A Metabolic Engineering Approach
to Examine Polyketide Production by
Saccharopolyspora erythraea

A thesis submitted to the University of London for the degree of

DOCTOR OF PHILOSOPHY

by

Misti Ushio

January 2003

The Advanced Centre for Biochemical Engineering
Department of Biochemical Engineering
University College London
Torrington Place
London WCIE 7JE
United Kingdom



ProQuest Number: 10010116

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Pro(Quest.
/ \

ProQuest 10010116
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.
Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



M. Ushio



Ph.D. Thesis Metabolic Engineering of S. erythraca

this thesis is dedicated, in loving memory,
to

Shigeki Ushio

M. Ushio 3



Ph.D. Thesis Metabolic Engineering of S. erythraca

ABSTRACT

The objective of this thesis was to use a metabolic engineering and modelling
approach to evaluate the effect of genetic modifications in primary metabolism on

secondary metabolite production in Saccharopolyspora erythraea.

The thesis investigated 1) the physiology of wild-type and genetically modified S.
erythraea strains studied in batch culture under various nutrient conditions, 2) the
physical and antimicrobial properties of red pigments produced by S. erythraea, 3) the
capabilities of metabolic flux analysis to provide useful predictions of metabolic
engineering targets, and 4) the genetic engineering tools to manipulate the primary
metabolism of S. erythraea. The physiology of S. erythraea, in particular the
relationship between organic acid overflow metabolism and polyketide synthesis, was

studied.

Using S. erythraea physiology data and metabolic modelling predictions, over-
expression of a-ketoglutarate dehydrogenase was selected as a metabolic engineering
target. The aim was to determine if a-ketoglutarate excreted outside the cell could be
re-channeled into primary metabolism to increase production of erythromycin and
decrease red pigment synthesis. To this end, a new S. erythraea strain with an over-
expressed heterologous a-ketoglutarate dehydrogenase was constructed and tested.
The new strain was able to decrease a-ketoglutarate excretion, but did not produce
greater amounts of erythromycin. Even though erythromycin levels were not
increased this research could be considered as a first step to rational strain
development for erythromycin production. It could also be regarded, in a greater
sense, as proof of concept to use of the S. erythraea sequence data to identify genes of
interest, and to genetically manipulate the central metabolism of S. erythraea. The
results from this thesis justify research efforts to be continued in three different areas.
The first is to continue strain improvement for erythromycin over-production. The
second is to understand how to control organic acid excretion. The third is red

pigment characterization.
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1 Summary

The objective of this thesis was to use a metabolic engineering and modelling
approach to evaluate the effect of genetic modifications in primary metabolism on

secondary metabolite production in Saccharopolyspora erythraea.

Several Actinomycetes produce commercially valuable polyketide products, however,
many of these organisms also produce organic acids and other secondary metabolites
that may subvert the carbon source from the desired product. S. erythraea produces
the commercially important polyketide, erythromycin A. In addition, the strain used
in this work (S. erythraea wild-type red-variant) produces red pigments, and excretes
pyruvate and a-ketoglutarate. The pigment and organic acid products could be

perceived as waste products in the context of commercial erythromycin A production.

The thesis investigated 1) the physiology of wild-type and genetically modified S.
erythraea strains studied in batch culture under various nutrient conditions, 2) the
physical and antimicrobial properties of red pigments produced by S. erythraea, 3) the
capabilities of metabolic flux analysis to provide useful predictions of metabolic
engineering targets, and 4) the genetic engineering tools to manipulate the primary
metabolism of S. erythraea. The physiology of S. erythraea, in particular the
relationship between organic acid overflow metabolism and polyketide synthesis, was

studied.

Using S. erythraea physiology data and metabolic modelling predictions, over-
expression of a-ketoglutarate dehydrogenase was selected as a metabolic engineering
target. The aim was to determine if a-ketoglutarate excreted outside the cell could be
re-channeled into primary metabolism to increase production of erythromycin and
decrease red pigment synthesis. To this end, a new S. erythraea strain with an over-
expressed heterologous a-ketoglutarate dehydrogenase was constructed and tested.
The new strain was able to decrease a-ketoglutarate excretion, but did not produce
greater amounts of erythromycin. Even though erythromycin levels were not
increased this research could be considered as a first step to rational strain

development for erythromycin production. It could also be regarded, in a greater
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sense, as proof of concept to use the S. erythraea sequence data to identify genes of

interest, and to genetically manipulate the central metabolism of S. erythraea.

