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Abstract 
 

Interest in neurofilaments (NF) has risen sharply in recent years with recognition of their 

potential as biomarkers of brain injury or neurodegeneration in cerebrospinal fluid(CSF) and 

blood.  This is in the context of a growing appreciation for the complexity of the 

neurobiology of NF, new recognition of specialised roles for NF in synapses and a 

developing understanding of mechanisms responsible for their turnover. Here we will review 

neurobiology of NF proteins, describing current understanding of their structure and function, 

including recently discovered evidence for their roles in synapses. We will explore emerging 

understanding of the mechanisms of NF degradation and clearance and review new methods 

for future elucidation of the kinetics of their turnover in humans. Primary roles of NF in the 

pathogenesis of human diseases will be described. With this background, we then will review 

critically evidence supporting use of NF concentration measures as biomarkers of 

neurodegeneration. Finally, we will reflect on major discovery challenges for studies of the 

neurobiology of intermediate filaments with specific attention to identifying what needs to be 

learned for more precise use and confident interpretation of NF measures as biomarkers of 

neurodegeneration.   
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 Neurofilaments are a family of neuronal intermediate filaments involved in both the 

growth and stability of axons, and, through incorporation into different supramolecular 

assemblies, also in synaptic organization and function in the central nervous system. 

 

 The fundamental importance of NF to axonal structure and function was first appreciated 

with serial discoveries of causal NF gene mutations for rare forms of Charcot–Marie–

Tooth disease and amyotrophic lateral sclerosis (ALS).  

 

 Evidence that their normal intracellular assembly and turnover involves the ubiquitin-

proteasomal  pathway (and possibly also non-canonical autophagy pathways) came from 

studies of rare genetic diseases characterised by prominent accumulations of NF 

(Charcot-Marie-Tooth Disease Type 2R (mutations in the E3-ubiquitin ligase, TRIM2), 

Giant Axonal Neuropathy (mutations in gigaxonin, a regulator of proteasomal 

degradation of cytoskeletal proteins) and Autosomal Recessive Spastic Ataxia of 

Charveloix-Saguenay (ARSACS) (mutations in sacsin, a protein with potential roles in 

neurofilament assembly and turnover).   

 

 Increased concentrations of extra-neuronal NF peptides in cerebrospinal fluid (CSF) and 

blood can be quantified using ultra-sensitive immunoassays after peripheral nerve or 

brain injury or in association with clinical progression of several chronic 

neurodegenerative disorders including multiple sclerosis, Alzheimer’s disease, 

frontotemporal dementia, progressive supranuclear palsy and Huntington’s disease. 

 

 However, as the mechanisms and kinetics of NF protein release from axons and 

trafficking between brain and blood compartments are ill-defined, interpretations of 

increased CSF or blood NF concentrations in terms of the specific nature or extent of any 

associated neuronal dysfunction or injury or the rate of neurodegeneration should be 

made with caution.   

 

 Given the growing interest in using soluble NF proteins as biomarkers for clinical 

decision making, elucidating the identities of peptides detected by current assays and the 

mechanisms by which these are released from neurons are particularly urgent questions 

to be addressed.    

 

 

Box 1: Summary Points 
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Introduction  

 

NF are a family of five highly phosphorylated intermediate filaments(Julien and Mushynski, 

1983) that are distinguishable based on their relative apparent molecular masses on SDS-

polyacrylamide gels. The largest of these is NF heavy chain (NfH), followed (in order of 

descending molecular weight) by the medium chain (NfM), the light chain (NfL), α-

internexin and peripherin (Figure 1). NF contribute to growth and stability of axons in both 

central and peripheral nerves as well as to maintaining mitochondrial stability(Lariviere et 

al., 2015) and microtubule content(Bocquet et al., 2009). Roles for distinct NF isoforms in 

maintaining the structure and function of dendritic spines and in regulating glutamatergic and 

dopaminergic neurotransmission synapses have been discovered recently(Ratnam and 

Teichberg, 2005).  

 

The fundamental importance of NF to neurons has been highlighted by molecular 

characterisation of diseases of the brain and peripheral nerves associated with abnormal NF 

structure and function. Mutations in the NEFL gene, which encodes NfL lead to peripheral 

neurodegeneration in Charcot-Marie-Tooth (CMT) disease types 2E and type 

1F(Mersiyanova et al., 2000). Polymorphisms in NEFH, encoding NfH, are associated with 

ALS(Figlewicz et al., 1994) and mutations of NEFL are a cause CMT type 2(Rebelo et al., 

2016). NF dysfunction or aggregation also may play roles in the neuropathology of 

Alzheimer’s, Parkinson’s Disease and other neurodegenerative disorders(Khalil et al., 2018).  

 

Studies in preclinical models have shown that NF turn over slowly in healthy neurons. Their 

expression is regulated by neuronal activity acting through developmentally regulated 

promoter regions(Yaworsky et al., 1997) involving transcription factors belonging to the 

POU family(Smith et al., 1997). Post-transcriptional regulation of NF mRNA stability also 

may contribute to determining levels of expression of NF protein(Schwartz et al., 1994; 

Schwartz et al., 1995). Additional insights into mechanisms for turnover of NF have come 

through studies of rare diseases arising from gigaxonin E3 ligase mutations causing Giant 

Axonal Neuropathy (GAN)(Bomont et al., 2000; Bomont, 2016) and those in TRIM2 

(another E3 ligase) and sacsin (which includes both ubiquitin-like and chaperone domains) 

that are responsible, respectively for a form of CMT(Ylikallio et al., 2013) and for the 

cerebellar degeneration occurring in Autosomal Recessive Spastic Ataxia of Charveloix-
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Saguenay (ARSACS)(Engert et al., 2000). Degradation of NF protein thus is controlled by 

combined activities of proteasomal and, possibly, autophagocytic mechanisms(Bomont, 

2016). NF or its fragments also are released from neurons secondary to axonal damage or 

neurodegeneration, although the predominant peptide species released and the mechanisms 

responsible for the release have not been clearly characterised. Release may occur actively 

(for example, by means of exosomes(Faure et al., 2006; Lachenal et al., 2011)) or passively 

with loss of neuronal membrane integrity. NF in different supramolecular structures or with 

different isoforms may show differences in degradation rates(Nixon and Logvinenko, 1986; 

Millecamps et al., 2007). Studies of pathways for trafficking of other proteins(Szentistvanyi 

et al., 1984a) suggests that degraded NF proteins may enter the peripheral circulation via 

perivascular drainage along basement membranes of capillaries and arteries(Carare et al., 

2008) to drain into cervical or lumbar lymph nodes and then into the blood .  

 

Reliable, sensitive assays for measuring concentrations of NF in both CSF and plasma now 

are available(Kuhle et al., 2016a). This has enabled several recent studies assessing the 

potential utility of NF (particularly NfL) peptide concentrations in the CSF or plasma as 

clinical biomarkers of neuronal damage with disease progression (Kuhle et al., 2016a; 

Disanto et al., 2017; Khalil et al., 2018). For example, CSF and plasma NF protein 

concentrations are increased after stroke or traumatic brain injury (TBI)(Khalil et al., 2018). 

NF concentrations in both CSF and plasma are increased in some people with multiple 

sclerosis (MS)(Amor et al., 2014; Kuhle et al., 2016b; Disanto et al., 2017; Novakova et al., 

2017; Barro et al., 2018; Hakansson et al., 2018; Piehl et al., 2018) and, considered as a 

group, those with increased NfL have greater brain and spinal cord atrophy over the 

following 2-5 years(Barro et al., 2018). Both serum and CSF concentrations are correlated 

with radiological(Kuhle et al., 2016b; Disanto et al., 2017; Novakova et al., 2017; Siller et 

al., 2018) and clinical measures of disease activity or progression(Disanto et al., 2017; 

Novakova et al., 2017; Barro et al., 2018; Hakansson et al., 2018; Piehl et al., 2018; Siller et 

al., 2018). Longitudinal measures in people with MS suggest that higher concentrations may 

reflect greater rates of neurodegeneration and more rapidly progressive disease. Evidence for 

treatment responsiveness further supports a causal link between disease activity and increased 

NF concentrations in CSF and plasma(Disanto et al., 2017; Piehl et al., 2018; Gafson et al., 

2019; Kuhle et al., 2019). Increased CSF and plasma NF concentrations also are associated 

with primary neurodegenerative diseases including Alzheimer’s disease(Mattsson et al., 

2016; Weston et al., 2017).    
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Whilst the concentration in CSF is approximately 20-50 fold greater than in plasma(Bergman 

et al., 2016), moderate to high correlation between concentrations measured in the two 

compartments have been reported(Gaiottino et al., 2013; Gisslen et al., 2016). Nevertheless, 

given that NF also can be released from peripheral nerves, depending on the pathological 

context, plasma and CSF measures are not necessarily correlated(Khalil et al., 2018). 

Longitudinal measures of CSF and serum concentration changes after brain injury(Shahim et 

al., 2016) or following the initiation of effective treatments(Khalil et al., 2018) suggest that 

turnover times in the blood and CSF compartments are similar. This is consistent with models 

positing that central and peripheral turnover are linked functionally. However, important 

questions regarding the neurobiology, mechanisms of turnover and kinetics in the brain and 

blood compartments remain. These will be highlighted as the current understanding of NF 

neurobiology in health and disease is reviewed in more detail below. 

 

Structure and assembly of NF   

NF are major cytoskeletal components in mature neurons. They are found in the cytoplasm of 

neurons within the peripheral (PNS) and central nervous system (CNS), most abundantly in 

axons, but also in cell bodies, dendrites and synapses(Yuan et al., 2015b). They are expressed 

more highly in large myelinated axons, where they are organised in parallel structures 

maintained by side arms projecting outwards from a filament core(Yuan et al., 2017). 

