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Induced pluripotent stem cells for modeling energetic 
alterations in hypertrophic cardiomyopathy
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Hypertrophic cardiomyopathy (HCM) is one of the most commonly inherited cardiac disorders that 
manifests with increased ventricular wall thickening, cardiomyocyte hypertrophy, disarrayed myofibers, 
and interstitial fibrosis. The major pathophysiological features include diastolic dysfunction, obstruction 
of the left ventricular outflow tract, and cardiac arrhythmias. Mutations in genes that encode mostly 
for sarcomeric proteins have been associated with HCM. However, despite the abundant research 
conducted to decipher the molecular mechanisms underlying the disease, it remains unclear as to how 
a primary defect in the sarcomere could lead to secondary phenotypes such as cellular hypertrophy. 
Mounting evidence suggests energy deficiency could be an important contributor of disease 
pathogenesis as well. Various animal models of HCM have been generated to gain deeper insight into 
disease pathogenesis, however species variation between animals and humans, as well as the limited 
availability of human myocardial samples, has encouraged researchers to seek alternative “humanized” 
models. Using induced pluripotent stem cells (iPSCs), human cardiomyocytes (CMs) have been generated 
from patients with HCM to investigate disease mechanisms. While these HCM-iPSC models demonstrate 
most of the phenotypic traits, it is important to ascertain if they recapitulate all pathophysiological 
features, especially that of energy deficiency. In this review we discuss current established HCM-iPSC 
models with emphasis on altered energetics.
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Hypertrophic cardiomyopathy
Being one of the most commonly inherited cardiac disorders, 
hypertrophic cardiomyopathy (HCM) affects approximately 
1 in 500 individuals globally (Semsarian et al., 2015; Marian 
and Braunwald, 2017). Characterized by thickening of the 
ventricular wall (≥13 mm) (Gersh et al., 2011; Authors/Task 
Force et al., 2014), HCM has a similar prognosis across different 
ethnicities (Sheikh et al., 2016) and is more predominant in 
males (Olivotto et al., 2005; Kubo et al., 2010), although recent 
reports describe a higher incidence of HCM-related mortality 
in women (Kubo et al., 2010; Wang et al., 2014b; Geske et al., 
2017). HCM is also the leading cause of sudden cardiac death 
(SCD) in adolescents, young adults, and athletes (Maron et 
al., 2009; Maron et al., 2016; Malhotra and Sharma, 2017). 
Due to the abnormal thickening of the ventricular wall and 
increased interstitial fibrosis, the ventricular cavity is reduced 
thereby impairing diastolic filling, which results in diastolic 
dysfunction, one of the major pathophysiological features of 
HCM (Shah, 2003; Finocchiaro et al., 2014). On the histological 
level, in addition to interstitial fibrosis, cardiomyocytes are 
disorganized and exhibit increased cell size (hypertrophy) 
with disarrayed myofibers (Hughes, 2004). The most common 
cause of death, however in patients with HCM, is SCD 
mediated primarily by ventricular tachycardia and fibrillation, 
which has been attributed to changes in cardiomyocyte size 
and organization, disruption of intercalated discs (Sepp et al., 
1996), abnormal calcium handling, and increased myofilament 
calcium sensitivity (Baudenbacher et al., 2008). When 
considering patient management strategies, because most 
patients demonstrate minimalistic symptoms, they are not 
routinely given pharmacological agents such as β-blockers and 
L-type calcium channel blockers. For those at high risk of SCD, 
intervention with an implanted cardioverter defibrillator (ICD) 
has shown to be effective (Maron et al., 2000). Currently, there 
are no specific treatments available that could prevent or arrest 
the development of HCM. For a more comprehensive review 
on patient management strategies we direct the reader to the 
excellent review by Spirito and Autore (Spirito and Autore, 
2006).

