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Abstract 41 

Objective:  42 
To predict, by using machine learning, visual acuity (VA) at 3 and 12 months in patients with 43 
neovascular age-related macular degeneration (nAMD) after initial upload of 3 Anti-VEGF 44 
(vascular endothelial growth factor) injections. 45 

Design:  46 
Database study 47 

Subjects:  48 
For the 3-month VA forecast, 653 patients (379 females) with 738 eyes and an average age 49 
of 74.1 years were included. The baseline VA before the first injection was 0.54 logMAR (+/- 50 
0.39). 456 of these patients (270 females, 508 eyes, average age: 74.2 years) had sufficient 51 
follow-up data to be included for a 12-month VA prediction. The baseline VA before the first 52 
injection was 0.56 logMAR (+/- 0.42). 53 

Methods: 54 
Five different machine learning algorithms (AdaBoost.R2, Gradient Boosting, Random 55 
Forests, Extremely Randomized Trees, and Lasso) were used to predict VA in patients with 56 
nAMD after treatment with 3 Anti-VEGF injections. Clinical data features came from a data 57 
warehouse (DW) containing electronic medical records (41 features, e.g. VA) and 58 
measurements features from optical coherence tomography (OCT) (124 features, e.g. central 59 
retinal thickness). VA of patient eyes excluded from machine learning was predicted and 60 
compared with the ground truth, namely the actual VA of these patients as recorded in the 61 
DW. 62 

Main Outcome Measure: 63 
Difference in logMAR VA after 3 and 12 months after upload phase between prediction and 64 
ground truth as defined above. 65 

Results: 66 
For the 3-month VA forecast, the difference between the prediction and ground truth was 67 
between 0.11 logMAR (5.5 letters) mean absolute error (MAE)/0.14 logMAR (7 letters) root 68 
mean square error (RMSE) and 0.18 logMAR (9 letters) MAE/0.2 logMAR (10 letters) RMSE. 69 
For the 12-month VA forecast, the difference between the prediction and ground truth was 70 
between 0.16 logMAR (8 letters) MAE/ 0.2 logMAR (10 letters) RMSE and 0.22 logMAR (11 71 
letters) MAE/0.26 logMAR (13 letters) RMSE. 72 
The best performing algorithm with regard to forecasts was the Lasso protocol.  73 

Conclusions: 74 
Machine-learning allowed VA to be predicted for three months after three anti-VEGF 75 
injections, with a comparable result to VA measurement reliability. For a forecast after 12 76 
months of therapy, VA prediction may help to encourage patients adhering to intravitreal 77 
therapy. 78 



Introduction 79 

In computer science, machine learning is a term that covers diverse approaches to artificial 80 

intelligence in computers and is nowadays quite a common phenomenon. The original aim, 81 

which was stated as early as 1959, was for computers to have the ability to learn without 82 

being explicitly programmed 1. Many methods were tried over the years, but it took until the 83 

1990s when machines started to beat humans. Such stories were then broadcast in the mass 84 

media and gained a great deal of publicity. In 1996 and 1997, Garry Kasparov lost a chess 85 

match against the IBM super-computer “Deep Blue”; this was the first time that a long-86 

standing world champion (1985-2000) was defeated by a computer. Another well-publicized 87 

milestone was reached when IBM Watson beat two expert human players in the television 88 

show “Jeopardy” in 2011 2. 89 

 In the medical sciences involving vision, several machine learning techniques have 90 

been applied in various sub-specialties 3. Mostly, glaucoma and retinal imaging-related 91 

problems have been addressed. As the number of patients with diabetic retinopathy is 92 

continuing to rise 4, efforts have recently been made to detect early forms of diabetic 93 

retinopathy by means of machine learning 5-7. These programs have been shown to provide 94 

a highly sensitive tool for detecting such disease complications 8. First approaches have been 95 

published for the automatic imaging analysis of optical coherence tomography (OCT) by 96 

using machine learning 9, 10. Additional studies are underway to automate the detection and 97 

classification of pathological features in eye imaging including fundus photography and 98 

