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Summary

This thesis is concerned with channel coding. Channel coding consists of error 

control coding and line coding (LC). The basic definitions and concepts of both 

error correcting codes (ECCs) and LC are initially examined, followed by the pre

sentation of a number of existing coding algorithms. Where appropriate, computer 

simulation is used to establish their limitations. Certain new codes are then devised 

which offer improved performance.

Finally, following on what is now an established trend, error correcting and line 

codes are combined to form error correcting line codes (ECLCs), which may offer 

superior performance compared to the use of a cascaded scheme.

Specifically, the first chapter contains some basic definitions, the thesis outline 

and a summary of the contributions.

Chapter 2 introduces the basic concepts behind error correcting codes and soft 

decision decoding (SDD) together with a brief description of the well-established 

Chase algorithms. Their advantages and limitations will be examined and used 

generate novel SDD algorithms in chapter 5.

The basic concepts of line coding are introduced in chapter 3. In addition, a 

new family of single added bit line codes is also presented. This offers reasonably 

good line characteristics with very small compromise to rate.

Chapter 4 is concerned with simulation as a means of evaluating the perfor

mance of coded systems. A conventional simulation technique is initially presented 

and used for assessing the performance of BCH codes. This proves inadequate for



simulating the very low error rates of modern communication systems, especially 

when SDD is used. Two novel simulation acceleration algorithms are therefore 

introduced to alleviate this problem. These will only simulate code words that 

affect the residual bit error rate (RBER) and simply calculate the effects of the 

code words which are correctly decoded. The novel simulator algorithms are used 

in subsequent chapters to determine the performance of the proposed new codes.

Chapter 5 introduces the new generalised Chase (GO) algorithms, followed by 

the adaptive immediate decision (AID) and test pattern elimination (TPE) algo

rithms. These can be used to offer near maximum likelihood (ML) performance 

with minimum increase in complexity.

Chapter 6 is concerned with combined EC and line codes to form ECLCs. 

These can offer both tight line coding characteristics and good decoding perfor

mance. Some emphasis is placed on implementation appropriate to very high bit 

rate systems.

Finally chapter 7 brings the thesis to a conclusion and provides recommenda

tions for future work.



Statem ent of Originality

Unless otherwise stated in the text, the work presented in this thesis was carried 

out by the candidate. It has not been presented previously for any degree, nor is 

at present under consideration by any other degree awarding body.

Candidate:

Simon Fragiacomo

Director of Studies:

Professor J. J. O’Reilly



Acknowledgements

I wish to express my gratitude to Professor John J. O’Reilly for his guidance 

and support throughout the course of this study and the preparation of this thesis. 

I would also like to thank him for his friendship and moral support, for which I am 

deeply indebted.

I would also like to thank a number of people for their contributions, discussions 

and encouragement: Drs Andrew Popplewell and Yi Bian for their patience and 

advice. Also a special ‘thanks’ should go to Chris ‘there’s at least six ways you can 

do this’ Matrakidis for many fruitful conversations.

I would also like to thank all my friends at UCNW, BT labs and everybody at 

the UCL Telecoms group, for making these last years so enjoyable.

Last, but certainly not least, I would like to thank my family for their support 

throughout all these years.



To my Father and Mother



Contents

1 Introduction 1

1.1 In troduction .................................................................................................. 1

1.2 Thesis O rganisation..................................................................................... 4

1.3 Summary of Main Contributions..............................................................  6

2 Channel Coding 10

2.1 In troduction .................................................................................................. 10

2.2 Error Control C o d e s .................................................................................. 10

2.2.1 Forward error co rrec tio n ..............................................................  12

2.3 Generating Linear Binary Block C o d e s .................................................. 13

2.3.1 A simple ECC exam ple................................................................. 16

2.4 Decoding a Simple E C C ...........................................................................  17

2.5 Soft Decision D ecoding............................................................................... 21

2.5.1 The Chase algorithms .................................................................. 22

2.5.2 Mechanics of the Chase a lg o rith m s ...........................................  25

2.5.3 Test pattern set generation...........................................................  27

2.5.4 Performance comparison of the Chase a lg o r ith m s ................... 28



2.6 S u m m a ry ...................................................................................................  30

3 Line Coding 33

3.1 In troduction ................................................................................................ 33

3.2 Line C o d in g ................................................................................................  34

3.2.1 A simple line code ........................................................................  36

3.3 The n B lX  Class of Line C o d e s .............................................................  38

3.3.1 The n B lP , n B lC  and n B l I  line codes.................................... 40

3.3.2 Improving the n B l I  c o d e ...........................................................  42

3.3.3 The n B lD  and n B lR  line codes ............................................... 42

3.3.4 The n B lD R  line c o d e ................................................................. 43

3.3.5 Improving the n B lD R  c o d e ........................................................  46

3.4 Summary of Code P erfo rm an ce ............................................................. 49

3.4.1 Decoding performance of the single added bit c o d e s .............. 49

3.5 Spectral Properties of Selected n B lX  c o d e s ........................................ 52

3.6 Direct Calculation of the Power S p e c tru m ...........................................  53

3.6.1 Analysing the Manchester c o d e .................................................. 55

3.6.2 Analysing the n B lD  c o d e ...........................................................  56

3.6.3 Analysing the n B lC  c o d e ...........................................................  58

3.7 S u m m a ry .................................................................................................... 58

4 Sim ulation 63

4.1 In troduction ................................................................................................  63

4.2 A Communications System M odel...........................................................  65

4.2.1 Model co m p o n en ts ........................................................................  67

i i



4.2.2 Data source and en co d e r...............................................................  68

4.2.3 Channel s im u la tion .........................................................................  69

4.2.4 Hard decision d e c o d e r ................................................................... 72

4.3 Simulation Verification and V a lid a t io n ..................................................  75

4.4 The Need for Accelerated Simulation Techniques.................................. 77

4.5 Simulation Acceleration Techniques......................................................... 79

4.6 First Acceleration Technique...................................................................... 79

4.7 Second Acceleration Technique ...............................................................  84

4.8 SDD and the Simulation Acceleration T ech n iq u es ............................... 88

4.9 Other Performance Evaluation P ro g ra m s ............................................... 89

4.9.1 Line code perfo rm ance ................................................................... 90

4.9.2 Power sp ec tru m ................................................................................ 91

4.10 S u m m a ry .....................................................................................................  91

5 G eneralised Chase and the AID A lgorithm  95

5.1 In troduction ...................................................................................................  95

5.2 Generalised Chase A lgo rithm s..................................................................  96

5.2.1 N cc  selection and TP g e n e ra tio n ...............................................  97

5.2.2 Simulation re su lts ................................................................................ 102

5.2.3 Generalised Chase 3 ..........................................................................105

5.3 Adaptive Immediate Decision A lg o r ith m .................................................. 107

5.3.1 Description of the AID a lg o r ith m ....................................................107

5.3.2 Threshold d e c is io n .............................................................................108

5.3.3 Optimal value of a ............................................................................. I l l

i i i



5.3.4 Simulation results for the AID a lg o rith m ................................... 113

5.3.5 Variable noise s im u la tio n s ............................................................. 116

5.4 Improving the Chase and AID A lg o rith m s...............................................118

5.4.1 Decoding bounded algorithm ...........................................................120

5.5 Summary ......................................................................................................... 120

6 Com bining Error Control and Line Coding w ith  Soft D ecision  D e

coding 125

6.1 In troduction ......................................................................................................125

6.2 The Need for Error Correcting Line C o d e s ...............................................126

6.3 Generating E C L C s .........................................................................................129

6.4 Proposed C o d e s ............................................................................................... 131

6.5 The n B lX  Family of ECLCs ..................................................................... 134

6.5.1 The n B lP  E C L C .............................................................................. 134

6.5.2 nBlC ^ n B lD  and n B lR  c o d e s .....................................................138

6.6 Bi-modal E C L C s ............................................................................................139

6.7 Enhanced Flag P ro te c tio n ............................................................................143

6.7.1 An example EFP c o d e .....................................................................145

6.8 CAB Algorithm D escrip tio n .........................................................................147

6.8.1 CAB N algorithm .............................................................................. 150

6.9 Simulation Results of the n B lX  E C L C s .................................................. 153

6.10 N=2 E C L C s......................................................................................................158

6.10.1 Improvements on the N=2 codes ................................................ 161

6.10.2 Simulation results for the N=2 c o d e s ..........................................163

i v



6.10.3 Manchester ECLC .......................................................................... 163

6.11 Calculating the Decoding Performance of the Single Flag Codes . . 171

6.12 Calculating the Decoding Performance of the EFP C o d e s .................. 173

6.13 Rate Considerations ....................................................................................176

6.13.1 Line code r a t e .................................................................................... 179

6.14 S u m m a ry ....................................................................................................... 182

7 Conclusions 186

7.1 C on tribu tions .................................................................................................187

7.2 Concluding R e m a rk s ....................................................................................189

A C alculating the Power Spectrum  190

A .l In troduction ....................................................................................................190

A.2 Calculating the Power Spectral D ensity ....................................................190

A.2.1 Determining Ryy{ j )  at j  =  0  191

A.2.2 Determining Ry y { j )  at j  7̂  0 ...........................................................191

A.3 Power spectrum of the Manchester C o d e .................................................193

A.4 Power Spectrum of the n B lD  C o d e .......................................................... 194



List of Figures

1.1 Coding tree diagram.................................................................................... 3

2.1 Error correcting code tree diagram..........................................................  13

2.2 Block diagram of a communications system...........................................  14

2.3 Communications system (with SDD) block diagram............................ 22

2.4 Flow diagram of the Chase algorithms.................................................... 24

3.1 AMI state diagram......................................................................................  37

3.2 AMI power spectrum................................................................................... 38

3.3 Examples of the P , C  and I  codes, for n =  4..........................................  41

3.4 Examples of the D  and R  codes...............................................................  43

3.5 Flow diagram of the n B lD R  code...........................................................  45

3.6 Worst case runlength for the 4P 1D P  code............................................  48

3.7 Power spectrum for the n B lD  code with n = 3.................................... 53

3.8 Power spectrum for the n B lD R  and n B l I  codes................................. 54

3.9 Power Spectrum of the n B lD  code with various values of n .............  57

3.10 Power Spectrum of the n B lC  code with various values.of n .............  59

4.1 Communication system simulator outline...............................................  66

VI



4.2 Noise function shape....................................................................................  72

4.3 Validation of (127,106) BCH code............................................................ 76

4.4 BCH (127,106) at SNR=5 simulated error distribution.......................  86

5.1 Simulation of a BCH (127,106) error correcting code with various 

values of TV........................................................................................................ 104

5.2 AID algorithm flow diagram..........................................................................110

5.3 Performance comparison between the GC-2 and AID for a (127,106)

BCH code, with sloping noise functions...................................................... 117

6.1 Conventional cascaded error correcting line code implementation. . 127

6.2 Error correcting line code block diagram.....................................................129

6.3 Tree diagram of the presented ECLCs............................................. 133

6.4 Percentage of code words with RDS values within ±1 versus code 

word length n ....................................................................................................137

6.5 Power spectrum of a (7,3) ECLC..................................................................141

6.6 Cascaded added bit ECLC m atrix................................................................ 148

6.7 CAB flow diagram........................................................................................... 149

6.8 Cascaded added bit ECLC with grouped (N=2) code words..................151

6.9 CAB ECLC rate gain for various group sizes, using a n =  127 BCH 

parent code with varying values of t ............................................................ 152

6.10 HDD performance using a parent BCH (7,4) ECC with and without 

ECLC properties.............................................................................................. 155

6.11 SDD performance using a parent BCH (7,4) ECC with and without 

ECLC properties.............................................................................................. 155

v i i



6.12 SDD performance using a parent BCH (31,26) ECC with and with

out ECLC properties....................................................................................... 156

6.13 Power spectrum of a (8,3) ECLC................................................................. 157

6.14 HDD performance of N=2 error correcting line coding code, using a

(7.4) parent ECC.............................................................................................164

6.15 SDD performance of N=2 error correcting line coding code, using a

(7.4) parent ECC.............................................................................................164

6.16 Block diagram of third algorithm................................................................. 166

6.17 Decoding performance of the third algorithm............................................168

6.18 Spectral densities of the Manchester ECLC................................................170

6.19 CAB decoding performance for a (127,106) BCH code with SDD. . 174

6.20 Decoding performance for a (7,3) EFP ECLC...........................................176

6.21 Rate comparison of similar codes..................................................................178

6.22 ECLC rate comparison with n = 127...........................................................181

6.23 ECLC rate comparison with n =  31............................................................. 181

vni



List of Tables

2.1 Linear block code with k = 4 information bits and n = 7 code word

bits................................................................................................................... 18

2.2 Number of TPs for a n =  63 BCH code with various values of dmin

decoded using the Chase algorithms......................................................... 29

3.1 Encoding dictionary for the AMI code.....................................................  37

3.2 State table for the 3B1D R  code. The resultant disparity of each

code word is shown in the brackets........................................................... 47

3.3 RDS bounds for the n B lX  class of codes................................................ 50

3.4 Maximum runlength characteristics of the n B lX  class of codes. . . 51

4.1 Number of words and simulator time required for obtaining 1000

residual errors for varying SNRs................................................................ 78

4.2 Simulator time required for obtaining 1000 residual errors at varying

SNRs using the first acceleration algorithm, compared with conven

tional simulation results..............................................................................  83

4.3 Number of words and simulator time required for obtaining 1000

residual errors at varying SNRs.................................................................  87

IX



5.1 Defining TPs according to the inverted LCB positions.......................  98

5.2 Single error correcting performance using 2 TPs......................................100

5.3 Single error correcting performance using 4 T Ps......................................101

5.4 Probability of incorrectly decoding a word for various numbers of

received errors...................................................................................................102

5.5 BCH (63,51) ECC at SNR=4 dB with various values of N (channel

BER -  1.2 X  10-2)...........................................................................................106

5.6 BCH (127,106) ECC at SNR=5 dB with various values of N (channel

BER =  5.9 X 10-3)...........................................................................................106

5.7 Decoding performance versus average number of TPs for a (127,106)

BCH ECC code at SNR=4dB....................................................................... 115

5.8 Decoding performance versus average number of TPs for a (63,51)

BCH ECC code at SNR=5dB....................................................................... 115

5.9 Code performance simulation results...........................................................116

5.10 Number of times decoder is used for a BCH (127,106) ECC at a

SNR of 3 dB......................................................................................................119

6.1 (8,4) Parity code words, together with their corresponding disparities. 136

6.2 Dictionary arrangement for a (7,3) BCH ECLC. The numbers in the

brackets indicate the disparity of each code word..................................... 142

6.3 Runlength performance and rates of various ECLC codes......................158

6.4 Comparison between rate and LC characteristics of various ECLC

codes................................................................................................................... 179



Chapter 1

Introduction

1.1 Introduction

A major aim of communication theory is to devise methods with which signals 

can be transmitted though imperfect media with the highest possible degree of 

reliability and efficiency.

In order to achieve this, the signal format at the transmitting end must be 

chosen so that it will offer maximum resistance to the channel impairments. Ad

ditionally, the receiver must be able to recover as much of the original signal as 

possible. The application of coding is one method of achieving increased reliability.

Generally, coding is a form of mapping whereby a given string of information 

bits is converted into another sequence which j may have added redundancy. We 

can divide coding into three major areas:

1. Source coding, which has two functions: [first to transform a message source 

into a string of digital symbols and second, to remove any redundancy from

1



Chapter 1 - Introduction

the word thus increasing efficiency.

2. Cryptographic coding, which is used to increase the security level of a sig

nal by concealing the message. This is done to ensure that only authorised 

recipients can decode and obtain the transmitted information.

3. Finally, channel coding which aims to increase the reliability of a channel by 

using added redundancy.

This thesis is concerned with channel coding, which can be further divided into 

two main sub-areas:

1. Line coding (LC), in which the extra information is used to tailor the trans

mitted signal in such a way as to match the characteristics of the communi

cations link.

Line coding can be used, for example, to modify the spectral characteristics 

of the signal, (e.g. by placing constraints on the running digital sum  (RDS)), 

or to place bounds on the runlength.

2. Error control coding, whereby extra bits introduced at the transm itter are 

utilised at the receiver to detect and possibly correct any errors that may have 

occurred. This is further sub-divided into automatic repeat request (ARQ) 

and forward error correction (EEC). Both ARQ and EEC will be examined 

in more detail in the next chapter.

Figure 1.1 summarises the structure of the coding field, as described above.
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CODING

Source Coding

Disparity Bounding 
Codes

Forward Error 
Correction (FEC)

Channel Coding

ErraCorrecting
Codes

Cryptography

Line Coding

Automatic Repeat 
Request (ARQ)

Runlength Limiting 
Codes (RLL)

Figure 1.1: Coding tree diagram.

Even though line and error control coding are two distinct operations they 

both aim to increase the reliability of a system [1, 2, 3]. With the introduction of 

digital systems in all aspects of modern life, the issue of data integrity is becoming 

increasingly more important. Channel coding is a very attractive way of achieving 

this.

This thesis concentrates on channel coding. A number of existing line and error 

correcting codes will be presented and simulated, to identify their shortcomings. 

In a number of cases, new codes will be introduced addressing these limitations. 

The codes used will be very general in nature and simple to implement.

The basic concepts behind channel coding are initially presented. These are 

then used to build more complex line and error control codes. However, it is not 

uncommon for a designer to incorporate both aspects of channel coding in a system. 

Thus, if a conventional cascaded scheme is used, the data goes first through an error 

correcting (EC) encoder and then through a line encoder. The process is reversed
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at the decoder. It will be shown that this cascaded scheme can be inefficient 

and reduces the overall decoding performance. For these reasons combined error 

correcting line codes (ECLCs) have been devised which offer improved performance 

[4, 5],

Finally, the concept of soft decision decoding (SDD) will also be introduced. 

This is a technique which combines the demodulation and decoding processes. A 

number of the codes presented in this thesis can be improved by the use of SDD. 

The latter increases the complexity of the receiver but offers increased decoding 

power without adding extra redundancy.

A particular feature of the thesis is an exploration of the benefits that arise 

from employing SDD with ECLCs. This enables significant improvements in both 

rate and decoding power to be realised. There is currently considerable interest in 

channel coding for high bit rate systems, such as undersea optical telecommunica

tions transmissions, which provided the original motivation for this study. For this 

reason only low complexity codes (which allow high bit rates to be realised) will 

be considered.

1.2 Thesis Organisation

The structure of this thesis can be briefly summarised as follows;

Following this introduction, chapter 2 contains the fundamentals of error control 

coding together with examples of various simple codes. This chapter is used as 

a basis for the introduction and development of more advanced codes which are 

presented in later chapters. In addition, the well-established Chase SDD algorithms
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are extensively examined due to their critical role in the following chapters, and 

especially in chapter 5.

Chapter 3 presents the basics of line coding together with a family of simple 

‘added b it’ codes. These offer tight runlength and disparity bounds while being 

very simple to implement. A number of the added bit codes are used in chapter 6 

to form error correcting line codes.

In chapter 4, the need for simulation in channel coding is presented together 

with a basic ECC simulation. The latter is used as a basis for developing two 

new simulation acceleration algorithms which are used throughout the thesis to 

validate theoretical results. These work by ‘eliminating’ a large number of code 

words without affecting the accuracy of the simulation.

Chapter 5 introduces three novel SDD algorithms which offer significant perfor

mance improvements. Specifically, the generalised Chase (GC) utilises an increased 

number of test ̂ atterns^o achieve improved decoding performance; the AID algo

rithm then uses threshold decoding to reduce the average number of test patterns 

without affecting the decoding performance. Finally, the TPE algorithm reduces 

the number of test patters required for SDD, by eliminating those that produce 

the same estimated error pattern (EEP).

In chapter 6, existing concatenated and ECLCs are presented together with the 

reason behind the need for error correcting line codes. These are used as a basis for 

the generation of novel codes, which also utilise SDD to provide better performance 

with minimal increase in complexity.

Finally, chapter 7 brings the thesis to a conclusion and provides some recom
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mendations for future work.

1.3 Summary of Main Contributions

The research presented in this thesis examines channel coding schemes suitable for 

high bit rate systems. The major contributions fall into four main interlinked areas 

and can be summarised as follows:

• New line codes: a new family of ‘added bit’ line codes was introduced, which 

resulted in the harmonisation into a single identifiable family of the disparate 

n B lX  codes.

• Improved simulation techniques, where two novel simulation acceleration 

techniques are developed. These significantly reduce the amount of time 

required for obtaining statistically accurate results without compromising 

accuracy.

• Novel SDD algorithms: a number of novel SDD algorithms are introduced 

which offer improved decoding performance and increased decoding speed 

without significantly increasing the complexity of the decoder.

•  New error correcting line codes: SDD was combined with conventional error 

correcting line codes thus producing novel codes which can offer both accept

able decoding performance and reasonably good line coding characteristics.

A number of conference papers have been accepted for presentation and publi

cation. These are the following:
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1. Y. Bian, J. O’Reilly, A. Popplewell, S. Fragiacomo: “New Simulation Tech

niques for Evaluation Telecommunications Transmission Systems with FEC” , 

Fifth lEE  Conference on Telecommunications, March 1995, UK.

2. S. Fragiacomo, Y. Bian, A. Popplewell, J. O’Reilly: “A New Low Complex

ity Near ML Soft Decision Decoding Algorithm for Linear Block Codes” , 

lE E  Singapore International Conference on Communication Systems, IEEE 

ICCS/ISPACS ’96, 25-29 November 1996, Singapore.

3. Y. Bian, A. Popplewell, J. O ’Reilly, S. Fragiacomo, R. Blake: “FEC for 

Future Trans-Oceanic Optical Systems” , Fifth lE E  Conference on Telecom

munications, Brighton, March 1995, UK.

4. S. Fragiacomo, C. Matrakidis, J. O’Reilly: “Exploiting Soft Decision Decod

ing for Error Correcting Line Codes” , lEE Singapore International Confer

ence on Communication Systems, IEEE ICCS/ISPACS ’96, 25-29 November 

1996, Singapore.

5. S. Fragiacomo, C. Matrakidis, J. O’Reilly: “A Novel Error Correcting Line 

Code” , Third Communication Networks Symposium, 8-9 July 1996, Manch

ester, UK.

6. S. Fragiacomo, C. Matrakidis, J. O’Reilly: “A New Error Correcting Line 

Code” , IT S /IE E E  ROC&C ’96 International Telecommunications Sympo

sium, October 28-31 1996, Acapulco, Mexico.

7. S. Fragiacomo, C. Matrakidis, J. O’Reilly: “A Novel Error Correcting Line 

Code” , Networks and Optical Communications (NOC) - Post-Deadline Ses-
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sion, June 25-28 1996, Heidelberg, Germany.

8. S. Fragiacomo, C. Matrakidis, J. O’Reilly: “Soft Decision Error Correcting 

Line Code for Optical Data Storage” , 9th Annual Meeting, LEOS 96, 18-21 

November 1996, Boston, USA.

9. S. Fragiacomo, C. Matrakidis, A. Popplewell, Y. Bian, J. O’Reilly: “An 

Accelerated Simulation Technique for Evaluating Communication Systems 

Utilising FEC” , Networks and Optical Communications (NOC), June 17-20 

1997, Antwerp, Belgium.

10. S. Fragiacomo, C. Matrakidis, J. O’Reilly: “A Class of Low Complexity Line 

Codes” , International Symposium on Information Theory, IS IT  91, 29 June 

1997, Ulm, Germany.

11. S. Fragiacomo, C. Matrakidis, J. O’Reilly: “Performance Aspects of a Class of 

Low Complexity Line Codes” , International Conference on Signal Processing, 

ICSPAT 97, September 1997, San Diego, USA.

In addition, a number of journal papers have been submitted. The next chapter 

begins by presenting some basic concepts of error control coding and soft decision 

decoding.
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Chapter 2

Channel Coding

2.1 Introduction

In this chapter a brief overview of forward error control (FEC) and soft decision 

decoding (SDD) will be presented. As discussed before, channel coding can be di

vided into two main categories: FEC and line coding (LC). This chapter introduces 

the basic concepts behind FEC, while chapter 3 presents the basic concepts of line 

coding.

2.2 Error Control Codes

In general, error control codes can be divided into two types [1]:

1. Automatic repeat request (ARQ), whereby the receiver can only detect errors. 

If these occur, then a feedback path is used to request the re-transmission 

of the erroneous data. ARQ systems can be divided into two main cate

gories: stop-and-wait ARQ and continuous ARQ. With stop-and-wait ARQ

1 0
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the transm itter will only send the next word if the received word contains 

no errors. Continuous ARQ will send words and receive acknowledgements 

continuously, jf errors are detected the offending code word will be re

transmitted. ARQ systems can be simple to implement since they only 

require error detecting codes and are efficient in high signal to noise ratio 

(SNR) communication links. However, a number of disadvantages are also 

present:

• They require a feedback path to send the repeat request. This means 

that stop-and-wait ARQ requires a half-duplex channel while continuous 

ARQ requires a full-duplex channel.