Molecular basis of hypertrophic cardiomyopathy 
Over the past few decades, molecular genetics has associated 
over 1400 mutations, mostly in genes encoding for sarcomeric 
proteins, as causal factors of HCM (Maron et al., 2012; 
Sabater-Molina et al., 2018), which therefore demonstrates an 
autosomal dominant pattern of inheritance with approximately 
60% of patients having a clear familial predisposition. The two 
most common genes that have been associated with causality 
is MYH7 and MYBPC3, which together account for more than 
50% of patients with familial HCM (Sabater-Molina et al., 
2018). These genes encode for β-myosin and cardiac myosin 
binding protein-C, respectively. Although uncommon, other 
genes encoding for sarcomeric proteins (TNNT2, TNNI3, 
TPM1, ACTC1, MYL2 and MYL3), have also been linked to 
HCM (Marian and Roberts, 2001; Marsiglia and Pereira, 2014). 
There are several theories as to how mutations in sarcomeric 
proteins could lead to disease manifestation. The first is the 
poison peptide theory by which missense mutations alter the 
conformational structure of the protein, and when subsequently 
incorporated into the myofibrils, these mutated proteins exert a 
dominant-negative effect by impeding contractile performance 
(Vikstrom et al., 1996; Rust et al., 1999; Fatkin et al., 2000; 
Frey et al., 2000). The second manner in which disease 
manifestation is thought to occur is through haploinsufficiency, 
whereby transcripts containing insertions or deletions that result 
in a frame-shift and consequent truncated protein, undergo 
nonsense-mediated decay, leading to an overall loss of total 
protein (Marston et al., 2009; van Dijk et al., 2009; Barefield et 

al., 2014). Finally, mutations in these sarcomeric proteins could 
have direct implications on myofibrillar mechanics, resulting 
in abnormal calcium sensitivity or force generation, thereby 
compromising heart function (Westfall et al., 2002; Tardiff, 
2005; Fraysse et al., 2012)     

Despite a single mutation being sufficient to cause HCM, 
the penetrance is variable and the phenotype that presents 
itself is not only a result of the causal gene, but also a result 
of the compounding effects mediated by other genetic 
influences such as modifier genes, as well as environmental 
factors, which makes genotype-based prognosis a considerable 
challenge. Furthermore, the mechanisms by which a sarcomeric 
mutation leads to cardiomyocyte hypertrophy and additional 
pathophysiological features remains unclear. To gain deeper 
understanding into disease pathogenesis and progression, a 
number of transgenic, knock-in, and knock-out animal models 
have been developed over the past few decades (Marian and 
Roberts, 2001). While these animal models demonstrate most of 
the phenotypic traits of HCM, there are concerns as to whether 
they truly recapitulate disease pathogenesis in humans. These 
concerns are based on the findings that a number of animal 
models have mutations that are known to be causal for HCM in 
humans, despite developing pathophysiological features, such 
as diastolic dysfunction, interstitial fibrosis and cardiomyocyte 
disorganization, fail to show significant hypertrophy, which is 
the key phenotypic trait of the disease (Geisterfer-Lowrance et 
al., 1996; Oberst et al., 1998; Yang et al., 1998; Muthuchamy et 
al., 1999; Miller et al., 2001). Furthermore, the major myosin 
isoforms are different between human and mouse, with β-myosin 
being predominant in the former and α-myosin (encoded by 
the MYH6 gene) in the latter. Hence, in order to study causal 
mutations in β-myosin, these mutations would need to be 
introduced into a MYH6 backbone in mice and though this is 
feasible and does lead to the development of pathophysiological 
features, the contractile kinetics are significantly different 
between the two isoforms (Malmqvist et al., 2004; Deacon et 
al., 2012; Lowey et al., 2013). While this could be overcome by 
studying animal species that have a similar myosin composition 
to that of humans (Marian et al., 1999; Lowey et al., 2018), 
they would lack the genetic background, which could determine 
disease severity. Hence, while these animal models help lay 
the foundation for identifying various mechanisms involving 
abnormal contractile kinetics and electrophysiological 
properties in HCM, caution is advised when extrapolating these 
findings to a human setting. 

