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Abstract

Memory for everyday experience shapes our representation of the structure of the
world, while retrieval of these experiences is fundamental for informing our future
decisions. The fine-grained neurophysiological mechanisms that support such retrieval
are largely unknown. We studied participants who first experienced, without repetition,
unique multi-component episodes. One day later, they engaged in cued retrieval of
these episodes whilst undergoing magnetoencephalography (MEG). By decoding
individual episode elements, we found that trial-by-trial successful retrieval was
supported by sequential replay of episode elements, with a temporal compression factor
greater than 60. The direction of replay supporting this retrieval, either backward or
forward, depended on whether a participant’s goal was to retrieve elements of an
episode that followed or preceded a retrieval cue, respectively. This sequential replay
was weaker in very high performing participants, where instead we found evidence for
simultaneous clustered reactivation. Our results demonstrate that memory-mediated
decisions are supported by a rapid replay mechanism that can flexibly shift in direction

in response to task requirements.

One Sentence Summary

Recall of extended episodes of experience is supported by compressed replay of
memory elements that flexibly changes direction depending on task temporal

orientation.


https://doi.org/10.1101/758185
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/758185. this version posted December 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

Main Text

Although a subject of intense study, the fine-grained mechanisms underlying how
we retrieve episodes of experience are unknown (7). Understanding the supporting
neurophysiological processes can reveal how episodes are represented in memory, and
how they are subsequently retrieved to guide behavior (2, 3). Here we investigate
whether episodes of experience are represented in a way that yields compressed
sequential replay at retrieval, whether such replay supports successful retrieval, and

whether the directionality of replay is flexibly tuned by internal goals.

Observations from animal studies have identified offline reactivation of
sequences of hippocampal place cells that reflect past and future trajectories, thought to
support memory consolidation, retrieval, and planning (4-6). Recently, animal studies
have established a relationship between such replay strength and successful
performance on spatial navigation tasks (4, 5). It has also been speculated that

compressed replay might also support episodic memory retrieval in humans (7).

Human neuroimaging studies provide evidence for rapid cue-elicited reactivation
of stimulus associations at retrieval (8-77) including overlapping replay of episode
elements (718). A limitation of these studies is their inability to probe mechanisms
supporting structured and temporally compressed reactivation, i.e. replay that proceeds
at a rate faster than the original experience. An advance in human neuroimaging
research has been a recent identification of rapid sequential replay of internal state
representations (79, 20). Here, we leverage these same methods to ask whether

sequential replay supports memory based decisions in humans.
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We tested a hypothesis that episodic memory retrieval depends on rapid
compressed replay of memory elements. Previous research demonstrating replay,
which did not link replay to behavior, identified a short 40-50 ms lag between states
(elements of a sequence) either during tasks involving lengthy planning periods or
during undemanding rest periods (79, 20). Under similar conditions in rodents replay is
known to occur preferentially during brief high-frequency sharp-wave ripple (SWR)
events in the hippocampus (27-23). In contrast, theta-related sequence events are
observed during active navigation and decision making (21, 22, 24, 25). The latter led
us to expect that, during active memory retrieval, performance would be supported by

replay events with a different and potentially longer lag between states.

Replay direction, forward or backward, is not always associated with particular
task requirements in rodent research, though some studies show it is influenced by
conditions such as active movement and reward receipt (20, 26, 27), potentially serving
different computational functions (28). Recent MEG studies in humans have found
reverse direction replay (79), or both forward and reverse replay (20). Based on these
observations we expected replay direction would change flexibly based on internal
states or task demands. In relation to our study design, we predicted replay would
switch direction depending on whether the current goal was to retrieve memory
components that followed a cued element, compared to having to retrieve memory
components that preceded a cued element. In humans, replay onset has been
associated with high-frequency power increases in the medial temporal lobe (MTL)

(MTL) (20), and while we did not expect similar high-frequency changes, we
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nevertheless expected that the onset of memory replay events, irrespective of

directionality, would be coupled to increased power in the medial temporal lobe (MTL).

Further, we reasoned that the strength of encoding, as reflected in better memory
performance, would relate to enhanced memory consolidation (7, 7). Greater
experience is associated with less marked replay in rodents (25, 29), and this predicts a
less dominant expression of replay in participants who show near-ceiling memory
performance. In these participants, theoretical proposals suggest a form of clustered
pattern completion for episode elements (9, 30, 37). Importantly, this predicts that,
within participants, trial-by-trial sequenceness strength should relate positively to trial-
by-trial retrieval success. At the same time, if very high performing participants do not
rely to the same degree on a replay mechanism for retrieval, then across participants
this entails that mean sequenceness strength could be negatively related to mean
memory performance.

We designed a novel episodic memory task and combined this with our recently-
developed MEG analytic methods (19, 20). In brief, on day 1 participants experienced
temporally extended self-oriented episodes, where each single-exposure episode was
itself composed of five discrete and unique picture stimuli that were assembled into a
narrative story (Fig. 1a and Fig S1). Following an overnight consolidation period, we
then elicited cued retrieval of these episodes whilst obtaining MEG data to index fast

neural dynamics supporting retrieval (Fig. 1b).
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Fig. 1. Experimental design and decoding of the episode elements. (a) On day 1, in the
episodic encoding phase we presented subjects with eight extended non-spatial
episodes, with a single exposure per episode. Episodes contained five stimulus

elements. The first four episode elements were selected from six distinct picture
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categories. Participants were incentivised to encode the precise order of the episode
elements. (b) On day 2, in the episodic memory test phase, participants retrieved
episodes in two conditions. In the ‘after’ condition, participants were asked to identify
whether a subsequent probe element came after the cue element. Following a 5.5 s
retrieval period, a test probe presented. The sequential order referred to any stimulus
from the same episode that followed this cue; here, the depicted answer would be
‘correct’. By contrast, in the ‘before’ condition, participants were asked to identify
whether a subsequent probe element came before the cue element. (¢c) Mean memory
performance in the after and before conditions. Purple dots represent individual data
points for regular performance participants with sufficient incorrect response (error)
trials free from MEG artifacts for accuracy analyses (after, n = 17; before, n = 18); the
remaining very high performance participants are shown in orange (see also Fig. S1).
(d) Classifier performance for episode element categories presented during the localizer
phase, training and testing at all time points, showing good discrimination of the 6
categories used to compose the first four episode elements. In localizer trials, note that
a word naming the upcoming stimulus appeared 2 s before the stimulus, contributing to
above-chance classification at 0 ms. (e) Peak classifier performance at 200 ms after
stimulus onset in the localizer phase (depicting the diagonal extracted from panel d; see
also Fig. S3). Dashed line represents the mean across time 95 % level of randomly
shuffled classifier labels. (f) Application of the trained classifier (at 200 ms) to cue onset
in memory retrieval trials demonstrated above chance decoding of the current on-
screen category during retrieval. Dashed line represents the maximum value of
classifier during pre-trial baseline; performance was compared to this baseline value.

(Error bars and shaded error margins represent standard error of the mean (SEM).)

As a first step we confirmed we could reliably identify neural patterns associated
with individual episode elements, each drawn from one of six different stimulus
categories. Note that the final element of each episode was not taken from a decoded

category. A classifier trained on the localizer phase showed successful discrimination of
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the categories that made up the episodes with peak decoding at 200 ms after stimulus
onset (Fig. 1d-e; Fig. $S3-S4), in line with previous reports (79, 20). In an exploratory
low-powered analysis of single stimuli, we found that these categories were also evident
as clusters of similarity in trained sensory weights (Fig. S3; Supp. Results). The trained
classifier generalized to the memory retrieval phase, showing significant across-phase
classification of cue category (peaking at 210 ms after the cue; compared to chance at
200 = 10 ms (the peak timepoint in localizer phase) t24) = 9.80, p < 0.001; Fig. 1f).

To test specific predictions of a replay mechanism underlying episodic retrieval,
we next sought evidence for compressed sequential reactivation of episode elements
during the retrieval period. In this analysis, we first derived measures of category
evidence — representing reactivation of memory elements — at each timepoint by
applying the trained classifiers to retrieval period MEG data. We then tested for lagged
cross-correlations between episode element reactivations across the retrieval period,
yielding a measure of ‘sequenceness’ in both forward and backward directions (19, 20)
(Fig. S2; Methods). Following an approach used in previous reports, to identify time
lags showing potential sequenceness and examine a relationship to individual
differences in memory performance, we tested for a difference between forward and
reverse direction components (79, 20). Our initial analyses focused on memory retrieval
in the after condition. Here participants are asked to identify whether a probe element
came sequentially after the cue element, a condition we considered would be easier
and more naturalistic than the before condition.

For the individual differences analysis, we identified a state-to-state time lag of

interest by focusing on correct trials, where we expected stronger sequenceness. In the
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after condition, we identified an overall dominance of reverse replay (backwards >
forwards sequenceness) during correct trials, peaking between 100-120 ms (Fig. 2a).
The peak lag between 100-120 used for the independent individual difference analyses
does not survive correction for the number of tests across lags, so it should not be
interpreted on their own. Of interest, this time window for rapid online retrieval
represents a longer state-to-state time lag than the 40-50 ms lag found in other
experiments reporting replay during extended planning or rest (79, 20). As in rodents,
these fast resting replay events (with 40-50 ms state-to-state time lag) have been
associated with sharp-wave ripples in humans (20). However, rodents also show
sequence events during ongoing behaviour that are associated with ongoing
hippocampal theta rhythms (24, 25), though heretofore such online sequence events
have not yet been identified in humans.

To provide an initial test of an association between replay and episodic retrieval,
we examined the relationship between replay strength in correct trials and overall
memory performance. We found that differential sequenceness correlated with mean
memory performance (100-120 ms lag; r = 0.4254, p = 0.034; Fig. 2b). As
sequenceness was on average negative — showing predominantly a reverse direction of
replay — this suggests that stronger reverse replay is a characteristic of individuals with
weaker performance. Notably, this relationship between replay and memory strength is
in line with the findings in rodents showing stronger sequenceness during initial
acquisition compared to later high performance (25, 29).

As an initial test of our prediction that internal goals — whether looking forward or

backward in time through an experience — are important for retrieval and replay, we
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examined whether the relationship between replay and individual differences in
performance changed from the after compared to the before condition. If task goal
affected replay, we would expect stronger forward sequenceness to be related to
weaker performance. Indeed, in the before condition we found the degree of dominantly
forward sequenceness correlated negatively with mean memory performance (100-120
ms lag; r = -0.4077; p = 0.0431; Fig. 2c). We then examined the strength of these
correlations using a conservative permutation approach, where the goal was to test for
a potential influence of a decreasing number of correct trials per mean datapoint going
from high to low performing participants. In the after condition the correlation between
sequenceness and mean performance exceeded the conservative permutation
threshold (adjusted 5 % level 0.041, versus p = 0.034) while the strength of the before
condition effect fell just outside the permutation threshold (adjusted 5 % level 0.0395,
versus p = 0.043).

Comparing the after and before results, we found that the correlation between
sequenceness and performance in the after condition differed significantly from that in
the before condition (z = 2.411; p = 0.0159; two-tailed, conservatively using the test for
dependent correlations). This provides initial support for our prediction that retrieval
orientation influences the characteristics of replay that support behaviour. Importantly,
the results in the after and before conditions both indicated that replay was stronger in
participants with lower overall performance, with replay playing a lesser role in retrieval
for participants with near-ceiling levels of performance. However, these results do not
indicate per se whether sequenceness is positively or negatively related to trial-by-trial

retrieval success.

