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Abstract

HIV and HCV co-infection is highly prevalent in intravenous drug users and
individuals with inherited bleeding disorders treated with clotting factor concentrates
prior to the introduction of heat sterilisation in 1985. The presence of HIV accelerates
HCV disease progression and the presence of HCV impairs CD4+ T-cell recovery
post-HAART, although the underlying mechanisms for these effects remain to be
elucidated. The aim of this thesis was to investigate HIV and HCV co-infection in the

context of haemophilia.

Initially, a quantitative competitive RT-PCR assay for HCV was developed. This
assay was used in a retrospective cohort study of 96 men with haemophilia to
determine the prognostic value of a single HCV RNA load measured early post HIV
seroconversion. This study showed for the first time, that HCV RNA level early post
HIV seroconversion is associated with progression to both AIDS and all-cause

mortality over a period of at least 15 years.

The effect of HAART on HCV replication is controversial, with some studies
reporting no effect and others increases, reductions and clearances of HCV RNA post-
therapy. I have investigated the effect of HAART on the titre of anti-HCV specific
antibodies and on the relationship between these antibodies and HCV RNA level in a
cohort of 24 patients with inherited bleeding disorders. A significant inverse
correlation between anti-HCV antibodies was observed pre-HAART that disappeared
or was obscured post-therapy. 1 have therefore shown that HAART affects HCV

specific humoral immune responses without affecting HCV RNA level.

Finally, I have investigated the effect of HCV co-infection on the expression of a
range of memory markers on total CD8+ T-cells in HIV positive and negative
patients. Significant differences in memory marker expression were observed in all
four cohorts investigated; HIV mono-infected, HCV mono-infected, HIV and HCV
co-infected and HIV and HCV negative controls.
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optical density

open reading frame

polyacrylamide gel electrophoresis
phosphate buffered saline

peripheral blood mononuclear cells
polymerase chain reaction

polyhedra derived virus

phycoerythrin

polyethylene glycol

peridinin chlorophyll-a protein
plaque-forming unit

protease inhibitor

post-infection

preintegration complex

RNA-activated protein kinase (IFN induced protein kinase)
pMelBac vector (Invitrogen)

picomole

polypyrimidine tract-binding protein
poly-tetra-fluoro-ethylene

positive transcription elongation factor b complex
polyvinylidine difluoride membrane
quantitative competitive reverse transcription polymerase chain

reaction
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Q-RNA
R10
RanGAP
RANTES

RCC1
RdRp
Rev
RFLP
RIBA
RNA
RNA pol II
RNP
RPMI
RRE
RT
SDS
SDW
sec
SEM
SIvV
SLC
SOD
ssRNA
STI
SU
SV40
SVR

TAE
TAH
Taq

TAR

Abbreviations

competitor internal standard RNA (NucliSense assay)
RPMI 1640 media at 10% FCS
RanGTPase protein

regulated upon activation normal T cell expressed and secreted
(chemokine)

ribavirin

Ran nucleotide exchange factor
RNA-dependent RNA polymerase

HIV regulator of viral gene expression (p19)
restriction fragment length polymorphism
recombinant immunoblot assay
ribonucleic acid

RNA polymerase 11

ribonucleoprotein

Roswell Park Memorial Instiute

Rev response element

reverse transcriptase

sodium dodecyl sulphate

sterile distilled water

second

standard error of the mean

simian immunodeficiency virus
secondary lymphoid tissue chemokine
superoxide dismutase

single stranded RNA

structured treatment interruptions

HIV surface envelope protein (gp 120)
simian virus 40

sustained virological response

thymine

Tris-acetate-EDTA buffer

transfusion associated hepatitis

Thermus aquaticus

transcriptional response (element)
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Tat
TBE

Tc

TCR
TE
TEMED
Tfa
Tfbl
TbIl
Th

™
T™A
TNF-a
tRNA
TSG101
TTP
UEV
UTR
uv
UTP

Vpr
Vpu
VR

v/v

w/v

Abbreviations

HIV transcriptional activator (p14)
Tris-borate-EDTA buffer

Cytotoxic T-cell (response)