• They can be very inefficient, especially if high channel error rates exist 

because a high number of repeat requests will be made.

•  In high bit rate or long distance systems where a significant delay exists, 

continuous ARQ will be used. This can be more efficient but will require 

large buffering systems.

For the above reasons ARQ systems are not considered here.

2. The second error control strategy is forward error correction (FEC). This 

utilises codes which can detect and correct errors at the receiver, termed error 

correcting codes (ECCs). Such codes are more complicated to implement but 

do not require feedback paths. In addition, they are better suited to relatively 

low SNR applications. For these reasons, FEC is examined in more detail in 

this study.
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2.2.1 Forward error correction

The theoretical basis for error correcting codes was developed during the late 1940’s 

by Shannon [2]. He suggested that the elimination of errors in a received digital bit 

stream was possible, if the latter was properly encoded. Encoding usually requires 

the introduction of redundancy. Shannon also proved that any number of errors 

can be corrected, provided the block length is large enough.

The challenge in coding theory is to discover codes which can correct a large 

number of errors while minimising redundancy and complexity.

Error correcting codes can be divided into binary and multi-level codes. If the 

encoded data stream at the transmitter can only obtain two distinct values then 

our code is a binary one, otherwise it is a multilevel one. Both these types of code 

can be further sub-divided into block or tree codes. Block codes, which are of 

interest here, were introduced by Hamming in the 1950’s [3]. They differ from tree 

codes in that there is no ‘memory’ during the encoding process and the produced 

bits depend only on the current information word.

Finally, either of these codes can be linear or non-linear. A binary block code 

is linear if the modulo-2 sum of any two of its code words is also a code word. The 

best known linear block codes are cyclic, where a cyclic shift of any code word also 

produces a code word. The most frequently used ones are the BCH codes which 

include the Reed-Solomon and Hamming families. The most common tree codes 

are convolutional codes, where the check bits are mixed with the information bits

in a continuous manner.

Figure 2.1 presents the family of error correcting codes.
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Error Correcting Codes

Binary Multi-level

Block Tree

Linear Non-linear

e.g. Hamming 
Reed-Solomon 

BCH

e.g. Convolutional

Figure 2.1: Error correcting code tree diagram.

This thesis aims to develop error correcting and line codes appropriate for mod

ern high bit rate systems. For this reason, only linear binary block codes will be 

considered as they are likely to be the simplest to implement and usually require 

a minimal amount of decoding time. A widely used group of such codes are the 

Bose-Chaudhuri-Hocqenghem (BCH) codes, introduced in 1960 [4]. These will be 

used as an example whenever a specific code example is required.

2.3 Generating Linear Binary Block Codes

Figure 2.2 is intended to make linear block error correcting codes easier to appre

ciate. This represents the block diagram of a complete communications system, 

utilising an (n, k) ECC encoder.

The digital data source will generate a continuous stream of information bits. 

The error correcting code encoder will divide this stream into blocks of k bits each.
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Digital D ata 
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u=(u ,u ...u v=(v ,v ...V

Noise and Interference

TX

system
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ECC Decoder D em odulatorD ata D estination

Figure 2.2: Block diagram of a communications system.

These are represented by a binary k —tuple Ti = {uq, ... , Uk_i) called a message. 

This implies that for a binary code there are 2̂  possible messages.

The encoder ‘contains’ the generator matrix G which has as rows a set of k 

linearly independent code words. These are called the ‘basis code words’ and make 

the row space of G the linear code. If all the linear combinations of the basis code 

words are taken {v = ü ■ G) then 2̂  n-bit code words will be generated.

The error correcting capabilities of a code depend on the Hamming distance (d) 

separating the code words. The Hamming distance of two code words of length n 

(where k < n) is defined as the number of places in which their bits differ [5]. The 

minimum distance [dm,in) of a code is defined as the smallest possible Hamming 

distance between any two code words. For BCH codes (dmin) is an odd number. 

Such a code can detect and correct up to  ̂ gj-j-ors and t is therefore
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termed the ‘error correcting capability’ of the code.

At the output of the encoder the k-hit information vector will therefore be 

transformed to an n-bit code word which now has error correcting properties. The 

added (n — k) bits are called the parity check digits, or parity bits. The n-bit code 

word is then modulated and transmitted. The same process is repeated for the 

next k information bits. An (n, k) code of minimum distance {dmm) has therefore 

been generated.

At the receiver, the received waveform is initially demodulated. This produces 

a binary stream of code words. If no errors have occurred then the received vector 

f  will equal the transmitted one, i.e. f  = v. If errors have occurred, then it can be 

assumed that they will have formed the error vector ë. In such a case f  =  ü 0  ë, 

where 0  indicates modulo-2 addition.

It is up to the decoder to attem pt to detect and possibly correct the errors 

that may have occurred. To do this it uses the parity check matrix H. This is a 

{{n — k) X n) matrix where any vector in the row space of G is orthogonal to the 

rows of H. Therefore, for any v we get v • = 0, where is the transpose of H.

In order to detect if errors have occurred, f  is multiplied by If f  • = 0 then

either no errors have occurred, or the error correcting capability (t) of the code has 

been exceeded.

If error correction (as opposed to error detection) is also required, then the 

previous formula must be expanded. At the receiver f  is multiplied by i.e.

f  = = v - H ^  F

Since v is always a valid code word, v • = 0, so f  • = ë - This
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product is called the syndrome (S) and only depends on the error pattern. If the 

syndrome is zero then no errors have occurred; unique syndromes exist, each

corresponding to a specific error vector. Using the syndrome information the error 

position can be located. Since our codes are binary there are only two possible 

distinct bit states, a logic 1 or a logic 0. Therefore if the positions of the errors in 

the code word are known, error correction is also possible by performing a simple 

inversion of those positions.

2.3.1 A simple ECC example

To provide an illustrative framework for some basic definitions, an example of a 

very simple linear binary (7,4) code with a minimum Hamming distance dmin = 3 

will be considered. This has k = A information bits encoded into n = 7 code word 

bits. Therefore, 2  ̂ possible distinct messages will be encoded into 2” code words 

using a one-to-one correspondence. The generator matrix G of such a code is of 

the following form:

G =

0̂

9i

92

9z

1 1 0  1 0  0 0

0 1 1 0  1 0  0

1 1 1 0  0 1 0

1 0 1 0 0 0 1 

while the parity check matrix H  will be the following

(2.1)
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H  =

1 0  0 1 0  1 1  

0 1 0  1 1 1 0 (2 .2)

0 0 1 0  1 1 1

Assume that a message ü = (1101) must be transmitted using the above code. 

To achieve this, the message must be multiplied with the generator matrix so that 

the code word vector v is produced, i.e.

V = Ü ' G = (1101) C — 1 - po 4-1 ' T 0 - ^2 T 1 ' p3 —

(1101000) +  (0110100) +  (1010001) =  0001101

Thus the transmitted EC code word will be 0001101. Because the (7,4) code 

is a systematic one, the four last bits contain the original message in the correct 

order, while the initial three bits are the parity bits required for error detection 

and correction at the receiver. Table 2.1 contains the mappings for all possible four 

bit information words.

2.4 Decoding a Simple ECC

In the previous section, a 4-bit information message was encoded into a 7-bit code 

word using a linear block code. In this section, the received word will be decoded 

and up to t errors will be corrected. Since t = and for our code dmin = 3

then t =  1, i.e. it is a single error correcting code.

Assume that f  = (ro, r i , r 2, rs, r4,rs, re) is the received vector. The syndrome 

S  is defined as
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Information word (7,4) code words

0000 000 0000

0001 101 0001

0010 Oil 0010

0011 010 0011

0100 o il  0100

0101 110 0101

0110 010 0110

0111 001 0111

1000 110 1000

1001 o il  1001

1010 001 1010

1011 100 1011

1100 101 1100

1101 000 1101

1110 010 1110

n i l 111 n i l

Table 2.1: Linear block code with k = 4 information bits and n = 7 code word 

bits.
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S  = s = r ' = (so, Si, ... , S(„_fc_i)). (2.3)

From this it is deduced that the syndrome is simply the sum of the received 

parity digits and those re-computed at the decoder. Thus if 5  /  0 an error has 

been detected.

Using equation 2.3 in our example (7,4) code the following equation is obtained; 

s = (sq, Si, S2 ) = f  ’ = {uF  ë) - = ü • +  ë - = 0  F ë ’ =  ë •

Assuming that the vector f  = (1001001) has been received, i.e. a single error 

exists in bit position 5 the syndrome will be equal to:

5  =  f  • 77^ -  (1001001)

100

010

001

110

Oil

111

101

= (111) (2.4)

Therefore S  ^  0 and an error has been detected. In order to detect the error 

position it is noted that

S  =  (so, si, 8 2 ) =  (1 ,1,1) = e ' H'
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(111) — (co, ei,  62, 63,64,65, eg)

100

010

001

110

Oil

111

101

(2.5)

Using equations 2.4 and 2.5 the following error vectors are derived:

1 — 60 +  63 +  65 +  66

1  — 6 1  +  6 3  +  6 4  +  6 5

1  — 6 2  +  6 4  +  6 5  +  6 6

(2.6)

(2.7)

(2 .8)

A number of possible solutions exist that satisfy the above equations. If max

imum likelihood decoding is used for error location then the error pattern with 

the minimum number of corrected positions is selected. In this case, this is the

(0000010) error vector. If this is added to our received vector the transmitted 

vector will be obtained.

In chapter 4, Berlekamp’s iterative algorithm will be briefly presented. This 

is an algorithm for generating the error locator polynomial, appropriate for more 

complex and powerful codes. It is a well-established technique which lends itself 

to software implementation.
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2.5 Soft Decision Decoding

In the previous sections it was demonstrated how the information bits could be 

encoded and decoded so that error detection and correction were possible. At 

the receiver, only the algebraic properties of the code were utilised to locate any 

possible errors. This is termed hard decision decoding (HDD).

In this section, the basic principles of soft decision decoding (SDD) are pre

sented. SDD uses the analogue information to try to increase the error correcting 

capability of the code. As has been mentioned before, a code of minimum distance 

dmin can correct up to t errors. The use of SDD allows this limit to be exceeded, 

under certain conditions. The penalty is the increased complexity of the decoder 

and the fact that the t-error correcting capability ^ ^ 7  not be guaranteed anymore

SDD techniques are not suitable for very noisy systems. However, modern 

telecommunication and data storage systems usually have very low error rates and 

can thus benefit from the application of such techniques.

A modified communications system which includes SDD, is shown in figure 2.3.

Here extra information is provided to the decoder in the form of the analogue 

values of the received bits. These values are provided by the demodulator and are 

used to facilitate the decoding process by indicating possible error positions.

SDD algorithms can be grouped into two broad classes:

(a) Minimum distance (or minimised sequence error rate) decoding algorithms, 

based on [6].

(b) Trellis decoding algorithms, adapted for block codes.

A number of SDD algorithms exist, such as [8, 9, 10, 11], but the most widely
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u=(u ,u ...u v = ( v  ,v  V
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Noise and Interference

TX

system

ECC Decoder Demodulator

Analogue
Infotmation

Figure 2.3: Communications system (with SDD) block diagram.

used are the Chase algorithms. This is because they can offer a balance between 

decoding power and complexity. In the following sections the Chase algorithms will 

be examined in detail. Their shortcomings will be identified and then addressed in 

chapter 5.

2.5.1 The Chase algorithms

In 1972, D. Chase [7] suggested three different SDD algorithms of type (a), each 

of which provided a different number of test patterns, allowing a trade-off between 

performance and complexity. Specifically, the Chase decoder generates a set of 

possible error patterns, called the test patterns (TPs). These are then sequentially 

perturbed with the received word and taken through a conventional HDD decoder. 

This may result in a possible error pattern being generated, termed an estimated
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error pattern (EEP). The EEP is used to indicate the bit positions which are 

deemed to contain an error and each is assigned a confidence value, provided by 

the analogue information. After HDD of all possible patterns has taken place, the 

one with the highest confidence value is selected and added to the received word 

to provide the corrected word.

Chase suggested three different algorithms, each examining a different number 

of TPs. The TPs are used to invert a number N  of least confidence bit (LCB) 

positions. These are defined as the bit positions closest to the decision threshold. 

The reason behind the use of TPs is that if the voltage value of a received bit is 

very close to the decision threshold, this bit is very likely to be in error. Thus 

if the syndrome calculations indicate that the received code word contains errors, 

these are more likely to be in the LCB positions than anywhere else. By systematic 

inversion of different combinations of these positions, the errors within a code word 

could be corrected.

An ECC utilising HDD can correct upto errors. The use of an SDD

algorithm, in conjunction with an ECC, allows a higher average number of errors 

per code word to be corrected. However, unlike a conventional ECC, the use of any 

SDD algorithm may not guarantee the correction of up to t errors within a code 

word.

The flow diagram of the decoding process for the Chase algorithms is shown in 

figure 2.4 and is explained in more detail in the following section.
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NOIs an EEP 
possible ?
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heen generate(^

^H ave all TPs^ 
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Find analog weight and store.

Add TP to received word

HD decode
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Add it to the received word and decode

Receive word 
Generate LCB table 

Generate TPs according to LCB table

Figure 2.4: Flow diagram of the Chase algorithms.
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2.5.2 M echanics of the Chase algorithms

Assume that for a given communication system the transmitted word is defined as 

V = Vq, ui, ... U(n-i) and the received word asr = Tq, r i, ... where =  Vi-\-n0 i

for 0 < z < (n — 1) and noi is defined as the noise amplitude. Let t be the error 

correcting capability of the (n, k) ECC.

The resultant error pattern (EP) indicates the bit positions where v and r 

differ, ë =  eo,ei, ... e^-i is termed the error vector and is defined by =  u* 0  

for 0 < z < (n — 1) while the binary weight of ë is termed W{e) and defined as 

the total number of non-zero elements in the sequence. A decoder will try to find 

a code word that satisfies W{e) < where dmin is the minimum Hamming

distance of the code.

In the Chase algorithms, a test pattern T P  =  tpo,tpi, ... tp(n-i) for 0 < z < 

(n—1) of length n is initially generated. This is done by selecting a number (Nchase) 

of LCBs and producing a set of n-bit sequences containing possible permutations 

of these Nchase positions. This generates a set of upto TPs. The initial TP

will always be the all zero word.

Each TP is then modulo-2 added to the received word f  and the resultant 

sequence f ' =  r  0  T P  is conventionally decoded using any suitable HD decoder. 

Since the addition of the TPs has the effect of inverting a number of LCB positions 

it is likely that some of the resultant sequences will have a reduced number of errors 

compared to the received code word.

If a conventional HD error correcting decoder was used and the initial number 

of errors exceeded t then the decoding operation would fail. With the addition of
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the TP procedure, it is possible that the total number of errors is reduced (or even 

eliminated) thus allowing conventional decoding to take place.

The received word with the added TP will be taken through the EC decoder, 

which will either produce a decoder error pattern (DEP) or fail to decode. The DEP 

will then be added to the TP to produce an n —bit sequence termed estimated error 

pattern. Thus, E E P  = (eepo.eepi, ... eep^n-i)) =  T P  0  D E P . If the addition of 

the TP has introduced more errors (instead of eliminating them) it is possible that 

the decoding will fail. In such a case no EEP will be produced. This is the reason 

for always starting with the all zero word as the initial TP; if the error pattern 

contains t or less errors the all zero TP will allow the decoder to operate properly. 

If not, then only the removal of errors will allow decoding. The latter can only be 

accomplished by using appropriate TPs and for this reason the process is repeated 

for the whole TP set.

Once all possible EEPs have been produced, one must be selected. It should 

be noted that not every TP will create an EEP and not all EEPs will be distinct. 

The selection will be done using the analogue weight of each EEP which is defined 

as;

n — 1

aw EEP =  ^  «2 X eepi (2.9)
2 = 0

where 0% is the analogue value of the i — th  bit position of the EEP.

The EEP with the smallest analogue weight will be modulo-2 added to the 

received word and the resulting sequence will be accepted as the corrected word. 

The EEP of minimum analogue weight is selected because equation 2.9 determines
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the pattern which has inverted the least confident bits. If all errors have been 

corrected then the EEP should equal the EP.

2.5.3 Test pattern set generation

It should be clear that the generation of the TP set is a very important task. If 

this is correctly generated then the total number of errors in a code word may be 

reduced, otherwise it will be increased. For this reason, the introduction of channel 

measurements may not guarantee anymore the correction of a minimum number 

of t received errors. However, if the total number of errors is above t, the decoder 

may have the ability to correct them. The three algorithms for selecting the TPs 

as suggested by Chase are the following:

1. The first algorithm (Chase 1) examines all possible TPs. Therefore, for an 

n-bit code with a minimum distance between code words of dmin, a total of

(, i) possible combinations exist. For other than very small values of n
L 2 J

this is impractical to implement in hardware or indeed to simulate down to 

the RBERs of interest. A considerable reduction in complexity is obtained if 

the test patterns that produce identical error patterns are ignored, but even 

with this improvement, the algorithm is not very efficient.

2. The second algorithm (Chase 2) considers only the set of error patterns con

taining Nchase = lowest channel measurements (i.e. the bits with the

highest probability of error). The test patterns generated in this case are 

those where any combination of inverted positions is allowed within the set 

of lowest measurements. Thus TPs are examined.
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3. Chase 3 examines Nchase = ( [ ^ ^ J  +  1) possible patterns. Once more the 

inverted positions are assigned to the i positions of lowest confidence. If 

dmin is even, i takes the values i = (0,1,3, ... d — 1). If dmin is odd then 

i =  (0,2,4, ... d — 1). This algorithm gives best results for codes with large 

values of dmin-

Chase does not give the reason for differentiating between odd and even 

values of dmin and work done on the simulator indicates that it is unnec

essary. Specifically, the performance of a code decoded using Chase 3 with 

z =  (0,2,4, ... d — 1) never exceeds the performance of the same code using 

Chase 3 but with ? =  (0 ,1,3, 5, ... d ~ 1).

2.5.4 Performance comparison of the Chase algorithms

Each of the three Chase algorithms utilises a different sized set of TPs for decoding. 

Clearly, if the TPs are sensibly chosen, the larger the set of TPs the more decoding 

power the code will have. However a large set of TPs will require more time to 

decode since a decoding operation for each TP is required.

Clearly, for large n (even for a relatively small dmin) algorithm 1 is too complex

to employ in practice, since it will examine (,2,) possible error patterns. The second
L 2  J

Chase algorithm will examine 2 1̂-f J) possible error patterns. Finally, using the third 

Chase algorithm ([ |J  - I -  1) possible test error patterns must be examined.

The above figures indicate that the complexity of Chase 2 and 3 depends on 

the minimum distance d only and not on the code word length. Therefore they 

offer clear benefits whenever long code words are used. These results can be seen
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in table 2.2 where the total number of TPs needed for each Chase algorithm are 

shown for various values of dmin, for an n =  63 BCH code.

t Chase 1 Chase 2 Chase 3

1 63 2 2

2 1953 4 3

3 39711 8 4

4 595665 16 5

5 7028847 32 6

Table 2.2: Number of TPs for a n =  63 BCH code with various values of dmin 

decoded using the Chase algorithms.

In terms of decoding power, Chase 1 will provide results which will closely ap

proach the maximum likelihood (ML) limit. The latter is the best possible decoding 

result soft decision decoding can offer. Simulation results indicate that Chase 2 

performs reasonably well when compared to Chase 1, particularly at the low error 

rates of importance for this study. A significant reduction in the number of TPs is 

effected while an acceptable decoding performance is maintained. Chase 3 involves 

a loss in performance compared to the second algorithm due to the reduced number 

of TPs.

A disadvantage of all 3 algorithms is the fact that the complete set of TPs needs 

to be generated and used before one can be selected. This can prove to be too time 

consuming, especially for high bit rate operations.
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2.6 Summary

In this chapter, the basic definitions and concepts of error control coding (which 

included both hard and soft-decision decoding algorithms) were introduced. The 

Chase SDD algorithms were then described in detail and a critical assessment of 

their performance was made. Thus the second Chase algorithm was found to be 

the most promising choice for implementation in practical high rate systems. This 

is because it offers a balanced solution in terms of decoding power and simplicity. 

The latter is very important both because it allows improvements to be made and 

also because of the potential application on high bit rate systems.

Having introduced some key ideas relating to error correcting codes we now turn 

our attention in the following chapter to line coding. We will begin by reviewing the 

basic principles and then progress to the consideration of some novel low-complexity 

codes suitable for high bit rate applications.
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Chapter 3

Line Coding

3.1 Introduction

In the previous chapter, the basic concepts of forward error correction (FEC) were 

presented. Soft decision decoding (SDD) was then introduced which offered greater 

error correcting (EC) capabilities but at the expense of increased complexity. A 

number of existing SDD algorithms were presented and critically evaluated.

In this chapter, line coding (LC) will be introduced. Specifically, the need for 

LC will be presented together with some basic definitions and concepts. Those will 

be followed by the presentation of a new family of line codes which are very simple 

to implement, yet offer reasonably tight bounds for both the maximum runlength 

and the disparity. Since they are single added bit codes, the overall rate is not 

significantly reduced which makes them well suited to high bit rate applications.

The chapter begins with a presentation of the basics of line coding, a simple 

line code being used as an example to illustrate the main concepts. The n B lX

33
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family of line codes is then introduced followed by a detailed examination of its 

performance. We conclude by presenting two methods for determining the power 

spectrum of a line code.

3.2 Line Coding

The principal function of a line code is to match the transmission signal to the 

communication channel characteristics. Therefore, line coding is introduced to 

overcome the physical impairments of the channel used. This is usually achieved 

by limiting or eliminating the low frequency content of a signal and/or by reducing 

the maximum runlength. Both of these factors require added redundancy.

The low frequency content must be restricted since most channels cannot achieve 

sufficient signal to noise ratio in that area of the spectrum [1]. For example, mag

netic recorders do not respond well to low frequency signals, so that a signal that 

contains such components will have an increased number of errors. These can be 

corrected by using EEC. However, a simpler technique is to code the data so that 

distortion is minimised. This can be achieved by line coding [2].

In addition, for practical reasons, many channels are AC coupled. This implies 

that the DC and low-frequency content of a signal must be suppressed [3, 4]. This 

can be achieved by bounding the digital sum variation (DSV), which is the differ

ence between the largest and smallest values of the running digital sum (RDS) [5], 

defined as

R D S = E h d i
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where di is defined as the disparity (i.e. the difference in ones and zeros) of 

each one of the k code words.

Additionally, it is common for the receiver to be synchronised by extracting 

timing information from the received waveform. It is thus necessary to have an 

adequate number of transitions within a given amount of time. This is achieved by 

limiting the maximum runlength (RLmax) of a bit stream. The latter is defined as 

the maximum number of consecutive identical bits in a code word.

Recent experimental data suggest that significant gains in error performance 

can be achieved in some systems by limiting the maximum runlength of a trans

mitted word. Specifically, in a 232km optical fibre system, AdB of equivalent coding 

gain was present simply by limiting the maximum runlength from RLmax =  31 to 

RLmax =  7 [6].

Generally speaking, a line code will map a block of k symbols which have p 

levels into a block of m  symbols with r levels. In most cases the use of the line 

code will introduce some redundancy, so that The rate R of a code is

defined as

D  _  k  lo g 2 P  
m  lo Q 2 r  '

A disadvantage of most line codes is known as ‘error extension’. This is a 

phenomenon whereby errors along the channel give rise to a larger number of errors 

in the decoder. An example of error extension will be presented in the following 

sections with the introduction of the bi-modal codes.

The following evaluation factors can be used to compare various line coding 

schemes:
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1. Power Spectrum: This usually is one of the most important factors, indicating 

the extent of any DC or low frequency contents. The low frequency region of 

the power spectrum is related to the running digital sum bounds.

2. Synchronisation: In most applications, the receiver utilises signal transitions 

to synchronise itself with the transmitter so that optimal sampling is effected. 

Therefore, a code which offers a high number of transitions is preferred. Syn

chronisation is determined by the maximum runlength.

3. Signal degradation: Very frequent transitions can in some instances (e.g. 

bandwidth limited channel) cause inter-symbol interference (ISI) between ad

jacent symbols.

4. Reduction in the overall bit rate R, due to the introduction of the line code.

5. Complexity of implementation and cost.

Various existing and new line codes will be presented in this chapter with the 

areas mentioned above forming a basis for assessing their suitability for use.

3.2.1 A simple line code

One of the simplest line codes is the alternate mark inversion (AMI) code. Such a 

code is not very useful for optical transmission systems since the three transition 

levels required are not suited to on-off keying techniques. However, AMI will be 

used to demonstrate, by way of example, the basic concepts behind line coding. 

The AMI code will encode a binary zero as a ternary 0 and a binary one as a ±1
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alternately. Thus long runs of ones will be avoided while long runs of zeros can 

still exist. The encoding dictionary for this code is shown in table 3.1.

Information Word Code word

RDS=0 RDS=1

0 0 0

1 +1 -1

Table 3.1: Encoding dictionary for the AMI code.