This work is be the starting point for further research in three areas. The first, is strain
improvement for erythromycin over-production. This is important because antibiotics
are naturally produced at low levels and progress toward a rational approach to
increase yield will be needed for all new and existing products. The second, is to
understand how to control organic acid excretion. This is important because several
antibiotic producing strains excrete organic acids as wasted carbon. It would be very
useful if there is a method to re-direct the wasted carbon to product formation. The
third, is red pigment characterization. This is important because the red pigment is a
new compound and little is known about it, and it would be useful to re-direct the

carbon used to make red pigment to erythromycin production.

Metabolic engineering is a powerful tool that enables the rational design and
optimization of organisms that produce important products such as polyketides. With
each new piece of research comes information that will contribute to, and advance the
field of metabolic engineering. With these efforts, the tools to rapidly and
successfully develop efficient and economical biological processes will be

increasingly available.
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2 Introduction

Polyketides are an important class of natural products that include therapeutic
compounds such as antibiotics, antibacterials, antivirals, and antitumor drugs. It is
important to have the ability to produce polyketides in large quantities and in an
efficient manner because of their therapeutic significance. Additionally, the
competitive environment of the pharmaceutical industry necessitates short product
development cycle times. Although many research groups are working to discover or
synthesize novel polyketides, few are developing methods to efficiently produce these
new products at industrially relevant levels. The ability to develop rapidly
fermentation processes with high product titers and low analog impurities
significantly contributes to minimizing operating costs and maximizing production
capacity. Historically, fermentation development has been accomplished by strain
optimization using random mutagenesis and screening that did not require a complete
understanding of the cell’s metabolism. The cell was simply viewed as a black box.
A more rational and directed approach to strain optimization may be achieved through
the application of metabolic engineering and metabolic modelling, which directs the
application of molecular biology to overcome limitations in the metabolic flux of
substrate to desired product. With the rapid advances in molecular biology, tools are
now available that may increase the effectiveness of applying recombinant DNA

techniques to advance process engineering.

Metabolic engineering research is an iterative process proceeding in stages. In such a
process a model is first developed of an organism’s metabolism, and analyzed to
evaluate rationally which pathways to target for modification. Using molecular
biology techniques, target pathways are then modified by altering the expression of
key enzymes or introducing new enzymes into the system. Finally, well-controlled
experiments are performed to determine if the genetic modifications produced the
desired results. If the desired results are not obtained, the physiology results obtained
from the modified strain can be used to amend the physiological model generated for

the organism so that another round of genetic modifications can be sensibly proposed.

The metabolic engineering approach of this thesis research was to manipulate the

primary metabolism of Saccharopolyspora erythraea to determine if by increasing
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flux to the biosynthetic precursors of erythromycin, erythromycin production could be
increased. To this end, a metabolic model of the organism was used to evaluate
rationally pathways to target for genetic modification. The unique characteristic of
metabolic engineering is its perspective of integrated metabolic pathways as
compared to individual reactions. The challenge is to understand metabolic fluxes

and how to control them under in vivo conditions.

2.1 Metabolic Engineering

2.1.1 History

Metabolic engineering was defined in 1991 as the “improvement of cellular activities
by manipulation of enzymatic, transport, and regulatory function of the cell with use
of recombinant DNA technology” (Bailey, 1991). At that time, metabolic engineering
consisted of a series of examples. Most were experiences where a new strain had
been developed to investigate a single gene or gene cluster, and the limitations or
improvements of the new strain provided additional insight into how best to optimize
the strain for a particular objective, e.g. improved product formation. Also, the
concept of metabolic network rigidity had been described which illustrated the
complexity of metabolic regulation and methods of defining the flexibility of a
metabolic node (Stephanopoulos and Vallino, 1991). A metabolic node is a point in
a metabolic network where the reaction sequence splits into two or more different
pathways. The rigidity of a particular node can be designated and flexible, weakly
rigid, or strongly rigid. These categories are based on how much control that node

has on the flux to a particular metabolite (Stephanopoulos et al., 1998).

