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Abstract—Respiratory motion reduces image quality in
Positron Emission Tomography (PET). Unless gated Computed
Tomography (CT) or Magnetic Resonance (MR) data are avail-
able, motion correction relies on registration of the PET data.
To avoid mis-registration due to attenuation mismatches, most
existing methods rely on pair-wise registration of Non-Attenuation
Corrected (NAC) PET volumes. This is a challenging problem due
to the low contrast and high noise of these volumes. This paper
investigates the possibility of using motion models for respiratory
motion correction in PET, and in particular whether incorporat-
ing Time-of-Flight (TOF) information increases the accuracy of
the motion models derived from the NAC reconstructed images.
4D Extended Cardiac-Torso (XCAT) phantom simulations are
used for one bed position with a field of view including the
base of the lungs and the diaphragm. A TOF resolution of
375ps is used. NAC images are reconstructed using Orded SubSet
Expectation Maximisation (OSEM) and used as input for motion
model estimation. Different motion models are compared using
the original XCAT input volumes. The results indicate that TOF
improves the accuracy of the motion model considerably.

I. INTRODUCTION

RESPIRATORY motion causes artefacts and loss of reso-
lution in the thoracic region in PET [1]. Many methods

have been proposed to correct for respiratory motion, usually
involving registration between a reference volume and a set of
volumes in different positions in the respiratory cycle obtained
by gating [2]. However, such pair-wise registration is sensitive
to noise. It also does not allow prediction of the respiratory
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state for data not used to estimate the motion, for instance, to be
used for real time motion correction. Surrogate driven motion
models attempt to overcome these deficiencies by relating the
motion in the data to a number of surrogate signals [3]. The
model outputs a transformation or deformation field for every
value of the surrogate signals. Motion models are calculated
on a series of either time or gating based volumes.

The benefits of using attenuation correction for PET image
registration are unclear. If images are reconstructed using a
static Attenuation Map (mu-map), then artefacts caused by the
misalignment between the activity distribution and the mu-
map would hamper image registration. It could therefore be
advantageous to estimate motion on NAC images [4]. However,
contrast may be too low to calculate an accurate motion model
and artefacts associated with the mismatch between the acqui-
sition and system model could also obscure the underlying
motion.

In the absence of TOF, there is no information on the
activity position along the Line-of-Responce (LOR) and NAC
reconstructions have high intensity near the surface and low
contrast in the internal part of the body. In TOF, the time
information constrains the activity position along the LOR
changing the nature and extent of the artefacts associated with
NAC as well as changing noise properties [5].

The aim of this work is to investigate whether TOF can
sufficiently increase the contrast and lower the noise of NAC
images to facilitate the calculation of accurate motion models.

II. METHODS

A. XCAT image generation

XCAT [6] was used to generate 6 volumes over a linear 5
second breathing cycle, with 1 volume at full expiration at the
beginning of the cycle and 1 volume at full expiration at the
end of the cycle and using settings for the extent of Anterior-
Posterior (AP) and Superior-Inferior (SI) motion. Activity
concentrations were derived from a static Fludeoxyglucose
(FDG) patient scan. The field of view included the base of
the lungs, diaphragm and the top of the liver with a 40mm
diameter spherical lesion placed in the right lung.

B. PET data simulation

PET acquisitions were simulated using Software for Tomo-
graphic Image Reconstruction (STIR) [7], [8] through Syn-
ergistic Image Reconstruction Framework (SIRF) [9], [10] to



forward project the input data to sinograms using the geometry
of a GE Discovery 710 and, where relevant, a TOF resolution
of 375ps similar to the GE Signa PET/MR (using TOF mashing
to reduce computation time resulting in 13 TOF time bins of
size 376.5ps). Attenuation was included in the simulation using
the relevant mu-map generated by XCAT. Scatter and randoms
were not taken into account in the simulation. Multiple noise
realisations were generated to simulate an acquisition as if
it had been gated into 6 bins over an acquisition of 120s,
emulating a standard single bed position acquisition.

C. Image reconstruction

Data were reconstructed without attenuation correction using
OSEM with 2 full iterations and 24 subsets [11]. Volumes were
post filtered using a Gaussian blurring with a kernel size of
6.4mm Full Width at Half Maximum (FWHM).

