order in which the pictures occurred in 
said episode.  4 1 

317 I just briefly recalled the stories and quickly ran through the associated 
images in the episode before seeing the question. 4 2 

318 Based on the "stories". 4 4 
319 My own creations/storyline. - 1 
320 Using stories, mnemonics. 4 2 

322 By remembering the stories or scene which linked the 5 pictures and their 
order. 4 2 

323 From the story/associations. 2 4 
324 Trying to remember the story. 2 1 

325 I don't think I am able to remember the whole episode, but most of the 
time, I would remember half.  4 3 

326 I remember parts of the story line but also remembering which picture 
was connected to the specific episode.  4 1 

327 Remember the sequence of events per scenario as a story.  5 1 

328 
I tried to remember the stories and the names you gave to the faces. I 
only remembered some stories so I guessed the other ones through a 
process of elimination. 

4 4 

329 I tried to remember the stories with the episode.  2 1 
331 Using the stories from yesterday. 5 1 

333 For around half of the stories, it was by eidetic recall. For the other, gut 
instinct. 3 3 

334 I tried my best to remember the provided story lines.  4 2 
335 Based on the stories I made up from the day before.  5 2 
336 Tried to remember the stories.  4 2 

337 Own story, verbal encoding e.g. faces looked like some people I knew, 
etc. 2 3 

338 Pictured by picture recall and occasionally gut feeling.  5 2 
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Table S3. Multilevel modeling results for the inclusion of all participants in the model 

relating sequenceness and accuracy and effect of task time (trial). Top: model including 

all participants (with lag selecting using leave-one-out cross validation). Bottom: model 

including interaction of sequenceness and task time (trial) in regular performing 

participants. 

 

After condition (all n = 25) 

Accuracy ~ coef. ste z-stat p-value 
Intercept 1.2226 0.1594 7.671 <0.0001 
SeqFwd -0.1543 0.0718 -2.148 0.0280* 
SeqBkw 0.1676 0.0713 2.35 0.0168* 

Before condition (all n = 25) 

Intercept 1.374 0.1698 8.091 <0.0001 
SeqFwd 0.176 0.0685 2.571 0.0152* 
SeqBkw -0.0456 0.069 -0.661 0.4912 

After condition: interaction with trial 

Intercept 0.8586 0.1139 7.539 <0.0001 
SeqFwd -0.1403 0.0788 -1.78 0.0744 
SeqBkw 0.1705 0.0791 2.155 0.0296* 

Trial -0.1274 0.1351 -0.943 0.3696 
SeqFwd * Trial -0.0937 0.1288 -0.728 0.4704 
SeqBkw * Trial -0.1573 0.1337 -1.176 0.2496 

Before condition: interaction with trial 

Intercept 0.9672 0.112 8.634 <0.0001 
SeqFwd 0.1643 0.0735 2.235 0.0248* 
SeqBkw -0.0548 0.0746 -0.734 0.4232 

Trial 0.1543 0.1359 1.135 0.2544 
SeqFwd * Trial -0.0885 0.1197 -0.739 0.4408 
SeqBkw * Trial -0.1147 0.1209 -0.949 0.3544 
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Table S4. Multilevel modeling results for the relationship between sequenceness from 

all transitions found in ‘other’ episodes (40-50 ms; excluding transitions from the current 

episode) to accuracy. Bottom: the preceding model plus the primary measure of 

sequenceness from current episode transitions (100-120 ms). 