Figure 3.1 presents the state diagram of the AMI code. A state diagram is a

convenient way of showing the possible states a code can have (represented by a

circle) and the probability of transferring from one state to another. Figure 3.1

indicates that in the AMI code there is an equal probability of transferring between

different states or remaining in the same state.

0.5

0.50.5

RDS=1RDS=0

0.5

Figure 3.1: AMI state diagram.

Finally, the power spectrum of a line code is very important. As has been 

mentioned before, one of the reasons behind the use of a line code is the suppression 

of the low frequency content and the elimination of the DC component. The power
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spectrum presents the power spectral density versus frequency for a given code. In 

our case this was achieved by using the Cariolaro and Tronca algorithm [7]. The 

power spectrum of the AMI code is illustrated in figure 3.2, where it is seen that 

indeed the lower frequencies are suppressed and the DC content is zero.

2 .5

Q

Q .
CO

Q_

0 .5

0.8 0 .90.1 0.2 0 .3 0 .4  0 .5
Normalised frequency

0.6 
frequency

0 .7

Figure 3.2: AMI power spectrum.

In the following sections a unified family of line codes, termed n B l X ,  is exam

ined. This is simple to implement and can offer very good line coding characteris

tics.

3.3 The nBlX  Class of Line Codes

A binary block line code can be considered as a member of the n B m B  family. 

Such codes have n  binary information bits which are encoded to m binary code
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word bits. A widely used subset of these codes are those where m  = (n +  1), i.e. 

a single bit has been added to every n information bit block. The added bit can 

be used to achieve either error detection or line coding properties. The n B l X  

line codes introduced here are a subclass of this family [4, 8, 10]. These are very 

simple to implement and relatively effective but, like all line codes, they reduce 

the overall code rate, which becomes equal to R =  {^) = ( ^ ^ ) ,  and under certain 

circumstances, may introduce error extension.

The major advantages of the n B l X  codes can be summarised as follows:

•  They can provide tight runlength and disparity bounds.

• The reduction in rate (especially for large values of n) is minimal.

•  They can be very simple to encode and decode.

•  They use state-independent decoding. This means that the decoder does not 

utilise the RDS information so error propagation between line code words is 

impossible.

•  Finally, most added bit line codes can be converted into error correcting line 

codes (ECLCs).

This chapter introduces a number of novel single added bit codes. These are 

combined with existing line codes, to form the n B l X  family. Each member of 

this family is presented in detail, together with any possible improvements, in the 

following sections.
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3.3.1 The nBlP,  nBlC  and n B l I  line codes

The n B lP  code is a single bit insertion code where the added bit is a parity bit. 

It offers odd number error detection by forcing the code word to have either odd 

or even parity. If an odd number of errors is present then this will be detected and 

the word can be ignored or a re-transmission requested.

The n B lP  code can not place bounds on disparity but it can place runlength 

constraints if odd parity is used when n = odd. In such a case the maximum 

runlength will be equal to 2n. If n =  even and even (odd) parity is used then there 

are no runlength bounds since the number of zeros (ones) is unbounded, while the 

number of ones (zeros) is limited to 2n. An example ABIP  encoded word, using 

odd parity, is shown in figure 3.3 (a).

The u B lC  code [11] inserts an extra bit at the end of each word, the value of 

which is the inverse (complement) of the value of the previous bit. The runlength 

is thus limited to a maximum value of (n + 1). Figure 3.3 (b) uses a ABIC  encoded 

word as an example.

It should be noted that if n =  1 on the n B lC  code, then each bit is followed 

by its inverse, i.e. a ‘Manchester’ dipulse code has been derived. This has zero DC 

content, suppressed low frequencies and is very simple to implement. In addition, 

it is suitable for use as an ECLC and is thus presented in more detail in chapter 6.

Finally, the n B l I  [12] is a bi-modal code where the added bit indicates whether 

the word is inverted or not. Inversion is effected if both the code word disparity 

{dew) and the RDS have the same sign, i.e. if dew x R D S  > 0. This ensures that 

RDS bounds are placed. The initial value of the flag bit is set to zero. If the word
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(c)

(a) 1 1 0 1

(b) 1 1 0 1

1 1 0 1 0

nBlP code (using odd parity)

1 1 0 1

nBlC code

1 1 0 1 0

1 1 0 1 0 (ifRDS^O)

disp=+l

0 0 1 0 1 (ifR D S>0)

disp=-l

nBlI code

Information Words Codewords

Figure 3.3: Examples of the P , C and I  codes, for n = A.

is subsequently inverted then the value of the flag will become equal to one and 

this will indicate to the receiver that inversion has taken place. This code offers 

the best line coding performance of all three codes presented in this section, in 

terms of disparity reduction. Figure 3.3 (c) presents a 4B1I  encoded word as an 

example.

The RDS of this code can be between the values of (—n — 1) and (n — 1) if n is 

odd and between {—n — 1) and (n) if n is even. The maximum runlength for ones 

is and for zeros if n is odd. The equivalent numbers if n is even are

both A disadvantage of the n B l I  code is the fact that error extension is

present. If, for example, an error occurs on the flag bit then the information bits
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will be incorrectly decoded.

3.3.2 Improving the nB l I  code

The state diagram of the n B l I  code was used to determine the word combination 

that generated the worst runlength of ones, if n is odd. This was found to occur 

when zero disparity words existed and since these can be inverted without affecting 

the RDS, a modified algorithm was created, termed n B l I  Improved (I). The latter 

will invert zero disparity words if the first bits of the current zero disparity 

word equal the last bit of the previous one. This technique slightly reduces the 

maximum runlengths of ones down to if ig odd. The maximum runlength

of zeros and the DSV were not affected. By placing an extra constraint a reduction 

in the maximum runlength without reducing the rate has been achieved.

3.3.3 The nBlD  and nBlR  line codes

The n B lD  code consists of an n bit (where n is odd) information word coupled to 

a single bit flag. The value of the flag depends on the disparity of the information 

word and aims to reduce it. As an example consider that the all-zero information 

word is to be transmitted in continuous blocks of three bits each. If the u B lD  

code is to be used, a flag bit with a value of 1 will be added in every block. Thus 

a four bit block will be generated which will have a reduced disparity compared to 

the uncoded version. The flag bit primarily aims to reduce the average DSV value 

but since it consists of a single bit, it will never manage to place bounds on the 

RDS. Figure 3.4 (a) presents an example of a hB lD  code.
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It should be also noted that while this code primarily aims to reduce the average 

DSV this will also have the effect of reducing the maximum possible runlength, see 

Table 3.4.

(a)

(b)

1 1 1 0 1

1 I 0

Information Words

nBlD code

nBlR code

1 1 1 0 1 0

Codewords

1 1 0 1 0 (ifRDS>=0)

1 1 0 1 1 (ifRDS<0)

Figure 3.4; Examples of the D and R  codes.

The n B lR  code aims to reduce the overall RDS value by using a flag bit of 

the opposite sign, i.e. if R D S  > 0 then the flag bit is equal to zero, otherwise it 

equals one. The advantage of this coding scheme is that the average DSV is more 

tightly bound than before. However, no bounds are placed on either the runlength 

or DSV. Figure 3.4 (b) presents an example of a ABIR  code.

3.3.4 The nBlDR  line code

The n B lD R  is the final code of this class [13]. Similarly to the n B l I  algorithm 

presented previously, it also is a bi-modal code but uses the flag bit to either reduce
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the disparity of the code word or to indicate that an inversion of the information 

bits has taken place. The encoder flow diagram for this code is shown in figure 3.5.

Initially the disparity of the information block is calculated and the extra bit is 

appended at the end. The value of the latter aims to reduce the overall disparity 

of the code word, in a similar manner to the n B lD  code. If n is even it is possible 

that the code word disparity will be zero. In such a case the fiag will be set to zero 

as well.

The disparity of the whole word (including the fiag bit) termed dew iîi figure 

3.5 is then calculated. If {dew x RD S) > 0 (i.e. the code word disparity has the 

same sign as the RDS) then the information bits are inverted before transmission, 

otherwise the word is simply transmitted. The value of the RDS is then updated 

and the process is repeated.

This concludes the algorithm if n is odd. However if n is even, then an extra 

step must be added which compensates for possible zero disparity words. The 

information bit disparity once inversion has taken place is re-evaluated and if it is 

found to be equal to zero then the fiag is inverted as well.

At the receiver the disparity of the information word is re-calculated. If there 

is a ‘rule violation’ between the disparity of the information bits and the fiag, the 

information bits are inverted before being accepted. A ‘rule violation’ occurs when 

either both the disparity of the information bits and the flag bit have the same 

sign, or when the information bit disparity is 0 and the fiag is 1, which only occurs 

if n is even.

As an example, consider that an all-zero information word is to be transmitted
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Yes No
Disparity >=0?

No
RDS d ^ > 0

Yes

Yes

No

Info bit 
Disparity=0?

Invert information bits

Re-calculate codeword 
disparity

Find codeword disparity 

^cw

Generate information bits 

Determine their disparity

Invert flag

Flag=0

Add d cw to RDS

Transmit word

Flag=l

Figure 3.5: Flow diagram of the n B lD R  code.
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in continuous blocks of three bits each. In such a case, the flag for the initial 

block will be determined according to the disparity of the information bits, and in 

this case will be equal to 1. The overall disparity of the resultant code word will 

be —2 and since the initial value of the RDS is zero, the word is transmitted. At 

the receiver, if no errors have occurred, the disparity of the first three bits is equal 

to —3. The flag has a bit disparity of +1 and for this reason the word is accepted.

The second block of three bits is initially encoded exactly as before, i.e. the 

code word 0001 is generated. However, because both the disparity and the R D S  

are equal to —2 the information bits are inverted. The (1111) code word is therefore 

transmitted, which produces an RDS value of (—2 +  4) =  + 2. At the receiver, the 

disparity of the initial three bits is +3 and the flag bit disparity +1. Thus a ‘rule 

violation’ exists and the information bits are inverted. The whole process is then 

repeated for the third block of data which will be encoded in exactly the same way 

as the first one. The RDS will thus become equal to zero once more.

The code word table for the 3B1D R  code is presented in table 3.2. Each code 

word has two alternative representations depending on the state of the RDS at the 

time of transmission. The figures in brackets indicate the disparity of each word.

3.3.5 Improving the nBlDR  code

If n  is even, the n B lD R  code can be further improved in terms of runlength 

performance. This is achieved if the word is not inverted when the RDS has the 

next closest to zero allowable value and provided that the disparity bounds are not 

exceeded. In such a case the disparity will remain within the bounds while the
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Information Word Code word

Initial Inverted

000 000 1 (-2) 111 1 (+4)

001 001 1 (0) 110 1 (+ 2)

010 010 1 (0) 101 1 (+ 2)

Oil Oil 0 (0) 100 0 (-2)

100 100 1 (0) Oil 1 (+2)

101 101 0 (0) 010 0 (-2)

110 110 0 (0) 001 0 (-2)

111 111 0 (+ 2) 000 0 (-4)

Table 3.2: State table for the 3B1DR  code. The resultant disparity of each code 

word is shown in the brackets.

maximum runlength will be reduced. This code is termed n B lD R {I) .

The explanation for the above procedure becomes clear if the worst case for 

the runlength is examined using the 4B1D R  code as an example. The case for a 

maximum runlength of ones is investigated but this also applies if zeros were to be 

used.

The code words shown in the upper part of figure 3.6 represent a set of original 

words, i.e. words where no inversion has been effected. Words shown in the lower 

part of figure 3.6 represent inverted ones. The worst case for the runlength occurs 

if an all-one word (Word 3, lower) is preceded by a word with n  ones (Word 2, 

lower) and followed by a word with |  ones (Word 4, upper). This situation can
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exist if a code word of disparity equal to +3 has initially occurred (Word 1, upper), 

together with an RDS of +1. The code word was therefore inverted causing the 

RDS to become equal to —4 (Word 1, lower). This allowed two further code word 

inversions to take place which resulted in the worst case situation.

If the n B lD R (I )  code had been used instead, the inversion at ‘Word 1’ would 

not have taken place. The RDS would have been equal to —5 which is within the 

bounds and therefore the maximum runlength would not have occurred. Using the 

n B lD R ( I )  algorithm the maximum runlength is thus reduced down to if n is

even.

RDS=+1 RDS=-4 RDS=-1 RDS=+4

1 1 1 1 0

(inversion) disp=+3

0 0 0 0 0

* 1 0 0 0 1

(inversion) disp=-l

0 1 1 1 1

* 0 0 0 0 1

(inversion) disp=-3

1 1 1 1 1

1 1 0 0 0

disp=-l

disp=-5 disp=+3 disp=+5

Word 1 Word 2 Word 3 Word 4

Figure 3.6: Worst case runlength for the 4B1D R  code.

A similar analytical technique can be used to reduce the runlength, if n is odd. 

Once more, the worst case is analysed and a slightly more complicated algorithm 

is developed.

Specifically, the worst case occurs if a zero disparity word follows an all-zero or 

all-one word. If, therefore, the last and first bits of these two words are identical 

and provided that the R D S  limits are not exceeded, the zero disparity word can 

be inverted so that the maximum runlength is reduced.
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The maximum runlength is therefore reduced to RLmax = y  values of n,

at the expense of encoder simplicity. The R D S  bounds and the decoder complexity 

are not affected.

3.4 Summary of Code Performance

Table 3.3 presents the RDS bounds for the n B l X  class of codes while table 3.4 indi

cates the maximum possible runlengths for the same codes. These were determined 

using the state diagrams of each code and verified using computer simulation.

From both the above tables, it was concluded that the n B l I  and n B lD R  are 

the most powerful codes. Between the two, the latter offers the best performance 

in terms of disparity and runlength. At the same time the encoding and decoding 

algorithm is kept at a reasonably low complexity level.

3.4.1 Decoding performance of the single added bit codes

The decoding performance of the non-bi-modal added bit line codes is exactly the 

same as that of the information bits. If, for example, a ‘parent’ error correcting code 

was used to encode the information bits, thus generating a simple error correcting 

line code (ECLC), then the decoding performance of the latter would equal that 

of the ECC. This is because the flag bit is only used to offer line coding properties 

and is discarded before decoding at the receiver.

The decoding performance of the bi-modal added bit codes is affected by error 

extension. The latter occurs when the number of errors at the decoders’ output 

exceeds the number of errors that have occurred in the channel. Using the u B l I
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Running Digital Sum (RDS)

Code Used n = odd n = even

n B lP Unbounded

n B lC Unbounded

n B l I ( - n  -  1) < R D S  < (n -  1) (—n — l) ^  R D S  ^  n

n B l I  (I) { - n  -  1) < R D S  < (n -  1) {—n — 1) < R D S  < n

n B lD Unbounded -

n B lR Unbounded

n B lD R (—n T 1) ^  R D S  ^  (n — 1) (—n) < R D S  < n

n B lD R I (—n +  1) ^  R D S  ^  (n — 1) (—n) < R D S  < n

Table 3.3: RDS bounds for the n B l X  class of codes.
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Maximum Runlength [RL^ax)

Code Used n = odd (1/ 0) n = even (1/ 0)

n B lP see text

n B lC (n +  l)

n B l I 5 n + 3
2

5 n + l
2

5 ti+ 2
2

n B l I  (I) 5 n + l
2

5 ti+ 2
2

n B lD 3 n + l
2 -

n B lR Unbounded

n B lD R b n -\-2
2

n B \D R I b n
2

Table 3.4: Maximum runlength characteristics of the n B l X  class of codes.
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code as an example, if an error occurs at the flag bit then the whole word will be 

wrongly decoded, since that particular bit indicates whether inversion has taken 

place or not. Similar results exist for the n B lD R  code [14]. The decoding perfor

mance of both codes can be improved by using ECCs (combined with soft decision 

decoding, if required) to encode the information bits. This way, the effects of error 

extension are minimised, at the expense of simplicity and rate. Such ECLCs are 

presented in more detail in chapter 6.

3.5 Spectral Properties of Selected nBlX  codes

The spectral properties of selected n B l X  codes are indicated by the power spectra 

presented in figures 3.7 and 3.8. These were obtained by using the Cariolaro and 

Tronca algorithm [7].

Figure 3.7 presents the power spectrum of a n B lD  code with n =  3. Such a 

code will suppress the low frequency content, but since no bounds on disparity are 

placed, the DC content will not be equal to zero.

Figure 3.8 indicates that both the n B l I  and n B lD R  codes have a DC null and 

suppress the low frequency content, thus allowing AC coupling to take place. Since 

the n B lD R  code has a slightly tighter DSV bound, it offers a small improvement 

in the suppression of low frequencies, compared to the n B l I  code.
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Normalised frequency
0.5 0.7 0.8 0.90.1 0.2

Figure 3.7: Power spectrum for the n B lD  code with n = S.

3.6 Direct Calculation of the Power Spectrum

For the n B lC , n B lD  and Manchester codes, the spectral characteristics may be 

obtained directly using the formula:

S y y i f )  =  Ryy{0)  + 2 ^  Ryy(k)cos {2' Kfk)  
k—1

where S y y { f )  is the power spectrum and R y y ( k )  is the auto-correlation function 

of the given code. This formula is derived by obtaining the Fourier transform (^ )  

of the auto-correlation function, i.e.
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3 bit DR code

3 bit I code
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Figure 3.8: Power spectrum for the n B lD R  and n B l I  codes.

S y y U )  =  ■ (̂■RyyW) =  ^{I i vy { 0)S{T)  +  ±  k ) Ryy ( k ) )
k=\

(3.1)

where k is the number of information bits (excluding the parity b it). We there

fore need only to determine the values of Ryy{ j )  for both j  =  0 and j  ^  0 to obtain 

the power spectrum. Where this is possible, such an analysis has the advantage 

of being more general in nature because it can analytically accommodate varying 

code lengths and provide for relatively simple direct calculation for specific codes.

Two examples using this technique are presented: the first demonstrates the 

basic analytic technique with reference to the familiar single information bit Manch

ester code. The second example applies the same principles in a new context, to
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obtain the power spectrum of the n B lD  code. The technique develops from the 

approach outlined by O’Reilly [15] for the n B lC  code. We assume that the infor

mation bit positions are from 1 to n, the parity bit is the n +  l bit, and a logic 1 

and 0 are presented as ±1 respectively.

3.6.1 Analysing the M anchester code

To indicate the nature of the analytic approach let us first examine a familiar case 

and obtain the power spectrum for the Manchester code. This can be viewed as 

a very short u B lC  or n B lP  code with n = I. We must first determine the auto

correlation function R y y { k )  at j  = 0 and j  ^  0, where 0 < j  < n. For j  =  0 we 

obtain:

1 n + l

^v(O ) =  7— "n = - ! ] ) ( - +
“ I" i f c = i

1 n + l

R y y { j )  is equal to:

1 1
RyyU) = E  -  i)  =  1] ) -

~{P[X{k) — —l\X {k  — j)  — 1]) -  ~{P[X{k) — l\X {k  — j)  — -1 ])+

~{P[X{k) — - l \ X { k  -  j )  — —1])
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For a Manchester code all information bits will have equal probabilities of oc

currence which will be equal to However, any bit k within a code word will 

be followed by its inverse. Therefore the above equation can now be expressed as 

follows:

^yyU) -  2^2 ~  2 ^  ~  ^  ~  “ 2

Substituting the above values for Ryy{j)  into equation 3.1 we obtain:

Ry y ( r )  =  S{t ) -  i < 5 ( r  ±  1 )

Applying the Fourier transform to R y y { r )  the power spectrum S y y { f )  is ob

tained, which for this example is:

S y y i f )  =  1  - C O s ( 2 7 T / )

The power spectrum of a Manchester code is the same shape as that of the AMI 

code shown in figure 3.2; a more detailed analysis can be found in appendix A.

3.6.2 Analysing the nBlD  code

A similar analysis to the one described above is performed for the n B lD  code, 

where n is odd. R y y { r )  is thus determined as being equal to:

n — 1

W  =  S{t ) -  "  ^  '  E ±  *)
 ̂ ^ k=0
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If the Fourier transform is once more applied on R y y { r )  the power spectrum 

Syyi f )  is obtained:

( \ 
n — 1

The power spectrum of an n B lD  code for various values of n  is presented in 

figure 3.9. Clearly, for n =  3 the waveform matches that of figure 3.7 (the latter 

obtained using the Cariolaro and Tronca algorithm). A detailed analysis for the 

n B lD  code can be found in appendix A.

n=

\=3

(D■au
Q.
E<

0.8

0.6

0.4

0.2

0.6 0.7 0.8 0.90.2 0.3 0.4 0.5
Frequency

Figure 3.9: Power Spectrum of the n B lD  code with various values of n.
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3.6.3 Analysing the nBlC  code

Finally, similar analysis obtained from [15] yields a power spectrum described by 

the following formula:

1
n +  l

This is presented in figure 3.10. If n =  1 then a Manchester code has been 

created, where each bit is followed by its inverse. This means that both the disparity 

and the runlength are bounded thus suppressing the low frequencies. As the values 

of n are progressively increased no disparity bounds exist, which is indicated by 

the DC content present.

3.7 Summary

In this chapter, the basic definitions and concepts of line coding were introduced. 

These were followed by an examination of a family of added bit codes, the n B l X  

codes.

The n B l X  codes are all quite simple to implement and reduce the code rate 

by only a very small amount. However, they can place relatively tight bounds on 

both disparity and runlength. With small modifications they can be also used as 

error correcting line codes (see chapter 6).

Finally, the power spectrum for a number of line codes was also presented. 

This was obtained either by utilising the Cariolaro and Tronca algorithm or by 

performing a direct mathematical analysis, the latter being more general in nature.
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Figure 3.10: Power Spectrum of the n B lC  code with various values of n.
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Chapter 4

Sim ulation

4.1 Introduction

Almost all the theoretical work presented in this thesis was validated through 

computer simulation. In this chapter, the basic concepts behind modelling and 

simulating a communications system will be presented.

A model is a description of a system intended to predict its behaviour should 

certain events take place. Almost always a model will be more clearly defined 

than the actual system it describes because it will be simplified and idealised. 

However, all relevant behaviour and properties should represent reality as closely 

as possible and should be determinable in a practicable way, e.g. by numerical 

analysis. Simulation means driving the model with suitable inputs and observing 

the outputs [1].

A computer simulator is a very valuable tool in system investigations which 

complements advantageously conventional experiments for the following reasons:
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1. It is very easy to modify since only software changes are required.

2. It can be very accurate.

3. Results are repeatable.

4. ‘Rare’ events which would normally require long time intervals to occur can 

be programmed to happen at user-defined intervals.

Two different types of simulation exist:

•  Synchronous simulation, whereby the events of interest occur at regular in

tervals.

•  Asynchronous simulation, whereby the events of interest may occur at any 

time.

In this thesis, three distinct code performance evaluation programs were devel

oped and used to validate existing and proposed codes. The first is a simulation 

program used for evaluating the decoding performance of error correcting codes 

and error correcting line codes. Decoding performance is measured in terms of 

residual bit error rate (RBER) versus signal to noise ratio (SNR) and either hard 

decision decoding (HDD) or soft-decision decoding (SDD) can be used.

The model of a communications system utilising error correcting codes (ECCs) 

is initially presented and implemented using asynchronous simulation. This re

quires significant amounts of computational time if low RBERs are to be achieved. 

This problem is addressed by the introduction of two novel synchronous simula

tion acceleration techniques which reduce the time required without affecting the 

accuracy of the simulation.
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A second simulation tool evaluates the line coding performance of various codes. 

This is a small and hence very fast simulation which will indicate runlength and 

disparity average and maximum values. Finally, the third program implements the 

Cariolaro and Tronca algorithm [2] to obtain the power spectrum versus frequency 

for a coded sequence. In the following sections the main concepts behind each 

program will be presented.

4.2 A Communications System M odel

The modelling of a communications system used to determine its decoding per

formance is usually achieved by attempting to mimic the encoding and decoding 

operations which would be implemented in practice. Using an (n, k) BCH binary 

block code combined with HDD as an example, the main steps may be summarised 

as follows;

1. Generate a random k-hit block (Tl) of binary data. This is termed the infor

mation or message word.

2. Encode the data block to generate an n-bit code word (ü). This will contain 

both the k information and {n — k) parity bits. In addition, a second copy of 

the encoded word is made and stored for performance measurement purposes.

3. Generate the channel noise and add this to the transmitted code word. This 

will generate the received code word (f).

4. Decode the received code word so that any errors can be located and cor

rected.
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5. Compare the resultant decoded message with the copy of the original message.

6. Measure the decoded bit errors and calculate the RBER.

7. Repeat the whole procedure using further blocks of information bits until 

the estimated RBER stabilises within limits corresponding to the required 

accuracy of the simulation.

Figure 4.1 graphically represents all of the above operations.

|~l n
Digital Data

ECC Encoder Modulator
û=(u ,u ...u

(k-1)

Noise and Interference

Performance
Calculator

TX

system

ECC DecoderData Destination Demtxlulator

Analogue
Information

Figure 4.1: Communication system simulator outline.