D. Motion model estimation

3D B-splines were used to model spatial deformations with
the corresponding warping operation denoted as W(αt), with
αt a vector with B-spline coefficients at time t. The breathing
surrogate signals s contained 2 components, the Anterior-
Posterior (AP) and Superior-Inferior (SI) motion signals used
by XCAT. Following [12] a direct correspondence motion
model was used where the B-spline coefficients at time t are
expressed as a linear combination of the 2 surrogate signals,
s1,t and s2,t:

∀t ∈ [[1, nt]], αk,t := R1,ks1,t +R2,ks2,t +R3,k (1)

where αk,t is the 3D B-spline coefficient for node k at time
point t, and Ri,k are the model parameters.

A generalised framework unifying image registration and
respiratory motion models, NiftyRegResp, was used to estimate
the Respiratory Correspondence Model (RCM)s using Sum of
Squared Differences (SSD) as an objective function [12].

E. Evaluation

We compared 3 RCMs, calculated from the PET XCAT
volumes (gold standard), Non-Time-of-Flight (nonTOF) NAC
reconstructions and TOF NAC reconstructions. To test the
accuracy of the RCMs, the 3 models were used to warp
the PET volume generated by XCAT at the mean breathing
position to the position at each gate. These estimated volumes
were then compared to the original XCAT input volumes.
Difference volumes were obtained by subtracting the original
XCAT volume ft and warped volumes W(αt)fref at the same
gate. Mean Absolute Percentage Error (MAPE) were computed
from these difference images.

In addition, the Centre-of-Mass (COM) of the lesion was
also tracked over the 6 gates, by warping a volume only
including the lesion in the reference position as above, and
then computing the COM.

III. RESULTS

TABLE I
COMPARISON OF THE MAPE BETWEEN THE GROUND TRUTH DATA AND

THE VOLUMES ESTIMATED FROM THE XCAT BASED RCM, THE VOLUMES
ESTIMATED FROM THE NAC NONTOF BASED RCM AND THE VOLUMES

ESTIMATED FROM THE NAC TOF BASED RCM.

MAPE XCAT nonTOF TOF
1 1.95 8.35 4.18
2 1.59 1.61 1.84
3 2.06 9.91 5.23
4 1.97 6.15 3.68
5 1.65 4.45 2.52
6 1.95 8.35 4.18

Mean 1.86 6.47 3.60

Fig. 2. The path of the COM of the lesion. Horizontal (respectively vertical)
axis corresponds to motion in the AP (respectively SI) direction over the 6
gates. Different curves denote COM displacement for ground truth data, the
estimated data from the XCAT based RCM, the estimated data from the NAC
nonTOF based RCM and the estimated data from the NAC TOF based RCM.

The reconstructed data, estimated volumes and difference
can be seen in Fig 1 and MAPE are in Table I. The mean
MAPE was found to be lower for the NAC TOF data than for
the NAC nonTOF.

COM results can be seen in Fig 2. The path of the NAC
TOF data follows the ground truth path much closer than the
NAC nonTOF data, and is quite close to the gold standard
XCAT-derived motion.

IV. DISCUSSION AND CONCLUSIONS

Motion models derived from NAC TOF volumes were found
to be more robust than when using NAC nonTOF, both visually
and when comparing MAPE and COM. This was noticeable
for the lung lesion in the thoracic cavity but also for other
parts of the anatomy such as the liver. This is likely due to the
improved image contrast of NAC TOF images.



Fig. 1. All volumes correspond to end-inhalation. First row from left to right: XCAT PET data, NAC nonTOF reconstructed data and NAC TOF reconstructed
data. Second row: RCM applied to mean position XCAT data with RCM derived from XCAT PET data (left), NAC nonTOF (middle) and NAC TOF (right)
volumes. Colour map ranges are consistent for all images on this row. The third row from left to right: The difference between the estimated volumes from
the second row with the XCAT end-inhalation volume. Colour map ranges are consistent for all images on this row.

In the future, research will focus on investigating the robust-
ness of the motion model estimation to different noise levels,
acquisition duration and size of lesion.
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