OCT11. 99 

 Age-related macular degeneration (AMD) is still one of the leading causes of legally 100 

defined blindness in industrial countries 12. However, the use of anti-VEGF agents such as 101 

bevacizumab, ranibizumab, or aflibercept in AMD and other retinal diseases such as diabetic 102 

macular edema or venous occlusions have allowed, for the first time, the sustainable 103 

improvement, stabilization, or slow-down of disease progression 13-20. Nevertheless, even 104 

after several years of experience, real-life results in patients vary greatly from results 105 

obtained in clinical trials 21, 22.  106 

To improve insights into our own clinical results and to facilitate clinical research, a 107 

data warehouse (DW) has been set up in our institution 23. It comprises data, such as 108 

diagnoses, medication, and undergone surgery, from electronic medical records (EMR), as 109 

developed in our institution based on the hospital-wide EMR system “SAP i.s.h.med”, from 110 



over 320,000 patients. It also contains measurement data from OCT (e.g., central retinal 111 

thickness, macular volume) and other measurement devices such as IOLMaster and 112 

Pentacam. 113 

 For this study, we have used five modern machine learning algorithms to predict the 114 

outcome of visual acuity (VA) after one year of anti-VEGF treatment in newly diagnosed 115 

neovascular AMD patients. The base for the prediction was our DW with its clinical and 116 

measurement data. The forecasting of VA might help to reduce the psychological pressure 117 

on patients, as many fear sight loss as a consequence of the diagnosis of wet AMD 24. In 118 

particular, before the first injections, patients are extremely anxious and nervous, as they do 119 

not know what the outcome of the therapy will be and whether it is worth pursuing25. 120 

Material and Methods 121 

Data warehouse as repository 122 

To estimate VA after an initial upload of 3 anti-VEGF injections in patients with neovascular 123 

AMD after 3 and 12 months of intravitreal therapy, we applied machine learning algorithms 124 

on real-life data from our DW. This is updated every night with new and altered information 125 

from the EMR (i.s.h.med, Cerner AG, Erlangen, Germany). The nightly transfer from EMR 126 

includes diagnoses, clinical data such as VA and intraocular pressure, intravitreal injections, 127 

medications, appointments, and surgical operations. Up until December 2016, it 128 

incorporated data from 330,801 patients including 44,134 recorded intravitreal injections 129 

and 402,001 VA measurements. Our Ethics Committee ruled that approval was not required 130 

for this study. This study adheres to the tenets of the Declaration of Helsinki. 131 

In addition to clinical data, 75,750 Spectralis OCT (Heidelberg Engineering, Heidelberg, 132 

Germany) measurements, but no images, were extracted from the software “Heidelberg Eye 133 

Explorer”. It provides an XML (Extensible Markup Language) export, which is a structured file 134 

format of measurement values, as in the company’s software. This export contains data like 135 

central retinal thickness (CRT), retinal volume and measurements in nine zones grid over the 136 

macular region (Figure 1). The XML files have been incorporated into the DW with a custom-137 

made extract, transform, load (ETL) script, which is also programmed in Java. The DW itself 138 

was built on a “Microsoft SQL” database server running in a database cluster in the hospital’s 139 

datacenter. The PC used for the machine learning algorithms was a quad core Intel i5 (3.30 140 

GHz) PC with 32 gigabytes of RAM, running on Ubuntu 16.04 LTS and Python (3.6.0). In 141 



Python, the following libraries were used: scipy (Version: 0.18.1), numpy (Version: 1.12.0), 142 

pandas (Version: 0.19.2), jupyter (Version: 1.0.0), scikit-learn (Version: 0.18.1), and Theano 143 

(Version 0.8.2). 144 

Data Pre-processing 145 

For our test, we identified all patient eyes in the DW that, at any stage, received the 146 

international classification codes of diseases version 10 (ICD-10) “H35.3”, which stands for 147 

age-related macular degeneration, and which received at least 3 injections of anti-VEGF 148 

medication (aflibercept, bevacizumab or ranibizumab) as noted in the surgical report. The 149 

standard operating procedure for treating 153 nAMD in our institution requires monthly 150 

injections for the first three months. After the initial upload of three injections, patients 151 

were treated according to the most recent treatment recommendations of the German 152 