T-cell receptor

Tris-EDTA

N,N,N’ N’ tetramethylethylenediamine
tubule forming agent

transformation buffer I

transformation buffer 11

T-helper (cell or response)

HIV transmembrane envelope protein (gp 41)
transcription mediated amplification
tumour necrosis factor alpha

transfer RNA

tumour suppressor gene product 101
thymine triphosphate

ubiquitin E2 variant (domain on TSG101)
untranslated region

ultraviolet

uracil triphosphate

volt

HIV viral protein R (p15)

HIV viral protein U (p16)

variable region (of HCV 3’UTR)
volume to volume ratio

wild-type

weight to volume ratio

XX1V



Chapter 1: General Introduction

Chapter One

General Introduction
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1.1 Discovery of HCV

Serological tests for hepatitis A and B viruses (HAV and HBV) were developed in
1974. These allowed the role of these agents in transfusion associated hepatitis (TAH)
to be evaluated and it was found that about 90% of cases were caused by an unknown
agent. This resulted in TAH being termed non-A non-B hepatitis (NANBH)
(Feinstone et al, 1975).

NANBH was initially perceived as a mild disease, but studies in the 1970’s revealed
that it had a high propensity to cause chronic hepatitis, which could progress to
cirrhosis and liver failure (Berman et al, 1979). After this discovery, much effort was
put into discovering the causative agent. A chimpanzee model of infection was
established in the late 1970’s which was used to demonstrate that NANBH could be

transmitted by intravenous (i.v.) administration of human inocula (Wyke et al, 1979).

In the early 1980’s, this model was used to determine that rechallenge with different
inocula resulted in sequential episodes of NANBH, suggesting that there were
multiple NANBH agents (Hollinger et al/, 1980). In chimpanzee hepatocytes, one
NANBH agent induced 150-300nm membranous tubules in the cytoplasm, which led
to it being called the tubule-forming agent (tfa). In 1983 it was shown that chloroform
treatment of infectious inocula rendered them non-infectious, whilst subsequent
filtration experiments revealed that the tfa infectivity could be retained by a 50nm
filter. These results were consistent with tfa being a small enveloped virus (Bradley
et al, 1983;Feinstone et al, 1983).

Hepatitis B virus (HBV) and hepatitis delta virus (HDV) were known to be enveloped
viruses and a prevalent view at the time was that NANBH was related to these. Some
groups showed serological and hybridisation cross-reaction between NANBH and
HBV whilst others did not. However, NANBH failed to cross hybridise even at low
stringency with the HDV genome (characterised in 1986) (Weiner et al, 1987). In
1985, it was noted that the Togaviridae (which included the flavivirus genera) were

small enveloped viruses that could induce tfa-like ultrastructural alterations in
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infected cells which suggested that tfa may be togalike or a novel virus (Bradley
1985;Fields et al, 2001).

However, with the continuing failure of conventional immunological and virological
techniques to identify the NANBH agent, it was the use of recombinant DNA
technology in 1989 that resulted in identification of the causative agent of NANBH.
Choo et al. pooled plasma from infected chimpanzees and by titrating infectivity in
other animals obtained a 10° CID ml”" (chimpanzee infectious dose) titre plasma pool.
Nucleic acid was extracted from this pool and used to create a cDNA expression
library by cloning random fragments. The library was then screened with serum from
patients with NANBH. Over a million clones were screened before one was found
that reacted with serum from patients with NANBH and infected chimpanzees post
hepatitis (clone 5-1-1). This clone was used as a hybridisation probe to screen the
original expression library and a 1089 nucleotide open reading frame was
reconstructed (Choo et al, 1989;Booth et al, 1998). The whole HCV genome was
then rapidly characterised (Choo et al, 1991) and it is now known that HCV is the
major causative agent of NANBH, accounting for at least 80% of cases. However, it
was not until 1994 that HCV virus particles were first visualised by immunoelectron
microscopy (Kaito et al, 1994), and to this day it cannot be readily grown in tissue

culture.