However, the relative abundance of NF proteins can widely differ along the course of even a 

single axon, e.g., amounts of NF are three-fold greater in regions of myelinated regions of 

axons that at the nodes of Ranvier(Nixon et al., 1994b),(Hsieh et al., 1994).  

 

NF are hetero-polymers composed of NfL, NfM, NfH and either α-internexin(Yuan et al., 

2006) or peripherin(Yuan et al., 2012b) in the CNS or PNS, respectively (Figure 2). Multiple 

types of post-translational modifications to NF occur (e.g., phosphorylation, ubiquitination, 

nitration and addition of O-linked N-acetylglucosamine)(Nixon and Sihag, 1991; Yuan et al., 

2017). NfM and NfH can be phosphorylated extensively(Beck et al., 2012). The relative 

proportions of the NF protein components and their post-translational modifications change 

with development and vary between different types of neurons and neuronal functional states.  
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NfL is uniquely important amongst the NF. NfL is required for NF protein assembly and NfL 

knockout mice exhibit severe atrophy of peripheral myelinated axons(Zhu et al., 1997). The 

latter observation provided evidence that NF are necessary for the radial growth of large 

myelinated axons and associated fast nerve conduction(Kriz et al., 2000). α-internexin 

interacts with NfL in forming a backbone to which NfM and NfH attach.  

 

The carboxyl terminals of NfH and NfM proteins form side-arm projections at the periphery 

of NF structures that contain multiple Lys–Ser–Pro (KSP) repeats which can be 

phosphorylated by proline-directed kinases, Erk1/2, Cdk5/p35, and JNK3(Lee et al., 2014). 

Because phosphorylation of KSP repeats, especially in NfH(Julien and Mushynski, 1982, 

1983), increase the negative charge of these projections (and, by inference, the spacing 

between NF in the axon), it was believed initially that NfH must play a major role in 

determining axonal caliber. However, surprisingly, targeted disruption of the NfH gene had 

little effect on the radial growth of myelinated axons(Rao et al., 1998; Zhu et al., 1998). In 

contrast, deletion of NfM gene(Jacomy et al., 1999) or deletion of the NfM carboxy-terminal 

tail domain substantially reduced the calibers of large myelinated axons(Rao et al., 2003). 

The exact NfM domain which modulates axon caliber remains to be elucidated. A mouse 

knock-in substitution of KSP repeats by KAP (NF-MS→A) repeats (which cannot be 

phosphorylated) in NfM demonstrated that phosphorylation of NfM KSP repeats does not 

determine axonal caliber(Garcia et al., 2009). The current model for their structural 

organisation proposes that the tail domains of NfM and NfH form side-arms that inter-

connect NF and link them to other cytoskeletal elements and organelles such as mitochondria 

and microtubules(Yuan et al., 2017). Phosphorylation of NF stabilises this structure by 

inhibiting NF proteolysis, increasing the half-life of the whole supramolecular assembly(Rao 

et al., 2012).  

 

Most NF proteins are synthesized and assembled in the neuronal perikaryon and must be 

transported along axons for functional integration(Yuan et al., 2012a). It was proposed 

initially that, after their assembly in the perikaryon, NF are transported unidirectionally by 

slow transport mechanisms (0.1–1 mm/day) distally along the axon, where they ultimately 

are proteolytically degraded(Hoffman and Lasek, 1975). This classical model of NF transport 

and turnover in the axon was based on pulse chase radiolabelling techniques with low time 

resolution(Hoffman and Lasek, 1975). However, subsequent time-lapse microscopy of 
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fluorescently tagged NF proteins in growing axons of neurons in vitro revealed fast transport 

of tagged-NF at rates up to 2 μm/s that is interrupted by long pauses resulting in an average 

rate approximating the slow NF transport estimates (Roy et al., 2000; Wang et al., 2000; Li et 

al., 2012). Live imaging of immature or regenerating axons in vitro also discriminates 

particularly slow NF transport of a pool of labelled NF proteins that remains in axons for 

very long periods(Trivedi et al., 2007; Yuan et al., 2009). This pool reflects the initial stage 

of construction of a stable stationary NF network that maintains caliber sizes of large PNS 

and CNS fibers by integration of NF with other cytoskeletal elements(Nixon and 

Logvinenko, 1986; Yuan et al., 2017). These and more recent observations have contributed 

to a revised model positing that NF can move bi-directionally along microtubules in the axon 

via motors such as kinesin and dynein(Shea and Flanagan, 2001).  Earlier observations, such 

as the directional reversibility and alternations between rapid movements and long pauses 

leading to a net slow movement of NF along axons, are well explained by this model. The 

precise kinetics also can be related to local axonal structure; pulse-escape fluorescence 

photoactivation recently demonstrated slowing of NF transport at nodes of Ranvier, where 

there is constriction of the axon(Walker et al., 2019).  

 

Transgenic mouse studies have highlighted the importance of NF protein stoichiometry for 

correct NF assembly(Julien et al., 1987). Abnormal NF accumulation in the perikaryon of 

motor neurons can be induced by overexpressing any NF protein alone. Overexpression of 

NfH in mice led to formation of large perikaryal NF aggregates in spinal neurons and 

reduction of NF transported into axons(Cote et al., 1993). Maintaining a higher ratio of NfL 

to NfH and NfM is critical for the normal growth of axons and dendrites(Kong et al., 1998); 

NfL plays an essential and distinct role in NF assembly from those of NfM and NfH. 

 

Additional observations further highlight the importance of maintaining proper intermediate 

filament protein stoichiometry in an axon. In the mouse, large perikaryal accumulations of 

NF due to human NfH transgene overexpression were associated with severe atrophy of 

peripheral axons, but did not cause substantial neuronal death(Cote et al., 1993). Even with 

normal stoichiometry of the major proteins, NF disorganization alone appears sufficient to 

lead to neuronal death; overexpression of peripherin(Beaulieu et al., 1999) or of a mutated 

NfL protein(Lee et al., 1994) in transgenic mice induced the formation of ALS-like NF 

aggregates and selective degeneration of spinal motor neurons. Interestingly, sequestration of 

peripherin in the perikaryon of motor neurons by NfH overexpression rescued the peripherin-
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mediated death of motor neurons in transgenic mice(Beaulieu and Julien, 2003), suggesting 

that axonal NF aggregates (or spheroids) are more toxic than perikaryal NF aggregates, 

perhaps due to interference with axonal transport of organelles by the former.  

 

Genetic abnormalities in NF and disease  

 

Historically, the fundamental importance of NF to neuronal structure and function became 

apparent through the discovery of associations between NF gene mutations and disease 

(Table 1). Abnormal accumulation of NF and of the related intermediate filament, peripherin, 

is a pathological hallmark of ALS(Corbo and Hays, 1992). Several factors could be 

responsible for the abnormal NF accumulations observed, such as dysregulation of NF gene 

expression, NF mutations, defective axonal transport, abnormal post-translational 

modifications, and proteolysis. Degenerating neurons in ALS show a 70% decrease in levels 

of NfL, α-internexin and peripherin mRNA post-mortem(Campos-Melo et al., 2013). 

Modifications in the stability of these NF mRNA contribute to this; the (TAR) DNA-binding 

protein 43 (TDP-43) which forms cytoplasmic aggregates in ALS was found to bind and 

destabilize or sequester NfL mRNA(Strong et al., 2007; Volkening et al., 2009), a 

phenomenon that also could contribute to alterations of NF protein synthesis, consequent 

stoichiometry changes and aggregation of NF(Rosengren et al., 1996).  

 

Evidence for a potentially causal pathogenic role of NF abnormalities in ALS came from the 

discovery of codon deletions or insertions in the lysine–serine–proline (KSP) repeat motifs of 

NfH in a small number of patients with sporadic ALS(Figlewicz et al., 1994; Tomkins et al., 

1998). A frameshift deletion and an amino acid substitution in the peripherin gene also have 

been discovered in two sporadic ALS cases(Gros-Louis et al., 2004; Leung et al., 2004). 

However, other studies have failed to identify common polymorphisms or rare genetic 

variants of NF genes in association with sporadic and familial ALS(Rooke et al., 1996; 

Vechio et al., 1996) suggesting that NF gene mutations define an aetiologically distinct sub-

type of ALS.  

 

However, pathogenic roles for NF in ALS may extend beyond associations with rare genetic 

coding variants: NF abnormalities in ALS also occur as a result of post-translational protein 

modifications. Phosphorylation changes can alter the axonal transport of NF, leading to their 
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accumulation in cell bodies and axons.  Treatment of neurons with glutamate activates 

mitogen-activated protein kinase (MAPK), resulting in phosphorylation of NF and slowing of 

their axonal transport, potentially another mechanism by which glutamate might effect its 

excitotoxicity in ALS(Ackerley et al., 2000; Veyrat-Durebex et al., 2014). Additional 

observations link glutamate excitotoxicity to NF phosphorylation. Glutamate induces caspase 

cleavage and activation of protein kinase N1 (PKN1), a kinase targeting the NF head rod 

domain to disrupt NF organisation and axonal transport(Manser et al., 2008). The peptidyl-

prolyl isomerase Pin1, which selectively binds to phosphorylated proline-directed 

serine/threonine residues in NfH, also may play a significant regulatory role in glutamate 

stress-induced NF phosphorylation. In ALS, Pin1 is co-localized with spinal cord neuronal 

inclusion bodies. Glutamate-stressed neurons exhibit increased phosphorylated NfH in 

perikaryal accumulations, which co-localize with Pin1(Kesavapany et al., 2007). In addition, 

down-regulation of Pin1 by small interfering RNA reduces glutamate-induced NfH 

phosphorylation and neuronal apotosis(Kesavapany et al., 2007).  Abnormal accumulations 

of NF also can potentiate glutamate receptor mediated increases intracellular calcium levels 

and cell death in response to NMDA receptor agonism(Sanelli et al., 2007). 

