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Abstract

The small layer dimensions required in low dimensional structures, such as multiple 

quantum wells (MQW), allows constituent materials to be used which are lattice 

mismatched in bulk form. The primary aim of this thesis is the study of InP based 

electroabsorption devices which comprise lattice mismatched induced strained layer 

MQW material.

Experimental and theoretical investigations are undertaken into the band-edge 

electronic structure and associated optical properties of strained InAs^Pj^.^ InP quantum 

wells. The devices are designed for application around 1.06 pm and, for the first time, 

demonstrate growth of this QW system by solid source molecular beam epitaxy. 

ModelHng is also used to study the properties of three layer InP/ InAs^P^.^ In^Ga^.^As 

QW’s which are proposed for their internal staircase-like potential. The associated 

effective built-in field allows a blue shift of the fundamental absorption edge and offers 

improved device performance over the conventional red shifting MQW devices.

Theoretical descriptions of MQW subband states are based on the effective 

Hamiltonian model (k.p) which includes coupling between conduction and valence 

bands as well as the effects of biaxial strain. The approach is extensively discussed and 

alternative approximations for describing band-edge structure are assessed. To account 

for the presence of an electric field, a tunnelling resonance method using a k .p  

description is used to find the quasi-bound states of the structure. Excitonic properties 

are computed using variational techniques thereby giving the ability to simulate optical 

absorption spectra using phenomenological broadening of both the exciton line and the 

continuum. Excellent agreement is found with experiment.

Optical absorption spectroscopy and bias dependent photocurrent spectra from p- 

i(MQW)-n structures is presented along with supporting cross-section TEM and X-ray 

diffraction measurements. In the context of these results, limits to pseudomorphically 

strained growth and routes to strain relaxation are discussed. The latter is shown to be 

an important factor in determining the absorption characteristics of devices.
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Chapter 1. Introduction
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§1.1 Dem and for Optical Technology.

The areas of telecommunications and computing have much to gain from optical 

technology (J.E Midwinter 1985). For example, the introduction of optical fibre has 

almost entirely displaced co-axial cable in the long distance terrestrial trunk 

telecommunications network (P Cochrane 1990). Coding (and decoding) of optical 

signals at either end of the fibre system, is obviously central to fibre optic 

communications. Electro-optic devices, such as optical modulators (and detectors), are 

often used, where the information from electronic data is coded onto (decoded from) an 

optical beam. As the complexity and performance of systems develop, the use of optical 

technology within the network itself has increasingly attracted more interest. Advanced 

electro-optic devices are seen to be promising components in self-routing optical systems 

and optical switching (see J.E Midwinter 1990 and references therein for further 

information). However, the role of optics technology is by no means hmited to the long 

haul telecommunication networks.

A growing development of very large scale integration (VLSI) technology leads to 

ever increasing integrated circuit packing densities. In the face of increased 

functionality per unit area and larger operating speeds resulting from integration, 

improvements are often constrained by the problem of interfacing the chip within an 

overall system. Greater demands are placed on the number of chip input and output 

channels and their capacity in order to meet its increased information needs (see e.g. 

Dickinson and Prise 1990). A number of studies have been carried out which compare 

system requirements for interfacing with either electrical tracks or optical techniques. 

These suggest that in power terms, optical links are superior to electrical ones over 

distances longer than approximately 1mm at bit rates of 1 GHz (Feldman et al 1988, 

D.A.B Miller 1989). Therefore optimum architectures can be envisaged which exploit the 

high capacity interconnect capabilities of optics and the processing power of electronics. 

Such systems may consist of small electronic islands, performing processing tasks at 

very high speeds, interconnected by optical links formed from electro-optic modulators 

(see J.E Midwinter 1988 , Parry et al 1989). Another method of increasing the capacity of 

processing systems, in addition to operating at higher speeds, is to operate on 

information in parallel. Arrays comprising electro-optic devices are proving to be 

effective as digital photonic logic planes in experiments on parallel processing and 

switching systems (Tooley and Wakelin 1993).
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From this brief discussion, it should be clear that electro-optic devices play an important 

role in many leading technologies. Semiconductor devices are promising candidates, 

and among other things, are applicable to opto-electronic integrated circuits (OEICs) in 

which optical and electronic devices are integrated onto one chip (see e.g. Parry et al 

1989, D.A.B Miller 1989). An impressive range of electro-optic semiconductor devices 

are based on heterostructures, more specifically quantum well properties. The emphasis 

in this thesis is on the development of heterostructures rather than their integration or 

application. An introduction to heterostructures and their application now appears in 

most text books relating to semiconductor physics/electronics, in addition, publications 

specifically dedicated to heterostructures are now available (e.g. Weisbuch and Vinter 

1991). Hence in the foUovsing sections, a brief description of heterostructures is given in 

relation to their electro-absorption properties. Following this in §1.3, key areas of 

quantum well technology are noted with an emphasis on electro-absorption devices. It is 

predominantly the latter device types in which the present work is concerned with.

§1.2 Introduction to Heterostructures.

Heterostructures such as multiple quantum wells (MQW) or superlattices (SL) 

physically comprise alternating layers of different semiconductor materials grown on a 

thick semiconductor substrate. For suitable constituent layer thickness, the modulation 

of electronic properties, i.e. band gap etc, along the growth direction results in quantum 

confinement effects. The distribution of electron states for the structure is strongly 

modified by the confinement and the heterostructure takes an asymmetric electronic 

form, quite different from that of a bulk semiconductor (see e.g. M Alterelli 1986). From 

an engineering point of view, a significant point is that the subsequent optical and 

electronic properties of such structures may be tailored through both the choice of 

constituent materials and the dimensions along the growth direction. In effect, 

producing artificial materials, i.e. the heterostructure as a whole, that may be used in 

existing semiconductor devices or form the basis of new devices (see various 

applications described in Weisbuch and Vinter 1991 and references therein).

The realization of heterostructures has been made possible by the remarkable 

achievem ents in the growth control of semiconductor material. Growth of 

heterostructures is typically by molecular beam epitaxy (MBE) or metal organic vapour 

deposition, although recently several hybrid techniques have been developed, e.g. gas 

source MBE (GSMBE) and chemical beam epitaxy (CBE). It is beyond the scope of this
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thesis to describe the various growth methods in detail and the reader is asked to consult 

the various reviews on the subject, e.g. for MBE (B.A Joyce 1985, A.C Gossard 1986) and 

for MOCVD (Stringfellow 1985); more recent reviews appear in Stradling and Klipstein 

(1990). An outline of the MBE technique is given in §5.2.1, including some growth 

details relating to structures investigated in Chapter 5.

§1.2.1 Ill-V semiconductors.

Experimental and theoretical investigations into III-V semiconductors have continued to 

increase over the past three decades, the later stages predominantly driven by the 

fabrication of opto-electronic devices. All the electronic and optical properties of 

semiconductors are described by the concept of band structure which in turn arises from 

the chemical and crystalline properties of the solid (see e.g. Bassani and Parravicini 

1975, R.A Smith 1978). Alloying of binary III-V semiconductors, e.g. InAs and GaAs to 

produce In^Ga^.^As, provides further band structure modifications and varies the 

energy band edge between the two binary III-V constituents.

The wealth of work, particularly on the electronic band structure of such materials, 

provides an excellent starting point to develop a r tif ic ia l  m aterials through 

heterostructure design. Heterostructures formed from III-V materials demand a 

knowledge of the individual material properties in order to predict the resulting 

composite band structure. Electronic band structures are typically displayed as energy- 

wavevector diagrams covering the whole Brillouin zone, detailing the relationship 

between the energy, E, of the particle (electron or hole) and the corresponding wavevector 

for a particular crystal direction, i.e. E(k), (Bassani and Parravicini 1975, R.A Smith 

1978). For E(k) dispersions close to the band edge, the concept of an effective mass for a 

particular band is conveniently used, i.e.

In the present work only the energy region very close to the band edge is important, i.e. at 

the centre (F-point) of the Brillouin zone. Consequently, the descriptions of the 

constituent layers may be reduced to this region (Chapter 3), which greatly simplifies 

calculations required for heterostructure modelling (Chapter 4).
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§1.2.2 Bulk band line-ups.

An important issue in heterostructures is how the constituent materials line up at the 

abrupt interface, in relation to their band edges. For two bulk semiconductors, A and B, 

with band gaps Eg and E®, such that Eg > Eg, at least two possible configurations of the 

structure ABA can be envisaged (below).

EgA EgB EgA

• Evrfz)

EgB
Ecb(z)

Evb(z)
(a) (b)

Figure 1-1. The bulk band line-ups for (a) Type I and (b) Type II ABA heterostructure.
(Growth is assumed along z)

The large majority of heterostructures designed for electro-absorption devices rely on the 

type I fine up, where the larger band gap material, e.g. Al^Ga^.^As (A), forms a potential 

barrier for both electrons and holes residing near the band edge of the B material (e.g. 

GaAs). In a type II configuration (Fig. 1-lb), a potential barrier is due to the B layer in the 

conduction band, whereas in the valence band the potential barrier is due to the A layer. 

Heterostructure systems comprised of GaAs/InP are expected to show a type II line up 

(Gershoni et al 1988). The structures presented in Chapter 5 exhibit a type I line up, while 

the investigations in Chapter 6 describes a structure that uses both type I and type II line 

ups.

The precise determination of the band line-ups for a particular set of materials remains 

a difficult area. Experimental determination of band offsets is largely based on optical 

spectroscopy. The offset is generally determined by fitting the calculated excitonic 

transitions to those observed. However, for most symmetric quantum wells, the lower 

transition energies are relatively insensitive to the band offset which can lead to large 

uncertainties in the deduced values. Furthermore, the accuracy of the model used 

becomes an issue, particularly if higher order transitions are to be fitted. Recent work 

has demonstrated that by growth of the appropriate asymmetric heterostructures, the
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normally forbidden  transitions become visible which can significantly improve the 

accuracy to which offsets can be measured or fitted to (Kopf et al 1992).

First principle calculations of the band offsets at semiconductor interfaces have been 

carried out, although the computational complexities of such calculations often restrict 

their use in investigating a wide range of material systems. Many of the common 

lattice-matched systems, and a few strained systems, have been investigated and 

typically demonstrate good qualitative agreement with experiment (a useful discussion 

of the various models is given by People and Jackson 1990).

In an attempt to obviate the computations required in self consistent type methods and 

yet still provide some indication of band line-ups, several semi-empirical methods have 

been developed. Probably the most widely used is the model-solid theory (MST) 

developed by Van de Walle and Martin (1987) which uses simple closed form expressions 

to predict band offsets in both lattice-matched and lattice-mismatched (strained) 

systems, [note; a clear demonstration of its use is given by People and Jackson 1990] 

Another straightforward model, uses a semi-empirical-tight-binding method (SETB) 

and a set of universal parameters optimized for the majority of III-V semiconductors 

(Anderson and Jones 1991). Both of these were used in the present work and found to 

predict reasonably well the distribution of the confinement potential inferred from 

experimental observations, i.e. for InAsP/InP the confinement potential is shared in 

favour of the conduction band, (cf. Chapter 5). However while both the MST and SETB 

methods are indeed useful, experimentally determined offset parameters are 

preferentially considered in this thesis.

§1.2.3 Properties of quantum  wells.

A conventional quantum well (QW) is described by the type I configuration (e.g. 

GaAs/AlGaAs, InGaAs/InP). Introducing a coordinate representation, the growth (and 

hence confinement) direction is along the z direction, the dimensions of the layers 

perpendicular to z (i.e. x and y or II ) are several orders of magnitude larger and so 

confinement is along one dimension. The electrons and holes close to the band edge in 

the well material, are free to move in the plane of layer (II) whereas their motion along (z) 

is strongly affected by the potential confinement. The effect of the confinement potential 

gives rise to a discrete set energies for which the electrons and holes are hound for 

motion along (z), (see figure below).
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H—

Energy (eV)

e2

el A

(Growth direction )
hhl 

- Ihl
“  hh2 
• lh2

Bandgap of QW is given by elhhl 

E E E

E v b ( z )  ■

barrier well barrier

Figure 1-2. A schematic showing the quantized states for a quantum well (type I).

Since the allowed energies occur at finite kg with respect to the well material, (i.e. not at 

the bulk band edge), distinct heavy- and light-hole states are found for the heterostructure 

valence band, [note: the valence band states are degenerate at k=0 but separate for kg>0 

due to the difference in effective mass, cf. (1.1), (see e.g. Schmitt-Rink et al 1989)].

For the simplest single particle picture, the E(k||) dispersion (i.e. governing motion 

in the the plane of the QW) of each confined state is parabolic, E =>= kff. In this case for 

each of the sabbands, the 2-D density of states is constant for energies larger than the 

confined state, with the confined state representing the bottom of the subband (see e.g. G. 

Bastard, 1988, chps.1,3). [note: this picture is not as accurate for hole states, since both the 

nature and close proximity of light and heavy holes induces strong mixing for k|| /O, 

resulting in highly non-parabolic dispersions (see e.g. Bastard and Brum 1986)]. The 

joint or reduced density of states, (DOS), for transitions between particular electron and 

hole subbands follows a similar trend, and demonstrates a step-like structure with 

constant plateaus for each of the allowed enhn transitions. Selection rules govern the 

strength of optical transitions between subbands, and are discussed in greater detail in 

§4.4.3. Essentially, the strength is proportional to the square of the en-hn overlap 

integral in the direction perpendicular to the layers (z), (Fig. 1-4). Typically in a 

symmetric QW, as in Fig. 1-2, an approximate rule is that transitions occur between 

subbands providing An=0, such as elhh l, e llh l, e2hh2 etc.

The strong confinement of particles along one direction also has an important affect on 

the formation of exciton states between conduction and valence subbands (discussed in 

further detail in. §4.4). An exciton can be thought of as an orbiting electron-hole pair (e- 

h), bound together by a mutual Coulomb interaction. In bulk materials, this interaction
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manifests itself in the absorption spectrum near the band edge; excitonic peaks occur at 

energies slightly below the band gap by an amount representing the binding energy of the 

e-h pair. Similar reasoning applies to QW structures where exciton formation can be 

associated between each set of conduction and valence subbands. However, for well 

widths less than the bulk exciton diameter (-150Â for GaAs), the confinement of electron 

and hole states along (z) causes the exciton states to be more bound (ie. larger binding 

energy), leading to an enhancement of excitonic effects. (Schmitt-Rink et al 1989). The 

effect on the room temperature absorption spectrum is dramatic. For bulk samples the 

exciton peak is barely visible, whereas in  QW structures clear excitonic peaks are 

observed before each corresponding subband plateau, particular in the case of e lh h l 

transitions, (Fig. 1-3).

0.8
<

o  0.6
50 PERIODS 
100Â GaAs 
100Â AUGq tAs

f-
0.
O 0.4utm

0.2

00
 ̂ - 0  1.45 1.50 1 55 1.60 1.65 1.70 1.75

PHOTON ENERGY (eV)

Flgfure.1-3. Comparison of room temperature absorption spectra from a hulk GaAs 
sample and a GaAs/AlGaAs MQW sample, [after Schmitt-Rink et al 1989]

A large range of devices exploiting room temperature quantum well optical properties 

rely on the consequences of electric fields applied perpendicular to the layers. The 

situation is illustrated in figure 1-4 including the resulting absorption spectrum near the 

band edge. As field is applied, the band edge exciton peaks, n=lhh and n=llh, shift to 

lower energies and their peak height decreases. The overall description has been termed 

the quantum confined Stark effect (QCSE) following the intial investiagtions by Miller 

and co-workers (1984, 1985).
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No Field

elhhl

Applied Field (F)

fh h l(F ) elhhl(F)

no field
0
3  applied field (F)
g

Î

1.45 1.5 1.551.4 1.6 1.65 1.7
wavelength (pm)

F igu re . 1-4. Illustrating the quantum confined Stark effect (QCSE). (upper plot) 
Schematic showing the effect of an applied field across a QW. The hand gap of the QW 
reduces with field, i.e. elhhl>elhhl(F ). In addition the localization of the carrier 
envelope functions (along z) are illustrated, (lower plot) Schematic of the hand edge 
absorption with applied field (i.e. the QCSE). The red shift of the e lh h l exciton 
transition, Xq to Xp, is largely due to the decrease in QW hand gap.

Calculations of the excitonic transition shift with field (i.e. Xg to Xp), show the dominant 

term is the energy shift of the associated subband, i.e. elhhl(F) in Fig. 1-4 (Miller et al 

1985, G. Bastard 1988), that is the reduction in binding energy of the e-h pair with field is 

small in comparison. However, the presence of the Coulomb attraction, albeit weaker, is 

important, since it maintains the exciton formation for large applied fields, e.g. up to 

-10^ kV/cm in typical GaAs/AlGaAs QWs (Miller et al 1984, 1985). The retention of
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exciton peaks with field is a result of the confinement along (z). As field is applied the 

carriers are pulled to the opposite interfaces within the well, the potential barriers 

somewhat hinder carrier escape, and since the well width is less than the bulk exciton 

diameter some degree of Coulomb interaction is maintained. This is in contrast with 

fields applied parallel to the layers (i.e. along II ), which demonstrates rapid ionization of 

the exciton, and subsequent broadening of the band edge, for much smaller applied fields 

(<10"̂  kV/cm), qualitatively similar to bulk materials (Miller et al 1985).

The QCSE is a feature of quantum wells which underlies many of the devices based 

on heterostructures. It is particularly relevant for the present work, such that a 

description of the QCSE is a topic that is presented in subsequent chapters.

§1.3 Heterostructure Device Tectinology.

Many properties arising from heterostructures such as quantum wells have made a 

significant impact on device technology. This section highlights the principal areas 

with the emphasis on electro-absorption devices with which the present work is mainly 

concerned.

§1.3.1 E lectronic devices.

High speed electronic devices are key elements in the development of electronic systems 

for data processing or analogue signal handling. Devices employing heterostructure 

technology may be divided into two classes, namely those involving transport of charge 

along the layer plane, and those utilizing perpendicular transport, i.e. perpendicular to 

the layers. The first class are essentially variations on the Field Effect Transistor 

(FET) principle (see e.g. Sze), with the transport defined along a channel. In one such 

structure, a heterojunction comprising n-doped Al^Ga^.^s and undoped GaAs results in 

electrons being transferred to the GaAs side at the interface, through equalizing the 

Fermi level (see e.g. Weisbuch and Vinter (1991), chp. 5). A potential well is formed at 

the heterojunction interface giving rise to a 2-D electron gas (2DEG) which acts as a 

conducting channel for the structure. Because of the spatial separation of the electrons 

(in the GaAs layer) and ionised donors (in the AlGaAs layer), impurity scattering is 

reduced which leads to higher electron mobilities in the channel. Structures of this type
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are known by several acronyms, the most commonly used are high electron mobility 

transistors (HEMT) or modulation doped FET (MODFET). Improvements and 

variations to the design, i.e. inclusion of buffer layers and additional heterojunctions, 

have developed these structures to the stage where both high speed performance and power 

requirements are better than traditional Si MOSFET and GaAs MESFET technologies 

(Solomon and Morkoç 1984). They are also noted for their low noise figure, which makes 

them particular attractive for use as amplifiers in receivers (see Weisbuch and Vinter 

1991, §21).

In the case of vertical transport devices, the confinement properties of quantum wells 

are directly exploited in some devices. An actively studied device has been the resonant 

tunnelling diode (RTD), essentially comprising a isolated barrier/well/barrier 

structure (see e.g. Capasso et al 1986). A confined state in the well region enhances the 

tunnelling  probability of electrons incident at that energy, this ‘resonant tunnelling’ 

leads to increased transport of electrons across the structure. An electric field applied 

across the structure increases the energy of the electrons through the structure. A peak in 

the I-V curve results at the resonant condition, in that at higher fields the current through 

the structure reduces. Such devices therefore exhibit negative differential resistance 

(NDR) which may be used (with external circuitry) as microwave oscillators (see e.g. 

Brown et al 1989). Other vertical transport devices such as heterojunction bipolar 

transistors (HBT) and various ‘hot’ electron structures have also benefited from the 

advent of heterojunction technology, including several variants utilizing NDR 

behaviour to increase functionality of the device characteristics (see Weisbuch and 

Vinter 1991, pl64).

§1.3.2 Quantum well losers.

One of the main impacts of heterostructures is in the area of semiconductor lasers, the 

general area is now well documented with several books covering the subject in some 

detail (see e.g. P.S Zory, Jr. 1993). The 2-D density of states in QW structures has 

provided significant achievements in QW laser diodes, over the bulk (3-D DOS) 

counterparts. Improvements include increased gain at low injection currents and an 

increase in the rate of change of gain with injection current. Typically, several QWs 

(MQW) will form the active region of the structure, which themselves can be enclosed in 

a larger potential well or graded region. With the larger band gap material enclosing 

the active region, the refractive index difference (higher in the lower band gap active 

region), can serve to provide optical confinement, (cf. separate confinement
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heterostructures (SCH) and variants described in §23 from Weisbuch and Vinter (1991). 

The injected carriers, which are mainly localised in the well region, radiatively 

recombine between the confined states, lasing therefore occurs at energies determined by 

the QW band edge. Through varying the well width the quantum well band edge may be 

tuned, and so provide some flexibility in the design lasing wavelength. While in 

principle this is true, practical laser structures are often of the distributed feedback type 

(DFB), employing a corrugated grating acting as a distributed Bragg reflector (DBR) 

which can define single wavelength operation and aid in sideband suppression (see 

review by Koch and Koren 1990). Overall the improvements going from 3-D to 2-D DOS 

in devices have already provided low power, low threshold semiconductor lasers (cf. a 

recent publication entirely devoted to QW lasers is edited by P.S Zory, Jr. 1993).

In recent years, a new laser configuration has been developed; namely the vertical 

cavity surface emitting laser (VCSEL). Quantum wells again form the active region 

which is placed within a cavity, typically defined by semiconductor Bragg stacks (see 

review by Jewell et al 1991). The geometry of the VCSEL allied with their low power 

usage allows arrays of such lasers to be fabricated giving rise to range of possible 

applications, e.g. optical interconnection of electronic islands.

The above, rather crude, outline is by no means representative of the overall area 

which combines many disciplines. Sophisticated device design, e.g. three stage DFB 

structures, VCSEL cavity modifications, along with advances in material physics, e.g. 

band structure engineering for the active region, continue to place QW lasers at the 

forefront of semiconductor technology. Although such lasers are now commercially 

available, the improvements in growth, availability of materials and design suggests 

the development of QW lasers will continue to be an active area of research. A statement 

suitably verified by the recent development of quantum cascade lasers (see report by E.P 

O’Reilly 1994 for further information and references).

§1.3.3 E lectro-absorption devices.

Many device types utilize the resolution of enhanced excitonic absorption in quantum 

well structures. For applied electric fields, the Stark shift and persistence of the exciton 

peaks produce absorption changes at the band edge, Aa, that are significantly larger than 

bulk counterparts, e.g. Aa~450 cm"  ̂ for bulk GaAs compared to Aa~5000 cm"  ̂ for 

GaAs/AlGaAs MQW structures (Jelley et al 1989). Devices such as electro-absorption 

modulators are obvious candidates to make use of the larger field induced absorption 

changes (see e.g. Wood et al 1984). For example, intensity modulation of an incident
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optical beam can be best achieved if the beam has a wavelength Xq or (cf. Fig. 1-4). The 

modulating signal can then be written onto the beam intensity by a pulse train of applied 
field.

In order to apply the electric field across the quantum well the structure is placed in 

the intrinsic region of a p-i-n diode, (Fig. 1-5), such that the p and n layers have a larger 

band gap than the QW layers (i.e. larger than elhhl). Contacting to the p and n layers 

permits an electric field to be applied, the field strength is given approximately by 

^appl/L [ , where '̂ appl the applied reverse bias and Lj is the length of the intrinsic 
region. It should also be noted that since the device is essentially a p-i-n diode, it can also 

act as a photodiode thereby giving important duality of function to the device.

transverse
mode

i-(MQW)

waveguide 
mode

Figure 1-5 A Schematic showing two basic device geometries i.e. waveguide and 
transverse operation along with the electric field vectors. It should be noted that in a 
transverse structure two modes of device are available; transmission (illustrated 
above) and reflection where the output beam is reflected back through the device.

Electro-absorption devices, such as modulators can be fabricated into two geometries, 

(Fig.1-5). As a waveguide, with light incident parallel to the layers (II) (see review by 

Wood 1988), or as a transverse structure with light incident perpendicular to the layers 

(z) (Wood et al 1984). The structures investigated in this thesis, (Chapter 5), are of the 

transverse type. To achieve significant modulation (~e“ “̂'̂ ‘ ), the intrinsic region 

comprises multiple quantum wells, where typically 50-100 repeats of the QW are used in 

the intrinsic region. Conversely, waveguide structures require only a few QW since a 

large absorption length is already available by the physical length of the device.
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In multiple period structures the barrier width is very important and determines 

many of the properties. It is useful to recall the terminology that is often used to 

distinguish various structures (Chemla and Miller 1985). In a multiple layer structure, 

each QW has its own confined states and associated wavefunction which, although 

largely localised in the well layer, penetrates into the barrier layer. Providing the 

barrier layer is sufficiently thick, i.e. thicker than the penetration length, the 

wavefunctions from adjacent wells do not overlap and the properties of the MQW are well 

described by those from a single QW. [note: it is assumed the MQW comprises identical 

repeats of the QW.] When the barrier width is less than the penetration length, the 

wavefunctions overlap and the carriers are no longer confined to a single QW. In this 

situation the structure is commonly referred to as a superlattice (SL), or coupled quantum 

wells (CQW) if  the interaction is between two quantum wells only. The resulting 

electro-absorption properties of these structures has attracted considerable interest for use 

in various devices (see e.g. for SL, Bluese et al 1988a,b and for CQW, Lee et al 1989, 

Atkinson et al 1990). In this thesis, the interest is in MQW structures exploiting the 

properties of single QWs (i.e. the QCSE). The question of the barrier width is clearly 

important. The work in Chapter 4 (§4.2) addresses this point in more detail.

With regard to device performance, the operating voltage should be as low as possible to 

ease the burden on the driver circuitry, and at the same time the absorption change must 

provide sufficient modulation. The basic p-i-n transverse modulator relies on a large 

optical active absorption length to provide sufficient modulation. In principle the 

number of QWs forming the MQW region could be increased to provide this; however 

increasing the length of the intrinsic region increases the applied bias required to 

achieve a given electric field, and hence absorption change. Many workers have 

demonstrated how this problem can be circumvented through the design of double or 

multiple pass modulators (Boyd et al 1987, Whitehead et al 1989). Incorporating the 

MQW within a Fabry-Perot cavity increases the number of passes and hence optical 

length while maintaining a comparatively small physical length. With further 

optimization, the Fabry-Perot designs have led to dramatic improvements in device 

performance (Zouganelli et al 1991). The designs, although initially developed for the 

GaAs/AlGaAs system, have since been extended for InP based longer wavelength 

MQWs with some success (Moseley et al 1990, Yoo et al 1994). However the development 

of InP based semiconductor mirrors defining the cavity continues to be topic of interest 

(e.g. Guy et al 1994), and further improvements in device performance may be expected.

Other p-i-n devices that exploit the electro-absorption properties of quantum wells are a
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range of bistable optical switches known as SEEDs (Self-Electro-optic Effect Device). 

SEEDs offer logic operations in the optical domain utilizing the QCSE to provide two 

distinct operating states determined by the intensity of the incoming beam (see D.A.B 

Miller 1990, Lentine and Miller 1993, for comprehensive reviews on the subject). The 

basic operation of SEED and some applications are briefly discussed in Chapter 6.

Absorption changes at the band edge give rise to changes in refractive index, via the 

Kramers-Kronig relations (see e.g. Bassani and Parravicini 1975). Thus in addition to 

intensity modulation, phase modulation is also a possibility and has been demonstrated 

in waveguide devices (Koren et al 1987, Zucker et al 1988). These electro-refraction 

effects have been used to produce directional couplers or intersectional switches, where 

the path of the light can be switched between possible output ports (Cada et al 1991, 

Schimomura et al 1992). Switches of this kind can serve a large number of crossover 

ports and could be useful components in optical routing architectures.

Electric-feld modulation of the band edge absorption via the QCSE is not the only method 

available for possible applications. Quenching of the exciton can also modulate the 

exciton spectra and has been used to design various devices. For example, in the barrier 

reservoir and quantum well electron transfer structure (BRAQWET) a highly doped 

barrier is employed. Modulating an applied electric field sweeps the carriers in and out 

of the well. Carriers (electrons) in the well, essentially fill up the subband and screen the 

Coulomb interaction thus inhibiting the formation of the exciton resonance (Schmitt- 

Rink et al 1989). A key distinction in these devices is that although electric field is 

applied, the resulting absorption (and refractive index) changes are not via the QCSE but 

obtained by band filling effects (Blum et al 1991, Zucker et al 1991). High power and 

high speed modulation is fundamentally dictated by the escape time of electrons entering 

and leaving the wells (assuming the device is small enough not to be limited by the RC 

time constant). Similar considerations also apply to QCSE devices which rely on the 

escape of both carriers from the well, i.e. electrons and particularly holes (see e.g. Fox et 

al 1991). Although the dependence on only one type of carrier in BRAQWETs and 

related structures, which is typically the fastest escaping carrier (electron), has 

suggested significant advantages may be achieved with these structures (Zucker et al 

1991). However, it should be noted, the subject of carrier escape in (multi)-quantum well 

devices, and the implications on device performance, continues to be an area of active 

research.

Modulation by exciton quenching may also be achieved through high intensity 

optical pumping of the structure (see e.g. Chemla and Miller 1985, Schmitt-Rink et al 

1989). The underlying principle is similar to structures such as BRAQWETs, in
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relation to the band filling and absorption quenching, although through optical excitation 

both types of carriers are placed in the wells. Absorption and refraction changes are 

similarly induced as a function of optical power, thereby leading towards all-optical 

control of modulation/switching (e.g. Chemla and Miller 1985, Li Kam Wa et al 1985).

§1.4 Concluding Remarks.