1.2 HCV Epidemiology

175 to 300 million people are infected with HCV worldwide. The prevalence of HCV
antibodies is variable, ranging from 0.1-0.3% in Canada/ Northern Europe, to 1-2% in
the USA/ Japan and up to 19.5% in Egypt (Hibbs et al, 1993). 10,000 people die per
year in the USA from liver failure and HCV is the leading cause (Williams, 1999).
The rate of new HCV infections has been reduced by over 50% in the last 15 years as
a result of screening for surrogate markers of HCV, excluding HIV positive blood
donors, the availability of more sensitive antibody testing and safer needle using
practices (Alter, 1993;Schreiber et al, 1996). Injecting drug use accounts for the bulk
of HCV transmission in the USA with seroprevalence reaching 80% within one year

of injecting (Williams, 1999). Sexual transmission appears to be infrequent (Donahue
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et al, 1991;Hisada er al, 2000;Leruez-Ville et al, 2000) and maternal (vertical)
transmission frequency is around 5% (Conte et al, 2000). Increased risk of HCV
transmission has been associated with HIV co-infection, multiple sexual partners and
a longer duration of marriage (Sanchez-Quijano et al, 1990;Eyster et al,
1991;Akahane et al, 1994). Currently, the patient groups with the greatest prevalence
of HCV are intravenous drug users (IVDU) and people with inherited bleeding
disorders (Ockenga et al, 1997). In the USA, 15-30% of HIV positive individuals are
also HCV infected (Sherman et al, 2000).

1.3 Natural history of HCV

The majority of individuals who develop acute HCV are unaware of the fact and
disease onset is usually identified by assumption. Originally, progression from acute
to chronic hepatitis was defined as the persistence of increased aminotransferases for
6 months or more but it is now defined by persistence of HCV RNA in the blood.
Failure to clear the virus occurs in 54-86% of cases depending on the study (Seef,
2002). The predicted outcome of infection also varies greatly between different
studies and it is very difficult to assemble an unbiased patient cohort. However an
important observation with these data is that mortality increases in infected persons
only if they develop cirrhosis (Niederau et al, 1998). Prospective studies with up to
14 years of follow-up detected cirrhosis in approximately 20% of patients, with
hepatocellular carcinoma (HCC) being rare and liver disease responsible for death in
3% of patients (Hopf et al, 1990;Tremolada et al, 1992;Koretz et al, 1993;Mattsson et
al, 1993). Relatively short follow up and small patient numbers were limitations in
these studies. In retrospective studies, frequencies of 30-46% for cirrhosis and 11-
19% for HCC after 4-11 years follow-up have been reported. Disease outcomes are
more severe because these studies selected patients with well-established liver disease
(Takahashi et al, 1993;Tong et al, 1995Yano et al, 1996). These results contrast with
those of a retrospective-prospective study of 62,667 Irish women infected with
contaminated anti-D immunoglobulin (Kenny-Walsh, 1999). This study found only
2% had cirrhosis after 17 years, an outcome possibly associated with their low alcohol
intake. A further retrospective cohort study of US military recruits with 45 years of

follow-up found less than 15% had suffered from or died as a result of liver disease
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(Seeff et al, 2000). There is clearly great variation in the progression of HCV disease.
Progression in HCV mono-infection is usually very slow, but influenced by other
factors such as age, HCV genotype, alcohol consumption and HIV co-infection

(Eyster et al, 1993;Sabin et al, 2000b;Yee et al, 2000; Westin et al, 2002).