After condition: Other transition measure (40-50 ms) 

Accuracy ~ coef. ste z-stat p-value 
Intercept 0.0617 0.08417 7.696 <0.0001 

SeqFwd ‘Other’ Tx 0.06168 0.08417 0.733 0.4592 
SeqBkw ‘Other’ Tx 0.03377 0.06787 0.498 0.6176 

Before condition: Other transition measure (40-50 ms) 

Intercept 0.9713 0.11101 8.749 <0.0001 
SeqFwd ‘Other’ Tx 0.00049 0.07813 0.006 0.9792 
SeqBkw ‘Other’ Tx -0.05764 0.06532 0.882 0.3856 

After condition: Current + other transition (40-50 ms) 

Intercept 0.86205 0.11319 7.616 <0.0001 
SeqFwd -0.12962 0.07888 -1.643 0.1024 
SeqBkw 0.18399 0.07862 2.340 0.0240* 

SeqFwd ‘Other’ Tx 0.05676 0.08312 0.683 0.5024 
SeqBkw ‘Other’ Tx 0.03009 0.06877 0.438 0.6848 

Before condition: Current + other transition (40-50 ms) 

Intercept 0.97577 0.11245 8.677 <0.0001 
SeqFwd 0.16231 0.07315 2.219 0.0360* 
SeqBkw -0.04968 0.07465 -0.666 0.4968 

SeqFwd ‘Other’ Tx -0.00061 0.07878 -0.008 0.9936 
SeqBkw ‘Other’ Tx -0.06276 0.06570 -0.955 0.3528 
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Table S5. Multilevel modeling results relating the effect of sequenceness from all 

transitions found in ‘other’ episodes (100-120 ms; excluding transitions from the current 

episode) to successful retrieval. Bottom: the preceding model plus the primary measure 

of sequenceness from current episode transitions (100-120 ms). 

 

After condition: other transition measure (100-120 ms) 

Accuracy ~ coef. ste z-stat p-value 
Intercept 0.8522 0.1112 7.662 <0.0001 

SeqFwd ‘Other’ Tx 0.1414 0.0791 1.788 0.0832 
SeqBkw ‘Other’ Tx -0.0527 0.0787 -0.669 0.4968 

Before condition: other transition measure (100-120 ms) 

Intercept 0.9657 0.1109 8.712 <0.0001 
SeqFwd ‘Other’ Tx -0.1115 0.0812 -1.373 0.1480 
SeqBkw ‘Other’ Tx -0.0013 0.0802 -0.016 0.9712 

After condition: current + other transition (100-120 ms) 

Intercept 0.8549 0.1127 7.589 <0.0001 
SeqFwd -0.1268 0.0853 -1.488 0.1248 
SeqBkw 0.1540 0.0823 1.872 0.0472* 

SeqFwd ‘Other’ Tx 0.1053 0.0850 1.239 0.2320 
SeqBkw ‘Other’ Tx -0.0176 0.0870 -0.203 0.8368 

Before condition: current + other transition (100-120 ms) 

Intercept 0.9728 0.1128 8.627 <0.0001 
SeqFwd 0.1796 0.0782 2.296 0.0160* 
SeqBkw -0.0153 0.0790 -0.194 0.8352 

SeqFwd ‘Other’ Tx -0.1346 0.0862 -1.562 0.1240 
SeqBkw ‘Other’ Tx -0.0745 0.0865 -0.861 0.3536 
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Table S6. Multilevel modeling results relating cue-evoked responses (200 – 250 ms 

post-onset) and sequenceness to accuracy. Top: inclusion of cue-evoked 

representation of current episode categories (omitting the on-screen category) minus 

other-episode categories. Bottom: inclusion of the response to the cue category itself. 

 

After condition: Current-other episode reactivation 

Accuracy ~ coef. ste z-stat p-value 
Intercept 0.8534 0.1128 7.562 <0.0001 
SeqFwd -0.1366 0.0779 -1.753 0.0816 
SeqBkw 0.1862 0.0779 2.39 0.0160* 

Current-Other coef. 0.8489 0.6786 1.251 0.2040 

Before condition: Current-other episode reactivation 

Intercept 0.962 0.112 8.586 <0.0001 
SeqFwd 0.1601 0.0727 2.202 0.0256* 
SeqBkw -0.0574 0.0739 -0.777 0.4240 