Induced pluripotent stem cells for modeling hypertrophic 
cardiomyopathy
Ideally, the most suitable model for studying disease 
manifestation in HCM would be human cardiac tissue. However, 
the invasiveness required to obtain primary cardiomyocytes, 
together with the inability to culture them for prolonged periods 
of time, renders it a challenge. With the discovery of induced 
pluripotent stem cells (iPSCs) over a decade ago (Takahashi 
et al., 2007), researchers are able to overcome the challenges 
associated with primary cardiac tissue and instead are able 
to generate human cardiomyocytes when required, using a 
number of established cardiac differentiation protocols (Lian 
et al., 2012; Burridge et al., 2014; Mehta et al., 2014a). Using 
iPSC technology, cardiomyocytes have been generated from 
patients with channelopathies (Moretti et al., 2010; Mehta et al., 
2014b), cardiomyopathies (Sun et al., 2012; Lan et al., 2013; 
Viswanathan et al., 2018), and other cardiac disorders (Huang 
et al., 2011; Kim et al., 2013; Wang et al., 2014a). These 
iPSC-CMs not only serve as a platform for modeling cardiac 
disorders but could also be used for drug screening applications 
with the aim of identifying novel therapeutic strategies (Mehta 
et al., 2018; Schwartz et al., 2019) (Figure 1). iPSCs generated 
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from patients with HCM have allowed researchers to model this 
complex disorder in a dish and as they consist of the patient’s 
genetic background, causal mutations acting in concert with 
modifier genes could be studied effectively with the aim of 
further understanding variable penetrance and disease severity. 

Altered calcium homeostasis and impaired myofilament 
function 
The first iPSC study investigating HCM assessed the effect 
of a hereditary Arg663His mutation in the β-myosin protein 
(Lan et al., 2013). The diseased iPSC-CMs showed hallmark 
phenotypic traits of HCM, in that they were larger in size and 
demonstrated contractile arrhythmia. Importantly, the study 
demonstrated that dysregulated calcium cycling and elevated 
intracellular calcium played a key role in disease pathogenesis. 
Similarly, iPSC-CMs generated from a patient bearing a 
R58Q mutation in the myosin light chain-2 also demonstrated 
impaired intracellular calcium homeostasis, delayed decay 
time, reduced calcium current densities and arrhythmia 
(Zhou et al., 2019). These studies suggest abnormal calcium 
handling is a key phenotypic trait of HCM, but it remains to 
be determined if altered calcium homeostasis is a result of 
the causal sarcomeric mutation or due to a compound effect 
mediated by other genetic and environmental factors. This 
could be addressed by using gene editing technologies, whereby 
a single causal mutation is introduced into iPSCs with a known 
genetic background. This is very much similar to the generation 
of animal models of HCM but in a humanized setting. The 
advantage of this technique is that researchers are able to 
decipher the genotype-phenotype relationship more accurately, 
as it eliminates compounding factors such as modifier genes 
and environmental influences. Using CRISPR/Cas9 technology, 
an I79N mutation was introduced into cardiac troponin T, and 
the iPSC-CMs harboring this mutation when compared to their 
isogenic controls exhibited disorganized sarcomeres, enhanced 
contractility, and impaired relaxation (Wang et al., 2018). The 
impeded contractile performance was attributed to an increased 
sensitivity of the myofilaments towards calcium. In contrast, 
iPSC-CMs harboring mutations introduced into β-myosin 
(R403Q and V606M) and cardiac myosin binding protein-C 
(Trp792ValfsX41 and R502W) exhibited hypercontractility 

but with no changes in calcium handling (Cohn et al., 2019). 
More recently, iPSCs were generated from patients having 
an E848G variant in β-myosin. Although, the diseased iPSC-
CMs demonstrated decreased contractile function, which was 
attributed to reduced interactions between β-myosin and cardiac 
myosin binding protein-C, calcium handling abnormalities 
were also absent in this model (Yang et al., 2018). Studies 
have reported altered calcium homeostasis to be the down-
stream effect of the sarcomeric mutation found in HCM, 
due to a ‘calcium trapping’ phenomenon of the sarcomeres 
(Semsarian et al., 2002; Ashrafian et al., 2011). Therefore, 
these contrasting findings in iPSC-CMs are of considerable 
importance as it would seem that altered calcium homeostasis 
may not be a universal phenomenon and could perhaps be 
mutation-dependent or even be a result of compounding factors 
acting in concert with the causal gene. This hypothesis is 
supported by the study by Ojala and colleagues (Ojala et al., 
2016) who generated iPSC-CMs from patients bearing Finnish 
founder mutations in either cardiac myosin binding protein-C 
(Gln1061X) or α-tropomyosin (Asp175Asn). In this study, 
although both diseased iPSC-CM lines exhibited hypertrophic 
features when compared to controls, differences in cell size, 
calcium handling, electrophysiological properties, and gene 
expression profiles were observed between the two diseased 
lines as well.   