A brief description of the confinement effects in heterostructures has been presented, 

specifically for the use in (M)QW electro-absorption structures. Viewed as a 

constructed  material, the band gap of the heterostructure, defined by e lh h l, may be 

varied through changing the well width. The exciton states associated with this band gap 

following accordingly. To a first approximation, the absorption band edge (i.e. e lh h l-  

Eb where Eg is the exciton binding energy) can be tailored to lie between the bulk band 

edge of the well and barrier materials. In practise well widths of 50-150Â are typically 

used, which for the GaAs/AlGaAs system can vary the band edge by approximately 90 

meV (810 nm to 860 nm). Growth on InP substrates, using the lattice matched 

InGaAs/InP system offers similar energy changes for varying well width but covers a 

wavelength range approximately between 1.44 |im to 1.62 p.m, due to the smaller bulk 

band gap of the well layer. Selecting the band edge absorption to occur at a specific 

wavelength is clearly beneficial in device design, particularly in view certain operating 

wavelength requirements for applications, e.g. in long haul telecommunications the 

requirement is to operate around 1.55 p,m which corresponds to the low loss optical fibre 

window. However, changing the well width may not be advantageous for a particular 

device, since it is well known the performance of the electro-absorption properties, i.e. 

Stark shift and absorption, are well width dependent (see e.g. Brum and Bastard 1985, 

Whitehead et al 1988). An obvious solution is to change the constituent bulk materials, to 

satisfy both a particular operating wavelength and prescribed electro-absorption 

properties. For example, the use of quaternary layers which act as the well material; 

InGaAsP/InP (e.g. Temkin et al 1987) and InGaAlAs/AlInAs (Wakita et al 1988) are 

MQW structures where the bulk band gap for the well material is varied by the adjusting 

the group III and V mole fractions, while still remaining lattice matched to InP 

substrate. However as early as 1982 it was suggested by Osbourn that lattice mismatched 

layers could be used in heterostructures (Osbourn 1982). Among other things this 

increased the range of materials available for heterostructures and hence provided
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further flexibility in the design of heterostructure devices. The work in this thesis 

investigates the use of lattice mismatched layers in heterostructures, specifically for 

MQW electro-absorption devices. The basic ideas behind the use of lattice mismatched 

materials is presented in the following chapter.
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Chapter 2. Introduction to the Use of Strained 
ioyers in Heterostructures.

During the development of heterostructures, it became apparent that the use of thin layers 

(typically <2 0 0 Â) relaxes the requirement of using lattice matched constituent materials 

(G.C Osbourn 1982). Coherently strained multilayer structures were envisaged, 

consisting of thin alternating layers of materials which are lattice mismatched in bulk 

form. The thin layers elastically deform such that the lattice constant in the interface 

planes is the same throughout the structure. A considerable amount of work has since 

been carried out on strained layer heterostructures, demonstrating further engineering 

of band structure through strain and quantum confinement. A brief introduction to some 

of the concepts involved and the effects on the band structure is presented here. Further 

detailed explanations can be found in the literature (see e.g. E.P O’Reilly 1989, T.P 

Pearsall 1990, J Singh 1993). The chapter finishes with some comments on strain 

relaxation in multiple quantum well structures.
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§2.1 Description of Stress and  Strain.

The effect of an external force on a crystal lattice is to distort the lattice in some manner 

(see e.g. Nye 1957). This applied force (per unit area), or stress, can be described in 

terms of stress  tensors, Cÿ, individually representing an ij component of the force 

acting on the crystal lattice. The case suitable for the work in this thesis, is i=j, which 

simply implies the stress is acting perpendicular to the six faces of the cubic lattice, [note: 

the so called, shear components of stress, where are relevant for structures grown 

along (111) (Mailhiot and Smith 1989)]. To proceed with forming a mathematical 

description of the lattice distortion, a set of strain  tensors are introduced, eÿ. Each 

component of the strain tensor describes the distortion of the lattice away from its 

unstrained shape. As with the stress tensors, only the normal components, i=j, are 

relevant for the present work.

Relating how a particular stress leads to a particular strain or lattice distortion is a 

generahzation of Hooke’s Law, that is providing the elastic limits of the material are not 

exceeded, the strain is proportional to the magnitude of the applied stress (see for e.g. 

Feynman, Leighton and Sands, chp. 38, 1964). Neglecting the shear components of 

stress, the relationship between stress and strain tensors can be written as:

’yy

\  y

^ ^ 1 1  ^ 1 2  

Ci2 Cii 

V̂ 1 2  ^ 1 2

C1 2 "

C12

C ii; V J

(2 .1)

where the crystal axes are orthogonal and taken to lie along the x,y and z axes. The Cÿ 

are known as the elastic coefficients of the material and are well documented for all III- 

V semiconductors (e.g. Landolt-Bornstein 1982, 1989). The above relationship assumes 

the crystal has cubic symmetry such that all off-diagonal terms are equal, and all 

diagonal terms are equal. In this sense, only two elastic coefficients need be considered, 

C12 and C i2- The form of (2.1) shows that one type of stress leads to three components of 

strain. Examples of the types of stress relevant in the present work are shown below, 

along with the corresponding lattice deformation through the strain components.
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Figure 2-1. A schematic demonstrating two types of biaxial strain on a cubic cell.

Equal stress applied to all four x and y faces of the cubic cell sets = ^yy, aiid no stress 

applied to the z faces, i.e. a^z = 0 , provides a simple picture of lattice mismatched 

induced stress encountered in thin layer growth. For this situation the crystal is under 

biaxial strain, and the two types of biaxial strain are illustrated (Fig. 2 -1 ). For outward 

directed stress (aa^ > 0  ), the resulting strain is referred to as biaxial tensile strain, 

while inward directed stress (a;gj.<0 ), gives rise to biaxial compressive strain. Using 

(2 .1 ), the relationship between the strain tensors describing the lattice deformation can be 

found. Recalling = Oyy, this implies the strain in both x and y directions is equal, 

i.e. e^j= Qyy.. Setting (ŝ z = 0 in (2.1), the third equation gives.

=  -
2C 12 (2 .2)

'II

With C ji and C^2 always positive, a lattice deformation along x (or y) produces a 

deformation of the opposite sense along z (cf. Fig.2-1).

The strain tensors are central to describing the electronic properties of a strained 

material, this is covered later in the thesis (§3.3). In practise the in-plane strain tensor 

(Ogg) is determined from considering the lattice mismatch between bulk layers, then 

applying (2 .2 ), both tensors describing the lattice distortion are known.
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§2.2 Strained Loyers.

§2.2.1 Growth and critical thickness.

The ability to realize strained layers in practical structures was undoubtedly due to the 

growth advancements that were instrumental in the development of beterostructures (see 

T.P Pearsall 1990,chapter 1 for further information). A strained layer is formed through 

growth of a thin epilayer (with lattice constant â ^̂ ) on a substrate (a®) such that â   ̂a®P\ 

(Fig2-2 ). The epilayer deforms to take on the lattice constant in the plane of the 

substrate. Terms such as pseudomorphic or coherent growth are often used to describe the 

situation, since interfacial coherence is maintained. The strain energy, arising from 

the lattice match, is accommodated by the deformation of the epilayer. For a thick 

substrate, the in-plane strain of the epilayer is described from the bulk lattice constants 

a®P‘ and a® . Specifically,

:(=eyy) =
a„ -  aepi

epi (2.3)

The resulting deformation in the growth direction is determined from (2.2).

eni a,i (=a® )

aT
"

\ ' T
h

1

Figure 2-2. A schematic showing the deformation of an epilayer through the lattice 
mismatch induced strain, (illustrated for biaxial compression).

Coherent growth of an epilayer in this manner cannot go on indefinitely. The 

accommodated strain energy increases with epilayer thickness, h, such that above a 

certain critical thickness, ĥ ,, the introduction of dislocations to relieve the strain 

energy becomes thermodynamically more favorable (see e.g. E.P O’Reilly 1989 and
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references therein). With the introduction of dislocations, the lattice mismatch is then 

partially accommodated by the lattice strain and partially by the introduction of misfit 

dislocations at interface. The epilayer is then said to be relaxed, usually by some 

percentage amount, and the in-plane strain tensor description of the epilayer from (2.3) 

no longer holds. For h<hg the strained epilayer is expected to be thermodynamically 

stable against dislocation formation, due to the energy barrier that must be overcome to 

generate dislocations (E.P O’Reilly 1989). In view of the energy (or force) 

considerations, the critical thickness depends somewhat on the lattice mismatch of the 

materials, in fact a representative value of single layer critical thickness often quoted is 

100Â%, i.e. for a 1% mismatch, h^-lOOÂ (E.P O’Reilly 1989 and references therein).

Although so far discussed in terms of a single epilayer, similar reasoning lies 

behind the growth of heterostructures such as (multi-) quantum wells and superlattices 

comprising lattice mismatched bulk constituents. Generally growth on a thick substrate 

(or buffer layer) fixes the dominant lattice constant for the structure, i.e. the in-plane 

lattice constant to which the subsequent layers deform. Accordingly, above some 

critical thickness, the strain is relieved through the generation of dislocations. 

However, both the relaxation process and the critical thickness can substantially differ 

from the single epilayer layer case mentioned above (further discussed in §2.3). 

Interestingly, with a multi-layer structure, it is possible to employ alternating layers 

which are under compressive and tensile strain in equal respects in relation to the 

substrate (or buffer). For approximately the same well and barrier thickness (below the 

individual h )̂ the net strain in one period becomes zero and growth of these alternating 

layers could in principle continue indefinitely (People and Jackson 1990, cf. 

InAsP/InGaP MQW on InP from Woodward et al 1992).

Briefly then, epitaxial growth of high quality layers that are lattice mismatched in bulk 

form may be achieved through the elastic accommodation of strain. For a mismatch of 

~1 %, thicknesses up to 1 0 0 Â should be possible which is compatible with attaining the 

desired confinement effects from quantum well structures (cf. §1.2). The following 

section describes the modifications on the band structure due to strain which are relevant 

to quantum well band structures where one (or both) of the constituent layers may be 

strained. Further discussions on critical thickness and relaxation mechanisms, 

particularly in multi-quantum well structures, are presented in §2.4.
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§2.2.2 Band structure modifications through strain.

The manner in which lattice mismatch induced strain effects the band structure is 

commonly described using deformation potentials (E.P O’Reilly 1989 and references 

therein). These are constants of the material which describe the shift per unit strain of 

the band edges and can be obtained from the usual sources (eg. Landolt and Bornstein 

1982, 1989). Many of the strain effects on the quantum well band structure can be 

understood by considering the change in band structure with strain of the constituent 

bulk layers (Fig.2-3). The situation described here is for growth on (100) substrates, 

relevant to the devices studied in the present work.

The total strain in a layer can be resolved into a hydrostatic component, 

v̂ol -  + ®yy + ̂ zz = 2 e|| + ê  ̂ which describes the change in crystal volume, and an
axial component, ê  ̂= ê  ̂-e ||. The hydrostatic component acts on the band edges, ie. 

resulting in a change of band gap from the bulk value. In the valence band, the axial 

component lifts the degeneracy between the heavy- and light-hole bands at the zone 

centre. For realizable strains, the splitting of the heavy- and light-hole band edges can 

be large, eg. approximately 60 meV for en = 1%.

(a) [b] (0

F igure 2-3. A schematic representation of the hand structure of (a) an unstrained direct 
gap semiconductor, (h) the structure under biaxial tension and (c) the structure under 
biaxial compression, [from E.P O’Reilly 1989].
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To clarify the notation used above (with respect to QW geometry), the perpendicular 

direction corresponds to the growth (z) direction and the parallel direction would 

correspond to the plane of the quantum well layers. The distinction is important, since 

from the above figure, the axial component of strain is seen to introduce an anisotropic 

valence band. Under compressive strain, (Fig.2-4c), the highest valence band is heavy 

along the growth (and hence confinement) direction and comparatively light in the 

plane of the layers, cf. (2 .1 ). This is contrary to the situation of tensile strain, illustrated 

in Fig.2-4b. For a given type of strain, the apparent mass reversal illustrated above is 

qualitatively similar to that encountered in the valence band states of QW structures, 

and in similar way can be understood from a k .p  description of the band structure 

(Bastard and Brum 1986, E.P O’Reilly 1989). Further comments appear later on. The 

splitting of the valence band leads to separate hulk energy gaps for heavy-hole to 

conduction band and light-hole to conduction band transitions. An additional 

consideration arises from the shift of the band edges, in that compressive strain tends to 

increase the mean band gap while tensile strain reduces it.

In a quantum well structure, where the well layer is strained, the shifts of the band edges 

have a direct bearing on the QW band edges, i.e. e lh h l, e l lh l  etc. The confinement 

energies are determined by the dispersion (kj )̂ along the growth (confinement) axis. 

Recalling the unstrained QW case in §1.2.3, where the heavy-and hght-hole bulk band 

edges are degenerate at kj^ = 0  and correspond to the bottom of the valence band potential 

well, the difference in effective mass results in the bound states occurring at different 

energies with respect to their degenerate bulk band edges. Considering the ground 

states, hh l and Ihl, the magnitude of the separation is primarily determined by the well 

width and the effective masses, and in all cases h h l is higher in energy than Ihl (cf. 

Fig. 1-2). For a layer under compressive strain, the heavy-hole band edge (defined along 

kj )̂ is higher in energy than the light hole band edge. Even with the subbands occurring 

at the same energies from their respected band edges, the splitting between the h h l and 

Ihl subbands increases, Fig.2-4 (left). Similar reasoning can be applied when the well 

layer is under tensile strain; although, in this case the light-hole band edge is higher in 

energy, Fig.2-4 (right). Depending on the magnitude of tensile strain (i.e. the splitting) 

and the well width (energy of Ihl from its band edge), it is possible to to make the lowest 

energy transition in the structure, that between e l and Ihl (see e.g. Gershoni et al 1989).
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F igure 2-4. A schematic illustrating confined band edge positions and confined states 
in a quantum well where the well material is experiences biaxial strain, [cf Fig. 1-2. 
for the unstrained case].

In some cases, the shifts in the band edges can change the nature of the quantum well 

structure, for example, it is possible to have a combination of type I and type II line-ups in 

relation to the valence band states. This situation is thought to arise in the compressive 

strained In  ̂Ga^.^s/GaAs system, where the electron and heavy hole potentials are type 

I but the electron and light hole potentials are type II (Marzin et al 1985).

Through accommodating strain in quantum well structures (QW), an additional 

flexibility in subband design becomes available. Specifically, compressive strain 

works in the same way as the effect of confinement, i.e. to increase the energy separation 
between the highest heavy- and light-hole subbands, with Tensile

strain acts in an opposite manner to confinement, reducing and in some cases

giving Ei ĵ^>Ehhi • In this sense it is possible to independently vary the splitting of the two 

highest heavy-hole states (E^^ -̂E^^ )̂ mainly through the well width, and the splitting 

Ej^i-Eihi through the strain (E.P O’Reilly 1989). The separation of these higher valence 

band states plays an important role in relation to the electronic and optical properties of 

the quantum well material.

For an unstrained QW, the in-plane valence band dispersions, E^(k||) where n is 

the band index, are highly non-parabolic, Fig.2-5. This is a result of in-plane mixing 

between the states, essentially each band taking on a mixed heavy and light hole 

character for k|| 9^0 (see e.g. Bastard and Brum 1986). Neglecting mixing, the highest 

valence band state (hhl) is comparatively light in the plane of the well, a situation 

similar to that illustrated in figure 2-3c. (E.P O’Reilly 1989, see also Bastard and Brum 

1986 vis-d-uis the diagonal approximation). Typically for the highest valence band 

state, the effect of mixing is to increase its effective mass near the band edge over that 
found when mixing is neglected. From k.p theory, the strength of the mixing, relating to
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the increase in band edge mass, is governed by the proximity of the other valence band 

states, particularly Ihl (E.P O’Reilly 1989). With this last sentence the tailoring of the 

in-plane mass in the valence band through strain and confinement can be appreciated.

C  -50 -

-100

-150

(a) Tensile (c) Compressive(b) Unstrained

0.00 0.05 0.10

k// (2it/'ao)

F igure 2-5. Calculated valence hand sub band structure of In^Ga2 .xAs/ InGaAsP QW 
for (a) tensile strain (e//-i.5%, ljjj=160Â), (b) unstrained (l^j=80Â) and (c) compressive 
strain (e//—i . 2 %, l^=25À). The well widths were chosen to provide a band gap around 
1.5 pm [further details can be found in Krijn et al 1992].

For compressive strain, axial splitting and confinement increases thereby

greatly reducing the strength of the hh l and Ihl mixing and subsequently the in-plane 

effective mass. This is demonstrated in figure 2-5, the reduction of the in-plane effective 

mass is implicit by the sharper curvature of the hhl dispersion, cf. (1.1). Nonparabolicity 

is greatly reduced and the dispersion resembles a simple parabolic form. It is not 

immediately obvious that a similar result also occurs with tensile strain. However, 

calculations show that providing the effect of confinement can be minimised by choosing 

a wide well width. The highest valence band state (which is Uil) can also exhibit an 

lower in-plane mass over the unstrained case, (cf Fig. 2-5 taken from Krijn et al 1992). 

Structures with a low in-plane mass for the valence band yield significant advantages 

in transport and emitter technologies ( E.P O’Reilly 1989).
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§2.3 Use of Strain in QW Technology.

The accommodation of strain in heterostmctures, such as quantum wells (QW), has 

proved valuable for many reasons. Overlooking the modifications to the band structure, 

the ability to accommodate strain can allow new material combinations to be considered. 

In one sense operating ranges for a particular technology can be increased. For 

example, multi-quantum well (MQW) structures based on GaAs substrates are routinely 

designed to operate beyond the GaAs band gap (-870 nm) at wavelengths up to 1 . 1  |im 

using compressively strained In^Ga^.^As (see e.g. Woodward et al 1990, J.J Coleman 

1993). In another respect, at certain operating wavelengths, the poor properties of existing 

lattice matched structures may be replaced by opting for a strained material combination 

that exhibits a better all round performance. Such improvements may not necessarily 

arise from any band structure modifications, but simply through the quality of the 

sample in terms of growth and the homogeneity of one material over another, e.g. 

InASgPi.g in relation to In^Ga^.^SyP^.y (see e.g. Woodward et al 1992, and Chapter 5 for 

further details). The increased scope of materials are by no means restricted to 

heterostructures comprising III-V materials. Wide band gap II-VI heterostructures, such 

as ZnSe/Zuj .̂jjCdjjSe, utilizing strain accommodation and the related band structure 

modifications are attracting great interest as visible emitters (see recent review by 

Nurmikko and Gunshor 1994). Furthermore, structures based on the trad ition a l 

semiconductor materials, i.e. Silicon and Germanium, are expected to benefit with the 

introduction of strain (see e.g. People and Jackson 1990 and references therein). The 

alloy Si^Ge^,^ will be strained in a particular fashion depending on the substrate, i.e. the 

strain in the alloy layer can be either compressive (on Si) or tensile (on Ge) (see e.g. 

Hinckley and Singh 1990).

Quite apart from extending material choice or tailoring the band structure (discussed 

later), the realization of pseudomorphic growth has seen the development of structures 

with internally generated piezoelectric fields. The fields arise when stress (in this case 

arising from the lattice mismatch) is applied, typically, to a (1 1 1 ) plane of a 

semiconductor lacking inversion symmetry, i.e. III-V or II-VI (Mailhiot and Smith

1989). In a similar way to conventional (100) growth, heterostructures may be 

constructed hut with the additional effect of the piezoelectric field in the strained layer. 

The strength of the piezoeffect is proportional to the shear component of strain, e  ̂ (ivy), 

caused by the lattice mismatch of the layer (Moise et al 1993). MQW p-i-n devices, have 

been demonstrated with most of the work appearing so far using the InGaAs/GaAs
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system on (111) GaAs (e.g. Goossen et al 1990, Pabla et al 1993). Applying an electric 

field in the opposite direction to the piezoelectric field across the wells, reveals a blue 

shift of the n=lhh exciton and a corresponding increase in exciton absorption. 

Essentially the pre-biased state of the structure, from the internal field, has been 

cancelled through an opposing applied field. More recent work on a range of samples 

has highlighted additional design issues relating to the strength of the pre-biased state in 

(111) MQW p-i-n structures (Pabla et al 1993). Later in Chapter 6 , a (100) based structure 

is presented based on the inducing-then-opposing field principle and is expected to show 

similar electro-absorption properties, i.e. a blue shift etc. Further discussions relating to 

the use of electro-absorption blue shift devices are also noted.

The novel effects are by no means restricted to electroabsorption type devices. Work 

studying the optical nonlinearities has demonstrated the involvement of the piezoelectric 

field (Cartwright et al 1993). In addition electronic devices, similar to MODFET’s, 

utilizing the piezoelectric field have recently been reported (Lu and Huang 1994).

While accommodation of strain allows both new material systems and new technologies 

(cf. ( I l l) )  to be explored, it is largely the dramatic improvements to existing devices 

through  band structure modifications that have captured the headlines. As 

demonstrated in figure 2-5, strain splitting and confinement can be used to tailor a much 

lighter hole mass in the highest valence band. Since these modifications occur in the 

valence band, devices relying on hole properties have reaped the benefits.

Considering optical devices, well documented improvements in the performance of 

quantum well lasers are testament to this band structure engineering (see recent review 

by O’Reilly and Adams 1994). A lighter hole mass leads to a reduction in the valence 

band density of states, which provides further improvements in the threshold current 

densities and differential gain obtained in QW lasers (see e.g. Krijn et al 1992, Corzine 

et al 1993). [note: recall the initial improvements realised in going from bulk to QW 

lasers (§1.3.2)]. Other advantages include increasing the polarization selective gain 

and a tailored  reduction in many of the loss mechanisms, such as Auger and 

intervalence band absorption (IVBA), (see O’Reilly and Adams 1994 and references 

therein for further information).

Valence band engineering has also featured in modulator type devices. The effect of 

tensile strain in the well layer can offset the splitting of the heavy- and light-hole states 

caused by confinement. Thus in principle a properly chosen tensile strain can reinstate 

the degeneracy of the heavy-and light-hole subbands in QW structures that exists in bulk 

materials (see e.g. J. Singh 1993, Baliga et al 1994). Several device implications are 

immediate, the merging of heavy- and light-hole excitonic transitions can lead to 

marked improvements electro-absorption characteristics at low fields (Gomatam and
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Anderson 1992). More importantly for devices in a waveguide configuration, the 

polarization sensitivity can be avoided, thereby providing electro-absorption/refraction 

operation regardless of whether the incident light is TE or TM polarized (cf. Weisbuch 

and Vinter 1991, p65-69 for polarization selection rules, also presented in §4.4.3). 

Ravikumar and co-workers (1993) studied a range of structures with increasing tensile 

strain and found for tensile strain of about -0.3% in 120Â In^Ga^.^As/InP QW’s 

(x<0.53) the peak absorption change for both TE and TM modes occurred at the same 

wavelength. However, this has not been the only approach to result in polarization 

insensitive structures. Another method involves the use of separate compressive and 

tensile strained QW’s in a MQW active region (see e.g. Thijs et al 1994 and references 

therein). The initial motivation behind this work was to obtain a semiconductor laser 

amplifier (SLA) (at 1.3pm). Light emerging from an optical fibre is randomly 

polarized, and for an unstrained MQW-SLA, light in the TE mode is amplified more 

than light in the TM mode (cf. selection rules governing the electron-heavy hole 

transitions §4.4.3). However with the active region containing both  compressive 

(tensile) strain QW favouring TE (TM) polarization, and for each case tailoring the 

band gaps to be equal through composition and well width, equal gain can be provided to 

both polarization modes. Experimental investigations demonstrated polarization- 

insensitive operation with less than 1 dB difference in gain between the two polarization 

modes at 1.3 pm ±30 nm (Thijs et al 1994).

The latter approach provides an excellent example to the flexibility of device 

engineering that can be achieved through the use of strained layers, and from band 

structure design.

Electrical conduction devices, such as MODFET’s, have also benefited through the use of 

strained layers. With the modifications in the valence band, the lighter hole mass 

attainable in either compressive or tensile strained layers suggests fast hole based (p- 

type channel) devices (e.g. Ruden et al 1989). However, improvements in n-type devices 

have also been recorded. For example, using compressively strained InGaAs (on GaAs) 

as the channel, the lower band gap (w.r.t GaAs) allows more charge to be transferred 

from the doped AlGaAs region which leads to higher output powers (see e.g. Ketterson et 

al 1986). In this sense, the improvements have come about through being able to 

accom m odate  a smaller band gap lattice-mismatched material rather than the 

modifications to the band structure.

Although this is only a brief summary, the impact that strained layer growth has had on 

heterostructure technology can be appreciated. As mentioned in the previous chapter, the 

devices investigated in the present work are transverse electroabsorption, comprising
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MQW’s in the active region. However, while reasonable levels of strain may be 

accommodated in structures containing single or a few QW’s, e.g. as in QW lasers, in 

transverse electroabsorption devices considerably more periods of strained QW’s are 

required for operation (cf. §1.3.3). It is therefore appropiate to draw attention to the 

question of relaxation, and indeed the mechanism by which this occurs, as the 

cumulative strain energy increases in such structures. This is the topic of the following 

section.

§2.4 Strain C oherence to Partial Relaxation.

In the study of strained layer epitaxy, several theories have been proposed to explain the 

breakdown of coherence at lattice mismatched interfaces via dislocations (Matthews and 

Blakeslee 1974, Hull et at 1986, People 1986, Jesser and Fox 1990). An early review of the 

various critical thickness models, and experimental results, is given by People and 

Jackson (1990). The model of Matthews and Blakeslee (MB) has so far proved to be the 

most useful in predicting the equilibrium critical thickness, hg, for a mismatched 

epitaxial layer (see for e.g. Andersson et al 1987, Houghton et al 1990, Wang et al 

1993). However, the subject is a highly contested one, with several workers reporting 

growth of coherently strained layers exceeding hg found from the MB model (see for e.g. 

Bean et al 1984, Orders and Usher 1987). Large variations in measured critical 

thickness values are often explained by the particular sensitivity of the measurement 

process (Gourley et al 1988, Houghton et al 1990). For example, values of h  ̂ for single 

QWs of InGaAs/GaAs have been determined using both low temperature 

photoluminescence (PL) and Hall measurements (Fritz et al 1987), and X-ray 

diffraction (Orders and Usher 1987). From these early studies, it was concluded that the 

optical spectroscopy, ie PL, is more sensitive to dislocation detection than X-ray 

diffraction. By measuring the optical properties of InGaAs/GaAs QW’s, hg was found to 

be consistent with the MB values, while results from X-ray diffraction indicated hg 

values at least twice as large as those predicted from the MB model (see Gourley et al 

1988 for further discussion). However, it should be noted that current X-ray mapping 

techniques comonly adopted are significantly more sensitive to lattice relaxation (cf. 

Fewster 1993, and §5.2.4). Recent studies, solely concerned with critical layer thickness 

measurements, tend to use several characterization techniques to support their 

conclusions (Houghton et al 1990, Wang et al 1993). In both these works, MQW 

structures were investigated and it was found that the MB model, with minor

- 41 -



modifications, is also applicable. The question of MQW critical thickness and 

subsequent relaxation is relevant for the work in Chapter 5.

§2.4.1 Strain relaxation in (M)QW structures.

Proir to presenting the relevant MB equations, it is useful to graphically illustrate how 

strain relaxation via dislocations is thought to occur in strained layer structures 

(Houghton et al 1990). Two ‘pure’ mechanisms for elastic strain relaxation in strained 

layer MQW are illustrated (Fig.2-6). The initial structure is made up of material 

layers, A and B, which are grown on a thick substrate, which is also A (or at least has the 

same lattice constant as A). [The structure is similar to the InAsP/InP MQW samples 

grown on InP, which are experimentally investigated in Chapter 5.] Initially, the B 

layers are assumed to be coherently strained to fit the A substrate, i.e. a^^^ = a ^ . The 

B layer is taken to have a larger bulk lattice parameter than the substrate so in the 

coherent picture, the compressive strain accommodated in the B layer is given by 

)/^B (upper diagram in Fig.2 -6 ). For the first relaxation example, 

Fig.(2-6a), misfit dislocations are introduced at the first B/A interface, i.e. the 

beginning (base) of the MQW region. This is the most energetically favorable location 

for single misfit dislocations since here they reduce strain through the entire MQW 

(Hull et al 1986, Houghton et al 1990). As the mechanism proceeds, the MQW will tend 

to its ‘free standing’ in-plane lattice constant, such that the strain is shared

between both A and B layers (lower diagram of Fig.2-6a). In the second mechanism, 

(Fig.2-6b), misfit strain is relieved throughout the MQW region, for example, by paired 

dislocations or loops (Matthews and Blakeslee 1974). Each layer of the MQW tends 

towards its unstrained lattice parameter, so for this example, the strain in layer B will 

tend to zero while no strain occurs in layer A. Herein lies the principal difference 

between the two mechanisms. Upon completion, relaxation at the base of the MQW, 

Fig.(2-6a), has shared the strain, initially in the B layer, with the A layer.
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Figure 2-6. A schematic illustrating two possible mechanisms of strain relaxation in 
MQW structures (see text for further details).
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Coherence at the MQW interfaces is maintained in Fig.2-6a such that the in-plane lattice 

constant of the MQW is the same throughout the MQW region, tending towards the ‘free 

standing’ value. A more detailed discussion on the two mechanisms, aided with 

experimental investigations, is given by Houghton and co-workers (1990).

As to which of the two mechanisms will dominate in a structure, depends largely on 

the individual dimensions of the layers. For MQW regions with constituent layers 

thicker than their individual critical thickness, the process illustrated in Fig.2-6b is 

more likely to dominate. While in structures with layers less than their critical 

thickness, the integrated strain throughout the structure is thought to cause the MQW 

region to relax through the generation of misfit dislocations at the base of the MQW (Hull 

et al 1986, Houghton et al 1990). The possibility that the two mechanisms may co-exist 

in certain structures is thought to be unlikely, since the two relaxation mechanisms are 

competitive. Once some strain is relieved at the base, further relaxation at individual 

interfaces is energetically inefficient for MQWs with many periods (Houghton et al

1990).

§2.4.2 Critical thickness coicuiations.

For two semiconductor layers with unstrained lattice constants, a^ and a®, the ‘free 

standing’ in-plane lattice constant of the two layers is given as (Matthews and Blakeslee 

1976):
c,Aa . 7. 4.