The aim of this simulation is to determine the decoding power of a particular 

ECC, measured by the number of errors causing decoder failure. Clearly, the longer 

the simulation time, the more accurate the final result, due to the larger amount of 

residual errors. In this study, a number of about 1000 residual errors was deemed 

to provide sufficient accuracy. This figure can be justified by assuming that error
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events occur totally at random so that they can be approximately modelled as 

a Poisson process. The relative level of ‘uncertainty’ (defined as how close the 

simulation result is relative to the theoretical value) can be analytically expressed 

by the following equation:

relative uncertainty ~ Standard Deviation  
mean

However, for a Poisson distribution, both the variance and the mean have equal 

values, i.e. = y t ^  a = y/Ji. Substituting these values in the above equation we 

obtain:

relative uncertainty ~ Standard D eviation    a

relative uncertainty = ^

In our case fi is the number of residual bit errors; if this is set to he = 100 

then a 10% uncertainty level is achieved (i.e. the result will be within 10% of the 

theoretical value); If // =  1000 then the result will be within 3% of the theoretical 

value which is taken here as an acceptable level of accuracy.

The components needed to realise the model outlined in figure 4.1 are presented 

in more detail in the following section.

4.2.1 M odel com ponents

There are three basic components of a communications system simulator and these 

are as follows:

1. A data source together with a channel encoder.
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2. The transmission channel which could include memory, attenuation, noise 

and interference effects, non-linear effects, etc.

3. A channel decoder capable of performing hard or soft decision decoding and 

a data sink.

Each component is now examined in more detail.

4.2.2 D ata source and encoder

The first task of a communications channel model is to generate a data source. This 

is usually a random k bit sequence that should offer all possible bit permutations. 

The random number generator used at this stage is not very critical as far as the 

validity of the simulation is concerned. For this reason an A N S I  — C  standard 

library function was used to generate pseudo-random binary information bits. This 

is a linear congruential generator and as such is quite fast; it can exhibit sequential 

correlations on successive calls but at a level which is unimportant in this context. 

Since this generator only creates the information bits true ‘randomness’ is not 

necessary. An added feature of pseudo-random data is the ability of the user to 

define the transmitted bits so that repeatability is possible. This way the effects 

of a particular parameter can be isolated and examined using the same set of 

information bits.

The next step is to encode the information bits using an ECC. As mentioned 

before, a (n, k) BCH code will be used and therefore its parameters must be defined. 

These include the following:

1. The desired code length (n).
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2. The information vector length (k).

3. The error correcting capability of the code (t).

4. The power of the corresponding Galois Field .

5. The generator polynomial coefficients of the code.

Once all relevant data are entered, the parity bits are calculated (using the gen

erator polynomial) and appended at the end of the information bits. The complete 

code word vector v, is then used to produce two copies: The first one is used for 

‘transmission’ while the second copy is stored so that it can be used for performance 

measurements.

Finally, the code word is passed through a modulator; this will further encode 

the bits by assigning a ‘voltage’ value to each ‘logic’ value. Thus, for example, a 

‘logic’ 1 becomes a ‘voltage’ -t-1 and a 0 becomes a —1. The simulated voltage 

values are then passed through to the transmission channel model.

4.2.3 Channel simulation

The second task is to simulate the communications channel, or more specifically 

for this study, the noise content of the channel. The mechanics of the transmission 

medium are not of interest in this particular case so interference, attenuation, non

linear and other similar effects are not considered. In contrast, the performance of 

the system for a given signal-to-noise ratio expressed in decibels (dB) is of interest. 

Thus only the noise parameters for a given SNR need to be calculated.

These are described by using the additive white Gaussian noise (AWGN) model.
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The term ‘additive’ indicates that the noise is signal independent and its amplitude 

is added to that of the variable representing the signal. The term ‘Gaussian’ 

indicates that the signal has a bell-shaped probability density function (PDF) which 

can be mathematically expressed as:

P D F  = - 7 ^ 6
y / { 2 n ) a

where x  identifies possible values of the random variable, m is the mean of the 

function and a  is the standard deviation.

Finally the term ‘white’ means that the noise is uncorrelated and therefore the 

noise amplitudes are statistically independent with a zero mean, i.e. a memoryless 

channel is used.

The AWGN noise model is a reasonably accurate description of a realistic com

munications channel and makes calculations tractable. A good noise simulator must 

represent the AWGN model as accurately as possible. For this reason, the noise 

model requires high accuracy for the relevant parameters, e.g. PDF, ‘randomness’ 

etc.

This is achieved by implementing the generator in two distinct stages: First 

a uniformly distributed random number is generated, ranging in value from 0 to

1. This is then used by a second function to generate a suitable number (with a 

Gaussian PDF) representing the noise amplitude.

The inbuilt random number generator varies between different ANSI-C com

pilers. Its use would make the simulation program non-portable between various 

compilers, and for this reason the ‘minimal standard ’ random number generator
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of Park and Miller with Bays-Durham shuffle (as described in Knuth [3]) is used. 

This creates a number ranging in value from 0 to 1 with the shuffling procedure 

required to break up any sequential correlations.

This number is then used as a ‘seed’ to produce a normally distributed devi

ate with zero mean and unit variance (n^). This is a Gaussian deviation function 

which produces the characteristic bell-like shape centered around zero. The al

gorithm used to achieve this is based on the Box-Muller method for generating 

random deviates. The variance is user controlled so that different SNRs can be 

accommodated. Since the deflnition of a SNR (expressed in dBs) is

C / V P  — i n  Inn ( overage signal power \ 
y  \ average noise power 1

the above equation can be solved for a thus defining a suitable PDF.

In our case the average noise power is equal to and assuming that the average 

signal power is equal to 1, solving for a  we get:

S N R  =  10 log ( i )  ^  i  =  \ / l O T a =

A low SNR corresponds to a large variance of the Gaussian distribution which 

results in high probability of error for a given signal amplitude. The opposite is 

true for a high SNR.

The above procedure thus produces a Gaussian distribution which represents 

the noise amplitude. This is then added to the modulated bit value so that the 

complete received bit r* is created (the original bit with noise added to it, =  

Vi +  rii).
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The addition of noise to the transmitted bit implies that errors may be present 

at the receiver. On figure 4.2, the probability of errors occurring is indicated by 

the areas where the two functions overlap. This is because in that case the noise 

amplitude rii is greater and of opposing sign to the encoded bit amplitude This 

will force the analogue value of the signal plus the noise to cross the decision 

threshold which will cause the decoder to erroneously decode the received bit.

Figure 4.2: Noise function shape.

4.2.4 Hard decision decoder

Upto this point an information bit sequence has been generated, EC encoded and 

transmitted. This section presents the demodulation and error correcting algo

rithms required so that the original message is recovered.

The first component of a receiver is the Q level quantiser, where Q=2 for a 

binary HDD system. This will make a simple initial decision on the value of the 

received bits based on their analogue value with respect to the threshold. Since 

the modulator in our example has assigned analogue values of ±1 for a logic one
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and zero respectively, the output of the quantiser (r%) is decided according to the 

following rule:

rQi
+1  i f r i > 0  

— 1 otherwise

The next component of a receiver is the demodulator which makes the transla

tion from voltage values to logic values. In our case it simply decides whether the 

accepted signal rn* is a logic 1 or 0 using the following simple rule:

T Qii — *
1 i f  TQi = +1 

0 i f  TQi = - I

After demodulation has taken place, the received word passes through the error 

decoder. The first task is for the syndrome S  of the received code word to be 

calculated. If this is zero then it is assumed that no errors have occurred or if they 

have, they cannot be detected. In either case, the code word is accepted and the 

parity bits are discarded, thus producing the message. If the syndrome is not zero 

then it is assumed that errors have occurred.

Three choices are then available depending on the theoretical error correcting 

capability (t) of the code, all of which were included in the computer model:

1. If t is specified as being equal to one, only a single error can be corrected.

The error position is equal to the power of the received syndrome element
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and the corresponding bit in the received code word is inverted. This is the 

simplest algorithm for correcting single errors,

2. If t is specified as being equal to two then up to two errors can be corrected. 

First it must be decided whether a single error is present or not. If the 

syndrome elements Si and S 3 are equal, then a single error is present and 

its position is equal to the power of Si. If Si 7̂  S 3  then multiple errors 

have occurred and they are located at the positions given by the roots of the 

equation +  SiX +  +  ^i. If no solution exists then more than two

errors are present and the received code word can not be corrected. It must 

therefore be accepted as received. As before, this is the simplest algorithm 

for correcting double errors.

3. Finally if t > 3, then up to three errors can be corrected and in our case this 

is achieved using Berlekamp’s iterative algorithm [4], as presented in Lin and 

Costello [5]. This algorithm is the most general in nature and can also be 

used for t < 3 BCH codes, at the expense of simplicity. It consists of three 

main steps:

(a) Use the received data polynomial to compute the syndrome S.

(b) Determine the error location polynomial cr(A’) from the syndrome ele

ments.

(c) Calculate the roots of cr(X) which are the error location numbers and 

use them to correct the corresponding bit positions.

Once error correction is finished, the parity bits are discarded and the informa-
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tion bits are used to determine the RBER.

4.3 Simulation Verification and Validation

In the previous section, the basic communications system model with ECC was 

introduced. The accuracy of the decoding performance results must now be de

termined. In general, this is done using two checks, namely verification  and 

validation [1].

Verification is the process whereby the correct implementation of the model is 

checked, which means that our model is examined to determine whether it does 

what is intended. The latter is achieved by carefully examining each stage of the 

code for correct operation. After debugging has taken place, a number of tests are 

performed such as stress testing (where inputs that will cause the model to fail are 

applied) and sensitivity testing (where only one parameter at a time changes).

The second test is validation. This is the process whereby every aspect of our 

simulation against a real system is compared, or in our case against specific nu

merical results. It has already been mentioned that due to the various assumptions 

made while designing our model, there will not be an exact matching of the two. 

However it must be ensured that any differences will not have practical significance. 

Validation is the most important test one can perform and for this reason a whole 

range of BCH codes were tested against known results. These include (but are not 

limited to) the following:

•  (7,4) and (15,11) (15,7) (15,5) BCH codes. These are very useful codes since 

they offer different error correcting capabilities and any result can be manu-
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ally checked against the simulation.

n  =  (127,255,511,1023) single, double and triple error correcting codes. 

These codes were simulated because they could be potentially used in a real

istic system.

All of the above codes were tested in conjunction with all possible configura

tions, namely HDD and soft decision decoding (SDD) (the la tter using the algo

rithm s introduced in the next chapter).

Figure 4.3 provides an example of validation by comparing the simulated decod

ing performance of a (127,106) triple error correcting BCH code with the theoretical 

values. Signal to noise ratios between 1 and 6 dB, combined with hard decision 

decoding were used, until 1000 residual bit errors were obtained. The continuous 

line indicates the theoretical results and the dashed line the simulated results. It 

can be seen th a t a very close match exists between the two. These results were 

repeated for other code lengths.

S  1 0 '

10"*

3.5 
SNR (dB)

4.5 5.52.5

Figure 4.3; Validation of (127,106) BCH code.
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Higher SNRs were (at this stage) not simulated due to time limitations.

A final validation test was performed by comparing the decoding results ob

tained by the use of the three different HDDs. Specifically, the t = 3 algorithm was 

used to detect and correct single and double errors against the results produced 

by the t = 1 and t = 2 algorithms. These were found to be exactly the same, as 

expected.

4.4 The Need for Accelerated Simulation Tech

niques

It has been mentioned before that a number of residual errors must be present at the 

decoder’s output to ensure that a statistically accurate result has been obtained. 

As the SNR progressively improves, the number of channel errors (and therefore the 

number of residual errors) progressively decreases. Thus, longer simulation runs 

are necessary before the required number of residual errors is present, a process 

that can be very time consuming.

Table 4.1 gives some indicative simulation times required for obtaining decoding 

performance results of a (127,106) BCH code while using a SUN ULTRA-SPARC 

platform. These are based on obtaining 1000 residual errors. The first column 

indicates the SNR (expressed in dBs), the second the number of words required 

to achieve the presented RBER, the third one the achieved RBER and the final 

column indicates the time taken. The times presented here are not very precise; 

they are only given as an indication of the exponential increase of computing time
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required with each 1 dB increment in SNR. The main reason for the inaccuracy of 

the times is the fact that the processor in a workstation usually divides its time 

so that other essential tasks can be performed as well. Therefore, at any given 

time, only a percentage of processor time is used for the actual simulation. This 

percentage can vary in time according to the demands from other users or the 

network, thus affecting the timing operation.

(127,106) BCH HDD code

SNR Number of Simulated Words RBER Simulator Time Required

1 154 7.8 X 10-2 55 sec

2 249 5.6 X 10-2 59 sec

3 593 3.2 X 10-2 1:31 min

4 2931 4.4 X 10-3 3:43 min

5 32760 4.0 X 10-4 25:50 min

6 929085 2.1 X 10-5 7:14 hours

Table 4.1: Number of words and simulator time required for obtaining 1000 residual 

errors for varying SNRs.

The next section presents two simulation acceleration techniques which reduce 

the total number of code words that must be simulated, without affecting the 

accuracy of the produced results.
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4.5 Simulation Acceleration Techniques

As explained in the previous section, the simulation efficiency decreases progres

sively with increasing SNR since more and more time is spent on encoding and 

decoding error-free blocks which offer no contribution to simulation accuracy.

Whilst state of the art workstations allow for effective simulations of low SNR 

channels, it is impracticable to obtain an accurate estimate of RBERs below 10“® 

without excessive computational time.

Modern fiber-optic communications systems operate at very low residual bit 

error rates which would make simulation a very time consuming process. For 

this reason, the simulation program described above was used as a basis for the 

development of a new simulation acceleration technique [6, 7]. The latter is also 

used as a basis for developing a second acceleration technique [8], which further 

reduces the computational time required. Both techniques are described in the 

following sections.

4.6 First Acceleration Technique

As has been noted earlier, a conventional simulation will perform three distinct 

operations, i.e. encode, transmit and decode. Once all three are completed, the 

decoding performance of the code for various SNRs will be assessed.

In order to measure decoding performance a given number of residual bit errors 

(usually 1000 errors are sufficient) are required to be present at the output of the 

decoder. However, code words with a number of errors less than, or equal to t,
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do not contribute anything to the simulation since it is certain that they will be 

completely corrected. Nevertheless they will still have to go through the whole 

simulation process which can be time consuming. In order to enhance efficiency 

and reduce the total computational time required, a new technique was proposed. 

This uses knowledge of channel noise statistics to generate the occurrence times of 

bit errors without generating noise samples.

To demonstrate this point, a block code will be used where the occurrence times 

of possible bit errors are known. These are defined as the bit positions where the 

corresponding noise amplitude exceeds the modulation amplitude, which in our 

case is ±1. If the corresponding bit has the same sign as the noise amplitude then 

no error will occur, otherwise an error will be present. Since the number of bits 

per word is known, it follows that the number of possible bit errors in each block 

is also known. Thus for a given error correcting capability t the number of words 

with less than t errors is known. These will therefore be calculated as having been 

successfully transmitted free of error. The remaining blocks which may add to the 

RBER will have to go through the whole encoding and decoding process.

However, if such a scheme is used, even though the encoding and decoding 

processes will remain the same as before, the way in which the noise is generated 

will have to be different compared to a conventional simulation. The reason for 

a different noise generation requirement is that the positions of possible bit errors 

have already been defined. Specifically, noise samples which cause bit errors and 

those which do not, are distinguished and generated separately according to their 

respective conditional probability distribution functions. To further illustrate this



Chapter 4 - Simulation 81

point, the effect of an additive white Gaussian noise channel on a transmitted signal 

is considered;

The first task is to determine the occurrence times of possible bit errors by 

generating samples of a random variable Te f - This is defined as the number of 

error-free bits between two adjacent bit errors and has a probability function

Pi = Prob {Tef  = i} = p (l — pY i = 0, 1, 2, ...

where

p (^ )  =  dx

is the transition probability of the channel with cr̂  being the variance of the 

channel noise.

The next task is to generate the amplitude of the noise samples in code words 

with more than t possible errors in them. To generate a noise sample which causes 

a bit error, a random variable Xe is considered for which the conditional PDF when 

either a -fi or -1 was transmitted was shown to be:

f{Xe\ +  1) =  <
^ e x p  X e < - 1

0 Xp  —1

and

f{Xe\ -  1) =  <
^ e x p  X e > + 1

0 Xp <C T l
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In contrast, to generate a noise sample which does not cause a bit error another 

random variable Xne is considered with conditional PDF given by:

/  (^ne| "b 1) — <
(i-rtVsF.

0 ^ne — I

and

- ! )  =  <{ ^ n e < + l

0 X ne  > +1

Thus, the distributions for both the time interval between adjacent error events 

and the amplitude distribution of the noise for these events have been calculated. 

Sufficient information is now available to simulate code performance without having 

to simulate each individual bit. The new simulation technique for block codes with 

AWGN channels may be summarised as follows:

1. Generate samples of the random variable Tef which indicates the interval 

between adjacent error events.

2. Determine the code word blocks which have a number of errors exceeding the 

error correcting capability. Perform steps 3 to 5 only on these words.

3. Generate a random message for each word and conventionally encode.

4. Generate samples of Xe and Xm- These represent the noise amplitudes for all 

the bits of interest. Add them to the corresponding code word bits.

5. Conventionally decode and measure the residual bit error rate.
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As before, the whole process is repeated until the estimated residual error rate 

stabilises within specified limits.

The new simulation technique was incorporated in the previous simulator and 

the results were validated. Both the conventional and the accelerated simulations 

provided statistically identical results. The new technique was then tested to see 

if the expected improvements in time efficiency were obtained. These results are 

shown in Table 4.2, together with the conventional simulation times from Table 

4.1, illustrating that a very significant improvement exists.

(127,106) BCH HDD code

SNR

(dB)

Accelerated 

Simulator Time Required

Conventional 

Simulator Time Required

1 23 sec 55 sec

2 26 sec 59 sec

3 28 sec 1:31 min

4 32 sec 3:43 min

5 1:13 min 25:50 min

6 10:02 min 7:14:07 hours

Table 4.2: Simulator time required for obtaining 1000 residual errors at varying 

SNRs using the first acceleration algorithm, compared with conventional simulation 

results.
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4.7 Second Acceleration Technique

The first acceleration technique reduced the computational time required by a 

significant amount. However, there are a number of cases where an even larger 

decrease of simulation time is required, e.g. optical systems with very low RBERs. 

For this reason a further acceleration technique was devised [6].

The main concept behind the previous algorithm was that words with a total 

possible number of errors below the error correcting capability t of the code, do 

not need to be encoded and decoded since they do not contribute to the RBER. 

Therefore the occurrence times of possible bits in error were initially determined. 

If the number of possible error occurrences exceeded t within the time frame of a 

single word, the corresponding noise function and code word were generated and 

decoded. However, if the noise amplitude and the information bit have the same 

sign then an error will not be generated. Assuming random information bits, only 

50% of the possible error events will actually generate errors. Even so, if the number 

of possible error events exceeds the error correcting capability of the code the code 

word will have to be generated.

The second acceleration technique takes this idea a step further and completely 

eliminates the words with less than t errors (as opposed to possible error occurrences 

of the first acceleration technique), by using channel noise statistics. The main 

difference compared with the first acceleration technique is that if the word does 

not contribute to the RBER it is only calculated and not simulated.

To describe the second technique a white noise channel is considered once more. 

Let p be the bit error probability. Therefore is the probability of having exactly
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u errors in u bits, while the probability of no errors in (n — u) bits is (1 — p)

It is now clear that if all possible combinations of having u errors in a total of 

n bits are considered, then the probability that a code word of length n contains u 

transmission errors is

Probability p can be determined theoretically for various SNRs. Therefore, 

using this formula, the percentage of code words from a user defined initial set 

which contain u errors can be statistically determined. If a high enough initial 

number of code words is selected, it can be analytically determined what percentage 

of those words will have more than t errors within a 1 span of n bits and simulate 

only these. The rest of the words (with t or less errors) are of no interest since 

they will always be correctly decoded. Thus they are not simulated but are only 

used in the final calculation of the RBER.

Simulation of the code words of interest is effected using the same techniques 

as described in the previous section. So, for example, if a (127,106) BCH code 

at a SNR of 5 dB is used with 2.85 x 10  ̂ transmitted words, only 2 x 10  ̂ code 

words will contain more than t = 3 errors and will need to be simulated, see figure 

4.4. The words with fewer than t errors will be corrected by the decoder and are 

therefore ignored.

Finally, once the complete set of words has been decoded, the RBER needs to 

be calculated because the words with less than t errors were not included in the
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26.733 eS codewords in totalX 10

i
*o

g

no of errors per codeword

Figure 4.4: BCH (127,106) at SNR=5 simulated error distribution, 

simulation. Since RBER is defined as

  Number o f inform ation  bits in error a fte r  E C
Total number o f inform ation bits

it is clear that the non-simulated information must be added to the denominator 

if a correct result is to be obtained.

The second acceleration technique can therefore be summarised as follows:

1. Select the total number of code words to be transmitted, which should be 

chosen to provide a sufficient number of residual errors.

2. Determine the number of code words with more than t errors and determine 

their distribution.

3. Generate a message and conventionally encode to create a code word. Then 

modify a given number of bit positions so that they are in error, as determined 

from the distribution obtained in step 2.

4. Generate the remaining noise samples (as described in the previous section).
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5. Conventionally decode the code word.

6. Measure the number of residual errors and calculate the RBER.

The results of this second acceleration technique were also included in the sim

ulator and were validated. Near identical results to a conventional simulation were 

achieved but at the same time RBERs of 10“  ̂ or even lower could be simulated 

within a reasonable amount of time. Table 4.3 indicates the approximate times 

required to achieve 1000 residual errors for various SNRs.

(127,106) BCH HDD code

SNR Number of words Simulated Simulator Time Required

1 137 20 sec

2 172 21 sec

3 190 29 sec

4 220 31 sec

5 249 50 sec

6 260 1:05 min

Table 4.3: Number of words and simulator time required for obtaining 1000 residual 

errors at varying SNRs.

It should be noted that in this case the total number of words simulated re

mains virtually constant and does not increase exponentially with increasing SNR 

as with a conventional simulation. This is because higher values of SNRs imply 

that progressively larger numbers of error-free words are generated, which are not



Chapter 4 - Simulation 88

simulated. Thus, the total number of code words contributing to the RBER re

mains relatively stable regardless of the SNR value, which explains the very low 

simulation times present.

In this section, the second novel simulation acceleration technique was presented 

which has enabled the simulation of very low RBER levels within a reasonable 

amount of time and without any loss in accuracy. This is achieved by concentrating 

only on those code words that do contribute to the RBER and not simulating any 

other words which will be corrected by the decoder.

4.8 SDD and the Simulation Acceleration Tech

niques

Both the simulation acceleration techniques reduce the amount of computational 

time required by not simulating code words containing t or less errors since these 

are certain to be corrected by the decoder. While this is true for HDD, it may 

not always be the case for SDD. Specifically, the use of SDD does increase the 

average error correcting capability of a code over t, but may not guarantee that 

less that t errors will always be corrected. Three possible situations, depending on 

the number of errors (e) present within a code word may exist:

1. A code word has no errors, i.e. e =  0. In such a case the syndrome will be 

zero, the received code word will be immediately accepted and no decoding 

(HDD or SDD) will take place. The accuracy of the accelerated simulations 

will not be affected.
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2. A code word contains more than t errors, i.e. e > t. In such a case, the code 

word will be simulated and therefore the accuracy is not affected.

3. The number of error events is one or more, upto (and including) t, i.e. 1 < 

e < t .  In this case it is possible that the use of the SDD may result in errors 

being present at the output of the decoder. For this reason these code words 

must be simulated, if the accuracy is not to be affected.

However, the probability of producing residual errors in this instance is very 

small, especially for ECCs with large values of t. SDD of code words with less 

than or equal to t errors can only fail if the real error bits do not belong to the 

position of least confident bit (PLC) set. This is even more unlikely for SDD 

algorithms that utilise extended PLC sets, such as the generalised Chase, 

introduced in the next chapter. For this reason, the effects on the simulator 

accuracy of the accelerated techniques combined with the use of SDD can 

be ignored. This can be proven if the same ECO is used to determine the 

RBER utilising both the accelerated and the conventional techniques, since 

both results are virtually identical.

It can therefore be concluded that, for all practical purposes, the accelerated

simulation techniques may be used in conjunction with both HDD and SDD.

4.9 Other Performance Evaluation Programs

In this section two more performance evaluation programs will be briefly described.

These are used for obtaining the line performance and power spectrum of a given
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line code.

4.9.1 Line code performance

In the previous section, a computer simulation that modelled a complete commu

nications system was introduced. This can, on principle, be modified to determine 

the line properties of interest such as the maximum runlength and the disparity 

bounds but would be impractical because of the excessive computation required. 