10
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We found no across-participant relationship between mean sequenceness and
behavior in the shorter 40-50 ms state-to-state time lag as identified in previous studies
(Fig. S4). In an exploratory analysis that examined evidence for sequences of episode
elements present in any of the other 7 episodes (but not present in the current episode),
we found a numerically negative sequenceness effect at 40 ms, but again found no

relationship to memory performance (Fig. S4).
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Fig. 2. Mean sequenceness (replay) in the after condition and the relationship between
sequenceness and performance in the after and before memory retrieval conditions
respectively. (a) In the after condition, mean forward minus backwards sequenceness
for correct memory trials (when participants accurately answered the memory question).
On correct trials, a peak of reverse sequenceness was observed at lags from 100-120
ms. This time window was used for subsequent analyses. (Shaded error margins
represent SEM.) (b) In the after condition, stronger mean reverse sequenceness on
correct trials correlated negatively with overall mean memory performance (percentage
of correct trials). As in Fig. 1¢ the data points for the regular performance participants
are shown in purple; high performance participants are shown in orange. (c¢) In the
before condition, stronger forward sequenceness related to lower performance. The
overall results in the after and before conditions support a stronger role for replay in

retrieving weaker memory traces.
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We next exploited analytic techniques that simultaneously examined the
influence of forward and backward sequenceness on memory performance. First, we
examined the relationship between sequenceness and individual differences in
performance. This confirmed the above results, namely that weaker memory
performance related to stronger reverse replay in the after condition, and to stronger
forward replay in the before condition (see Supp. Results).

To examine whether trial-by-trial forward and reverse sequenceness related
positively or negatively to retrieval success, we utilized multilevel regression analyses.
These analyses include more than a hundred datapoints per participant and are thus
the most highly powered analyses in the current experiment. For these analyses we
excluded very high performing participants, as they have too few incorrect trials to
support reliable estimates. We first independently localized a time lag of interest using
leave-one-participant-out cross-validation procedure, again identifying a peak time lag
of 110 ms in all participants except one very high performing participant (who showed a
lag of 170 ms); thus, we used a 110 + 10 ms lag for all regular performance participants
with sufficient incorrect trials for analysis.

In the after condition, we found that reverse sequenceness from 100-120 ms
related positively to trial-by-trial retrieval success (multilevel regression on accuracy in n
= 17 participants with sufficient incorrect trials; forward 8 = -0.1336 [-0.299 -0.020]; z = -
1.714; p = 0.0920; reverse £ 0.1881 [0.042 0.338]; z = 2.416; p = 0.0176; Fig. 3a). An
example of a reverse sequence in the after condition for a single participant is shown in

Fig. 3c. By contrast, in the before condition forward, but not reverse, sequenceness

12
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related positively to accuracy (regression in n = 18 participants with sufficient incorrect
trials; forward 8 = 0.160 [0.014 0.305]; z = 2.202; p = 0.0264; reverse 3 = -0.0564 [-
0.207 0.091]; z =-0.763; p = 0.470; Fig. 3A). An example of a forward sequence in the
before condition for a single participant is shown in Fig. 3d. In the after and before
conditions, the forward or reverse direction of sequenceness that related to trial-by-trial
retrieval success was the same as the performance-related direction identified in the
individual difference analyses. The same relationships between sequenceness and
retrieval success were also found in models where we included all participants (Table
S3). Importantly, we found a significant interaction between both forward and reverse
replay and the after versus before goal condition (condition by forward replay 8 = -
0.1608 [-0.271 -0.049]; z = -2.865; p = 0.0032; condition by reverse replay g = 0.1408
[0.029 0.250]; z = 2.499; p = 0.0096; Fig. 3b; n = 15 participants with sufficient incorrect
trials in both the after and before conditions).

As in the individual differences analyses, in the trial-by-trial analyses, we did not
find any relationship between the sequenceness measure derived from the alternative 7
episodes (‘other episode’ sequenceness) and retrieval success at a 40-50 ms lag
(identified via leave-one-out cross-validation on this sequenceness measure; p-values >
0.35; Supp. Results; Fig. S6; Table S5), while sequenceness derived from the current
episode transitions remained significant. An additional other episode sequenceness
measure derived from a 100-120 ms lag was also not related to behavior (Fig. S6;Table
S6).

It is possible that the underlying representations of episodes may change across

the many cued retrieval events, despite the original episodes not being actually re-
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experienced. To investigate this possibility, and in particular whether our results were
driven by effects that appear after extensive practice, we examined whether the
sequenceness-accuracy relationship changed over the course of the retrieval task. We
found, if anything, a tendency for a numerical decrease in the sequenceness-accuracy
relationship over the course of the experiment, and this was true for both the after and
before conditions (Table S3). It is also possible that participants developed strategies to
sequentially reactivate items in different orders with respect to the after and before
conditions. However, we found no evidence for this in participant self-reports (Table
S2).

In a final control analysis, we address concerns about potential bias in our
analyses. Thus, we conducted simulations of the full processing and analysis pathway,
from the generation of localizer data through to the final step of multilevel regressions
that relate sequenceness to retrieval success. The simulation results confirmed that the
relationship between randomly generated MEG data and behavioral measures was
what would expected by chance: the false positive rate was near an expected 5 % level
in both the after condition (0.055) and before condition (0.04; Fig. S7).

The relationship between sequenceness and successful memory retrieval in both
the after and before conditions provides a clear link between sequenceness and
behavior. While the initial individual differences analyses found relatively stronger
sequenceness in regular performing participants, these trial-by-trial results demonstrate
that within regular performance participants, sequenceness strength is positively related
to retrieval success. Incorporating the results of the individual difference analyses and

the trial-by-trial analyses, we establish a double dissociation between replay direction

14


https://doi.org/10.1101/758185
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/758185. this version posted December 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

and a participant’s internal goal condition during retrieval. These findings demonstrate a
flexibility in replay directionality that goes beyond previously reported effects of external

events such as reward receipt (20, 27).
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Fig. 3. Relationship between forward and backward sequenceness and trial-by-trial
memory retrieval success in the after and before conditions. (a) In the after condition
(left), successful memory retrieval was supported by reverse sequenceness. In the
before condition (right), retrieval was supported by forward sequenceness. See also

Fig. S6 for individual participant regression coefficients derived from a single level
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analysis. (b) Interaction of replay direction (forward, backward) by condition (after,
before) showing a stronger effect of forward replay on trial-by-trial successful memory
retrieval in the before condition, and a stronger effect of backward replay on successful
memory retrieval in the after condition. (The regular performance group in the combined
sequenceness analysis included n = 15 participants common to the regular performance
group across the after and before conditions.) (¢) Example of reverse sequenceness in
the after condition. (d) Example of forward sequenceness in the before condition. (s =

participant; trl = trial; *p < 0.05; **p < 0.01; error bars represent SEM).

Inspired by neurophysiological studies showing that the hippocampus is a source
for replay events, we next examined whether replay event onset related to power
increases within the medial temporal lobe (20). Candidate replay onsets were identified
by locating sequential reactivation events showing a 110 ms lag, applying a stringent
threshold to these events, and using beamforming analysis to localize broadband 1-45
Hz power changes related to replay event onsets. For reverse replay events (in the after
condition) and for forward replay events (in the before condition), this analysis localized
activity at replay onset to a region of right anterior MTL, encompassing the
hippocampus and entorhinal cortex (after: z = 3.72, p <0.001 whole-brain FWE; before:
z=3.73, p < 0.001 whole-brain FWE; Fig. 4a-b; Table S2), consistent with human fMRI
results during rest in a cognitive paradigm (32). The increase in MTL power was
selective to replay onset, with an additional secondary peak in the after condition 1 lag
later at 110 ms (Fig. S8). In the after condition, replay onset also related to activity in
two significant clusters in the right visual cortex (Fig. S8; Table S2). Finally, we found
evidence for stronger power immediately preceding replay onset in the left anterior MTL

in participants with lower performance (z = 3.82, p = 0.003 whole-brain FWE; Fig. S8).
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299 before condition, power in the right anterior MTL increased at the onset of forward
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301 for display; for unthresholded statistical maps see:
302 https://neurovault.org/collections/6088/) (¢) Time-frequency analysis showing power
303 change relative to replay onset across the after and before conditions in frequencies up
304 to 50 Hz. 0 ms represents the onset of putative replay events. (d) Time-frequency
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analysis of replay onset showing no high frequency power change relative to replay

onset across the after and before conditions (using data sampled at 600 Hz).

Replay onset was associated with broadband power increases from
approximately 8 Hz up to 45 Hz in across the after and before conditions (Fig. 4c and
Fig. S9). In the frequency range of our element-to-element lag (8-12 Hz, approximately
human alpha), we found an increase in power at replay onset (1(24) = 4.267 [0.003
0.008], p < 0.001). However, we found no evidence for power increases in the high
gamma frequency range that have been associated with replay events during rest
(events that may be related to sharp-wave-ripple events; 120-150 Hz; t(24) = 1.150 [-

0.001 0.005], p = 0.262) (20) (Fig. 4d and Fig. S9).

Finally, as very high performing participants did not show any relationship
between replay and performance, we examined the hypothesis that retrieval for strongly
encoded memories is based on clustered pattern completion. Across all participants,
with a rapid appearance following cue onset, we found significant evidence for
reactivation of within-episode elements compared to other-episode elements, none of
which were displayed on the screen (average across timepoints showing the strongest
classification of on-screen cues, 210 £10 ms post-cue ti24) = 3.978, p < 0.001; Fig. 5a).
A reactivation event from a single participant is shown in Fig. 5b.

To examine the relationship between the cue-evoked reactivation effect and
memory in very high performance participants, instead of a contrast of correct versus
incorrect trials, we used a measure of mean performance for the episode cued on the

current trial (a graded measure from 0 to 1). Cue-evoked reactivation was averaged
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across the 200-250 ms peak difference of current versus other episode elements.
Reactivation positively related to performance on a given episode in very high
performing participants (n = 10; 8 = 0.0795 [0.0321 0.1250]; t = 3.442; p < 0.0008; Fig.
5c), an effect stronger in high compared to regular performance participants (regular g =
-0.0440 [-0.1387 0.0512]; t = -0.918; p = 0.3568; difference 8 = 0.125 [0.005 0.244]; t =
2.035; p = 0.0376; Fig. 5¢). In a follow-up analysis, we found that the effect in very high
performance participants related positively to evidence for within-episode elements (p <
0.04) and related negatively to evidence for other-episode elements (p < 0.06); neither
measure related to accuracy in the regular performing participants (p-values > 0.29).

Additionally, although based on a very low number of trials, in very high
performing participants we found that correct trials related to higher cue-evoked
reactivation as compared to incorrect trials (8 = 2.497 [0.4009 4.444]; t = 2.409; p =
0.024; Fig. $10). We found no significant relationship between cue-evoked responses
and accuracy in regular performance participants (regular 8 = 0.6291 [-0.3483 1.6681]; t
=1.281; p = 0.2072; difference B = 1.872 [-0.052 4.385]; t = 1.633; p = 0.116).
Importantly, in regular performing participants, the trial-by-trial relationship between
sequenceness and accuracy in both the after and before conditions remained significant
when including cue-evoked reactivation in the same model while the cue-evoked
reactivation measure was not significant (Fig. S10; Table S5).