(2.4)

where Ga[b] = -t-Cig  ̂  ̂ are the shear moduli, and Ip̂  and Zg are the

thickness of the layers. For this equilibrium condition, the strains in the layers are 

written as:

assuming a^ > a^, with fg = â® -  a^ jy^a^as the misfit between the layers . For 

equal shear parameters and lengths, the in-plane lattice constant is seen to lie halfway 

between the two unstrained values and the strain is equally shared between the two 

layers, i.e. fo/2 .
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Growth of multilayers on a thick substrate, with lattice constant, a^, such that 

aj ^ changes the distribution of strain between the layers. The individual layer

strains are now dominated by the mismatch with the substrate with the strain description 

in each layer given by (2.2) and (2.3). In their original work, Matthews and Blakeslee 

(1974), proposed two expressions to calculate the critical thickness of a layer in the 

presence of threading dislocations. The expressions were derived by balancing the 

forces arising from the dislocation line and the misfit strain, hence the model is often 

referred to as a force balance method. In the case when a dislocation is generated at 

lower interface of a strained layer, the critical thickness of the layer is a solution of:

e,| 4 tc(1 + v)

■ 1In ^  + 1
l b  J .

( 2 .6 )

where b is the magnitude of the Burgers vector, taken as b = q.q/4 2  for the strained layer 

(People and Jackson 1990), and v is Poisson’s ratio for the layer. The in-plane strain, e||, 

of the layer is obtained from (2.3). [note: the expression here assumes growth is on or 

near (1 0 0 ) surfaces, which is the case for all the structures investigated in this thesis.] 

Another mode of dislocation formation, generates dislocations at each interface of a 

buried strained layer. The critical thickness is given by:

e,| 2 jc(1  +  v ) |_ V b
(2.7)

The components of (2.7) have the same meanings as before, so for a given strain the 

values of hg predicted by (2.7) are twice as big as those found from (2.6), cf. Fig.2-7a. 

This is because with two interfaces to consider, twice the force of the dislocation line 

needs to be balanced (Matthews and Blakeslee 1974). It should be noted that in their 

original work, Matthews and Blakeslee (1974), mentioned the value calculated from the 

two interface model was four times larger than from the single interface model. The 

additional factor of two arises by assuming the half the strain in the layer was shared by 

an adjacent layer. In effect they calculated the critical thickness of a layer which 

formed part of a free standing superlattice.

In principle, to estimate the critical thickness of a single layer forming a MQW 

region, expression (2.7) should be used. Although, if the dislocations are formed during 

growth, then it appears sensible to use (2.6), since growth is by a single layer at a time. In 

practise, I have used (2.6), which can be viewed as a conservative estimate for the critical 

thickness of a single layer (cf. Fig.2-7a). It should also be noted, most of the critical 

thickness models, like the Matthews and Blakeslee model, are based on equilibrium
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considerations while it is apparent that kinetic forces, e.g. via substrate temperature or 

deposition rates, are known to effect the relaxation mechanism (see for e.g. Houghton

1991).

To determine a multilayer critical thickness, a method proposed by Hull et al (1986) and 

People (1986) treats the strained MQW region as a single strained layer. In these 

models, one assumes the growth of coherent multilayers on a substrate for which 

a® /  individual layers forming the MQW are assumed to be less than the

single layer critical thickness for the given strain e[|. Since a®  ̂ the MQW as

a whole experiences an additional in-plane strain, which is expressed in terms of

the misfit between the free standing MQW and the substrate. Exphcitly,

A/B,fs s
MQW ^ a j ^  (2 .8)
" a»

The MQW/substrate mismatch, is simply the spatial average of the strain in a

single period of the MQW. This misfit can be used to calculate the critical thickness of 

the MQW layer via (2.6). The reasoning behind using the single interface MB model, is 

that exceeding the multilayer critical thickness implies dislocations generated at the 

interface of the substrate and MQW as a whole, with the ‘internal’ interfaces of the MQW 

remaining coherent. Experimental studies by Hull and co-workers (1986), on Ge^Si^, 

^/Si strained-layer MQWs, demonstrated relaxation of a MQW structure in this 

manner.

Observing the onset of multilayer relaxation, has been reported by Wang and co­

workers (1993) in a series of InGaAs/GaAs on GaAs MQWs with varying barrier 

widths. For the calculations, the authors used the average Indium composition in 

InGaAs/GaAs structures to construct an equivalent cubic layer. The critical thickness 

for this layer (w.r.t the GaAs substrate) was then determined using both the single and 

double interface models, (2.6) and (2.7) respectively. These values were then divided by 

the well width to give the number of periods that may be grown without relaxation. 

Performing X-ray diffraction and Normaski microscopy on the samples, the 

experimental results suggested the single layer model, (2 .6 ), best described multilayer 

relaxation if the barrier width was the same, or greater, than the well width.

Undertaking a closer examination of their method (i.e. using the average 

composition in the structure), it is straightforward to show that in the case where one of the 

constituent layers in the MQW, (say A), is the same as the substrate, e.g. InAsP/InP 

MQW grown on InP. The free standing lattice constant, of the MQW is
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equivalent to the cubic value determined from the average composition in the MQW, 

[note: this assumes the shear moduli are the same in both materials which is quite 

reasonable when the compositions are low.] The calculated critical thickness therefore 

corresponds to same values as if (2.8) were used. Therefore up to this stage, the authors 

were essentially following the method proposed by Hull et al (1986) and People (1986). 

An interesting point raised by their work, was the use of the average composition in the 

sample. Later on in the thesis, (Chapter 5), it is seen how the average composition of a 

structure is one of the parameters that can be accurately determined using X-ray 

diffraction. The role of the barrier width has also been noted in the work by David et al 

(1993), using plan view TEM with a series of partially relaxed InGaAs/GaAs MQW 

structures. For all samples with larger barrier widths than well widths no threading 

dislocations in the MQW region were observed, with the relaxation occurring in a 

manner similar to figure 2-6a. In a sample where the barrier width is smaller than the 

well width, threading dislocations in the MQW region were found, [note: the authors also 

noted the presence of dislocations at the MQW/capping layer interface].

One other effect that should be noted, comes from the recent experimental studies by 

Griffiths and co-workers (1993) in which a depth dependence of the relaxation 

mechanism was suggested. By probing, GaAs based InGaAs/GaAs MQW samples, with 

different laser wavelengths (which give different penetration depths), the authors 

examined the low temperature photoluminescence coming from various positions in the 

samples. Their results indicated that strain relaxation progresses gradually from the 

substrate, and that the QW nearest the surface exhibits the least strain. However, a closer 

inspection of the devices studied, reveals no capping layer was deposited, which would 

not be the case if the structure were a p-i(MQW)-n diode. Calculations of stresses in 

InGaAs/InP MQW structures (on InP) without capping layers, do predict a gradual 

redistribution of strain from the well to barrier layers with increasing distance from the 

base of the MQW. For the same structures with a capping layer, the strain in the well 

layers remains fixed throughout the structure (Nakajima 1992). In this respect, another 

explanation could account for the results obtained by Griffiths and co-workers, or quite 

possibily aid in a depth dependent relaxation process.

Single layer and multi-layer critical thickness calculations, are shown below. To make 

the results general, values of b=4Â and v = 1/3, typical for most III-Ws have been used 

throughout. For the multilayer calculations, several well/barrier dimensions are 

chosen. In this case I have assumed structures with the form, A^B^.^C/BC grown on BC, 

i.e. the barriers are assumed to be unstrained and the misfit between A^B .̂^C and BC 

(plotted along x-axis) is accommodated in the well region.
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F igure 2-7. Calculated critical thickness values for varying in-plane strain (en), (a)
using (2.6) single interface model and (2.7) double interface models, (b) a MQW 
critical thickness is calculated using (2.6) with e// determined from (2.4) and (2.8) for 
different well/barrier ratios, [note: the x-axis refers to the strain in the well region with 
the barriers assumed to be unstrained (see text for fuHher details)].

The results in figure 2-7b, show that for a given strain in the well layer, increasing the 

barrier thickness increases the predicted MQW critical thickness. This is to be expected, 

since for the types of structure chosen, increasing the barrier width reduces the average 

strain in one period and subsequently the integrated strain throughout the structure. 

This is verified by treating the A layer as the barrier material; with growth on an ‘A’ 

substrate, equation (2 .8 ) reduces to:

.MQW _
= fr,

GoZWB (2.9)

where f̂  = (a® -  a^ jŷ â  is the misfit between the layers.

For the MQW structures investigated in this work (Chapter 5), the strain to be 

accommodated in the well layer is always less than 1%. From the single layer critical 

thickness calculations, Fig.2-7a, this should allow well widths of up to -100Â to be grown 

without causing individual layer relaxation. The calculation of multilayer critical 

thickness, suggest that for the number of periods we realistically need to consider 

(typically 30 upwards for a transverse geometry) the structure may relax by the

- 4& -



mechanism illustrated in Fig.2-6a. It turns out, the structures in Chapter 5 do exhibit 

some degree of relaxation (deduced from high resolution X-ray diffraction), although it 

is noted both the optical and electrical properties are reasonably good.

This raises a rather obvious question regarding what effect the presence of 

dislocations have on the performance of prospective devices. Both the nature of the device 

and the relaxation mechanism (i.e. where the dislocations are) should to be specified. It 

is generally accepted that dislocations in the active region severely degrade the optical 

and electronic properties of the structure (J Singh 1993, chp.18). For example, 

dislocations are known to act as non-radiative recombination centers (E.P O’Reilly 

1989), therefore the presence of dislocations in or near the active region of a QW laser, 

which relies on a radiative process, can serve to reduce efficiencies and the life of the 

laser (J Singh 1993, p738). However in MQW devices, relaxation by the mechanism in 

figure 2 -6 a, implies the active region is still relatively coherent, though with potentially a 

lot of dislocations at the MQW/buffer interface. Experimental results on strained 

InGaAs/GaAs MQW p-i-n structures, suggest some correlation between the dislocation 

density and the average strain, thickness of the MQW and thickness of the capping layer 

(David et al 1993). As already noted, most of the structures suggested a relaxation 

mechanism similar to figure 2-6a. With increasing dislocation density, the authors 

found the measured leakage currents in the devices got progressively higher. Bender 

and co-workers (1993) investigated high speed photodetectors from partially relaxed 

InGaAs/GaAs MQW samples, and found quantum efficiencies of unity for all the 

devices. In this sense the authors concluded that strain relaxation is not necessarily 

detrimental for fast photodetectors. Recently the optical properties of partially relaxed 

MQW modulators have been investigated (Ghisoni et al 1994). Although the QCSE was 

demonstrated for all the devices, it was found that for decreasing relaxation, the sharper 

defined exciton that results improves both the insertion loss and contrast ratio.

While it seems clear that partially relaxed structures are capable of demonstrating 

many of the properties associated with lattice matched structures, the long term stabihty 

of such MQW structures has yet to be adequately addressed (to my knowledge). This is 

particularly important in partially relaxed MQW structures which may be in some 

metastable state, and thereby degrade further through sustained operation, e.g. through 

heating effects. Similar doubts were initially feared in strained layer QW lasers, but 

on-going life-time testing has demonstrated that in some cases the strained QW lasers 

actually degrade less than lattice matched QW lasers (see O’Reilly and Adams 1994 and 

references therein). Further discussions concerning strain relaxation in MQW devices 

are presented in Chapter 5.
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§2.5 Concluding Remarks.

The basic approach to strained layers and the modifications to heterostructmres has been 

presented. With regard to the work in this thesis, the use of strained layers in the active 

region, not only increases the constituent material choice but brings a further degree of 

flexibility in the design. This is demonstrated in Chapter 5 using theoretical and 

experimental investigations into InAs^.^P^/InP (on InP) structures. In Chapter 6 , a 

composite QW structure is proposed that is expected to exhibit electro-absorption 

characteristics opposite to that expected from conventional QW devices, i.e. a blue shift 

and corresponding increase in exciton strength with applied electric field. This 

structure comprises separate layers of InP, In^Ga .̂^As and InAs^.^P^ and so to a large 

extent, is developed out of the abihty to accommodate strained layers. As noted in §2 .2 . 2  

the strain induced modifications to the bulk layers, in particular beind gaps and valence 

band sphtting, have a direct bearing on the spectral positions of the excitonic transitions. 

Therefore any speculative investigation via modelling should at the very least include 

these effects. In the following two chapters, details of the modelling used for the present 

work are presented, taking into account the effects of strain. This is in addition to the 

more general calculations of the QCSE in heterostructures, i.e. subbands and exciton 

properties in an applied field.
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C h ap ter  3: Stress, Strain and the k.p Theory: 
descrip tio n s  of co n stitu en t layers  for 
heterostructures.

This chapter outlines a k.p model that aims to provide an accurate and simple description 

of bulk (un)strained semiconductor layers. Various levels of approximation are 

highhghted leading towards a description that is carried through to the following chapter 

which deals with heterostructure calculations. Several closed form expressions are 

presented which describe the band edge properties of semiconductors under the effects of 

strain.
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§3.1 introduction.

k.p theory is fundamentally a perturbation theory for exploring the properties of energy 

bands in the vicinity of some point in k-space. It is therefore well suited to semiconductors 

where the carriers of interest are situated near the F -point. A major advantage of the theory 

is that only a small number of parameters are required in order to produce an accurate 

description near the F-point (E.O Kane 1957). The parameters themselves can be 

determined accurately from various experiments involving optical absorption and 

cyclotron resonance (eg. Dresselhaus et al 1955). Its use for heterostructures was first 

established through the work by Bastard (1981, 1982), working within the envelope function 

approximation. Subsequently, the large amount of related work suggests it is the most 

widely used method for computing heterostructure properties in a variety of situations; see 

early review by Altarelli (1985), or specifically, Schuurmans and't Hooft (1985), Eppenga 

et al (1987), for confined states and gain properties and Ekenberg and Altarelli (1984), 

Ram-Mohan et al (1988), Warburton et al (1991) for interpreting magneto-optic 

experiments. Comparisons with other methods of band structure calculations were 

encouraging. Schuurmans and 't Hooft compared energy-wavevector dispersions and 

confined states of GaAs/Al^^Ga^As quantum wells with those produced using a tight 

binding description (Schulman and Chang 1985). Furthermore, Eppenga and co-workers 

computed the in-plane band structure of a GaAs/Alg ggGag 75AS quantum well with a k.p  

technique and compared the results to the same tight binding calculation. Excellent 

agreement between the two models was achieved.

The k.p method itself is subject to certain levels of approximation, many of the models 

mentioned so far (eg. Eppenga et al 1987) are based on a fu ll 8  band k .p  treatment 

(including spin). The description here includes the three highest valence bands and the 

lowest conduction band which are allowed to interact strongly with one another, their 

interactions with other remote bands are treated using perturbation theory. A similar set of 

bands were also considered by Smith and Mailhiot (1986) but here the bulk k.p parameters 

are calculated utilizing a pseudopotential calculation. This method avoids the assumption 

that the Bloch functions are the same throughout the heterostructure (cf. §4.1). Finally, one 

other approach is to neglect the interaction with remote bands that occurs in the full model 

(Bastard and Brum 1986, Marzin 1986, Johnson et al 1987). In this situation, known as the 

Kane model, closed form expressions of energy-wave vector relations can be obtained for 

each layer. The level of computing required is therefore substantially reduced. A useful 

comparison between this later approach with that of Smith and Mailhiot was presented for 

HgTe/CdTe superlattices (Johnson et al 1988). The energy levels, wave functions,
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effective masses and oscillator strengths were found to agree within 1 0 %.

For the present work, the calculation of confined states in heterostructures is the main 

concern. Therefore only descriptions along the confinement (growth) axis will be 

considered (ie. with k^ = ky = 0). The fu ll 8  band Hamiltonian becomes block 

diagonal and the problem reduces to a 4 band Hamiltonian (Schuurmans and 't Hooft 

1985). The effects of strain are included and calculations of the energy-wavevector, E(k^), 

dispersion are obtained. Two Kane descriptions are also investigated, one of which is used 

for the subsequent heterostructure calculations (Chapter 4). As noted earlier, the main 

advantage of the Kane model is the substantial reduction in the level of computations 

required, though at the expense of a more complete description. Results are presented 

throughout the chapter, in particular, a comparison between the fu ll and Kane k .p  

descriptions for various InP based materials, (§3.4). Also included is a further 

examination of the Kane approach leading to useful closed form expressions being derived 

(§3.5), which describe the effects of strain on the material parameters near the band edge.

§3.2 The k.p Method.

§3.2.1 Introduction to k.p theory.

The principles of k.p theory are briefly discussed. Extensive reviews on the subject can be 

found elsewhere, in particular, on the general description of semiconductors (E.O Kane 

1966), and, on its application in heterostructures (G Bastard 1988).

B a n d  s tru c tu re  b a s ic s

The wavefunctions in the conduction and valence band in a crystal are found by solving 

the time independent Schrodinger equation. This is written as

= E„M/„k(r) (3.1)

where p is the momentum operator, m  ̂ is the free electron mass, V(r) is the periodic 

potential determined by the lattice, r is the position vector and n is the band index. With 

the periodicity of V(r), the solutions of (3.1) have the form
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Ymk(r) = (3.2)

where ( r ) is a Bloch function that is periodic with V(r) and repeats itself in each unit

cell of the crystal, k is the wavevector of the particle restricted to the first Brillouin zone. In 

heterostructures, an external slowly varying (over a unit cell) potential is also considered 

with the interest involving localised solutions of (3.1). Using an arbitrary set of expansion 

coefficients, A(k), a spatially localised wavefunction is expressed as

\j/„ (r )=  j  A (k ) % k (r )  dk 

= JA(k) dk (r)

= /„ (r )u „ o (r ) (3.3)

To arrive at the final form of (3.3), the main assumptions are that for a given energy band, 

the Bloch function is not dependent on k and can be represented by the band edge (k=0 ) 

Bloch function, (r ). This is reasonable when we are interested in solutions near the 

band edge (see Altarelli 1985 for further discussion). The use of ( r ) removes it from the 

expansion which then defines an envelope function, /„ ( r ) ,  whose Fourier spectrum 

contains the plane wave components of the solutions in (3.2). This approach is known as 

the envelope function approximation (Luttinger and Kohn 1955) where the wavefunction 

consists of two components: the u ^ {r )  functions which change rapidly on the atomic scale

and the envelope functions, (r ) , which are slowly varying, changing on a scale that is

much larger than the atomic spacing. In the following section, we are interested in 

obtaining a set of coupled equations for the envelope functions. Some properties of the 

(r)'s are required although the Bloch functions themselves will not appear explicitly in 

the final equations.

T h e k .p  d esc r ip tio n

The Hamiltonian of an electron in a solid is

H =
2

^ + V (r) -  e(|)(r)
2  do

(3.4)

where V(r) is the potential of the solid, m  ̂ is the free electron mass, p is the momentum 

operator and -e(|)(r) is the potential of any applied electric field or potential due to a 

quantum well. The first step of k.p theory is to develop the wave function for the above 

Hamiltonian in the vicinity of some high symmetry point (usually the F -point) in terms of
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the band edge Bloch functions, ï/jg (r ), at that point, where i labels the band,

\l/(r) = ^/^(r)Mjo(r) (3.5)
i

The band edge functions ( r ) have energies Ej according to

Hoi^jo(r) = EjWjo(r) (3.6)

where is the unperturbed Hamiltonian, similar to (3.1). The uig{r) can be labelled 

according to their symmetry properties (E.O Kane 1957), ie. for the lowest conduction band, 

S is used corresponding to an s-orbital, whereas, for the three highest valence bands, X, Y, Z 

are used corresponding to p-orbitals. To proceed, we apply H in equation (3.4) to a 

wavefunction of the form (3.5) and integrate over a unit cell. Since the envelope functions 

are slowly varying they are assumed constant over a unit cell and can be taken out of the 

integral. We find

= E /i (3.7)

with
r - 2  >

H.) = (3.8)

where E  ̂ is given by equation (3.6) and

Pÿ = j  < o (r)p u jo (r)d r  (3.9)
unit cell

The index i runs, in principle, over all the energy bands of the crystal so as it stands 

equation (3.7), would provide a realistic description of the band structure. However, for 

practical calculations, a limited {near) set of bands are usually chosen which cover the 

energy range of interest. The bands in this near set are allowed to interact strongly with 

one another whereas interactions with the other bands {far set) are accommodated through 

a perturbation theory described by Lowdin (1951). The final set of equations (3.7) are for the 

near states but (3.8) is modified to contain the influence of the far set (see eg. G Bastard 1988 

p50). Explicitly, (3.8) becomes;

/
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or

ug = (E,- -  e,t.(r))5ÿ + A  + i  ^  o f  p„ pp
“ o ^  a p

(3.11)

w ith a,p = X, y, z and
f  p.“ pp. qj (3.12)

Here is the modified where i, j run over the near set (n) and q is over the far set 

if). The structure of equation (3.11) shows the effective mass tensor D^P (Luttinger and 

Kohn 1955) and the linear term (in momentum) responsible for coupling between the s-like 

conduction band and the p-hke valence bands in the near set through the Kane matrix 

element, P ÿ  (E.O Kane 1966).

In (3.1) and (3.4), the spin-orbit operator which accounts for the spin-orbit interaction (see 

eg. E.O Kane 1966) was neglected. When included, it is usually made diagonal by using 

linear combinations of Bloch p functions (ie. XT,X>l,YT,Y>t,ZT,Z i )  as a basis in the 

expansion of equation (3.5). With the new basis, known as the angular momentum

representation J, mj  ̂ (Luttinger and Kohn 1955, E.O Kane 1956), the spin-orbit coupling is 

diagonal at k=0 and is therefore included in the values of Ej from (3.6) . If the interaction 

were not considered, the three highest valence bands would appear degenerate at k=0. As it 

is, the interaction partially removes the degeneracy, leaving the degenerate heavy -and 

light-hole bands higher in energy than the spin-orbit split-off band (Fig.3-1)

conduction
bond

Eg ,band gap

heovy-hole

light-hole

spin-split 
off V

Figure 3-1. A Schematic of the hand structure of a direct gap III-V semiconductor near the
r-point.
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Finally, this set of basis functions are used to evaluate the elements of the Hamiltonian 

( U ”) which then operates on the envelope functions /j.

(3.13)
j

Using the angular momentum basis states given by E.O Kane (1966), the elements of U j  

were calculated by Schuurmans and't Hooft (1985), The bands they included in the near 

set were the lowest conduction band, heavy- and light-hole band and spin-orbit split-off 

band in a 4 band Hamiltonian in (ie. k ^ = k y = 0 ) .  These basis states and Hamiltonian 

are used in the present work. For completeness, this is presented in the following section.

§3.2.2 Four band k.p description.

The J, mj  ̂ basis functions used by E.O Kane (1966) to diagonalize the spin-orbit 

interaction are written as

êZ “ 1/^’ /^ ) “ 1̂ "̂ ) [Eg] (3.14a)

"M = + [ 0 ]  (3.14b)

"(A = 1% -K ) = - -^ |Z T ) [ 0 ]  (3.14c)

[-A ] (3.i4d)

where the energies at the F-point (k=0) are listed alongside in square brackets. There is

another set corresponding to opposite spin of the bands ie. mj->-mj. However by neglecting

inversion asymmetry and disregarding the k-dependent spin-orbit couphng (E.O Kane 

1966), the eigenvalues will occur in degenerate pairs (Schuurmans and 't Hooft 1985). 

Essentially the 8  band problem (including spin) is reduced to 4 bands (neglecting spin) for 

k^=ky= 0  (k||=0). For k||=0, the wave function is written as:

= ^ f ) { z ) v J ' jo { r )  (3.15)
j

where (z) is the slowly varying envelope of the wave function and Uj  ̂(r) is the rapidly
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varying band edge Bloch part. Anticipating the later work with heterostructures, it will be 

useful to present all the following equations with the superscript designations, I, where 

{I =w, b) referring to either the well or barrier material. The label j  runs over the states 

from the near set in (3.14) and also over the far set of F -point states. Coupling between near 

and far states are treated by perturbation theory, (§3.2.1). Writing the time-independent 

Schrodinger equation for the heterostructure problem, in matrix form:

|U^ -  5Etl}F^ = {EI}F^ (3.16)

where F^is column vector of » /hh » f\h > /so  ̂ is the unit matrix and is the matrix 

operator of (3.11) written as:

=

el hh Ih so

0

-  2 y^)Ê 0 0

0 ~(y[ + 2 y^)ê 2 V2 y2£

0 2 V2 y^e -A  ̂ -  y[z
(3.17)

with the operator ê = and —> eL is the bulk band gap at the F-point and
2 m n dz ®

is the spin-orbit splitting in the valence band. The zero of energy is taken at the top of the 

valence band as is evident from (3.14). The couphng between the hght states (mj = ^ )  is

described by the Kane matrix element, P^, which is given by

^=-i— j û (r)pzÛ (r) dr (3.18)
unit cell

The parameters and y 2 describe the combined effect of the free electron term and the

interaction with bands in the far set for the s state (s^) and p states (y  ̂and y^). The 

parameters for the p states are similar to those first used by Luttinger (1956) only now they 

neglect the interaction of the s state, since in the present case, this is included in the near 

set. They are related to the usual Luttinger parameters (y(  ̂ by the equations

(Schuurmans and't Hooft 1985)

Yi -  Yi ,l - A .
3EL

(3.19)
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Y: = y'2,l -  i  (3.20)

l 2 m „(p ')  
where, Ep = ------- ^— — and has units of energy.

The term 5Ey is the energy offset of the valence band between the well and barrier material

(cf. §1 .2 .2 ), formally written as

SEi = . | „ / „ 6  . (3.21)
0  for / = u;

-"v Q ,(E ‘ - E “ )fo r i = 6

where Qy is the valence band offset parameter specifying how much of the difference in the 

band gaps (ie. total confinement energy) is shared in favour of the valence band. For type I 

structures, the E(kg) relations obtained from (3.16) will put the valence band edge of the 

barrier material an energy 5Ey lower than the valence band edge of the well material.

In choosing bulk wavefunctions for the envelopes and solving (3.16), we obtain the 

energy relation,E( kg ), for each material in the heterostructure. The effects of strain are 

still to be considered for the structures here, but as it stands (3.17) can be used for any lattice 

matched heterostructures eg. GaAs/Al^Ga^_^As (Schuurmans and 't Hooft 1985). One 

useful point to note is that the heavy hole states (mj = ^ )  do not couple to the light states 

(mj = 3^) in (3.17). Later, it is seen how this feature further simplifies the calculations in 

that the heavy hole envelope functions can be treated separately from the light states. The 

next section shows how the effects of strain can be incorporated in the theory.

§3.3 Stress, Strain and  the k.p Theory.

In §2 .1 , it was shown that the nature of stress and strain on a crystal lattice can be 

described using tensors. The stress tensor components, a^, describe the force (or stress) 

acting on the crystal while the strain tensor components, e -̂, describe the lattice distortion 

arising from the stress. In this section, the involvement of strain in the k .p approach is 

briefly reviewed. As with the previous section, I will note what I beheve are the main points 

involved with the emphasis on the modelling requirements set out at the beginning of this 

chapter. Further comprehensive details can be obtained from the published literature 

concerning the effects of strain on the band structure of diamond and zinc-blende
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semiconductors (eg. Pikus and Bir 1959 & 1974, T. Bahder 1990), and in particular. 

Volume 32 of Semiconductors and Semimetals (ed Pearsall 1990) which is dedicated to 

strained layer superlattices.

Considering a heterostructure made from two materials (well w and barrier b) with 

unstrained lattice constants a  ̂ and a*. Recall for pseudomorphic strained layer growth 

(along z axis) the in-plane lattice constant a|| (in x, y planes) will be the same throughout 

the structure (cf. §2 .2 ). Since growth is on a thick substrate (typ.~ 300|im), this will be the 

dominant lattice constant in the structure (a®). The substrate then imposes its lattice 

constant on the well and barrier material to satisfy the condition a|| is constant.

For the case when a  ̂ ^ a® (ie. the situation investigated the present work), the well 

material will deform to take on the in-plane lattice constant (ie. that of the substrate). The 

in-plane components of the strain tensor are given as:

a® -  a*"
= ° ^ ° (3.22)

^0

and

= (3.23)

where the Cÿ parameters are the bulk elastic coefficients for the material. With a

knowledge of the strain tensors ê j, the effects of strain can be treated as an additional

perturbation to the Hamiltonian in equation (3.4). In their original work, Pikus and Bir 

(1959) realised that due to the deformation of the lattice, a transformation of coordinates is 

required so when the wavefunctions of the perturbed Hamiltonian (3.4) are expanded in 

terms of the wavefunctions of the unperturbed Hamiltonian both functions will have the 

same periodicity. Applying this transformation, the perturbed wavefunctions have the 

periodicity of the unstrained lattice and the expansion can proceed in a similar manner to 

that described in §3.2. In their work, Pikus and Bir (1959), neglected terms of O(e^) and 

O(ek^) and strain interactions between the far set were not included. The final 

Hamiltonian reduced to the sum of two matrices:

= H (k ) + H (e) (3.24)

The basis states chosen (near set) were the valence band states (X, Y, Z) so the strain 

independent matrix H(k) is just that given by Luttinger and Kohn (1955) while H(e) 

contained strain terms of 0(e). The strain terms are energy corrections to the respective 

band edges of the material. Following the approach of Pikus and Bir, an 8  band k.p model
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for strained zinc-blende crystals was presented by Bahder (1990). The inclusion of the 

conduction band in the near set (S, X, Y, Z) meant that for his work H(k) was identical to 

the interaction matrix from Kane (1966). The strain dependent matrix now contained the 

coupling of the conduction band to the hydrostatic deformations and additional terms that 

couple the conduction and valence band. In transforming this matrix to the angular 

momentum representation, the strain dependent spin-orbit interactions are small and can 

be ignored (Bahder 1990) so the basis states given by Kane (1966) will suffice. Terms that 

arise due to the inversion asymmetry of zinc-blende structures can also be neglected 

(keeping on equal footing with the Schuurmans and 't Hooft Hamiltonian §3.2.2). 

Although, since these terms couple the conduction and valence bands through e- where i?tj 

(Bahder 1990), they would be zero for the structures in this work anyway.

For the angular momentum basis states in equations (3.14);

K t a l  = U' + D' (3.25)

where is the Hamiltonian of Schuurmans and 't Hooft (3.17), and Dg is the strain 

dependent Hamiltonian.

In matrix form with k|i=0 , the strain contribution is :

Do =

el

0

h h

0

ÔE(v)Z - i s E '

0

0

Ih

J |e L P ' k ,

0

- j h E i

0

-J -5 E 1

(3.26)

where is defined in (3.18) and as before, k̂  —> - i  

written as.