1.4 HCV Genome organisation

HCV has been classified as the sole member of a distinct genus called kepacivirus
within the Flaviviridae (Murphy et al, 2001). Homology with other members of the
Flaviviridae family is low although they share a similar genomic organisation. HCV
is composed of a positive sense single stranded RNA genome of ~9600 nucleotides in
length that encodes a single open reading frame (ORF). The genome codes for a
single polyprotein of ~3000 amino acids in length that is proteolytically cleaved by

host and virally encoded proteases into eleven viral proteins, see Figure 1.1.

1.4.1 The 5’ untranslated region

Two highly conserved untranslated regions (UTR) flank the HCV ORF; these may
also be referred to as non-coding regions (NCR). The 5’UTR and adjacent core region
are the most highly conserved regions of the virus. HCV does not encode a methyl
transferase activity and so translates its viral RNA by a cap-independent mechanism.
The 341nt 5’UTR forms a highly ordered stem loop secondary structure (see Figure
1.2) which possibly together with a small portion of the core region functions as an
internal ribosome entry site (IRES) (Smith et al, 1995;Hellen & Pestova, 1999). The
IRES is a mechanism that allows cap-independent translation that was first described

for poliovirus (a picornavirus) in 1988 (Pelletier & Sonenberg, 1988).

Translation of most eukaryotic mRNAs is usually dependent on the 5° modified m’G
terminal ‘cap’. The process is initiated by the binding of a eukaryotic initiation factor
(eIF) elF2, GTP and a Met-tRNA to a 40S ribosomal subunit to form a 43S complex.
elF4F then binds to the 5’ cap and together with eIF4A and eIF4B, unwinds the
mRNA, creating a binding site for the 43S complex; a variety of eIFs interact to
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promote this binding. The 43S complex then scans downstream and forms a stable
48S complex with the first AUG triplet encountered. The GTP is then hydrolysed via
elF35, elFs are released and the Met-tRNA is left at the P site of the 40S subunit. The
40s subunit now joins with the 60S ribosomal subunit allowing protein synthesis to

begin.

The HCV 5°UTR forms four highly structured domains (see Figure 1.2). Domain I
forms a single stem loop between nucleotides 5 and 20 that has been shown to be
dispensable for translation activity, but essential for replication (Honda et al, 1996).
The 5’ border of the IRES has been mapped to between nucleotides 38 and 46.
Oligopyrimidine tracts are found in the apical loop of domain III and between domain
I and domain II. Domain IV consists of a small stem loop containing the
polyprotein start codon at nucleotide position 342 and forms a pseudoknot by base
pairing with a loop in domain ITII. Mutagenesis or insertion of upstream AUG codons
has little effect on IRES activity and 40S ribosomal subunits appear to bind to the
initiator AUG with little or no scanning (Reynolds et al, 1996). The mapping of the
3’ end of the IRES is still a matter of debate. Most experimental evidence suggests
that sequences of the core-coding region, but not core itself, are needed for full IRES
activity. However, whether this sequence is a true component of the IRES or just
needed to prevent unfavourable base pairings is unknown. In fact, purified 40S
ribosomal subunits can bind directly to an HCV IRES lacking core sequences without
requiring any additional transcription factors. This is a property unique among
eukaryotic RNA’s that resembles the interaction between the prokaryotic 30S
ribosomal subunit and the Shine-Dalgamo sequence (Pestova ef al, 1998;Hellen &

Pestova, 1999;Bartenschlager & Lohmann, 2000).

IRES activity is influenced by several factors. The X-tail in the HCV 3’UTR enhances
IRES dependent translation by an unknown mechanism and several cellular factors
bind the IRES. These stimulate translation in most cases and include PTB
(polypyrimidine tract-binding protein), the La antigen, heterogeneous nuclear
ribonucleoprotein L and as yet unidentified proteins of 120, 87 and 25 kDa
(Bartenschlager & Lohmann, 2000). Using cell lines stably expressing bicistronic
reporter constructs with a cap-dependently expressed upstream reporter and a

downstream reporter translated from the HCV IRES, it was found that IRES-




















































































































































































































































































































































































































































































































































































































































































































































































