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Abstract

Development of the human placenta takes place in contrasting oxygen concentrations at different stages of gestation, from ~20 
mmHg during the first trimester rising to ~60 mmHg at the start of the second trimester before gradually declining to ~40 mmHg at 
term. In view of these changes, the early placenta has been described as ‘hypoxic’. However, placental metabolism is heavily 
glycolytic, supported by the rich supply of glucose from the endometrial glands, and there is no evidence of energy compromise. On 
the contrary, the trophoblast is highly proliferative, with the physiological low-oxygen environment promoting maintenance of 
stemness in progenitor populations. These conditions favour the formation of the cytotrophoblastic shell that encapsulates the 
conceptus and interfaces with the endometrium. Extravillous trophoblast cells on the outer surface of the shell undergo an epithelial-
mesenchymal transition and acquire invasive potential. Experimental evidence suggests that these changes may be mediated by the 
higher oxygen concentration present within the placental bed. Interpreting in vitro data is often difficult, however, due to the use of 
non-physiological oxygen concentrations and trophoblast-like cell lines or explant models. Trophoblast is more vulnerable to 
hyperoxia or fluctuating levels of oxygen than to hypoxia, and some degree of placental oxidative stress likely occurs in all 
pregnancies towards term. In complications of pregnancy, such as early-onset pre-eclampsia, malperfusion generates high levels of 
oxidative stress, causing release of factors that precipitate the maternal syndrome. Further experiments are required using genuine 
trophoblast progenitor cells and physiological concentrations to fully elucidate the pathways by which oxygen regulates 
placental development.
Reproduction (2021) 161 F53–F65

Introduction

Oxygen is thought to play a major role in modulating 
human placental development, which is perhaps not 
surprising given that this foetal organ evolved principally 
for the maternal-foetal transfer of respiratory gases. The 
placenta is unusual in that it has two blood supplies, 
the maternal utero-placental circulation that supplies 
oxygen and nutrients and the feto-placental or umbilical 
circulation that abstracts these to meet the needs of 
the growing foetus. The balance between supply and 
demand will determine the oxygen (O2) concentration 
within the placental tissues, and it is now appreciated 
that this concentration varies across gestation. In this 
regard, pregnancy can no longer be considered a 
continuum but as a process that has two distinct phases, 
the first trimester lasting until the end of week 12 and 
the second and third trimesters extending until term. 
These phases correspond to the embryonic and foetal 
periods of development, respectively. The transition is 

associated with a three-fold rise in the intraplacental 
O2 concentration that must be spatially co-ordinated, 
for it represents a significant challenge to the placental 
tissues. Failure of the transition to occur correctly is 
associated with complications of pregnancy ranging 
from miscarriage to pre-eclampsia.

Central to any consideration of O2 is the concept 
of generation of free radicals, molecular species with 
unpaired electrons. The superoxide anion (O2

.−) is 
constantly formed under aerobic conditions within 
mitochondria due to the leakage of electrons from the 
enzymatic complexes of the electron transport chain 
on to molecular O2, in particular from complex III. 
The rate of formation is proportional to the prevailing 
O2 concentration, and under physiological conditions, 
superoxide acts as an important signalling intermediate, 
regulating gene expression and cell metabolism to 
suit the prevailing conditions. If, however, production 
exceeds the antioxidant defences, then indiscriminate 
damage can occur to any biomolecule in the immediate 
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vicinity, often initiating chain reactions. This condition 
is referred to as oxidative stress and may lead to 
inflammation, senescence, apoptosis and necrosis. 
Placental oxidative stress lies at the heart of many 
complications of pregnancy. It is induced primarily 
through malperfusion of the placenta, but may be 
exacerbated by deficiencies in the maternal antioxidant 
defences caused by malnutrition or genetic mutations.

Oxygen and implantation

Fertilisation takes place in the ampullary region of the 
Fallopian tube, following which the differentiating 
morula travels down the oviduct and enters the uterus 
at around day 5 p.c. (post-conception). The prevailing 
partial pressure of O2 (PO2) within the uterus during 
the non-pregnant cycle has been reported to average 
between 15 mmHg (Yedwab  et  al. 1976) and 18.9 
mmHg (Ottosen  et  al. 2006), although considerable 
variation is observed between women. Although no 
data are available, similar values might be expected at 
the time of implantation. A relatively low PO2 is thought 
to be optimal for early development, for it helps to 
maintain metabolism in what has been referred to as 
a ‘quiet’ state, reliant on endogenous reserves (Leese 
2002). Production of reactive oxygen species (ROS), 
free radicals and their non-radical intermediates such 
as hydrogen peroxide, is kept to a minimum. This limits 
oxidative damage to the zygotic DNA and disruption of 
intracellular signalling pathways at this critical stage of 
development.

There is mounting evidence that embryo culture at a 
low O2 level (5%) compared to atmospheric level during 
in vitro fertilization procedures improves pregnancy 
rates in humans, and thus may have an impact on 
both embryonic development and implantation 
(Bontekoe  et  al. 2012, Van Montfoort  et  al. 2020). 
In particular, a low O2 level in the culture medium 
produces more (Gelo  et  al. 2019), and better-quality 
(Van Montfoort et al. 2020), blastocysts. This effect was 
originally reported by Steptoe, Edwards and Purdy in 
their classic Nature article in 1971 on the first successful 
culture of a human embryo to the blastocyst stage 
(Steptoe  et  al. 1971). However, for decades embryo 
culture has been performed at atmospheric levels, 
probably due to the additional technical cost of using 
equipment to reduce the O2 concentration in the culture 
medium.