. d  

d z
The structure of Dj, can be

= Dj,(e) + D ^(ek ,) (3.27)

where the main contribution of strain comes from the first matrix D g(e) which 

determines the energy shifts of the band edges in the presence of strain.
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The elements are defined as :

5E5f>' = a '(2 e [ |  + e^ )  (3.28)

= a t(2 e f |  + eL ) (3,29)

SE' = 2 b ' ( e ' j - e f | )  (3.30)

The hydrostatic shifts of the conduction and valence band, 5E(  ̂ and 6 Eĵ  ̂respectively,

are determined by the proportional change in volume, ( 2  en +  e^z).  â  and a^ are the

hydrostatic deformation potentials of the conduction and valence band edges respectively 

(E.P O’Reilly 1989). The uniaxial strain, which lifts the degeneracy of the valence band, 

enters as ( ê  ̂ -  e[| ) with b̂  as the shear deformation potential. The coupling between the 

light hole and the spin-orbit split-off band, (off diagonal terms in (e )), causes the 

splitting of the heavy and hght hole band edges to be nonlinear with strain; although, when 

>> b̂  (e^z -  ê i ) the coupling has httle effect and the heavy - to light- hole splitting is 

= 2 b̂  ( ê z -  e[| ) (Marzin et al 1990).

The second matrix in (3.27) arises from Bahder’s re-examination of a k.p description 

for strained materials, (Bahder 1990), and describes the strain coupling between the 

conduction and valence bands away from the band edge (k^ # 0 ). Previous work had 

often overlooked (ek^ ) despite including the conduction band in the near set (eg. Jogai 

and Yu 1990, F.H Poliak 1990, Marzin et al 1990, People and Sputz 1990), although more 

recently, Gershoni et al (1993) have included it in their study. The importance of the term 

has (to my knowledge) yet to be established in heterostructure calculations; although by 

inspection, the effect of Dq (ek^ ) is seen to be small in comparison to the equivalent matrix 

element appearing in the unstrained Hamiltonian, (3.17). [note: typical values of the 

strain tensor are jê g | < 0. 02, actually less than 1% for the work in Chapter 5]. Neglecting 

this term therefore appears to be quite a reasonable approximation.

§3.4 Band Structure Calculations.

The total Hamiltonian, , for region I in a structure can be constructed by using the 

two matrices in (3.17) and Dg in (3.26). With 'B.\otai place of in (3.16) and 

choosing bulk solutions for the envelope functions, the E(kg) dispersion can be obtained for 

each layer in the structure. However, the term 6 Ey in (3.16) corresponds to the unstrained 

valence band discontinuity, so the zero of energy would indicate the top of the valence band
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in the unstrained  well material (Z =«;). I have found when dealing with heterostructures 

it is often convenient to treat the band discontinuity as a variable parameter. Particularly 

when looking at material combinations that have not been widely studied and have 

unfamiliar band discontinuities. Turning to a structure where one of the materials is 

strained, the term valence hand discontinuity is ambiguous because of the non-degenerate 

valence band. In view of this, I decided to take the valence band discontinuity, as

being with respect to the heavy hole band edges, and furthermore to keep the zero of energy 

coinciding with the heavy hole band edge of the well material. Formally, this requires a 

simple matrix calculation on the strain Hamiltonian (3.26) written as:

D' = d J, + Dihift (3.31)

where D{,is given in (3.26) and is simply,

D'uft = f 1  8 E' II (3.32)

The final strain Hamiltonian, D , has the diagonal elements defined with respect to the 

heavy hole diagonal element (now set to zero). With iii place of ÔÊ  in equation

(3.16) the E(kg) dispersions for all the layers have the zero of energy coinciding with the 

heavy hole band edge of the well material. A useful consequence of applying (3.31) is that 

the hydrostatic shift of the conduction band relative to the valence bands can be described by 

one term, given as:

5 E jg a p )Z  ^  g g ( c ) Z  _  § g ( v ) Z

= (a  ̂ -  a v )(2 ef| + ê z j

= agap(2 ef| + e^z) (3 .3 3 )

Here, ag^p is the deformation potential of the band gap and is a parameter that is often 

measured experimentally (see Appendix A).

§3.4.1 Using full k.p theory.

This section describes the calculation of the bulk band structure, E(kg), for a material 

using a fu ll k .p description. For the purpose of the work in this thesis, full is taken to
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mean the level of description involved in obtaining the Schuurman and 't Hooft 

Hamiltonian (3.17). The following section (§3.4.2) deals with a simpler form of (3.17), 

hence the need to distinguish between the two for later discussion.

The bulk envelope functions are taken as /j  «= then the operator goes k^-^ k .̂

The energy-dispersion relation E(k^) can be found from,

{ n L w  -  5E 'hhl}F' = {E I}F ' (3.34)

where the total Hamiltonian for each layer in the heterostructure is.

(3.35)

and are given in equations (3.17) and (3.31) respectively. The heavy hole valence 

band discontinuity is in this case:

5E
0  fori = w

vhh - | Q , ( E ^ - E “ )for; = 6
(3.36)

with as the heavy hole valence band offset parameter and Egg defined later (3.54) as the 

strained conduction to heavy hole band gap. [note: for unstrained materials 

Egg reduces to Eg ]

The far band terms in , namely y i , Y2 along with the matrix element are

determined from knowledge of the four band edge effective masses , ^ih &î d /rigo

and energy gaps (Eg, Â ) at the F-point of each unstreiined bulk material. We find in (3.17) 

for small k^, the dispersions of all the bands are parabolic with effective masses 

(Schuurmans and't Hooft 1985):

m = s' + 2 EÎ
3E

1 +
E

(3.37a)

m

“ hh
=  Yi -  2Y 2 (3.37b)

jn_o
=  Yi +  2Y 2 +

2 E|
3E!

(3.37c)

m
m.

2 E
3E

E
(3.37d)
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where

, 2 m i p ' r
E|, =  (eV) (3.38)

Experim entally determined m asses and energy gaps for most binary III-V 

semiconductors are well reported (eg. Landolt-Bomstein 1982, 1989). In the case of ternary 

materials (A^B^^C) only a few have been adequately studied. A common way around this 

problem is to interpolate between the two constituent binary materials in accordance with 

the virtual crystal approximation (eg. Loehr and Manasreh 1993). Here the total crystal 

potential is assumed to be the average potential xVy^c(r) + ( 1 - x)VBc(r).

Considering the case of the Luttinger parameters (y  ̂  ̂ and  ̂) these are directly related 

to matrix elements of the crystal potential so ,

+ (1 - . n = 1.2 (3.39)

will give the Luttinger parameters for the ternary material (Loehr and Manasreh 1993). It 

is therefore appropriate in this case to use equations (3.19) and (3.20) to obtain the modified 

Luttinger parameters used in (3.17).

With the elements of 'B.\otai and the offset 8Ey^ known the energy dispersion relation can 

be found irom the characteristic equation:

-  (seU  + e )i | = 0  (3.40)

which, at given energy, E, requires the solution of a polynomial of degree 4 in (k^ )  ̂ giving

eight kg solutions. The same result is obtained if  (3.34) is recast into an eigenvalue

problem for kg, so for a given energy, E, the eigenvalues kg can be determined (Chang and 

Schulman 1982, Smith and Mailhiot 1986, Warburton 1991). Displaying the k  ̂ dependence 

ofHLa/ explicitly,

H L z = H i (ki)^ + h 5 (ki ) + H i (3.41)

then from (3.34),

| ( h | ) * ' ( h ;, -(SE;,hh + E )l)  + (H ^ )'‘ H'j(k') + (k ')2 |A ' = 0 (3.42)
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and finally expressed as an eigenvalue problem;

0  I Y  a '  ''
- ( h ^)“ (h J, -(SEihh + e )i ) - (H i) - 'H i = kz (3.43)

The matrices making up all have dimensions 4x4, so it follows that the matrix on the

left in (3.43) has dimensions 8 x8  and therefore 8  eigenvalues, k̂ .. These occur in groups of 

two, kg and -kg and can take on either real (corresponding to propagating solutions) or 

imaginary (decaying solutions). Therefore choosing an energy and calculating the 

eigenvalues of (3.43), the bulk E(k^) dispersion is constructed for a particular layer in the 

heterostructure. In (3.42) and (3.43) the wave function is left as a linear combination of 

Bloch solutions, similar to (3.2), with the A's as expansion coefficients in (3.3) (Chang and 

Schulman 1982). The main objective in this work, with regards to calculating the E(k^) 

dispersion from a fu ll k .p  model is so that comparisons with the reduced k .p  models 

(eventually used in heterostructure calculations) can be carried out. In view of this, only 

the eigenvalues need to be found, although it is noted a complete treatment of 

heterostructure calculations using the above method has been given by Warburton (1991)

Using the eigenvalue method (3.43), the calculated complex band structure of GaAs using 

(3.40) is shown in (Fig.3-2). Each line in Fig.3-2 corresponds to two solutions. The 

effective masses and energy gaps used were taken from Schuurmans and't Hooft (1985) so 

Fig.3-2 can be compared with their calculation (Fig.l). From Fig.3-2, it is clear that six 

solutions all lie within the first Brilloiun zone, |kg| < j, and correspond to

physically realistic solutions (Schuurmans and't Hooft 1985). The electron and light hole 

bands are coupled across the band gap by an imaginary band, and become real above their 

respective band edges. The other two bands (heavy -hole and spin-orbit split-off), proceed 

as one would expect, with some interaction between the latter and the Hght hole band being 

evident. Two solutions in Fig.3-2, lie outside the first Brilloiun zone. These are often 

referred to as 'spurious' solutions and are physically unrealistic, cf. (3.2). Several 

comments regarding spurious solutions appear in the literature (Schuurmans and't Hooft 

1985, G Bastard 1988, p8 6 ), where they are described as remnants of a remote band which 

arise due to limited set of basis functions used in the k.p approach.
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F igure 3-2. Calculated complex band structure of GaAs. Real values ofk^ are plotted on 
the positive x-axis and Imaginary values are plotted on the negative x-axis.

In adopting a full k .p  model for heterostructure problems, the involvement of large k 

valued spurious solutions can prove numerically troublesome since the total wavefunction 

must be expanded in each layer (eg. Schuurmans and't Hooft 1985). To get round these 

problems, several numerical schemes have been proposed which appear to give satisfactory 

results (Schuurmans and 't Hooft 1985, Ram-Mohan et al 1988, Warburton 1991). 

However, as Bastard has pointed out (see Bastard 1988, p87), another approach is to avoid the 

inclusion of the remote bands altogether, and use a reduced k.p description for energies 

close to the band edge. This compromised description is the topic of the following section.

§3.4.2 Using reduced  k.p theory: the Kane m odel.

The main difference between a full and reduced (or Kane) k.p model lies in the degree of 

interaction affecting the bands considered in the near set. Reiterating the results of 

§3.2.1, the full model treated a set of four closely spaced bands (near set) which were 

allowed to couple strongly to one another, while the coupling between these and the remote 

bands (much further away in energy) is treated by second order perturbation theory.
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Another method, originating from the work of Kane (1956, 1957), only considers the strong 

coupling between the four closely spaced bands and neglects coupling from the remote 

bands. Calculating the band structure for InSb using both models, Kane showed that the 

effects from the remote bands have a negligible contribution close to the band edges of the 

near set. As the dispersion extended further away (in k space), the coupling from remote 

bands became more significant. This reduced k.p method, commonly referred to as the 

Kane method, has subsequently been widely adopted (cf. §3.1), offering an accurate

description of materials near the band edge while providing analytic E(k^) expressions

which are easily handled numerically.

The Hamiltonian representing the Kane model can be obtained from the fu ll k .p  

Hamiltonian by dropping the terms of O(k^) that describe the combined effect of the free 

electron term with the coupling to remote bands. The difference between the two models 

can be viewed as;

full k.p = H^(ki )2 + Hi (ki ) + Hi, (3.50)

Kane k.p = Hi (k  ̂) + Hg, (3.51)

where for both cases, can represent either heavy or light states.

Earlier, in (§3.2.2) it was noted that the heavy states (mj = ± ^ )  in the bulk Hamiltonian, 

in (3.17) do not couple at all to the light states (mj = ± j^)- Similar comments also 

apply to in (3.26). So regardless of whether the full k.p or the Kane k.p model is used, 

the heavy hole states can be treated separately thereby reducing the level of computation 

required, [note: this decoupling is valid because (3.17) is derived assuming k ||=0. In the 

case where k|| there can be strong mixing of the heavy and light states (eg. Eppenga et 

al 1987)]. It seems appropriate to draw attention to this now since in the Kane method 

(described in this section) it will become clear that the level of approximation used for the 

description of light and heavy states is not the same.

For the heavy hole case, removing the terms of 0(k^ ) leaves it dispersionless since it 

is seen in (3.17) to interact only with the far states. To overcome this problem the 

interactions with the far states are reinstated leaving the description for heavy hole states 

the same as in the full k.p method, (3.17).

- 72-



Explicitly,

H totaL
2 i : 2

2  m, (y I l  -  2 y ^ l)

2C2

2 nihh (3.52)

noticing that the usual Luttinger parameters can be used to define the heavy hole effective 

mass in a particular layer.

Considering just the light particle states (mj = ± ^ ) ,  the three band (el, Ih & so) 

Hamiltonian is.

TT̂totaL

where.

E

- i l l—Pk^z

S Ei

IsE i E

e L  =  E i  +  +  -  ô e I'gs

(3.53)

(3.54)

EL = -A' + ^  6E: (3.55)

The terms and 5Eg are given by (3.33) and (3.30) respectively. The heavy hole

band edge in ^\otal layers is set to zero, therefore Egg can be regarded as the strained

band gap between the conduction and heavy hole band edge. It is clear from (3.54) that if a 

layer has zero strain then this reduces to the bulk unstrained value, ie. E^ (e[| —>0)=Eg. 

The subscript 'K' on the Kane matrix element, P g , is to indicate that this will now be found 

within the equations obtained from the Kane model. This is achieved in a similar manner 

as that carried out for in the full model (3.37). Further discussion on this subject and 

the corresponding equations appears in §3.5. For now it is sufficient to realise that P^ is 

fitted to reproduce the bulk unstrained effective masses at the F-point.

ikzZ
oc eFor bulk envelope functions taken as /j  

dispersion relation E(k^) is found from,

-  s4 h h l}P ' = {E I}f '

, the operator is k^-^ kg. The energy-

(3.56)
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/ 1

{ K w  -  seU i }f ' = {EI}F' (3.56)

where '&\otal (3.53) and is , f [^, /gg ) for the hght states, and ’EL̂ otal i® (3.52) and 

is the heavy states. The energy offset ÔÊ ĵ ĵ is used for both heavy and light states

and is given by (3.36). The analytic E(k^) dispersion is found from the characteristic 

equation:

|H L ,a /-(S E U  + E)l|| = 0 (3.57)

Considering (3.57) for the well material (dropping the superscript), we find for the heavy 

hole states.

(3.58)

and for the light states.

(E -E gs) (E -5 E ,) ( E - E ,„ ) - iô E f

Pk (3E + 8E3 - 2 E,„)
(3.59)

The relations for the barrier material have the same form and can be obtained with the 

substitution E —> (E + 5E*jj^) in equations (3.58) and (3.59). Examination of the above 

relations show the heavy hole dispersion is parabolic (ie. «= E) with an effective mass 

of m^^. However the light states, described from (3.59), are clearly not and instead have 

some higher order relationship with energy. This situation is called band non- 

parabolicity and is responsible for an energy dependence of the effective mass in a given 

band (eg. G Bastard 1988, p46). In fact, equation (3.59) can be written for the conduction 

band as.

with

2 i , 2

2 mgi(E)
= (E -  Egj) (3.60)

ni3i(E )= ^ “ “
E,

(E -5 E 3 )(E -E 3 „ )-i5 E 2

(3E + 5Eg -  2Egg)
(3.61)

clearly showing energy dependence of the electron effective mass. Non-parabolicity 

occurs in the k.p description due to the coupling of the bands considered in the model, and
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hence can be anticipated by noting any off-diagonal terms (dependent on k )̂ appearing in 

^total •

Although the Kane approach has significant numerical advantages, the accuracy of the 

method is clearly an issue. In the later heterostructure calculations, the energy range of 

interest is typically within 60 meV of the band edges (for the lowest energy transitions). 

Although rarely quantified, presumably due to the dependence on the material, previous 

studies (§3.1) have suggested similar limits in which the Kane approach can be used as an 

effective description. Using the two k.p approaches detailed here, ie. fu ll and Kane, 

calculated band structures can be compared. Inevitably limits exist in the fu ll model, 

however it is reasonable to suppose the effective energy range is larger than in the Kane 

approach through accounting for interactions from remote bands. Previously, the Kane 

approach compared favorably to a tight binding method for GaAs and AlAs for energies 

near the band edge, particularly for the conduction band (G Bastard 1988, p48). Other 

comparisons have already been noted (cf. Johnson et al 1988, 1990) but little work has been 

published concerning Phosphorus based strained layers. Examples are shown for In^Ga^_ 
jjAs material (Fig. 3-2, 3-3), which apart from the technological importance (covering 

wavelength range l-1.6p.m) can also be made to experience a tensile strain (for x<0.53) or 

compressive strain (x>0.53) with growth on an InP substrate, [note: the material is also 

regularly grown on GaAs substrates where it experiences compressive strain for all values 

of x]. In figure (3-2), the strained E(kg) dispersion is calculated from both approaches (for 

x=0.39 corresponding to -1% tensile strain). Only the light particle states, (mj = ± j/^), 

are displayed since the heavy hole descriptions are exactly the same in both models. Since 

the layer is under tensile strain, the light hole band edge is correctly seen to lie above the 

heavy hole band edge (cf. §2.2.2). Calculated band edge positions (ie. at k%=0) are 

identical for both approaches, which can be expected since the terms that are neglected in 

the Kane approach are Ofk^). Hence the important strain-induced energy shifts of the 

band edges, eg. band gap modification, heavy-light hole separation, are accounted for. For 

small kg, ie. energies close to the band edge, the Kane description compares very well; the 

conduction band dispersion compares very well up to energies -200 meV from the band 

edge (with a maximum deviation of less than 0.2 meV). The accuracy of the light hole 

dispersion is slightly less, ie. -150 meV from Fig. 3-3a for a similar deviation. A further 

point to note, is the wave vector expressed in units of ( ). Here â   ̂ is the distorted

lattice constant in the growth direction, (cf. Fig. 2-1).
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Figure 3-2. Comparison of calculated hand structures for In^ on InP
corresponding to -1% tensile strain in the InGaAs layer, (a) full description. (b) Kane

description.

The restricted accuracy of the light hole dispersion is mainly due to the divergence that 

occurs in the Kane model (Schuurmans and 't Hooft 1985). Further examination of the 

description for the three light bands (el, Ih & so), shows (3.59) diverges when the 

denominator is zero (cf. asymtope in Fig. 3-2b above). Making use of (3.55), the asymptote 

can be seen to occur at an energy E = -  2 ^  from the heavy hole band edge which is 

always zero (for a well material). However, the energy separation  between the light hole 

band edge and the asymptote is strain dependent, which actually arises from the strain 

induced separation of the light- and heavy-hole band edges (Fig.3-3). Therefore care must 

be taken to define the energy range where the k|| = 0  light hole states can be accurately 

obtained using the Kane model. It can be appreciated that in addition to value of the spin- 

orbit splitting for a material, the strength and nature of the strain is clearly a factor, (see 

Fig.3-3 below).
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Figure 3-3. Comparison of the light hole dispersion near the band edge between full 
description (solid) and Kane description (dotted). Three cases are shown corresponding 
to (a) In^ 2 9 ^ ^ 0  61 % tensile strain) (b) Ing Ga^ ^jAs on InP (lattice

matched) (c) In^ QjOag As on InP (~1 % compressive strain).

In Fig.3-3, three situations (tensile, lattice matched and compressive) are considered. In 

all cases the heavy hole band edge is indicated (at zero energy). As expected, the position of 

the light hole band edge moves from higher to lower energy (w.r.t heavy hole band edge) as 

the strain in the layer goes from tensile to compressive, (cf. §2.2.2). The results show the 

effective range of the Kane approach (for describing light hole states) is progressively more 

limited with increasing compressive strain. The light hole band edge moves further 

towards the asymptote (further away from the heavy-hole band edge) for increasing 

compressive strain. In actual fact, the asymptote for each case occurs at a slightly different 

energy since the bulk value of A changes with composition. However, from the above 

figure it is clear the dominant effect is the strain induced splitting which restricts the 

effective energy range. For moderate strains (say je||j < 0 .0 1 5  which allows reasonably 

wide strained QW layers to be confidently grown, cf. Fig. 2-7), the Kane description for 

InjjGa^.j^, on either InP or GaAs, is effective for 60 meV away from the band edges. This 

is a sufficient range for the calculations of ground states in quantum well and related 

structures. Turning to the InAs .̂^Px system (on InP) studied in Chapter 5, calculations 
indicate the effective energy limits for the Kane description are somewhat lower (w.r.t the 

band edges); -80 meV for conduction band, -30 meV for the light hole band. These are
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easily explained by both a smaller spin-orbit splitting (for x>0.8 cf. Appendix A) and the 

fact that the layer is under compressive strain. For heterostructure calculations, the 

conduction band range adequately covers the energy of the lowest confined state for the 

material forming the well region. Unfortunately, the same cannot be said for light hole 

states, where the model is only effective for larger well widths, ie. structures with the light 

hole state less than 30 meV from the band edge.

From the above results and having looked at other systems, I typically find the Kane 

approach describes the light hole dispersion down to energies—  . That is, if the strain

induced splitting causes the fight hole band edge to fie at energies comparable to or greater 

(ie. lower in energy) than -  then the fight hole dispersion from the Kane model is not 

accurate.

§3.5 Further Investigation into the Kane Modei.

The last section introduced the Kane approach and demonstrated the resulting closed form 

E(k^) relationship describing the electronic structure of a material near its band edge. The 

point was made that the value of the matrix element, Pj ,̂ is required to reproduce the band 

edge effective masses at the F-point. The latter part of this section (§3.5.2) details the 

method and relations used in the present work to determine this. Before this, further 

investigation into the Kane approach is undertaken which serves to highlight some of the 

assumptions and consequences involved. In addition, closed form expressions providing 

information on the strained layer (ie. masses, band gaps etc..) are derived (§3.5.1).

Two levels of description in the Kane model are used in the current section. Both 

neglect any coupling of the near set with the remote bands (the far set); as before the near

set includes the conduction, light hole and spin-orbit split-off bands. The differences
62^2 /

between the Kane descriptions are due to either including the free electron term, y 2m ’

or neglecting it (ie. §3.4.2). To distinguish between the two I will call the former the 'free

electron' Kane model, while the latter will be referred to as the Kane model, [note: It is the

Kane model in §3.4.2 that is used in the heterostructure calculations. Chapter 4]. The 'free

electron' Kane model is seen to be consistent with the development outlined in §3.2.1, and

is essentially given by (3.8). The Kane Hamiltonian of (3.52) neglects all terms of O(k^)

including the free electron term, the assumption being that the free electron term is much
*2^2 /

smaller than the energy of interest, ie. E -  y 2m “ energies close to the band

edge this is a reasonable approximation (B. R. Nag 1980).
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§3.5.1 Analytic expressions.

In this section closed form expressions describing band edge effective masses, band non­

par abolicity and band edge energy positions for strained bulk semiconductor layers are 

presented. The results are particularly useful for existing single band heterostructure 

models. They produce the input parameters typically required in most heterostructure 

calculations (ie. band edge mass, band gaps and non-par abolicity) and can therefore 

extend the models to adequately account for strained layers.

The derivation is based on the approach by People and Sputz (1990), although 

differences occur in the choice of Hamiltonian. In their work, People and Sputz derived the 

expressions obtained from two cases of k.p description. In one case, the conduction band 

was explicitly included which in some respects is similar to the Hamiltonian in (3.35). In 

the other case, only the valence bands are included and so the Hamiltonian is similar to 

(3.24). It should be made clear that for both cases, coupling with the remote bands is 

included so in our nomenclature their descriptions can be regarded as full descriptions. 

A further point worth mentioning is that People and Sputz used the basis functions 

prescribed by Luttinger and Kohn (1955) whereas 1 have used Kane's set (3.14). This results 

in some elements of the strain Hamiltonian differing in sign and phase.

The analysis by People and Sputz (1990) starts by expressing the E(k^) dispersion for a 

particular band up to 0 (kz ), ie.

E ,(k j )  = -  y'-'* (3.62)
■' 2 m} 2 m}

where E  ̂ and m* are the energy and effective mass in the z-direction (confinement 

direction for heterostructures). The subscript j  is the band index (eg. conduction band) 

and is the non-parabolicity parameter for the jth band. Equation (3.62) assumes^th 

band edge at the T-point is at zero energy. It can be written more generally as,

E ^ ( k z )  =  Eo '^ '  +  E ^ ' k ^  +  E a ^ ’ k J  (3 .6 3 )

here E^^ is the band edge energy at the F-point, E%̂ and 'EkJ  are k̂  independent terms 

related to the effective mass and non-parabolicity.
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E
(J )

and

E l''

2  m}

=  _v(;)

1 3E (k,) 
k, 9k,

= -Y
2  m}

1
i l

k; =0,E = Eq
U)

I 9^E(kJ  
K  3k? k, = 0,E = E(j)

(3.64)

(3.65)

where E(kg )is the general characteristic relation between the energy and the wave vector 

obtained using a k.p description.

G e n e ra l e x p re ss io n s .

The characteristic relation used in (3.64) and (3.65) is from the 'free electron' Kane 

Hamiltonian (ie. including the free electron term). It can be obtained from (3.53) by

adding
2 ,* 2

2m to each element on the leading diagonal and following the same method
2

in §3.4.2 or equivalently, from (3.59), by substituting E E -  

relation up to 0 (kg )for the well material is (dropping the superscript),
2 m The characteristic

( E - E g 3 ) ( ( E - E „ ^ ) ( E - E , „ ) - i 8 E f = Q + R (3.66)

where.

Q =
2 m,

3E2 -  2E(x) + (ÿ) + (3E + 25E, -  2E^. -  Eg.)

and

R = - n \ i
2 m, 2 m,

3 E - ( x )  +

with
X = (Egg + Eih + Ego)

ÿ -  (EggEjh + EggEgo + E ^ E ^ -  — 5Eg )

All the terms have been defined previously with the exception of Ê  ̂ ( = 5Eg ) which refers to 

the hght hole diagonal element in (3.53). The subscripts on the matrix element, P, indicate 

it is the coupling element within the 'free electron' Kane Hamiltonian. To keep the final 

expressions general, implicit differentiation is applied to both sides of (3.66) and the 

relevant substitutions given in (3.64) and (3.65) are used.
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After some work, the following general expressions for the effective mass,

mp ^ 1 I

m*-

 ̂ (;) "\ 
(3Eq + 25Eg -  2Ego -  )

( 3 ( E o ' f - 2 Eo''\x) + (ÿ))
(3.67)

and non-parabolicity are found,

_ y < 7 )  A
2 mJ

3 ( E y  -  2 Eo‘'’ ( i )  + (ÿ)
4m:

[ T - U ] (3.68)

where

T = l _ 2 o
mJ  J

3E q — (x) +
^mpPK.i

3^2

U = -
f  \ f  \

l _ H o
m* mt

V J  J V J  J
3E^^ -  (x)

As noted earlier, the term Eq̂  is the energy of the jth  band at the r-point (ie. k^=0). The 

index j  refers to the light particle states (ie. conduction, light-hole or spin-orbit split-off 

bands). The band edge energies, Eq^ 's are simply solutions of

(E -  Eg,)| (E -  E,h)(E -  E ^) -  ^5E^ | = 0 (3.69)

which written out in full are.

gs (3.70a)

(3.70b)

( Ejh + Ego ) 1Eg- = i  i/Eg, -  2E&Em + 28E? + E (3.70c)

The above expressions for the band edge energies of the light states are defined with respect 

to the heavy hole band edge of the well material (taken as zero in this thesis (§3.4)). It is 

worth noting, that these solutions are the same for both the full model (3.40) and the Kane 

model (3.57). On their own, equations (3.70) provide valuable information about the 

changes in band gaps and valence band splitting induced by lattice mismatch strain. For
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example, (3.70a) and (3.54), provide the band gap (band gap between conduction and heavy 

hole valence band) of a material under strain, while (3.70b) gives the valence band 

splitting of the heavy- and light-hole band edges. This is illustrated in figure. 3-4 where 

these changes are calculated for the In^Ga^_^As on InP system. For the same material 

system, with equations (3.67) and (3.68), the effective mass and non-parabolicity values for 

a given band can be found. Fig.3-5 and Fig.3-6 respectively.

1.6

1.4

> 1 2 :, 

Î  'g 0.8 -

0 .6 -

0.4-

0.2
0 0.4 0.6 0.80.2 1

X in In^Ga (on InP)

(a)

0.4

C 0.3

a  0.1

- 0.1 -■

- 0.2 0.4 0.6 0.8
X in In^Ga  ̂^As (on InP)

0.2

(b)

F igure 3-4. Calculated band edge energies for In^Ga2 . on InP, solid lines include the 
effects of strain while dotted are the unstrained bulk values, (a) strained band gap, Egs. 

(b) separation of the light and heavy hole band edges.

The results from figures 3-4 ,3-5 and 3-6 compare well with the data presented by People and 

Sputz (1990). The conduction band results are in almost perfect agreement despite not 

including remote bands. Discrepancies start to arise with the light hole results. The 

calculated mass (Fig.3-4(b)) appears heavier (for compressive strain (x>0.53)) compared 

to the value which includes remote bands (cf. Fig.2. in People and Sputz (1990)). Although 

the overall effects of strain (ie. the shape of the results across the range) are the same for 

both models. The calculated non-parabolicity does exhibit a different shape across the 

range in Fig.3-6(b) compared to Fig. 10 from People and Sputz 1990, although the actual 

values are reasonably close to each other. The ‘turn over’ visible in Fig.3-6(b) is not 

present in the People and Sputz results, instead their value increases slowly across the 

composition range.
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Fignu'e 3-5. Effective masses at the band edge for In^Ga^^^s on InP, solid lines include 
the effects of strain while dotted are the unstrained bulk values, (a) conduction band, (b)

light hole band.
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Figure 3-6. Non-parabolicity at the band edge for In^Ga^,^s on InP, solid lines include 
the effects of strain while dotted are the unstrained bulk values, (a) conduction band, (b)

light hole band.