This is especially true since none of the acceleration techniques presented before 

can be used when line signal sequence characteristics are to be assessed. A more 

elegant solution is therefore the introduction of a new dedicated simulation pro

gram for determining line performance. This is briefly summarised in the following 

steps:

1. Generate a set of information bits.

2. Map these into line-encoded words e.g. by determining any flag bits that may 

be required.

3. Calculate and store the maximum runlength {RLmax) and disparity of the 

complete word.

4. Use the runlength information of the previous word to determine if a max

imum runlength is generated by two consecutive words. If this is the case, 

then display the relevant code words.

5. Update the running digital sum (RDS) value and repeat from step 1.
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Such a program is very useful since it allows the user to determine the chain 

of events leading to a line bound being reached. The code can then be modified 

to ensure that this will not occur again. In addition it is very fast and therefore 

almost all possible combinations can be examined within a reasonable amount of 

time.

4.9.2 Power spectrum

The final program implements the algorithm of Cariolaro and Tronca [2] which 

allows the power spectrum versus normalised frequency of a given code to be de

termined. It was introduced in 1974 and is one of the simplest ways of obtaining 

the power spectrum of a code. As mentioned earlier the power spectral density 

(PSD) of a code provides useful information, such as its response at DC and at low 

frequencies.

Unfortunately the calculation of the PSD is a very complex and computationally 

intensive process. In addition, it depends on the statistics of the code words and 

the coding rules. Therefore, a complete state transition diagram together with 

the associated probabilities is required for each simulated code. In practice this 

precludes the use of this technique for complex and/or long codes.

4.10 Summary

This chapter has described the basic steps behind generating a model for simulating 

BCH codes, both with hard and soft decision decoding. It was then demonstrated 

that in certain cases (such as when low residual bit rates are required, or the number
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of test patterns is large) conventional simulation proves to be too computationally 

intensive for practical purposes, requiring long simulation runs.

To overcome this difficulty two new simulation acceleration techniques were 

introduced which utilised channel statistics to reduce the number of words that 

need to be simulated. These have achieved significant savings in the simulation 

time required without affecting the accuracy of the results produced.

To complement the main performance evaluation simulation program, two soft

ware tools were described; the first one enabled line-code symbol sequence charac

teristics such as the R D S  and RLmax to be determined, while the second used the 

Cariolaro and Tronca algorithm for coded signal power spectrum calculations.

All of the programs described in this chapter will be used for both the SDD 

algorithms (presented in the following chapter) and the ECLCs presented in chapter 

6 .
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Chapter 5

Generalised Chase and the AID

Algorithm

5.1 Introduction

In chapter 2, the three Chase algorithms were introduced which set the standard for 

all soft decision decoding (SDD) algorithms, due to their simplicity and reasonable 

performance. However, they also have a number of disadvantages (especially when 

used in high-speed systems) such as long decoding times due to the number of test 

patterns (TPs) that need to be examined and limited decoding performance.

In this chapter, the deficiencies of the Chase algorithms will be addressed by 

introducing three new algorithms: the generalised Chase (GC), the adaptive im

mediate decision (AID) and the test pattern elimination (TPE) algorithm.

95
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Of the three Chase algorithms, the second one offers a good balance between 

decoding power and implementational complexity. Nevertheless, both of these 

attributes could be usefully improved, and to this end a new variation of the Chase 

algorithms termed generalised Chase (GC) has been devised. Furthermore, the GC 

algorithms may be combined with a new EEP selection technique termed adaptive 

immediate decision (AID) algorithm which reduces the average number of TPs 

used per code word. Finally, both the Chase and GC algorithms can be further 

improved by the introduction of the TPE algorithm. All of these developments are 

presented in the following sections.

5.2 Generalised Chase Algorithms

In chapter 2, it was determined that both the decoding power and complexity of the 

Chase algorithms are mainly dependent on the number [Nchase] of least confidence 

bit (LCB) positions examined. Higher values of Nchase imply an improved decoding 

performance coupled with increased complexity (in terms of TPs required), and 

vice-versa. Chase placed boundaries which determine the possible values Nchase 

may obtain thus defining the performance of the SDD algorithm.

In this chapter, the bounds for the possible values of N  (the number of PLCs) 

are relaxed thus achieving a more versatile SDD algorithm. The latter is termed 

generalised Chase (GC) and the number of possible PLC values is represented by 

Afcc [3, 4].

Since increasing the value of N qc over a certain boundary effectively reduces 

the decoding performance of the code while increasing its complexity, the limits of
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N gc must be clearly defined. In addition, further restrictions must be applied to 

the set of resultant TPs generated by a given N gc if improved performance is to 

be maintained. All these problems are examined in more detail in the next section.

5.2.1 Nac selection and TP generation

N gc selection is constrained by the existence of an optimum value. Further in

creases of this value will not improve performance and will result in an inefficient 

algorithm. This is because the use of higher values of N cc  means that progressively 

more confident bit position combinations will be examined.

Another issue is that not all 2^^^ possible combinations give different estimated 

error patterns. This is especially true at high SNRs where the average number of 

errors in a code word is small. In such cases, the first few TPs are usually successful 

while the remaining ones (which examine bit positions that are progressively more 

confident) either are rejected or produce the same EEP as before.

In addition, for any given N cc, only discrete permutations of all possible bit 

positions must be used. In all cases, the algebraic sum of the inverted positions in 

each TP must be less than t, i.e.

T .T P i < t  (5.1)
2 = 1

where (TP)i  is the sum of the binary values of the TP elements. Thus, if N cc  

least confident positions are examined, the total number of TPs will be determined 

by
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instead of

^ Ngc^- 

h >  î G C  -  *)!i!
(5.2)

2 ^ G C (5.3)

If, for example, N qc = 5 and t = 3 then only 26 TPs need to be generated 

instead of 2̂  =  32.

The reason for requiring the total number of inverted positions in a TP to be 

t or less is best explained using an example. For a single error correcting code, 

numbers are assigned to all possible test patterns, as shown in table 5.1.

T P  number LCB 1 LCB 2

0

1 invert

2 invert

3 invert invert

Table 5.1: Defining TPs according to the inverted LCB positions.

For example, the second TP (TP 2) has the second least confidence bit position 

inverted, while TP 3 has both the first and second LCBs inverted. The decoding 

performance of our code is now examined if a number of errors (e) ranging from 

0 to 4 occurs within a single code word. Referring to table 5.1 the probability of 

erroneously decoding a code word will be determined for two different cases:
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• Case (a): decode using the proposed rule, as expressed by equation 5.2, using 

all possible combinations of one LCB position, i.e. TP 0 and TP 1.

• Case (b): decode using more LCBs, e.g. using 4 TPs (TP 0,1,2,3), as defined 

by equation 5.3. This set includes TP 3 which contains a number of inverted 

positions exceeding t.

All permutations of errors and TPs are examined in tables 5.2 and 5.3 where 

an ‘X ’ indicates a failure to decode while a y/ signifies a successfully decoded word. 

Table 5.2 indicates the results using case (a), i.e. the performance of a single 

ECC where a single position of least confidence is used by the SDD algorithm, as 

indicated by the proposed rule. Table 5.3 indicates the performance of the same 

code using case (b), i.e. two LCBs which correspond to four possible TPs. In both 

cases, the first column presents the number of errors in the code word and the 

second the test pattern used (using the conventions indicated in figure 5.1). The 

following columns indicate whether a word with a given number of errors and a 

specific TP would be correctly decoded or not.

Assume that the probability of erroneously decoding a code word for various 

numbers of errors is equal to Pg- In such a case the resultant overall probability of 

erroneously decoding a word using either 2 or 4 TPs is shown in table 5.4.

Adding the corresponding probabilities for both cases produces a Pe{a) = 0.5 

for 2 TPs and a Pe{b) =0.56, where Pe{a) is the probability of erroneously decoding 

a code word if case (a) is used, and Pe(h) if case (b) is used. Therefore the use 

of all possible 2^°"  ̂ TPs not only increases the decoding time required but also 

increases the probability of erroneously decoding a code word. Even though the
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N o  o f  errors L C B m atches error LC B d oes not m atch error

0

T P  0 y y
T P  1 y y

1

T P O y y
T P  1 y X

2

T P  0 X X

T P  1 y X

3

T P  0 X X

T P  1 X X

Table 5.2: Single error correcting performance using 2 TPs.

above example considered a simple ECC, similar results occur regardless of the 

code used.

Another reason for constraining the number of inverted positions in a TP using 

equation 5.1, is to avoid exceeding the minimum Hamming distance dmin of a 

code word. If the latter does occur, it is possible that our received word may be 

erroneously decoded as an adjoining (in terms of Hamming distance) one.

To summarise, it is clear that an optimum maximum value of N ^c  exists above 

which the number of TP increases significantly without a comparable increase in 

decoding power. Furthermore, not all possible TP combinations can be used once 

a value for Ngc  is defined. Experimental results using a computer simulation 

have clearly demonstrated that the best choice is Ngc = (^Chase2  +  2) where

Nchase2 = LoJ' thls value of Ngc  not only is most of the coding gain recovered.
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Errors TP No Match LCB 1 Match LCB 2 Match LCB 1/2 Match
0 V V V V

0
1 V V V V
2 V V V V
3 X X X X
0 V V V V

1
1 X V X X
2 X X V V
3 X V V V
0 X X X X

n 1 X V X V
2 X X V V
3 X X X V
0 X X X X

3 1 X X X X
2 X X X X

3 X X X X

Table 5.3: Single error correcting performance using 4 TPs.
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Number of errors in word Pe for 2 TPs Pe for 4 TPs

0 0 4

1 6

1 1 6

4 1 6

2 3 11
4 1 6

3 1 1 5

1 6

Table 5.4: Probability of incorrectly decoding a word for various numbers of re

ceived errors.

but the number of TPs remains reasonably low. If this value of N ^c  is exceeded, the 

increased number of TPs is not justified by any RBER gain that may be present.

The fact that Ngc  is defined as having the value Ngc = i^chase2  +  2) indicates 

that a larger set of TPs is examined compared to the standard Chase 2 algorithm. 

This implies that improved decoding performance will be present. Since N cc  ex

amines fewer TPs than Chase 1 it is also implied that the decoding performance 

may not match that of Chase 1. However, the GC performance is very close to the 

ML limit which makes it a very attractive algorithm. This will be demonstrated 

by the simulation results presented in the following section.

5.2.2 Simulation results

The generalised Chase algorithm was simulated in order to determine the decoding 

performance for various SNRs and the optimum values for Ncc- The introduc

tion of the GC algorithms made the need for accelerated simulation techniques as 

described in [5] even more acute. This is because the use of large values of N cc
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and the corresponding large set of TPs that need to be examined increases the 

simulation times beyond acceptable limits.

In this section, the decoding performance of a (127,106) BCH code will be used 

as an example (see figure 5.1). This is a triple error correcting code and if the 

conventional Chase 2 algorithm was used Nchase would be equal to three, i.e. three 

LCBs would be examined which would correspond to eight TPs. In this example, 

values of N gc ranging from one to five will be used.

The upper solid line of figure 5.1 (labelled ‘Uncoded’) indicates the decoding 

performance of the system when no error correcting code has been used and the 

data are transmitted as they are generated from the source.

The solid line below it (labelled ‘HDD’) indicates the performance when a triple 

error correcting code has been included and the decoder utilises hard decision 

decoding. The next two dashed lines indicate the performance of the same code 

but decoded using soft decision and the generalised Chase algorithm with N gc = 1 

(i.e. 2̂  =  2 test patterns) and N cc = 2 (i.e. 2̂  =  4 test patterns).

The solid line below that indicates the N cc  =  3, 8 TP conventional Chase 2 

results while the next two dashed lines are the results for N cc  =  4 (16 TPs) and 

N g c  = 5 (26 TPs). The final solid line ( labelled ‘Ideal SD’) indicates the best 

possible SDD performance, ML.

For the above code if N cc  =  5, a 0.5dB increase in coding gain compared to 

the Chase 2 algorithm is offered. The penalty for such a decoding improvement is 

a corresponding increase from 8 to 26 test patterns.

Figure 5.1 clearly indicates that by using all the combinations of 5 LCBs de-



Chapter 5 - Improving the Chase Algorithm 104

10'

10“
JJncoded

10“
oc
LU
CD

g 10“'
%
CD
GC

10“

10“

10“

; X  n h d

HD hard decision ^ Q
X

SD soft decision
X : generalised Chase-2 with 1

X
0 generalised Chase-2 with N=2
H Chase-2
* generalised Chase-2 with N=4 Ideal 8 1 ^ *
+ ' generalised Chase-2 with N=5 8

X *

4 5
SNR (dB)

Figure 5.1: Simulation of a BCH (127,106) error correcting code with various values 

ofAF
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coding power is very close to the ML bound. Any further increase over N qc = 5 

will not significantly increase decoding performance. The decoding results once the 

optimum value of N qc is exceeded are demonstrated in the following examples:

In the first example a (63,51) double EC BCH code is used with Nchase =  2 

and N gc = 4. The decoding results for a SNR of 4dB are shown in Table 5.5.

The resulting RBER steadily improves with increasing values of N qc until 

A^gc =  4. For N gc — 5 an insignificant improvement exists and for N cc  > 5 

the RBER deteriorates.

In the second example, a (127,106) triple ECC is used and in this case Nchase = 

3 and N cc = 5, as shown in Table 5.6. Again, the RBER progressively improves 

until N cc = 5 and thereafter remains almost constant. Similar results are found 

with any combination of BCH code and SNR.

5.2.3 Generalised Chase 3

In the previous sections, the generalised Chase algorithm was introduced. This is 

an extension of the Chase 2 algorithm whereby a larger set of TPs is examined. The 

method of generating this extended set remains the same as that of Chase 2 . In 

this section, a possible extension of the conventional Chase 3 called generalised 

Chase 3 (GC-3) is developed.

The GC-3 will examine (depending on whether dmin is odd or even) a set of 

test patterns with i positions of least confidence inverted. Specifically if dmin 

is odd. Chase 3 dictates that i = 0 ,1 ,3 ,..., d — 1 and if dmin is even then i = 

0, 2,4, 6,..., d — 1. The (GC-3) simply extends the values of i for both cases, gener-



Chapter 5 - Improving the Chase Algorithm 106

N 1 2 3 4 5 6

RBER

(10-4)

34.9 5.9 2.33 2.0 2.0 2.28

TPs 2 4 7 11 16 22

Table 5.5: BCH (63,51) ECC at SNR=4 dB with various values of N (channel 

BER =  1.2 X IQ-2).

N 1 2 3 4 5 6

RBER

(10- 6)

88.1 35.6 11.2 4.2 2.0 1.9

TPs 2 4 8 15 26 42

Table 5.6: BCH (127,106) ECC at SNR=5 dB with various values of N (channel 

BER =  5.9 X 10-^).
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ates the appropriate TPs and then performs a conventional hard decision decoding. 

However, unlike , GC-2, GC-3 was found to not offer any significant improve

ments in performance with increasing values of i and was therefore not investigated 

further.

5.3 Adaptive Immediate Decision Algorithm

In the previous sections, it was demonstrated how the decoding power of the Chase 

algorithms can be increased. This was achieved by using a larger set of TPs for 

decoding by setting Ngc =  {Nchase2 +  2). Both the standard and the generalised 

Chase algorithms generate and examine a complete set of test patterns before 

selecting the corresponding estimated error pattern of minimum analogue weight.

However, this will result in increased decoding time which will place bounds 

on the maximum bit rate allowable. A new algorithm, the adaptive immediate 

decision (AID) has been developed to address this problem, which reduces the 

average number of TPs required without significantly affecting performance. In 

this section, the AID algorithm will be presented and used in conjunction with 

both the Chase and generalised Chase codes. This will make the CC a more 

attractive option for use in high bit rate systems.

5.3.1 Description of the AID algorithm

The AID algorithm offers an improved TP selection procedure compared to Chase. 

It is based on the observation that for stationary noise channels the analogue 

weight of the selected EEP [awEEp] is another stationary random variable. This is
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because the algebraic sum of the absolute voltage levels of each erroneous bit in a 

selected estimated error pattern (EEP) (as described in equation 2.9) should have 

statistically stable values.

Furthermore, for white noise channels and for a relatively large code word length 

n, the analogue weight of the selected estimated error pattern oweep is concen

trated around its mean value MawEEP • is therefore possible to devise a threshold 

of analogue weight, e.g. Tqweep ~  ^ uweep  ̂ so that an EEP selection decision is 

made immediately, based on the calculated oweep- Such an algorithm reduces the 

average number of required TPs for correctly decoding a received word. This offers 

a significant reduction in the required decoding time per word, thus allowing higher 

bit-rate coded systems to be realised.

5.3.2 Threshold decision

The concept behind the AID algorithm is the fact that the complete TP set may 

not need to be generated for each code word. This will reduce the average number 

of TPs examined, thus reducing the decoding time and complexity required. This 

technique is effected by calculating the analogue weight of each EEP ( ü w e e p ) 

after decoding has taken place. If [awEEp) ^  {TawEEp)  ̂ then the EEP will be 

immediately accepted otherwise the next test pattern is examined and the process 

repeated. If the analogue weights of the complete set of EEPs are greater than the 

threshold, i.e.

Ngc'(aWEEPi) >  {TawEEp) V 1 <  Î < ' (N ^ i)\i\
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then the threshold condition will not be satisfied for any TP. In such a case con

ventional Chase decoding will take place. This will result in the EEP of minimum 

analogue weight being selected. In either case, the analogue value of the selected 

EEP awEEP will also be added to the value of TawEEP- The flow diagram of the 

AID algorithm is shown in figure 5.2.

Defining the threshold values

For a stationary channel, the noise content will remain almost constant regardless 

of how many words have been transmitted. In such a case, after a statistically 

significant sample of initial words has been decoded using a conventional Chase 2 

or GC-2 algorithm, TawEEP can be determined. The latter will remain reasonably 

stable and therefore will not need to be re-evaluated. Experimental results suggest 

that a suitable number of initial words is about 100.

For a fluctuating noise channel however, TawEEP is not constant. Therefore it 

must be constantly re-calculated otherwise the threshold level will be invalid. In 

such a case the average number of TPs required will be increased, or erroneous 

results will be produced. For such channels, a windowed averaging technique con

sisting of a number (m) of most recent words is used to calculate Tqweep- The 

window width (m) needs to be large enough to ensure statistically accurate results; 

if it is too large then the fluctuations of the noise channel will not be closely fol

lowed. An optimum width must therefore be determined which depends on the 

stability of the noise channel. A rapidly fluctuating channel would require a nar

row window for accurate noise tracking; a more stable channel could utilise a larger 

window likely to offer more statistically accurate results. The threshold weight will
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Figure 5.2: AID algorithm flow diagram.
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therefore be defined as

'̂ awEEP ^ X^^EEp)i (5-4)
^  j=l

where a  is a factor that determines the decoding power versus speed and 

{awEEp)j is the analogue weight of the j th  most recent word. The factor ‘o;’ 

is introduced to provide more flexibility by artificially raising or lowering Tawssp 

thus allowing a trade-off between decoding speed and power.

5.3.3 Optimal value of a

From formula 5.4 it is clear that the values of a  are very significant since they 

dictate the decoding power and corresponding time required by the algorithm.

For example, if a  < 0 the code words are decoded using a conventional GC 

algorithm since the condition üweep < Tqweep never satisfied except for the 

zero-error case. If a  is a large positive number (e.g. greater than 2) then the 

condition üweep < TawEEP is easily satisfied and therefore the average number of 

examined EEPs is reduced. However, in such a case, an increased probability of 

error exists. The opposite is true if a  is a small positive number such as 1 or 2, 

because more test patterns are examined.

In order to determine the optimal value of a, the simulator was used to provide 

a number of examples which are presented in the following section in Tables 5.7 

and 5.8. In all cases the optimal value of a  was determined to be between 2 and 

3 since at this level most of the decoding power was present while the required 

number of TPs was reasonably low.
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The formula for calculating Tqweep allows the algorithm to be adaptive in nature 

so that it can be used in situations where the SNR levels may vary with time. It can 

also be used in stationary channels without compromising performance. Since the 

complete set of TPs is not always required, a major improvement in the decoding 

time can be achieved, up to an order of magnitude, without significant loss in 

decoding power.

Sample results for a triple error correcting BCH(127,106) code at various sta

tionary and fluctuating SNRs are included in the following section.

C hase’s threshold decoding

In [1], Chase also introduced the concept of threshold decoding. It should be noted 

though that this is completely different to the threshold decoding arrangement 

presented here. The technique introduced by Chase uses a threshold to examine 

whether an error pattern (EP) (as opposed to an EEP) will be accepted for cor

recting a word. This means that the complete set of TPs must first be created 

and examined. Therefore, in Chase, the decision is not immediate (after every 

EEP) and if the accepted EP has an analogue weight above the threshold then the 

accepted word is taken to be the received word without any corrections. Chase 

therefore uses his threshold weight to examine the validity of an EP.

A second difference between Chase’s threshold decoding and the AID algo

rithm is that Chase provides a different definition for the threshold analogue weight 

clweep{Tk )- The latter is defined as the analogue weight of a TP containing K  

ones, where K  is a user specified arbitrary number that can take values 1 < AT < n, 

where n is the code word length.
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5.3.4 Simulation results for the AID algorithm

In the previous sections, the AID algorithm was introduced. The main advantage 

of this algorithm is that it will achieve a reduction in the average number of TPs 

examined per code word without a significant reduction in decoding performance.

In this section, the performance improvements will be demonstrated, using the 

simulation techniques introduced in the previous chapter and in [5, 6]. A BCH 

(127,106) triple error correcting code with N gc = 5 will be used as an example 

but similar performance was present when other codes were used.

The main aim of the AID algorithm is the reduction of the number of TPs used 

and this is especially useful in conjunction with the GC codes, due to the increased 

number of least confidence positions they examine. It has been noted before that 

near maximum likelihood performance for a BCH code exists if the generalised 

Chase algorithm examines Ngc = Nchase2 +  2. Since this creates a relatively 

large set of TPs the introduction of the AID algorithm should offer substantial 

advantages in reducing the total simulation time required.

Table 5.7 presents the simulation results of a (127,106) triple error correcting 

code with N gc = 5 while simulated at a S N R  =  4.

The first column indicates the value of the factor a  which determines the de

coding power used. Decreasing the value of a  improves decoding performance. 

Increasing the value of a  however, decreases the average number of TPs and the 

associated decoding time required. The second column indicates the decoding per

formance of the code (the RBER) while the third column indicates the average 

number of TPs used to achieve the corresponding decoding performance. The
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theoretical RBER of this particular code at this SNR is 1.2 x 10“ .̂

From table 5.7 it is evident that there is a small difference in the ML limit and 

the actual RBER while using the GC with Nac = 5. The latter is shown in the 

first row (where Of =  — 1) since with this value of a  the threshold condition is never 

satisfied. The total number of TPs is equal to 26 in accordance with equation 5.2. 

Progressively increasing the value of a  decreases both the decoding performance 

and the number of TPs used. However, at a value of a  =  3, while the reduction 

in the decoding performance is insignificant, the average number of TPs examined 

per word has dropped by an order of magnitude, from 26 to an average of about 2.

Table 5.8 presents the results for a (63, 51) double error correcting BCH code 

with N gc = 4 simulated at a SNR of 5 dB. This will create a set of 16 TPs and 

will have a theoretical RBER of 5.6 x 10“®. Once more the optimum value of a  

is three, and a minimal reduction in decoding performance exists. Similar results 

were observed for all combinations of codes and SNRs.

The reduction in the number of required TPs can be demonstrated by setting 

an arbitrary time limit and decoding the largest number of code words within that 

limit. For example, in the same time interval that a CC algorithm with N gc =  5 at 

a SNR of 3 dB examines 1000 words, AID will have examined over 8000 words. For 

comparison, if a conventional Chase 2 decoder was used, about 3000 words would 

have been examined in the same time interval, but with a much reduced decoding 

performance.
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( 1 2 7 , 1 0 6 )  BGH EGG

a Decoding performance Average number of TPs

- 1 2 .3x10-4 26

1 2 . 4  X 1 0 - 4 9 . 7

2 2 . 5  X 1 0 - 4 3.8

3 2 .6x10-4 1 . 9

4 3 . 0  X 1 0 - 4 1 . 4

Table 5.7: Decoding performance versus average number of TPs for a (127,106) 

BCH EGG code at SNR=4dB.

(63,51) BGH EGG

a Decoding performance Average number of TPs

-1 6.2 X 10-G 16

1 6.4 X 10-6 3.5

2 6.7 X 10-6 2.2

3 (18x10-6 1.4

4 9.1 X 10-6 1.1

Table 5.8: Decoding performance versus average number of TPs for a (63,51) BGH 

EGG code at SNR=5dB.
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5.3.5 Variable noise simulations

The previous simulations have demonstrated that the AID algorithm has managed 

to reduce by an order of magnitude the number of TPs required, compared to 

the GC algorithms, when the SNR remained reasonably constant. The latter is a 

condition not necessarily representative of a real system. In this section a variable 

SNR source is used in order to determine the performance of the algorithm.