Implantation occurs into the superficial endometrium, 
starting around day 7 p.c. with attachment of the 
blastocyst to the uterine epithelium equidistant from 
the openings of the endometrial glands. By day 11 the 
blastocyst has been encapsulated by overgrowth of 
the endometrium and so is removed from the uterine 
lumen. By this time, the trophectoderm that formed 
the outer wall of the blastocyst has differentiated into 
the syncytiotrophoblast in contact with the decidua 

and an underlying population of progenitor cells, the 
cytotrophoblast. As the syncytiotrophoblast enlarges, it 
erodes into the superficial capillary plexus within the 
endometrium and maternal erythrocytes are released 
into the forerunners of the intervillous space (Hamilton 
& Boyd 1960). The presence of these erythrocytes 
within the developing placenta was taken by many 
embryologists as indicative of a maternal circulation 
to the organ, and is still depicted as such in many 
standard textbooks of embryology. However, in these 
early descriptions it was noted that the erythrocytes are 
relatively few in number and stain weakly compared 
to counterparts in nearby vessels, features that led the 
authors to question how active the circulation is at this 
stage of development beyond a venous ebb and flow.

The placental microenvironment during the first 
trimester

A series of observations and measurements taken 
in the 1980s and 1990s clarified the situation, and 
it is now widely accepted that there is little, if any, 
maternal arterial inflow into the placenta until towards 
the end of the first trimester. Ultrasonographic signals 
indicative of significant flow cannot be detected 
within the intervillous space prior to this time point 
(Hustin & Schaaps 1987, Jauniaux et al. 1991), yet are 
present within arteries in the underlying endometrium. 
Histological studies revealed that this difference is due 
to aggregates of extravillous trophoblast (EVT) cells 
within the spiral arteries. These cells are derived from 
the cytotrophoblastic shell, a multi-layered capsule of 
EVT that surrounds the conceptus at this stage, sealing 
it off and creating a protective milieu for the embryo 
(Burton & Jauniaux 2017).

As the conceptus and the shell enlarge, the EVT come 
into contact with the tips of the spiral arteries. Cells 
from the outer surface of the shell differentiate into 
endovascular EVT that migrate down their lumens as 
part of the remodelling process (Pijnenborg et al. 2006). 
These cells migrate in such numbers that the mouths of 
the arteries are obstructed, restricting flow to a seepage 
of plasma through a network of intercellular spaces 
(Hustin  et  al. 1988, Burton  et  al. 1999, Roberts  et  al. 
2017). Hence, for most of the first trimester, the placental 
intervillous space is filled with a clear fluid, comprising 
maternal plasma supplemented with secretions from the 
endometrial glands (Hustin & Schaaps 1987, Schaaps 
& Hustin 1988, Burton  et  al. 2002). Confirmation of 
the absence of significant maternal erythrocytes was 
provided by measurements of the oxygen concentration 
within the developing placenta taken with a 
multiparameter probe prior to termination of pregnancy 
at gestational ages ranging from 7 to 16 weeks. Values of 
~18 mmHg, or approximately 2.5% O2, were recorded 
prior to 10 weeks of pregnancy, very similar to those 
within the uterus during the non-pregnant cycle. 
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These rose to ~60 mmHg, or approximately 8% O2, at 
14 weeks (Rodesch  et  al. 1992, Jauniaux  et  al. 2000, 
2001), when the progressive formation of channels 
within the trophoblastic aggregates and changes in the 
arcuate arteries lead to increased arterial inflow into 
the intervillous space (Burton et al. 1999, Roberts et al. 
2017).

The three-fold rise in oxygenation at the start of the 
second trimester has led to the early placenta commonly 
being described as hypoxic. However, hypoxia cannot 
be defined by the prevailing O2 concentration alone, 
for the definition must consider the metabolic needs 
of the tissue concerned. When the O2 concentration 
drops so low that these needs can no longer be met, 
a cell must adapt to conserve resources, switching 
its metabolism and activities from oxyregulating to 
oxyconforming (Gorr 2017). The critical level, or PC, 
at which this occurs defines the normoxia/hypoxia 
boundary for that cell type; for most mammalian cell 
types the threshold is within the ~0.15–1.5% O2 range 
(Gorr 2017). Cells with substantial energy demands 
due to high rates of proliferation, active transport, or 
protein synthesis and secretion will be more sensitive 
to O2 lack than their more sedentary counterparts. This 
is true within the placenta, for BeWo cells that are 
considered similar to the endocrine syncytiotrophoblast 
show a greater reduction in proliferation rates and more 
severe molecular adaptations at 1% O2 than isolates of 
placental fibroblast stromal cells (Yung et al. 2012).

The value of PC has not been determined for human 
placental cell types, and, therefore proxy markers 
have to be used as a guide to hypoxic stress. These 
include activation of members of the HIF (hypoxia-
inducible factor) family that act as master regulators 
of cell metabolism in response to oxygen availability, 
showing maximum activity around the PC (Gorr 2017). 
Data relating to HIF need to be interpreted with caution, 
however, for many factors can lead to its stabilisation, 
including cytokines and hyperoxia (Pringle et al. 2010). 
Thus the mode of collection of the placental samples is 
critically important. In first trimester samples removed 
by a chorionic villus sampling (CVS) technique, during 
which the sample does not come into contact with 
maternal blood, no stabilisation of HIF-1 is observed. 
By contrast, in samples removed by the standard 
method of suction-curettage when they are inevitably 
exposed to maternal blood, or if CVS samples are 
cultured under atmospheric O2 concentrations or 
with hydrogen peroxide, then HIF-1 can be detected 
(Cindrova-Davies  et  al. 2015). Such samples also 
display phosphorylation of p38, indicative of a cell 
stress response. These findings demonstrate that the HIF 
pathway is present and can be activated during early 
pregnancy, but that under physiological conditions levels 
are too low to be detected by Western blotting. Binding 
of HIF to DNA may provide a more sensitive read-out of 
the role of HIF signalling following implantation.