Ophthalmological Society (Deutsche Ophthalmologische Gesellschaft – DOG)26, 27. 153 

Accordingly, a pro re nata scheme (PRN) was recommended until 2015. From 2015 onwards, 154 

a treat and extend scheme was recommended alongside the PRN regime. This led to 456 155 

patients with 508 eyes for the long-term prediction goal (365 days) and 653 patients with 156 

738 eyes for the short-term prediction goal (90 days); these were the patients that remained 157 

after the removal of all patients with invalid entries. The patients used for the long-term 158 

prediction represent a subgroup of the short-term prediction group. 159 

Before algorithms can be trained on these patients, data need to be pre-processed and 160 

joined into a single dataset. The data came from the EMR and the OCT measurements. Most 161 

of the machine learning algorithms expect a dataset with no missing values; this is difficult to 162 

achieve in real-life datasets such as ours. Therefore, we centered all the other values around 163 

VA measurements. Consequently, we associated VA values with the most recently available 164 

measurements from previous (but not future) records in order to rule out potential data 165 

mix-ups shortly before and after an intravitreal medication application. 166 

In the data collection process, we treated every eye as a separate patient and associated 167 

it with a generic eye identifier (GEID). The newly created dataset included not only the most 168 

recent measurement values (e.g., VA and CRT), but also aggregated versions with different 169 

timeframes (3 months and 12 months) and different aggregation functions (mean, variance, 170 

minimum and maximum). These synthetic features were designed in order to capture trends 171 

in the temporal progression of the disease. After all preparations, there were 165 features, 172 

which were used for training. 41 features were from the EMR or calculated based on EMR 173 



data, like days since first injection. 124 features are based on OCT measurement data. Table 174 

1 (available online only) gives an overview of all features used for training. 175 

 Individual patient eye histories were now built from the dataset created to date. 176 

These histories consisted of a specified number of previous temporal consecutive visual 177 

events up to a certain time point. It was essentially a condensed version of the past visits of 178 

the patient until the third injection was given, by using the resulting dataset, as traditional 179 

machine learning algorithms cannot use temporal information directly. 180 

Algorithms used for Visual Acuity Prediction 181 

To predict the VA outcome of nAMD patients, we applied five different machine learning 182 

algorithms, all of which are freely available online and form part of the previously mentioned 183 

libraries. In detail, they were: 184 

• AdaBoost.R2 28: This belongs to the so-called boosting methods, which try to reduce 185 

the bias of combined estimators by specially built base models (often weak learners). 186 

The basic idea of the popular ensemble algorithm AdaBoost is to train an initial weak 187 

learner (in our case a simple decision tree) on the original dataset. Afterwards, 188 

multiple copies (49 in our case) are trained on the same dataset, but with more focus 189 

on examples where the performance was previously poor (i.e., the ones that were 190 

difficult to learn). The final prediction output is created by a majority vote of all weak 191 

learners. 192 

• Gradient Boosting 29: This approach, being the second boosting method, is a 193 

generalization of boosting to arbitrary differentiable loss functions. At every 194 

optimization step, a regression tree is fit to the negative gradient of the loss function. 195 

These models are very popular, powerful, and robust against outliers.  196 

• Random Forests 30: This belongs to the so-called averaging methods, where the basic 197 

idea is to build multiple independent models and to average their predictions to 198 

retrieve the final prediction. Under the assumption that the errors made by the 199 

individual models are also independent, the averaging of their predictions will likely 200 

reduce the error. In effect, Random Forests are an ensemble of simple decision trees 201 

that are built from a bootstrap sample (i.e., a sample drawn with replacement). In 202 

addition, each of the (100) decision trees is trained on a random subset of all 203 

available features. Despite this being a very simple model, it has been shown to be 204 

extremely powerful in many practical applications. 205 



• Extremely Randomized Trees 31: These are special versions of Random Forests, but 206 

instead of choosing the thresholds for the randomly picked features by how 207 

discriminative they are, these thresholds are also selected at random. This may 208 

enhance the variance of the ensemble at the price of higher bias. 209 

• Lasso 32: A linear model trained with L1 prior as a regularizer and coordinate descent 210 

for training. It estimates sparse model coefficients (in contrast to L2 prior), i.e., it 211 

leads to compact models, where zero is assigned to most of the low gain features. 212 