Two different types of non-constant amplitude noise were used to model the 

behaviour of a non-stationary system while using the AID algorithm. The first one 

involved randomly variable noise figures between code words to simulate a rapidly 

fluctuating transmission channel. This was implemented by allowing the SNR to 

take random but discrete values. The performance achieved was not significantly 

worse compared to that of a constant SNR channel. Specifically, the total average 

number of TPs used increased from an average of 3.4 (for a stationary channel) to 

about 5.5 while the decoding performance remained at similar levels, as shown in 

table 5.9.

( 1 2 7 , 1 0 6 )  BCH ECC

a Channel Error Rate RBER Average number of TPs

- 1 1 . 2  X 1 0 - 3 1 . 7  X 1 0 - 4 2 6

1 1 . 2  X 1 0 - 3 2 . 1  X 1 0 - 4 1 1

2 1 . 1  X 1 0 - 3 2 . 4  X 1 0 - 4 5 . 1 5

3 1 . 2  X 1 0 - 3 3 . 8  X  1 0 - 4 3 . 8

Table 5.9: Code performance simulation results.
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The second series of tests used a sloping noise function with SNRs increasing 

and decreasing with time as illustrated in figure 5.3. The resultant RBER was 

similar when using both algorithms (AID and GC-2) but AID used an average of 3 

TPs as opposed to 26. This represents a significant reduction in decoder complexity 

and decoding time required. Both of the above tests provide an indication of the 

potential of the AID algorithm if the values for N gc and a  are chosen appropriately.

SNR (dBs)

time

10000 codewords 15000 codewords5000 codewords

SNR improving with respect to time between every bit

AID with c e 3Generalised Chase-2

1.778e-2Channel Error Rate 1.7689e-2

Residual Bit Error Rate

3.08Number of Test Patterns Used

Figure 5.3: Performance comparison between the GC-2 and AID for a (127,106) 

BCH code, with sloping noise functions.
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5.4 Improving the Chase and AID Algorithms

The introduction of the GC algorithm established the fact that the use of an in

creased number of test patterns will result in improved decoding performance. The 

AID algorithm was then used to decrease the number of TPs without significantly 

affecting the performance of the ECC. In this section, a further improvement called 

test pattern elimination (TPE) will be introduced. The TPE algorithm significantly 

reduces the decoding time per code word required by reducing the number of TPs 

tha t are taken through the EC decoder, as first suggested by Chase. This is achieved 

by eliminating TPs that produce the same EEP, thus not affecting the decoding 

performance of the ‘parent’ algorithm.

The TPE algorithm can be briefly described as follows: In both the Chase and 

AID algorithms, a TP is added to the received code word and the result is passed 

through the EC decoder. The latter can correct up to t errors and will produce 

an estimated error pattern (EEP). The Chase algorithm will then select the EEP 

of minimum analogue weight once a complete set has been generated, while the 

AID algorithm will immediately select an EEP if its analogue value is below a set 

threshold.

Observation of the decoding stage however, indicates that a large number of 

TPs will eventually give the same EEP. This is a very serious drawback of both 

algorithms, since the EC decoder is the most power intensive component of the 

decoder.

The TPE algorithm suggests that if the Hamming distance (d) between the 

current TP and any existing EEP is less or equal to t, i.e.
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3 i < n : d { T P i ,  E E P n )  < t

then the same EEP will result. Therefore, such TPs will be immediately rejected 

without going through the decoder. The reason behind this technique is the fact 

that the decoding algorithm used will always return a ‘valid’ code word, i.e. a code 

word with zero syndrome. If the distance between a TP and any one of the existing 

EEPs is less or equal to the error correcting capability t of the code, then the use 

of the EC decoder will produce as a result an existing EEP.

Simulation results using both the Chase and AID algorithms with TPE have 

indicated that a significant reduction in the number of times the decoder is used 

exists, without affecting the decoding performance at all. Figure 5.10 indicates the 

reduction in the use of the decoder using a BCH (127,106) triple error correcting 

code at a SNR of 3 dB as an example.

Code type Decoder usage Max TP number Average TP number

Chase 7.8 8 8

Chase and TPE 3.8 8 8

AID 10.3 26 11.3

AID and TPE 8.4 26 11.3

Table 5.10: Number of times decoder is used for a BCH (127,106) ECC at a SNR 

of 3 dB.

The first column of figure 5.10 presents the type of SDD algorithm used, the 

second indicates the number of code words that went through the EC decoder.
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the third column presents the maximum number of TPs allowable while the final 

column indicates the average number of TPs used.

; Table 5.10 indicates that the use of the TPE algorithm combined with Chase 

decoding offers a very significant reduction (of the order of 50%) in the number of 

times the decoder is used. This reduction is not so significant when combined with 

the AID algorithm since the use of the immediate decision threshold will usually 

select a code word before a significant amount of repetition in the EEPs is present. 

In both cases, the introduction of the TPE algorithm has not affected at all the 

decoding performance of the ‘parent’ codes.

5.4.1 Decoding bounded algorithm

An alternative implementation of the TPE algorithm is the decoding bounded (DB) 

algorithm. In this implementation an upper limit on the number of allowable 

decodings is placed. The decoder will then generate an appropriate number of TPs 

until the pre-set limit is reached. The difference with the algorithms presented in 

the previous sections is that no set number for N  (the number of examined PLCs) 

exists. Therefore, the algorithm will use as many TPs as required to achieve the 

number of decodings specified.

5.5 Summary

In this chapter, the shortcomings of the Chase algorithms were identified. These 

consisted of a relatively poor decoding performance compared to the ML limit and 

a large number of TPs required to achieve that performance. Both shortcomings
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were addressed in three new algorithms.

The first of these algorithms used an extended number of least confident posi

tions in order to generate a larger set of test patterns. This resulted in enhanced 

decoding capability but at the same time increased the necessary decoding time 

per word. Since this algorithm was an extension of the Chase algorithm it was 

termed the generalised Chase (GC).

The second new algorithm introduced a threshold for immediately selecting the 

appropriate TP. The use of the threshold technique implies that the complete set of 

TPs does not need to be generated before one is selected. This enables the average 

decoding speed to be greatly increased without affecting decoding performance. 

The resultant algorithm is termed adaptive immediate decoding (AID) algorithm. 

The latter can be applied to either the Chase or the generalised Chase algorithms 

and offers significant decoding speed improvements.

The final algorithm reduces the number of times the EC decoder must be used 

by eliminating all TPs that generate the same EEP. This algorithm is termed 

TPE and can be used in conjunction with either the Chase or the AID algorithms. 

It offers the same decoding performance as that of the ‘parent’ algorithm while 

significantly reducing the decoding time required.

These improvements in decoding speed and performance make it practical to 

consider the application of forward error control based on BCH codes and SDD, to 

high bit-rate optical fiber transmission systems. Such systems though also require 

the use of a line code. Previous work has shown that both line coding and error 

control functions can be merged to realise error correcting line codes (ECLCs).



Chapter 5 - Improving the Chase Algorithm  122

To date, this type of work has generally utilised hard decision decoding. It is 

appropriate therefore to explore the extent to which the new SDD developments 

may be combined with line coding as discussed in Chapter 3, to achieve enhanced 

ECLC performance appropriate to high bit-rate systems. We turn our attention to 

this in the next chapter.
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Chapter 6

Combining Error Control and 

Line Coding with Soft Decision

D ecoding

6.1 Introduction

In the previous chapters, the basic principles of error correcting codes (ECCs), line 

coding (LC) and soft decision decoding (SDD) were presented. It was also shown 

that each individual technique can offer significant improvements in increasing the 

performance of a communications link.

However, if a high degree of reliability is required it is not uncommon to utilise 

both the ECC and LC schemes. This is usually achieved by effecting a cascaded 

implementation with the LC being the inner-most code on both sides of the link. 

This arrangement has the advantage of simplicity and flexibility of choice of the

125
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ECC and LC but it also has significant disadvantages. An alternative technique 

is to combine the two operations into a single code, an error correcting line code 

(ECLC). In this chapter, both the cascaded approach and ECLCs will be examined 

in some detail. Some existing codes will be reviewed and new codes introduced.

ECLCs can be modified so that with the use of SDD techniques, significantly 

better performance can be achieved. All three algorithms introduced in the previous 

chapter (GC, AID and TPE) can be used for decoding ECLCs, as will be shown 

in the following sections.

6.2 The Need for Error Correcting Line Codes

Error correction and line coding are usually regarded as two distinct operations. 

However, some circumstances require the simultaneous application of both; a par

ticularly widespread example being the compact disk system. The conventional ap

proach has been to apply the two operations in cascade with the line code being the 

innermost code, as shown in figure 6.1. The information bits [i) are initially taken 

through the error correcting encoder and parity bits (pi) are appended. The resul

tant word is then taken through the line encoder and have further parity bits (^2) 

appended, before the complete word is transmitted. Such a concatenated scheme 

was presented by e.g. Lin [1] whereby a number of error correcting/runlength 

limited codes were created using trellis encoding and decoding.

The aim of the LC is to match the transmitted signal to the transmission 

medium. It therefore has to be the inner-most code. If this were not the case, the 

transm itted word would be modified by the ECC, thus eliminating the benefits of
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Digital Data 
Source

M odulatorLine EncoderECC Encoder

Noise and Interference

TX
system

Data Destination ECC Decoder Line Decoder Demodulator

Figure 6.1: Conventional cascaded error correcting line code implementation, 

the line code.

This arrangement however, may have several disadvantages: As was noted in 

chapter 3, line decoding can introduce error extension which reduces the overall 

decoding performance of the outer error correcting code since some of its power 

has to be used to combat the extra errors.

In addition, with the cascaded scheme each coding operation requires the intro

duction of redundancy. The redundant bits are introduced independently at each 

stage and can not be used for both EC and LC. This results in a decreased overall 

code rate R. Finally, the output of the line decoder is a binary waveform which 

prevents soft decision decoding techniques being used at the ECC decoder. This 

further limits the performance capabilities of such a cascaded scheme.

To summarise, the cascaded approach has the following performance character
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istics, when compared to conventional ECC:

• Lower overall rate, due to two sets of independent parity bits.

•  Error extension is present.

•  The use of SDD | may not be possible.

Most of these problems can be alleviated by using combined error correcting 

line codes. These codes combine the normally separate functions of line signal con

ditioning and error protection into a single operation. By adopting this approach 

error extension is minimised and higher overall code rates can be achieved.

Since the output of an ECLC encoder is a sequence of error control words, 

the full spectrum of error detection and correction can be applied directly to the 

received line signal. In particular, it will be demonstrated that it is possible to 

apply SDD to achieve further overall performance enhancement compared with 

conventional cascaded arrangements.

Figure 6.2 outlines such a system with the option of SDD included. Once more, 

i information bits are taken through an ECLC encoder and have a number of 

parity bits (pi,2) added to them, before transmission takes place. At the receiver, 

the waveform goes through the error correcting decoder first so that any errors 

can be corrected before any line decoding is effected. This arrangement offers two 

significant benefits; SDD can now be used and the occurrence of error extension is 

minimised.

A number of such combined schemes already exist. Brooks [2], for example, has 

suggested a simple error detecting line code suitable for implementation in a high
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Digital Data 
Source M odulatorECLC Encoder

Noise and Interference

TX
system

Data Destination ECLC Decoder Demodulator

Figure 6.2: Error correcting line code block diagram.

speed system while Heiberg et al. [3] has suggested a code that can either perform 

line coding or error control but not both simultaneously.

Some of the codes presented in this chapter exhibit concatenated code char

acteristics, such as separate redundancy for line and error correction coding, and 

error extension. However, in all cases, error correction is effected before line decod

ing takes place and SDD is always possible. For these reasons, all of the following 

codes are classified as ECLCs.

6.3 Generating ECLCs

We can identify three broad approaches to the description and identification of an 

ECLC:
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1. The first approach exploits the redundancy of a line code to achieve some 

degree of error control. As a simple example consider an alternate mark 

inversion (AMI) code in which a binary waveform is given a ternary repre

sentation with a binary zero encoded as a ternary zero and a binary one is 

alternately encoded as a ± 1.

If, at the decoder, two consecutive ones of equal polarity are received then 

an error has been detected. This allows isolated errors to be detected but 

the structure and degree of redundancy is insufficient to allow for correction 

if hard decision decoding is employed.

In such a code, the principal reason for the introduction of redundancy is to 

achieve line code characteristics; this technique does not produce powerful or 

versatile error correcting codes although SDD can provide a degree of error 

performance improvement [4]. Similar drawbacks exist for most such schemes 

based on line codes and for these reasons they will not be considered in this 

thesis.

2. The second approach is to use a ‘parent’ error correcting code, modified in 

such a way so that line coding characteristics are present without the loss of 

the algebraic structure or the decoding power of the code. This can imply 

balancing the disparity of the transmitted code words and/or limiting the 

maximum runlength (RLmax)- Deng’s [5] and Popplewell’s [6] codes belong 

to this category.

In order to achieve these characteristics the code rate will usually have to 

be reduced to a certain extent but this i  ̂ still a powerful technique. It will
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therefore be examined here in more detail.

3. Design totally new ECLC codes. A number of examples of this type of coding 

exist but they are generally rather complex, use look-up tables to encode 

and decode, and lack algebraic structure. Most such codes begin with zero 

disparity words which also have some minimum Hamming distance. Error 

correcting properties are then introduced, so that an ECLC is formed [7, 8]. 

The lack of structure and poor overall rate limit their usefulness, especially for 

more complex and longer codes. For these reasons they will not be considered 

here.

6.4 Proposed Codes

A number of codes presented in the following sections are based on those introduced 

by Popplewell [6]. These are further modified in order to exploit the advantages 

of soft decision decoding in combination with ECLC objectives. Such codes are 

relatively simple to implement, have an algebraic structure thus being applicable 

to any code length and are systematic.

In most cases a ‘parent’ ECC will be used to generate an ECLC. In our case, 

this will be a cyclic linear block (n, k) BCH code with n code word bits and k 

information bits, with n > k. The minimum Hamming distance between any two 

words is dmin and t = is the number of errors which can be corrected in any

one word.

The parent ECC is then modified by the introduction of further redundancy, to 

achieve line coding characteristics, thus becoming an ECLC. As noted previously.
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a line code aims to improve the reliability of a link. Cattermole [9] indicates that 

a baseband channel with a low frequency cut-off point cannot transmit arbitrary 

bit sequences unless there is some constraint on the line characteristics. If no 

such constraints exist, the performance of the communication link may eventually 

degrade to an unacceptable level.

The line coding characteristics of interest to this study, are the running digital 

sum {RDS) and the maximum runlength, RLmax- As a reminder, the R D S  for a 

number x  of transmitted words is defined as

RDS = Y.Udi.

where di is the disparity of each individual word. The digital sum variation 

(DSV) is defined as the difference between the largest and smallest values of RD S. 

Thus a good disparity limiting line code must place tight R D S  bounds which will 

in turn reduce the DSV value. This is necessary if the low frequency content of the 

code is to be suppressed.

Another factor is the need to limit the maximum allowable number of continu

ous ones or zeros (the maximum runlength) since these can cause synchronisation 

problems at the receiver. Both the R D S  and the runlength are important factors 

which may need to be bounded by an ECLC.

In addition, the overall rate reduction and decoding complexity must be kept 

as small as possible without significantly compromising the decoding performance. 

All of the above factors place tight constraints on the code design. The ECLCs 

presented here attem pt to satisfy as many of these constraints as possible.

Figure 6.3 presents a tree diagram of the codes that will be introduced in this
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chapter. These can be divided into two main categories: the N  = 2 codes whereby 

two EC code words are coupled and transmitted as one, and the n B lX  family of 

ECLCs. The latter is sub-divided in to the bi-modal {n B lI  and n B lD R )  and non 

bi-modal codes. The non bi-modal codes do not require the flag bit for decoding, 

which can therefore be ignored. The n B lD R  can not be easily modifled to become 

an ECLC without the use of a look-up table. For this reason, it is not examined any 

further. Finally the n B l I  code can become an ECLC by the use of the enhanced 

flag protection (EEP) code or the cascaded added hit (CAB) family of codes. All of 

the above ECLCs will be presented in more detail in the following sections.

ECLCs

nBlXN=2

Non bi-modalBi- modalManchester

nBlP/C/D/RnBlDRnBlI

CABEFP 1 EFP2 EFP 3

Figure 6.3: Tree diagram of the presented ECLCs.
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6.5 The nBlX  Family of ECLCs

A well-known class of block line codes are the nB m B  as described by Smith [10] 

which convert a block of n binary bits into m binary bits. If m  is chosen to equal 

n + 1  then these codes are termed n B lX  and they were presented in chapter 3. In 

this section the n B lX  family of line codes will be re-examined and modified so that 

they exhibit error correcting characteristics. This is achieved by considering the n 

information bits of the n B lX  code as being error correcting code words in their 

own right. Therefore, k information bits are initially encoded into an n-bit word, 

using a suitable ‘parent’ ECC. In this study, BCH codes will be used as ‘parent’ 

codes and therefore n will be assumed as being odd.

The non bi-modal members of the n B lX  family do not exhibit error extension. 

This is because the line coding redundant bits are not required at the receiver and 

are thus discarded, without affecting the word. The bi-modal codes, i.e. the n B l I  

and n B lD R , are affected by error extension. Each member of the n B lX  family 

of ECLCs will now be examined in more detail.

6.5.1 The nB lP  ECLC

The n B lP  line code is .an added bit code whereby the extra bit is a parity bit. 

In order to offer error correcting properties a parent (n, k) BCH code is initially 

used, k information bits are therefore encoded into n code word bits which are then 

encapsulated in the n B lP  line code generating an {n-\-1, k) code. As explained in 

chapter 3, if runlength limiting properties are required, then odd parity must be 

used. In such a case the maximum runlength will be equal to RLmax =
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The use of odd parity will not place bounds on the RDS. The n B lP  ECLC 

can be modified so that both the RDS and RLmax are bounded, but this can only 

be applied to specific codes such as the Hamming and BCH (7,4) codes. This is 

achieved by the application of even parity and the elimination of the all-one and 

all-zero code words. For example, if the BCH (7,4) code is used, the code word 

disparity will be equal to zero in all cases, except for the all-one and all-zero words. 

The alphabet for such a code, using a parent (7,4) ECC which results in a (8,4) 

code, is shown in table 6.1.

The major disadvantage of this code is that the all-zero and one words must 

be removed, otherwise the disparity and runlength will not be bounded. The 

remaining 14 possible messages can not be formed from all possible combinations of 

4 bits. In order to avoid the need for complicated look-up tables only 3 information 

bits can be used, thus resulting in a (8,3) code of rate R =  ( |)  =  0.37. Such a 

code will have zero DSV and bounded maximum runlength.

Computer simulation of the (8,4) code has proven that it has similar error 

correcting capabilities as the parent (7,4) BCH code. This is because the extra 

parity bit can only be used to validate the accepted word after hard or soft decision 

decoding has taken place. This feature alone would offer a slight increase in the 

decoding performance of the code. The residual error however, might be on the 

parity bit itself which could result in invalidating a correct word, thus reducing the 

performance. A slight improvement in performance can be achieved if soft decision 

decoding is utilised.

The above algorithm can also be applied using any parent ECC. However, figure
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Information word (8,4) ECLC code words Disparity

0000 0000 000 0

0001 0001 Oil 1

0010 0010 110 1

0011 0011 101 0

0100 0100 111 0

0101 0101 100 1

0110 0110 001 1

0111 0111 010 0

1000 1000 101 1

1001 1001 110 0

1010 1010 o i l  0

1011 1011 000 1

1100 1100 010 1

1101 1101 001 0

1110 1110 100 0

n i l n i l  111 1 + 8

Table 6.1: (8,4) Parity code words, together with their corresponding disparities.
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6.4 indicates th a t with increasing values of n, the percentage of code words with 

RDS values within ±1 are significantly reduced. This implies th a t the significance 

of any single flag, non-bimodal code is also reduced, due to the inability of a single 

bit to affect the disparity. A significant am ount of zero disparity words will only 

occur if the (7,4) BCH or Hamming codes are used, because their RDS values 

range between ±1 and can thus be reduced to zero by a single bit. In view of the 

inability of this technique to be applied to any code, i.e. the lack of generality, it 

is not investigated any further here.
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o5 0.6
JD
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Figure 6.4: Percentage of code words with RDS values within ±1 versus code word 

length n.
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6.5.2 nBlC,  nBlD  and nBlR  codes

The n B lC  is a very simple code that introduces runlength bounds to an ECC. Once 

more, the information bits are initially EC encoded using a parent ECC. They are 

then line encoded by adding an extra bit at the end of the word. The appended 

bit (u(„+i)) has the inverse value of the n — th  bit, i.e. U(„+i) =  v^. The inclusion 

of this extra bit has the effect of reducing the runlength to RLmax = (n +  1). The 

disparity however, is not bounded.

The n B lD  and n B lR  codes are very similar in operation. In the n B lD  code, 

the added bit value is determined by the disparity of the code word, while in the 

n B lR  code the appended bit is determined by the running digital sum of the code 

words transmitted so far. In both cases the added bits aim to reduce the disparity 

or the RDS respectively.

Computer simulation has proved the expected theoretical results. Specifically, 

in terms of decoding power, all three codes have similar performance to the conven

tional BCH code. This is because the extra bit is only used to introduce LC prop

erties without otherwise affecting the ECC. In terms of line coding characteristics, 

all of the above codes have exactly the same performance as their corresponding 

line codes. These can be found in tables 3.3 and 3.4 of chapter 3.

As before, a slight reduction in the code rate is present, reducing R  to 

which is insignificant, especially for long code lengths. In addition, SDD can be 

used since the only function of the line decoder is the removal of the appended bit.
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6.6 Bi-m odal ECLCs

In this section, the bi-modal members of the n B lX  family of ECLCs will be in

troduced. These use a ‘split dictionary’ where each code word has two alternative 

mappings each of opposing disparity. These offer tight runlength and disparity 

bounds but suffer from error extension. The first ECLC using this technique is the 

n B l I  ECLC, introduced by Popplewell in [6, 11] and presented here as an example. 

The basic concept behind this code is then expanded and the enhanced flag pro

tection and concatenated added bit (CAB) algorithms are introduced. These offer 

significant decoding performance improvements without increasing complexity.

The n B l I  ECLC algorithm can be briefly described as follows:

1. A ‘parent’ ECC is initially selected and the code words are constructed. In 

this case, a BCH error correcting code is used.

2. The disparity of each code word is calculated.

3. The code words are then arranged into dictionaries in such a way that the 

R D S  is bounded.

4. The first bit of the code word is used as a ‘flag’ to indicate which dictionary 

has been used.

5. At the receiver, conventional error correction decoding takes place using either 

hard or soft decision decoding techniques.

6. The flag bit is then used to determine which dictionary will be used for line 

decoding.
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The reason behind the above procedure is that, generally speaking, EC code 

words are not of zero disparity. A bi-modal code is therefore required which means 

that each information word must have alternate mappings of opposite disparity, 

if the DSV is to be kept as low as possible. The placement of alternative code 

words into dictionaries is effected in such a way that the first information bit of 

the transmitted code word serves as a flag indicating which of the two mappings 

is utilised. The word is then transmitted and conventionally decoded for error 

correction. It is then passed through the line decoder which uses the ‘flag’ bit to 

determine the appropriate dictionary which is to be used for line decoding. Finally, 

the flag and parity bits are discarded while the remaining bits form the received 

information word.

The n B l I  ECLC has bounded disparity, runlength and a rate oï R  = (^ ^ ) , 

while retaining most of the error correcting power of the ‘parent’ code. The power 

spectrum of this ECLC is presented in figure 6.5, obtained using the Cariolaro and 

Tronca algorithm. [12] As expected, the bounded RDS implies a zero DC content.

A sim ple (7,3) EC LC

As an example consider a single error correcting (7,4) BCH ‘parent’ code of rate 

R  = ^ = 0.57. In order to place bounds on the R D S  the available code words 

are divided into two groups. Each contains opposite disparity words, as shown 

in Table 6.2, where the numbers in the brackets indicate the disparity of each 

individual word. The first bit in each code word indicates which dictionary is used; 

if it is a zero then no inversion has taken place, otherwise the word is inverted. 

This results in a (8, 3) ECLC of rate R  = j  = 0.43.
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(7,3) ECLC

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Normalised frequency

Figure 6.5: Power spectrum of a (7,3) ECLC.
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Information Code words

words —7 < Disparity  < —1 0 < D isparity < 6

000 0000 000 (-7) n i l  111 (+7)

001 0001 Oil (-1) 1110 100 (+1)

010 0010 110 (-1) 1101 001 (+1)

Oil 0011 101 (+1) 1100 010 (-1)

100 0100 111 (+1) 1011 000 (-1)

101 0101 100 (-1) 1010 o i l  (+ 1)

110 0110 001 (-1) 1001 110 (+1)

111 0111 010 (+1) 1000 101 (-1)

Table 6.2: Dictionary arrangement for a (7,3) BCH ECLC. The numbers in the 

brackets indicate the disparity of each code word.