Other proxy markers of hypoxia are the ATP/ADP ratio 
and activation of AMP kinase that signals low energy 
status within a cell. The ratio was found to be constant 
across homogenates of placental villi sampled from 
first-, second- and third-trimester placentas (Cindrova-
Davies et al. 2015). Although homogenisation of tissue 
will mask possible differences between cell types, the 
data provide no evidence of overall energy deficiency 
in these tissues.

The reason for this constancy may be three-fold. First, 
the oxygen concentration measured during the first 
trimester was 2.5%, which is above the hypoxic range for 
most cell types and equivalent to that in resting muscle 
and other healthy tissues. Secondly, phylogenetically old 
carbohydrate metabolic pathways, the polyol pathways, 
are highly active in placental tissues, particularly 
during the first trimester but also throughout pregnancy 
(Jauniaux  et  al. 2005). These pathways, which are 
closely interlinked to the pentose phosphate pathway, 
regenerate NAD+ and NADP+ through the formation of 
sugar alcohols, such as ribitol, sorbitol and erythritol. 
Thus, glycolysis can be maintained without undue 
dependence on fermentation and production of lactate 
(Jauniaux  et  al. 2001, Burton  et  al. 2017b). Reliance 
on glycolysis rather than oxidative phosphorylation 
for energy production has the added advantage that 
carbon skeletons are preserved and can be used in the 
synthesis of nucleotides needed to support the high rate 
of cell proliferation, rather than being broken down and 
excreted as carbon dioxide. Finally, the histotrophic 
secretions from the endometrial glands contain large 
amounts of glucose and glycogen and hence can support 
a high rate of placental glycolysis.

Overall, although the O2 concentration within the 
placenta is lower during the first trimester than later 
in pregnancy, there is no evidence that the tissues 
are hypoxically stressed. Indeed, hypoxia would be 
incompatible with the high rate of proliferation observed, 
for suppression of protein synthesis, a pre-requisite for 
cell division, is one of the principal adaptations when 
O2 availability becomes limiting (Hochachka & Lutz 
2001).

Oxygen as a modulator of trophoblast proliferation

The low-oxygen environment during the first trimester 
likely facilitates placental development in a number 
of ways, although the experimental data are often 
conflicting and difficult to interpret. In part, the latter 
is due to the fact that until recently a trophoblast 
stem/progenitor cell that proliferates in vitro has not 
been available (Haider  et  al. 2018, Okae  et  al. 2018, 
Turco et al. 2018). Consequently, researchers have had 
to rely on trophoblast-like cell lines. Some of these are 
derived from choriocarcinomas, such as the JEG3 and 
BeWo lines, and may have highly atypical metabolism 
and invasive behaviour, whereas others, such as the 
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HTR-8/SVneo, have been immortalised. Different 
cell lines reflect particular trophoblast sub-types, for 
example, BeWo and JAR cells are considered close to 
the villous cytotrophoblast lineage, whereas the HTR-8/
SVneo and JEG-3 lines are more closely aligned to 
the extravillous lineage (Apps et al. 2011). Hence, the 
various lines may respond in different ways reflective of 
their origin. In addition, all these cell lines have been 
cultured under ambient oxygen concentrations for 
many years and so are fully adapted to 20% oxygen. 
Their responses to low oxygen may therefore be very 
different from the in vivo situation. In addition, they are 
often grown in standard culture medium that contains 
non-physiological concentrations of glucose, permitting 
maintenance of glycolysis at high levels. Adaptation 
to physiological concentrations not only renders the 
cells more susceptible to hypoxia-reoxygenation, but 
also enables the unfolded protein responses observed 
in placentas from cases of early-onset pre-eclampsia to 
be fully recapitulated in vitro (Yung et al. 2014, 2019). 
Serum supplementation, and if so the concentration 
used, is another confounding variable that can influence 
the physiological buffering capacity of the culture 
medium. For all these reasons, data derived from the 
use of cell lines therefore needs to be interpreted with 
caution.

Alternatively, use has been made of villous explants, 
grown usually on a Matrigel substrate. Outgrowth 
of cells from the villous tip is often measured as an 
estimate of EVT proliferation and differentiation, but 
accurate quantification is impossible in this model as the 
starting number of cytotrophoblast cells in an individual 
explant is not known. Instead, the proportion of cells 
staining positively for a marker of proliferation can be 
used as a measure. Another limitation of many in vitro 
experiments is that comparisons have been performed 
between non-physiological O2 concentrations, both 
high and low. Commonly, controls are cultured at 21% 
O2 and considered ‘normoxic’, whereas in reality these 
are hyperoxic for primary cultures and villous explants. 
Equally, others have used 0% or 0.5% to stimulate a 
hypoxic response, which is unlikely to be compatible 
with an ongoing pregnancy. Nonetheless, some 
generalities emerge.

First, maintenance of stem cells and pluripotency 
is favoured under conditions of 2–5% O2, modulated 
through stabilisation of HIF family members through 
ROS generated within mitochondria (Forristal  et  al. 
2013, Lees  et  al. 2017). For example, HIF2α binds to 
hypoxia response elements in NANOG, OCT4 and 
SOX2, maintaining the pluripotency network in human 
embryonic stem cells under physiological O2 levels, but 
not under atmospheric conditions (Lees  et  al. 2017). 
Consistent with this finding, human embryonic stem 
cells cultured under 5% O2 show less differentiation and 
production of human chorionic gonadotropin than those 
grown under 21% O2 (Ezashi et al. 2005, Lengner et al. 