In additional control analyses, we examined the relationship between memory
and responses to the cued category itself as well as overall classifier strength
throughout the remainder of the retrieval period. First, responses to the cued element

on the screen did not relate to mean episode performance or accuracy across
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conditions (from 200-250 ms; p-values > 0.13). However, in regular performing
participants in the after condition (where all cues are decodable) a positive relationship
was evident between accuracy and cue responses (p = 0.0016; Fig. S10; Table S6).
Importantly, however, the relationship between backward sequenceness and memory
remained significant in a model that included cued category responses, suggesting
potential independent mechanisms contributing to performance. We found no
relationship between responses to the cued category and forward or backward
sequenceness itself in either the after or before conditions (p-values > 0.42).

In the post-cue retrieval period (following the initial 200-250 ms cue-evoked
response period), we found no relationship between successful retrieval and classifier
evidence for the on-screen cue stimulus, the within-episode categories, or the other
episode categories (on average across the remaining 250 — 3670 ms time window, p-
values > 0.19). The classifier results also did not show differential evidence for the
fading cue: we found no overall difference in classifier evidence between the cued on-
screen stimulus, the within-episode categories, and other episode categories (p-
values > 0.83). Finally, in an exploratory analysis of simultaneous joint reactivation of
different categories, while we could identify putative simultaneous reactivation events
during the retrieval period, we found no relationship between these events and
performance in regular performance participants (Fig. $S10), supporting the importance

of sequential reactivation for successful episodic memory retrieval.
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Fig. 5. The relationship between cue-evoked reactivation and performance. (a) Across
both the after and before conditions, we found evidence for cue-evoked reactivation of
the elements present in the episode, peaking 200-250 ms after cue onset. (Shaded
error margins represent SEM.) (b) Example of cue-evoked reactivation of within-episode
elements in a single trial in a single participant. (c¢) Cue-evoked reactivation related to
mean performance in a given episode for the high performance participants, but not
regular performance participants (group breakdown based on number of incorrect trials
across both the after and before conditions; high n = 10; regular n = 15; error bars
represent standard error.) (d) Retrieval model illustrating the relationship between
memory and sequenceness across- and within-participants. Across participants, higher
mean memory performance was associated with weaker sequenceness and stronger
cue-evoked reactivation of episode elements (‘clustered retrieval’). Within-participants,
in regular performing participants, stronger trial-by-trial sequenceness positively related

to trial-by-trial retrieval success.

During episodic memory retrieval in humans, we show that a rapid sequential

replay of episode elements relates to differences in memory performance. Our primary
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finding is a demonstration that stronger trial-by-trial sequenceness relates to retrieval
success across conditions. Across-participants, we found that regular performance
participants exhibited stronger sequenceness than high performance participants. As
illustrated in the memory retrieval schematic (Fig. 5d), these results are complementary
and a seeming contradiction is a reflection of Simpson’s paradox (33). Given the
dominance of replay in regular performing participants, replay may play a functional role
in “piecing together” individual retrieved elements. Additionally, we find that replay
proceeds in the opposite direction to what might be expected, i.e. replay flows from
distal episode elements to the proximal cued element (34). In general, our results
indicate an important role for replay in online memory retrieval, with an element-to-
element lag of 100-120 ms, establishing a novel connection between replay and
ongoing behaviour in humans that has only recently been demonstrated in animal
research (4, 5, 29).

Replay events spanned a temporal horizon of seconds during retrieval, in
contrast to a single instance of clustered pattern completion (9, 30). The latter pattern
characterised very high performing participants alone, where cue-evoked reactivation
closely resembled pattern completion. We cannot exclude a possibility that an absence
of sequential replay in very high performing participants might reflect a difficulty in
detection, perhaps due to a sparse distribution or rapid decay of replay event frequency.
Similarly, our results could be biased towards detecting stronger sequenceness in
regular performing participants, who exhibit a stronger engagement of retrieval
processes, which in turn could provide greater evidence for classification of sequential

activation. Alternatively, when episodes are strongly encoded during an experience
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itself, different representations might begin to form, where retrieved order information is
no longer represented by sequential replay but instead by the clustered reactivation
pattern we observed. A potentially related finding of a decreasing expression of replay
with increasing experience has been reported in rodents (25, 29). Here we speculate
that in high performing participants, episodes are more strongly encoded and potentially
enhanced by spontaneous reactivation and replay during post-learning rest and sleep
(6, 35-38), and these representations may be differentially supported by cortical
systems (30, 31, 39, 40).

Replay in the current experiment showed an element-to-element lag of
approximately 110 ms, representing a temporal compression factor of 60 to 150. This
compression is in line with, or exceeds, the degree reported in offline place cell
sequences in rodents (41, 42). Previous MEG research examining replay in humans
report a shorter 40-50 ms lag between replayed elements for very well-learned
sequences (79, 20). These studies allowed for tens of seconds of planning or involved
acquisition over minutes of rest; further, replay during rest was related to putative SWR
events (20). This contrasts with our current experiment where there was a requirement
for relatively rapid ‘online’ decisions.

These different effects, influenced by task demands, parallel well-established
results in animals. Thus, theta-related sequence events are found predominantly during
active navigation, while replay events during high-frequency SWRs are found during
rest and sleep (27-25). Based on a close association between animal and human replay
during putative SWR events, as demonstrated recently (20), and the important

distinction between the previous results pertaining to rest and current results that reflect
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active behavior, it is instructive to speculate on connections between our current
findings and an expression of sequenceness observed in rodents, specifically that which
relates to theta sequences. However, any suggested connection needs to be tempered
by substantial differences between animal spatial navigation and human episodic
memory. More extensive research is needed to fully explore any potential connection.

Episodic memory experimental designs utilizing actual extended sequences of
experiences as episodes, instead of a more traditional use of multiple different static
images, trade off benefits of increased ecological validity against a potential
disadvantage of necessitating repeated testing of episodes. The use of repeated probes
of episodes is often necessary when using decoding approaches, where the analyses
require many exposures to the episode elements during training of a decoder. In some
cases, experiments include re-exposures to the original episodes (78). As in real-life
experiences outside of the lab, memory episodes in our experiment were experienced
only a single time at encoding. Repeated testing on the other hand may alter the
underlying memory trace or lead to increasing reliance on retrieval strategies, and we
acknowledge this as an important caveat to studies of this type. Importantly, we found
no change in the positive trial-by-trial sequenceness-memory relationship over the

course of the experiment.

Individual episodes of experience are important building blocks for creating a
representation of the structure of the world (2). Episodic representations that support
replay are likely to be important for how we successfully navigate spatial, social, and
abstract environments (3, 6, 43-47). In turn, memory closely interacts with decision

making (e.g. 70, 46). The ability to reactivate episodes in a highly compressed manner
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provides a novel mechanism for very rapid retrieval and replay of previous experiences
during choice (48-50), and our findings can motivate new directions of research into the
relationship of memory encoding, consolidation and decision making. Further, the
flexible direction of episodic retrieval replay events that we identify may affect choice
dynamics. We speculate that sequential replay flexibility and strength might serve as
markers for an impaired associative binding between memory elements caused by
negative emotional events. Impaired, or pathologically disturbed, memory organization
has a strong negative impact on well-being and behaviour, and future human research
into memory replay might also provide novel insights into memory disturbances seen in

psychiatric disorders such as post-traumatic stress disorder and schizophrenia (57, 52).
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Methods

Twenty-eight healthy volunteers participated and completed both sessions of the
experiment. Participants were recruited from the UCL Institute of Cognitive
Neuroscience Subject Database. Data from three participants were excluded due to
poor memory performance (described below) leaving data from 25 participants for
analyses (14 female; mean age 24 (range 18-32). Participants were required to meet
the following criteria: age between 18-35, fluent English speaker, normal or corrected-
to-normal vision, without current neurological or psychiatric disorders, no non-
removable metal, and no participation in an MRI scan in the two days preceding the
MEG session. The study was approved by the University College London Research
Ethics Committee (Approval ID Number: 9929/002). All participants provided written
informed consent before the experiment. Participants were paid for their time, for
memory performance (up to £10 based on percent correct performance above chance),
in addition to a bonus for localizer phase target detection performance (up to £2).
Participants were excluded from analysis if two of the following three criteria were
met: (1) accuracy below 50 % on the cued retrieval task on the second day, (2)
accuracy below 50 % in the episode component re-ordering task on the second day,
and (3) indication on the post-experiment questionnaire that the participant had mentally
reordered the episodes from their original day 1 order. As the MEG analyses tested for
reactivation of sequences of episode elements based on the original order, relatively
poor memory for the order of episode elements (in the post-test) and/or a report of re-
ordering the episodes (in the post-questionnaire) were part of the exclusion criteria. As

noted above, 3 participants from the initial 28 were excluded based on these criteria. In
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the current sample, no participants were excluded based on MEG decoding
performance, specifically, the classification of the 6 categories in the MEG localizer

phase data.

Experimental Task

We designed our memory experiment to investigate the neural processes supporting
retrieval of episodic experiences where the original episodes were only experienced
once, similar to many experiences outside the lab; this is in explicit contrast to
paradigms with many repetitions of the same (sequence of) stimuli. Retrieval was also
separated from encoding by approximately 24 hours, again to increase ecological
validity. Episodes were designed such that they were made up of elements from 6
different categories. In order to be able to classify many varying episode elements,
without pushing the limits of pattern classification or participant alertness for long-
duration scans, we designed our experiment using well-identified categories deployed in
previous fMRI and MEG studies of memory and perception (e.g. 10, 12, 15, 52).
Participants were explicitly instructed that memory episodes were made up of 6
categories of stimuli (faces, buildings, body parts, objects, animals, and cars), and then
shown examples of these categories. Note that we did not expect participants to think of
abstract category-level information during retrieval but instead expected participants to
retrieve individual elements, without explicitly categorizing the items. We utilized
categories of stimuli because we predicted that category-level information would provide

the largest source of across-stimulus variability in neural responses.

32


https://doi.org/10.1101/758185
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/758185. this version posted December 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

On the first day of the experiment, in a testing room environment participants
experienced 8 different temporally extended episodes with one single exposure per
episode (Fig. 1a). Participants were told their performance on memory questions that
tested their knowledge of the correct sequential order of stimuli would influence the
amount of a monetary bonus. Episodes were composed of 5 discrete picture elements
and an accompanying story written from a first-person perspective. On the second day,
participants returned for an MEG scanning session where they completed a cued
retrieval phase and a category localizer phase during the acquisition of MEG data (Fig.
1b). Behavioral piloting in a separate sample of participants was used to optimize the
design and ensure that memory retrieval performance on day 2 was both reliably above

chance but below ceiling in the majority of participants.

Episodic encoding session procedure

On the first day, participants completed the episodic encoding phase. This phase
presented eight episodes each composed of five unique sequential picture components.
Episode components were accompanied with a text segment of a story to encourage
the maintenance of the true episode order in memory. The story was written in first-
person perspective to better align with veridical personal episodic memories. The first
four elements of each episode were taken from 6 potential categories of stimuli: faces,
buildings, body parts, objects, animals, and cars. The final element in each episode was
not taken from these categories; instead, it represented a unique ending element.
Participants were instructed to try to remember the order of the episodes and informed

that a bonus would be tied to their performance on questions which tested their memory

33


https://doi.org/10.1101/758185
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/758185. this version posted December 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

for the sequential order of the episode elements. A practice episode was presented in
the first instance, after which participants were asked to type in the name of the 15t
stimulus element presented in an episode, then the 2", 39, 41 and 5™ elements.