Over the past ten years, metabolic engineering has gained credibility as a codified
science, has made several contributions to improving strain development, and has
catalyzed the development of many advanced analytical tools. It has been recognized
that metabolic engineering is a cyclical or iterative process where the steps consist of
synthesis of a new strain based on physiological data, analysis of the new strain
compared to the original, and design of the next target for manipulation based on the
analysis. These steps have been applied to a variety of different cellular improvement
objectives. These objectives or categories of metabolic engineering have been

defined as the following: 1) extension of substrate range, 2) elimination or reduction
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of by-product formation, 3) improvement of yield or productivity, 4) engineering of
cellular physiology for process improvement, 5) pathways leading to new products, 6)
pathways for degradation of xenobiotics, and 7) heterologous protein production
(Nielsen, 2001). Four of these categories are discussed in more detail below in

section 2.1.2.

Successful metabolic engineering requires several tools for the steps of synthesis and
analysis of the new strain. With the advent of genome sequencing and bioinformatics,
the number of genes that can be cloned and transformed has rapidly increased. In
addition, several advancements in molecular biological tools and metabolic pathway
analysis tools have been made. Molecular biological tools have improved in the areas
of gene disruption and transformation methods, promoter systems, and gene shuffling
techniques. Metabolic pathway analysis has been improved by the analytical tools of
GC-MS, NMR, 2D-gels electrophoresis, MALDI-TOF MS, and DNA chips (Nielsen,
2001). These tools help to identify the proper metabolic network, quantify the fluxes
through the network branch points, and identify control elements with the network.

The information can then be used to construct new strains with improved properties.

2.1.2 Examples of Metabolic Engineering

The development of new fermentation biologic processes frequently included a strain
improvement program. Some of the objectives of strain improvement typically
include, improvement of product yield, elimination of by-product formation,
extension of substrate range, and/or improvement of cellular of physiology. These
objectives are areas where metabolic engineering could be a useful approach, as
described through the following examples. Examples of metabolic engineering

approaches to increase erythromycin yield are also discussed.

21.21 Improvement of Product Yield or Productivity

For most industrial processes, it is important to continually strive for increased yield
of the product. This may be achieved through metabolic engineering by increasing
the flux through the product biosynthetic pathway, or it may be necessary to increase
the availability of precursors to the product pathway. There are difficulties in either
case as it may not be simple to determine which enzyme activities to increase, or

which precursors are limiting. The task become more difficult if central metabolism
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requires modification as it is highly regulated and may involve multiple genetic

engineering targets.

Increased biosynthesis of B-lactam antibiotics by Streptomyces clavuligerus is one
example of increasing product yield through metabolic engineering. -lactam
antibiotics (including penicillin G, cephalosporin C, and cephamycin C) are highly
effective, and have low toxicity to humans. Two strategies for increasing product
levels have been implemented. In the first, kinetic modelling and metabolic control
analysis were performed on the linear cephamycin C biosynthetic pathway (Khetan et
al., 1996). The results of the analysis determined that the ACV (a-aminoadipic acid,
cysteine, and valine tripeptide) synthase was the rate-limiting step, and that o-
aminoadipic acid had the highest control coefficient of the three peptides. A new §.
clavuligerus strain with increased activity of the LAT (lysine e-aminotransferase)
enzyme was constructed. LAT transfers an amino group from lysine to o-
ketoglutarate which is the first of two steps of a-aminoadipic acid synthesis. The new
strain produced five-times as much cephamycin C compared to the wild-type (Khetan
et al., 1996). In a second approach, it was observed that high levels of penicillin N
was accumulating which limited the production of cephalosporin C (Khetan and Hu,
1999). It was decided to over-express the enzyme immediately downstream of
penicillin N, DAOC (deacetoxycephalosporin) synthase. The new strain was
constructed which had higher levels of DAOC synthase, increased production of

cephalosporin C, and did not accumulate penicillin N.