If, for example, the all-zero information vector 0000 was to be continuously 

transmitted without any concern about disparity or runlength, it would be encoded 

as 0000000 using a standard BCH (7,4) encoder. This would result in a continuous 

stream of zeros at the receiver (assuming no errors have occurred) which would 

cause timing recovery problems and unbounded disparity. The code rate in this 

case would he R  = ^ = 0.57.

A (7,3) ECLC is now created by dividing the complete set of code words into 

two halves of opposing disparities and using the first information bit as a flag to 

indicate which part of the table is selected. The resultant rate is equal to i? =  0.43.

Using the above example, if a stream of zeros is to be transmitted, the first
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three information bits (as opposed to four information bits used in the ‘parent’ 

code) will still be encoded as an all-zero vector causing the R D S  to become equal 

to -7. Since R D S < 0, the second set of three zeros will use the alternate mapping 

and will be encoded as the all-one vector. The disparity of this second word will 

therefore equal +1 and the R D S  will now become (—7 -f 7) =  0. The third set of 

information bits will be encoded as the all-zero word and the whole process will be 

repeated. Such a code offers bounded disparity and limited runlength.

Note that the first bit (no) indicates whether the rest of the code word bits are 

inverted or not. If this is in error then all the other information bits will be in 

error as well, i.e. error extension is now present. A modified algorithm is therefore 

introduced which offers enhanced protection to the sensitive flag bit.

6.7 Enhanced Flag Protection

The main drawback of the previous algorithm is the presence of error extension. 

This can be reduced by offering extra protection to the flag bit, given its critical role 

in correctly decoding a code word. In this section, a novel algorithm is presented, 

termed enhanced flag protection (EFP) [13, 14] which when applied to the u B l I  

ECLC significantly reduces the effects of error extension. The EFP algorithm offers 

maximum benefit when used in conjunction with SDD.

The EFP algorithm is a generalisation of the ECLC presented in the previous 

section and increases the reliability of the flag of an n B l I  code. This is achieved 

by sending the flag bit Vq twice. The added bit (%_i) can either be made equal to 

the first bit, i.e. v_i = Vq, or alternatively, equal to the complement of the first bit.
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i.e. V-i = Vq. The advantage of the latter implementation is that the flag and its 

copy will always be of opposite values, so their combined effect on the RDS will be 

equal to zero. In addition, the maximum runlength will be limited to a maximum 

of RLmax = (n +  1). Depending on the error rate required and the quality of the 

link, there are three possible implementations of such a code:

1. In the flrst implementation, EFP 1, both the flag and its copy are placed 

‘outside’ the code word. This will create a (n +  2, k) code of rate R  = ( ^ ^ ) .  

Protection to the flag bits is offered by repetition and at the receiver the two 

analogue values for the flags are averaged before the result is accepted as the 

correct flag. Such a code would be suitable for high SNR communication 

channels.

2. An alternative implementation, EFP 2, consists of increasing the code length 

from n to (n +  1) so that only the flag itself is accommodated within the 

code word. In such a case, protection to the flag bit is offered partly by the 

ECC and partly by repetition. The rate is now decreased to R  = ( ^ ^ ) ,  but 

the effects of error extension are suppressed more, compared to EFP 1. The 

maximum runlength is equal to RLmax =  'n- At the receiver, the analogue 

values of both bits will be averaged and used to replace the analogue value 

of the flag bit within the code word.

3. Finally, both flag bits can be placed ‘inside’ the code word and thus replace 

two information bits. This is termed EFP 3. It will result in a (n, k —2) code of 

rate R  = ( ^ ) .  This code is suitable for poor quality channels as the flag bits 

are protected both by repetition and by the ECC. The maximum runlength
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is reduced to RLmax = n — 1. The n B l I  ECLC presented in the previous 

section belongs to this category, but uses a single flag. At the receiver, the

analogue values of both flag bits will be averaged and the resultant value used 

to replace the analogue values of both flags. SDD will then take place.

A detailed step-by-step presentation of the EFP algorithm using an example 

parent code is now presented.

6.7.1 An example EFP code

Once more, a (7,4) parent BCH code is used as an example. This is modified so 

that it becomes an EFP ECLC which offers improved decoding performance and 

line characteristics. The modified encoding algorithm is as follows:

1. Use a ‘parent’ ECC to construct the code words.

2. Calculate the disparity of each code word.

3. Arrange the code words into dictionaries in such a way that the R D S  is 

bounded.

4. Select a code word according to the information word and the R D S  state. 

Depending on which of the three schemes is selected, the flag bits are calcu

lated and applied. These will indicate which dictionary has been used.

5. At the receiver, the average analogue values of the two flag bits are calculated 

and used to determine the new most likely flag value, replacing the values of 

any flags within a code word. The code word is then EC decoded. Optimal
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protection for the flag bits is therefore achieved regardless which of the three 

implementation schemes is used.

6. Finally, the line decoder selects the appropriate code word before the parity 

and flag bits are discarded.

Therefore by using the EFP algorithm the flag is in effect sent twice. At the 

receiver before any ECC decoding takes place, the two received analogue values 

representing the flag will be averaged. The resultant analogue flag value will thus 

be equal to ri =  which reduces the error extension, because the noise

content of the flag bit is halved. The code word can then be decoded using any 

suitable algorithm. Finally, the line decoder will select the most likely code word 

from the dictionary based on the average value of the flag.

As a further minor modification, the two complementary flag bits can be dis

tributed within the code word. This is achieved by placing the second (inverted) 

copy of the flag at a distance of ( |)  from the beginning of each word. The all-zero 

and all-one code word strings are now interrupted by the placement of the second 

flag in the middle. By time spreading the flag bits the probability of both of them 

being affected by a burst of interference is greatly reduced.

In the following section, a novel family of ECLCs will be introduced, termed 

concatenated added hit (CAB).
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6.8 CAB Algorithm Description

The concatenated added bit ECLC is based on the n B l I  added bit ECLC. The 

latter utilises a ‘parent’ ECC to encode k information bits into n code word bits, 

with a t error correcting capability. The parent code can be any linear transparent 

code, to ensure that every code word has its inverse which is also a valid code word. 

Line coding properties are then achieved by inverting code words according to the 

RDS and code word disparity. Inversion is indicated by using a flag bit. If the 

flag equals zero no inversion has taken place, otherwise the code word has been 

inverted. However, if at the receiver the flag bit is erroneously decoded then all 

the code word bits will be in error.

In the CAB algorithm, an (n, k) error correcting code is used to form a n x  (/c+l) 

matrix, see flgure 6.6. The initial k rows of this matrix contain k conventional EC 

code words. The k information bits (Info 1 to Info 4) of each code word are EC 

encoded into n code word bits, the flag bit is set to zero, and the disparity (d%) 

of each code word and its associated flag is calculated. This is compared to the 

running digital sum intermediate (RDSI) variable which is the current value of the 

RDS. RDSI is updated every time a complete code word and its associated flag are 

generated, as opposed to the RDS which is updated once the complete matrix is 

transmitted.

If di X R D S I  > 0 then all the code word bits are inverted and the flag bit is 

set to one. If d{ x R D S I  < 0 then the flag bit remains a zero and no inversion 

takes place. This process is repeated k times which results in the generation of k 

flag bits (Flag 1 to Flag 4). These are then conventionally encoded into n bits thus
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forming the (k +  1) row.

Info  1 In fo  2 In fo  3 In fo  4 P arity  1 P arity  2 P arity  3 I F lag  I r - -------

In fo  I In fo  2 In fo  3 In fo  4 P arity  I P arity  2 P arity  3 1 F lag  2 r - - - -

In fo  1 In fo  2 In fo  3 Info  4 P arity  1 Parity  2 P arity  3 1 F lag  3 r - ’

In fo  1 In fo  2 In fo  3 In fo  4 Parity  I Parity  2 P arity  3 1 F lag  4  1

F lag  I F lag  2 F lag  3 F lag  4 Parity  1 Parity  2 P arity  3

1 A 1 1

Figure 6.6: Cascaded added bit ECLC matrix.

EC encoding the flag bits ensures that some degree of protection exists, thus 

minimising the presence of error extension. The resultant matrix can then be trans

mitted either column by column (interleaved) so that the flag bits are separated 

in the time domain, or non-interleaved if tight runlength and disparity bounds are 

necessary. Interleaving is performed so that a possible burst of noise or interference 

will not affect all the flag bits, thus minimising the effects of error extension but 

at the expense of tight line coding bounds.

In our example, we have used an (n, k) BCH ECC where n  is an odd number. 

With the introduction of the flag bit it is possible to generate zero disparity words. 

These can cause the code to exceed its disparity bounds since their inversion does 

not affect the disparity. If such words have occurred, an extra step is added to the 

algorithm, whereby the overall disparity (odi) is calculated at the completion of
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the matrix. If odi x R D S  > 0 then the complete matrix is inverted.

In order to place tighter disparity bounds, if a code word and its associated 

flag have zero overall disparity and the RDSI is positive then inversion of the code 

word will take place. The flow diagram of the CAB algorithm is shown in flgure

6.7.

yes
d R D S I> 0 ? d . = 0? RD SI > 0?

yes yes

yes

Repeat for all k  codew ords 
R D SI = R D SI + d I

Invert code w ord and associated flag 
S e td i = - d  i

E ncode flag bits and calculate 
overall disparity odi

Transm it bits

S tore code w ord and flag in m atrix

Invert the com plete m atrix

R D SI =  RD S

G enerate  info bits and EC  encode 
Set flag  to zero  and find disparity  d.

Figure 6.7: CAB flow diagram.

At the receiver, once the matrix is complete, each row of code words is conven

tionally decoded, using SDD if required. Then line decoding takes place, whereby 

each code word is inverted according to its corresponding flag. The parity and flag 

bits are then discarded, and the resultant information bits are accepted.
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The CAB algorithm consists of information bits and n x (A: +  1) code word 

bits. The code rate is thus equal to R  = - . The disparity bounds are

(—2n — 1 +  A;) < R D S  < {2n — 1 — A:). The latter ensures a zero DC, a suppressed 

low frequency content and a bounded maximum runlength.

Depending on the quality of the communications link, the CAB algorithm can 

be modified to offer a variable decoding performance and rate. This is achieved by 

using a less powerful ECC (of higher rate)for high SNR applications, and vice-versa.

Finally, the CAB algorithm allows the use of SDD at the receiver. This offers 

improved decoding performance with a minimal increase in complexity.

6.8.1 CAB N algorithm

The CAB algorithm can be very easily modified so that the rate is increased without 

significantly affecting the runlength and disparity bounds or decreasing decoding 

performance. This is achieved by considering groups of N  error control words as 

line code words and using a single flag to indicate inversion. Such a code is termed 

‘CAB N’ ECLC and can be considered as the generalised case of the CAB code.

For example, if A  =  2 then a group of two conventionally encoded n  bit code 

words will use a single flag to indicate whether both are inverted or not, see figure

6.8. Thus, the k initial information bits (Info 1 to Info 4) are conventionally 

encoded, producing three parity bits (Parity 1 to Parity 3). The second set of 

information bits (Info 5 to Info 8) is also conventionally encoded, producing three 

further parity bits (Parity 4 to Parity 6). The disparity of both code words (and 

their associated flag) is then evaluated and depending on the current value of the
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RDSI, inversion may then take place.

2 k

Info 2 Info 3 Info 4 Parily I Parity 2 Parity 3

Info 6 Info? Info 8 Parity 4 Parity 5 Parity 6

Info 2 Info 3 Info 4 Parity I Parity 2 Parity 3

Into 6 Info 7 Info 8 Parity 4 Parity 5 Parity 6

Info 3 Info 4 Parity I Parity 2 Parity 3

Info 7 Info 8 Parity 4 Parity 5 Parity 6

Info 1 Info 3 Info 4 Parity I Parity? Parity?

Info 5 Info 7 Info 8 Parity 4 Parily 5 Parity 6

F lag  1 

1 ■

F lag  2 

i  ■ ■■

F la g s

1

H ag  4 

k

P arity  1 Parity  2 P arity  3

F lag  1

F lag  2

F lag  3

H a g  4

Figure 6.8: Cascaded added bit ECLC with grouped (N=2) code words.

Grouping excessive numbers of error correcting words together {N > 3) does 

not offer significant rate improvements while it adversely affects the maximum run

length and disparity bounds. Figure 6.9 presents the rate gain versus the group 

size N, for codes of different error correcting capability. The rate gain is defined 

as the fraction of the CAB N ECLC rate over the conventional CAB rate. From 

figure 6.9 it is clear that increasing the value of N over 2, does not offer a signifi

cant advantage in rate, to justify the reduced performance in terms of line coding 

characteristics. For this reason only N  = 2 ECLCs will be considered here.

The CAB N rate is equal to R  = while it can be mathematically

proven that the decoding performance of the CAB N code is exactly equal to that 

of the conventional CAB code (shown in the following section). Finally, the RDS 

can obtain any value between {—{N +  l)n  — 1 +  A:) < R D S  < {{N -F l)n  — 1 — k).
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1 . 0 1 4

t=1Q1.012
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1.002

Codeword grouping size (N)

Figure 6.9: CAB ECLC rate gain for various group sizes, using a n =  127 BCH 

parent code with varying values of t.

The main advantages and disadvantages of the CAB family of ECLCs can be 

summarised as follows:

SDD can be used at the receiver.

Rate can be very good, especially for larger values of N.

Decoding performance is the same as that of the n B l I  code, regardless of 

the value of N  used.

The CAB ECLCs are easy to implement.

All of the above are achieved at the expense of very tight runlength and 

disparity bounds.
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6.9 Simulation Results of the nBlX  ECLCs

Each ECLC presented in this chapter is assessed by using computer simulations. 

Three such programs will be discussed here:

1. The first program presents the decoding performance of the code in terms of 

error ratio versus signal to noise ratio [15, 16]. This was presented in detail in 

chapter 4. It should be noted that in the previous section, three alternative 

schemes were suggested for placing the added fiag bit. Since all three will 

give similar decoding results, only one such scheme is simulated, i.e. the EFP 

2 (n +  1, /c — 1) code.

2. The second program determines the line coding characteristics, such as max

imum runlength and running digital sum, as presented in chapter 4.

3. Finally, the third one uses the Cariolaro and Tronca [12] algorithm to deter

mine the power spectrum of each code, as presented in chapter 4.

The BCH (7,4) and BCH (31,26) single error correcting codes with rates R  =

0.57 and R  = 0.84 respectively, are used as examples.

It should be noted here that the simulation results on decoding power are not 

fully representative of a realistic situation. This is because the communications 

channel used is not limited in any way by effects such as low frequency cut-off 

and runlength. For this reason, the introduction of line coding only creates error 

extension without offering any performance benefit to the simulation.

Figure 6.10, demonstrates the decoding performance of a (7,4) n B l I  ECLC 

with HDD while the SD decoded version is presented in figure 6.11. The (31,26)
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code with SDD is presented in figure 6.12.

In the first two figures the lower line indicates the decoding performance of 

an (8,3) EFP BCH code of rate R = 0.37, with double flag if HDD or SDD are 

respectively used. The top line shows the performance of a (7,3) n B l I  ECLC 

of rate R  = 0.43, where the first information bit is used as a flag. The middle 

line shows the performance of a conventional (7,4) ECC of rate R  = 0.57. The 

improved decoding performance of the soft decision decoded algorithm can also be 

observed by comparing the two figures.

Since the first bit indicates whether the rest of the information bits are inverted 

or not, the added protection for this sensitive data becomes more important for 

longer code lengths. This is reflected in the decreased performance of the (31,26) 

code used in the second example, shown in figure 6.12.

The lower line indicates the decoding performance of a conventional BCH 

(31,26) ECC, of rate R = 0.84 with no line coding properties. The middle line 

indicates the performance of a (31,24) EFP ECLC of rate R  = 0.77 which utilises a 

double flag, while the top line indicates the performance of a (31, 25) n B l I  ECLC 

of rate R  = 0.81 which utilises a single flag.

In this example, the double flag code gives slightly degraded decoding perfor

mance results compared to the conventional code (which has no LC characteristics) 

due to the larger value of k. However, the reduction in rate due to the second flag 

is not as significant as it is for the smaller code lengths.

Generally speaking, the decoding performance of the double flag ECLC will be 

very similar to that of the parent ECC. Although the decoding performance of two
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Figure 6.10; HDD performance using a parent BCH (7,4) ECC with and w ithout 

ECLC properties.
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Eignre 6.11: SDD performance using a parent BCH (7,4) ECC with and w ithout 

ECLC properties.
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31,26,1

SD R=0,84
ccLU
COcc
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Figure 6.12: SDD performance using a parent BCH (31, 26) ECC with and without 

ECLC properties.

example BCH codes has been presented here, computer simulations indicate that 

similar results occur regardless of the code length used.

However, the line characteristics of the proposed code must also be examined: 

Since the disparity is bounded, a null in the power spectrum at DC is generated, 

see figure 6.13. In addition, the runlength characteristics are as shown in table 6.3. 

The EFP algorithm offers better performance that any of the other codes at the 

expense of rate, as can be seen from the third column of table 6.3.
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1.4

1.2

(8,3) EFP ECLC

0.6

0.4

0.2

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Normalised frequency

0.9

Figure 6.13: Power spectrum of a (8,3) ECLC.
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Code Used: Maximum Runlength Rate

Parent ECC Unbounded k
n

Single fiag ECLC 2 • n k - l
n

EFP algorithm 1 n +  1 k
n + 2

EFP algorithm 2 n f c - 1
n + 1

EFP algorithm 3 n — 1 k - 2
n

Table 6.3: Runlength performance and rates of various ECLC codes.

Finally, it should be noted that since the overhead of the extra bit remains 

constant regardless of code length, the EFP code is more efficient for longer code 

words. In such cases the reduction in rate is less significant which makes the 

ECLC more attractive. The decoding performance of the CAB family of ECLCs 

is presented in section 6.11.

6.10 N = 2  ECLCs

In this section, the second main set of ECLCs is presented. These codes are termed 

N  = 2 ECLCs, since two code words are coupled together and transmitted as a 

single word.

A problem in constructing ECLCs from odd code word length codes is that, 

by definition, no zero disparity code words exist. If BCH ‘parent’ codes are used 

then the code word length will be odd. Popplewell [17] has addressed this problem 

by transmitting groups of N  code words together so that the overall disparity
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is bounded. It was also proved that using groups of more than two code words 

together does not significantly increase the rate, so only pairs of code words (N  =  2) 

will be examined.

As an example, consider a BCH (n, k) parent code which will then be used to 

generate a (2n, 2k — 1) N  = 2 code. The latter will have a large percentage of 

zero disparity code words and a reasonable rate R  = ( ̂ 2̂ xn) ) • algorithm for 

producing such a code can be divided in the following steps:

1. Generate k information bits and conventionally encode into n bits. This word 

will have a disparity of di.

2. Generate k —1 information bits, set the k —th bit equal to 0 and conventionally 

encode to n bits. This word will have a disparity of ^2- The k — th  bit is used 

as a flag to indicate if both the first and second words are inverted or not.

3. Calculate the disparity (d) of both words, i.e. d = di -L o?2j transmit both 

words together and update the value of the RD S.

4. Repeat step 1 and 2 using the next set of information bits so that the third 

and fourth code words are generated, of disparity dg and d^, respectively. 

If the sum of dg +  d4 has the same sign as the R D S  then both words are 

inverted, otherwise they are transmitted. The process is repeated from step 

1 for the next information bits.

At the decoder, the k — th  information bit of the second code word of each 

group is examined. If it is equal to 0 then the code words are normally decoded.
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otherwise they are inverted before decoding is effected. Thus the disparity and the 

runlength are both bounded while the reduction in rate is insignificant.

A variation of this algorithm was also introduced whereby the all-zero and 

all-one code words were not conventionally encoded but look-up tables were used 

instead. Thus tighter disparity and runlength bounds were achieved but the gen

erality of the code was lost. For this reason, such codes were not considered any 

further.

A sim ple exam ple of a  A  =  2 code

The N  = 2 ECLC is made easier to understand if an example is presented. For 

this purpose, a (7,4) BCH code is used as a parent code. It is assumed that the 

information bits consist of a row of identical symbols (e.g. a string of ones) which 

is a worst case situation in terms of line performance criteria {RD S  and RLmax)- 

This is because if a normal ECO were to be used, it would produce a continuous 

stream of ones which would cause both the R D S  and RLmax to tend to infinity. 

A N  = 2 code will thus create a (14,7) code of rate R  = 0.5 using the following 

encoding algorithm:

1. Encode the initial four information bits. The complete code word is now 1111 

111 with disparity d\ = -\-7.

2. Encode the next three information bits. The fourth information bit is used 

as a fiag and is initially set to zero. The code word is then conventionally 

encoded, producing the code word 1110 010 with a disparity c?2 =  + 1.
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3. The running digital sum is now equal to R D S  = (+7 +  1) =  +8 and both 

words are transmitted.

4. Steps 1 and 2 are repeated and since the information bits are a continuous 

stream of ones, the same two code words are generated. However, since the 

disparity of this second group of code words is once more equal to +8 and 

R D S  =  +8 both words are inverted. Thus the transmitted code words are 

now 0000000 and 0001101 with a disparity of —8 and the R D S  is now equal 

to R D S  = (+8 — 8) =  0. The k — th bit of the second word is used as a flag 

and for this reason is always equal to zero unless both words are inverted. 

The runlength for the worst case (the all-zero information stream) is also 

limited to RLmax = 14.

At the decoder, if the k — th bit of the second word is equal to one then both 

words are inverted and then decoded, otherwise they are conventionally decoded. 

The advantage of this algorithm is that line coding characteristics are achieved 

without requiring alternative mappings for each word and therefore without signif

icantly reducing the rate of the code.

6.10.1 Improvements on the N = 2  codes

The N=2 code offers good line characteristics together with a reasonable rate and 

is simple to implement. However similarly to the codes presented in the previous 

section, it also suffers from reduced decoding performance due to error extension.

Specifically, if the flag bit is in error then the information bits of both code 

words will be erroneously decoded. The use of SDD can offer a slight improvement
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in performance, but as before, it is much more practical if a second information 

bit is sacrificed to increase the resilience of the fiag bit [18]. This is achieved by 

replicating and inverting it. With the use of SDD at the decoder the average 

values of both fiag bits can be used, thus significantly reducing the possibility of 

erroneously decoding the fiag bit and further reducing the runlength bounds. In 

addition each copy of the flag is protected by the corresponding EC word to which 

it belongs.

The improved N  — 2 algorithm is once more demonstrated using the (7,4) BCH 

code as an example. A continuous stream of ones will be chosen as the information 

vector once more, since it highlights the differences with the previous code:

1. Encode the initial three information bits. The fourth information bit is used 

as a fiag and is initially set to one. The complete code word is now 1111111 

with disparity di = +7.

2. Encode the next three information bits. The fourth information bit is again 

used as a fiag and is initially set to zero. The code word is then conventionally 

encoded, i.e. 1110010 with a disparity c?2 = + 1.

3. The resultant disparity is now equal to R D S  = (+7 +  1) =  + 8. Both words 

are transmitted.

4. Steps 1 and 2 are repeated and the same two code words are generated. 

However, since the total disparity of this group of code words is once more 

equal to +8 and R D S  = +8 then they are both inverted. The transmitted 

code words are now 0000000 and 0001101 with the total disparity equal to
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—8 and R D S  = 0.

Therefore by replicating the flag a signiflcantly improved decoding performance 

is achieved. The penalty is a further reduction in rate which now equals R  = ( ^ |^ )  

or =  0.43, if the example code is used.

6.10.2 Simulation results for the N = 2  codes

The simulation used in the previous section was modifled to produce the results 

shown in this section. Speciflcally the (14, 7) and (14,6) codes were simulated with 

both HDD and SDD and the results are shown in flgures 6.14 and 6.15. The lower 

line in each flgure indicates the decoding performance of a (7,4) parent BCH code 

if HDD or SDD are used. The top line shows the performance of a (14,7) code 

with a single flag while the middle line shows the performance of the (14,6) code 

with a double flag.

As expected, the decoding performance of the single flag N=2 code is worse than 

that of the parent code due to error extension. If however, the flag bit is replicated 

then the decoding performance is improved and almost matches the performance 

of the ECO. Similar results are present for various other code lengths.

6.10.3 M anchester ECLC

The Manchester ECLC presented in this section is a speciflc case of the N  = 2 

codes presented in the previous section. It is based on the idea that by transmitting 

two EC code words together, an even length code is generated which enables zero 

disparity words to be created. These do not require alternate mappings and thus
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Figure 6.14: HDD performance of N=2 error correcting line coding code, using a 

(7, 4) parent ECO.
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Figure 6.15: SDD performance of N=2 error correcting line coding code, using a 

(7, 4) parent ECO.
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significantly simplify the coding operation. A simple and yet very powerful solution 

would be to transmit a code word together with its inverse.