Equations (3.66) to (3.70) have the same form for the barrier material.
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U n s tr a in e d  ex p ress io n s .

When there is no strain in the layer, ie. e[| = 0 , the relations for the band edge energies 

reduce to,

Eÿ = 

Eg" = 0

(3.71a)

(3.71b)

(3.71c)

As expected, these correspond exactly to those given in (3.14) for k=0. Using the above 

values in (3.67) produces.

nip _ J ^

mel

1 2 
+

 ̂Eg + A Eg y
(3.72a)

2 m .Pg^o_
3 A'

(3.72b)

m
m. 3 A'

(3.72c)

which agree exactly with those given by G Bastard (1988), p46. The above equations are 

essentially the 'free electron' Kane equivalent of those listed for the full model in (3.37). 

Then following a similar method, the matrix element, PK,m > determined using the 

above equations. As before, a knowledge of the bulk unstrained effective masses and 

energy gaps at the r-point for the material is required. Apart from the obvious lack of 

remote terms in (3.72), there are important differences between the two methods. In the 

present case, the value of P^.m ni^st be different for each band in order to reproduce the 

correct band edge mass. Furthermore, consideration of the valence band masses (3.72b,c) 

indicates these take on negative values (G Bastard 1988, p46). The former comment about 

changing the matrix element depending on the band, may seem unsatisfactory from a 

theoretical point of view but is simply a consequence of using a Kane description 

(Schuurmans and't Hooft 1985). The essential point is that the a priori bulk unstrained 

masses are reproduced at the band edge.
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§3.5.2 T he m atrix e le m e n t in the Kane m odel.

The first step towards evaluating the matrix element in (3.52) is to find the general 

expression for the band edge effective masses in the Kane model. As in the previous 

section, use is made of (3.64) but now the E(k )̂ dispersion is given by (3.59). This results in 

the following general expression giving the band edge effective mass,

m
2 Pg ( i Ep + 25Eg -  2Eso -  )

-  2 E o ^ \x ) + (ÿ) )
(3.73)

multiplying both sides by the free electron mass, m̂ , and making the substitution.

E
2 m oP|

Pv = (3.74)

which has units of energy, then (3.73) can be rewritten as.

m0 _
m

E, ( i  Eq + 2  SEg -  2 Ego -  E|̂  ̂)

OŒo''^ f  -  2 E ^ \ x )  + ( f ) )
(3.75)

In view of the previous section, it is sensible to indicate that the matrix element term is 

dependent on the band index J. The band edge energies, Eq  ̂ , as noted earlier, are the 

same for all the k.p  descriptions considered in this chapter (ie. full, free electron Kane 

and Kane models) and can be found from the relations in (3.70). With an equivalent 

substitution of, (3.74), in (3.67), similarities between (3.67) and (3.75) are hardly 

surprising and become more obvious when comparing the unstrained relations for the 

effective masses. For (3.75) these are.

m.

^el

Ep«z 1
+

V Eg + A Eg y
(3.76a)

m0 _

mIh

EpM

g ;
(3.76b)

m0 _

m,
Epj "

Eg + A ,
(3.76c)
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where we have used the unstrained band edge energies given in (3.71). The above 

relations are then used to determine the matrix element, Epy , for each band knowing the 

unstrained bulk effective masses and energies at the F-point. For a given band, the matrix 

element determined by (3.76) is used in the heterostructure calculations (Chapter 4), and 

the band edge effective mass will be that given by (3.75). In the case of unstrained layers 

the band edge mass would already be known in order to calculate Epj , then (3.75) would 

just reduce to the relations in (3.76). However, Ep_/, would still need to be evaluated so that 

the non-parabolicity (ie. the energy dependence of the mass) could be accounted for.

Similar points raised in discussing the equations from the free electron Kane model (3.70) 

will also apply here. It should be clear from comparing (3.70) and (3.76) that for the same 

bulk unstrained effective masses, the matrix element for the Kane model will be slightly 

higher (lower) for the conduction (valence) band. Furthermore, there are small 

differences in the strained band edge effective masses calculated using (3.67) and (3.73) 

with the respective matrix elements. The same would also occur if the results from the full 

model of People and Sputz (1990) are compared. This must be the case since the level of 

approximation between each model is different. In going from the full model to the Kane 

model the description of a semiconductor is compromised. However, as will become clear 

in the following chapter, calculations employing a Kane description require the same level 

computation that is needed in particle-in-box type calculations. Given that calculating 

heterostructure properties requires further calculations, which themselves are fairly 

involved. I felt that by using the Kane approach, an intermediate consistent treatment of 

strain in heterostructures can be obtained while keeping the computing effort to a 

minimum.
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Chapter 4. Calculations for Heterostructures: 
electronic and optical Properties.

The following chapter details the methods used for calculating various properties of 

heterostructures. Specifically, the emphasis is on obtaining electronic and optical 

descriptions of a given structure under the effects of an apphed electric field. In the present 

work, the electronic description amounts to a calculation of the confined states in either 

quantum wells (QW) or superlattices (SL). If the heterostructure as a whole can be 

considered as an artificial material, then the confined states will represent its band 

structure. In considering optical properties, the accent has been placed on calculating the 

absorption spectrum close to the heterostructure band edge. Particular attention is paid to 

the absorption due to excitons which provide heterostructures with their remarkable electro­

absorption properties, namely the quantum confined Stark effect (Miller et al 1984, 1985).
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§4.1 Introduction: electronic properties.

The following two sections (§4,2 and §4.3), present the methods used for calculating 

confined states in heterostructures. The first section concentrates on superlattices and 

single quantum wells in the ‘flat band’ condition ie. zero field solutions. While in §4.3, 

the method adopted for calculating states under the influence of a perpendicularly applied 

electric field is detailed. It should be emphasised that the model accounting for applied 

fields is equally capable of investigating zero field situations. However, by separating the 

methods in this way it serves to highlight not only their quahtative differences, but also 

present a ‘suite’ of models that may be used in heterostructure device design. Further 

discussion is saved for the relevant sections, although some justification for the use of 

different models is briefly summarized below.

A heterostructure with a uniform applied electric field allows the possibility of tunnelling, 

so strictly speaking, there are no bound states in the problem (see eg. Schmitt-Rink et al

1989). Despite this, there have been many ways to approach theoretical field calculations, 

(cf. §4.3), although the computation techniques are generally lengthy and quite involved. 

This can still be the case if a particular method is consistently used for zero applied field. 

Particularly when realistic descriptions are employed (ie. finite barrier heights and 

widths) and further calculations are required, eg. optical properties. In contrast, zero field 

methods (at least in a simple envelope function approximation) are computationally no 

more demanding than the classic ‘particle-in-a-box’ problem found in any introductory 

text on Quantum Mechanics. Therefore such calculations can be carried out much more 

efficiently. For example, consider investigating the quaternary system (AlxGa^_x)yIni_ 

yAs/(Al^Ga2 _^)yIn^_yAs for structures to operate around 1.55p.m. It turns out that a wide 

range of suitable designs exist differing in well width and composition (P.Guy, private 

communication). Clearly the ability to perform wide range efficient calculations with 

these parameters is beneficial in device design. In practice, once an initial group of 

structures has been isolated, one can proceed to investigate more thoroughly the merits of 

each design depending on the proposed application. This type of design procedure was 

utihzed for the work appearing in chapter 5.

The correspondence with the ‘particle-in-a-box’ problem is evident from considering the 

real space potential profile of a typical structure (cf Fig. 1-2). Essentially, the difference
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lies with the description of the constituent layers making up the structure. Working within 

the envelope function approximation (EFA), (Bastard 1981,1982), enables each layer to be 

described in terms of an ‘effective mass’. This embodies all the information about the 

microscopic details of the layer, such as the periodic potential arising from the crystal 

lattice. The resulting ‘macroscopic’ view means that for the simplest case (a one band 

model), the band edge effective mass of the particle in the layer replaces the free electron 

mass in the text book problem. A quantum well, constructed by joining  three materials 

with different band gaps (barrier/well/barrier), can now be viewed as a ’particle-in-a-box’ 

problem with the envelope function replacing the wavefunction. The time independent 

Schrodinger equation must be satisfied in each layer and solutions have a well-known 

form. Application of the boundary conditions produces a transcendental function with 

zeros corresponding to the bound states (eigenvalues) of the problem. This function is 

specified by the solutions to the auxiliary equations in each layer which are simply the 

energy-wave vector relationships (for a one band description this is parabolic in nature). 

Of course adopting a more sophisticated band structure description in each layer, eg. the 

eight band k .p  description of Smith and Mailhiot (1986), results in the computations 

becoming significantly more involved. For the present work, a reduced k.p model (Kane) 

is used to describe each layer. This was shown in the last chapter (§3.4.2) to adequately 

describe the bulk layer band structure near the band edge, including the effects of strain on 

band edges and effective masses, while still providing a simple closed form expression for 

the energy-wave vector relationship. Computations for a range of structures (superlattices 

or single quantum wells) at zero apphed field can be efficiently performed, (§4.2). The 

Kane description is also used for the field calculations presented in §4.3.

B o u n d a ry  c o n d itio n s  w ith  the K an e m odel.

The present section is concerned with presenting the Kane model (3.4.2) in a form that is 

used throughout the rest of this work. The boundary conditions required for heterostructure 

calculations are seen to appear quite naturally, although it should be stressed that these 

refer only to the situation where the Kane model is used (Taylor and Burt 1987). As to the 

general subject of boundary conditions for heterostructures, this is an area which has and 

still continues to attract considerable interest (Morrow and Brownstein 1984, Altarelli 

1986, Smith and Mailhiot 1986, Taylor and Burt 1987, Potz and Ferry 1987, Burt 1988, Ando 

et al 1989, Einevoll et al 1990, Laikhtman 1992, Elçi 1994). A good discussion on the 

subject is given by Burt (1992).

For the initial problem of calculating the confined states, we are only interested in motion 

along the confinement (z) direction. In the Kane model, the wavefunction for the light
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states in each material is written as (Taylor and Burt 1987),

(4.1)

where /g /(z ),/[ /j  (z) and /sq(z) are the conduction, light hole and spin-orbit split-off 

envelope functions in material I. The basis functions, Uĝ , û ;̂  and Uĝ , are the band edge 

Bloch functions listed in (3.14), these are generally assumed to be the same in each 

material (Bastard 1981). Since only the confinement motion is considered, the heavy hole 

state does not couple to the near bands and is separately described, (cf. §3.4.2).

The Hamiltonian operating on the envelope functions for the light states is written as:

H totaL

EU

Ih

Efh (= 5E')

E
(4.2)

which is similar to that presented in (§3.4.2). The difference here is that the strain terms 

coupling conduction and valence band states have been neglected. Comments have 

already been made about neglecting these terms (§3.4.2). The matrix element, P^, should 

in principle be layer dependent (Bastard 1982). Although it is found in practice that most 

III-V materials take on a similar values (see for eg. Hermann and Weisbuch 1977) and so 

generally the matrix element is assumed to be the same throughout the structure (Bastard 

1982). It was also suggested the similar matrix elements in bulk materials demonstrated 

the similarities between the Bloch functions, thereby justifying the underlying assumption 

in the envelope function approximation (Bastard 1982). Work appearing in the literature 

has since demonstrated the assumption is a reasonable one, and the majority of k .p  

calculations involving both strained and unstrained structures tend to adopt this 

approximation, (cf. §3.1). Notable exceptions include Smith and Maihoit (1986) and Potz 

et al (1985), with further comments about the latter work appearing at the end of this 

section.
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In each layer the Schrodinger equation, (3,34), must be satisfied. For the hght states, three 

coupled differential equations for the three envelope functions are written as,

(E gs -  -  E)/g/ -  i J ^ P K K f l h  + ^ ^ I ^ ^ K ^ z f s o  = 0  (4.3a)

Pk^z f[l + (ESh -  5E(,hh -  E )/L  -  t|^SE' = 0 (4.3b)

~ * - ^ P K ^ z / c i  “  + (E L  -  SE^Uj -  E ) / L  =  0  (4.3c)

The problem can be simplified by rewriting the equations in terms of one envelope function 

(Bastard 1981, Taylor and Burt 1987, Johnson et al 1990). It is worth noting that these 

works are all concerned with zero strain structures, hence there is no hght hole to spin orbit 

coupling which somewhat simplifies the reduction method. The coupled differential 

equations (4.3) are rewritten into a differential equation (k,, = - i  ^ ^ )  that is non-linear 

in energy, ie.

■ ^  B'„ (E) A  a;. (E) + V' j/'„ = E /^  (4 ,4 )

The coefficients, Bfi(E) and A^^(E), are energy and position dependent (throughout the 

structure) while is the position dependent band edge for the nth band. For the bands 

considered in this thesis, expressions for the coefficients are listed in Table 4-1. Only 

those for the electron and hght hole bands are presented for the hght states, along with the 

coefficient values for the heavy hole band.

[note: In Table 4-1, Egg, and Ê qĵ  ̂ &re the strained conduction, hght hole and spin- 

orbit split-off band edges of a layer. They are energy solutions of the general E(kg) 

relation in each layer when kz=0 , see for example §3.5.1 and (3.70)]
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Table 4-1. Coefficients which appear in the differential equations for the envelope
functions (equation 4.4)

conduction band (n=eZ )

3E + 35Eyt,j, + 26Eg -  2E^ -  E{[, 
(E + 5E î,i, -  E{ujj) (E + SE'ijj -  Ejotj )

A^(E):

Vi: ( 4 s - ® i h h )

heavy hole band {n=hh )

B i(E )
2 mhh

Vi: -5E v̂hh

hght hole band {n=lh )

B i(E ) K,n (E + S E jh h -E L ) + ^ ^ k
(E + SE^hh -  Egs)(E + 5Eihh -  Egokz )

A i(E ):
3E  + 3 6 E j^  + 25Eg -  2Ego -  Ê  ̂

(E + 5EihH - E L )  + ® ® ^

Vi: (Elhkz -  ^ v̂hh)
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The boundary conditions on the envelope functions can be obtained by integrating (4.4) 

across an interface (Johnson et al 1990). These can be stated as requiring the continuity of

B i ( E ) £ A ^ ( E ) /^  (4 .5 )

and

a Ji (E)/Ji (4.6)

across a heterostructure interface. Under the appropriate conditions, the coefficients in 

Table (4-1) reduce to the unstrained expressions appearing in the hterature (Bastard 1981, 

Taylor and Burt 1987, Johnson et al 1990). The work by Bastard (1981,1982) first suggested 

the relations (4.5) and (4.6) for Kane models to be consistent with the continuity of cell 

averaged current . For energies near the nth band edge, equation (4.5) for electrons and 

heavy holes generalises the BenDaniel and Duke (1966) condition which states that

—— — fh is continuous at the interface
dz "

The second condition for electrons and heavy holes is the expected continuity of the 

envelope function (Bastard 1981). However, for the light hole bands (and spin-orbit split- 

off bands), the coefficient, A^(E) is discontinuous at the interface (unless the materials

are the same). Since the product, A ^(E )/^  is continuous, the light hole envelope is

necessarily discontinuous. This loss of continuity for the light hole (and spin-orbit split- 

off) envelope function is a result of neglecting terms of O(k^) in the Kane approach 

(Taylor and Burt 1987, Burt 1992).

As they stand, the conditions (4.5) and (4.6) are the boundary conditions that need to be 

applied if  the Kane model is used. They differ from those previously published (eg. 

Johnson et al 1990) in that additional terms due to strain are included. The coefficient, 

B  ̂(E ), contains the matrix element which, in Bastard’s approach (Bastard 1981, 1982), is 

treated as a constant throughout the structure. However, work by Potz and Ferry (1985) on 

unstrained structures allowed the matrix element to be layer dependent, [note: their k .p  

model included coupling terms accounting for the far band interaction which were also 

allowed to be layer dependent]. To account for this in the present situation, the 

Hamiltonian needs to be modified to keep it Hermitian (Potz and Ferry 1985). This has 

been another area of much debate since there appears no unique way to do this (see for eg. 

von Roos 1983, Morrow and Brownstein 1984, Einevoll et al 1990). If a position dependent 

matrix element is to be used in (4.2), then, to keep ^[otal Hermitian, the off-diagonal
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conduction-valence band terms can be replaced by (Potz and Ferry 1985),

Pk^z ^ ^ ( P K ^ + k z P K )  (4.7)

Following a similar procedure to that above, we obtain the boundary conditions:

(4.8)

and

(4.9)

(E)where the new coefficient is related to the appearing in Table 4-1, ie. B„(E) =  ̂ /
K,n

Potz and Ferry’s justification for using position dependent parameters such as the matrix 

element, is that the boundary conditions refer to the unit cell averaged quantities either 

side of an interface. They recognized this as being consistent with the envelope function 

approach which only allows descriptions on a macroscopic scale. Instead of requiring the 

Bloch functions to be identical throughout the structure, their approach only calls for a one- 

to-one relationship between the Bloch functions in each layer (Potz and Ferry 1987).

§4.2 Subband Calculations: zero applied  field.

Generally, the practical structures considered in this thesis are all Multi-Quantum Well 

(MQW) structures (chapter 5). For these structures it is assumed the width of the barrier 

material is sufficient to minimise couphng between the wells (cf. §1.3). In this case, the 

electronic properties of the MQW can be determined from those found in a single isolated 

well. Obtaining the value for a ‘sufficient’ barrier width is very much system dependent, 

relying on a number of parameters such as band offset (ie. well depth) and effective 

masses (ie. penetration length into the barrier). Because of this, I felt it would be useful to 

construct a model that could indicate the degree of coupling present in MQW structures. 

The aim was not to give it a central role in the overall project, but rather ‘a walk on part’ 

that would be useful in the initial stages of investigating material systems. For this 

reason, a zero field superlattice (SL) model was chosen which was nothing more than a 

EFA version of the classic Kronig-Penney analysis of electrons moving in a periodic 

lattice (Bastard 1981, 1982). Exactly how many wells constitute a superlattice analysis 

would again be system dependent. However, an early review on GaAs/AlGaAs structures
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by Kolbas and Holonyak (1984) indicated that between 6  to 10 wells making up a MQW 

region is enough to warrant the use of a superlattice calculations. The type of structures 

investigated here (Chapter 5) have at least 30 wells making up the MQW region.

The following sections initially develop the expressions in terms of three layer 

structures (or four in quantum well), in relation to the structures investigated in Chapter 6 .

§42.1 Superlattice solutions; three layer basis.

B B

0  Ia Â+̂ a+̂ c

Figure 4-1. Schematic representation of a structure with a three layer basis.

For the structure in Fig.4-1, the layers A, B and C make up one period of the superlattice (ie. 

the superlattice has a three layer basis). In addition to the boundary conditions on the 

envelopes at each interface, the Bloch condition must be employed to give the required 

translational symmetry of the problem (Bastard 1981, 1982),

/„ (z  + d) = exp[iqd]y^(z) (4.10)

The superlattice wavevector, q, is directed in the growth direction and d is the length of one 

period in the structure, ie. the superlattice unit cell (Bastard 1982). The energy-wavevector 

dispersion for the superlattice, E(q) will be restricted to the first Brillouin zone of the 

superlattice, ie. -  < q < .

For a given energy, the envelope function in each layer can be written as a sum of forward 

and backward travelhng plane waves:
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/„ ( z )  = a^exp[ikAz] + pAexp[-ik^z] for 0 < z < /^ (4.11)

f n i z )  = aBexp[ikg(z -  Z^)] + pgexp[-Zkg(z -  Z^)] forZ  ̂ < z < Ẑ  + Zg (4.12)

f n ( z )  =  a c e x p [ i k c ( z  -  Z  ̂ -  Z^)] +  P c e x p [ - i k c ( z  -  Ẑ  -  Z^)]

for Ẑ  + Zg  ̂ z  ̂ + Iq + Iq (4.13)

where the wavevector, k̂ , is given by the auxiliary equation of (4.4) for each layer and is 

expressed as,

k f  =
( E - V j )

(4.14)

In the case ofn=eZ orlh, this is simply the E(kg) dispersion from the Kane model (3.59), or 

a parabohc description (3.58) when n=hh. Note that the energy dependence of kj and the 

coefficients, and P̂ , are not explicitly written in the above relations. It should also be 

noted that a choice of reference level in the structure is required to properly define V ;̂ 

consequently (3.36) should also be modified to include the third layer.

Initially, the derivation that follows regards ls.f > 0; in other words, the considered 

energy range is such that the wave vectors in each layer, k̂ , are real. For energies close to 

the band edge of the well layer this is typically not the case and is addressed later in the 

section.

Applying the boundary conditions (4.5) and (4.6) at the A-B and B-C interfaces, transfer 

matrices, relating the coefficients in each layer may be found, ie.

«B

Pb
=  T A->B

“ A

P a
and «C

Pc
B-4C

«B
Pb

(4.15)

The general form of a transfer matrix at an interface between layer I and V can be 

written as.

-

where

and

-  Cn' )exp[-ik ,/, ] 

)exp [iV ; ] ( A^-'‘ + )exp[-ik,Z, ]

l,r ^ A^(E)
A i ' ( E )

w,,. ^ B j(E ) A j(E )ik ;
Bi'(E) A|,'(E)ik,.

(4.16)

(4.17)

(4.18)
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The Bloch condition enters as,

«A

Pa
exp[iqd] = Tc_̂ a

ac

Pc
(4.19)

Substituting (4,15) into (4,19), the problem reduces to an eigenvalue equation of the 

combined transfer matrices, with eigenvalues, exp[iqd], and eigenvectors a^andPA- 

Explicitly,

ŜL
«A

Pa
= exp[iqd]

«A

Pa
(4,20)

where.

TgL -  Tc^ a^ b^ cTa -^b

Non-trivial solutions of (4,20) exist when jTĝ  -  exp[iqd]| = 0, which can be expanded as.

exp[2 iqd] -  exp[iqd](xn + X12 ) + (1:11X2 2  “ 1:121:2 1 ) = 0 (4,21)

Here the x's represent the matrix elements of Tg^, For solutions of (4,21) with either real or 

imaginary q (corresponding to propagating or decaying states) the determinant of Tĝ  

must equal one (Sai-Halasz et al 1978), Both types of solution give for the superlattice 

dispersion, q, the relation (Sai-Halasz et al 1978, Bastard 1982),

cos(qd) = - |( x i i  -H X1 2 ) (4,22)

Substituting the relevant elements into (4,22), the dispersion relation for propagating states 

in each layer, ie, k f > 0  is:

cos(qd) = cos ( kÂ A ) cos ( kgZg ) cos ( k̂ Ẑ  )

-  ^  {̂ B̂CCOs(kA/A )sin(kBZg )sin(kc^c ) + ( k Â A ) cos ( kgZg )sin(kcZc )

■ ̂ ABsin ( ka â ) sin ( kgZg ) cos ( k^Zj )}

where is a real variable.

(4,23)

(4,24)

and use is made of the following identities.
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and

Ç'/'Çn"'' = C " ''’ (4.25)

For unstrained layers and taking the zero of energy to be the conduction band edge of the A 

layer, (4.23) for electrons reduces to the dispersion given by Bastard (1982) [Equation 51].

It has already been noted that (4.23) describes the case when the wavevector is real in each 

layer, therefore it is only valid for energies that lie above all the band edges in the 

structure, Fig.4-2. In the present work, the important energy range is near the band edge of 

the well layer where it is hkely that in one (or two) of the layers solutions are decaying, ie. 

kp < 0 in (4.14). For this case the layer is regarded as a barrier and such that the

envelopes, (4.11)-(4.13), become exponentially decaying. However, the derivation 

procedure need not be repeated. With the appropriate substitution of into (4.23),

the dispersion relation for q can be found for the structure in the particular energy range 

(Fig.4-2). It can be shown that for energies such that:

, kg and k^ : 

cos(qd) = cosh ( ) cos (kgZg ) cos (kc^c )

-  ^  { flgccosh ( ) sin ( kgZg ) sin ( kgẐ  ) + OcAsinh ( K ) cos ( kgZg ) sin ( kcZ,

-  f̂ AfiSinh ( ) sin ( kgZg ) cos ( k̂ Ẑ  ) |  (4.26)

îKa , kg and Zkq :

cos(qd) = cosh ( Ka â ) cos (kgZs ) cosh (kqZc )

-  ^  { f^BcCosh ( KaZa ) sin ( kgZg ) sinh ( KqIq ) -  HcAsinh ( kaZa ) cos ( kgZg ) sinh ( KqIq )

-QABsinh(KAZA )sin(kgZg )cosh( K̂ Zg ) |  (4.27)

Zka , îKg and k^ :

cos(qd) = cosh(KAZA ) cosh (KgZg) cos (kcZc )

-  ^  -  flgccosh ( KAZA ) sinh ( XgZg ) sin ( k̂ Zg ) + f^cAsinh ( KAZA ) cosh ( KgZg ) sin ( k̂ Zg )

— QAfiSinh(KaZa )sinh( KgZg )cos(kcẐ f )} (4.28)

where,
Qlj.  = (4.29)
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and K; is the imaginary solution of (4.14). Note, (4.29) or (4.24) with implies an

imaginary value. However it turns out that the product of this and the hyperbolic function 

(sin(iK^Z )̂ —> isinh(K^Z )̂) is real. Hence (4.29) and (4.26) are always considered real 

valued.

nature o f w avevectorslayer

^  z
0

F igure 4-2. Potential energy profile of a three layer structure similar to those considered 
in chapter 6. The energy dependent nature of the wave vectors in each layer is indicated.

Allowed superlattice states are found from the above relations when |RHS| < 1 . For a 

given value of q the relations then admit an infinite number of solutions. Although, for the 

present work, it is typically the lowest energy subband corresponding to either the 

conduction or valence band of the superlattice that is of interest. This subband occurs for 

q = 0 to q = 1^1 (Fig.4-3a) corresponding to the bottom and top (respectively) of the 

miniband.

- 102 -



795

7 9 0 --

1 785

k 7 8 0 --

I :
7 7 5 --

7 7 0 --

765
G 0.25 0.5 0.75 1

well width 
 40Â
—  60Â
—  80Â 
  lOOÂ0 . 1- - \

a
0 .001- -

0 30 60 90 120 150
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F igu re 4-3. Superlattice calculations for Iuq ^'jAsHnP structures.(a) The E(q)
dispersion of the lowest conduction hand for a lOOA(well) / 20Â(barrier) structure, (note: 
the zero of energy is at the bulk heavy hole band edge of the well layer), (b) The miniband 
width of the lowest conduction band for several well widths plotted as a function of barrier 
width, (note, the result from (a) is indicated in (b)).

The well width dependence of the miniband width in Fig.4-3b can be explained by 

considering the lowest conduction band state of a single well. As the well width narrows, 

the state lies further away from the band edge of the well layer and the potential barrier it 

experiences reduces. The penetration of the envelope function into the barrier material 

increases and subsequently induces coupling if adjacent wells are present. Therefore the 

degree of coupling in a system depends not only on the barrier width but also the height of 

the potential barrier (Bastard 1988, chp.l&3 discusses these points further).

R e d u c tio n  to  tw o  la y e r  basis.

Using the three basis relation (4.23), the more recognizable two basis relation can be 

recovered by employing either one of two conditions:

(1) setting one of the layer widths to zero, (for example Iq = 0 ) ,  then (4.23) becomes:
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cos(qd) = cos(k cos(kg/g ) -  ^  ÜABsin(kAZA )sm(kgZg ) (4.30)

All the terms retain the same definition and meaning, only now d =

(ii) treating two layers as being identical materials, but not necessarily equal lengths, 

for example B = C (therefore kg = k^) then (4.23) becomes:

cos(qd) = cos(k^Z  ̂)cos(k g (Zg + Ẑ )̂) -  — )) (4.31)

Strictly speaking, (4.31) is still a three basis description since d = Ẑ  + Zg + Z(̂  . Of course 

if + Iq = Zg is considered then it can be thought of in terms of two layers, A and D. 

Finally, for the relations (4.30) and (4.31) the wavevectors are taken to be real, but as 

before, other cases are obtained with the substitution k; —> Zk̂  when required.

Since the two basis descriptions are contained in those required for a basis of three, the 

program used for superlattice calculations is written for a three layer superlattice. When 

conventional two layer structures are investigated (Chapter 5), I have employed condition 

(ii) in the calculations.

S u p e r la tt ic e  o r  m u lti-q u a n tu m  w ell?

Generally, it is the SL relations (4.26)-(4.28) that are relevant for the structures 

investigated in this work. Layer A is always treated as the barrier material (ie. InP ) 

while layers B and C will either form a composite well material (Chapter 6 ) or single well 

material (Chapter 5). For these structures, the utility of SL calculations lie in the 

quantitative measure of coupling between the wells, given as the energy band or 

‘miniband’ of the SL. Thus the calculations can demonstrate the connection and 

distinction between MQWs and SL’s. The distinction depends on the relative magnitude 

of the barrier width (Ẑ  ) and of the wave function penetration depth in the barrier, 

(Chemla and Miller 1985). In MQW’s, k^Z  ̂ >> 1 so the electronic and optical properties 

are those of a series of uncoupled wells. Conversely, for SL’s, k̂ Ẑ . < 1 and the coupling of 

energy levels among the wells gives rise to subbands or minibands for the superlattice 

(Fig.4-4).

Typically, SL calculations are used to find a barrier width that gives ~10'4  eV 

miniband for the ground states. This figure is arbitrary and quite possibily an over 

cautious target since the SL calculation is carried out assuming no field exists across the
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structure. It should be remembered that the practical devices in this thesis are p-i-n diodes 

with the MQW forming the intrinsic region. The built in field would, to some extent, 

reduce the alignment of states in adjacent wells and therefore reduce the coupling.

Once a minimum barrier is found the MQW structure is investigated as a single QW. 

Hence the rest of the theory (eg. effects of electric field, optical properties) is based on single 

QW calculations.

§4.2.2 Q uantum  well solutions: com posite  wells.

Single quantum well solutions with two layers making up a composite well region can be 

derived in a similar manner using a transfer matrix approach. Instead of the Bloch 

condition (4.10), the assumption.

/^ (z )  -» 0  as z -> ±oo (4.32)

is used which implies that the envelope function is bound. Therefore the two layers 

making up the well region are enclosed by the barrier material (A layer) whose width is 

sufficient to satisfy (4.32). It follows that the energy range is restricted so exponentially 

decaying solutions exist in the barrier regions, ie. < 0  so k^ îk^.