Therefore, it is often used for feature selection. 213 

Evaluation of Models 214 

To evaluate the performance of our predictive models, we used 10-fold cross validation. We 215 

randomly split the available GEIDs ( ) into 10 approximately equally sized, mutually 216 

exclusive subsets ( . In every iteration  of the 10 total iterations, we used 217 

all subsets without the -th (  for training (or validation) and the -th for testing. 218 

Therefore, the tests of the model were performed on patient eyes that the models did not 219 

previously see. For evaluation, either the data (e.g. VA) of the last one, two, three or four 220 

visits prior to the third injection were available. Resulting accuracy was stratified by the 221 

number of previous visits. The computing time for the training and testing of the models was 222 

about 8 hours. To make the test results more comparable, we used fixed but initially 223 

randomly generated seeds for shuffling the GEIDs before splitting. To provide a quality 224 

measure for our predictions per algorithm, which shows how close they are to the ground 225 

truth, we indicate the root of the mean squared error (RMSE=  for 226 

N=number of predictions per fold) and the mean absolute error (MAE= ) for 90 227 

and 365 days’ prediction as compared with the ground truth, which is the actual patient VA 228 

as measured in clinics. When describing accuracy of machine learning algorithms, usually 229 

both values are indicated. RMSE does penalize outliers more, thereby allowing you to 230 

choose the more robust algorithm. This is especially helpful, if the MAE is comparable 231 

between tested algorithms. MAEs are usually used in medical publications only. 232 
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Results 233 

The demographics of all patients/eyes included in the study are summarized in Table 2. For 234 

the long-term prediction, out of 456 patients, 270 were female (59.2%). For the shorter 235 

prediction period, out of 653 patients, 379 were female (58%). The average of patients was 236 

slightly above 74 years in both groups. The VA at first injection was 0.54 (+/- 0.39) logMAR 237 

for the long-term prediction cohort and 0.56 (+/- 0.42) logMAR for the short-term group. 238 

Tables 3 and 4 show the accuracy of the applied machine learning algorithms used to predict 239 

VA (in logMAR scale) as compared with the ground truth (i.e., the outcome as recorded 240 

during the patient’s visit in our clinic) after 90 days and 365 days, respectively. In each table, 241 

the different numbers of previous visits, e.g., condensed histories of the patient’s eye with 242 

varying complexity, were used to predict the VA after 90 or 365 days. Predicted values were 243 

compared with the closest VA measurement available. The best learner in all cases was the 244 

L1 regularized linear model Lasso. If only data of one previous visit before the third injection 245 

was taken into account for validation, the RMSE of VA over the ground truth was 0.14 246 

logMAR (equals 7 letters) for the short-term prediction (90 days) and 0.23 logMAR (equals 247 

11.5 letters) for the long-term prediction. The MAE of VA over the ground truth was 0.11 248 

logMAR (5.5 letters) for the short-term prediction and 0.16 logMAR (8 letters) for the long-249 

term prediction. The RMSE was lowest (0.2 logMAR – 10 letters), if data of 4 previous visits 250 

before the third injection were taken into account. For the MAE there was no improvement, 251 

if 4 previous visits were included in validation. Figures 2 and 3 show the difference in visual 252 

acuity between prediction and the ground truth, which are the VA values captured in our 253 

clinic. Figure 4 shows the weights of features for the visual acuity prediction for 90 days 254 

(Figure 4a) and for one year (Figure 4b). Figure 5 shows the change of VA between the true 255 

three-month baseline and predicted VA after 3 months and one year.  256 

Discussion 257 

Several approaches have been made to predict progression in patients with AMD. Some of 258 

them use genetic information to predict progression to an advanced form of wet AMD 33. 259 

Others are based on imaging information from OCT and assess, for example, the presence 260 

and size of drusen 10, 34, 35. Based on the familiar Comparison of AMD Treatments Trials 261 