 

Indirect evidence suggests that additional post-translational modifications of NF may 

contribute to ALS. Advanced glycation end-products have been detected in NF aggregates of 

motor neurons in familial and sporadic ALS(Chou et al., 1998). This observation is of 

clinical interest given associations discovered between diabetes and ALS, although there is 

still uncertainty about the clinical significance of the abnormal 

glycosylation(Kioumourtzoglou et al., 2015; Mariosa et al., 2015). 

 

Several causal mutations in the NfL gene have been linked to less common forms of 

Charcot–Marie–Tooth disease (CMT)(Jordanova et al., 2003; Zuchner et al., 2004) (Figure 

3). Some of these mutations cause the axonal CMT type 2E, but other NfL mutations are 

associated with slow nerve conduction velocities and clinical presentations resembling 

demyelinating type CMT (type 1F). Two autosomal recessive NfL mutations also have been 

reported, leading to truncated NfL proteins and a severe early onset axonal form of CMT 

(Abe et al., 2009; Yum et al., 2009).  

 

The P22S mutation in NfL was first discovered in a Slovenian(Mersiyanova et al., 2000) with 

an early onset form of type 2E CMT (axonal type) associated with axonal deformation and 
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swelling. The P22S mutation abolishes the Thr–Pro Proline-directed protein kinase (PDPK) 

consensus phosphorylation sequence by perturbing normal regulation of NF assembly 

through phosphorylation(Sasaki et al., 2006);  the mutated NfL proteins do not self-assemble 

with NfM and NfH and cause NF aggregation in cultured cells(Perez-Olle et al., 2002; Perez-

Olle et al., 2004).  Similar NF aggregates caused by CMT-associated mutations in NfL (e.g., 

P22S, as well as P8R, Q333P) trap motor proteins and organelles in the cytoplasm, resulting 

in axonal transport defects(Zhai et al., 2007).  

Transgenic mouse models based on mutations in CMT provide powerful tools for study of 

the disease pathology. A NfL mutant model that recapitulates the cellular neuropathology 

found in human axonal CMT was generated by a knock-in strategy replacing one mouse NfL 

allele with the N98S mutation in the rod region of NfL(Adebola et al., 2015),  a mutation that 

has been described in sporadic cases of CMT with early age of onset (<2 years). Consistent 

with the clinical presentation, mutant NFLN98S/+ mice were symptomatic at an early age. 

Tremor was observed at 1 month of age. The N98S mutation caused a severe reduction of NF 

in myelinated axons of the PNS and CNS, axonal hypotrophy and distal axonal loss in the 

PNS. Cellular immunopathology revealed abnormal NF aggregates in neuronal cell bodies 

and axons of the cerebellum and spinal cord from an early age. The mice exhibited hind limb 

clasping, a likely behavioural expression of the axonopathy. The NFLN98S mice thus provide 

a model with face validity for testing potential therapeutic strategies directed towards 

preventing or reversing neuropathic symptoms in humans. In contrast, knock-in of a different 

point mutation (P8R) that causes symptoms in humans with variable ages of onset was 

associated with weak phenotypes without NF accumulation. Together, these results suggest 

the hypothesis that phenotypic severity in mouse models of CMT caused by NfL mutations 

may be related to the extent of NF aggregation found in neurons and severity of the 

associated human disease.  

A critical proof of principle for therapeutic targeting of mutant NF expression came from a 

transgenic mouse study with conditional mutant NfLP22S expression demonstrating that the 

pathology caused by mutant NfL can be reversed. This animal model was generated using a 

tetracycline-responsive gene system (tet-off) gene system that allowed suppression of mutant 

NFLP22S expression in mature neurons after administration of doxycycline(Dequen et al., 

2010). The NFLP22S mice recapitulated the key features of CMT type 2E neuropathy: 

progressive development of an abnormal hind limb posture with motor deficits, hypertrophy 
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of muscle fibres and muscle denervation. Suppression of mutant NFLP22S production after 

clinical disease onset reversed these pathological features. This important observation 

suggests that therapies able to abolish mutant NfL expression may be able to reverse 

pathology and disability even with established disease- the situation most commonly 

encountered in the clinic. However, this conclusion still needs to be translated to patients 

with recognition not just of species differences, but also that symptoms in the mouse model 

occurred very late, expression of mutant NfL was low and NF aggregates were not seen in 

motor neurons. Additional work is needed to determine whether neuronal function is restored 

if pathological NF aggregates are present and whether any functional recovery can be related 

directly to clearing of the aggregates. Another laboratory has generated a mouse with 

neuronal expression of E397K NfL mutant(Shen et al., 2011). In this mouse, symptoms of 

reduced locomotor activity and muscle atrophy were first observed first at 4 months, although 

NF inclusions were not seen in this model either.  

 

NF in synapses  

Although NF have been viewed traditionally as structural components primarily of axons, 

recent evidence has shown that distinctive assemblies of NF subunits also are integral 

components of synapses. For decades, synaptic terminals were associated only with 

degradation of NF transported distally along the axon. However, early observations 

supporting this concept(Roots, 1983), have not been confirmed. For example, recent 

proteomic analyses show that many synaptosomal proteins have half-lives of weeks to 

months(Heo et al., 2018), which is longer in some cases than the half-lives of NF in axons. 

Other observations of neurons in the intact, mature brain also proved difficult to reconcile 

with models of NF transport and distribution that mostly relied on in vitro observations 

made on embryonic neuronal axons which have few NF and reflect an early developmental 

or regenerative state(Nixon, 1998). Most notable are in vivo studies of mature brains 

showing that only a small pool of newly synthesized NF subunit precursors needs to be 

transported to maintain the large stationary NF network in myelinated axons because of the 

exceptionally slow turnover of this network(Yuan et al., 2017). In this model, the small 

amount of NF protein reaching terminals accords with evidence for the long half-lives of 

synaptic proteins(Heo et al., 2018)implying low synaptic proteolytic activity and similar 

rates of local turnover of a predominantly stationary NF network uniformly along 

axons(Nixon and Logvinenko, 1986). The role of NF as a critical determinant of axon 
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calibre - their accepted principal role in peripheral nerves - appears much less important for 

axons of CNS neurons. Despite the presence of abundant NF proteins in the CNS, intrinsic 

axons of the brain, even the larger corpus callosum axons, have a relatively low NF density 

and exhibit minimal volume reductions when their NF expression is suppressed 

genetically(Dyakin et al., 2010).  

Direct evidence now has established unequivocally that synapses contain a unique pool of 

NF that has distinctive functional roles(Yuan et al., 2015a, b). NF assemblies isolated 

from brain synaptosomes are distinguishable both morphologically and biochemically 

from those in other parts of the neuron; NF subunits in synapses exist in unconventional 

assemblies and even likely in small hetero-oligomeric forms(Yuan et al., 2003).  The 

latter are capable of axonal transport(Yuan et al., 2003).  Electron microscopy combined 

with immunogold labelling has identified short, irregularly oriented and bent 10nm 

filaments that often are associated with the post synaptic density (PSD) or with vesicular 

organelles (Figure 4). Synaptic NF proteins are distinctive in both stoichiometry and 

states of phosphorylation and respond differently to genetic subunit perturbations than 

the larger NF protein pool in brain white matter(Yuan et al., 2015b) . Changes in 

synaptic NfL phosphorylation associated with calcium/calmodulin-dependent protein 

kinase II activation during modulation of long-term potentiation (LTP) suggest a role for 

synaptic NF proteins to enable the latter(Hashimoto et al., 2000) and hint at a broader 

functional significance of the complex regulation of NF subunits by 

phosphorylation(Nixon and Sihag, 1991; Sihag et al., 2007). 

Synaptic NF proteins have been found to be more abundant in the postsynaptic 

compartment than in adjacent dendritic areas or presynaptic terminals using quantitative 

immunogold analysis with electron microscopy(Yuan et al., 2015b). 

Immunocytochemical studies(Bragina and Conti, 2018 In Press) have confirmed NF 

subunit immunoreactivity (NFIR) in pre-and post-synaptic compartments and greater 

NFIR in GABAergic than in glutamatergic synapse(Bragina and Conti, 2018 In Press).  

Recent findings that individual subunits serve unique roles in neurotransmission provide 

indirect, but compelling evidence for the functional importance of synaptic NF(Yuan et 

al., 2015b; Yuan and Nixon, 2016). N-methyl-D-aspartate (NMDA) receptors(Li and 

Tsien, 2009) are highly concentrated in postsynaptic membranes of glutamatergic 

synapses(Huntley et al., 1994). NfL has long been known to interact directly with the 
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cytoplasmic C-terminal domain of GluN1 through its rod domain(Ehlers et al., 1998; 

Ratnam and Teichberg, 2005). NfL co-expression with GluN1 and GRIN2B subunits in 

HEK293 cells increases the surface abundance of GluN1(Ehlers et al., 1998) and blocks 

its ubiquitination(Ratnam and Teichberg, 2005) Both of these actions of NfL are 

expected to stabilize NMDA receptors within the neuronal plasma membrane. 

Consistent with this hypothesis, the abundance of synaptic GluN1 subunits is reduced 

and ubiquitin-dependent GluN1 subunit turnover is greater in NfL-/- than in wild-type 

mice(Yuan et al., 2018a). Binding of antibody that only recognizes poly-ubiquitin chains 

formed with the Lys-48 (K48) residue is greater in GluN1-rich postsynaptic membranes 

of the hippocampus; GluN1 interactions with NfL may inhibit their accessibility to the 

ubiquitin ligases known to initiate GluN1 degradation(Kato et al., 2005; Ratnam and 

Teichberg, 2005; Yuan et al., 2018b). Additionally, NfL binding to protein phosphatase-

1(PP1), a protein/serine/threonine phosphatase in the PSD(Terry-Lorenzo et al., 2000) ,  

suggests possible regulation of the phosphorylation states of NF subunits and NMDA 

GluN1 receptors in ways that may influence the cellular distribution of the 

receptor(Ehlers et al., 1998). These observations may be relevant for understanding the 

role for regulating the phosphorylation state of NfL with LTP and long-term depression 

(LTD)(Hashimoto et al., 2000).   