In each episode, participants were presented with the initial picture element
along with a segment of story text shown below (Fig. 1a; Table S1). A grey screen
background was used for all experimental phases. The stimulus faded in over 0.5 sec
and was then presented with the story text for 2 sec. The text then disappeared and for
the remaining 2.5 sec, participants performed a target detection task, pressing the ‘1’
key whenever they saw a small grey square appear at any location over the stimulus
(mean of 1 target per stimulus). The stimulus then faded out for 0.5 sec. Total stimulus
duration, including fade-in and fade-out, was ~ 5.5 sec. A grey ‘bokeh’ image faded in
as the stimulus faded out. After the stimulus disappeared, participants responded with
the ‘up arrow’ key to a series of 1-3 arrow indicators (‘* # ~’) in order to progress to the
next element of the episode. If participants did not respond to an arrow within 6 sec, a
warning appeared instructing the participant to respond faster. The mean inter-stimulus
interval was 6.5 sec (1 sec for short duration episodes; 12 sec for long duration
episodes). For the final component of the episode, a white square initially occluded the
stimulus and participants then pressed the ‘space’ key to reveal the stimulus and
associated story text. After the final component of the episode, a delay of 2 sec was
followed by text “Positive ending: you won +£1.00!” or “Negative ending: you lost -
£0.50!” depending on whether the story ended in a positive or negative way.
Participants were then presented with a probe requiring them to type in the name of a

particular episode element (selected pseudo-randomly from elements 1-4). A 30 sec
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rest period followed each episode. After the completion of the 8 episodes, participants
were instructed not to rehearse the episodes or to record the episodes in any way.

Episodes were constructed from a pseudo-random combination of category
elements in addition to a final component that was not taken from any of these
categories. A brief story text connected the sequence of stimuli into a short story (Table
S1). The stimuli consisted 40 photographs, taken either from the internet or previous
studies from our group, encompassing the following categories: human faces (6),
buildings (6), body parts (5), objects (5), animals (5), automobiles (5), and eight final
component pictures (4 negative and 4 positive). As noted above, half of the episodes
were of a longer duration, achieved via manipulating the inter-stimulus-interval (1 sec or
12 sec). The story in half of the episodes ended in a positive element and half ended in
a negative element (Table S1). The ordering of long versus short and positive versus
non-positive episodes was pseudo-randomized in two counterbalanced orders.

After a 5 min break to obviate a potential influence of temporal proximity on
performance for the last episodes, participants completed a short cued retrieval phase
that tested recall of the order of the elements presented in each episode. The memory
test was brief to minimize additional ‘exposure’ to episode stimuli. Following a practice
trial (using stimuli from the practice episode), participants completed 8 trials in the
“after” condition and then 8 trials in the “before” condition. Each mini-block of 8 trials
was preceded by text indicating the current condition. Participants were shown a picture
cue and instructed to retrieve the associated episode in order to make a response about
the sequential order of the subsequent answer stimulus. In the after condition,

participants attempted to remember what came after (at any point) the cue in the same
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episode (Fig. 1b). In the example after condition trial in Fig. 1b, the participant is cued
with the harmonica from the above episode. The presented answer, the SUV, indeed
followed the harmonica in the episode, so if the participant remembered the episode
and order, she should respond with ‘Correct.’ If the sunny sky or bear was presented as
the answer, the participant should also responds with ‘Correct.’ If the answer was the
man or a stimulus from any other episode, the participant should respond with
‘Incorrect.” Answers were ‘correct’ for any position after the cue, not just immediately
after it. In the before condition, participants attempted to remember what came before
(at any point) the cue in the same episode. In both conditions, when the answer picture
was presented, participants were shown the response options “Correct” and “Incorrect”
in text below the picture. Cues in this memory test were only taken from the second
state 2 (of 5 total episode states) in the after condition or the fourth state in the before
condition. The answer on half of the trials was correct.

On each cued retrieval trial, the cue picture was presented in full opacity for 0.5
sec and then faded to 0 % opacity across the remaining 5 sec of the retrieval period
(Fig. 1). Then the response picture was presented. The answer text indicated the
mapping between key responses and answers, e.g. “Correct (1)” and “Incorrect (2)”; the
left and right text locations were randomly selected on each trial. There was no time
constraint on the answer period. After an answer was recorded, following a brief 0.1 sec
pause, a 2-level confidence scale (“High” and “Low”) was presented, with the left and
right location of options randomized. After a 0.1 sec pause, a fixation period of mean 1.5

sec followed (randomly sampled from the values [1.0, 1.5, 2.0]).
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MEG session procedure

Participants returned for the MEG scan on the following day. After initial setup in
the MEG room, participants were reminded of the instructions for the cued memory
phase and completed 4 practice questions (based on the practice episode from the
previous day). During scanning, the memory response period was time-constrained.
This limit was added to encourage participants to retrieve as much information from
memory as possible during the cue period and to facilitate later MEG analysis of neural
processes underlying successful retrieval. Participants were instructed to retrieve as
best as possible the episodes during the presentation of the cue picture, and in this way
they could respond faster (and avoid missed responses) when the answer appeared.
Participants were again reminded of the performance bonus based on memory
accuracy.

As described above for the memory test on the first day, on each cued retrieval
trial, the cue picture was presented in full opacity for 0.5 sec and then faded to 0 %
opacity across the remaining 5 sec of the retrieval period (Fig. 1). The gradual fade of
the cue across the retrieval period was designed to avoid any sharp stimulus offset
effects which could negatively affect MEG decoding. Then the answer stimulus was
displayed. The text indicating the key response, e.g. “Correct (1)” and “Incorrect (2)”,
was randomly presented on the left and right of the screen. If a response was not made
in this time period, the warning “Please try to respond more quickly!” was presented for
2 sec. The response picture was presented for 1-3 sec with the duration based on the
recent rate of missed trials in the past 20 trials. If participants made no response on

more than 14 % of recent trials, the response period was increased in duration by 0.25
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sec (with a ceiling of 3 sec). If participants made no response on less than 5 % of recent
trials, the answer period was decreased in duration by 0.25 sec (with a floor of 1 sec).
After the answer period, following a brief 0.1 sec pause, a 2-level confidence scale
(“High” and “Low”) was presented, with the left and right location of options randomized.
If a response was not made in time, the warning “Please try to respond more quickly!”
was presented for 2 sec. After a 0.1 sec pause, a fixation period of mean 1.5 sec
followed (randomly sampled from the values [1.0, 1.5, 2.0]).

In each of 5 blocks in the cued retrieval phase, trials of after and before
conditions were separated into mini-blocks of 10-12 trials. Each mini-block was
preceded by an instruction screen: “Next: What picture came after (before)?” along with
the instruction to press the ‘1’ key to continue. At the mid-point of each block,
participants were given a 30 sec pause, followed by a reminder of the current condition
and an instruction to press the ‘1’ key to continue. Each of the five blocks of cued
retrieval included 43 trials and lasted for approximately 8 minutes. Brief rest breaks
were inserted between blocks. In the cued retrieval phase, we collected ~ 27 trials per
episode and ~ 43 trials per state (episode positions 1 to 5) for a total of 215 trials. For
one participant, MEG data were lost for the final memory retrieval block; the remaining
172 trials were analyzed. All trials with a cue from state 1 were after condition trials. All
trials with a cue from state 5 were before condition trials. Trials with a cue from state 3
were composed of equal numbers of after and before condition trials, while trials with a
cue from state 2 and state 4 were a weighted mixture of after and before condition trials.

The presented answer was correct on ~ 39 % of trials. The remaining 61 % of

trials were incorrect: on 52 % of total trials, the incorrect answer came from another
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episode and on the remaining ~ 9 % of total trials, a ‘lure’ answer was presented that
was from the same episode but in the incorrect direction as the current condition. For
example, in an after condition trial where the cue was from state 3, a picture from that
episode in state 1 was presented as the answer. Note that on the first day participants
are exposed to the complete episode only one single time. During the memory test,
participants see all episode elements again, but at this stage they are provided in an
order that mixes elements between different episodes, or elements within the same
episode that are out of the true order, and only very rarely are pairs of elements
presented in the original order. Trials were presented in a pseudo-random order with the
constraint that no episode was queried on sequential trials.

The cued retrieval phase was followed by a functional localizer to derive
participant-specific sensor patterns that discriminated each of the 6 categories that
made up the episodes by repeatedly presenting each of the 32 unique stimuli. The
localizer design was based on previous studies (719, 20). In brief, participants were
instructed to read a word shown on the screen, pay attention to the picture that
followed, and respond if any grey square targets appeared superimposed over the
picture. The instructions were followed by 4 practice trials.

In detail, in a localizer trial, participants were presented with a brief name
corresponding to one of the pictures, presented in text on the center of the screen for 2
sec. Participants were instructed to imagine the corresponding picture. The text then
disappeared and the named picture appeared on the screen for 0.75 sec. During picture
presentation, participants performed a target detection task, responding with a ‘1’ button

press if the picture contained a small grey square. Targets were rare events, appearing
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on 15.4 % of trials. A mean 0.75 sec fixation ITI followed (range 0.25 — 1.25) during
which responses were still recorded. If performance on the target detection task fell
below 70 % correct (across missed responses and false alarms), a warning was
presented: “Please improve your detection of the grey squares!” Finally, as in the cued
retrieval phase, a mid-block rest of 30 sec was inserted during each block. After each
localizer block, participants were shown yellow ‘stars’ on the screen, ranging from 0-4,
depending on their target detection accuracy in the preceding block.

The stimulus pictures were presented in a pseudo-random order, with the
constraint that no category repeat in subsequent trials. Each picture from a given
category was presented an equivalent number of times, with 78 repetitions per picture
category. The localizer was presented in 5 blocks, with 94 trials in the first four blocks
and 92 trials in the last block for a total of 468 trials.

Following scanning, participants completed a post-experiment questionnaire that
assessed memory strategy and potential mental reordering of the episodes, and also
asked participants to try to write down a brief version of each story. The re-ordering
question asked “Did you change the order of the stories to make your own story order?
1= never, 5=always”. Participants who responded with a 4 or 5 were considered for
exclusion, in conjunction with performance on the memory and sequence memory test.
We observed a negative correlation in the full group (prior to exclusions) between
response to this question and memory performance in the MEG session.

Finally, participants completed a computerized sequence memory test where
they attempted to place the stimuli from a given episode in the correct order. In this

phase, stimuli from an episode were presented in a random order on the left side of the
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computer screen. Participants then moved each stimulus from the left side (starting from
the top) into one of 5 empty boxes spread from the left to the right across the screen.
Stimuli were moved using the left and right arrow keys and the space bar was used to
confirm placement. Accuracy was measured as the mean rate of correct replacement

across each location across all episodes.

MEG acquisition

Participants were scanned while sitting upright inside an MEG scanner located at the
Wellcome Centre for Human Neuroimaging, at UCL. A whole-head axial gradiometer
MEG system (CTF Omega, VSM MedTech) recorded data continuously at 600 samples
per second, utilizing 273 channels (2 original channels of the 275 channels are not
operational). Three head position indicator coils were used to locate the position of
participant's head in the three-dimensional space with respect to the MEG sensor array.
They were placed on the three fiducial points: the nasion and left and right pre-auricular
areas. The coils generate a small magnetic field used to localize the head and enable
continuous movement tracking. We also used an Eyelink eye-tracking system to monitor
participant's eye movements and blinks. The task was projected onto a screen
suspended in front of the participants. The participants responded during the task using
a 4-button response pad to provide their answers (Current Designs), responding with

self-selected digits to the first and second buttons.