(CATT) trial, two studies evaluated predictors for vision outcomes after one respectively two 262 

years of treatment36, 37. Several rules of thumb could be identified: For example, older age, 263 



better baseline VA and greater total fovea thickness, were independently associated with 264 

less improvement in VA after at least one year of therapy. These predictors are applicable in 265 

many patients, but it can’t be used in individual patients to predict his or her vision outcome 266 

after a certain time. In this study, we have been able to predict VA in individual patients with 267 

neovascular AMD undergoing anti-VEGF therapy after a further 90 or 365 days by using 268 

machine learning based on real-life data from an EMR and OCT measurement data, but no 269 

OCT images. Figure 4 shows that also in our study, previous VA values have great influence 270 

on our prediction model. We also noted (figure 5), that predicted VA values, both short-term 271 

as long-term, were different from the ground-truth at the 3-month baseline suggesting that 272 

after month 3 changes in regard to VA during active therapy can be observed. 273 

As expected, VA was best predicted for the short-term goal of 90 days. The best machine 274 

learning algorithm was able to predict this with a RMSE of 7 letters (+/- 1.5 letters) or a MAE 275 

of 5.5 letters (+/- 1 letter). The prediction was within the variability of measurements of VA 276 

in a large eye clinic in which a real change can be detected if it is greater than 0.15 logMAR 277 
38. The best VA prediction (RMSE: 0.20 logMAR (+/- 0.08), MAE: 0.16 logMAR (+/- 0.04)) for 278 

365 days after further therapy was also close to this value of 0.15 logMAR. As mentioned 279 

before, the RMSE is more sensitive to outliers, as larger errors are punished more severely. 280 

This can be also observed in Figures 2 and 3. One would assume that the prediction is better 281 

the more previous encounters are included, but for four previous visits, this was not 282 

applicable. One reason might be that too few patients were included in the testing. 283 

VA is, in most medical retina clinical trials, the primary endpoint, although it has not only 284 

scientific value, but it gives an indication as to how patients are affected in their daily lives. 285 

As is well known, VA is closely correlated with patient quality of life 22. A recently published 286 

review article analyzing 14 studies that assess the psychological impact of anti-VEGF 287 

treatments of wet AMD showed that patient often feared persisting vision loss and inability 288 

to lead an independent life24. A reduction in VA also leads to a reduction in quality of life and 289 

the ability to perform daily duties. One of the most precious activity of daily life for many is 290 

the ability to drive a car, which is often a necessity for leading an independent life in more 291 

rural areas. Approximately 90% of patients have been shown to meet the requirements to 292 

drive a car after 24 months of intravitreal anti-VEGF therapy 39. The prediction of their VA 293 

outcome after a defined time alleviates the anxieties of patients and motivated them to 294 

pursue Anti-VEGF therapy, which requires frequent consultations with an unknown number 295 



of planned injections. On the other hand, mental support for patients with an unfavorable 296 

prognosis needs also to be provided. This helps to reduce the incidence of depression, if 297 

initiated at a suitable time 40. 298 

Further refinement can be achieved by the use of patient genetic data. Genetic factors 299 

are well known as being involved in disease progression and are more precise in conjunction 300 

with further data. It has led to the creation of the “AMD risk calculator”, which can be 301 

accessed online and for which various entries need to be made (e.g., age, sex, smoking 302 

status, body dimensions, and different AMD gene mutations) 41. A combination of these 303 

approaches might help to build a robust decision support tool for AMD, which might help to 304 

deliver evidence-based personalized treatment for wet AMD patients. 305 

Major information about the disease state and reaction to therapy is included in OCT 306 

images. In this study, we have used numerical measurement information such as CRT from 307 

the vendor’s software. However, this provides limited information concerning anatomical 308 

aspects of the retina during the examination. Future approaches could make use of the OCT 309 

scans itself and learn directly from the image by using deep learning. The use of this more 310 

advanced technology could provide major performance gains. Initial promising studies 311 

involving the application of deep learning to OCT scans have been published. For example, 312 

use of deep learning technology has made it possible to classify normal versus age-related 313 

macular degeneration OCT scans9. In another study, drusen progression over time at the 314 

level of a single druse could be predicted over a mean follow-up of 37.8 months, as drusen 315 

volume is known to be predictor for progression to late AMD10. Further innovations in this 316 

field are expected and will likely contribute to more precise VA forecasts. 317 

Interestingly, from a computer science perspective, a simple linear model such as Lasso 318 

outperforms complex ensemble-based approaches such as Gradient Boosting Machines 319 