2010). In the human placenta, the transcripts and protein 
levels of two key transcription factors that characterise 
the trophoblast stem cell population, CDX2 and 
ELF5, decrease sharply at the end of the first trimester 
(Hemberger et al. 2010, Burton et al. 2020). This reduction 
in stemness is associated with increased methylation of 
the ELF5 promoter region, and proliferation becomes 
restricted to a niche located at the proximal end of a 
cytotrophoblast cell column (Burton et al. 2020). Whether 
this change is secondary to the rise in oxygenation or the 
loss of growth factor support from the endometrial glands 
is uncertain at present.

Secondly, several studies have shown that 
proliferation of trophoblast cells is promoted under 
2–3% O2 compared to 21% controls (Table 1). Thus, 
primary cultures of cytotrophoblast cells isolated from 
10- to 12-week-old placentas showed a three-fold 
increase in the incorporation of bromodeoxyuridine 
(BrdU) when cultured in 2% oxygen compared to either 
8% or 21% conditions (Genbacev et al. 1996). Similarly, 
villus explants of 6–8 weeks’ gestational age displayed 
incorporation of BrdU into a greater proportion of 
cytotrophoblast cells and more extensive formation of 
cell columns when cultured for 72 h under 2% oxygen 
rather than 21% (Genbacev et al. 1997). Similar findings 
were reported using the proliferation marker Ki67 in 5- 
to 8-week-old villous explants cultured for 5 days under 
3% compared to 21% O2, which could be reversed by 
knocking down HIF-1α (Caniggia et al. 2000).

By contrast, opposite results have generally been 
presented using trophoblast-like cell lines (Table 1) 
(Lash et al. 2007). This difference most likely reflects the 
fact that, as mentioned earlier, these lines have become 
acclimatised to ambient oxygen concentrations over the 
years and adjusted their metabolism accordingly.

The O2 levels used in such experiments are likely to be 
critical, for recently it was found that BrdU incorporation 
into 5- to 8-week-old explants is reduced under 1% O2 
compared to either 5% or 20% O2, with no difference 
between the latter two levels (Treissman  et  al. 2020). 
However, 1% O2 is within the hypoxic range for most cells 
(Gorr 2017) and may be considered non-physiological. 
At these levels, cells reduce protein synthesis and 
proliferation to conserve resources, mediated through 
activation of the unfolded protein response pathways 
(Wouters et al. 2005). This interpretation is supported by 
the finding that proliferation of murine trophoblast stem 
cells is greatest under 2% O2, lower under 20% and 
least under either 0.5% or 0.0% O2 (Zhou et al. 2011). 
Furthermore, levels of phosphorylated stress-activated 
protein kinase (pSAPK) were highest in the cells cultured 
under 0.5% or 0.0% O2, when they were associated with 
activation of the apoptotic cascade. Overall, therefore, it 
appears that trophoblast proliferation and maintenance 
of multipotency (Zhou et al. 2011) are greatest under the 
physiological conditions of 2–3% O2 prevailing during 
the first trimester.
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Oxygen as a modulator of trophoblast 
differentiation and invasion

The effects of O2 on trophoblast differentiation into 
the EVT lineage and the subsequent invasiveness of 
these cells have been more controversial, and the 
same experimental caveats apply as for proliferation. 
The EVT are formed at the point where the placental 
villi make contact with the endometrium, at the tips 
of the anchoring villi. Here, the cytotrophoblast cells 
proliferate and in doing so form a cell column that at 
its distal end expands laterally, merging with neighbours 
to form the cytotrophoblastic shell that initially 
surrounds the conceptus (Fig. 1) (Burton & Jauniaux 
2017). The EVT lineage is characterised by a number 
of factors, including expression of HLA-G and matrix 
metalloproteinases, a change in integrin expression 
and loss of expression of p63. Experimental evidence 
indicates that the transition is regulated, in part at least, 
through complex interactions between the Notch and 
Wnt pathways (Nayeem et al. 2016, Haider et al. 2017). 
Notch 1 is localized to a subset of proliferating cells at 
the proximal end of the column and maintains these cells 
in a progenitor state (Haider et al. 2016). Expression and 
activity of Notch1 are stimulated by low oxygen in vitro 
(Haider et al. 2016), and Notch signalling requires the 
presence of an intact HIF complex (Chang et al. 2018). 
Recent experiments utilising villous cytotrophoblast 
cells have demonstrated that differentiation into the EVT 
lineage is promoted under 2% compared to 20% O2 

and that the effect is mediated through HIF-1α signalling 
(Wakeland et al. 2017).

As the cells progress down the column, they 
undergo maturation, and Wnt activity is thought to 
stimulate expression of MMP-2 in the more distal 
parts (Nayeem  et  al. 2016). The cells of the column 
and of the shell remain rounded in shape, however, 
and their position within the confines of the placenta 
indicates they are not particularly invasive. By contrast, 
cells on the outer surface of the shell in contact with 
the endometrium undergo an epithelial-mesenchymal 
transition and invade individually as spindle-shaped 
interstitial EVT into the stroma, where they surround 
the spiral arteries and endometrial glands. Interactions 
between these cells and maternal immune cells are 
considered to play a key role in remodelling the arteries 
and ensuring adequate perfusion of the placenta during 
the second and third trimesters (Moffett  et  al. 2015). 
Many complications of pregnancy arise as a failure of 
this invasion (Brosens et al. 2011), and so its regulation 
is a matter of great importance. In terms of the in vivo 
situation, it should be remembered that the interstitial 
EVT migrate up an O2 gradient, from ~20 mmHg in the 
placenta to 60-70 mmHg in the endometrium during 
the first trimester and from ~50 mmHg to 70–80 mmHg 
during the second trimester (Fig. 1) (Jauniaux et al. 2000, 
2001). The extent of this gradient and the degree to which 
it involves the cell columns is unknown at present.