MEG Pre-processing
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MEG data were processed using MATLAB packages SPM12 (Wellcome Trust
Centre for Neuroimaging) and FieldTrip. The CTF data were imported using OSL (the
OHBA Software Library, from OHBA Analysis Group, OHBA, Oxford, UK) and down-
sampled from 600 Hz to 100 Hz (yielding 10 ms per sample) for improved signal to
noise ratio and to conserve processing time. Slow drift was removed by applying a first
order IIR high-pass filter at 0.5 Hz.

Preprocessing was conducted separately for each block. An initial preprocessing
step in OSL identified potential bad channels whose characteristics fell outside the
normal distribution of values for all sensors. Then independent component analysis
(FastICA, http://research.ics.aalto.fi/ica/fastica) was used to decompose the sensor data
for each session into 150 temporally independent components and associated sensor
topographies. Artifact components were classified by automated inspection of the
combined spatial topography, time course, kurtosis of the time course, and frequency
spectrum for all components. For example, eye-blink artifacts exhibited high kurtosis
(>20), a repeated pattern in the time course and consistent spatial topographies. Mains
interference had extremely low kurtosis and a frequency spectrum dominated by 50 Hz
line noise. The maximum number of potential excluded components was set to 20.
Artifacts were then rejected by subtracting them out of the data. All subsequent
analyses were performed directly on the filtered, cleaned MEG signal, in units of
femtotesla.

In the cued retrieval blocks, an 8.5 second epoch was extracted for potential
analysis for each trial, encompassing 500 ms preceding cue onset and continuing past

the answer response. In the analyses below, we analyzed the first two-thirds of the cued
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retrieval period. Given the speeded response demands to the response stimulus, the
end of the period is likely to involve increasing response preparation that could
decrease the ability to detect sequenceness events. We excluded also the initial 160 ms
following cue presentation to allow time for early stimulus processing. Thus, our retrieval
period analysis window focused on 160 - 3667 ms of the full 5500 ms period. In the
localizer blocks, a 4.5 second epoch was extracted for potential analysis for each trial,
encompassing 500 ms preceding text onset through the end of the picture presentation
period. In both the retrieval and localizer blocks, preceding the analysis steps described
below, we excluded time periods within individual channels that exhibited extreme

outlier events (determined by values > 7x the mean absolute deviation).

MEG data decoding and cross-validation

Lasso-regularized logistic regression models were trained for each category.
Methods followed those used in previous studies (19, 20). Only the sensors that were
not rejected across all scanning sessions in the preprocessing step were used to train
the decoding models. A trained model k consisted of a single vector with length of good
sensors n consisting of 1 slope coefficient for each of the sensors together with an
intercept coefficient. Decoding models were trained on MEG data elicited by direct
presentations of the visual stimuli.

For each category we trained one binomial classifier. Positive examples for the
classifier were trials on which that category was presented. Negative examples
consisted of two kinds of data: trials when another category was presented, and data

from the fixation period before the text pre-cue appeared. An equal number of events of
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null data were included as there were actual events. The null data were included to
reduce a potential correlation between different classifiers — enabling all classifiers to
report low probabilities simultaneously.

To examine localizer performance we used cross-validation. We computed the
number of included trials per category (after exclusion of trials due to MEG artifacts).
We then calculated the number of cross-validation folds by subtracting the minimum
number of trials included across categories plus one; the number of folds per participant
was usually between 15-20. Classifier performance was estimated on the included data
and tested on randomly determined left-out data for N folds; performance was then
averaged across folds to derive a mean value.

Separately, for classifying memory retrieval data a different classifier was trained.
This classifier was trained on all localizer trial data with no cross-validation; cross-
validation is not used for across-phase analyses as no inferences are made based on
the localizer performance itself. Prediction accuracy was estimated by treating the
highest probability output among all classifiers as the predicted category. Sensor
distributions of beta estimates are shown in Fig. S2 and prediction performance of
classifiers trained on 200 ms on left-out trials in functional localizer task are shown in
Fig. S3.

To determine whether the categories used in the experiment were reflective of
how these stimuli were actually represented in the MEG data as participants viewed the
stimuli, we conducted a supplemental classification analysis that trained a separate
classifier for each of the 32 stimuli (4 category-level stimuli for each of 8 episodes). This

analysis used cross-validation as described above. Also as above, a second
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classification analysis did not use cross-validation but instead trained on the full
localizer phase and tested on the memory test phase cue-evoked responses. An
alternative classification analysis trained each stimulus versus all other stimuli but left
out the other members of that stimulus’ category (e.g. training for face1 omitted trials
with face2-face6). Note that the classification of individual stimuli was under-powered
given the low number of repetitions per stimulus, and our localizer phase was not
designed to produce robust single-stimulus classifiers for use on the sequenceness

analyses. These results are detailed in Supplemental Results.

Sequenceness measure

The decoding models described above allowed us to measure spontaneous
reactivation of task-related representations during memory retrieval. We next defined a
‘sequenceness’ measure in terms of the degree to which these representations were
reactivated in a well-defined sequential order (19, 20). Here we utilized an updated
general linear model approach (20). This analysis approach is illustrated in Fig. S2.
Briefly, the method approximates a lagged cross-correlation between category evidence
for transitions in a given episode. As such, the method utilizes the full period of analysis
in the calculation and produces a single statistic representing the strength of
sequenceness across this full period. Discrete sequential events are not identified,
though in theory each retrieval period could include numerous events.

First, we applied each of the six category decoding models to the cued retrieval
period MEG data. This yielded six timeseries of reactivation probabilities for each trial,

each with length N, where N is the number of time samples included in the retrieval
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period analysis window. Below, we use the term “stimulus” for simplicity to refer to the
category-level information.

We then used a linear model to ask whether particular sequences of stimulus
activations appeared above chance in these timeseries. For each stimulus /, at each

possible time lag At, we estimated a separate linear model:

Y; = X(At) * B;(At)

The predictors X(At) were time-lagged copies of the six reactivation timeseries. The
model predicted Y;, the reactivation of stimulus i. The linear model had N rows, with
each row a time sample. We estimated (3;(At), a vector of coefficients that described the
degree to which stimulus /’s reactivation was predicted by activation of each other
stimulus at time lag At. By repeating this procedure for each stimulus i, we obtained
B;(At), a 6x6 matrix that can be viewed as an empirical transition matrix between the six
stimuli (categories) at lag At.

Specifically:

Y; = X5-1 X (AD)B;;(Ar)

Where X; (At) are time-lagged copies of Y;, s is the number of states, and therefore:

Y; (1) = Xj=1 Y;(t — At)B;;(AL)
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The matrix 3;(At) is obtained by solving the following set of equations for each stimulus

I, up to state s.

Yiea(6) = D ¥, = 8)By; (A0
j=1

Yiea(®) = D ¥t = 8)By; (A0
j=1

Yies(6) = ) ¥t = 8B (40
j=1

We next asked whether the 3;(At) was consistent with a specified 6x6 transition matrix
by taking the Frobenius inner product between these two matrices (the sum of element-
wise products of the two matrices). This resulted in a single number Z,,, which
pertained to lag At. Finally, differential forward — backward sequenceness was defined
as Zgp: — Zpae- Inour initial analyses and individual differences analyses, we used the
difference between correlations in the forward (Z,,) and backward (Z,,,) direction in
order to remove common autocorrelation which would otherwise add significant
variance. In the analyses testing for a relationship between sequenceness and trial-by-
trial accuracy, we entered the separate forward (Z,,) and backward (Z,,,)
sequenceness measures into the regression analyses. As our analysis was on trial-

based data and not rest, we did not need to control for alpha rhythm (20).
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The transition matrix was defined as the stimulus (category) order in each
episode. Our primary results focus on comparisons of sequenceness on correct versus
incorrect retrieval trials; as such, we do not conduct comparisons to a null value. Here,
as category orders were pseudo-randomly shuffled across episodes, we did not conduct
permutation tests. To ensure that the results were not overfit to the regularization
parameter of the logistic regression, all results were obtained with the lasso
regularization parameter that yielded the strongest mean decoding in the localizer (11 =
0.002). The decoding models used to evaluate sequenceness were trained on
functional localizer data taken from 200 ms following stimulus onset. The 200 ms time
point exhibited the strongest decoding accuracy during the localizer; notably, this time
point of category decoding was also consistent with the individual stimulus decoding
findings of Kurth-Nelson et al. (79) and Liu et al. (20). We only included trials with a
button response to the probe stimulus; all trials with no response were excluded from
analysis.

In an initial step, prior to the multilevel modelling analyses, we localized a time
lag of interest in the after condition over correct trials using a leave-one-participant-out
cross-validation procedure. For a given held-out participant, the absolute value of the
peak response across the remaining participants determined the lag for the held-out
participant. The analysis included lags from 40-350 ms. These peak times +10 ms were

used to select trial-by-trial sequenceness values.

Identifying Replay Onsets
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Replay onsets were defined as moments when a strong reactivation of a stimulus was
followed by a strong reactivation of the next (or preceding) stimulus in the sequence
from an episode (20). In this analysis, we first found the stimulus-to-stimulus time lag At
at which there was maximum evidence for sequenceness (as described above), time
shifted the reactivation matrix X up to this time lag At, obtaining X(At). We then
multiplied X by the transition matrix P, corresponding to the unscrambled sequences: X
x P. Next, we element-wise multiplied X(At) by X x P. The resulting matrix had a
column for each stimulus, and a row for each time point in the cue period for each trial.
We then summed over columns to obtain a long vector R, with each element indicating
the strength of replay at a given moment in time (across trials). Finally, we thresholded
R at its 95th percentile to only include high-magnitude putative replay onset events
across all trials. We also imposed that constraint that a replay onset event must be
preceded by 100 ms of replay-onset-free time.

Specifically:

Proj = X(At)

Matrix Proj is obtained by time shifting the reactivation matrix X to time lag At.

Orig=XXP

Matrix Orig is obtained by matrix multiplication between reactivation matrix X and

transition matrix P.
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R, = Zf Origy * Projy

Vector R is obtained by elementwise multiplication between matrix Orig and Proj, and

then summing over columns.

Cue-triggered reactivation analyses

In the cued retrieval period, we tested for cue-triggered reactivation of episode
elements. This analysis compared evidence for categories present in a cued episode
versus categories not present in a cued episode. The analysis utilized the raw classifier
evidence vectors (n categories by t trial timepoints) to investigate differential activity
near the peak stimulus response at ~ 200 ms. For each episode, the within-episode
categories that were not presented as a cue were averaged to derive a measure of
reactivation of within-episode elements. In the after condition, there were 3 within-
episode categories; in before condition, trials where the cue came from state 5 had 4
categories entered into the within-episode analysis. The 2 categories that were not
members of the cued episode were averaged to derive a measure of other-episode
reactivation. The timepoints showing the strongest difference between these two
measures were averaged for each trial to derive trial-by-trial reactivation measures
representing relative within- versus other-element activity. These values were
subsequently entered into multilevel regression analyses. We examined a relationship
between the trial-by-trial reactivation measure and mean episode accuracy: the average
performance across trials for the episode cued on a given trial. We also examined the

relationship to trial-by-trial accuracy, but this analysis was under-powered in the very
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high performing participants. The reactivation analyses collapsed across the after and

before conditions.

Time-frequency analyses
A frequency decomposition (wavelet transformation) was computed for the memory
retrieval period in every trial. From this data, we extracted power changes surrounding

putative replay onset events.

Zero-lag correlation analysis

In a supplemental analysis, we examined the relationship between reactivation of
within-episode elements compared to other-episode elements with a zero time lag. This
measure was a basic correlation between the time series of category evidence: the
average of 3 correlations for the within-episode elements and 2 correlations for the
other-episode elements. We did not find a greater correlation between within-episode
elements than between other-episode elements. Through thresholding of the category
evidence time series, we found that correlations were driven by increases in evidence
and that these increases were brief (Fig. $10). However, we found no relationship
between the correlation of within-episode elements across the retrieval period and

behavior (Fig. S10).