 

Loss of surface GluN1 receptors and NMDAR hypofunction associated with NfL deletion 

could contribute to clinical presentation of psychiatric and neurodegenerative disorders 

including Alzheimer’s disease(Lin et al., 2014). NfL gene deletion in mice, which depresses 

GluN1 protein levels, both reduces dendritic spine number and length and leads to increased 

hippocampal glutamate levels as an adaptive response(van Elst et al., 2005; Homayoun and 

Moghaddam, 2007; de la Fuente-Sandoval et al., 2011; Merritt et al., 2016; Yuan et al., 

2018b).  Responses to NMDAR antagonists also are lost with NfL deletion, although effects 

on NMDA-independent motor activity are minimal. Multiple NMDAR- related behaviours 

such as pup retrieval, spatial and social memory, pre-pulse inhibition and night-time activity 

also are impaired. Importantly, similar NMDAR-related synaptic and behavioural deficits 

(albeit in milder forms than in NfL-null mice) are seen in NfL+/-mice that have 40-50% 

lower brain NfL levels than in the wild-type mice – a relative reduction within the range of 

NfL loss seen in some brain regions with schizophrenia(Kristiansen et al., 2006). 

Interestingly, NF genes map to chromosomal regions implicated in schizophrenia(Badner and 
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Gershon, 2002; Lewis et al., 2003) and concentrations of NfL are reduced consistently in this 

disease(Kristiansen et al., 2006; Pennington et al., 2008).      

 

Highlighting the differential roles of NF subunits in synaptic function, NfM colocalizes with 

the G-protein-coupled D1 receptor in synaptic boutons(Girault and Greengard, 2004) and the 

deletion of NfM but not any other NF subunit causes postsynaptic D1-receptors to 

redistribute from a reserve pool on endosomes to the synaptic plasma membrane, which 

significantly increases D1R-stimulated hippocampal LTP and greatly amplifies dopamine 

D1-receptor-mediated motor responses to cocaine(Yuan et al., 2015b). Furthermore, deletion 

of the NfM gene in mice enhances dopamine D1-receptor-mediated motor responses to 

cocaine(Yuan et al., 2015b).  The lack of NfM leads to a redistribution of postsynaptic D1-

receptors from endosomes to plasma membrane, implying that NfM is playing a role in the 

recycling of the D1-receptor. NfM deletion also inhibits the desensitization response to 

cocaine and amphetamine, while enhancing and prolonging ERK activation and ERK 

mediated NfM phosphorylation(Beitner-Johnson et al., 1992; Berhow et al., 1996), not unlike 

the effects of chronic exposure to drugs of abuse in humans(Beitner-Johnson et al., 1992). 

Notably, basal neurotransmission and induction of LTP are normal in NfM-null mice, 

distinguishing them from mice lacking NfH, which exhibit deficient LTP maintenance and 

NfL-null mice that display both deficient basal neurotransmission and LTP(Yuan et al., 

2015b).   

 

Furthermore, NfL is known to interact with the GluN1 subunit of the NMDA receptor. NfL 

deletion in mice reduces GluN1 protein levels and dendritic spines and elevates ubiquitin-

dependent turnover of GluN1(Yuan et al., 2018a).   Interestingly, interactions between 

dopamine D1 (D1R) and NMDA receptors are facilitated through NF subunit-

assemblies(Yuan et al., 2015b; Yuan et al., 2018b). The motor stimulant effect of the NMDA 

antagonist phencyclidine is blocked by D1R antagonists and deletions of NfL and NfM, 

which regulate NMDAR and D1R, respectively and have opposing effects on D1R-dependent 

motor activity induced by NMDA inhibition(Yuan et al., 2018b). Thus, the known functional 

interdependence of these two distinct receptor complexes appears to depend on a synaptic 

scaffold containing assemblies of multiple NF subunits.  

 

Degradation and turnover of NF  
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As outlined briefly in the overview, major insights into mechanisms of assembly and 

turnover of NF have come from the study of genotype-phenotype associations in three rare 

diseases neuropathologically characterised by prominent abnormal NF accumulation in 

axons: Autosomal Recessive Spastic Ataxia of Charveloix-Saguenay (ARSACS)(Engert et 

al., 2000), the early onset CMT Type 2R(Ylikallio et al., 2013) and Giant Axonal 

Neuropathy (GAN)(Bomont et al., 2000).   

 

ARSACS is an early onset autosomal recessive CNS disorder caused by mutations in the 

gene encoding sacsin (SACS), a protein with both putative ubiquitin and chaperone functions. 

ARSACS is found world-wide and is the second most common inherited cause of 

ataxia(Engert et al., 2000). Patients present with a cerebellar ataxia and cognitive impairment 

that is associated with a variably severe motor-sensory neuropathy. On examination, 

thickening of the retinal nerve fibre layer can be seen(Bouchard et al., 1998). Accumulation 

and abnormal bundling of NF is the most prominent neuropathological finding in affected 

neurons, which include Purkinje cells(Lariviere et al., 2015).  

 

Sacsin is not restricted to neurons, nor is its role limited to the degradation of intermediate 

filaments. Cellular neuropathology in other cell types provide additional insights into the 

other functions of intermediate filaments. Fibroblasts derived from ARSACS patients or 

SACS knockout fibroblasts show pathological intermediate filament structures, with vimentin 

filaments collapsed around or beside the nucleus, rather than radiating outwards to the plasma 

membrane(Duncan et al., 2017). This is accompanied by an altered distribution of organelles 

(including autophagosomes and lysosomes) and displacement of the nucleus(Duncan et al., 

2017). The latter is associated with disruption of the LINC complex(Lee and Burke, 2018) 

connecting cytoplasmic intermediate filaments to the nuclear cytoskeleton (Gentil, Bouchard 

and Durham, unpublished data). Mitochondrial pathology also is seen, with increased 

mitochondrial lengths, reduced mitochondrial fission and impaired transport(Girard et al., 

2012; Lariviere et al., 2015; Bradshaw et al., 2016). The mechanism underlying the 

mitochondrial abnormalities is not known, but could be related to roles for intermediate 

filaments in organizing mitochondria(Tradewell et al., 2009) or a more direct role of sacsin in 

regulating mitochondrial dynamics; loss of sacsin has been linked to compromised ability to 

recruit or retain the major fission protein Drp1 at the mitochondrial membrane(Bradshaw et 

al., 2016). 
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Sacsin has several functionally distinct domains: a C-terminal ubiquitin-like domain (Ubl), 

three SIRPT domains (SIRPT1 bearing homology with the ATP-binding domain of HSP90), 

a J-domain, and an N-terminal HEPN domain(Engert et al., 2000). The presence of the Ubl 

and domains with chaperone homology suggests that sacsin is involved in NF assembly 

and/or turnover. The Ubl domain has been shown to interact with a proteasomal 

component(Parfitt et al., 2009). In cell models, expression of the Ubl and J-domain peptides 

both inhibited normal assembly of NF, whereas SIRPT1 and HEPN domain peptides 

promoted NF protein assembly.  In cultured SACS-/- motor neurons modelling the pathology 

in ARSACS, selective expression of both the SIRPT1 and J-domain peptides led to the 

clearance of NF bundles in a similar way to that seen with overexpression of heat shock 

proteins(Gentil et al., 2019). These data highlight multifunctional roles of sacsin as a key 

player in organising NF proteins and in regulating subunit levels, assembly, maturation of 

their supramolecular structures and turnover(Engert et al., 2000).  

 

Nonetheless, mechanisms responsible for the turnover of NF still are incompletely 

understood. NF appear to undergo degradation all along axons by mechanisms regulated by 

their density and phosphorylation status(Nixon and Logvinenko, 1986). To investigate the 

turnover and axonal transport of NF quantitatively, Millecamps et al(Millecamps et al., 2007) 

generated mice with the human NfL transgene under doxycycline control in the presence or 

absence of endogenous mouse NfL proteins. In these mouse models, although the human NfL 

mRNA expression was turned off after one week after administration of doxycycline, the 

human NfL proteins persisted with a half-life of approximately 3 weeks. The half-life was 

extended to months when an intermediate filament scaffold was present.  These findings are 

broadly consistent with the half-lives of NF proteins estimated from the decay of [3H] proline 

radiolabeling proteins in mouse retinal ganglion cell neurons(Nixon and Logvinenko, 1986; 

Rao et al., 2012).  

 

Studies with conditional NfL transgene suppression revealed that the turnover of NF proteins 

is slower in large-caliber axons of the PNS having a high content of NF: no substantial 

decrease of human NfL protein levels in sciatic nerve axons was detected even after 3 months 

of human NfL transgene mRNA suppression by doxycycline treatment of mice able to 

maintain a NF structural network despite the transgene suppression because of endogenous 

mouse NfL expression(Millecamps et al., 2007).  NF proteins might last several months or 
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even years in large axons with dense NF networks. In conjunction with the observation that 

the rate of human NfL transport is enhanced by an order of magnitude (10 mm/day) in 

peripheral axons lacking a NF network, these results support the notion of a stationary NF 

network in axons(Nixon and Logvinenko, 1986) that contributes to slowing both the turnover  

of NF and its net unidirectional transport rate and the turnover of NF.   