These two examples show that product yield can be improved through different
metabolic engineering approaches. This first used mathematical modelling to indicate
where to target genetic engineering, and the second used empirical experimental
evidence to determine where to target. It should be noted that in these examples the
pathway was linear and not strongly regulated. If there had been strong feed-back
inhibition, or if the branch point had been a rigid node, these approaches may not

have been as successful (Khetan and Hu, 1999).
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21.2.2 Elimination or Reduction of By-Product Formation

Most strain improvement efforts focus on increasing product yield. However, in the
complex system of cellular metabolism, unwanted by-products are frequently formed.
By-product formation may cause complications for downstream processing or may be
toxic to humans or animals. By-product formation are also undesirable because they
may draw carbon away from product formation, thereby, reducing maximum product

yield (Nielsen, 2001).

Reduction of oxalic acid formation by Aspergillus niger is one example of metabolic
engineering implemented to reduce by-product formation. A. niger produces
glucoamylase which is an industrial enzyme used for the production of high-fructose
syrups from starch. This process also produces the undesirable by-product, oxalic
acid (Pedersen et al., 2000a). Oxalic acid is unwanted because it reduces carbon
availability for product formation, and forms precipitates that interfere with
downstream processing. Oxaloacetate hydrolase cleaves oxaloacetate to oxalic acid
and acetic acid, and it has been shown that this enzyme is the only pathway to oxalic
acid formation in 4. niger (Kubicek et al., 1988). Subsequently, the gene encoding
oxaloacetate hydrolase, oah, was cloned and characterized (Pedersen et al., 2000b).
The oah gene was then disrupted in A. niger which resulted in no oxalic acid
formation (Pedersen et al., 2000c). However, the glucoamylase yield was reduced by
50% in the oah knock-out strain compared to the wild-type even though the growth
rates were similar. Flux analysis of the two strains showed that it should be possible
to disrupt the oah gene without affecting other areas of the metabolism. This example
represents successful reduction of by-product formation, but highlights the difficulty
of working with complex systems in that overall product yield was sacrificed as a

result.

2.1.2.3 Extension of Substrate Range

In several industrial processes it is desirable to extend the substrate range of the
organism. This approach is useful if there is an abundant source of raw material
available, or if more efficient utilization of a substrate is required. The approach
involves inserting a new pathway into the organism and two strategies may be
employed. In the first, a gene encoding a transport protein to get the substrate into the

cell, and the pathway to convert the new substrate into a compound that can be used
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by central metabolism, is introduced into the host organism. In the second strategy, a
gene encoding a secreted protein that can convert the new substrate to a compound
readily utilized by the host organism is introduced. The potential complications are
that the substrate may not be metabolized at a practical rate, and that undesirable by-

products may be formed (Nielsen, 2001).

One example of extension of substrate range is engineering Saccharomyces cerevisiae
to use xylose as a carbon substrate. D-Xylose is the second most abundant sugar in
nature, after D-glucose. Xylose is abundantly found in plant material and is
inexpensive which makes it an attractive carbon source for reducing production costs.
Ethanol is an beneficial fuel from an environmental point of view as no net carbon
dioxide is released from combustion. The challenge is to economically produce
ethanol so it is competitive with existing chemical processes. S. cerevisiae has high
ethanol tolerance and has been used to produce ethanol from glucose. Ethanol
production by S. cerevisiae grown on xylose would be a good approach for economic

large-scale ethanol production.