Multilevel modelling

We conducted all pre-processing of behavioral and MEG data for multilevel

modelling in Matlab. Multilevel models were implemented in R, following previous
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procedures (63). We used a multi-level logistic regression model (glmer, in the Imer4
package) to predict correct memory responses. A correct response in the cued retrieval
phase was an answer stimulus correctly identified as coming after the cue in a given
episode, an answer stimulus correctly rejected as coming after the cue in a given
episode, etc. All missed response trials (where no response was recorded within the
response time window) were excluded from analysis.

The primary models included sequenceness derived from the current episode
transition matrix. Additional control models examined the effect of sequenceness
derived from transitions present in all other episodes but not present in the current
episode.

For trial-by-trial accuracy analyses, we included only participants with greater
than 10 MEG artifact-free trials in each condition. In general, our exclusion was
intended to be conservative and to align with practices in fMRI research regarding
approximately sufficient numbers of trials in a condition. We also had a conceptual
reason to exclude participants with very few miss trials. In the very high performing
participants, miss trials are more likely to be dominated by lapses in attention and
resulting error button presses than in regular performing participants; including miss
trials in these participants then would add noise to the analyses.

In the main sequenceness analyses, we fit separate intercept, forward
sequenceness, and backward sequenceness effects for each participant. In the model,
we also included control variables representing performance in neighboring trials. These
variables were included because we found that performance 1 and 2 trials in the past

and performance 1 and 2 trials in the future was positively related to current trial
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performance, an effect similar to what we have observed in previous memory studies. In
analyses of continuous variables such as mean correct performance for the episode
cued on the current trial, we used multi-level regression (Imer).

For all models, to ensure convergence, models were run using the bobyga
optimizer set to 108 iterations. We estimated confidence intervals using the
confint.merMod function and p-values using the bootMer function (both from the Imer4

package) using 2500 iterations. All reported p-values are two-tailed.

MEG Source Reconstruction

All source reconstruction was performed in SPM12 and FieldTrip utilizing OAT.
Forward models were generated on the basis of a single shell using superposition of
basis functions that approximately corresponded to the plane tangential to the MEG
sensor array.

Linearly constrained minimum variance beamforming (54) was used to
reconstruct the epoched MEG data to a grid in MNI space, sampled with a grid step of 5
mm. The sensor covariance matrix for beamforming was estimated using data in
broadband power across all frequencies.

For the category localizer analysis, the baseline activity was the mean power
averaged over 50 ms following stimulus onset. All non-artifactual trials were baseline
corrected at source level. We estimated the main effect of each category and contrasts
of each category versus all other categories and extracted the peak 200 ms after onset

for display.
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For the replay onsets analysis, the baseline activity was the mean power
averaged over -100 ms to -50 ms relative to replay onset. All non-artifactual trials were
baseline corrected at source level. We looked at the main effect of the initialization of
replay. This analysis was conducted separately to investigate backward replay events in
the after condition and forward replay events in the before condition.

The statistical significance of clusters identified in the beamforming analysis was
calculated using SPM12. An initial cluster-forming threshold of p < 0.001 was applied
and regions exceeding p < 0.05 whole-brain family-wise-error corrected (FWE) at the
cluster level are reported. The timepoint preceding replay onset (- 10 ms) was
additionally investigated to explore whether individual differences in memory

performance related to differential MTL power preceding replay onset.

Individual differences

We tested for a relationship between MEG measures of sequenceness and
mean memory performance in the after and before conditions. For sequenceness, we
used differential (forward-backward) sequenceness given the strong decaying
autocorrelation evident in the raw forward and backward sequenceness estimates (19,
20). In a supplemental analysis, we estimated the relationship between replay and
memory performance using a regression, separately entering forward and backward
sequenceness as predictor variables. These analyses used Pearson correlations,
reporting two-tailed p-values. A statistical comparison of the correlations between of
sequenceness and behavior in the after condition and the before condition was

conducted using a test for the difference between two dependent correlations. This test
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is conservative, as the performance measures in the after condition and the before
condition were not identical, while the test assumes full dependence.

We conducted an additional conservative permutation analysis since it is
possible that under certain circumstances, having increasing variability in the underlying
data toward one end of a distribution across participants might impact on the chance
rate of finding a correlation — whether positive or negative — between two variables.
Specifically, because lower performing participants have fewer correct trials entered into
the mean value than is the case for higher performing participants, the mean values for
low performing participants may show higher random variation by chance. (Note that
any observed differences in correlation direction between the after and before
conditions would not be explained by any such effect.) To conduct the simulation, we
pooled all empirical trial-by-trial sequenceness values across participants, separately for
the after and before conditions, and mean-corrected the data. From this set of values,
we randomly extracted (without replacement) values to match the number of included
trials per participant. In each simulated participant, these values were then scaled to
match the standard deviation of an actual participant’s trial-by-trial sequenceness data.
Across each of 500k simulations, we computed the correlation between mean memory
performance and the permuted and scaled sequenceness measure. The resulting p-

values were used to determine a conservative permutation-based threshold

Simulation of MEG analyses and relationship to performance

To provide additional support for our results, we conducted simulations to confirm

that the relationship between randomly generated MEG data and behavioral measures
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is what would expected by chance. All processing and analysis steps were as described
above, beyond the generation of simulated MEG data. The simulation proceeded in 3
steps: 1) generation of MEG localizer data and training of classifiers, 2) generation of
MEG memory retrieval data, applications of classifiers, and calculation of sequenceness
for each trial, and 3) multilevel modelling to relate sequenceness to behavior.

In step 1, we first estimated a sensor covariance matrix based on random data
(here and below using the randn function in Matlab), constructed sensor patterns per
category, and generated category training data for each category based on random
data plus the generated sensor patterns. Classifiers (one per each of 6 categories) were
trained on these data.

In step 2, for each trial, MEG data were generated across all sensors using the
mvrnd function in Matlab. Across time, an estimated temporal auto-correlation derived
from the actual data (0.65) was applied, as well as the previously derived covariance
across sensors. Then the sequenceness analysis was applied per trial as in the main
analysis described above. This produced a sequenceness measure in the forward and
backward direction for each lag up to 350 ms.

In step 3, the values for the simulated after condition on simulated correct trials
were extracted for each participant. We then applied a leave-one-out cross-validation
procedure for time lag selection. As in the analysis of real data, the lag selected for the
left-out participant was based on the peak absolute magnitude of forward minus
backward (or differential) sequenceness at lags from 40-350 ms. Across all trials, the
mean sequenceness in the forward and backward directions at this peak £10 ms were

entered into the multilevel logistic regression analyses.
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One set of simulations utilized all potential behavioral variables from the actual
counterbalancing assignment and data (accuracy per trial, exclusion / exclusion of MEG
data per trial, after/before condition, and cued episode transition matrix). A second set
of simulations approximated the behavioral variables (similar distribution of mean
performance across simulated participant, equal number of excluded MEG trials, and
equal sampling of each of the episodes). The two simulations based on real behavioral

data and simulated behavioral data were each run 10000 times.

Data availability
Complete behavioral data will be publicly available on the Open Science

Framework (https://osf.io/qaewv/). Unthresholded group beamforming statistical

parametric maps of replay onset power changes and category responses during the

localizer can be found on NeuroVault (https://neurovault.org/collections/6088/). The full

MEG dataset will be publicly available on openneuro.org.

Code availability
Code for the sequenceness analysis, as included in the full processing pathway

simulation, is available at: https://github.com/gewimmer-neuro/memory-sequences.
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Supplemental Results

Sequenceness and individual differences in memory performance

The primary analysis of the relationship between sequenceness and individual
differences in memory performance utilized the differential sequenceness measure (fwd
— bkw sequenceness; Fig. 2b-c). This measure provides a summary of the overall
evidence for sequenceness and finds that the same sequenceness direction is
important as the trial-by-trial analysis of accuracy. However, given the specific
relationship between backwards versus forwards sequenceness in the trial-by-trial
analysis of accuracy, we verified that the individual difference relationship was also
selective. In the after condition, we found that reverse sequenceness was negatively
related to average performance (fwd ti23) = 2.265, p = 0.0337; bkw t@23) =-2.9111, p =
0.0081). In the before condition, we found that forward sequenceness was related to
average performance (fwd ti23) = -2.2419, p = 0.0354; bkw t3) = 1.0456, p = 0.3071).
Results from both the after and before conditions show stronger sequenceness in lower-
performing participants (reverse sequenceness in the after condition; forward
sequenceness in the before condition). These analyses give qualitatively similar results
as those reported in the main analysis (Fig. 2b-c) which used differential forward-

backward sequenceness.

Sequenceness for ‘other episode’ transitions and trial-by-trial performance

For other episode transitions (including transitions found across the other 7 episodes
but not in the currently cued episode), we found that the peak response in correct trials
in the after condition using the leave-one-participant-out cross-validation procedure was
between 40 and 50 ms (23 participants at 40 ms; 2 participants at 50 ms). We thus
examined other episode sequenceness from 40-50 ms. In the model including the other
episode sequenceness measure derived from a 40-50 ms lag, we found no significant
effects for the other episode measure while the main sequenceness measure remained

significant (Fig. S6, Table S4). We also examined a model including the other episode
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sequenceness measure from 100-120 ms as a comparison to the main sequenceness
lag. Here we also found no significant effects for the other transition measure while the
main sequenceness measure remained significant (Fig. S6, Table S5). Finally, in a
separate model looking only at current episode sequenceness at the 40-50 ms lag
identified in previous studies and for the other episode measure, we find no relationship
between sequenceness and retrieval success in the after condition (p-values > 0.17) or

before condition (p-values > 0.52).

Analyses using single-stimulus classification

As expected, performance of stimulus-level classification during the localizer phase for
the cross-validated analysis was markedly lower than performance for the category-
level classification during the localizer phase (Fig. S3). We also examined cross-
classification to the memory retrieval phase (Fig. S3). While performance was above
the pre-trial baseline level and significant (to4) = 9.20, p<1e-8), in comparison to the
category-level cross-classification results in Fig. 1f, the magnitude of the effect versus
baseline is much weaker: the effect for the category across-phase classification of
memory cues was significantly stronger than the single-stimulus across-phase
classification (t24) = 12.47, p<1e-11). This relatively poor performance when category
was ignored during training was expected, given that category information is likely to

account for the most variance in stimulus responses.

Even though the classifier showed cross-classification performance that was
numerically close to chance, we nevertheless examined whether a sequenceness
measure derived from single-stimulus classification might show a relationship to
memory retrieval success. In the after condition, we found no relationship between
single-stimulus backward sequenceness and retrieval success (p = 0.447). However, in
the before condition we found a positive, but non-significant, relationship between

single-stimulus forward sequenceness and retrieval success (p = 0.0913).