Environmental factors and key signaling cascades
Apart from causal and modifier genes, environmental factors 
such as life-style and diet (Stauffer et al., 2006) are also known 
to influence disease pathogenesis. In an attempt to decipher 
interactions between a patient’s genetic background and 
environmental factors, Tanaka and colleagues generated iPSCs 
from two patients bearing no mutations in the major sarcomeric 
genes known to be associated with HCM and from a single 
patient bearing a Gly999-Gln1004del mutation in cardiac 
myosin binding protein-C (Tanaka et al., 2014). Interestingly, 
the diseased iPSC-CMs demonstrated a mild phenotype 
under basal conditions, but upon treatment with an exogenous 
hypertrophy promoting stimulant such as endothelin-1, 
morphological and high-speed video assessment revealed 
increased cardiomyocyte hypertrophy, myofibrillar disarray, 

Figure 1. Schematic illustration of iPSC technology for deciphering disease mechanisms and identifying novel therapeutic targets for HCM. 
Somatic cells (e.g. blood, dermal fibroblasts) obtained from patients with HCM are reprogrammed to generate iPSCs. These iPSCs are then 
differentiatied into functional cardiomyocytes (iPSC-CMs) that recapitulate the patient’s cardiac phenotype. These iPSC-CMs could serve as a 
platform for investigating various cellular, molecular, and functional properties with the aim of deciphering disease mechanisms, as well as 
for identifying novel targets for patient-specific therapies. 
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and variability in the direction of contraction. These findings 
suggest that under certain circumstances the hypertrophic 
phenotype could remain masked until exposed by a particular 
trigger. Similarly, when Prajapati and colleagues treated two 
diseased iPSC-CM lines harboring mutations in either cardiac 
myosin binding protein-C or α-tropomyosin with adrenaline 
(Prajapati et al., 2018), while arrhythmias were observed in 
a dose-dependent manner, the two iPSC-CM lines exhibited 
differential arrhythmia patterns, with the line harboring 
the cardiac myosin binding protein-C mutation exhibiting 
more delayed afterdepolarizations, while the line harboring 
the α-tropomyosin mutation was more prone to ventricular 
tachycardia. This study is particularly relevant to athletes who 
exhibit HCM, as unfortunately in 80% of these cases, SCD is 
the first cardiac event that occurs during or immediately after 
intense exercise (Pelliccia et al., 1991; Maron et al., 2009).

With technological advancement of various ‘omics’ 
platforms, studies that investigate changes in gene regulatory 
networks could prove to be beneficial in identifying critical 
signaling cascades involved in HCM pathogenesis. MicroRNA 
transcriptome profiling (Kuster et al., 2013) and RNA-seq 
profiling (Ren et al., 2016) performed on cardiac tissue of 
patients with HCM revealed remarkable differences in gene 
signatures when compared to healthy donors. However, it 
must be noted that cardiac tissue is comprised of a mixture 
of myocytes and non-myocytes and hence, identifying gene 
regulatory changes purely associated with sarcomeric mutations 
in cardiomyocytes is challenging. This is another avenue where 
iPSC-CMs could prove to be advantageous, as a relatively 
homogeneous population could be generated with current 
protocols. In lieu of this, Han and colleagues (Han et al., 
2014) performed whole transcriptome sequencing followed by 
pathway enrichment analysis in a model bearing an Arg442Gly 
mutation in β-myosin. When compared against controls, the 
diseased iPSC-CMs showed an increase in genes responsible for 
cell proliferation which was mainly governed by WNT1. Genes 
involved in key development pathways such as Notch and 
fibroblast growth factor were also increased, suggesting cross-
talk between multiple signaling pathways in the development 
of HCM. In a more recent study (Cohn et al., 2019), β-myosin 
and cardiac myosin binding protein-C mutations that resulted 
in hypercontractility were also shown to induce p53-mediated 
oxidative stress, which resulted in reduced cardiomyocyte 
viability under conditions of metabolic stress. Such studies 
could pave the way for gaining insight into the molecular 
mechanisms of the disease with regard to changes in global 
gene signatures.    