Experiments using primary cultures of cytotrophoblast 
cells or villous explants have demonstrated greater 

Table 1 Summary of responses of different models to low oxygen conditions compared to the control.

Study Model Oxygen Proliferation Outgrowth Invasion Apoptosis

Genbacev et al. (1996) Primary cytotrophoblast
10–12 weeks

2 vs 8 vs 20% ↑ after 72 h ↓ after 72 h

Jiang et al. (2000) Primary cytotrophoblast  
midterm

2 vs 20% ↑ after 72 h

Graham et al. (2000) HTR-8/SVneo 1 vs 20% ↑
Kilburn et al. (2000) HTR-8/SVneo 2 vs 20% ↑ after 72 h ↓ after 72 h
Lash et al. (2007) HTR-8/SVneo 3 vs 20% ↓ after 48  

and 72 h 
↑ at 24 h 
↓ after 72 h

↓ after 24 
and 48 h

Lash et al. (2007) JEG-3 3 vs 20% ↓ after 24  
and 48 h 

↑ after 24 h 
↓ after 72 h

↑ after 24 
and 48 h

Lash et al. (2007) SGHPL-4 3 vs 20% ↓ after 24 h 
↑ after 48 h

↓ after 24 h ↑ after 24 h
↓ after 48 h

Lash et al. (2007) JAR ↓ after 24 h ↑ after 24 h
↓ after 72 h

Yung et al. (2012) JEG-3 1% vs 20% ↓ after 72 h
Yung et al. (2012) BeWo 1% vs 20% ↓ after 72 h
Caniggia et al. (2000) Explants 

5–8 weeks
3 vs 21% ↑ after 5 d ↑ ↓

Genbacev et al. (1997) Explants
6–8 weeks

2 vs 21% ↑ after 72 h ↑ after 72 h ↓ after 72 h

Lash et al. (2006) Explants
8–10 weeks
12–14 weeks

3 vs 8 vs 20% - ↓ after 6 days  
under 3% at both  
gestational ages

-

James et al. (2006) Explants
8–12 weeks

1.5 vs 8% ↓ after 5 days in  
<11 week samples

Treissman et al. (2020) Explants
5–8 weeks

1 vs 5 vs 20% ↓ under 1% ↑ under 1 and 5%
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invasiveness in samples from the first trimester compared 
to the second and third trimesters or term (Genbacev et al. 
1996, Lash  et  al. 2006). This change may reflect the 
transition in the intrauterine environment in vivo and 
highlights that gestational age is a potential confounding 
factor. Cytotrophoblast cells isolated from 10- to 12-week-
old placentas cultured under 21% O2 were several 100-
fold more invasive than those cultured under 2% O2, 
consistent with the in vivo situation (Rodesch et al. 1992, 
Jauniaux et al. 2001) and potentially accounting for why 
EVT preferentially invade the maternal arteries rather than 
the veins (Genbacev et al. 1996, 1997).

These findings were supported by data from explant 
cultures derived from 5-to 8-week-old placentas 
(Table 1) (Caniggia  et  al. 2000). Culture under 3% 
O2 was associated with higher levels of HIF-1α 
than 20% O2, which promoted proliferation of the 
cytotrophoblast progenitors and outgrowth at the villus 
tip. However, when HIF activity was blocked with anti-
sense oligonucleotides, invasion of the EVT into the 
Matrigel, rather than just outgrowth over the surface, 
was promoted, facilitated by increased expression of 
matrix-metalloproteinase enzymes. The effects of HIF-
1α were mediated through TGFβ3 (Caniggia et al. 2000). 
Another study using the explant model also reported 
that invasion was reduced under 3% O2 compared to 
8% or 20% and was associated with changes in activity 
of the urokinase plasminogen activator system (uPA) 
(Lash et al. 2006). Contrary results were presented based 
on the immortalised HTR-8/SVneo trophoblast-like cell 
line, which showed increased invasion under 1% O2 
compared to 20% (Graham  et  al. 2000). Again, the 
changes were attributed to alterations in the uPA system.

Despite these differences, a consensus is developing 
that the low-oxygen environment within the placenta 
during the first trimester favours proliferation of the 
cytotrophoblast progenitors and their differentiation 
into immature EVT cells. Once the cells approach the 
decidua then the higher O2 concentration may stimulate 
further differentiation and the acquisition of the invasive 
phenotype (Chang et al. 2018, Treissman et al. 2020).

The first-second trimester oxygen transition

Ultrasonography has demonstrated that the onset of the 
maternal circulation starts preferentially in the peripheral 
margins of the early placenta, where trophoblast 
‘plugging’ of the spiral arteries is least extensive 
(Jauniaux  et  al. 2003). Placental villi have low levels 
of the principal antioxidant enzymes during the first 
trimester compared to the second- and third trimesters. 
They are therefore vulnerable to oxidative stress, and 
villi removed from the periphery exhibit higher levels 
of oxidative damage, trophoblast degeneration and 
activation of the apoptotic cascade than counterparts 
in the central region (Jauniaux et al. 2003, Burton et al. 
2010). These findings have led to the concept that local 
high levels of O2 created during onset of the maternal 
circulation may induce regression of the villi over 
the superficial pole of the chorionic sac, creating the 
chorion laeve and the definitive discoid placenta and 
the formation of the free placental membranes. Local 
variations in onset of the blood flow may lead to areas 
of excessive regression, resulting in abnormal placental 
shapes with eccentric cord insertions (Burton  et  al. 
2010).