 

Although regulation of the formation and exceptional stability of the stationary axonal NF 

network is incompletely understood, a higher state of phosphorylation is one crucial factor 

that distinguishes stationary from moving NF(Lewis and Nixon, 1988; Nixon et al., 1994a), 

possibly through causing their dissociation from the kinesin motor(Yabe et al., 2000)  and 

conferring proteolytic resistance.  

 

Various proteases can contribute to NF proteolysis(Perrot et al., 2008). The calcium-activated 

proteases have a high degree of substrate specificity for IF. Calpain is capable of a limited 

proteolysis of NF. One provocative study, still to be replicated to our knowledge, proposed 

that NF is cleared after transport to the synaptic terminal, at least in part through activities of 

calcium-activated proteases such as calpain(Roots, 1983). Calpain proteolysis is one of the 

key molecular processes in Wallerian degeneration(Wang et al., 2012), as well in growth 

cone formation. Other non-specific proteases can trigger NF turnover and generate NF 

peptides, too(Perrot et al., 2008). These include cathepsin D(Nixon and Marotta, 1984) and 

caspases 6 and 8(Shabanzadeh et al., 2015). 

 

Important insights into degradation pathways more specific to NF have come from the study 

of rare, inherited genetic diseases.  Mutations in TRIM2 (tripartite motif containing 2) cause a 

rare cause of an early-onset, recessive form of CMT Type 2R(Ylikallio et al., 2013). TRIM2 

is an E3 ubiquitin ligase that binds and ubiquitinates NfL(Balastik et al., 2008). The 

pathology shows swollen axons with abnormal aggregation of NF in myelinated fibres. CNS 

neurodegeneration with tremor, ataxia and seizures are seen in a TRIM2 gene trap mouse 

line(Balastik et al., 2008).   

 

A central role for E3-ligase activity in the turnover of NF was discovered through studies of 

GAN(Bomont et al., 2000), a fatal autosomal recessive neuropathy(Cavalier et al., 2000) in 

which giant axons (up to 50 μm in diameter) filled with densely packed and disorganized NF 

are found throughout the peripheral and central nervous system(Asbury et al., 1972). Starting 
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early in infancy, the disease is associated with progressive loss of motor and sensory 

function(Johnson-Kerner et al., 2014). CNS symptoms arise later from cerebellar dysfunction 

and cognitive impairments. In the most severe cases, GAN is fatal in young adulthood, 

usually before the third decade of life. The pathological aggregates of GAN, found both in 

neuronal and in non-neuronal tissues, include multiple subtypes of IF(Prineas et al., 1976). 

The NF accumulation in nerves within the so-called ‘giant axons’ identified in nerve biopsies 

of patients are most characteristic(Asbury et al., 1972).  However, with the broad range of 

abnormal IF aggregates seen in patients (e.g., extending from desmin in muscles to GFAP in 

astrocytes, keratin in hair and vimentin in numerous cell types), GAN is considered as a 

unique disease of the IF network. 

 

GAN is caused by mutations in the gigaxonin-encoding gene(Bomont et al., 2000), through a 

loss-of function mechanism triggered by both non-sense-codon mediated mRNA decay and 

protein instability(Boizot et al., 2014). The decreased abundance of gigaxonin in human 

samples is considered an essential and sufficient diagnostic test to discriminate GAN from 

other similar neuropathies(Boizot et al., 2014).  This is important clinically, as patients with 

GAN share similar clinical and histopathological features with several Charcot-Marie-Tooth 

neuropathies, including the presence of giant axons and NF bundles in nerve biopsies(Fabrizi 

et al., 2004; Ylikallio et al., 2013). 

 

With its N-terminal BTB domain and C-terminal Kelch domain(Bomont et al., 2000), 

gigaxonin belongs to the large family of BTB-Kelch proteins. It is presumed to act in the 

ubiquitin proteasome system (UPS); proteasome inhibition reduces the clearance of NF in 

cells overexpressing gigaxonin(Mahammad et al., 2013). This appears to be mediated by 

interactions between the gigaxonin BTB domain and the Cul3 subunit of E3 ubiquitin ligase 

complexes(Furukawa et al., 2003). Gigaxonin may target its binding partners for ubiquitin-

mediated degradation through their interactions with the Kelch domain(Johnson-Kerner et 

al., 2015b). Among putative partners identified by mass spectrometry approaches or double 

screening in yeast, IF are so far the only major biological targets for gigaxonin, as confirmed 

in cellular and animal models of the pathology(Johnson-Kerner et al., 2015a). Indeed, 

numerous types of IF are abnormally aggregated in disease, e.g., vimentin in primary 

fibroblasts from patients(Bomont and Koenig, 2003), peripherin and NfL in motor neuron-

like cells derived from induced pluripotential stem cells(Johnson-Kerner et al., 2015a), and 

vimentin, NfL, NfM, NfH and α-internexin in two different GAN mouse models(Dequen et 
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al., 2008; Ganay et al., 2011). Whilst the neurological phenotypes of these mice are mild in 

comparison to the human pathology, both GAN mouse models exhibit pronounced alterations 

of the abundance and spatial distribution of neuronal IFs throughout the peripheral and 

central nervous systems. The putative role of gigaxonin in regulating the steady state IF 

levels also has been demonstrated compellingly in vitro: lentiviral over-expression of 

Gigaxonin was sufficient to drive the clearance of multiple wild type IF (vimentin, peripherin 

and NfL) and IF bundles (including vimentin, NfL, NfM, NfH, peripherin and α-internexin) 

in GAN cells(Mahammad et al., 2013; Israeli et al., 2016). This effect is mediated by the 

interaction of gigaxonin with the central rod domain common to all IF types(Mahammad et 

al., 2013),  supporting the clinical and mouse model data suggesting a key role of gigaxonin 

in controlling the degradation of the whole IF family(Bomont, 2016).   

 

GAN highlights that gigaxonin appears to be the only E3 ligase able to target NF (and IF 

proteins more generally) for degradation. However, several questions remain to be answered. 

What form of IF (e.g., short IFs, single unit length filaments, mature filaments or multimeric 

forms) are targeted by gigaxonin? What specific ubiquitination chain type and degradative 

route is involved?  Surprisingly, while a role for gigaxonin in controlling NfL, NfM and NfH 

abundance has been demonstrated in cells in vitro and in two distinct GAN mouse 

models(Dequen et al., 2008; Ganay et al., 2011), direct evidence for NF ubiquitination by 

gigaxonin remains to be discovered. Experimental challenges to addressing this are the multi-

subunit nature of the gigaxonin-E3 ligase complex and the insolubility of gigaxonin when 

ectopically expressed; ubiquitin laddering of IF with gigaxonin expression has been 

extremely challenging, although repored once for peripherin in GAN dorsal root 

ganglion(Israeli et al., 2016).  

 

The proteasome has been partially implicated in vimentin degradation and, as the 

observations above suggest, may contribute to NF turnover mediated by proteins such as 

TRIM2 or gigaxonin(Mahammad et al., 2013).  However, recent findings also demonstrate a 

central role for the gigaxonin-E3 ligase in controlling the autophagy pathway through the 

ATG16L1 protein(Scrivo et al., 2019), presenting the interesting possibility that a non-

canonical autophagy pathway also plays a role in NF turnover. Indeed, activation of 

autophagy is accompanied by reduced NF levels(Chen et al., 2013).  

 

Release and clearance of NF peptides and proteins  
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While the nature of the NF species detected with current immunoassays has not been 

determined because of the technical challenges posed by their low concentrations, it seems 

likely that most or all of the NF detected in the CSF or plasma compartments represent 

peptides generated from partial degradation of NF in the neuron. With injury to peripheral 

nerves, these might be expected to arise from axons, but, major contributions from synaptic 

NF are possible in the brain and spinal cord because of the relative abundance in the synaptic 

compartment within the CNS.   

 

The mechanisms for release of these NF peptides from neurons are not yet defined(Khalil et 

al., 2018) and we can do little more than speculate at this time. However, testable hypotheses 

regarding mechanisms of release can be made based on what is known about  pathways for 

release of other neuronal peptides and proteins. Intracellular endosomal organelles known as 

multivesicular bodies (MVB) may play important roles in the release of peptides(Von 

Bartheld and Altick, 2011). This may occur through ‘back-fusion’ events and budding from 

the plasma membrane to generate microvesicles (100-2000nm diameter)(Kleijmeer et al., 

2001; Murk et al., 2002) or through release of smaller endosomally-derived exosomes (30-

140 nm)(Faure et al., 2006; Lachenal et al., 2011). The latter, if relevant, may make a smaller 

contribution, as the endosomal pathway is associated with non-ubiquitin degradation of 

proteins and the evidence from GAN cited above suggests indirectly that it does not play a 

major role. By contrast, neuronal MVB have been shown to contain protein aggregates that 

accumulate in Parkinson’s and Alzheimer’s disease, for example(Nixon et al., 2005). They 

are more abundant with neurodegenerative diseases and in aging(Nakadate et al., 2006), 

where they are associated with enhanced autophagy(Truant et al., 2008). Microvesicle 

production also can increase with higher intracellular [Ca2+] (as with excitotoxic injury), cell 

stress or with inflammation(Sproviero et al., 2018). Upregulation of molecular chaperones 

rescues the NF phenotype in SACS knockout neurons(Engert et al., 2000) and in motor 

neurons expressing mutant NfL associated with CMT(Tradewell et al., 2009). Chaperones 

have the potential to increase a more mobile pool of NF proteins accessible to secretory 

mechanisms such MVB(Manek et al., 2018).   

 

Pathways for degradation (e.g., proteasomes(Johnson-Kerner et al., 2015b), 

autophagy(Nixon, 2006) or release into the extracellular space(Wang et al., 2006) for 

degradation by extracellular proteases) could be differentially important in the context of 
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healthy, injured or chronically damaged neurons. The varicosities or large spheroids which 

occur with neurodegeneration may modify this(Coleman, 2005),(Beirowski et al., 2010).  