Energetic alterations in hypertrophic cardiomyopathy
Mitochondria are the powerhouse of the cell and with the 
heart being the most energy consuming organ in the human 
body, it is not surprising that these organelles occupy about a 
third of cardiomyocyte volume (Piquereau et al., 2013). The 
ATP generated from the mitochondria is utilized for essential 
cellular functions including cardiomyocyte growth, contraction, 
ionic homeostasis, and survival. Mitochondria themselves are 
dynamic organelles able to change their shape and distribution 
via fusion and fission-mediated processes (Ong and Hausenloy, 
2010). Such dynamisms are critical for normal mitochondria 
function, as imbalances in the fusion, fission, and mitophagy 
pathways could lead to the onset of various cardiomyopathies 
(Dorn, 2016). In order to sustain the high energy requirements 
associated with cardiac function, adult cardiomyocytes rely 
heavily on oxidative phosphorylation (OXPHOS), which is 
mainly fueled by fatty acid β-oxidation and to a lesser extent 
glucose oxidation and glycolysis (Lopaschuk and Jaswal, 2010), 
the latter being the major energy derivative pathway in fetal 
cardiomyocytes due to reduced OXPHOS and poorly developed 

mitochondrial networks (Porter et al., 2011). Multiple studies 
have reported decreased fatty acid oxidation with concurrent 
decline in mitochondrial energetics during heart failure 
(Pereira et al., 2014; Fillmore et al., 2018). Interestingly, in 
rats that underwent thoracic aortic constriction, mitochondrial 
respiratory capacity remained relatively intact during the initial 
stages of compensated hypertrophy with diastolic dysfunction 
and preserved ejection fraction. Mitochondrial dysfunction 
was only observed during the final stages of heart failure with 
systolic dysfunction and reduced ejection fraction (Doenst et al., 
2010). This would suggest that despite the increase in cardiac 
workload, the mitochondria are not yet energy compromised. 
However, the initial stages of compensated hypertrophy are 
accompanied by a drastic decline in fatty acid oxidation, 
and hence the mechanisms by which respiratory capacity is 
preserved remain unclear.  