Figure 1 Photomicrograph of an anchoring 
villus (av) giving rise to a cytotrophoblast cell 
column (ccc) that is attached to the 
endometrium (end) of a specimen at 6 weeks 
of gestational age. Proliferation of the 
cytotrophoblast progenitors in the vicinity of 
the villous basement membrane and their 
differentiation into immature extravillous 
trophoblast (EVT) are promoted by the low O2 
concentration within the placenta during the 
first trimester. The EVT cells on the maternal 
surface of the cytotrophoblast shell undergo a 
partial epithelial-mesenchymal transition, 
forming dark-staining spindle shaped cells that 
invade into the endometrium as interstitial 
EVT (arrowed). The invasion may be stimulated 
by the higher O2 concentration that always 
prevails in the endometrium.
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The placental microenvironment during the second 
and third trimesters

It is estimated that 30–40 spiral arteries deliver maternal 
blood to the mature placenta. Despite extensive 
remodelling of the arteries in early pregnancy that 
causes dilation of the terminal segment and hence a 
reduction in velocity and pressure (Burton et al. 2009), 
the force of the inflowing blood sculpts the placental 
villi into a series of lobules. Each lobule resembles an 
inverted wine glass, with a relatively villus-free central 
cavity situated over the mouth of the spiral artery 
(Fig. 2). Oxygenated blood is delivered into the centre 
and then percolates between the villi, exchanging O2 
and nutrients with the foetal circulation as it does so. 
Although no direct measurements have been taken, 
the centre of the lobule is assumed to be an arterial 
zone, while the peripheral regions equate to a venous 
zone. Expression levels of mRNAs encoding the 
principal antioxidant enzymes support this pattern 
(Hempstock et al. 2003b), as does recent MRI imaging 
(Hutter  et  al. 2019, 2020). Furthermore, villi in the 
periphery contain a greater volume of foetal capillaries 
and have a thinner interhaemal membrane than those 
in the centre (Fox 1967). Similar changes are seen in 
placentas from pregnancies at high altitude, when they 
facilitate gaseous exchange as the partial pressure of O2 
is reduced (Espinoza et al. 2001).

Placental and foetal extraction of O2 increase with 
advancing gestation and so the O2 concentration in 
the peripheral region of a lobule will decrease. The 
deoxygenation will be exacerbated by the reduction 
in placental perfusion with increasing gestational age 

(Sohlberg  et  al. 2014a). Samples of maternal blood 
aspirated from the subchorial lake beneath the chorionic 
plate confirmed a reduction in PO2 from ~60 mmHg at 
16 weeks to ~40 mmHg at term (Fig. 3) (Soothill et al. 
1986). Slightly lower values of ~30 mmHg have been 
obtained from women breathing air at the time of 
caesarean delivery (Schaaps  et  al. 2005). This gradual 
decline is thought to stimulate placental angiogenesis 
and the formation of terminal villi, which increases 
exponentially starting at around 20 weeks of gestation. 
The reduction does mean, however, that there is less O2 
reserve within the maternal blood contained within the 
intervillous space. Any intermittency in maternal inflow 
will therefore have a more profound impact on placental 
oxygenation. The use of BOLD MRI imaging has revealed 
reductions in placental oxygenation lasting 2–4 min as 
a result of subclinical uterine contractions (Sinding et al. 
2016). Consequently, there are likely to be fluctuations in 
O2 concentration that increase in severity towards term.

Hypoxia-reoxygenation is a powerful stimulus of 
oxidative stress in the placenta, both in vitro (Hung et al. 
2001) and in vivo during labour (Cindrova-Davies et al. 
2007), much more than hypoxia alone (Hung  et  al. 
2001). Even the normal placenta is therefore likely to 
experience a degree of oxidative stress towards term 
(Fig.  3) (Cox & Redman 2017). This may explain the 
increase in maternal concentration of the soluble 
receptor for VEGF, sFlt-1, and the decline in placental 
growth hormone, PlGF, seen towards term, for the former 
is positively regulated by oxidative stress (Cindrova-
Davies  et  al. 2007), while the latter is negatively 
regulated by the related endoplasmic reticulum stress 
(Mizuuchi et al. 2016).

Figure 2 Diagrammatic representation of blood 
flow through a normal lobule and the 
consequences of deficient spiral artery 
remodelling in pathological cases. Dilation of 
the terminal part of the spiral artery reduces 
the velocity of inflow to ~10 cm/s. The 
momentum of the inflowing blood is still 
sufficient to mould a central cavity (CC) within 
the lobule, which allows for even dispersion of 
the blood through the villous tree. Transit time 
has been estimated from radioangiography to 
be 25–30 s, allowing adequate opportunity for 
maternal-foetal exchange. In pathological 
cases, maternal blood enters the intervillous 
space in jet-like spurts at 1–2 m/s due to 
deficient remodelling. The high velocity 
ruptures the attachments of anchoring villi 
(asterisks), leading to an increase in placental 
thickness and a globular shape. The high 
momentum also generates villus-free 
echogenic cystic lesions (ECL) that are often 
lined by thrombus due to more turbulent flow. 
Shunting of maternal blood may occur, leading 
to a higher oxygen content in the uterine vein 
(bottom right) than normal (modified from 
Burton et al. (2009) with permission).
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Unfortunately, this hypothesis cannot be tested 
directly by longitudinal sampling in the human, but 
some evidence to support it comes from the progressive 
accumulation of oxidatively damaged nuclei within 
the syncytiotrophoblast in the form of syncytial knots 
(Fogarty  et  al. 2013). Furthermore, striking changes 
associated with aging are observed in the post-mature 
placenta, when it might be expected that the mismatch 
between maternal supply and foeto-placental demands 
is greatest. Oxidised DNA and lipids and the expression 
of markers of senescence, such as p21, p16 and cGAMP, 
are all greatly increased (Maiti  et  al. 2017, Cindrova-
Davies et al. 2018).