Supplementary Figures and Tables
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Figure S1. Memory performance as a function of episode length and whether the
episode ended in a positive or negative element and performance on final episode re-
ordering test. As in Fig. 1c, the data points for regular performance participants are
represented in purple and very high performance participants are represented in
orange. (a and b) Memory did not significantly differ in the after condition by length (t24
=-1.389; p = 0.178; TOST equivalence test p = p = 0.065, thus we are unable to rule
out the presence of a medium-sized effect) or the before condition by length (t24) =
0.661; p = 0.515; TOST equivalence test p = 0.0156). (c and d) Memory did not differ in
the after condition by end valence (ts4) = -0.068; p = 0.946; TOST equivalence test p =
0.004) or the before condition by end valence (t24)= 0.1478; p=0.88; TOST equivalence
test p = 0.005). Given the null behavioral differences, primary MEG analysis collapsed
across these variables. (e) Performance on the post-scan episode sequence memory
re-ordering test (n=24 participants with sequence test data). Individual scores were the
average of accurate placements of each element within each episode. Sequence
memory did not have a condition, so regular performance participants (purple) represent
those participants included in both the after and before condition regular performance
groups (n = 15); the data points for the remaining high performance participants are

depicted in orange. (Error bars represent SEM.)
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Figure S2. Sequenceness analysis schematic and classifier sensor weighting. (a)
Classifiers were trained on the 6 categories that made up the episodes. The mean
weighting (approximate importance) of each sensor for a given category, minus the
mean across all other categories, for illustration only. (Anterior = top; posterior =
bottom.) (b). Mean sensor weighting across all categories. (¢) lllustration of how the
trained classifiers are applied to the MEG data timeseries for each cued retrieval period,
where state 1 - 4 represents episode components 1-4 from Fig. 1a. (d) The
sequenceness analysis detects systematic time shifts (T) in category evidence. A

forward sequence illustration is shown on the left; a backward sequence illustration is

shown on the right.

a Difference in weights b Mean weights
Face Building Body part 0.25 0.25
A . .
0.2 0.2
0 0
0.15 £ 0.15 £
£ £
Object Animal Car [ o1 & o1 &
] ]
0.05 0.05
0 0
c d .
3
8
State 1 State 2 State 3 State 4 State 1 g ’ /\ /\
Object Face Car Building T T ime T
o ® 2
Q State 2
O § T+t T-t
: o w A
8 £ State 3
c T — -
S @ X % = T+2t T-2t
2 ©
[ o State 4
® ] T+3t T-3t
L
o o o =
. . . Sequence



https://doi.org/10.1101/758185
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/758185. this version posted December 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

Figure S3. lllustration of localizer classifier performance for the six stimulus categories
that made up the first 4 components of episodes (face, building, body part, object,
animal, and car) and performance of a classifier trained for each of the 32 individual
stimuli from these categories. (a) Cross-validated classification performance for each
category. Results represent training on the 200 ms time point and testing across all time
points. (b) Classifier sensor weight correlations across participants within and between-
categories reveal strong within-category similarity, suggesting similar sensor importance
across participants for the same categories. Categories are sorted as in the legend for
panel a: face, building, body part, object, animal, and car. (Lasso regularization
parameter set to 1e-6 to maximize sensor inclusion.) (¢) Classification performance for
each of 32 stimuli. Results represent training on the 200 ms time point and testing
across all time points. (Colors were randomly assigned.) (d) Cross-classification
performance for 32 individual stimuli where the classifier was trained on the localizer
phase (at 200 ms) and tested on the cues in the memory phase. Compare to the
category level cross-classification in Fig 1f (y-axis range is matched across figures for
comparison). The dashed line represents the maximum classifier value during pre-trial
baseline; in statistical tests performance was compared to this baseline value. (e)
Trained classifier beta weight correlation across sensors across all 32 individual stimuli
depict natural emergence of category structure. The image represents that average of
individual participant correlation matrices. (Lasso regularization parameter set to 1e-6 to
maximize sensor inclusion.) Categories are sorted as in the legend for panel a: face,

building, body part, object, animal, and car. (Shaded error margins represent SEM.)
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Figure S4. Source localization results for the six categories of stimuli in the localizer
phase. Below, each category was contrasted versus all other categories. We found
expected patterns of activation for the 4 categories that have received the most
investigation in the literature: faces, buildings, body parts, and objects. For faces,
activation peaked in a region roughly consistent with the fusiform face area (FFA) as
well as the occipital face area (OFA). Activation for building stimuli was located between
the well-known parahippocampal place area (PPA) and the retrosplenial cortex (RSC), a
region also known to respond to scene and building stimuli. Activation for body part
stimuli was in a region consistent with the extrastriate body area (EBA). Activation for
objects was in a region consistent with the object-associated lateral occipital cortex
(LOC) as well as an anterior temporal cluster that may relate to conceptual processing
of objects. Activity for the two less-studied categories, animals and cars, was localized
to different areas of the ventral and posterior occipital cortex. Individual category maps
thresholded to display localized peaks for illustration. Full unthresholded maps can be

found at https://neurovault.org/collections/6088/.
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Figure S5. No significant relationship between sequenceness and trial-by-trial behavior
at other time lags and in the analysis testing for sequences present in other (non-cued)
episodes. (a-b) In the after and before conditions, mean sequenceness strength
(forward-backward) with a 40-50 ms lag did not relate to overall mean memory
performance (percentage of correct trials). As in Fig. 1¢c the data points for the regular
performance participants are shown in purple; high performance participants are shown
in orange. (c) As in panel a, here for the before condition. (c-d) In the after and before
conditions, mean 40-50 ms sequenceness for other episode transitions (excluding the
current episode) did not relate to mean memory performance. (e-f) In the after and
before conditions, mean 100-120 ms sequenceness for other episode transitions did not

relate to mean memory performance.
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Figure S6. Analyses relating both current episode sequenceness and ‘other episode’
sequenceness to accuracy; individual participant regression results. (a) In the after
condition, current episode sequenceness (100-120 ms; left, darker color) remains
significant (left) while other episode sequenceness at a lag of 40-50 ms shows no
relationship to successful retrieval (right, lighter color; Table S5). (b) As in panel a, but
for the before condition. (c¢) In the after condition, sequenceness derived from current
episode sequenceness (100-120 ms; left) remains significant while other episode
sequenceness (derived from all other transitions excluding the current episode
transitions) at a lag of 100-120 ms shows no relationship to successful retrieval (right;
Table S5). (d) As in panel c, but for the before condition. (e) Individual regression
coefficients for the trial-by-trial relationship between sequenceness and successful
retrieval in the after and before conditions as in Fig. 3a., but derived from a single-level
GLM.
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Figure S7. Results of simulating the complete MEG processing and analysis pipeline,
showing the relationship between sequenceness and trial-by-trial retrieval success. The
panels show the resulting distribution of p-values derived from the sequenceness-
retrieval success multilevel regression model across 10k simulations. Simulated p-
values were near the 5 % level using both real or simulated behavioral data. (a) In the
simulations with behavioral variables taken from actual participant data, p-values were
equal to or less than 5% in the after condition at a rate of 0.055 and in the before
condition at a rate of 0.04. (After condition in cyan; before condition in blue) (b) In the
simulations with simulated behavioral variables, the simulated p-value was equal to or
less than 5% in the after condition at a rate of 0.054 and in the before condition at a rate
of 0.040.
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Figure S8. Additional replay onset beamforming results. (a) Timecourse of power
changes relative to replay onset in the anterior hippocampus in the after (cyan) and
before (blue) conditions. (Shaded error margins represent SEM.) (b) Power in the right
visual cortex at replay onset in the after condition, displaying a different view of the
whole-brain results shown in a coronal section in Fig. 4a. (Statistical maps thresholded
at p < 0.001 uncorrected, for display.) (¢) Power in the left MTL 10 ms before the onset
of reverse sequenceness events correlated with performance, such that lower
performing participants showed the strongest increase in power
(https://neurovault.org/images/306232/). (d) lllustration of performance — power
relationship in the right anterior hippocampus. Data are for visualization purposes only
and represent the peak coordinate as in panel c. High performance participants in

orange; regular performance participants in purple.
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Figure S9. Time-frequency analysis of replay onsets in the after and before conditions
separately (a) Time-frequency analysis showing power increases at replay onset in the
after condition showing frequencies up to ~ 50 Hz. 0 ms represents the onset of putative
replay events. (Average across all n=25 participants in correct trials.) (b) Time-
frequency analysis as in panel a, here in the before condition. (¢) Time-frequency
analysis of high frequencies in the after condition (using data sampled at 600 Hz)
relative to replay onset (d) Time-frequency analysis of high frequencies as in panel c,

here in the before condition.
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Figure S$10. Relationship between accuracy, cue-evoked reactivation, cue response,
and zero-lag correlation between within-episode category evidence during the retrieval
period. (a-b) Cue-evoked reactivation of within-episode elements minus other-episode
elements from 200-250 ms and retrieval success in the after condition (a) and before
condition (b), included in the regression model with forward and backward
sequenceness. The effects of cue-evoked reactivation were non-significant (Table S6);
the relationships between sequenceness and memory were unaffected. (c-d) Cue
response from 200-250 ms and retrieval success in the after condition (c) and before
condition (d), included in the regression model with forward and backward
sequenceness. The effect of cue response was significant in the after condition but not
the before condition (Table S6); the relationships between sequenceness and memory
were unaffected. (e-f) The correlation between evidence for within-episode categories
minus the correlation between all other pairings (zero-lag correlation) across the 160 ms
— 3667 ms cue period of analysis (e) is not related to trial-to-trial accuracy in very high
or regular performance participants: High performance (-0.534 + 0.644; z = -0.829, p =
0.407); regular performance (-0.093 £ 0.354; z = -0.263, p = 0.792). (f) The correlation
between within-episode category evidence is driven by high-magnitude events (>= 95 %
of mean), and activity for these events peaks and falls rapidly. The purple line
represents the mean across participants in the after condition. (g-h) The zero-lag
correlation between evidence for within-episode categories minus the correlation
between all other pairings included in the regression model with forward and backward
sequenceness in the after condition (g) and in the before condition (h). The effect of
clustered reactivation was non-significant (after: 0.137 £ 0.463; z = 0.296, p = 0.767;
before: -0.721 £ 0.494; z = -1.460, p = 0.144); the relationships between sequenceness

and memory were unaffected. (Error bars represent SEM.)
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Table S1. Story text example used in the episodic memory encoding phase on the first

day. The stimuli for the first 4 components were taken from the categories: face,

building, body party, object, animal, and car. The alternative counterbalance order

changed component 5 across episodes from positive to negative.

Episode Component 1

1

| had a big
elephant

A man facing
away

| was sitting
outside the
stone house

| found the
key | needed

| was playing
with a girl

| called for a
taxi

| was using
scissors

At the
greenhouse

Component 2

and guided it to
the barn

played a
harmonica

trying to fix a
computer mouse

to get into the
warm cabin

outside her big
white mansion

to give my tired
knees a rest

to trim the man's
beard

my friend
pressed her
hand to the
glass

Component 3
a freckled
woman was
waiting there

while we
watched a bear

when a sports
car pulled up

an Asian woman

when a turtle
appeared

and rode with a
guy in my class
then we took a
mini car

then | saw a
pickup truck
drive by

Component 4

and cleaned it
with a toothbrush

try to open an
SuUvV

and a young
Asian man

massaged my
sore shoulder

and walked over
her feet

to go look at a
deer

to the pastel
hotel

and noticed a
horse getting
groomed outside

Component 5

then we all had
birthday cake.

after which we
enjoyed the sunny
day.

gave me a pile of

gold coins for my
work.

and we celebrated
her graduation with
balloons.

but we had to hide
from the
thunderstorm.

but then | had to go
study for an exam.

but | slipped and fell
on some marbles.

but then we had to
drag out the trash.
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Table S2. Post-experiment written questionnaire answers to questions about memory
retrieval. The second column represents the free-form answers to the question “How
were you able to remember the associations for the memory questions?”. The third
column, labeled ‘Static’, represents the answers to the question “Today, did your
memories appear in mind as a sequence or story through time, or did the pictures all
appear together as a single combined "static" memory? Single(static) = 1, Sequence
(story)=5". The fourth column, labeled ‘Cue’, represents the answer to the question
“When remembering, did you mostly use the period during the initial (fading) picture
"cue" to remember, or more the time when the answer option appeared? During the cue

=1, at the answer=5".
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Num

How were you able to remember the associations for the memory
questions?