 

We speculate that the different mechanisms of release may have different kinetics and that 

they may lead to variable relative levels of different types of NF peptide fragments in blood 

or CSF. Quantitative interpretations of the relative concentrations of NF or their peptide 

fragments in either compartment (or between compartments) demands a better understanding 

of the mechanisms of these release pathways, as well as how peptides are transported from 

the parenchyma into the fluid compartments and between the CSF and blood.   

 

The mechanisms by which NF traffic between parenchymal, CSF and blood compartments 

also are unknown. However, the apparently general pathways by which large molecules such 

as amyloid-β (Aβ) pass from the interstitial fluid (ISF) of the brain into the CSF and blood 

that are beginning to be elucidated suggest a tentative model for how NF species could be 

transported between compartments.  

 

Soluble metabolites or peptides released from cells in most organs are absorbed directly into 

the blood or drain via lymphatic vessels to regional lymph nodes (Engelhardt et al., 2017).  

Lymphatic drainage may contribute to NF peptide distribution with peripheral nerve injury. 

However, the brain constitutes a specialized compartment both because of the selective 

permeability of the blood brain barrier and because there are no conventional lymphatic 

vessels in the CNS. Large tracer molecules or small particles injected into the ISF of the brain 

drain to cervical lymph nodes along the walls of cerebral capillaries and 

arteries(Szentistvanyi et al., 1984b). This drainage occurs initially along basement 

membranes that surround capillary endothelial cells and then along the basement membranes 

between smooth muscle cells in the tunica media of intracerebral and leptomeningeal arteries 

(Carare et al., 2008). Together, this constitutes an Intramural Peri-Arterial drainage (IPAD) 

pathway(Albargothy et al., 2018) (Figures 5 and 6).  

 

IPAD appears to provide a route for the drainage of soluble peptides and proteins from the 

extracellular spaces in the brain to cervical lymph nodes (Szentistvanyi et al., 1984b; Carare 

et al., 2008; Albargothy et al., 2018). With impaired IPAD, tracer labelled protein injected 

intracisternally accumulates around veins draining from the brain(Hawkes et al., 2011), the 

walls of which appear to provide a downstream drainage pathway(Iliff et al., 2012), although 
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the specific route for transport of molecules in the paravenous compartment to lymph nodes 

along veins has not been defined. Modelling studies suggest that the motive force for IPAD 

could be derived from waves of contraction of smooth muscle cells (vasomotion) in the walls 

of cerebral arteries and arterioles (Aldea et al., 2019). Any additional motive force along 

veins, if it is needed has not been characterized.  

 

Clearance through this mechanism may change with aging or pathology if the functional 

capacity of IPAD changes in ways that could affect the kinetics of transport of NF. For 

example, age-related changes in artery walls(Hawkes et al., 2011) impair IPAD and appear to 

be a factor limiting elimination of Aβ from the ageing brain in the genesis of Alzheimer's 

disease (e.g., reflected by the accumulation of Aβ within the IPAD pathways in Cerebral 

Amyloid Angiopathy)(Keable et al., 2016),(Weller et al., 2015).  Although it seems likely 

that neurofilament proteins are eliminated from the brain with interstitial fluid along IPAD 

pathways, no direct evidence is available, as yet.  

 

Levels of proteins or peptides in the CSF cannot be assumed to reflect levels in the ISF 

directly. Although some reports have suggested that ISF and solutes from the brain drain 

directly into CSF, this conclusion is confounded in most cases by uncertainty because direct 

leakage of tracer from intracerebral injections into the CSF cannot be excluded. In better 

controlled studies, only 10-15% of tracer injected into cerebral hemispheres passes into the 

CSF (Szentistvanyi et al., 1984b; McIntee et al., 2016); 85% of the ISF passes to cervical 

lymph nodes via IPAD(Szentistvanyi et al., 1984b). As yet, there are no direct measurements 

of the proportion of NF released from the brain that reaches the CSF. It also is not known 

whether there is any regional neuroanatomical selectivity for this.  

 

The subarachnoid space is one neuroanatomical region for which distinct mechanisms of 

clearance have been characterised. CSF drainage from the subarachnoid space into the 

lymphatic system occurs through mechanisms distinct from those of the IPAD pathway for 

the drainage of ISF. In experimental animals and in humans, drainage of CSF into lymphatic 

vessels of the nasal mucosa via the cribiform plate, appears to be a major lymphatic drainage 

pathway(Kida et al., 1993; de Leon et al., 2017), although other routes, including dural 

lymphatics, have been described(Kida et al., 1993; Aspelund et al., 2015; Louveau et al., 

2015). The proportion of CSF that drains directly into the blood through the arachnoid 

granulations is uncertain.  
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Together, these observations raise cautions for quantitative inferences regarding particularly 

CNS neuronal pathology based on NF concentration measures in the CSF or serum.  The 

relationships may be influenced by the rate of release of NF species from the injured or 

degenerating neuron, where it is occurring in the CNS and variation in the kinetics of 

clearance related to aging or direct effects of pathology on the clearance mechanisms 

themselves.  

 

Changes either in rates of synthesis of NF proteins or differences in mechanisms and rates of 

peptide release could lead to differences in measured levels of NF or its peptide fragments in 

plasma or CSF. As far as we are aware, there are no data describing how turnover in any 

compartment might change with disease in people. Nor, as is described above, is anything 

specific known about mechanisms of release of NF or their peptides from injured neurons. 

This knowledge gap substantively limits quantitative interpretations of NF peptide levels in 

plasma or CSF.    

 

One important step forward would be to generate data defining the dynamics of NF turnover 

in healthy people, with aging and in those with diseases associated with increased NF peptide 

concentrations in plasma or CSF. Although not yet applied to these problems, a promising 

approach for obtaining precise estimates of the kinetics of synthesis and elimination of NF in 

blood and CSF in healthy humans and those with disease is the Stable Isotope Labelling 

Kinetic (SILK) method(Bateman et al., 2006; Paterson et al., 2019). SILK can measure 

protein turnover rate and half-life minimally invasively in humans. In the past decade, SILK 

has been used to characterize the kinetics of turnover of pathological protein in a range of 

neurological disorders, e.g., amyloid beta (Aβ), apolipoprotein E (APOE) and tau in 

Alzheimer’s Disease and superoxide dismutase 1 (SOD1) in motor neuron 

disease(Mawuenyega et al., 2010; Basak et al., 2012; Crisp et al., 2015). The method relies 

on serial analyses of the body fluid or tissue of interest after a single period of infusion of 

stable isotope (e.g., 2H [deuterium] or 13C) -labelled amino acids. There then are 

incorporated into proteins. The subsequent enrichment and decay of enrichment in target 

proteins after this “pulse-labelling” is measured in the fluid compartment of interest over time 

by mass spectrometry(Bateman et al., 2006). Studies using SILK have demonstrated that 

structural proteins such as tau have a significantly longer half-life (approximately 20 days) 
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than do membrane proteins such as Aβ (approximately 10 hours)(Bateman et al., 2006; Sato 

et al., 2018).    

 

Based on this observation and rodent data demonstrating very slow turnover of NF 

incorporated into filamentous structures in the axon(Nixon and Logvinenko, 1986), SILK NF 

studies may require the use of a SILK protocol specialised for use with very long half-life 

proteins. This does not promise to be a straightforward task. Protocols for very long-lived 

peptides face three major technical challenges: i. sampling of biofluids from participants may 

need to be performed over periods of several months; ii. the dilution of the incorporated 

tracer with non-labelled proteins synthesized over the study period leads to low tracer 

incorporation rate (for example, less than 1% tracer enrichment of the target protein is 

measured at the apex of the kinetic curve for tau protein) and, iii. a mass spectrometry assay 

that is sufficiently sensitive to detect the low fraction of tracer incorporated into NF present 

in biofluid has to be developed.  

 

The last point is likely a major technical hurdle for the analysis of NF peptides because of 

their low concentrations in CSF (1-10 ng/ml range) and plasma (10-100 pg/ml range)(Petzold 

et al., 2006; Miyazawa et al., 2007; Zetterberg et al., 2016; Mattsson et al., 2017). Mass 

spectrometric (as opposed to the immunoglobulin capture assays described below) assays of 

NF in CSF or plasma have not been reported yet (although the first patients have now been 

recruited to investigate this); NF SILK in CSF will require a limit of detection below10 

pg/ml. However, this sensitivity could be achieved theoretically using immuno-purification 

(IP) combined with the latest generation of mass spectrometers operating in targeted MS 

mode(Gallien et al., 2012; Peterson et al., 2012; Gillette and Carr, 2013). Identifying 

antibodies that efficiently recover a representative range of NF peptides will be a 

prerequisite. Development of such a mass spectrometric assay would pay dividends by 

enabling further NF peptide characterization to test for differences in the nature of the species 

present in CSF or plasma with aging or diseases and characterising post-translational 

modifications. 

 

NF peptide concentrations as biomarkers of neurodegeneration   
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Interest in NF as a soluble biomarker has risen dramatically in recent years as robust methods 

for detecting NfL or its constituent peptides in CSF and blood have allowed strong 

associations between elevated NfL peptides (albeit with currently unspecified structural 

characteristics) and nervous system injury and disease (Table 2)(Khalil et al., 2018).  

Concentrations of NfL peptides in the CSF can be measured reliably by enzyme-linked 

immunosorbent assay (ELISA) using antibodies directed against the mid-domain rod region 

of the protein(Khalil et al., 2018). For a long time, there was only one ELISA for NfL 

available on the market(Petzold et al., 2010), but now additional assays exist(Gaetani et al., 

2018). However, the analytical sensitivity of the ELISA (around 25-50 ng/L) precludes its 

general use for measurement of NfL in serun 

 

Advances in technology have enabled major extensions of the range applications possible. 