B

->-z
0  Zg Zg+Zj

Figure 4-4. Schematic representation for a single quantum well structure, 
[note the change of labelling on the z a~axis from the superlattice case (cf Fig.4-1)]

A transfer matrix can be found for the structure:

Pa
= T.SQW

V r  A  /a t  z = 0 P a

(4.33)
V r  A  / a t  Z = Zo + lr

with,

TgQw -  Ta -^b '̂ b-^c'Tc-^a
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The individual transfer matrices relate the envelope coefficients between adjacent layers 

at the interface, although it should be noted they do not take the same form as those 

presented in the previous section.

In the QW structure (Fig.4-4), the envelopes in the two encompassing A layers are 

written as:

/„ ( z )  = a^exp[-KAz] + pAexp[KAz] for z < 0

f n ( z )  = aA6 xp[-KA(z -  Zg -  Zc)] + PAexp[KA(z -  Zg -  Zc)] for z > Zg + Ẑ

For a bound solution (4.33) must be satisfied, this requires that = (3̂  I2- / +i “ ^ •

Consequently, for this to be true, the energy dependent matrix element, Xi 1 , of TgQ^ must be 

zero. Therefore the problem of finding the QW energy solutions is expressed as finding 

the zeros of the transcendental function, Th(E) = 0. As with the superlattice dispersion, 

the form of the transcendental equation depends on the nature of the wavevectors at the 

given energy (cf. Fig.4-2).

, kg and k^ :

cos(kgZg)cos(kcZ(.)

“ 2  { ( ksZg ) sin ( k̂ Zg, ) + n^^cos ( kgZg ) sin ( k^Z  ̂)

~^AB®^^(^bZb )} ~ ^ (4.34)

iK^ , kg and Zk̂  :

cos (kgZg) cosh ( kcZc )

~^AB®^ (̂^B^B )} ~ ® (4.35)
Zk^ , ZKg and k^ :

cosh (KgZg) cos (kcZc)

-  — {-Q gcC osh(K B Z g )s in (k c Z c  ) + i 2Q ^cosh(KgZg )s in (k c Z c -)

-  n ^ s in h  ( KgZg ) cos ( k̂ Ẑ  ̂) j = 0 (4.36)

The same results can be obtained by considering the equivalent superlattice relations 

(Bastard 1988). In the limit of infinitely thick barriers (ie. k^Ẑ  >> I), the right hand side 

of equations (4.26)-(4.28) diverges like exp[K^Z^], unless the coefficients in front of them
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are equal to zero. Thus the above equations may also be reproduced in this way.

In situations where only the zero field energy solutions are required, computing the 

superlattice dispersion when >> 1 achieves the same result, [note: A feature which 

was useful in testing the two programs]. However for calculations concerning optical 

properties, the envelope functions at the solutions are needed. In this case, the direct 

transfer matrix method (above) was the preferred choice. In a straight forward manner the 

coefficients at each interface can be evaluated once the energy is known and the envelope 

function constructed.

R e d u c tio n  to  a  s in g le  w e ll layer.

The same conditions applied to the superlattice relations can be equivalently used for 

(4.34)-(4.36).

(i) setting Iq = 0, then (4.34) or (4.35) both reduce to

cos^kgZg j + — O^^sin(kgZjg ) = 0 (4.37)

A similar equation is found for (4.36) if Zg = 0  and C is treated as the well material.

(ii) assuming the well layers B and C are the same material but not necessary equal

lengths, then (4.34) or (4.35) can be written as,

cos(kg(Z^ + Zg,)) + — (4.38)

§4.3 Calculating Subbands In an  Electric Field.

Calculating the field induced energy shifts of electron and hole subbands in 

heterostructures has been treated by many authors using a variety of methods. A brief 

review of some of these works is discussed before presenting the method adopted in this 

thesis.
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§4.3.1 Previous m ethods ap p ea rin g  in the iiterature.

Early work by Bastard et al (1983) used a variational method to describe ground state 

energy shifts in a QW under an applied electric field, F. Both infinite and finite quantum 

well descriptions (of width L) were considered. For weak applied fields, the energy shift 

was seen to be proportional to F2L4, while for larger fields, deviations from this quadratic 

field dependence were found (Bastard et al 1983), In addition to this, the results were 

compared with solutions from a perturbation method, good agreement between both 

approaches was found. However, despite providing a useful insight into the parameters 

that determine the size of the shift, as with aU variational methods, considerable insight is 

required to choose the form of the starting wave function. Extending the relatively simple 

ground state forms (Bastard et al 1983) to higher energy states or composite well structures 

(Chapter 6 ) would become increasingly complicated.

Exact numerical calculations for an applied electric field can be performed if the 

Schrodinger equation for the problem is recast such that the solutions are Airy functions 

(Austin and Jaros 1985, Miller et al 1985). As with the variational method, calculations 

have been performed based on infinite QW descriptions (Miller et al 1985, Matsuura and 

Kamizato 1986) and finite QW descriptions (Austin and Jaros 1985, Ghatak et al 1990). In 

the latter descriptions, the Airy function solution in each layer requires straight forward 

matching conditions at each well/barrier interface (Austin and Jaros 1985). In this way 

the method can be extended to describe multiple layer structures exhibiting interwell 

coupling of electronic states (McIIroy 1986, Brennan and Summers 1987, Atkinson et al 

1990).

Another technique is based on approximating the sloping potential arising from the 

applied field in a ‘piecewise-constant’ manner (Miller et al 1985, Harwit et al 1988, 

Stevens et al 1988, Ghatak et al 1988). Calculating the particle transmission through the 

structure as a function of energy, the quasi-bound states of the structure can be found from 

the local maxima. This so called ‘tunnelling resonance method’ or TRM, is 

computationally simple to implement with the solutions in each piecewise layer 

comprising forward and backward propagating plane waves. Its suitability for multiple 

layer structures was demonstrated by Ghatak et al 1988, with calculations of energy states 

in a coupled quantum well system under an applied field. In addition, by its piecewise 

nature, any arbitrary potential profile can be handled, a feature typified by the work of 

Ghisoni et al 1993 in which a four well diffused structure (eight layers) is investigated 

using a TRM method.

In keeping with a piecewise potential, a recent method that has a strong analogy with 

optical waveguide theory is due to Anemogiannis et al (1993). The boundary conditions
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outside the structure are similar to those used for leaky waves in waveguide theory (see for 

eg. Tamir and Kou 1986). This allows a complex transcendental equation to be formulated 

whose complex roots refer to the energy solution and hfetime of the state. The versatility of 

the method (referred to as APM by the authors) is at the same level as the TRM method (ie. 

multilayers, arbitrary profile).

Finally, some other techniques which should be noted are Monte-Carlo methods (see eg. 

Singh 1986), Finite Element Methods (Nakamura et al 1989) and a perturbation expansion 

involving the zero field bound states (Lengyel et al 1990)

Numerical comparisons between several methods have been reported in the literature (see 

for eg. Bastard et al 1983, Miller et al 1985, Brennan and Summers 1987, Jonsson and Eng 

1990, Anemogiannis et al 1993). An interesting result due to Miller and co-workers is the 

good agreement found between a finite well TRM approach, and both the infinite well Airy 

function and variational methods providing  the infinite well models use ‘effective well 

widths’. This effective well width is chosen such that an infinite QW model reproduces the 

zero field energy states found in a finite QW model (Miller et al 1985). Other 

comparisons involving an Airy function method (finite QW), a Finite Element Method 

and a piecewise potential method indicated no significant differences in the calculated 

energy states of the multilayer structures investigated. In fact, it was emphasised that 

accounting for any differences in the effective masses between the layers, produces much 

more variation in energy levels than the particular chosen algorithm (Jonsson and Eng

1990).

It should be remembered, that calculations of subbands in electric fields were to be part of 

an overall model that would describe the electro-absorption properties of QW structures. 

Previous work at U.C.L had successfully employed either the TRM (Stevens et al 1988) or 

the finite well Airy function approach (Atkinson et al 1990) for investigating these effects 

in various GaAs/Al^ Ga^.^As structures. Consulting the literature at the time there 

appeared no other reason not to consider either one of these two approaches as both of them 

could realistically describe the range structures in this thesis.

Initially, I had hoped to extend the range of these ‘available’ models to account for InP 

based strain layer structures. In both of these works (and with all those mentioned above) a 

one band model is used to describe each layer (Stevens et al 1988, Atkinson et al 1990). 

Using the expressions from the previous chapter (§3.5.1), values of well depths (knowing 

an offset) and band edge effective masses could be calculated for a (un)strained system 

and used in place of the ‘host’ GaAs/Al^Gai.^As values. Furthermore, non-parabolicity 

(for electrons and light holes) could also be included since both of the existing models had 

provisions for this. A modified version of Dr. Stevens model was completed and appeared
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to give sensible results. Comparisons at zero field with the three band description in 

(§4.2.2) for single QWs gave energy levels typically within 1-2 meV of each other. It is 

fair to suggest similar results could have been expected with the Airy function method 

since the two methods had compared favorably for the GaAs/Al^Gai.xAs system  

(D.Atkinson, private communication). Moreover, this model allows for up to ten layers to 

be examined and would be useful if  strained layer coupled structures were to be 

investigated.

It was the advent of the composite well structures (chapter 6 ) that prompted the 

development of a TRM model using a three band description throughout. Although, that is 

not to say the available models could not adequately describe these structures. However, in 

addition to some minor practical reasons behind the decision, the prospect of further 

investigating these and other structures with a unified approach was appealing. In the 

rest of this section the TRM approach is described in greater detail and specifically for the 

case when a three band k.p model is used to describe the layers.

§4.3.2 The tunnelling resonance m ethod.

To account for the presence of an applied electric field along the z direction, an extra term 

eFz is added to the diagonal terms of (4.2), where F represents the applied field and e 

is the charge of an electron. As before, the problem can be recast into the form.

^ B ^ ( E , F , z) A a ^ ( E , F , z) + V ' ( F , z) 
uz dz

/ „ ( z )  = E /^(z ) (4.39)

Modified coefficients for the electron, heavy- and light-hole envelopes are given in Table 

4-2. Note the explicit z dependence of the coefficients which arises because of the apphed 

field. In addition to this it is useful keep the layer dependence label (Z ) which is also z 

dependent but on a much larger scale.
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Table 4-2. Coefficients which appear in the electric field dependent differential equations
for the envelope functions (equation 4.39)

conduction band (n=eZ )

a Jj CE.F.z):

V ' (F ,z ) :

K ,n 3E + 30E(,hh -  3eFz + 25E^ -  2E ^  -  e {Ih
(E + 6Eyhh -  fiFz -  Eju^) (E + ôE^hh ~ «Fz -  Eg^i^)

(Egg -  6E(̂ hh + ^Fz)

heavy hole band {n=hh )

B i ( E , F , z ) :

A i ( E , F , z ) :

V ^ F , z ) : -  5E:vhh

light hole band {n=lh )

B%(E,F,z):
p 2 (E + gE(,hh -  «Fz -  E'o) +

(E + SEyhh “ ^Fz -  Egg)(E + SEyhî  -  eFz -  Eg^i^)

A i ( E , F , z )

V i (F ,z ) :

3E  + 36E y^  — 3 eFz + 25Eg — 2 Egg — EIh

ÔE(E + -  eFz -  Egg) + ^

(E Ihkz -  + eFz)
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The effect of an applied electric field on a composite well structure is shown schematically 

below.

f ie ld

tran

me

F igure 4-5. Schematic of the potential profile of a composite well structure with an electric 
field applied perpendicularly to the layers. Only the conduction and heavy hole hands are 
illustrated.

In the above picture, there exist regions outside the well that have a lower potential energy 

than inside. A particle inside the well region will have a finite probability of tunnelling 

through the barrier to these regions and consequently its lifetime in the well is finite. 

Hence no true bound states can exist (equation (4.32) cannot be satisfied). However, if the 

particle has a long lifetime it can be regarded as quasi-bound. The aim of the TRM is to 

find the energy states with a long lifetime, ie. the quasi-bound states.
Before the TRM is presented, its worth noting that with the above picture, (Fig.4-5), 

quasi-bound states are found at zero applied field due to the use of finite barrier widths. 

Herein lies a qualitative difference between this method and that of the previous section 

which employed infinite barrier widths to support bound states; although for an applied 

electric field, a picture employing infinite barrier widths would still not have true bounds 

states for the same reasons given above (Ghatak et al 1988). [note: numerically they both 

predict the same energy levels at zero applied field].

Considering Fig.4-5, a particle at a given energy incident on the barrier from the left 

has a finite probability of tunnelling through the structure and reaching the right hand 

side. Expressed in terms of probabihty current densities, J , a transmission coefficient for 

the structure, T, can be defined as the ratio of the transmitted and incident probability 

current density, (see for eg. Messiah 1970, chp. 3). The quasi-bound states are 

determined by calculating T as a function of energy and finding the local maxima in 

T(E). The corresponding lifetime can be determined from AE (the half width half
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maximum of the peaks in 7(E)) using the Heisenberg uncertainty relation x = (Miller 

etal 1985)

N u m e r ic a l p rocedu re

The numerical procedure consists of describing the structure in a piecewise manner, 

hence the potential energy profile is divided into N sub-layers (Fig.4-6). For a given 

energy and electric field, the ith sub-layer has constant values of and in the

interval Zj .

OJ
g

field

i+i

F igure 4-6. Schematic of the conduction band potential profile for a composite well 
structure with an electric field applied perpendicularly to the layers. The overall 
potential is approximated in a piecewise manner.

In an effective mass description (ie. the EFA), the tunnelling probability can be expressed 

solely in terms of the envelope functions rather than using the full wave functions (Ben 

Daniel and Duke 1966). For each sub-layer the envelope function is written as the sum of 

forward and backward travelling waves:

y^(z) = ajexpfikjz] + p^expl-ik^z] (4.40)

where and are constant coefficients in each sub-layer and the wave vector for the 

layer is given by:

kf =
E-V^-'(F))

B̂ ’'(E,F)a J;‘(E,F)
(4.41:

As discussed earlier (§4.2), for propagating states, kf > 0 and the envelope function takes 

the form of (4.40). However for kf <0, corresponding to evanescent states, the wave vector 

becomes imaginary, kj and the counterpart of (4.40) is written as:
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/Ji(z) = ttjexphKjz] + pjexp[KjZ] (4.42)

Outside the structure (z>z^) ,  kf  > 0  and there can be no backward travelling wave, in 

which case:

fn  (z) = a^exp[ikjy^z] (4.43)

The current density must be conserved throughout the potential structure. Conditions at 

each sub-layer interface take the same form as those presented earlier (4.5) and (4.6). For 

the present case, the following two conditions must be satisfied at a given interface (say 

z = Zi+i):

B̂ '‘(E,F)^A'„-‘(E,F)/j.(z)| = B̂ -‘-"*(E ,F )iA '/+ ‘ (E,F)/i,'"'(z)|
dz z=2., dz

(4.44a)

(4.44b)

As with the earlier sections of this chapter, use is made of a transfer matrix technique to 

propagate these conditions throughout the structure. To illustrate this, consider a section 

comprised of three sub-layers, i i and i + 1 . The aim is to find a transfer matrix 

which conserves the probability current density between the sub-layers i -  1 and i + 1 

across layer i. At the first interface, (z = ẑ  ), we can write

A '̂‘-'(E ,F )/jr‘(z)

B'„-‘-' (E .F )^  Â -‘- ‘ (E, F)f-^ (z)
= Ti(E,F,Zi)

y at z=Z;

OL;
(4.45)

For the RHS of (4.45), Tj(Zj) is a (2 x 2 ) matrix containing terms associated with the 

coefficients and Pj. The terms can be found from direct application of the continuity 

conditions at z = Zj on the envelope function in layer i .

Similarly for the second interface at z = Zĵ ,̂

Ti(E,F,Zi^l)
Pi

a '/+ 1(e ,f)/;T ‘(z) 

B^.i+i(E,F)^A^’‘+‘ (E,F)/5,+*(z)

i+1.

(4.46)

y at z=z,

Making use of (4.45) and (4.46), the relationship between the sub-layers i - 1  and i + 1 can  

be expressed as:
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Ti(E,F,AZ;)
Â -‘- ‘(E ,F)/‘rl(z) 

dz /a t  z=z. ^

Â -‘+*(E,F)/‘„+Hz) ''

(E, F) A  a '„’‘+i (E, FVi.-'kz)
/ a t  z=z,

(4.47)

where
Ti(E,F,AZi) = Ti(E,F,Zj+i)T-‘(E,F,Zj)

For propagating states in sub-layer j, such that the envelope function is given by (4.40) and 

kf > 0  in (4.41), the transfer matrix is:

T^(E,F,AZi) =
cos(kjAZj)

-B^-‘ (E,F)kiSin(kiAZi)

sin—  (k^AzJ
B^'XE,F)k^

(kjAZj )
(4.48)

While for the case of evanescent states with imaginary solutions k, îKj in (4.40), the 

transfer matrix is given as:

T^(E,F,AzJ =
cosh(KjAzj )

b Jj’* (E, F)KjSinh(KjAZj )

sinh(K;AZ; )  ̂
B^''(E,F)Kj 
cosh(K^AZj )

(4.49)

For either of the above transfer matrices, AZj represents the width of the ith sub-layer.

Working with equation (4.47) the envelope function can be evaluated throughout the 

structure. The tunnelling transmission coefficient as a function of energy can be written 

as:

T ( E , F )  =

/ ; ( z)b N ( E , F ) A a N ( E . F ) / „ ( z) - / „ ( z)b N ( E , F ) A a N ( e , F ) / ; ( z)

/ ; ( z) B O ( E , F ) A a O( E. F) /„ ( z) - / „ ( z) B ° { E , F ) £ a ° ( E , F ) / ; ( z)
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If the outer regions (N and 0) for the problem are considered to be the same then 7 ( E , F ) 

reduces to:

dz dz I,
7(E , F) = y------------------------------------;----- (4.50)

dz dz I,
^F=zi

§4.3.3 C om m ents on all subband calculations.

Software testing was carried out throughout the development of the various subband 

programs. The programs were comprised of units, which individually could be tested with 

known inputs, and thus helped in the debugging and testing of the routines. Moreover, 

some units were common to both zero and apphed field calculations and thus could be used 

in a such a manner, eg. the layout of structure, material files. Initially, routines were 

developed for the particle-in-a-box type calculations. The calculated subbands, including 

electric field effects, could be easily checked with existing models (eg. Stevens et al 1988).

Useful investigations into several k.p type model are available in the literature (eg. 

Yoo et al 1989, P. von Allmen 1992), although mainly for GaAs/AlGaAs based QWs. Yoo 

and co-workers considered zero applied field QW structures, and included in their study a 

Kane type model (which they referred to as a ‘three band Bastard’ model). Using the same 

material parameters, excellent agreement was found when comparing the values of 

confined state energies from the present model; this is expected since the models are 

essentially the same. In comparison with their fu ll 8  band model, the Kane model 

routinely underestimated the e l and fill states by <2 meV across a range of well widths 5Â 

to 200Â. Interestingly, the comparison by von Allmen, using a full 14 band and various 

other models, including a full 8  band, showed the 8  band model overestimated the e l  

subband by ~ 1  meV. Using his input values, I found the Kane model underestimated the e l  

state by 0.7 meV (in comparison with the 14 band model). To my knowledge, similar 

comparisons have not been carried out for strained systems. However, several authors 

have listed calculated values of subbands from various models (eg. Jogai and Yu 1990, list 

InGaAs/GaAs calculated transitions using fu ll k .p  model). Using the same input 

parameters, I found the transitions predicted were typically within 2 meV of Jogai and Yu’s 

results.
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Example calculations in figure 4-7 show the lowest energy subbands for an 

Ing 53Gag 47As/InP (lattice matched) QW. At zero applied field, the well width dependence 

on the el-hhl subband separation (ie. the ‘bandgap’ of the structure) is shown (Fig.4-7a,c). 

For a well width of 70Â, the effects of an applied electric field on the el-hhl separation is 

shown in the adjacent graphs (Fig.4-7b,d). The decrease of el-hhl separation with field is 

the dominant contribution to the overall decrease of the exciton transition energy.

well width (A)
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F igu re  4-7. Calculations for Irq ^^Gag ^jAs/ InP quantum wells, (a) and (c) show zero 
field subbands el and hhl respectively as a function of well width, (b) and (d) show the 
effects of an applied electric field on the e l and hhl subbands in a 70Â Ing^^Gag^jAs well 
(marked in (a) and (c)). The zero of energy in all cases is taken to be the heavy hole band 
edge of the bulk Ing^gGag ^yAs.
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§4.4 Optical Properties near the Band ed g e .

A principle feature of low dimensional structures, such as quantum wells (QW), is the 

clear observation of excitonic transitions even at room temperature (cf. Fig. 1-3). 

Determining the transition energies and their strengths represents the last installment 

to the model detailed in this thesis. These calculations are based on a variational 

approach (§4.4.2) which calculates the binding energies associated with the excitonic 

transitions. The envelope function that describes the exciton is then used in calculations 

of the absorption spectra near the band edge (§4.4.3).

While an accomplished account of excitons in these structures is beyond the scope of 

the present work, it is useful to summarise some of the key points and assumptions 

relating to the method of calculation. This is combined with a summary of previous 

work appearing in the hterature.

§4.4.1 The exciton problem .

The theory of excitons in bulk semiconductors (i.e. 3D) is extremely well documented 

(Elliott 1957, Knox 1963, Dimmock 1967). The case of semiconductors where motion is in 

two dimensions only (2D) has also been studied (Shinada and Sugano 1966). For both 

environments the electron-hole (e-h) interaction produces peaks in the absorption 

spectrum at energies of the exciton states. The usual interpretation is that the absorption 

is enhanced by the e-h interaction in proportion to the increased probabihty of creating an 

electron and a hole at the same position (Shinada and Sugano 1966). Our interest lies in 

the dominant, lowest energy peak which can be determined by solving a hydrogenic type 

Schrodinger equation corresponding to the Is exciton state. The absorption coefficient at 

the energy of the Is state (E^g) is proportional to = 0 )|^where (|)ig (r )is  the e-h

envelope function for the exciton (Shinada and Sugano 1966). As with most two-body 

problems, a transformation to center of mass and relative coordinates, (r), is often 

employed which greatly simplifies the problem (see e.g. Schiff 1968 plOB).

The main difference between the two environments are for 2 D, where 

Eig = Eg -  4|R | whereas for 3D, Ê g = Eg -  |R|. The energy term |R| is the bulk (3D) 

Rydberg commonly referred to as the bulk binding energy of the e-h pair. It is noted that 

in the ideal 2D case the binding energy of the e-h pair is 4 times larger than in 3D 

structures due to the confinement, and consequently the excitonic enhancement is
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greater. Other differences relating to higher exciton states and the coupling to the 

continuum (ie. energies >Eg) have been noted by Shinada and Sugano (1966).

Concerning excitons in actual quantum wells, it is well known that, for lower energy 

states, the system is somewhere between a 2D and 3D case (Schmitt-Rink et al 1989). 

The enhanced binding energy of the lowest exciton state, ie. n=lhh, for GaAs/AlGaAs 

QW was first observed by Dingle et al (1974). The exciton binding energy for a well 

width, L^, of -200Â was estimated to be = 7 meV, which is approximately twice that found 

in bulk GaAs (=4 meV). Further evidence came from the work by Miller and co-workers 

(1981) who used photoluminescence excitation to study a range of GaAs/AlGaAs samples 

with well widths 42Â<L^<145Â. Comparing the experimental splitting of the Is state 

with the onset of the continuum (interpreted as the 2 s state), they deduced Is exciton 

binding energies in the range 8-12 meV for both heavy and light hole transitions. The 

binding energies increased with decreasing well width, and were found to be larger for 

the hght hole exciton.

At the 2D and 3D limits, the exciton problem can be solved analytically (Shinada and 

Sugano 1966). However, in the case of actual structures with finite well widths, the 

problem is complicated mainly by the Coulomb term governing the e-h interaction 

(Schm itt-Rink et al. 1989). Several approximations can be made to ease the 

calculations, for example in the 'strong confinement approximation', where the 

confinement energies of the electron and hole states are large compared to the Coloumb 

energy, the total wavefunction can be separated into the two directions of the system. In 

this regime, the motion of the particles along the growth  direction is governed by the 

confinement while the Coulomb interaction mainly affects the motion in the plane of the 

layers (Schmitt-Rink et al. 1989). A further consequence is that a transformation to 

center of mass and relative coordinates can still be made in the plane of the layers, since 

the crystal is assumed to be infinite in this direction. Thus an envelope function can be 

used to describe the relative motion of the exciton in the plane of the layer. Most of the 

theoretical calculations for exciton binding energies in quantum wells use a variational 

method, which relies on a good choice of trial wavefunction to minimise the excitonic 

transition energy (eg. Miller et al. 1981, Bastard et al. 1982, Shinozuka and Matsuura 

1983, Greene and Bajaj 1983, Greene et al. 1984, Miller et al. 1985). The trial wave 

function is written as:

^ex = f e l  (Ze h (^h )4>(p, Z ) (4.51)

where f^i (Zg ) and (z^) are the electron and hole wave functions in the confinement 

direction, (|)(p, z )is an envelope function for the exciton which is assumed to depend only
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on the relative electron-hole coordinates in the cylindrical coordinate system (eg.

= (Xg -  xjj )̂  + (yg -  y^ )^). This function can be based on the Is envelope functions 

used in either the 2D or 3D limit which have the form:

2D; <l)is(p) = exp[-ap] (4.52)

3D: <l)is(p, z) = exp - a / p 2  ■ - 2fp + z (4.53)

In both cases a  is the single variational parameter. Using the 2D function, the trial wave 

function (4.51) is seen to be separable in z and p. Calculations comparing the two 

functions and assuming an infinite well depth have been done by Bastard et al (1982). 

For well widths, L^<(1.4ay) where â  is the bulk Bohr radius (approx. 150Â for GaAs), 

both functions give almost identical binding energies for the exciton. For well widths 

L.^>(1.4ay) the separable wave function was found to give binding energies less than 

the bulk value, and for very large the calculated binding energy tended to zero. This 

unphysical result clearly indicated the breakdown of the strong confinement 

approximation, with the confinement energies (varying as L^) becoming comparable to 

the Coulomb energy in the z direction (Schmitt-Rink et al 1989). In contrast, the non- 

separable wave function, (4.53), resulted in a smooth variation in binding energy from 

4R to R as went firom 0  to ,

Further calculations employing finite well depths provided a more realistic physical 

picture of actual QW structures (Greene and Bajaj 1983, Priester et al. 1984, Grundman 

and Bimberg 1988). It was found that the penetration of the electron and hole wave 

functions into the barrier material increases as >0 , so for very thin well widths the 

exciton should tend towards the 3D exciton of the barrier material. Correspondingly, the 

binding energy would then reduce and tend towards the bulk value of the barrier. 

Although a significant enhancement of the binding energy was still expected for an 

intermediate range of well widths. This effect of barrier penetration has been 

experimentally observed in InGaAs/GaAs strained QW structures. Moore e ta l  (1990) 

measured a decrease in the heavy hole binding energy as the well width was reduced 

below -50À in agreement with their calculations.

The form of the trial wave function has also adopted a more elaborate approach. Some 

authors have suggested using trial wave functions with two variational parameters 

(Shinozuka and Matsuura 1983, Greene and Bajaj 1983, Grundman and Bimberg 1988). 

In the wave function proposed by Gruudman and Bimberg, the additional parameter was 

defined as a measure of exciton dimensionality. This could continuously interpolate 

between the 3D limits for zero and infinite well width, and the 2D limits for infinite
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barriers. In a similar notation as (4.52) and (4.53), the exciton envelope can be written
as:

(t>is(p,z) = exp (4.54)

where now a  and X are varying parameters, the latter being the measure of 

dimensionality. Calculations were performed for both the GaAs/Alg^Gag gAs and lattice 

matched InGaAs/InP systems, with finite well depths. For L ^ -> 0 and X

approached unity implying 3D excitons. In the range 10Â<L^<~200Â, the variational 

parameter, X, was close to zero demonstrating a quasi- 2D nature for the lowest energy 

exciton.

The effect of an applied electric field on excitonic properties in a QW was initially 

investigated by Miller et al. (1984, 1985) and Brum and Bastard (1985). Both works 

employed a separable trial wavefunction (essentially (4.51) and (4.52), and accounted for 

finite well depths. Despite the differences in their methods for the subband calculations, 

they arrived at similar conclusions for fields applied perpendicularly to the layers. The 

free particle electron and hole states are polarized by the field to opposite ends of the well. 

The Coulomb interaction between the pair reduces resulting in a reduction in the binding 

energy. Near the band edge of a structure, the enhanced absorption of the n=lhh excitonic 

transition decreases and the excitonic transition energy reduces ie. red shifts to longer 

wavelengths, (cf. the §1.2 and the QCSE). In fact, most of the energy shift of the n=lhh  

transition is due to the e l  and hh l subbands shifting with field (cf. Fig.4-7b,d). These 

theoretical results were able to explain the experimental observations made by Miller 

and co-workers (1984, 1985).

All of the above studies were based on single band descriptions of the electron and hole 

making up the exciton. The effect of couphng between subband states (in particular the 

valence band mixing of the hole states) on exciton calculations has since been 

investigated (Sanders and Chang 1985, Ekenberg and Alterelli 1987, Sanders and Bajaj 

1987, Zhu and Huang 1987, Bauer and Ando 1988, Hiroshima 1988, Andreani and 

Pasquarello 1990). The differences between these works is typically related to the method 

of calculation and, in some cases, consideration of external perturbations, ie. magnetic 

field, electric field, pressure. (The work of Bauer and Ando (1988) considers these 

differences in more detail.) However, the general agreement is that valence band 

mixing slightly increases the binding energy of ground state excitons (n=lhh and 

n=llh) but has considerably more affect on the binding energies involving higher
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subbands (see e.g. Ekenberg and Alterelli 1987). Additional coupling between bound 

and continuum excitons through the Coulomb potential was considered by Zhu and 

Huang (1987) and Andreani and Pasquarello (1990).