While the aforementioned iPSC studies corroborate 
the feasibility to model most phenotypic traits of HCM, 
including cardiomyocyte hypertrophy, myofiber disarray, 
impaired contractility, altered myofilament calcium sensitivity, 
abnormal calcium handling, and arrhythmias, studies aimed 
at investigating energy alterations in HCM-iPSC models are 
still in their infancy. It is hypothesized that the sarcomeric 
mutation in HCM that results in increased myofilament 
calcium sensitivity, due to a calcium trapping phenomenon, 
would promote increased ATP consumption at the sarcomeres 
(Semsarian et al., 2002; Ashrafian et al., 2011) (Figure 2). 
This could have direct implications on energy homeostasis, as 
mitochondria energy demands would increase. The shunting 
of ATP molecules towards sarcomere function and away 
from other cellular processes, such as ion channel regulation, 
could lead to adverse cellular complications. Approximately 
30-40% of ATP generated in the heart is used for regulating 
various ion pumps including SERCA (Doenst et al., 2013), 
and failure of SERCA to efficiently re-uptake calcium into 
the sarcoplasmic reticulum has been postulated to be the main 
reason for diastolic dysfunction and consequent incidences of 
arrhythmias (Miyamoto et al., 2000; Periasamy and Janssen, 
2008; Yang et al., 2014a). Furthermore, mitochondria energetics 
are tightly regulated via the mitochondrial calcium uniporter 
(MCU), which facilitates the intake of calcium for the normal 
function of key enzymes of the Krebs cycle and for proteins of 
the electron transport chain (Williams et al., 2015). Calcium 
within the mitochondria also regulates the NADH/NAD+ 
redox state, which protects against reactive oxygen species 
(ROS) accumulation. Hence, it could be speculated that due 
to increased calcium sensitivity, the accumulation of calcium 
at the sarcomeres could also cause a calcium deficit within 
the mitochondria, thereby inducing an energetic collapse and 
increased ROS production over time. Recently, Mosqueira and 
colleagues attempted to validate the energy deficiency theory 
in HCM using PSCs-CMs harboring a R453C mutation in 
β-myosin (Mosqueira et al., 2018). Interestingly, though the 
diseased PSC-CMs exhibited a reduction in contractile force 
with negative clinotropic effects, an augmented mitochondrial 
oxygen consumption rate resulting in increased ATP production 
was observed in comparison to isogenic controls. Moreover, the 
similar levels in ROS between control and diseased PSC-CMs 
would suggest that the mitochondria are not overburdened, but 
in a state of homeostasis, which is paradoxical to the energy 
deficiency theory. The importance for studying energetic 
alterations also stems from findings that energy deficiency 
may be one of the earliest features of disease pathogenesis, 
which in turn leads to secondary clinical phenotypes such as 
diastolic dysfunction, heart failure, and SCD. This hypothesis 
is supported by the findings of low PCr (phospho-creatine)/
ATP ratios in patients with HCM as well as in individuals who 
harbour causal genes but who had yet to develop hypertrophy 
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(Crilley et al., 2003; Abraham et al., 2013). 
Another reason for modeling energetic alteration in HCM is 

that patients with inherited syndromes, where energy production 
is impaired (e.g. mitochondria disorders), develop cardiac 
hypertrophy (Zeviani et al., 1995; Bates et al., 2012). iPSC-
CMs generated from patients harboring mutations in the SCO2 
gene that leads to COX deficiency (Papadopoulou et al., 1999), 
exhibit ultrastructural abnormalities and abnormal calcium 
handling due to reduced SERCA activity, which was attributed 
to a shortage of ATP (Hallas et al., 2018). Similarly, iPSC-CMs 
generated from patients with HCM bearing the mitochondrial 
mutation 2336T>C in the MT-RNR2 gene exhibited defects 
in mitochondria ultrastructure, reduction in ATP/ADP ratio, 
and diminished mitochondrial membrane potential, which 
resulted in altered calcium homeostasis and abnormal 
electrophysiological properties (Li et al., 2018). With regard 
to metabolism, despite glucose being the more energy efficient 
substrate, the healthy human heart generates approximately 
70-90% of its ATP by oxidation of fatty acids (Doenst et al., 
2013). When ATP consumption increases due to increase in 
workload (which is thought to occur in HCM), a metabolic shift 
from fatty acid to glucose oxidation is thought to take place 
as a compensatory mechanism to provide more energy to the 
already energy deficient failing heart (Lionetti et al., 2011). 
This condition is exacerbated under hypoxic conditions and 
increased work load as a large part of glucose is then converted 
to the less energy efficient lactate (Neglia et al., 2007). Similar 
to mitochondria-related disorders, deficient fatty acid oxidation 
and uptake could also result in an HCM-like phenotype (Bautista 
et al., 1990; Aoyama et al., 1995). For these reasons, modeling 
energy alterations in HCM-iPSC models is of paramount 
importance to understanding mechanisms involved in early 
disease pathogenesis.  

Challenges in modeling energetic alterations
To model energetic alterations, there are two cellular and 
biochemical components that need to be considered:  the state 
of the mitochondria and its metabolic substrate selectivity. It is 

widely recognized that iPSC-CMs exhibit a fetal-like phenotype 
(Tan and Ye, 2018) and hence, (i) do not possess sufficient 
numbers of mitochondria, (ii) the mitochondrial ultrastructure 
is poorly developed, (iii) the mitochondria are mostly round 
in shape, and (iv) are localized mainly in the perinuclear 
region. This is in stark contrast to their adult counterparts 
which contain densely packed, highly developed, elongated 
mitochondrial networks that show inter-myofibril, peri-nuclear, 
and sub-sarcolemma distribution patterns. Furthermore, being 
fetal-like in nature, these iPSC-CMs consist of a glucose-based 
metabolism as opposed to fatty acid oxidation. Taking this 
into consideration, it could be challenging to model energetic 
alterations in HCM-iPSC models, as energy deficiency could 
either be due to disease pathogenesis or an immature cellular 
phenotype.