Semi-sensitive electrochemiluminescence detection was the first approach that allowed 

disease-related increases in plasma concentration to be measured in samples from patients 

with ALS(Gaiottino et al., 2013) or active MS(Kuhle et al., 2016a). A further major advance 

enabling new applications came in 2015, when the first ultrasensitive assay for NfL using 

single molecule array (SIMOA) technology to enhance the ELISA signal was 

described(Gisslen et al., 2016). This assay allowed concentrations in plasma to be measured 

reliably even in people without peripheral or central nervous system pathology.  For the first 

time, correlations between CSF and serum levels of NfL could be demonstrated using this 

assay in patients with HIV encephalopathy(Gisslen et al., 2016).  Paired CSF and serum 

measures showed similar dynamics following acute brain injury, suggesting relatively rapid 

transport between the compartments, both peaking around 40-70 days post-injury and 

normalizing within 6 months(Bergman et al., 2016). Increases in plasma NfL concentration 

in patients with Charcot-Marie-Tooth disease demonstrated sensitivity to NfL released from 

peripheral nerves(Sandelius et al., 2018), both highlighting the potential of plasma NfL 

concentration as a biomarker of injury with this disease and the potential uncertainties for the 

interpretation of plasma NfL in other contexts in which there could be combined central and 

peripheral nerve injury. Whether NF markers associated with central and peripheral nerve 

injury can be differentiated biochemically is an important topic for future research, e.g., 

through development of assays sensitive not just to the mid-domain, but also epitopes 

distributed more widely in the NfL protein.  
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CSF and serum/plasma NfL are increased in most acute and chronic CNS diseases 

characterised by neuronal damage (Table 2) and correlate with longitudinal imaging findings 

of neurodegeneration(Khalil et al., 2018). Increases in NfL concentrations in serum and CSF 

thus do not provide specific markers of disease. Serum or plasma NfL concentrations (either 

sample matrix works well) are moderately to strongly correlated with CSF concentration 

measures (correlation coefficients of 0.74 to 0.97) for diseases affecting the CNS 

primarily(Hakansson et al., 2018); CSF findings with a range of neurodegenerative diseases 

(increased NfL concentrations in Alzheimer’s Disease (AD), frontotemporal dementia (FTD), 

vascular dementia and atypical parkinsonian disorders) have been replicated in blood plasma 

or serum(Zetterberg, 2016). Recent data also show that serum NfL appears sensitive to 

neurodegeneration and clinical progression in pre-clinical AD(Weston et al., 2017; Preische 

et al., 2019; Weston et al., 2019) and in Huntington’s disease(Byrne et al., 2017),(Johnson et 

al., 2018) and correlates with other measures of disease progression in AD(Mattsson et al., 

2017), FTD(Meeter et al., 2016) and progressive supranuclear palsy(Rojas et al., 2016; 

Donker Kaat et al., 2018). In people at risk of familial AD, increases in serum NfL have been 

detected even 10 years before the expected age of onset of symptoms(Weston et al., 2017). 

While serum NfL appeared insufficiently sensitive, increased CSF NfL levels were a risk 

factor for later mild cognitive impairment independent of increases in amyloid beta in a 

population-based cohort(Kern et al., 2018). Following traumatic brain injury, serum 

concentrations of NfL increase within days, reaching a maximum weeks following the injury 

with normalization after 6-12 months(Shahim et al., 2016; Shahim et al., 2017).  

 

Both the potential utility and potential limitations of NfL as a biomarker for  neurological 

diseases are illustrated by applications in MS. Increased levels of NfH and NfL were first 

described in the CSF of MS patients(Malmestrom et al., 2003; Norgren et al., 2004; 

Teunissen et al., 2009; Gunnarsson et al., 2011; Kuhle et al., 2013) in association with 

clinical relapses and proposed as biomarkers of acute inflammatory activity(Lycke et al., 

1998). Moreover, it was recognized that CSF NF concentrations tend to be increased across 

all clinical stages of MS relative to healthy volunteer groups even in the absence of evidence 

for new, acute inflammatory activity evident as a clinical relapse or detected using 

MRI(Teunissen et al., 2009; Kuhle et al., 2011). However, the chronically increased levels 

detected across groups of MS patients are lower (3- to 5- fold) than those reported for some 

primary neurodegenerative diseases (e.g., FTD or ALS)(Gaiottino et al., 2013).  
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With the introduction of the more sensitive SIMOA technology, plasma NfL was been 

explored in several studies as a marker of otherwise occult acute disease activity, drug 

response or future disease progression(Khalil et al., 2018). Unlike other indirect and 

retrospective measures of neurodegeneration in MS used clinically now (e.g., MRI or 

magnetic resonance spectroscopy(De Stefano et al., 2007; Pini et al., 2016; Kalra, 2019)), 

NfL measurements potentially allow neurodegeneration to be assessed in near “real-time”. 

Furthermore, NfL should be sensitive to neuronal damage in the brain and spinal cord, the 

latter being a CNS compartment where quantitative MR-based imaging methods for 

assessment of neuronal damage are technically more difficult, less standardized and not yet 

able to be used routinely in the clinic(Disanto et al., 2017; Barro et al., 2018). While the 

evidence still is limited, serial plasma NfL concentration measurements also appear to be as 

sensitive as MRI for the assessment of treatment effects(Gasperini et al., 2019).  

 

Current evidence supports use of NfL as a biomarker for inflammatory disease activity in MS 

for group or population-based analyses; a recent retrospective analysis suggests that plasma 

NfL concentration measures could act as an endpoint for future Phase 2 clinical 

studies(Sormani et al., 2019). Increases in plasma (or CSF) NfL also might provide a 

potential biomarker of sub-optimally controlled acute inflammatory activity in people at high 

risk who are being considered for a change in treatment but are without clinical evidence of a 

relapse or objective inflammatory changes on MRI. This type of information could become 

more important as evidence for continuing inflammatory activity is needed to stratify people 

with progressive forms of MS for treatment with new, highly active anti-inflammatory 

treatments (https://www.nice.org.uk/guidance/TA585).  

 

However, there also are important limitations to the use of NfL concentrations in CSF or 

plasma for disease monitoring of individual patients(Berger and Stuve, 2019). The lower 

levels of NfL that are found in most people with MS outside of periods of acute inflammation 

still generally cannot be confidently interpreted as pathological if obtained as single time-

point measurements(Kuhle et al., 2016b). There is an approximately 2.2% per year increase 

of concentration between the ages of 18 to 70 years(Disanto et al., 2017; Mattsson et al., 

2017; Barro et al., 2018), but standardised, age-corrected, normative distributions of NfL in 

CSF and plasma are not available to define values from individual subjects as being 

pathological. Measures of NfL concentrations in CSF or plasma also do not distinguish the 

underlying pathology and cannot differentiate between neuronal damage arising from acute 

https://www.nice.org.uk/guidance/TA585)
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or chronic inflammatory injury and other contributions to neurodegeneration (e.g., 

comorbidities of MS)(Marrie, 2016). Lack of knowledge of the kinetics of NfL peptide 

turnover in the blood also precludes confidence in the relative timing of presumed 

inflammatory events giving rise to NfL increases measured(Thelin et al., 2017).  Finally, not 

only is the precise nature of the peptide (and thus whether it might change with disease stage 

or other factors) unknown, but the CNS pathology being assessed itself may be uncertain: is 

the major release of NfL peptide with CNS injury due to synaptic damage or turnover or, as 

with peripheral nerve injury, does it primarily reflect axonal damage? 

 

Fundamental to addressing any of these questions will be to develop consensus amongst 

analytical laboratories for a harmonised assay standard to allow uniform interpretation of 

results between all laboratories. While the increasing diffusion of SIMOA is contributing to 

this now, other assay platforms also are in development by a number of diagnostic medicine 

companies. This continued commercial innovation may delay harmonisation of assays and 

definition of the kinds of normative data that are needed for confident clinical use of 

measures from individual patients. 

 

Conclusions and future directions  

 

Neurofilaments play fundamental roles in the neuronal development, organisation and 

function in the central and peripheral nervous systems.  Primary roles of NF in the 

pathogenesis of ALS(Figlewicz et al., 1994; Tomkins et al., 1998; Gros-Louis et al., 2004; 

Leung et al., 2004) and CMT(Mersiyanova et al., 2000; Rebelo et al., 2016) and secondary 

pathogenic roles in other disorders have been discovered.  Most striking to date amongst the 

latter are disorders arising from impairments in normal mechanisms for NF degradation that 

are associated with progressive and severe axonal pathology. However, fundamental 

questions still remain concerning basic mechanisms regulating NF expression, assembly and 

turnover.  

 

The identification of functional roles for synaptic NF in modulation of excitatory 

glutamatergic activity(Huntley et al., 1994; Ratnam and Teichberg, 2005; Yuan et al., 2018a) 

has opened an entirely new range of investigations of NF neurobiology. The contributions of 

the synaptic pool to neuronal dysfunction associated with schizophrenia-like behaviours in an 
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NfL-/- mouse suggests the potential for abnormalities in synaptic NF to contribute to the 

genesis neuropsychiatric diseases more generally(Yuan et al., 2018a). Although the disease 

relevance still is speculative, the importance of the question and the novelty of this 

neurobiology make better understanding of the structurally unique synaptic NF, its 

organisation and its functions a priority. 