The purpose of this section was to highlight some of the assumptions often employed in 

exciton calculations, and attempt to summarise the development of exciton calculations 

from the ideal infinite well depth models (e.g. Miller 1981) to the realistic 'state of the art' 

calculations proposed by Andreani and Pasquarello (1990). All the theories of excitons 

in quantum well structures can be divided (rather crudely) according to whether they 

neglect coupling or include it. Numerical comparisons show that when coupling is 

included the calculated binding energies are larger by 1-1V2  meV for n=lhh excitons 

and 1-3 meV for n=lUi excitons compared to the uncoupled models\ Given the overall 

aim of the present work, I felt these differences would be acceptable and decided against 

explicitly including any coupling. Furthermore, the computing requirements for single 

band (uncoupled) calculations are relatively straightforward and could be easily 

extended to account for a variety of structures (for e.g. those considered in Chapter 6 ).

The level of calculation in the following section, in some respects, is equivalent to the 

work of Preister et al. (1984) and Miller et al. (1984, 1985). However, before presenting 

the methods used for the optical calculations, it is useful to clarify some approximations 

that will be used.

N o rm a liz a tio n  o f  en ve lo p e  fu n c tio n s .

The envelope functions obtained from either §4.2.2 or §4.3, are used throughout optical 

calculations, for example, to evaluate the overlap integral for an optical transition (see 

e.g. Bastard 1988, chp.7). To correctly normalise them requires.

in  = ,  where = J"_ (l + dz (4.55a)

(4.55b)

where is the unnormalized envelope function. For the electron or light hole, the 

additional terms, X and Y, are due to the mixing from the other two bands. For example, 

in the case of the first conduction band state, e l, then X and Y indicate the admixture of 

the light hole and spin orbit split-off band (which are written in terms of the conduction 

band envelope). Explicit expressions can be obtained directly from the equations (4.3), or

 ̂It should be noted that most calculations appearing in the literature are for the GaAs/Al^Ga^ As system. It 

is assumed that differences in other material systems would be of a similar magnitude.
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more generally, the method used by Kane (1957) which deals in terms of admixture 

between S and P states. The work by Kane (1957) demonstrated that, even in the case of a 

narrow gap material (InSb), for electron states close to the band edge the degree of mixing 

is very small. Furthermore, I investigated the contribution of these terms to the e l  state 

for InASjjPi.x QW structures (x<30% and well widths 50Â-200Â), and found no 

significant change to the normalized envelope function using either (4.55a) or the one 

band model, (4.55b). Similar conclusions have recently been made by Sirtori and co­

workers (1994). For the rest of the work, the envelope functions obtained from either 

§4.2.2 or §4.3 are normalized according to (4.55b).

In -p la n e  d isp e r s io n s

To describe the in-plane dispersion of the states in the quantum well (ie. k|| ^ Q), 3. 

simple parabolic description is used. This is often referred to as the ‘diagonal 

approximation’ (Bastard and Brum 1986), since it ignores any off-diagonal components 

that arise in a multi-band k.p approach (see for eg. Eppenga et al 1987). In the diagonal 

approximation, a mass reversal of the bands occurs, ie. the heavy hole bands 

perpendicular to the layers become light in the plane and similarly, the hght hole band 

becomes heavy, (cf. §2.3.2). When mixing is included, the situation becomes 

complicated and the bands in the plane cannot be described as either heavy or hght but 

must be treated as a combination of both (Bastard and Brum 1986). In the case of the 

lowest heavy hole state, hhl, the general effect of mixing is an increase in its effective 

mass from that given by the diagonal approximation (Bastard 1988, chp.3). It is difficult 

to quantify this without performing the necessary calculations, although some 

approximate methods exist in the hterature (see for eg. Ridley 1990). Furthermore, the 

effects of mixing are very much system dependent (ie. well width, strain etc.) since the 

strength of mixing depends mainly on the relative positions of the energy states at 

k|| = 0 . Considering the effect on hhl, a significant contribution comes from the first 

hght hole state, Ihl. In compressively strained systems, the separation between h h l and 

Ihl increases due to lifting of the degenerate band edges in the bulk layer. Therefore the 

effect of Ihl on the h h l band in the plane is reduced (see eg. O’Reilly 1989), and the 

diagonal approximation becomes more reasonable. It is worth noting that the opposite is 

expected to happen if the weU layer is under tensile strain (Andreani et al 1987).
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The energy wave vector in-plane dispersion for a subband in the diagonal 

approximation is written as:

E„(k||) = + (4,56)

where (k° ) is the energy solution of either (4.4) or (4.39) for the nth band at k|| = 0 .  

For the valence band in the diagonal approximation, the in-plane effective masses can be 

related to the band edge masses perpendicular to the layers (Stevens et al 1988):

where m%;̂  and m^ are given by (3.52) and (3.75) respectively. In the conduction band, I 

take ni|| gi = m*̂ , with m*j given by (3.75). The reduced mass of an exciton is given by

(4.58)

where m denotes either heavy hole or light hole in-plane mass. For the the actual 

calculations, the effects of different masses in the layers is taken into account by 

calculating an ‘effective’ value for the reduced mass. Equation (4.58) is averaged over a 

two dimensional configuration space (Zg, Zĵ  ) weighted by the envelope functions.

§4.4.2 C alcu lating  excitonic transitions.

The excitonic transition energy in a quantum well structure (with or without an applied 

electric field) is written:

Eex = Erf(kjj’)-E ft(k fj’) + EB (4.59)

Here, Eĝ  (k|? ) and (kj? ) are the confined electron and hole states (for ky = 0 ) states 

calculated from (4.4) (or (4.39) for an applied electric field) with respective envelope 

functions, f^i (Zg ) and //j (z^ ). [note: Ê j (k|j’ ) -  E  ̂(ky ) is the energy separation of the 

states ie. for the ground states (e l and hhl) this is essentially the band edge of the 

heterostructure]. The binding energy of the pair is represented by Eg, which takes a
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negative value in (4.59). Hence the excitonic transition energy occurs at a lower energy 

than the separation Eĝ  (k|j* ) -  (k° ). In writing (4.59), the ‘strong confinement

approximation’ is invoked (Schmitt-Rink et al. 1989), ie. the Coulomb interaction does 

not effect the confined states. This approximation is valid providing the confinement 

energy in the conduction and valence bands is larger than | Eg | which is the case for the 

n=lhh transition in the structures considered here. In systems where this is not the case 

(eg. in extremely shallow wells or some of the II-VI systems) the effect of the Coulomb 

potential can significantly alter the bound states of the system (Wu and Nurmikko 1988).

A variational method (see for eg. Schiff 1968) is used to find the maximum (negative) 

value of Eg, ie.

Eg = = fff  0*x(Ze, Zh,p)/^e./iOex(Ze, Zh,p) (4.60)
“ %<|)

where a is the variational parameter in the excitonic wave function ( Zg, Zj^,p).

describes the electron-hole interaction in the plane of the layers which in 

cylindrical coordinates (Priester et al 1984) is written as.

He-H = -
I d d I d— —  p —  +

2 H|| 3p 3p p2 a<p2 j  4 7 œ J(p 2  + z^)
® (4.61)

The first term is the kinetic energy operator of the relative motion of the electron-hole 

system, travelling in the plane of the well with a reduced mass, P||. The second term 

represents the Coulomb potential energy between the electron and hole, e is the static 

dielectric constant and e is the charge of an electron. The excitonic binding energy is 

found by allowing Hg,f  ̂ to operate on the separable wave function,

^e%(Ze, Zh'P) = /eZ (Zh)(t)(p) (4.62)

where f^i (Zg ) and //j (z^) are the normalized electron and hole envelope functions. A 

simple normalized 2D form is used to describe the in-plane relative motion (Miller et 

al 1985), written as

(])(p ) = exp[-ap] (4.63)

with a as a variational parameter in units of m"̂ . The variational term is often related
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to the radius of the exciton in the plane of the layers, , (ie. ^  cf. Miller et al 1985). It is 

worth remembering that with the variational approach (see for eg. Schiff 1968 p255), the 

result for Eg will always be less than or equal to the eigenvalue of Hence the

excitonic transition energy obtained from (4.59) will always be overestimated.

Equation (4.60) can be expanded further and presented as maximizing negative values 

of the variational function, Eg (a ) , :

E g(a ) -  Egg (a ) + Epg(a) (4.64)

where.

Eke(“ ) -  ■ ;■ (4.65)Z|1

E p e(« )=  ZhO^Ze^Zh (4 6 6 )

The evaluation of Epg (a) over p is represented by the function G(| Ze ~ % |) (Miller et al 

1985), written in full as,

G ( ^ e -  ZhI) = (2oc |ze- ZhI) ( f ) [W i(2 a |z e  -  z ^ l ) -W i(2 a |z g -  z ^ l ) ] - !

where H i(x) a n dN i(x )  are the first order Struve and Neumann functions (see eg. 

Abramowitz and Stegun 1964). In equations (4.65) and (4.66), averaged values of Pn, the 

exciton mass in the plane, and e, the static dielectric constant are used (Susa 1993).

7  - J( I'.' f  I/'"' f  C 'v Z l h ,
z.

e* = I  ---- 1 f e(z)dz (4.68)
|Z e - ZhI i
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§4.4.3 C alculating absorption n ear the  bond  e d g e .

The absorption spectra near the band edge of a semiconductor may be viewed as the sum 

of excitonic absorption and band to band absorption. The methods for calculating 

absorption spectra near the band edge of semiconductors are well documented (see eg. 

Elliot 1957, Bassani et al 1975 chp 5 & 6 ). The theory has been extended to quantum well 

structures (see eg. Bastard 1988 chp.7), essentially requiring the QW properties (ie. band 

gap, excitonic transition energy, broadening etc.) to be used in place of the equivalent 

bulk properties. Of course obtaining the quantum well properties can, in some cases, 

involve quite demanding calculations depending on the level of description that is used 

(eg. multi-band models including mixing of states). For the present work, the approach 

has been to keep such calculations to a minimum. This is continued for the absorption 

calculations where the main concern is with the lowest energy excitonic absorption in a 

quantum well structure. To produce a realistic picture, band to band absorption is also 

considered but it should be remembered that at higher energies, the present description 

(ie. in-plane dispersion) is unlikely to be suitable since it neglects in-plane mixing. 

The possible short comings of the present description are discussed in §4.4.4.

E x cito n ic  a b so rp tio n

The absorption coefficient for an exciton formed between a conduction band state {el) and 

a valence band state (m=hh,lh) can be written as (see eg. Sanders and Bajaj 1987) :

-  E l'"  ) (4.69)

where c is the velocity of light, n is the refractive index of the material, e is the 

electronic charge , m  ̂ is the free electron mass and Egis the permittivity of a vacuum. L 

is commonly taken as the well width (or well and barrier width) in the structure and 

B{ho) -  ) is a line shape function describing the broadening of the exciton peak

centered at Eg^^ (Sanders and Bajaj 1987, Sugawara et al 1990). The term, fg^^, is 

known as the exciton oscillator strength per unit area and is expressed as:

U.m = ^  IJ A (k||) Pe,,„(k|,)dk|| (4.70)

The exciton state is formed by a hnear combination of the product of electron and hole 

states. A (k||) is the expansion coefficient which is seen to rapidly decrease as the in-
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plane wave vectors increase, indicating that the exciton is made up from states near the 

band edges (Sugawara et al 1990). As a result the optical matrix element, Pĝ  ^ (k|| ), is 

often approximated to the band edge value, P g / (0 ) and can be taken outside the 

integral. The expansion coefficient is determined by the Fourier transform of the 

exciton envelope function (Sugawara et al 1990). Thus the envelope function is written 

as,

4)(p) = j" A(k||)exp[ik||p]dk|| (4.71)

Since absorption due to the exciton is proportional to finding the electron and hole at the 

same position (Shinada and Sugano 1966), the integration over k|| is found from:

0 (0 )=  j" A(k||)dk|| (4.72)

where 0(0 ) is given by the normalizing coefficient in (4.63). The optical matrix element 

for a transition between a valence band state, m, and a conduction band state, e/, can be 

written as (see eg. Bassani et al 1975 chp.5, Bastard 1988 chp.7)

Pg/,m(0) = (vj/g;|ê • p|Vm) = J (4.73)

where ê is the unit polarization vector and p is a momentum operator. The wave 

functions for the initial and final states have the form \|/„ = F„(r)u„ ^(r) ie. single 

band descriptions. Furthermore, F„(r) = exp [iky „ • r ||]/„ (z ), for the case of quantum 

wells where (z) is the envelope function for the state describing the z motion whereas 

exp[ik||^„ • ry ] describes the motion in the plane of the layers. Substituting in the wave 

functions, the optical matrix element for the interband transition can be written,

= j  ,Fg*/(r)F^(r)dr f Wg*̂ ( r ) e  • pw^^o(r )d r  (4.74)
J crystal Jcell

where since the envelope functions, F „(r), are slowly varying on the scale of the unit 

cell, the integral has been split into an integral over the unit cell involving the periodic 

functions, w„ o (r ), and an integral over the crystal involving the F „ (r )’s (see eg. 

Bastard 1988 chp.7). The first integral is further simplified by assuming the dipole 

approximation is valid (see eg. Bassani et al 1975 chp.5), ie. ky ĝ  = ky^^. In other 

words, momentum in the plane is conserved by only allowing vertical transitions 

between the subbands, a condition known as the k-selection rule. The integral over the 

crystal volume then reduces to an integral along the z direction involving the quantum
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well envelope functions;

f F*^(r)F^(r)dr = f ( z ) / ^  (z)dz
Jcrystal J

(4.75)

This part of the optical matrix element highlights selection rules on the subband indices. 

Neglecting the polarization selection rules, an optical transition will only take place 

when (4.75) is non-zero. At zero field (ie. fiat-band condition) in a symmetric QW, a 

good approximation to use is An = 0, where n is the subband index. Hence transitions 

(both excitonic and band to band) are expected between el-hhl, el-lh l, e2 -hh2  etc.

The second part of (4.74), ie. the integral over the unit cell, gives rise to the selection 

rules on the polarization of the incident light wave. To express these, the valence band 

periodic functions used up till now, ie. ^ ir)  or specifically, W/i/i o (r) and Ul}̂  Q (r ) , are 

written in terms of the Bloch p functions (cf. 3.14). The polarization selection rules can 

then be presented in terms of the Kane matrix element (3.18) (see eg. Sanders and Bajaj 

1987). A good discussion regarding polarization selection rules in heterostructures is 

given by Corzine et al (1993). In this work, the authors demonstrated a method to express 

the polarization matrix element in terms of the angle, 0 , between the incident electric 

field vector and the electron wave vector. Following their method.

| j  < z , o ( r ) e  • pz/AA,o(r)dr _ 12 _ cos^sj hh - el transitions (4.76a)

J uli Q {r)e  • o(r)dr = ^^ -i- cos^G j Ih - el transitions (4.76b)

Note that spin degeneracy is already accounted for in (4.70) by the factor of 2 and was 

therefore not included in obtaining the above relations. The expressions are written in 

terms of Ep which has units of energy and is related to the Kane matrix element (cf. 

§3.4). Moreover since we are interested in energies close to the sub band edge, the 

electron wave vector, can be taken to lie parallel with the confinement axis, ie. close to 

the (sub) band edge the in-plane components are neghgible (Corzine et al 1993). So for 

incident light with the electric field vector parallel (perpendicular) to the the 

confinement axis, ie. TM (TE) modes, we find (w.r.t ):

TE 1, TM 0 hh - el transitions

TE ^  ^  , TM ^  %  Ih ■ el transitions

The configuration used for the experimental results presented in Chapter 5, has the
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incident light normal to the layers. The electric field vector is perpendicular to the 

confinement axis (ie. parallel to the layers) which implies TE selection rules (cf. Fig.l-

5).

Making use of (4.72), (4.74) and (4.75), the oscillator strength per unit area (4.70) is 

written as:

= ----^Z:^heZ.m(0 )r ||< /.o(r)ê-pu^;^^o(r)dr| |j /* ; ( z ) /^ (z )d z
^oEex

(4.77)

To calculate the excitonic absorption spectra from (4.69) the broadening function, B(x), 

needs to be determined. In theory, B(x) in (4.69) should be a delta function at the excitonic 

transition energy. However, in actual QW structures the exciton resonance is 

broadened and is simulated through the use of a broadening function. Further 

discussion on broadening is presented in the next section. For now, it is enough to state 

that a normalized Lorentzian function is used to describe the excitonic resonance at room 

temperature, ie.

B{nco -  E f - - ) = - J  ^
2 ^ 1  ( to -E li '" * )

which is centered on the exciton peak energy, and has a full width half maximum

(FWHM) in energy determined by F.

B a n d  to  h an d  a b so rp tio n

At slightly higher energies (ie. the binding energy) from the exciton, transitions from 

the valence band to the conduction band take place. For a QW these are transitions 

between the bound states (ie. el-hhl, e l-lh l etc.). The absorption between subbands can be 

written as (see eg. Bastard)

-  [ Ee ; ( k[ ? )  - E^dc^)]) (4.79)
Z Q - m Q c n n c o  ' "  ' '  *■ "

|2
As with the exciton absorption, |Pg;^(k ||)| , is the optical matrix element which for 

simplicity is taken to be the value at the band edge, 'Pel.m (0 ) (see equations (4.73-4.76). 

The reduced density of states function between the subbands, pg^^(x), can be 

analytically written because of the simple in-plane parabolic dispersions used, cf. (4.56).
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We find (including spin),

-[Ee/Ckl?) - -  [E ^ (k f ) -  E„(k|^)]) (4.80)
y

where is given by (4.67) and is taken as the well width (or composite width).

0  ( X ) is a step function with a unity value for energies larger than the energy separation 

of the subbands at k|| = 0 . To account for broadening, the step function may be replaced 

by (Chemla et al 1984, Stevens et al 1988),

1

1 + exp
^^b-b

(4.81)

where is a broadening parameter with units of energy. In addition to (4.80) and

(4.81), a Sommerfeld factor may also be included to account for the effect of Coloumb 

interaction above the band edge (Shinada and Sugano 1966, Chemla et al 1984, Stevens 

et al 1988). [note: All the calculated spectra in this thesis do not include the Sommerfeld 

factor].

§4.4.4 Comments on exciton calculations.

Remarks concerning the diagonal approximation have already been made in §4.4. In 

the following section, using example structures, I have attempted to highlight how this 

compromised description affects the various parameters relevant to the exciton 

calculations (ie. binding energies, absorption etc.). In addition comments about other 

important parameters, such as broadening functions, are discussed.

Z ero  f ie ld  c a lc u la tio n s -b in d in g  energy.

C alculations of the lowest energy exciton (e lh h l)  were carried out for 

lug QgCag ggAs/GaAs QWs across a range of well widths, Fig.4-7(a). This is a strained 

system and was chosen because of the availability of experimental data (Joyce et al 1991, 

Joyce 1992). Since growth is on a GaAs substrate the well layers (Ing ggGag ggAs) are 

under compressive strain. Further details concerning the growth and characterization 

are given in the aforementioned works by Joyce and co-workers.
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are given in the aforementioned works by Joyce and co-workers.
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Figure 4-8. Calculated parameters of the e lhh l exciton in InQ q̂ Coq ggAs/GaAs quantum 
wells as a function of well width, (a) Calculated binding energy |Eg| using two 
different values for the in-plane heavy hole mass. Using mjj ^  obtained within the 
diagonal approximation (dotted) and using 2mj| (solid). The error bars indicate the 
experimentally determined binding energies from Joyce (1992). (b) The calculated in­
plane radius of the exciton using (dotted), using 2 mJ| (solid).

Recall that working within the diagonal approximation, coupling with other bands is 

neglected and the in-plane heavy hole mass, mjj obtained for h h l will always be 

underestimated (see in-plane dispersions in §4.4). In other words, when mixing is 

included this tends to increase the predicted in-plane mass. For a larger mj| the 

reduced mass of the exciton increases, (cf. 4.58), which increases the calculated binding 

energy (solid line in Fig.4-8(a)). The choice of using 2my = 0 .22m o in the 

calculations was somewhat arbitrary. Although it is worth noting that magneto optical 

measurements on Ing 2 2 ^ 0 0  ggAs/GaAs samples have indicated in-plane heavy hole 

mass values 0. ITm^ 0. 22mg for well widths of 50 À - 4  2 0 0 À (Moore et al 1990). 

The program allows the in-plane mass to be input directly if values are available (either 

from theory or experiment). Otherwise, values obtained from the diagonal 

approximation are used, (4.57). It is worth noting according to figure 4-8, the 

discrepancies incurred by using the diagonal approximation appear to be within the 

limits suggested in §4.4.1.

Another useful parameter to display is the inverse of the variational parameter (i.e. 

^ )  as a function of well width. Commonly referred to as the exciton radius, this is seen 

to increase with increasing well width (Fig.4-8b) which in turn reduces the binding
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a smaller in-plane radius (solid line in Fig.4-8b).

E ffec t o f  a n  a p p lie d  e lec tr ic  f ie ld -b in d in g  energy.
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F igure 4-9. Calculated parameters of the e lhh l exciton in InGaAs/InP quantum wells 
as a function of applied electric field, (a) Calculated binding energy [Eg | using nij| 
obtained within the diagonal approximation, (b) The calculated in-plane radius of the 
exciton using niy

Taking as an example a 70Â InGaAs/InP (lattice matched) quantum well. Upon 

application of an electric field, the calculated binding energy decreases, Fig.4-9a. 

Associated with this, the in-plane radius increases from its value at zero field (Fig.4-9b), 

which again highlights the inverse relationship between the binding energy of the 

exciton and its radius. Although the calculations were carried out assuming the 

diagonal approximation, its fair to suggest that the results when mixing is included 

would follow a similar pattern, ie. the binding energy (radius) decreases (increases) 

from its zero field value. It is also noted that with respect to the exciton transition energy, 

the decrease in binding energy is small, hence the dominant mechanism behind the 

decrease in excitonic transition energy comes from the decrease in the subband 

separation (cf. Fig.4-7b,d)

Before the absorption calculations are discussed, it is worth summarizing the 

consequences of using the diagonal approximation on the binding energy calculations. 

For the lowest energy exciton (e lh h l), the binding energy will generally be 

underestimated. This is due to underestimating the reduced mass of the exciton and
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subsequently overestimating the in-plane radius. Considering these exciton parameters 

will be useful for the following discussion on the absorption calculations.

The c a lc u la te d  a b so rp tio n  spectra .

Accurately predicting the absorption spectra for a structure not only depends on the type of 

band structure description used but also on describing the broadening mechanisms 

present in the structure. Comments on the former appear later, but first it is useful to 

highlight the effects of broadening on the final spectra. In particular, on the excitonic 

peak absorption.

The broadening mechanisms can be classed into inhomogenous (eg. interface 

roughness, alloy fluctuations, well width fluctuations in MQW’s ) and homogenous 

fluctuations (eg. phonon scattering and other mechanisms affecting exciton lifetime) 

and are further discussed by Schmitt-Rink et al (1989). All of the broadening 

mechanisms in some way contribute to the overall line width (and shape) of the excitonic 

resonance. It is not the aim here to further discuss the mechanisms or propose how one 

might account for them. Several authors have already addressed these problems (see eg. 

Stevens et al 1988, J Singh 1993, Lin et al 1994). In the present work, a Lorentzian 

function (4.78) is used to describe the shape of the exciton resonance at room temperature 

(Stevens et al 1988). The dependence of the exciton absorption peak value on the line 

width can be appreciated by considering (4.78) when Am = , then B (0) = where

r  represents the FWHM of the resonance. Therefore, the peak absorption is inversely 

dependent on the line width. Given that the resonance line width is extremely important, 

it is also interesting to note the use of a different line shape can effect the predicted peak 

absorption value. For example, some authors use a Gaussian shape to account for the 

exciton resonance at room temperature (eg. Shim and Lee 1993). In terms of line width 

(the half width half maximum), this can be written as

-(Eli'"" -  t o f

1.44a^
(4.82)

where a represents the half width half maximum (HWHM) of the exciton resonance. For 

the same line width value, ie. F = 2 a , the peak absorption predicted using a Lorentzian 

line shape is of that found if a Gaussian shape is used. Typically, the operating 

temperature usually determines which shape best fits experimental data and at room 

temperature, a Lorentzian function is more representative of the exciton resonance (cf.
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Sugawara et al 1990 for experimental fits to InGaAs/InP exciton resonances).

The line width dependence on the absorption peak is a contributing factor to the smaller 

peak absorption found in InP based structures compared to GaAs based structures. 

MQW’s on InP, eg. comprising InGaAs/InP, typically have line widths of twice those 

found in GaAs/AlGaAs. The increased line widths are often attributed to alloy 

broadening since the well materials for InP structures are ternary (or quaternary) 

compounds see eg. J Singh 1993). However, it is slightly misleading to attribute the 

poorer absorption characteristics of long wavelength devices solely on the line width. A 

method often employed in experimental investigations is to measure the integrated area 

of the exciton resonance; with this technique the dependence on the line width is removed 

(Masumoto et al 1985, Masselink et al 1985, Sugawara et al 1990). From (4.69) the area 

is defined as,

= C y r  (4.82)

Ag '̂  ̂ is then the area of the exciton peak in units of eV/cm and is seen to be proportional 

to the oscillator strength, with the limits hcûi and h(û2 chosen to cover the absorption peak. 

Comparisons between GaAs/AlGaAs samples (from M asselink et al 1985) and 

InGaAs/InP samples, Sugawara and co-workers (1990) found the integrated area of 

InGaAs QW’s to be -70% smaller than that for GaAs. They argued that the decrease in 

area for InGaAs QW’s is due to the larger exciton radius in the plane of the wells, which 

originates from the lighter exciton reduced mass found in lower gap materials such as 

InGaAs.

The dependence on the exciton radius (and hence reduced mass) enters through the 

evaluation of the oscillator strength (4.77) with (4.72). The oscillator strength is 

inversely proportional to the in-plane radius (ie. a^), which in turn has an inverse 

dependence with the reduced mass of the exciton, (cf. Fig.4-9 which demonstrates a 

larger in-plane radius for a smaller reduced mass). The calculated in-plane radius 

using the diagonal approximation will be typically overestimated, and in fact represents 

an upper limit since the reduced mass in this decoupled picture represents a lower limit. 

In relation to the calculated oscillator strength (or excitonic area) it follows that using 

this upper limit of the in-plane radius will typically underestimate the oscillator 

strength.
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Chapters, investigating InAsxPi-x 
Muitipie Quantum Wells.

The present chapter is devoted to further investigating InAs -̂P .̂  ̂/InP MQW structures 

both from an experimental and theoretical viewpoint. Before this is undertaken, a brief 

review of the limited pubhshed work is given along with further comparisons with other 

material systems.
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§5.1 Introduction.

The quaternary system, In^ Ga^.^As^P has long provided suitable material 

combinations for use in quantum well (QW) long wavelength emitter and detector 

structures. In the quaternary form it can be latticed matched to InP and provide an 

operating range from ~lfim  to l.djLim (eg. T.P Pearsall 1982). A common ternary subset 

is the In^Ga^.^s/InP QW system, where the group III compositions can be chosen for 

either lattice matched (ie. v=0.53) or strained structures (ie. v>0.53 for compressive or 

v<0.53 for tensile) (see for eg. Gershoni et al 1988, Gershoni et al 1989). Another 

ternary combination for a QW system is InAs^P^.^ /InP, which until recently had 

received little attention (Woodward et al 1991). In this system, InAs^Pj .̂ ,̂ is the well 

material which is under compressive strain with respect to InP. The large difference in 

band gap between InAs and InP for a relatively small change of lattice constant enables 

the InAs^Pj .̂j system to access optoelectronic devices over the range from -Ipm  to 1 .6 pm 

(Woodward et al 1991, Schneider and Wessels 1991, Hou and Tu 1992).

As a strained system, the utility of InAs^P .̂  ̂/InP, in comparison to In  ̂Ga ̂ _gAs/InP and 

In  ̂G a 2 _^s/GaAs is demonstrated in Fig.5-1. For example, devices operating around 

1.06pm would require less than 1 % compressive strain to be accommodated in the 

InASjPj^.j layer. In contrast, GaAs based structures, ie. In^Ga^.^As/GaAs, require about 

2 % of compressive strain to be accommodated which often proves troublesome, because of 

relaxation in multi-quantum well structures (Woodward et al 1990). Of course similar 

considerations would apply if  InAs^Pi_^ /InP MQW devices operating around 1.55pm 

were attempted. However, at these wavelengths, devices using only a few InAs -̂P .̂x /InP  

QW’s may be beneficial in laser design, where the -2% compressive strain could be used 

to significantly reduce the carrier injection levels required for lasing (eg. see Corzine 

et al 1993 for further information).

InAs^Pi.j/InP devices, grown by Chemical Beam Epitaxy (CEE), operating around 1 pm 

have been demonstrated by Woodward and co-workers (1991). [This and related work is 

discussed in more detail later on.] Using Gas -Source Molecular Beam Epitaxy (GS- 

MBE) Hou and Tu (1992) investigated MQW, structures, (30 period), with arsenic 

compositions varying from 15% to 75%. Room temperature absorption spectra showed 

clear excitonic transitions from three samples with the lowest energy heavy hole 

transition, (n=lhh), at 1.06, 1.3 and 1.55 pm. Recently the same group have reported good 

electroabsorption characteristics from a 1 0  period InAsg^^^o.sg^^^ MQW (Hou et al
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1993). Operating close to 1.3pm, clear demonstration of the quantum confined Stark 

effect (QCSE) (Miller et al 1985) could be seen. In comparison with the InGaAsP/InP 

and InGaAlAs/InAlAs structures, commonly used at these wavelengths, a larger Stark 

shift of the n=lhh exciton was found (Hou et al 1993). This larger shift, for a given 

applied field, was attributed to a smaller valence band discontinuity in the 

InAsg 4 1 P0 .59/I11P device.

(1.55^m) (1.06nm)

4.0

2 .0 : -

2 0.0  - (ii)
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InP,

GaAs

X (jim)

strained bandgap (eV)
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F igure 5-1. (a) Calculated in-plane strain against strained bulk band gap for: (i) 
In^Gai^yAs on InP. (ii) InAs^P^.x on InP. (iii) In^Ga^^yAs on GaAs. (in all cases x is 
varied from 0  to 1). (b) Schematic showing the lattice constants with wavelength range
for the materials studied here.