There are two ways in which this could be done, either by appending the in

verted bits at the end of each word or by interleaving them in the word itself, so 

that each bit is followed by its inverse (as performed in Manchester encoding). The 

advantages of this method are the very tight bounds of both the running digital 

sum and the maximum runlength achieved which in the case of the Manchester 

encoded word are R D S  =  ±1 and RLmax = 2. The disadvantage is the large 

reduction of rate; this is now halved since the ‘parent’ (n, k) BCH code will be

come a (2 X n ,  k) code. However, if SDD is introduced, the fact that each bit is 

transmitted twice can be used to achieve significant decoding performance gains. 

This is because at the receiver the two analogue values for each bit can be averaged 

and the resultant value taken as the accepted one. This technique will be termed 

‘Manchester SDD’ [19]. Conventional SDD can then take place (if required) using 

the resultant analogue values to determine the least confident bits [20]. The new 

algorithm is presented in block diagram form in figure 6.16.

In order to theoretically explain why this decoding performance improvement 

is possible by replicating the code word bits and inverting them, a simple noise 

analysis is performed:

Assume that a bit (where I < i < n) and its complement vï are transmitted 

through a communications channel affected by Gaussian noise. At the receiver 

f'i = Vi + n and Ti — vl -\- n' are obtained, where n and n' are the independent 

Gaussian noise samples with a being the standard deviation.
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TX

ECC Encoded Word

HD/SD Decode
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Generate Inverse

Average the 2 
Received Bits

Figure 6.16: Block diagram of third algorithm.

At the receiver the two bits Vi and vï are averaged thus providing us with an 

analogue value equal to

(vi +  n) -  (vi + n') 2 X Vi + (n — n')
(6 .1)

2 2

Concentrating on the noise vector only, has a standard deviation {SD)

of

SD  = =  a  .
2 / 2

Now the ratio of -A equals \/2  therefore the noise reduction will be equal to

(6 .2)
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20 X log— =  10 X log2 = 3dBs. (6.3)

It therefore has been proven that by averaging the analogue values of the re

ceived bits a maximum 3dB noise improvement is achieved. It should be noted 

here tha^ as a general rule, SDD can achieve about ZdBs of coding gain. However 

the 2  dB improvement presented here and obtained through Manchester SDD is 

generated by replicating the code word bits before transmission. This allows us 

to use conventional SDD as well as Manchester encoding and have about 4 dBs of 

overall coding gain.

S im ulation  resu lts  of th e  M anchester codes

The computer simulator was further modified to generate both versions of the 

codes mentioned in the previous section, i.e. the Manchester code with the extra 

bits interleaved in the word and the variant with the second set of bits placed at 

the end of each word. A number of different code lengths were simulated and one 

is used here as an illustrative example.

In figure 6.17 the top line indicates the computed decoding performance of a 

BCH (31,26) single error correcting code of rate R  = 0.84 with no LC proper

ties. The middle line represents the Manchester encoded version of the same code 

which forms a (2 x 31,26) code of rate R = 0.42 with very tight R D S  and RLmax 

bounds. The significantly enhanced decoding performance of the latter code is 

also evident. Finally for comparison purposes, the lower line indicates the perfor

mance of a (63,30) 6 error correcting code. This has a similar rate {R = 0.48) to
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the Manchester encoded one but offers no LC properties. In all three cases hard 

decision decoding was used, but similar relative results occurred if SDD was used.

Comparison of similar rate codes
10"
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\
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Figure 6.17: Decoding performance of the third algorithm.

The same soft decision decoding process can be used in the case where the 

complementary bits are all appended at the end of the word. In this case the 

bounds for both disparity and runlength are expanded. Specifically, the RDS values 

increase from R D S  =  ±1 to R D S  = ± n  while the maximum runlength from 

RLmax =  2 to RLmax = 2 ' TL. The advantage of this algorithm is tha t for bursty 

noise channels greater separation between copies of the same bit in the time domain 

exists. It therefore becomes unlikely that a burst of noise will affect both copies.
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especially for long code word lengths.

Another possibility would be to transm it the ‘raw’ inform ation da ta  without 

using a ‘paren t’ ECC. Even in such a case, most of the theoretical ZdB gain could 

still be recovered thus offering limited error correction capabilities and maintaining 

full line coding properties. Such a scheme would be very simple to implement and 

under suitable circumstances could offer acceptable decoding performance.

The power spectrum  of the Manchester ECLC is shown in figure 6.18. The 

la tter indicates no DC component and very good suppression of low frequencies, 

both of which arise from the very tight disparity bounds.

Using the third proposed ECLC algorithm it was dem onstrated th a t significant 

line and error control coding properties can be gained, at the expense of rate. It 

therefore becomes clear th a t decoding performance can be effectively ‘exchanged’ 

for LC properties. The main advantages of this algorithm  are the very simple 

nature of the encoding and decoding algorithm which can be used in either uncoded 

or hard/soft decision coded words, and the very good decoding and line coding 

characteristics present.

Up to this point, a number of existing and novel algorithm s have been presented. 

In the following sections several aspects of the performance of these ECLCs, such 

as the calculated decoding performance and rate, will be examined in detail.
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Figure 6.18: Spectral densities of the Manchester ECLC.
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6.11 Calculating the Decoding Performance of 

the Single Flag Codes

The decoding performance of all the single flag, bi-modal codes can be very easily 

calculated. This applies to the n B l I ,  n B lD R ,  CAB, CAB N, and N  = 2 ECLCs 

all of which have exactly the same decoding performance. In this section, the CAB 

code will be used as an illustrative example:

Assume that the parent (n, k) ECC is used to create a CAB ECLC consisting 

of (k +  1) rows of n bits each. Since only the information bits of each code are of 

interest, all the parity bits can be ignored. The residual bit error rate of the CAB 

code {RBER')  can be expressed in terms of the residual bit error rate (RBER) of 

the parent code. By definition.

L>f>Tpr>i   Total number o f  in fo  bits in error
Total number of in fo  bits

Assume that the total number of information bit errors in the CAB code are et 

while the total number of information bits is equal to k^. Therefore,

R B E R '  =  | |  =  ^  (6.4)

where ei indicates errors caused by inverting code words due to errors in their 

corresponding flags, and 62 indicates conventional errors. By definition et = 61 +  62- 

In order to calculate 61, we assume that a number x  of errors occur in the 

last (A: +  1) word which contains the flag bits. In such a case, x = R B E R  x A;, 

since the code words are encoded using the parent code. Therefore, x  code words
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will be wrongly inverted, causing Ci = x x k bit errors in total. From this figure 

however, a number Cq of original errors (errors that pre-existed the inversion) must 

be subtracted, because they will now be corrected. Therefore, ei =  — Cq and

6 i = k x x  = k x  [R B E R  X k) = X R B E R  (6.5)

and

6 o = k X X X R B E R  = k X [R B E R  x k) x R B E R  = k^ x RBER?  (6.6)

Subtracting equation 6.6 from equation 6.5, e\ is determined to be

ei =  =  [k‘̂ X R B E R ) -  (/ĉ  x RBER?)  (6.7)

The number of conventional errors in the remaining code words is equal to:

C2  = [ k - x ) x  R B E R  x k  = P  X R B E R  x (1 -  R B E R )  (6.8)

Therefore the total number of errors can be determined by substituting equation 

6.7 for 6i and equation 6.8 for 6 2  into equation 6.4,

6 t = 6 i 6 2  = [k? X R B E R ) — [k"̂  x RBER?)-\-

^ k ^  X R B E R  X (1 -  R B E R ))  (6.9)
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Thus RBER 'can  now be obtained:

_  et _ 2 x P x  R B E R  x (1 -  R B E R )  
R B E R  -  ^  -  p

R B E R ' =  2 X R B E R  x (1 -  R B E R )  (6.10)

The R B E R  of the parent code can be very easily simulated or calculated. Using 

equation 6.10 it is now possible to calculate the decoding performance of all the 

single flag bi-modal codes. Simulation results confirm the validity of the calculated 

results.

As an illustrative example the (127,106) BCH parent code is used to form a 

CAB ECLC. The decoding performance of the CAB code shown in figure 6.19 with 

dashed lines, is slightly degraded compared to that of the parent code (shown in 

solid lines) due to error extension. The decoding performance of hard decision 

decoding is shown on top (HD), followed by the decoding performance using the 

Chase 2 algorithm and the maximum likelihood limit (ideal SD).

The decoding performance of all of the single fiag added bit codes is exactly 

the same as that of the conventional CAB algorithm.

6.12 Calculating the Decoding Performance of 

the EFP Codes

The decoding performance of the EFP ECLC can be also very easily calculated. 

Once more we assume that the residual bit error rate (RBER) of the EFP code
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Figure 6.19: CAB decoding performance for a (127,106) BCH code with SDD.

is termed RBER'^ and that a total number x  of codewords are transmitted. Of 

these X words, X\ will have conventional errors and X2 will have errors due to an 

incorrectly decoded flag bit. Once more, by definition

X =  X i - \ -  X2 (6 .11)

R B E R ■X
(6 .12)

X i  =  X  — X 2  =  X  —
R B E R •X

(6.13)



Chapter 6 - Error Correcting Line Codes 175

The total number of errors Ct can be sub-divided into two parts, ei and 6 2  which 

are the errors in x\ and X2, respectively. Therefore, substituting equations 6.12 and 

6.13 in equations 6.14 and 6.16 we obtain equations 6.15 and 6.17.

6 i = Xi • k ' R B E R  ^  (6.14)

ei = k - x -  R B E R  • (1 -  (6.15)

6 2  = X2 • k — X2  ’ k ■ R B E R  => (6.16)

62 =  fc • I  • R B E R  ■ (-— (6.17)

The total number of errors is now equal to:

o  0 n n 7̂ n
et = e , + 6 2  = kx^ R B E R  • ( -^  - — ) (6.18)

Finally, using equation 6.18, R B E R ' becomes equal to:

R B E R ' = —  = R B E R  ■ (6.19)
k  ' X  2

We have therefore managed to calculate the performance of the EFP ECLC 

based on the RBER of the ECC. As an example, we apply formula 6.19 to a (7,3)
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ECLC and figure 6.20 is obtained. Clearly the calculated decoding performance 

equals the simulated decoding performance of the same code, shown in figures 6.10 

and 6.11.

10'

UncOded

-210'

SDD

10'

10

-610'
1 1.5 2 2.5 3 3.5 4 4.5 5

SNR

Figure 6.20: Decoding performance for a (7, 3) EFP ECLC. 

Similar results are present for other code lengths.

6.13 Rate Considerations

Any realistic system requiring the use of EEC or ECLCs is likely to have a defined 

error performance target. This would mean that maintaining a given decoding 

performance level (or residual bit error rate) would be paramount and the designer 

would have to work around it, should any other features be required. Applied to 

ECLCs this would be translated as the rate reduction required for introducing line
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characteristics while maintaining a given RBER. This is in contrast to the results 

presented so far, where the RBER was allowed to vary in value with each successive 

ECLC.

Figure 6.21 demonstrates two codes having on average similar decoding power 

but each with different properties. The dashed line indicates the performance of a 

(127,92) 5 error correcting BCH code of rate R  = 0.72 which has no line coding 

characteristics. The continuous line indicates the performance of a (63 x 2,57) 

single error correcting code which forms a (126,57) code of rate R  = 0.45. This 

uses the Manchester encoding principle presented in section 6.10.3 and has very 

tight runlength bounds {RLmax = 2) and disparity bounds (—1 < R D S  < +1). 

This figure demonstrates that for a given RBER there will be a reduction in rate 

from 0.72 to 0.45, i.e. a reduction of 62.5%.

If using figure 6.21 an arbitrary target RBER of l.Oe — 7 is selected (which 

occurs at a SNR of 6dBs) a rate comparison can be effected for the other ECLCs.

Specifically, if a single flag bi-modal code is used, then a parent (31,11) seven 

error correcting code with a resultant rate R =  ( |y) =  0.32 is required to achieve 

the target RBER. Compared to the Manchester code (which also offers improved 

line coding characteristics) this encoding scheme has an unacceptably low rate 

while offering similar decoding performance.

If a bi-modal code with a double flag is used, then in order to achieve the target 

RBER a parent (31,16) triple error correcting code is required with a resultant rate 

R  = ( | | )  =  0.45. The performance of this coding scheme compares favourably in 

terms of decoding performance and rate to the Manchester ECLCs, but does not
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Figure 6.21: Rate comparison of similar codes.

offer tight runlength and disparity bounds.

These results are presented in table 6.4 assuming that a target RBER of 1 x 10~^ 

is required.

It should be noted that the relationship between the above line coding param

eters remains constant regardless of the code used. Thus from the above table the 

Manchester code seems to have the best line code characteristics and is the simplest 

one to implement.
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Target RBER=1 x 10 ^

Code Used: {RLmax ) (RDS) Rate reduction (%)

(127,99) BCH ECC code Unbounded Unbounded 0

(63 X 2,57) ECLC 2 ±1 3Tfl%

(31,11) Single flag ECLC 17 ±8 55.6%

(31,14) Double flag ECLC 17 ±8 37.5%

Table 6.4: Comparison between rate and LC characteristics of various ECLC codes. 

6.13.1 Line code rate

An alternative method of quantifying the rate of each of the proposed and existing 

ECLCs can be described using the concept of concatenated codes. Specifically, the 

ECLCs can be considered to consist of two distinct parts: the error correcting code 

of rate Ri = ^ and the line code of rate R 2 . The overall rate will be Ro = R 1 X R 2  = 

^ X i?2- Using the known value of Ro we can describe most of the presented ECLCs 

as functions of k (the information bit length) versus i?2, as follows:

•  The n B l I  ECLC has R^ = Therefore, R 2 = ^
^ n  n  K  ̂ ^ k

•  XhG tiBXI EFP 1 has Rq — n+ 2  ^2 — ^”9n+2

•  The n B l I  EFP 2 has iî„ =  ^  i ?2 =

•  The n B l I  EFP 3 has %  =  ^

•  The CAB ECLC has rate Ro =  ^

.  The CAB N ECLC has rate %  =  =
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•  The N  = 2 ECLC has R 2 — while the improved N  — 2 has a rate 

i?2 =  ^  equal to that of the n B l I  ECLC.

•  Finally, the ‘Manchester’ ECLC has a constant LC rate R 2  = ^.

All of the above values are used to derive figure 6.22, where a n  = 127 BCH code 

is used with various values of k to present the differences in rate R 2 . Increasing 

values of k indicate that a progressively less powerful EC decoding code is used.

For example, a (127,120) BCH code (upper end of the x-axis) can correct a 

single error while a (127,8) BCH code (lower end of the a;-axis) can correct upto 

32 errors. The rate of the ‘Manchester’ code is constant at R 2 = ^ and is therefore 

not shown. The a;-axis displays log2 {k) for clarity.

Figure 6.22 indicates that all ECLCs asymptotically approach unity as the val

ues of k increase. This means that they are becoming progressively more efficient, 

with the EFP 1 being the most efficient ECLC for low values of k and the C A B N  

with N  = 2 code for higher values of k. These observations are valid when n — 127.

If other values of n are used, then the performance of the codes will also vary. 

Figure 6.23 presents an indicative example where the ECLC rate performance with 

n =  31 is shown. As expected, for lower values of n the rate performance of the 

EFP 1 code decreases and the cross-over point with the CAB N  = 2 ECLC occurs 

for lower values of k.
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Figure 6.22; ECLC rate comparison with n  =  127.
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Figure 6.23: ECLC rate comparison with n =  31.
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6.14 Summary

In this chapter, a number of new concatenated and combined error correcting 

and line codes were presented. The n B lX  family of ECLCs demonstrated that 

elementary LC properties can be easily achieved with a very small reduction in 

rate and without significantly affecting decoding performance or increasing circuit 

complexity.

The EFP and ‘Manchester’ ECLC combined soft decision decoding techniques 

together with modified existing ECLC algorithms and produced tight bounds for 

both runlengths and disparity. At the same time, they achieved improved decoding 

performance and are relatively simple to implement. Finally the CAB family of 

ECLCs was introduced which can offer very good overall code rates and decod

ing performance at the expense of tight line coding bounds. Simulations of both 

the power spectrum and the decoding power indicate the expected performance 

improvements for all ECLCs.
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Chapter 7

Conclusions

In this thesis, a number of existing and novel error correcting, line, and error 

correcting line codes were presented. Particular emphasis has been placed on de

veloping codes which were efficient, general in nature and suitable for high bit 

rates.

The fundamental principles of error correcting and line coding were initially 

presented. Existing coding schemes were then examined and new ones developed, 

which addressed their shortcomings. Computer simulation was then used to vali

date the theoretical results. The latter required the development of novel techniques 

which offered a significant reduction in the amount of computational time required.

Line and error control coding were then combined together to create an error 

correcting line code. This manages to avoid most of the problems created by the 

use of concatenated codes while at the same time offers improved performance.

Finally the concept of soft decision decoding was also introduced. This can be 

used on all three types of code presented so far, i.e line, error control and error

1 8 6
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correcting line codes. It offers significant gains in terms of improved decoding 

performance but at the same time requires more complex receivers. Various SDD 

algorithms were examined and the Chase algorithm number 2 was deemed to be the 

most useful. The generalised Chase 2 together with the AID and TPE algorithms 

also proved to offer an attractive solution, because of their near ML performance 

and low complexity.

7.1 Contributions

The main points and conclusions derived from the present work can be summarised 

as follows:

• Chapter 3 presents a number of novel line codes. These added bit codes 

are very simple to implement while offering tight runlength and disparity 

bounds. Because the resultant rate reduction is very small, and the associated 

encoding and decoding processes are simple, such codes are suitable for high 

bit-rate applications.

•  The need for simulation at the error floors of interest required the devel

opment of a novel simulation technique. This was presented in chapter 4. 

Significant gains in terms of computational time were achieved by only im

plementing code words which contributed to the RBER.

•  Soft decision decoding is an appropriate method for increasing decoding per

formance without significantly increasing complexity.
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• In chapter 5, a novel SDD algorithm is introduced, termed generalised Chase 

2 (GC-2). It achieves near ML performance but is rather complex and compu

tationally intensive for implementation in a practical high speed system. This 

problem is alleviated by the introduction of the AID and TPE algorithms.

• The AID algorithm reduces the number of test patterns required by the GC- 

2, without any reduction in decoding power. In addition, the TPE algorithm 

reduces the number of decodings without affecting performance. These im

provements make feasible the use of a GC-2 code for practical system appli

cations.

•  Finally, novel error correcting line codes were introduced in chapter 6. These 

achieved very good line coding characteristics without significantly affecting 

the decoding performance of the parent EC codes. Additionally most are 

very simple to implement.

The proposals presented in this thesis were developed in the abstract, i.e. they 

were not linked to some specific application. Therefore a suggestion for possible 

future work would be to explore line coding, EEC codes and ECLCs with respect 

to potential applications. These may include the following:

• Magnetic recording

• Long-haul optical systems

• High speed digital communications links using copper as a transmission medium
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7.2 Concluding Remarks

In this thesis, a number of novel line codes were presented followed by a the intro

duction of a very efficient SDD algorithm suitable for error correcting codes. These 

were ‘combined’ in chapter 6 to generate a number of novel ECLCs which utilised 

SDD to achieve improved performance. The results were validated down to the low 

bit error levels of interest using a novel simulation acceleration technique.



A ppendix A

Calculating the Power Spectrum

A .l  Introduction

In this section, a more detailed explanation of the analytical technique for deter

mining the power spectrum of the n B lX  codes will be presented. This was briefly 

described in chapter 3.

As has been mentioned before, the aim of a line code is to eliminate the DC 

component and suppress the low frequency content of a transmitted signal as much 

as possible. The power spectrum is a measure of success of the line code, since it 

displays the power spectral density versus the normalised frequency.

A .2 Calculating the Power Spectral D ensity

In order to determine the power spectral density (PSD) of a signal { Sy y { f ) )  we 

must first determine the auto-correlation function Ryy{ j ) .  This is performed at 

two distinct time intervals, one at j  =  0 and the other at j  /  0. Let n be the

190
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information bit length of a n B lX  code, P[X{k)  =  ±1] is the probability that any

bit k will have a value of a logic one or zero and j  is a variable that can take any

value between 0 < j  < n.

A .2.1 Determ ining R y y { j )  at j  =  0

The value of Ry y { j )  at j  = 0 is determined by the following equation:

1 n + l

& , ( 0 )  =  T— 7 T  =  1 ] ) ( 1 ) '  +  ( P [ X ( k )  =  - 1 ] ) ( - 1 ) ^
V * “T k=l

Since equal probabilities of having a logic one or zero exist within any code 

word, P[X{k)  =  1] =  P[X{k)  =  -1] =  thus:

1 ^^+1 n ^

This equation holds true for all codes of interest, so Ryy{ 0)  = 1 always.

A .2.2 Determ ining R y y { j )  at j  ^  0

The value of Ry y { j )  at j  /  0 is determined by the following equation:

1 n + l

=  7— =  M X { k - j )  = 1])
k=l

{P[X{k -  j )  =  l])(F[X(fc) =  - l \ X ( k  -  j )  = 1 ])-

(P[X{k  -  j )  =  -1 ])(P [X (^) =  l \X{k  -  j )  = -1 ])+
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(P[X(k -  j )  = - l ] ) (Pl X(k)  = - l l X ( k  -  j )  =  -1 ])

Since the codes under consideration are symmetric towards the number of bits 

having a logic value of one or zero, P[X(k — j)  =  1] =  P[X{k — j) = —1] =  |  and 

the above equation now becomes:

1 1
^ y y U )  — ~  1|A(A: — j )  — 1] —

- {P[X{k)  — -1|X(A: — j )  — 1] -  ~{P[X{k) — l \ X{k  — j) — —1]+

~{P[X{k) — —l \ X( k  — j) — —1]

Simplifying the above we get that:

1 n + l

=  7— TT -  i )  =  1])
k= l

- {P[X{k)  = l \ X { k - j )  = - l ] )  (A.l)

We have therefore managed to determine all the necessary parameters which 

characterise the auto-correlation function Ryy{T).  In order to obtain the power 

spectrum Sy y { f )  we must now perform a Fourier transformation to the auto

correlation function, i.e.

S y y i f )  =  P { R y y { r ) )  =  r ( R y y { 0 ) 5 { r )  +  ^ ( 5 ( r  ± k )  +  Ryy( k) )  (A.2)
k= l
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Equation A.2 holds true for all codes of interest. In order to determine the 

power spectrum of a given code we must calculate the specific values of Ryy{j).  

These calculations are shown in the following sections for the Manchester and 

n B lD  codes.

A .3 Power spectrum  of the M anchester Code

A Manchester code is a code where each bit is always followed by its inverse. 

Therefore for j  0:

P[X{1) = 1|A(0) =  1) =  P[X{1) = 1|A(0) =  - ! ]  =  -

This is true, since there is no correlation between individual code words. In 

addition

P[X{2)  =  1|X(1) =  1] =  0

and

P[X{2) = 1|X(1) =  -1] =  1

since each bit within a code word is followed by its inverse. Substituting these 

values in equation A .l we obtain:



A ppendix A  - Power Spectrum Calculations 194

We have therefore evaluated Ryy at all points of interest. Therefore,

R y y i r )  =  S{t ) -  i ÿ ( r  ±  1)

If we apply the Fourier transform on R y y ( r )  we obtain the equation describing 

the power spectrum S y y { f )  which for this example is equal to:

= Syyif)  =  1 ~  cos{2-ïïf)

A.4 Power Spectrum of the nBlD Code

The n B lD  code is an added bit code whereby the flag is determined by the disparity 

of the information bits. As before, R y y { 0 )  = 1 and iî I < j  < n then

{P[X{k) = l|X(fc -  j )  = 1]) =  {P[X(J)  =  l \ X{n  -  j )  =  - 1 ] )  =  i  

because the information bits are random.

However, the parity bit {k = {n-{-1)) is dependent on the information bits and 

its value is therefore not random. Assume without loss of generality that A(0) =  1, 

A (n  +  1) =  1 and the disparity of the in-between information bits (excluding the 

first one) is less than zero. Let y equal the number of (n — 1) bits with disparity 

less than zero and z equal the number of (n — 1) bits with disparity equal to zero. 

Due to symmetry, y is also equal to the number of (n — 1) bits with disparity larger 

than zero. Thus, 2y + z = 2"“  ̂ and
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and

(P[A (n +  1) =  l |X (n  +  1 -  j)  =  -1]) =

therefore

(n +  l) 2 

/
By definition z is equal to

n — 1

n —1

V /

(n +  1)

thus Ry y { j )  now becomes equal to: 

\(
n  — 1

1 \  V  y
( n + l )  2”~i

Thus

Ryy(,T)  =  (5(r) -
1 V /

k= ln +  l  2"-

If we one more apply the Fourier transform on R y y { r )  we obtain the power 

spectrum S y y { f )  which is equal to:

n — 1

V ^  /
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We have therefore succeeded in obtaining an analytical formula for the power 

spectrum on an n B lD  code.