Several attempts have been made to engineer S. cerevisiae to grow and produce
ethanol with varying degrees of success (Ostergaard et al., 2000). However,
promising results reported by Ho et al. (1998), showed increased ethanol production
and simultaneous growth on xylose and glucose compared to the wild-type. The
approach was to express xylose reductase (XR) and xylitol dehydrogenase (XDH),
and over-express xylulokinase (XK) (Ho et al., 1998). KR reduces xylose to xylitol.
XDH converts xylitol to xylulose. XK, phosphorylates xylulose which can then enter
the pentose phosphate pathway. The ethanol yield was 0.32 g of ethanol per g of
xylose which is approaching this theoretical yield of 0.51 g of ethanol per g xylose.
This example shows that inserting a foreign pathway into S. cerevisiae is possible and
can have beneficial results. However, these effort have been ongoing for at least 10

years by several groups (Ostergaard et al., 2000).

2.1.2.4 Engineering of Cellular Physiology for Process Improvement
When implementing a process using living cells, some of their inherent properties
may be unwanted for the purposes of the process objective. For instance, the

organism may be sensitive to low dissolved oxygen concentrations, or the product
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formation may be repressed by glucose, or defined morphological characteristics may

be desirable but not produced (Nielsen, 2001).

Oxygen limitation can inhibit growth and/or product formation in many organisms.
Oxygen limitation may arise because of e.g. poor mixing conditions or high cell
densities. One approach to increase tolerance to low oxygen conditions was to
express a bacterial Vitreoscilla hemoglobin gene (vhbd) in Escherichia coli. The
results showed increased protein synthesis at low dissolved oxygen levels (Khosla and
Bailey, 1988). Analysis of gene expression showed that the vAb gene was up-
regulated under low oxygen concentration (Khosla and Bailey, 1989). - Although the
mechanism is not know in detail, it is thought that VHb scavenges oxygen and is able
to provide it for cellular actions (Khosla et al., 1990). Since this study, vib has been
cloned into several organism which in most cases resulted in improvements to cellular

physiology or product formation (Nielsen, 2001).

21.2.5 Improvement of Erythromycin Yield or Productivity

There have been attempts to increase erythromycin production through genetic
engineering. Brunker ef al. (1998), cloned and expressed the Vitreoscilla hemoglobin
gene (vhb) in Saccharopolyspora erythraea. The result was a 60% increase in
erythromycin presumably due to increased oxygen uptake by the active hemoglobin
(VHD) and an oxygen dependent reaction in the erythromycin biosynthesis pathway
(Brunker et al., 1998). This reaction was proposed to be the C-6 hydroxylation of 6-
dexoyerythronolide B by EryF or the final hydroxylation step by EryK (Stassi et al.,
1993; Lambalot et al., 1995). Rowe et al. (1998) implemented the promoter system
actlI-ORF4 from Streptomyces coelicolor to over-express the erythromycin PKS
genes in S. erythraea. This approach successfully increased total erythromcyins from
10 mg/L to 100 mg/L (Rowe et al., 1998). A genetically engineered PKS (DEBS1-
TE) was also over-expressed in this system and production of the triketide lactone
product was increased from 10 mg/L to 150 mg/L. In a different approach, Dayem et
al. (2002) cloned the erythromycin polyketide synthase genes into E. coli. The new
organism was able to produce 6-deoxyerythronolide B, the polyketide moiety of
erythromyecin, to levels that compare with industrial processes (Pfeifer et al., 2001).

This group was also able to engineer E. coli to contain the methylmalonyl-CoA
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mutase-epimerase pathway, which enabled the organism to supply the CoA precursors

required for erythromycin synthesis (Dayem et al., 2002).

2.2 Polyketides

Over the past 50 years, thousands of microbial metabolites have been found to have a
broad range of pharmaceutical activity (Cane, 1997). Therapeutic applications of
natural products include antibacterial, antiviral, antitumor, immunosuppressant,
antihypertensive and antihypercholesterolemic activity. Polyketides, a class of natural
products, comprise a large fraction of the pharmaceutically active metabolites with
high commercial value including avermectin, daunorubicin, rapamycin, mevinolin,

monensin, tetracycline, FK506, and erythromycin.

In a manner similar to fatty acid biosynthesis, polyketides are synthesized by a series
of condensation reactions assembling acyl-CoA precursors, which are activated forms
of acetate, propionate, and butyrate. Polyketide synthesis is initiated with a primer
unit followed by elongation of the polyketide chain by incorpora