Having said this, researchers are constantly developing 
protocols which could promote the maturity of iPSC-CMs. 
Biochemical approaches such as the treatment with small 
molecules (Yang et al., 2014b) and environmental manipulation, 
such as the incorporation of electrical/mechanical stimulation 
(Ruan et al., 2016; Ulmer et al., 2018), growth on various 
matrices (Parikh et al., 2017), or even the substitution of 
metabolic substrates with fatty acids (Correia et al., 2017; 
Ramachandra et al., 2018) in culture media has shown 
to significantly enhance structural, electrophysiological, 
and bioenergetic properties in iPSC-CMs. More recently, 
by incorporating iPSC-CMs into a 3D structure such as 
engineered heart tissue (EHT) (Breckwoldt et al., 2017; 
Tiburcy et al., 2017) or a cardiac organoid (Mills et al., 2017), 
a model more relevant to that of adult physiology could be 
generated. Exposure to an adult-like metabolic environment 
by supplementing fatty acids into culture media may aggravate 
the disease phenotype of HCM-iPSC models. Besides the 
induction of maturation, substitution of metabolic substrates 
to fatty acids could help unravel the mechanisms that preserve 
mitochondrial respiratory capacity during the early onset of 
cardiac hypertrophy, where workload is increased, despite the 
decline in fatty acid oxidation (Doenst et al., 2010). This in turn 

Figure 2: Schematic illustration of the energy deficiency theory in HCM. Under normal conditions, calcium ions are released from the 
sarcoplasmic reticulum (SR), via ryanodine receptors (RyR) (1), where they bind to the myofibrils (2a) as well as enter the mitochondria 
(2b) to maintain energy production and redox state. The mitochondria in turn produce sufficient amounts of ATP that will be utilized by 
the sarcomeres for relaxation (3a) via cross-bridge detachment, as well as for the regulation of SERCA (3b), which mediates calcium re-
uptake into the SR (4), thereby maintaining calcium homeostasis. In HCM, due to increased calcium sensitivity, calcium ions released from 
the SR are trapped within the myofibrils (2a), resulting in a calcium deficit within the mitochondria (2b). This would eventually lead to an 
energetic collapse and an increase in ROS production. To provide sufficient energy for relaxation (i.e. cross-bridge detachment), higher 
ATP consumption at the sarcomeres (3a) will shunt ATP away from SERCA (3b), impairing its ability to re-uptake calcium into the SR (4). The 
resultant increase in cytosolic calcium could lead to diastolic dysfunction and cardiac arrhythmia.
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could lead to the identification of novel targets that could help 
prevent mitochondrial dysfunction during the later stages of 
disease progression. 

Concluding remarks    
Being one of the most commonly inherited cardiac disorders 
and the leading cause of SCD in adolescents, young adults, 
and athletes, considerable efforts should be made to decipher 
the underlying mechanisms of HCM, especially those which 
contribute to early pathogenesis such as energetic alterations. 
Current pharmacological agents used to treat symptoms are 
generic and are not tailored for patient specificity, hence gaining 
deeper mechanistic insight into energy deficiency by using 
HCM-iPSC models could lay the foundation for identifying 
new targets for stratified therapies. Having said this, further 
research on iPSC-CM maturation is required until a common 
consensus is agreed upon that they are mature enough to 
model various structural, electrophysiological, energetic, and 
metabolic features of adult cardiomyocytes. Despite this, as the 
most relevant humanized model that closely resembles human 
cardiac physiology, iPSC-CMs will continue to play a defining 
role in identifying novel molecular mechanisms and drug 
targets for HCM in the near future.  
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