Static

Cue

311

312
313
314

315

316

317

318
319
320

322

323
324

325

326
327

328

329
331

333

334
335
336

337
338

| tried to quickly "say" to myself the pictures before/after the one on the
screen. Then | concentrated whether | see them.

Mostly "gut" feeling.

Relating some pictures.

Some stories that were more relatable to my life were easier to recall.
pretty well, it improved over time, but sometimes my concentration
slipped, or | pushed wrong button.

Trying to recall the story and the order in which the pictures occurred in
said episode.

| just briefly recalled the stories and quickly ran through the associated
images in the episode before seeing the question.

Based on the "stories".

My own creations/storyline.

Using stories, mnemonics.

By remembering the stories or scene which linked the 5 pictures and their
order.

From the story/associations.

Trying to remember the story.

| don't think | am able to remember the whole episode, but most of the
time, | would remember half.

| remember parts of the story line but also remembering which picture
was connected to the specific episode.

Remember the sequence of events per scenario as a story.

| tried to remember the stories and the names you gave to the faces. |
only remembered some stories so | guessed the other ones through a
process of elimination.

| tried to remember the stories with the episode.

Using the stories from yesterday.

For around half of the stories, it was by eidetic recall. For the other, gut
instinct.

| tried my best to remember the provided story lines.

Based on the stories | made up from the day before.

Tried to remember the stories.

Own story, verbal encoding e.g. faces looked like some people | knew,
etc.

Pictured by picture recall and occasionally gut feeling.
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Table S3. Multilevel modeling results for the inclusion of all participants in the model
relating sequenceness and accuracy and effect of task time (trial). Top: model including
all participants (with lag selecting using leave-one-out cross validation). Bottom: model
including interaction of sequenceness and task time (trial) in regular performing

participants.

After condition (all n = 25)

Accuracy ~ coef. ste z-stat p-value
Intercept 1.2226 0.1694 7.671 <0.0001
SeqFwd -0.1543  0.0718 -2.148 0.0280*
SeqBkw 0.1676 0.0713 235 0.0168*

Before condition (all n = 25)

Intercept 1.374 0.1698 8.091 <0.0001
SeqFwd 0.176 0.0685 2.571 0.0152*
SeqBkw -0.0456 0.069 -0.661 0.4912

After condition: interaction with trial

Intercept 0.8586 0.1139 7.539 <0.0001
SeqFwd -0.1403 0.0788 -1.78 0.0744
SeqBkw 0.1705 0.0791 2.155 0.0296*
Trial -0.1274  0.1351 -0.943 0.3696
SeqFwd * Trial -0.0937  0.1288 -0.728 0.4704
SeqBkw * Trial -0.1573  0.1337 -1.176 0.2496

Before condition: interaction with trial

Intercept 0.9672 0.112 8.634 <0.0001
SeqFwd 0.1643 0.0735 2.235 0.0248*
SeqBkw -0.0548 0.0746 -0.734 0.4232
Trial 0.1543 0.1359 1.135 0.2544
SeqFwd * Trial -0.0885 0.1197 -0.739 0.4408
SeqBkw * Trial -0.1147  0.1209 -0.949 0.3544
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Table S4. Multilevel modeling results for the relationship between sequenceness from
all transitions found in ‘other’ episodes (40-50 ms; excluding transitions from the current
episode) to accuracy. Bottom: the preceding model plus the primary measure of

sequenceness from current episode transitions (100-120 ms).

After condition: Other transition measure (40-50 ms)

Accuracy ~ coef. ste z-stat p-value
Intercept 0.0617 0.08417 7.696 <0.0001
SeqgFwd ‘Other’ Tx 0.06168 0.08417 0.733 0.4592
SeqBkw ‘Other’ Tx 0.03377 0.06787 0.498 0.6176

Before condition: Other transition measure (40-50 ms)

Intercept 0.9713 0.11101 8.749 <0.0001
SeqFwd ‘Other’ Tx 0.00049 0.07813 0.006 0.9792
SeqBkw ‘Other’ Tx -0.05764 0.06532 0.882 0.3856

After condition: Current + other transition (40-50 ms)

Intercept 0.86205 0.11319 7.616 <0.0001
SeqFwd -0.12962 0.07888 -1.643 0.1024
SeqBkw 0.18399 0.07862 2.340 0.0240*

SeqFwd ‘Other’ Tx 0.05676  0.08312 0.683 0.5024
SeqBkw ‘Other’ Tx 0.03009 0.06877 0.438 0.6848

Before condition: Current + other transition (40-50 ms)

Intercept 0.97577 0.11245 8.677 <0.0001
SeqFwd 0.16231 0.07315 2.219 0.0360*
SeqBkw -0.04968 0.07465 -0.666 0.4968

SeqFwd ‘Other’ Tx -0.00061 0.07878 -0.008 0.9936
SeqBkw ‘Other’ Tx -0.06276 0.06570 -0.955 0.3528
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Table S5. Multilevel modeling results relating the effect of sequenceness from all
transitions found in ‘other’ episodes (100-120 ms; excluding transitions from the current
episode) to successful retrieval. Bottom: the preceding model plus the primary measure

of sequenceness from current episode transitions (100-120 ms).

After condition: other transition measure (7100-120 ms)

Accuracy ~ coef. ste z-stat p-value
Intercept 0.8522 0.1112 7.662 <0.0001
SeqgFwd ‘Other’ Tx 0.1414 0.0791 1.788 0.0832
SeqBkw ‘Other’ Tx -0.0527 0.0787 -0.669 0.4968

Before condition: other transition measure (700-120 ms)

Intercept 0.9657 0.1109 8.712 <0.0001
SeqgFwd ‘Other’ Tx -0.1115 0.0812 -1.373 0.1480
SeqBkw ‘Other’ Tx -0.0013 0.0802 -0.016 0.9712

After condition: current + other transition (700-120 ms)

Intercept 0.8549 0.1127 7.589 <0.0001
SeqFwd -0.1268 0.0853 -1.488 0.1248
SeqBkw 0.1540 0.0823 1.872 0.0472*
SeqgFwd ‘Other’ Tx 0.1053 0.0850 1.239 0.2320
SeqBkw ‘Other’ Tx -0.0176 0.0870 -0.203 0.8368

Before condition: current + other transition (700-120 ms)

Intercept 0.9728 0.1128 8.627 <0.0001
SeqFwd 0.1796 0.0782 2.296 0.0160*
SeqBkw -0.0153 0.0790 -0.194 0.8352
SeqFwd ‘Other’ Tx -0.1346 0.0862 -1.562 0.1240
SeqBkw ‘Other’ Tx -0.0745 0.0865 -0.861 0.3536
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Table S6. Multilevel modeling results relating cue-evoked responses (200 — 250 ms
post-onset) and sequenceness to accuracy. Top: inclusion of cue-evoked
representation of current episode categories (omitting the on-screen category) minus

other-episode categories. Bottom: inclusion of the response to the cue category itself.

After condition: Current-other episode reactivation

Accuracy ~ coef. ste z-stat p-value
Intercept 0.8534 0.1128 7.562 <0.0001
SeqFwd -0.1366  0.0779 -1.753 0.0816
SeqBkw 0.1862 0.0779 239 0.0160*

Current-Other coef. 0.8489 0.6786 1.251  0.2040

Before condition: Current-other episode reactivation

Intercept 0.962 0.112 8.586 <0.0001
SeqFwd 0.1601 0.0727 2.202 0.0256*
SeqBkw -0.0574 0.0739 -0.777 0.4240
Current-Other coef. 0.5279 0.7212 0.732 0.4400

After condition: Cued category response

Intercept 0.847 0.1123 7.541 <0.0001
SeqFwd -0.1276 0.078 -1.636 0.0984
SeqBkw 0.1882 0.0779 2415 0.018*
Cue response coef. 1.5659 0.5896 2.656 0.0016*

Before condition: Cued category response

Intercept 0.9615 0.1118 8.597 <0.0001
SeqFwd 0.16 0.0727 2.202 0.0256*
SeqBkw -0.0564 0.074 -0.763 0.4464
Cue response coef. 0.0133 0.7267 0.018 0.8424
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Table S7. Multilevel modeling results for the interaction between sequenceness and

episode length (long, short) or episode end valence (positive, negative) on accuracy.

After condition: Length

Accuracy ~ coef. ste z-stat p-value
Intercept 0.8415 0.1129 7.456 <0.0001
SeqFwd -0.1375  0.0782 -1.757 0.0808
SeqBkw 0.1948 0.0783 2.487 0.0080*

Length -0.0909 0.0822 -1.105 0.2912
SeqgFwd * Length 0.013 0.0783 0.166  0.8680
SeqBkw * Length 0.0105 0.0786 0.134 0.8938

Before condition: Length

Intercept 0.9602 0.1127 8.517 <0.0001
SeqFwd 0.1612 0.0732 2.204 0.0296*
SeqBkw -0.0616  0.0741 -0.831 0.4152
Length 0.0744 0.08 0.929 0.3672
SegFwd * Length -0.0849 0.0732 -1.159 0.2664
SeqBkw * Length 0.0529 0.0744 0.711  0.4728

After condition: End valence

Intercept 0.8702 0.1166 7.463 <0.0001
SeqFwd -0.1175 0.079 -1.488 0.1208
SeqBkw 0.1821 0.0789 2.307 0.0200*
Reward -0.0873 0.0842 -1.037 0.3000
SeqFwd * Valence 0.1108 0.079 1402 0.1760
SeqBkw * Valence -0.2005 0.08 -2.505 0.0128*

Before condition: End valence

Intercept 0.964 0.1116 8.638 <0.0001
SeqFwd 0.1561 0.0733 2.129 0.0304*
SeqBkw -0.0541 0.0744 -0.726 0.4624
Reward -0.005 0.0915 -0.055 0.9648
SeqFwd * Valence -0.0071 0.0734 -0.097 0.9104
SeqBkw * Valence -0.0047 0.0745 -0.062 0.9344
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Table S8. Whole-brain beamforming MEG results for replay onset in the after and
before conditions. Clusters significant whole-brain FWE-corrected after an initial

threshold of p < 0.001 to provide interpretable clusters.

. Cluster Peak z
Contrast Regions size y stat
L Lingual Gyrus -14 -86 -4
L Lingual Gyrus 5495 -22 -70 2 4.69
L Middle Occipital Gyrus -32 -84 6
After R Calcarine Sulcus 26 -58 20
backward R Parietal Lobe 1198 36 -60 32 3.9
replay onset | R Calcarine Sulcus 28  -46 4
R Anterior Hippocampus 20 -10 -18
R Ventral Thalamus 2151 4 -20 -6 3.72
R Anterior Hippocampus 20 -2 -22
Before R Midbrain 2 -32 -18
forward R Parahippocampal Gyrus 1707 14 0 -34 3.73
replay onset | R Entorhinal Cortex 14 -2 -24
After L Entorhinal Cortex -22 -8 -32
t::g':;":'g L Entorhinal Cortex 1046 -18 -16  -26 3.82
performance L Anterior Hippocampus -34 -12 -24
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