Placental oxygenation in complications of 
pregnancy

The major common complications of human pregnancy 
form a spectrum of disorders associated with different 
degrees of deficiency in EVT invasion (Brosens et al. 2011, 
2019). As discussed earlier, trophoblast proliferation and 
invasion are closely interlinked. The cells at the proximal 
end of a cytotrophoblast cell column proliferate during 
the first trimester and feed into the cytotrophoblastic 
shell. It is from the shell that the endovascular trophoblast 
that plugs the spiral arteries during the first trimester is 
derived. If development of the shell is impoverished, the 

plugs are less extensive than normal (Hustin et al. 1990), 
and there is a precocious and spatially disorganised 
onset of the maternal arterial circulation to the 
placenta (Jauniaux et al. 2003). This is associated with 
widespread oxidative damage to the placenta, leading 
to extensive degeneration of the syncytiotrophoblast and 
spontaneous pregnancy loss (Hempstock et al. 2003a). 
Histologically, there are close parallels between the 
physiological villous regression seen during formation 
of the chorion laeve and the pathological changes seen 
in spontaneous miscarriage. Both processes are induced 
by elevated oxygen concentrations at an early stage of 
pregnancy.

Poor development of the shell is also associated with 
an increased risk of intrauterine haematomas at the 
placental-maternal interface. If the haematoma extends 
under the basal plate, it can lead to detachment of the 
placenta and pregnancy loss, which is observed in 
around 10% of the cases within 48 h of the first bleeding 
episode (Burton & Jauniaux 2017). In the majority 
of pregnancies that continue, there is an increased 
risk (1.9–3.7) of premature rupture of the membranes 
and pre-term delivery (Jauniaux  et al. 2010). We have 
speculated that this is due to the resolving clot lying 
against the membranes causing local oxidative stress, 
which may weaken the membranes through induction 
of senescent changes. In addition, the clot may cause 
a sterile inflammation within the endometrium, 
stimulating contractions (Burton & Jauniaux 2017).

Less major impairment of EVT proliferation and 
invasion will result in an ongoing pregnancy but with 
deficient spiral artery remodelling. The arteries remain 
of narrow calibre and surrounded by smooth muscle 
(Brosens et  al. 2011). In the past, it has widely been 
assumed that this restricts maternal inflow into the 
placenta, which as a result is hypoxic. There are, 
however, no in vivo measurements to support the claim 
of placental hypoxia, and it should be remembered that 
placental hypoxia is not always synonymous with foetal 
hypoxia (Kingdom & Kaufmann 1997). Nonetheless, the 
presence of placental oxidative stress has often been put 
forward to support the concept of hypoxia in pathological 
pregnancies. While exposure of rats to reduced oxygen 
levels (13%) during pregnancy does result in an increase 
in markers of oxidative stress (Richter et al. 2012), these 
responses are not specific to hypoxia but generic to a 
variety of types of malperfusion, such as high shear rates 
or intermittent perfusion.

Mathematical modelling has revealed that the impact 
of deficient spiral remodelling per se on the volume of 
maternal inflow is relatively small due to the fact that 
upstream non-remodelled sections of the utero-placental 
vasculature are rate limiting (Burton et al. 2009). Instead, 
remodelling causes an order of magnitude reduction in 
the velocity with which the maternal blood enters the 
placenta, preventing damage to the delicate villous 
trees and ensuring even perfusion of the lobule. Hence, 

Figure 3 Schematic representation of changes in O2 concentration in 
the intervillous space (IVS) of the placenta, foetal weight and 
maternal concentrations of sFlt-1 and PlGF across gestational age. 
The O2 concentration in the intervillous space rises towards the end 
of the first trimester and then slowly falls towards term as foeto-
placental extraction increases. A burst of oxidative stress is observed 
in the trophoblast at the end of the first trimester, associated with 
onset of the maternal arterial circulation, and may rise towards term 
as sub-clinical uterine contractions, and a progressive mismatch 
between maternal supply and foeto-placental demand causes 
fluctuations in oxygenation. Placental secretion of sFlt-1 is positively 
regulated by oxidative stress, while that of PlGF is negatively 
regulated by ER stress. Placental stress may be exacerbated in cases 
of early-onset pre-eclampsia (dashed line) due to malperfusion 
secondary to deficient remodelling of the spiral arteries (reproduced 
from Burton et al. (2017a) with permission).
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deficient remodelling is associated with jet-like spurts 
of maternal blood entering the placenta (Collins  et  al. 
2012), the hose-effect. The velocity and momentum of 
the inflowing blood may exert several effects. First, it 
may gouge out high-velocity channels that bypass much 
of the placental villous tissue and shunt the maternal 
blood into the uterine veins (Fig. 2). Such channels can 
be visualised on ultrasonography as irregular areas of 
decreased echogenicity (see Burton & Jauniaux 2018 for 
video). Consequently perfusion is likely to be uneven, 
with some areas being hyperoxic and some relatively 
hypoxic. Although only a small number of cases have 
been investigated, MRI of patients with pre-eclampsia at 
33–34 weeks of gestation shows greater heterogeneity of 
T2* signals that reflect oxygenation than controls, with 
fewer, isolated areas of high intensity rapidly decaying 
peripherally (Hutter  et al. 2019). Shunting of maternal 
blood through the intervillous space will reduce both 
the villous surface area available for exchange and 
the transit time, limiting gaseous transfer. These effects 
may explain the reduced foetal extraction of oxygen 
(Cetin et al. 2020) and the higher oxygen concentration 
in the uterine vein draining the placenta (Pardi  et  al. 
1992), in cases of growth restriction compared to 
controls.