(GBM), which usually achieve better results. Moreover, bagging with 10 estimators does not 320 

really help to increase the performance indicating that the bagged estimators are not able to 321 

learn various aspects of the data and make independent errors. Even training with Lasso’s 322 

selected features (all non-zero model variables) did not enhance other learners. A linear 323 

model thus seems to grasp the internal relationship in the given data relatively well. In this 324 

case, the greater capacity of the other learners seems to lead to slight overfitting. 325 

However, more work is necessary to improve real-life data preparation and cleaning, as 326 

data input errors occur in daily routine work. An approach with regard to this limitation 327 



might be the creation of national data registries, as more data should improve prediction 328 

quality 42. The presented model relied on data of previous visits before VA prediction after 329 

the third injection could be done. This limitation might be overcome in the future, if more 330 

clinical data will be available and also OCT image recognition using deep learning is 331 

integrated in a model. This would enable instant VA prediction on day of diagnosis or e.g. in 332 

second opinion cases. Also, randomized clinical trials must be set up to test the reliability 333 

and accuracy of decision support software. 334 

In conclusion, the prediction of VA by using real-life clinical data is a valuable first 335 

step to developing a clinical decision support software. It demonstrates the value of well-336 

structured EMRs. It can be used to optimize anti-VEGF treatment in neovascular AMD 337 

patients and the allocation of resources to those who need it most.  338 



Figure legends 339 

Figure 1: This figure shows nine sectors, which are placed over the macula within the Heidelberg Eye Explorer software, C0 340 
being the fovea. Data measurements in the XML files were given for the whole grid as well as for each induvial sector. 341 
Therefore, features of an individual sector in Table 1 were count nine times. The letters T (temporal), I (inferior), N (nasal) 342 
and S (superior) indicate the anatomic position of the sector. 343 

Figure 2: Plots showing differences between visual acuity prediction (red line) and ground truth (green line) for a prediction 344 
for 90 further days of treatment. On the x-axis, a consecutive number for each patient eye in the test set is shown. Positive 345 
values on y-axis mean improvement of visual acuity, negative values mean deterioration. A graph is plotted for every 346 
prediction depending on previously included visits (see headline for the exact number). VA=visual acuity (logMAR). 347 

Figure 3: Plots showing differences between visual acuity prediction (red line) and ground truth (green line) for a prediction 348 
for 365 further days of treatment. On the x-axis, a consecutive number for each patient eye in the test set is shown. Positive 349 
values on y-axis mean improvement of visual acuity, negative values mean deterioration. A graph is plotted for every 350 
prediction depending on previously included visits (see headline for the exact number). VA=visual acuity (logMAR). 351 

Figure 4: The plot shows the weight of the different features for the visual acuity prediction task over 3 months (4a) and 1 352 
year (4b). The light blue bar indicates how important the feature was on average for the model on the different test runs (10 353 
in total). The dark blue bar gives an intuition of how instable the feature was in the different test runs in terms of an 354 
importance vs. variance ratio. The more of the light blue bar is overlayed with the dark blue bar, the more instable the 355 
feature was during the test runs. T2=Outer temporal measurement section according to the ETDRS grid as placed on the 356 
macula, E11.30=ICD-10 code for diabetic type 2 eye complications, I2=outer inferior section of the ETDRS grid, VPP=volume 357 
in a grid sector of the ETDRS grid, C0=central location of the ETDRS grid.   358 

Figure 5: This figures shows the difference between true three-month visual acuity and predicted visual acuity after 90 days 359 
(figure 5b)/365 days (figure 5b). All values are given in logMAR units. The vertical axis indicates the relative frequency of 360 
each VA delta value.  361 
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