Current-Other coef. 0.5279 0.7212 0.732 0.4400 

After condition: Cued category response 

Intercept 0.847 0.1123 7.541 <0.0001 
SeqFwd -0.1276 0.078 -1.636 0.0984 
SeqBkw 0.1882 0.0779 2.415 0.018* 

Cue response coef. 1.5659 0.5896 2.656 0.0016* 

Before condition: Cued category response 

Intercept 0.9615 0.1118 8.597 <0.0001 
SeqFwd 0.16 0.0727 2.202 0.0256* 
SeqBkw -0.0564 0.074 -0.763 0.4464 

Cue response coef. 0.0133 0.7267 0.018 0.8424 
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Table S7. Multilevel modeling results for the interaction between sequenceness and 

episode length (long, short) or episode end valence (positive, negative) on accuracy. 

 

After condition: Length 

Accuracy ~ coef. ste z-stat p-value 
Intercept 0.8415 0.1129 7.456 <0.0001 
SeqFwd -0.1375 0.0782 -1.757 0.0808 
SeqBkw 0.1948 0.0783 2.487 0.0080* 
Length -0.0909 0.0822 -1.105 0.2912 

SeqFwd * Length 0.013 0.0783 0.166 0.8680 
SeqBkw * Length 0.0105 0.0786 0.134 0.8938 

Before condition: Length 

Intercept 0.9602 0.1127 8.517 <0.0001 
SeqFwd 0.1612 0.0732 2.204 0.0296* 
SeqBkw -0.0616 0.0741 -0.831 0.4152 
Length 0.0744 0.08 0.929 0.3672 

SeqFwd * Length -0.0849 0.0732 -1.159 0.2664 
SeqBkw * Length 0.0529 0.0744 0.711 0.4728 

After condition: End valence 

Intercept 0.8702 0.1166 7.463 <0.0001 
SeqFwd -0.1175 0.079 -1.488 0.1208 
SeqBkw 0.1821 0.0789 2.307 0.0200* 
Reward -0.0873 0.0842 -1.037 0.3000 

SeqFwd * Valence 0.1108 0.079 1.402 0.1760 
SeqBkw * Valence -0.2005 0.08 -2.505 0.0128* 

Before condition: End valence 

Intercept 0.964 0.1116 8.638 <0.0001 
SeqFwd 0.1561 0.0733 2.129 0.0304* 
SeqBkw -0.0541 0.0744 -0.726 0.4624 
Reward -0.005 0.0915 -0.055 0.9648 

SeqFwd * Valence -0.0071 0.0734 -0.097 0.9104 
SeqBkw * Valence -0.0047 0.0745 -0.062 0.9344 
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Table S8. Whole-brain beamforming MEG results for replay onset in the after and 

before conditions. Clusters significant whole-brain FWE-corrected after an initial 

threshold of p < 0.001 to provide interpretable clusters. 

 

Contrast Regions Cluster 
size x y z Peak z 

stat 

After 
backward 

replay onset 

L Lingual Gyrus 
5495 

-14 -86 -4 
4.69 L Lingual Gyrus -22 -70 2 

L Middle Occipital Gyrus -32 -84 6 
R Calcarine Sulcus 

1198 
26 -58 20 

3.9 R Parietal Lobe 36 -60 32 
R Calcarine Sulcus 28 -46 4 
R Anterior Hippocampus 

2151 
20 -10 -18 

3.72 R Ventral Thalamus 4 -20 -6 
R Anterior Hippocampus 20 -2 -22 

Before 
forward 

replay onset 

R Midbrain 
1707 

2 -32 -18 
3.73 R Parahippocampal Gyrus 14 0 -34 

R Entorhinal Cortex 14 -2 -24 
After 

backward       
-10 ms & 

performance 

L Entorhinal Cortex 
1046 

-22 -8 -32 
3.82 L Entorhinal Cortex -18 -16 -26 

L Anterior Hippocampus -34 -12 -24 
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