Second, the force of the jets may rupture the 
cytotrophoblast cell columns that form the attachments 
of the anchoring villi to the basal plate (Fig. 2). This will 
allow the chorionic and basal plates to move apart, 
increasing the thickness of the placenta and creating 
a more globular and jelly-like appearance (Burton & 
Jauniaux 2018, Kingdom et al. 2018).

Third, the high shear rates, coupled with possible 
intermittent perfusion due to the retention of smooth 
muscle within the vessel walls, lead to oxidative stress, 
which is a hallmark of the placenta in pre-eclampsia 
and to a lesser extent in growth restriction (Myatt & Cui 
2004, Schoots  et  al. 2018). Oxidative stress induces 
senescence, and many of the changes observed in the 
post-mature placenta are also seen in placentas from 
cases of pre-eclampsia, growth restriction and stillbirth 
(Maiti et al. 2017, Cindrova-Davies et al. 2018).

Deficient remodelling can, however, lead to acute 
atherosis, when the lumen of the spiral artery is partially 
or completely obliterated by an accumulation of 
fibrinoid and lipid-laden macrophages (Fosheim  et  al. 
2019). In these cases, maternal blood flow is severely 
impaired, which results in placental ischaemia and frank 
infarction. Placental infarcts of varying ages, thromboses 
within the intervillous space, extensive fibrin deposition 
and maternal floor infarction are characteristic 
features of severe, early-onset growth restriction with 
or without pre-eclampsia (Burton & Jauniaux 2018) 
and are indicative of maternal vascular malperfusion 
(Khong et al. 2016).

The distinction between early- and late-onset 
pre-eclampsia is increasingly recognised and is 

important in the context of placental oxygenation. 
Mounting evidence indicates significant differences 
in maternal perfusion (Sohlberg  et  al. 2014a), gross 
placental pathology (Nelson  et  al. 2014), metabolism 
(Sohlberg  et  al. 2014b), oxidative (Daglar  et  al. 2016) 
and the closely related endoplasmic reticulum stress 
(Yung et al. 2014) and many other markers between the 
two subcategories (Burton et al. 2019). In the absence 
of in vivo measurements, malperfusion is a more robust 
explanation for the changes seen in early-onset pre-
eclampsia, but the stage of pregnancy at which the 
pathophysiology starts is uncertain (Fig. 2). It might 
be expected that onset of the maternal circulation is 
abnormal due to deficient EVT invasion and ‘plugging’ 
of these vessels. The most extreme example of this 
is seen in cases of early pregnancy failure, when 
onset of the maternal circulation is both precocious 
and disorganised, occurring throughout the placenta 
simultaneously and generating overwhelming oxidative 
stress (Hempstock  et  al. 2003a, Jauniaux  et  al. 2003). 
Further high-resolution imaging may resolve this issue. 
In the meantime, the often cited, but circular, argument 
that in pre-eclampsia the placenta is hypoxic, causing 
impaired trophoblast invasion, leading to placental 
hypoxia should be abandoned.

Mitochondria are an important source of ROS, 
and mitochondrial dysfunction with a decrease in 
oxidative phosphorylation capacity has been reported 
in both early-onset and late-onset pre-eclampsia 
(Muralimanoharan  et  al. 2012, Yung  et  al. 2019). In 
early-onset pre-eclampsia the protein levels of the 
electron transport complexes were unchanged, but 
there was evidence of activation of a non-canonical 
mitochondrial unfolded protein response implying 
loss of function. These findings could be recapitulated 
by subjecting BeWo cells to cycles of hypoxia-
reoxygenation (Yung  et  al. 2019). In late-onset pre-
eclampsia, the reduction in respiration was associated 
with an increase in HIF-1α and the hypoxia-induced 
miR 210 that disrupts assembly of components of the 
electron transport chain (Muralimanoharan et al. 2012). 
However, DNA binding of HIF was decreased, and it 
was proposed that stabilisation of HIF was through the 
increased ROS rather than hypoxia.

Conclusion

The placental tissues experience a major increase in 
oxygenation with full onset of the maternal arterial 
circulation during the transition from the first to the 
second trimester. The low-oxygen environment during 
the first trimester favours stemness and proliferation of 
the trophoblast lineage, and there is no evidence that 
the tissues are hypoxically stressed. Rather, it appears 
that the tissues are challenged by the rise in O2 and that 
they respond by increasing their antioxidant defences. 
Later in pregnancy, as feto-placental demand begins 
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to outstrip maternal supply the placenta becomes 
increasingly stressed, leading to senescence changes. 
These are particularly marked in the post-term placenta. 
In pathological pregnancies, maternal malperfusion is 
likely a more powerful stimulus for the changes observed 
than hypoxia alone. Further research involving imaging 
of placental metabolites using MRI, near infrared 
spectroscopy (Hasegawa et al. 2010) and computational 
modelling (Nye et al. 2018) may shed greater light on 
placental oxygenation in normal and pathological 
pregnancies in the future.
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