 

However, understanding how NF are degraded and which and how degradation products are 

released from neurons is a particularly urgent agenda given the degree of clinical interest in 

using NF in CSF and serum as biomarkers.  Physiological mechanisms for more dynamic 

control through post-translational modifications need to be better defined. For example, how 

is NF phosphorylation regulated relative to the targeting of NF for E3 ligase and protease 

activity?  Exactly what forms of NF (short IFs, unit length filaments (ULF), tetramers or 

dimers) are the major substrates for degradation with normal turnover? Applications of NF 

measures for assessment of pathology demand some appreciation for whether these 

mechanisms of NF degradation and release are altered with disease or injury. We hypothesise 

that they may vary. For example, oxidative stress leads to increased protein carbonylation and 

degradation of carbonylated cytoskeletal proteins including NfM and NfH is largely mediated 

by calpains with involvement of proteasomes(Smerjac et al., 2018), suggesting a particular 

role for this degradation mechanism in the contect of oxidative pathologies.    

 

Technological advances in measurement of the low concentrations of NF (particularly NfL) 

in CSF or serum have allowed exploration of how levels increase with aging, brain injury and 

neurodegenerative diseases. These suggest that NF concentration measures in these 

compartments could be used as an index of peripheral or central nerve damage with 

trauma(Shahim et al., 2016) or neurodegeneration(Weston et al., 2017; Preische et al., 2019; 

Weston et al., 2019).  Serial measures can be sensitive to sub-clinical disease activity in MS 

in ways that suggest the potential to monitor treatment responses(Lycke et al., 1998), 

potentially at an individual patient level with active disease. Particular clinical impact could 

arise with use of NfL measures as evidence to support therapeutic decisions regarding 

continuing disease activity when other clinical or imaging evidence is lacking.    

 

However, at this point, increased NfL measures in CSF or serum are non-specific to disease 

aetiology. The molecular characteristics of the precise peptide species being measured are 

uncertain and the mechanisms of their release and trafficking from the parenchyma to CSF or 
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blood are speculative. Interpretation of plasma measures of NfL also can be uncertain when 

both central and peripheral nervous system injury is possible, such as after some forms of 

trauma. Can the release of NfL peptides and their levels in blood or CSF be related 

quantitatively to the degree of neuronal injury or does relationship vary substantially with the 

nature of the pathological insult?  Are there disease- or stage-specific differences between the 

NF species detected?  What is the time course of injury over which they are reporting? Do the 

differences seen with age or disease solely reflect neurodegenerative changes, or could they 

also reflect differences in transport or turnover?  If medical decisions are to be made based on 

these measures, answering such questions will become important. 

 

We believe that basic questions like these emphasise the need for some caution in 

interpretation of NF measures in serum or CSF from individual patients.  At the same time, 

they also highlight why there is currently such excitement amongst those interested in the 

neurobiology of intermediate filaments. Moreover, with a growing range of new tools for 

characterising major aspects of their biology (e.g., SILK), it is timely to ask these questions. 

The strong foundations that have been laid for discovery, the availability of new tools and 

approaches and practical importance of developing confidence in understanding NF better, all 

highlight both the clinical promise for NfL as a biomarker and the great potential for future 

investigation of the neurobiology of NfL and IF more generally. 
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Tables 

 

Neurofilament 

pathology 

Proteins affected Associated Diseases 

Primary neurofilament 

gene mutations 
 NfH, Peripherin 

 

 NfL, NfH 

 Amyotrophic Lateral Sclerosis  

 

 Charcot-Marie Tooth Disease  

Mutations in genes 

involved in NF assembly, 

turnover and 

degradation  

 Sacsin 

 

 

 TRIM2 

 

 

 Gigaxonin 

 Autosomal Recessive Spastic Ataxia 

of Charveloix 

 

 Charcot-Marie Tooth Disease Type 

2R 

 

 Giant Axonal Neuropathy  
 

Table 1. Diseases associated with mutations in neurofilament genes or genes involved in 

proteins for neurofilament assembly, turnover and degradation. 
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Clinical condition Key references  

 Peripheral neuropathies  

o Charcot-Marie-Tooth Disease (Sandelius et al., 2018) 

o Guillain-Barré syndrome (Petzold et al., 2006) 

o Chronic Inflammatory Demyelinating 

Polyneuropathy 

(van Lieverloo et al., 2019) 

 Ageing (Disanto et al., 2017; Mattsson et al., 2017; 

Barro et al., 2018) 

 Multiple Sclerosis  (Lycke et al., 1998; Malmestrom et al., 

2003; Norgren et al., 2004; Teunissen et al., 

2009; Gunnarsson et al., 2011; Kuhle et al., 

2016b; Kuhle et al., 2017) 

 Amyotrophic lateral sclerosis  (Lu et al., 2015; Steinacker et al., 2016) 

 Dementia  

o Pre-clinical Alzheimer’s Disease  (Weston et al., 2017; Preische et al., 2019; 

Weston et al., 2019) 

o Alzheimer’s Disease  (Mattsson et al., 2017) 

o Frontotemporal dementia  (Meeter et al., 2016) 

o Atypical Parkinsonian disorders (e.g., 

progressive supranuclear palsy  

(Rojas et al., 2016; Donker Kaat et al., 2018) 

 Stroke  

o Subarachnoid haemorrhage  (Nylen et al., 2006; Zanier et al., 2011) 

o Ischaemic stroke (Gattringer et al., 2017) 

 Traumatic brain injury  (Shahim et al., 2016; Shahim et al., 2017) 

 Huntingdon’s Disease  (Byrne et al., 2017; Johnson et al., 2018) 

 Neuropsychiatric conditions  

o Bipolar disorder  (Jakobsson et al., 2014) 

 Spinal muscular Atrophy  (Darras et al., 2019) 

 

Table 2. Major disorders reported to have associations with increased NfL 

concentration in blood or plasma  
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Figure Legends 

 

Figure 1. Schematic representation of the structure of neuronal intermediate filament 

(IF) proteins. All IF proteins have a highly conserved central domain of 310 amino acid 

residues that is responsible for the formation of coiled-coil structures. Flanking this central 

rod domain are the amino- and carboxyl-terminal domains. These latter domains confer 

functional specificity to the different types of IF proteins. For example, the NfM and NfH 

carboxyl-terminal domains contain multiple repeats of phosphorylation sites KSP (Lys–Ser–

Pro) that account for the unusual high content of phosphoserine residues for these proteins. 

The N- and carboxyl-terminal regions contain multiple o-linked glycosylation sites. 

Neurofilament proteins NfL, NfM and NfH are obligate heteropolymers. Although α-

internexin or peripherin can form homopolymers in vitro, these IF proteins usually co-

polymerize with the neurofilament triplet proteins in vivo.  

 

Fig. 2 Intermediate filaments are formed by the assembly of IF protein dimers. Two 

polypeptide chains form a coiled-coil dimer and two coiled-coil dimers form a 3-nm 

protofilament. These protofilaments associate in a staggered manner to form filaments of 10-

nm in diameter (32 chains). The carboxy-terminal domains of NfM and NfH form side-arm 

projections at the filament periphery.  

 

Figure 3. Mutations in the NEFL gene encoding NfL account for a small percentage of 

Charcot-Marie-Tooth disease. It is noteworthy that mutations have been detected in various 

regions of NfL. Some mutations have been shown to disrupt self-assembly of NfL into a 

filamentous network.    

 

Figure 4.  Functions of NF subunit assemblies in synapses. Left panel: Immunogold 

labelled antibodies against the NfM subunit decorating mouse brain synaptic structures in a 

linear pattern (immunogold particles outlined in blue) suggest the presence of short 

neurofilaments and protofilament /protofibrils. In the upper inset, a filament within a 

postsynaptic bouton is decorated by immunogold antibodies to both NfL (large gold dots) and 

NfH (small gold dots).  Graphic inset: morphometric analyses indicate a higher density of 

immunogold labelling in postsynaptic boutons than in preterminal dendrites or presynaptic 

terminals (graph inset).  Middle panel: Ultrastructural image of a human brain synapse 
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illustrates membranous vesicles (tentatively identified as endosomes), most associated with 

short 10nm filaments in the post-synaptic region.  Right panel: Evidence(Yuan et al., 2015a) 

supports a biological mechanism whereby D1 dopamine receptors internalized on endosomes 

from the postsynaptic surface dock on synaptic neurofilament subunit assemblies (outlined in 

blue) where they remain available to recycle from endosomes to the synaptic surface in 

response to ligand stimulation.  In the absence of NfM, retention of D1R on the plasma 

membrane surface induces hypersensitivity to D1R agonists, as observed in vivo. Selective 

NfL deletion in mice induces an NMDAR hypofunction phenotype by lowering membrane 

surface levels of the GluN1 subunit.   Evidence(Yuan et al., 2018a) supports a mechanism in 

which NfL binds GluN1 associated with NMDAR on postsynaptic terminals and stabilizes 

the receptor on the membrane by directly anchoring GluN1 and preventing access of the 

ubiquitin ligase that ubiquitinates GluN1 and targets it for degradation by the proteasome 

(UPS) leading to reduced NMDAR function.  A key below the figure identifies the depicted 

cellular elements that are depicted. 

 

Figure 5. The IPAD pathway. A length of cerebral artery in a mouse brain showing 

fluorescent amyloid protein (Aβ) co-localising (pink) with collagen IV in basement 

membranes between smooth muscle cells in the tunica media of the artery wall; this is part of 

the IPAD pathway (indicated by arrows) along which Aβ is draining out of the brain. The 

IPAD pathway for Aβ and, by inference, perhaps that for NF peptides, forms a spiral pattern 

along arterial walls (smooth muscle cells in the artery walls section illustrated are stained 

green. This figure is modified from an original figure reproduced as Fig 1d of Albargothy et 

al, 2018(Albargothy et al., 2018). 

 

Figure 6. Fluid balance in the brain. Entry and drainage of fluid into and from the brain is 

along basement membranes associated with the walls of arteries: i. CSF enters the surface of 

the brain along Pial-Glial basement membranes on the outer aspects of cortical arteries; ii. CSF 

mixes with interstitial fluid (ISF); to then, iii. leave the brain along Intramural Peri-Arterial 

Drainage (IPAD) pathways. 
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