The question of band offsets in this system was first addressed by Schneider and 

Wessels (1991). Low temperature optical emission was investigated from single QW 

samples grown by Metal Organic Chemical Vapour Deposition (MOCVD). The arsenic 

composition was kept nominally at 67% as the well width varied from -2  monolayers to 

80Â (Schneider and Wessels 1989). Using a parabolic model and including strain 

induced band edge shifts, band offset parameters of 75:25 were found to best fit the 

experimental results. Further evidence for a large conduction band offset has recently 

come from experimental studies on MOCVD grown buried heterostructure laser diodes, 

employing InAsQ 43P0.57 as the active medium (Yamamoto et al 1994). The structures, 

designed to emit around 1.3pm, showed a remarkable high temperature performance. 

Continuous wave (CW) lasing was confirmed up to 132°C with a threshold current of 2 2 .8  

mA. The authors suggested the high temperature characteristics were a result of the 

large conduction band offset in the system, reducing the carrier overflow at high
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operating temperatures.

Despite the relative immaturity of the system, the limited body of work using 

InAs^P^.j QW structures has already made a considerable impact. The main aim of the 

present work was to investigate InAs^P^.x /InP MQW devices operating around 1pm. 

Beginning the project, it was apparent that growth of such structures had not been 

attempted by conventional (solid source) Molecular Beam Epitaxy (MBE). Since the 

structures contained phosphorus, it was suggested that growth by conventional MBE 

would be difficult, while GS-MBE, CBE and MOCVD could all grow this material 

(Woodward et al 1991). Working in collaboration with Sheffield University, we were 

able to demonstrate, for the first time, growth of InAsP/InP MQWs by conventional MBE 

(David et at 1993, David et al 1995). In addition, although an InAsP/InP device 

operating around 1pm had been experimentally demonstrated (Woodward et al 1991), 

there had been few theoretical studies on the system around 1 pm.

Before these results are presented, it will be useful to briefly summarise work 

appearing in the literature concerning MQW devices operating around 1pm.

§5.1.1 Operation around 1.06 pm.

Optoelectronic devices operating around this wavelength are desirable because of the 

increasing availability of compact and efficient neodymium based solid state lasers, 

(eg. Nd:YLF, Nd:YAG). Proposed applications have ranged from constructing digital 

photonic logic planes for use in parallel optical processing (Woodward et al 1991, 

Goodhill et al 1994), to producing short mode-locked pulses for electro-optic spectroscopy 

applications (see eg. Loh et al 1993). Previously, MQW modulators operating around 

this wavelength have been demonstrated in GaAs-based In  ̂G a ̂  As/GaAs (Woodward 

et al 1990), and InP-based InAs^Pi.^/InP, InAs^ P ̂ .yin^ Ga i_^P and In  ̂Ga^.^As^P^. 

jj/InP (Woodward et al 1992). With the exception of the latter quaternary case, all the 

other structures have one (or two) of the constituent layers strained with respect to the 

substrate. Considering the GaAs-based system, as already noted, when growth is 

directly on GaAs, the degree of compressive strain in the well layer can reach - 2 %. 

From a structural point of view, the maximum single layer thickness of the well 

material lies between 50-100Â (Matthews and Blakeslee 1974), above this relaxation 

occurs via dislocations. Turning to the InAs^P^.^nP system, since the degree of strain 

is somewhat less (<1%), the single layer critical thickness is larger (cf. Fig.2-7a). In 

this sense, structures with well widths up to - 1 0 0 Â may be envisaged, confident that the 

individual layers will remain largely coherent. For MQW structures in both systems
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the cumulative strain will be an issue, leading to some degree of relaxation (of. §2.4); 

although it is reasonable to expect for a given number of periods, any detrimental effects 

of relaxation would be less in the InP based structure. This is supported from a 

straightforward comparison between similar 50 period In^Ga^.^As/GaAs (on GaAs) and 

InASjjPi.jj/InP (on InP) MQW structures (Woodward et al 1991). The InP based 

structure demonstrated a much sharper defined exciton with the peak absorption some 

25% higher than the GaAs based device. The higher peak absorption is expected, given 

the strong dependence of peak absorption on exciton hnewidth (cf. §4.4.3). [note: Strictly 

speaking, there may also be differences in the oscillator strengths (ie. excitonic area) 

between the structures]. The increase in broadening with relaxation is a feature that has 

been consistently observed in a number of pubhcations, including the present work (eg. 

Woodward et al 1990, Ghisoni et al 1994). Comparing GaAs and InP based structures. 

Woodward and co-workers (1991), found that non-uniform strain relaxation was higher 

in the GaAs structure, and was therefore proposed as a significant broadening 

mechanism.

Attempts to improve GaAs-based structures have often employed a thick (relaxed) 

In.yGai_yAs buffer layer (v<x) before growing the p-i(MQW)-n epilayers. The 

constituent layers making up the MQW are strained with respect to the In^Ga^.yAs 

buffer, ie. In^Ga^.^As (wells) are under compression while the GaAs (barriers) are 

under tension. By using the buffer layer not only is the strain in the well layers less than 

for growth directly on GaAs, but providing both the compositions and dimensions are 

correctly chosen (cf. (2.4)), the MQW structure can have a net zero strain. Structures 

with these characteristics are often referred to as strain balanced (see eg. Cunningham 

et al 1992, Woodward et al 1992). Recently, a device operating around 1.05p.m, using 

this principle demonstrated a -2.5 meV reduction in exciton linewidth over a structure 

not having a buffer layer (Goodwill et al 1994).

Strain balanced structures have also been demonstrated in InP-based structures 

operating around lp,m (Woodward et al 1992, Chiu et al 1993). The QW system is 

InAs^Pi_^Uy Ga^.yP but, unlike the GaAs case, it does not require the growth of a buffer 

layer. The InAs^P .̂ .̂ (well) is under compressive strain with respect to InP while, the 

In^Ga^.yP (barrier) is under tension. Room temperature absorption spectra were 

presented along with comparisons of InAs^Pj^.^/InP and In  ̂Ga^.yAs^P^.^nP MQWs 

(Woodward et al 1992). Although the quaternary system was lattice matched, the authors 

found that both the ternary systems gave better overall performance in terms of exciton 

peak resolution. The room temperature half width half maximum (HWHM) of the 

quaternary structure was almost twice that of the strain-balanced structure ( 13 meV and 

7 meV respectively). The InAsP/InP structure presented had a HWHM of 9 meV, 

although it was noted that previous samples grown by the authors had achieved HWHM of
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6 meV. Overall, the strain balanced sample produced the best electroabsorption 

characteristics, and demonstrated a clear QCSE on application of an electric field. 

However, it should also be noted that the InGaP material has a larger band gap than InP, 

which provides greater potential confinement, thereby aiding the retention of the exciton 

peak under an apphed field (Pezeshki et al 1991).

The study made by Woodward and co-workers was interesting, and certainly 

suggested a natural direction in which the present work could go if  MQW relaxation 

became an issue (§5.4). However, obtaining good quality InAsP/InP MQW structures by 

conventional MBE was our main concern.

§5.1.2 Modelling parameters: Initial considerations.

Prior to theoretically investigating QW structures, bulk material parameters for the 

constituent layers must be found. The Landolt-Bornstein compilations generally 

provide a good source of bulk parameters for III-V semiconductors, including some alloy 

compounds (Landolt-Bornstein 1982, 1986). Unless otherwise stated, the parameters used 

for the present modelling (see Appendix A) were obtained from these sources. For most 

cases a simple linear interpolation between the two binary values was used for InAsP 

parameters. Notable exceptions were the bulk band gap and spin-orbit splitting where 

experimentally determined expressions were used (Nicholas et al 1979).

Initial investigations into the QW system, were often hampered by the lack of 

reliable experimental results. While structures were clearly being demonstrated, there 

was little detailed characterization of the samples which would help to ‘fine tune’ both 

bulk and QW parameters. For example, in the case of the band gap deformation 

parameter for InP (which describes the hydrostatic band gap shift, cf. 3.33), at least two 

values were listed (Landolt-Bornstein 1986). Furthermore, using experimental values 

for the band gap dependence with pressure (cf. Appendix A), yielded even more possible 

values, [note: InAs parameters were typically better characterized because of the large 

amount of published work on InGaAs QW structures. In addition I have had some 

involvement with well characterized InGaAs/AlGaAs strained QW structures (Ghisoni 

et al 1994, Hart et al 1995). The majority of InAs parameters used for InAsP modelling 

were established from this work.] The effect of different InP deformation gaps on the 

dominant subband energies at zero field, is illustrated in Fig.5-2. In addition, the 

dependence of the QW parameter, the heavy hole valence band offset, is shown (Fig.5- 

2 a).
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F igure 5-2. Calculated subband energies, e lh h l, e l lh l and e2hh2 (increasing in 
energy) for an 100Â I n A s I n P  QW. (Solid) using InP ag^p=.8 .6  eV. (Dotted) using 
InP o.gap=~5.68 eV. (a) structure with 18% arsenic for varying heavy hole valence band 
offset share of the total confinement energy, (b) subbands for a 1 0 0Â well width showing 
the effect of a ±2 % variation in arsenic composition.

The two deformation gaps used for Fig.5-2 represent the outer limits of the values 

obtained for InP (Landolt-Bornstein 1986). The lower transition energies predicted 

using a smaller deformation potential are consistent with the smaller strained bulk 

band gap that results (cf. 3.33). For all the above subbands, the difference is ~11 meV 

which corresponds to -11 nm at these energies. The arsenic composition dependence can 

be appreciated by considering the difference between the bulk band gaps of InP and InAs, 

which is approximately 1 eV. To a first approximation, a linear interpolation between 

these values suggests a change in the ternary band gap of 10 meV for a 1% variation. 

This is approximately what is found from Fig. 5-2b. Just considering these two 

parameters, the deformation potential and the composition, it becomes clear how difficult 

it is to ‘fine tune’ a set of parameters from incomplete experimental results. For 

example, a transition from nominally a 100Â QW may be seen at 1.171 eV, which could 

be fitted with the larger deformation potential and 18% arsenic or assuming 17% arsenic 

with the smaller deformation potential. Even when higher transitions are visible, the 

situation is still not clear, although for a coherently accommodated strain, the lowest 

energy heavy and light hole splitting is a sensitive measure of arsenic composition (cf. 

§ 2 .2 .2 ).

At present, the parameters listed in Appendix A, represent our best ‘calibrated’ set.
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They appear to give the best agreement with the available pubhshed results and our own 

structures. The relative insensitivity of the An = 0 transitions, in a symmetric QW, to 

the offset parameters is well known, particularly for the lowest energy transition (Kopf 

et al 1992). Recording the higher energy transitions can reduce the uncertainties, cf. 

energy transition of e2hh2 in Fig.5-2a. However given the variations in material 

parameters and recognizing the limitations of the present model for higher transition 

energies and binding energy values, accurately determining the offsets can still prove 

ambiguous in square QW structures. Throughout the following work, I have used the 

parameters 75:25 first suggested by Schneider and Wessels (1991).

§5.2 Preliminary Structures.

§5.2.1 Growth and Fabrication.

Samples were grown by Dr. Mark Hopkins on at Sheffield University in a conventional 

(solid source) MBE chamber. For photocurrent measurements, the p-i-n wafers were 

processed (by G.Hill and M.Pate, Sheffield University) into diode mesa structures. 

Additional processing for absorption measurements was carried out by A. Rivers, K. Lee 

and D. Prescott, University College London.

The MBE technique for growing epitaxial layers is briefly outlined here, more 

detailed discussions, particularly on the growth of QW structures, can be found in the 

literature (see for eg. Tsang 1984, Joyce 1985). With this method, the substrate is held in a 

high vacuum while molecular or atomic beams of the constituents fall upon its surface. 

The rates at which these atomic beams strike the surface can be closely controlled, 

allowing growth of very high quality layers. For the growth of InAsP layers, the In, As, 

and P components, along with the dopants, are stored and heated in separate cells. 

Abrupt changes in crystal composition (eg. the ratio of As in InAsP) can be obtained by 

controlling shutters in front of the cells. With typical growth rates of ~l|im/hr, the 

control of the shutters can allow compositional changes on the scale of the lattice 

constant. The conditions for the structures investigated here follow, further details are 

found in David et al (1993) (and David et al 1995). Growth was carried out in a VG 

V80H MBE system equipped with all solid sources. These included. Indium, Arsenic, 

Phosphorus, Beryllium (p-type dopant), Silicon (n-type dopant). Elemental arsenic and 

phosphorus (As^ P4 ) are cracked to As2 and P2 in a high temperature zone operating at 

950°C. Conditions were typical of those for high quality InP growth, ie. substrate
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temperature ~480°C and P^In ratio ~5. Arsenic incorporation approached unity 

efficiency for mole fractions below 0,7. Hence the growth of InAs^P j .̂ /̂InP QW 

structures was carried out by simply opening and closing the arsenic shutter during InP 

growth. All of the devices were grown on (100) n'*’ InP substrates and had the same basic 

p-i-n diode structure: 0.2pm n"*" (IxlO^^m"^) InP buffer layer was followed by an 

undoped spacer of 0.05 or 0 .1 pm InP. Next the MQW active region was grown and then a 

0 .1 pm undoped spacer before deposition of the p  ̂ (SxlO '̂^cm' )̂ contact layer, typically 

0.5pm.
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F igu re 5-3. Low temperature (lOK) photoluminescence from a sample containing 5 
single 40A I n A s ^ P I n P  QW. [Measurement by Dr. J.P.R David, S.E.R.C Facility at 
Sheffield University].

For photocurrent and absorption measurements, the p-i-n samples were fabricated at 

Sheffield into circular mesa diodes of 100-400pm diameter by wet chemical etching. The 

bottom n+ contact was InGe/Au with the samples held in place on a header by gold epoxy. 

The top p+ contact of AuZn/Au was an annular ring to allow optical access to the devices, 

eg. the 400pm mesas often used provided an optical access of 200pm.

It should be noted that the structures presented here were obtained over a period of 2 years, 

consequently before each request, several calibration samples (not p-i-n) were often 

undertaken. One of these preliminary samples (M393) comprised five nominally 40A 

thick InAs^Pi.x layers, each separated by 530Â of InP. The arsenic composition for each 
layer varied from 0.7 for the bottom QW (nearest the substrate) to 0.19 for the top QW.
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Low temperature (lOK) Photoluminescense carried out at Sheffield (by Dr. J.P.R David) 

demonstrates the wide range of wavelengths attainable in the system (Fig.5-3).

§5.2.2 C haracterization .

S tr u c tu r a l  c h a ra c te r iza tio n ,

High-resolution X-ray diffraction (HRXRD) was carried out on several of the p-i-n 

wafers. Dr. L. Hart, at the Interdisciplinary Research Centre for Semiconductor 

Materials (IRC-SM) based at Imperial College, was chiefly responsible for the 

measurements and interpretation. The HRXRD machine was a Philips HR1880 high 

resolution diffractometer which allowed both 004 and 115 rocking curve reflections to be 

obtained. For structures grown on (001) surfaces, interpreting these measurements 

provides information on the lattice parameters (perpendicular and parallel) in the 

structure. In addition to the HRXRD measurements. Transmission Electron Microscopy 

(TEM) images were obtained for selected samples, from Sheffield and by Dr. Xiao Mei 

Zhang at the IRC-SM. Direct imaging of the layers through TEM allowed the 

dimensions of the well and barrier to be found and observe any dislocations present in 

the MQW region (to a resolution of -10^ cm'  ̂ (X.M. Zhang, private communication).

E le c tr ic a l  c h a r a c te r iza tio n .

Current-Voltage (I-V) measurements on unbonded p-i-n mesas were routinely made at 

Sheffield (by Dr. J.P.R. David). The same measurements were repeated at UCL on 

structures bonded to headers prior to photocurrent measurements. In general, I found no 

significant differences in the electrical characteristics between bonded or unbounded 

devices. The doping level in the intrinsic region of the diodes was calculated from 

Capacitance-Voltage (C-V) measurements carried out at Sheffield.

O p tic a l c h a ra c te r iza tio n .

Photocurrent measurements on all the samples were carried out at UCL. The 

experimental apparatus essentially comprises of a lOOW quartz halogen lamp as the 

source, which passes through a grating monochromator before being focused onto the 

device. A power supply unit provides the applied field across the device and a lock-in 

amplifier measures the photogenerated voltage across a 1 2 0 kD resistor which is in series 

with the device. The whole system is computer controlled which allows photocurrent 

spectra at various appUed fields to be taken quite routinely. Photocurrent spectra give a 

good indication to the absorption present in the device and can be related to the absorption
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coefficient (Whitehead et al 1988a, M. Whitehead 1990). For selected samples, 

transmission measurements at zero applied field were undertaken to extract the 

absorption coefficient. The measurement set up was similar to that used in photocurrent, 

with the lock-in now reading from a germanium detector which is used to measure the 

transmitted hght through the sample. At least, two scans are carried out for each sample. 

One detecting the transmitted light through the epilayer and substrate (i.e. the wafer), 

and the other through just the substrate (i.e. the epilayer removed). The absorption 

coefficient for the epilayer can be expressed as (M. Whitehead, 1990)

a = -  — In 
d

^ total 
TV sub y

(5.1)

where d is the total absorbing length, T̂ of̂ / and Tg„̂  are the transmission through the 

sample (i.e. epilayer+substrate) and substrate respectively.

§5.2.3 Initial p -i(M Q W )-n  results.

For the first attempted growth of InAs^P^.^nP p-i-n MQW structures we decided on 

three structures. In each sample, the total absorbing length (i.e. the well/barrier widths 

and no. of periods) was designed to be the same, but the group V composition (and hence 

strain) in each sample would be varied. The nominal well/barrier widths were 

100Â/150Â and were repeated 50 times making up the MQW region.

Table 5-1. Optical results from the three InAs^Pi.^^/InP structures.
(photocurrent spectra subject to ±0.5nm)

sample %Asin
well

R.T n=lhh 
peak (pm)

R.T n=lhh 
HWHM (meV)

lOKPL 
FWHM (meV)

M395 16.94a 1.060 6.5 6.8

M396 2Qt> 1.092 9.2 7.6

M397 24.68a 1.137 9.5 8.5

 ̂ calculated assuming the TEM well/barrier ratio (see §5.2.4) 
b estimated value from modelling, ±0.5%
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The arsenic compositions were chosen from earlier calibration runs on SQW which 

would place the room temperature lowest energy e lh h l exciton (n=lhh) for each sample 

around 1 -1 .1  pm. Calculations suggested that for structures operating around these 

wavelengths, the arsenic compositions should be less than 30%, with the well layers 

needing to accommodate less than 1 % compressive strain. This was borne out by the 

results from HR-XRD performed on the samples (Table 5-1). Photocurrent spectra, at 

zero apphed field, from the three samples is shown in Fig.5-4a. For each sample, a clear 

n=lhh transition is seen, which, as expected, increases in wavelength with increasing 

arsenic composition (Table 5-1).

I
Î
I
I (ui)

(ii)

0.99 1.02 1.05 1.08 1.11 1.14 1.17 1.2

J 3

1.090.99 1.01 1.03 1.05 1.07
wavelength (|im) wavelength (pm)

(a) (b)
Figure 5-4. Room temperature photocurrent from InAs^ P i,J In P  MQW samples grown 
by MBE. (a) zero applied field spectra of(i) M395 (ii) M396 and (Hi) M397 samples, (b) 

Photocurrent response ofM395for applied reverse biases of 0,1,2,3,4,5 and 10 V (see text).

Also evident is the corresponding increase in half-width half maximum (HWHM) of 

each peak (Table 5-1) as the arsenic increased. A similar trend was also observed in the 

emission from the lOK photoluminescence from the samples (David et al 1993). The 

full-width half maximum values (FWHM) are reproduced in Table 5-1. Similar 

observations have been noted for samples grown by CBE (Chiu et al 1993). We note that 

for their sample operating at ~ 1.13pm (similar to M397), the HWHM is 11 meV. In 

agreement with much of the previous work, the increase in broadening was attributed to 

an increasing density of misfit dislocations in samples w ith larger arsenic 

compositions.
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In addition to the n=lhh transition, two higher transitions for each sample are present. 

The modelling of these structures (presented later §5.2.4), assigns these as elLhl (n=llh) 

and e2 hh2  (n=2 hh), for decreasing (increasing) wavelengths (energies) from the n=lhh  

peak. It can be seen from Fig.5-4a, the light hole transition is not very pronounced. 

Given that the offsets are in favour of the conduction band, and the fact that compressive 

strain will shift the hght hole band edge further towards the valence band edge of the 

barrier. A likely explanation is that the light hole is not strongly localised in the well 

region, due to the small potential confinement and the lighter mass.

The photocurrent spectra in Fig.5-4b, show the effect of an an increasing applied 

electric field. The carrier concentration in the intrinsic region of the diodes was 

estimated from C-V measurements to be 2-4  xlO^® cm’̂ . The effect of this rather high 

background doping can be appreciated by solving the usual diode equations, via 

Poisson’s equation (see for eg. Sze 1981, chp.2). Assuming a built in field of 1.3V 

(approximately the band gap of InP ) and 2 xlO^® cm‘̂ , we find at zero apphed field only 

around 13% of the nominal intrinsic region experiences an electric field. For 

increasing reverse bias, the electric field gradually extends across the intrinsic region, 

increasing the fraction of photogenerated carriers which reach the contacts (ie. 

increasing the diodes quantum efficiency). The spectra in Fig.5-4b, clearly 

demonstrate this, with the overall photocurrent increasing with increasing bias. The 

expected Stark shift of the n=lhh peak is not clear, and is mainly dominated by 

broadening, which can be attributed to the large electric field variation across the wells, 

due to the high carrier concentration.

Despite the poor diode characteristics from this early set, clear room temperature excitons 

had been observed. These preliminary results were the first reported attempt to grow this 

QW system by conventional MBE (David et al 1993, Stavrinou et al 1993). The high 

carrier concentration in the intrinsic region was put down to the use of an inferior 

Phosphorus source in the MBE kit (M.Hopkinson, private communication). This was 

eventually replaced, and with the new source, intrinsic region concentrations were 

typically an order of magnitude lower. Consequently, the later structures exhibited a 

much better photocurrent response with apphed field (§5.3.2).
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§5.2.4 C alcu lations based  on HRXRD a n d  TEM results.

Using both HRXRD and TEM carried out on the samples (M395, M397), allowed 

investigations into the structural nature of the devices. Knowledge of the arsenic 

composition was important both from a growth and modelling point of view. In addition, 

given the large number of periods in these samples the question of relaxation could also 

be addressed.

The use of HRXRD on QW and MQW structures is well documented (see for eg. 

Quillec et al 1984, Fewster 1993). Although the present section is not intended to be a 

detailed study into the use of HRXRD, it is useful to demonstrate the governing factors 

which determine the composition in the well material. This information can be valuable 

when considering published work dealing with strained layer MQW structures. It is 

shown that determining the arsenic composition in the well layers relies not only on 

good knowledge of the well/barrier width ratio, but also on the type of X-ray reflections 

used in the experiment. Calculations of the excitonic positions using the various well 

widths and composition values found are compared with experimental results.

The HRXRD results that are considered are distinguished by the types of reflections used 

in the experiment. In the first case, (I), compositions are derived from only considering 

004 reflection curves, while for the second case, (II), both 004 and 115 reflections are 

considered. Depending on the reflections used, a value of the average  arsenic 

composition throughout the structure can be found from the measurements. In the case of 

InAs^Pj^.x/InP QWs, the percentage arsenic in the well material is determined by

X = X,
\  J

(5.2)

where and Ẑ are the well and barrier width respectively, and Xav is the average 

arsenic composition (%) throughout the structure. In what follows the term in brackets 

will be referred to as the QW ratio and denoted by r̂ , with i indicating either nominal 

ratio or measured (from TEM) ratio. A summary of the structure dimensions and 

corresponding ratios are listed in Table 5-2. Also included is the measured X-ray period 

of the structure (ie. Ẑ +Ẑ ), determined from the 004 reflections.
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T able 5-2. Sample details on the dimensions o f the three InAs^ P^^^/InP structures.

sample nominal TEM ^nom ^TEM HRXRD 
period (Â)

M395 100/150 107/141 2.50 2.32 273

M396 100/150 108/147 2.50 2.36 /

M397 100/150 105/146 2.50 2.39 270

Plan view TEM and corner cleaved cross-sections from the samples indicated no 

dislocations or defects present in the MQW layers with high contrast and sharp 

interfaces seen between the InAsP and InP layers. From HRXRD, the 004 reflections 

from both M395 and M397, showed well resolved satellite peaks, indicative of a good 

MQW structure. The interpretation of the peaks was aided by simulation spectra based 

on dynamical X-ray theory (see eg. Fewster and Curling 1987), The measured average 

arsenic compositions from the two structures (Tables 5-3, 5-4) were arrived at using this 

technique.

Comparing Cases I and II, it is seen that, for a given QW ratio, significant differences 

can be found for the measured average composition of a structure [note: the average 

composition is measured  in that it is calculated from measured values of the lattice 

constants in the structure]. The cause of these variations can be put down to the fact that 

both structures appear to exhibit some degree of relaxation. That is, the measured in­

plane lattice constant (a||) is not the same as the InP substrate (5.8696Â), which would be 

expected for coherent growth (cf. §2 .2 ). From the two types of reflections considered, only 

those from the 115 direction can provide any information about the in-plane lattice 

constant. The average values measured from 004 reflections alone (Table 5-3), assume 

the structure to be coherent. In constructing an equivalent cubic layer to determine the 

composition, the in-plane dimensions are therefore taken to be InP. For a relaxed 

structure this is not true and compositions from 004 reflections alone will always provide 

a lower limit to the actual arsenic composition. However, if a structure is coherent, then 

the same average composition would be determined for either case I or II.

Often in the literature, only reflections from 004 are considered when authors quote 

structure details for strained MQW samples (Woodward et al 1991, Hou and Tu 1992, 

Yamamoto et al 1994).
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T able 5-3. Case I: Determination of arsenic composition from 004 reflections only

sample average
%As

calc. % As 
(from Tjjqjjj)

calc % As 
(from r-pEjyj)

M395 5.965 14.91 13.84

M397 7.412 18.53 17.71

T able 5-4. Case II: Determination of structural properties and arsenic composition 
using both 004 and 115 reflections.

sample measured 
&z (^)

measured 
an (Â)

average 
% As

calc. % As 
(from rnom)

calc. % As 
(from r^EM)

M395 5.8933 5.8742 7.309 18.28 16.94

M397 5.8990 5.8804 10.327 25.82 24.68

Since the TEM imaging showed no dislocations in the MQW region, the relaxation 

present in these samples is thought to arise from dislocations at the interface, between the 

start of the MQW region and the buffer region (cf. §2.4). With this description, the MQW 

region is itself coherent and has the same in-plane lattice constant throughout. The 

constituent layers are therefore strained with respect to one another, so the InP barriers 

are experiencing some tensile strain, while the InAsP layer is under compressive strain 

(Fig. 5-5). To include this in the modelling, I use the measured a|| from Table 5-4 as the 

lattice constant the QW layers deform to. The main effects of relaxation are reductions 

in both the strained band gap between the conduction-heavy hole band edges, and in the 

heavy-light hole band edge splitting for the well material. The slight reduction in band 

gap would cause the n=lhh transition to appear at lower energies (longer wavelengths) 

than if the structure was coherent, (cf. Fig.5-14). For M397, the reduction in strained 

band gap is ~5meV (~5 nm) although a sHghtly larger change occurs in the valence band 

edge splitting between the heavy- and light-hole, ie. ~7 meV (~7 nm). The experimental 

splitting of the n=lhh and n=llh transitions would be larger than the band edge sphtting, 

since quantum confinement effects are also present. However by considering the 

experimental splitting, n= l | hh-lh | , the dependence on the band gap (and related 

parameters) can be removed.
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M395 ail =5.874 Â { 5.8696 Â M397 H|| =5.880 Â { 5.8696 Â

AEg = 147meV{147} 
AÊ ĥh= 49 meV {49}

= 9meV{13|

AEg = 210meV{210} 
AE^hh= meV {70} 
AE^Ui = 13 meV {21}
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F igure 5-5. Schematic of the potential energy profile from samples M395, and M396, 
solid (dotted) lines indicate the heavy- (light-) hole profiles. Unless indicated, all 
numbers are in meV, those in { J represent the values obtained in the coherent case. 
Arsenic compositions are taken from Table 5-4, and the offset parameters of 75:25 are 
used.

It should be clear that, given the type of characterization performed on the samples, a 

number of possible compositions and well widths can be obtained. Determining the 

composition in the well material from (5.2) indicates another possible source for 

uncertainty. This time, for a given average composition, the two QW ratios used can 

produce up to a 1% discrepancy in composition. It would be useful to compare calculated 

excitonic transitions from these possibilities with those found experimentally. Those 

deduced from the case II data in Table 5-4, ie. 004 and 115 reflections, are expected to best 

represent the actual structure. However, the calculations will also consider those 

deduced from Table 5-3, ie. just 004 reflections. At the very least this highlights how 

comparing modelled and experimental transitions, from this limited data, can suggest 

relaxation has taken place.

Calculations of the excitonic transitions at zero applied field, are found out using the 

zero field model (§4.2.2). Strictly speaking, because of the built in field of the diode, some 

of the wells will experience an electric field. However due to the small confinement 

energy, the higher order transitions visible in the photocurrent spectra (Fig.5-4a), are 

expected to rapidly ionise for applied fields. As they are clearly visible, it is assumed 

that the majority of the photocurrent is from the wells experiencing little or no field. 

Moreover, no blue shift of the n=lhh exciton was observed from the recorded photocurrent 

spectra of M395 with +0.5V apphed. The well widths used in the calculations are deduced 

from the measured HRXRD period using both the QW ratios given in Table 5-2. In
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addition the well widths measured directly from TEM are considered. For each case and 

sample, a structure is deduced using the following measurements;

(a) applied to average arsenic and HRXRD period.

(b) r^EM applied to average arsenic and HRXRD period

(c) applied to average arsenic and TEM period.

Finally, for case I, the in-plane lattice constant is taken to be that of InP while for case II, 

the measured value of an (Table 5-4) is used.

Table 5-5. Calculations of excitonic transition energies and separations for the 
structures deduced from the case I results.

sample case structure
(%As/L^)

n=lhh
(eV)

n=l 1 hh-Ih 1 
(meV)

n=2hh-lhh
(meV)

M395 Ka) 14.90/109Â 1.1942 34.5 65.7

Kb) 13.81/118Â 1.2031 32.5 57.0

1(0 13.81/107Â 1.2061 32.4 64.6

M397 Ka) 18.52/109Â 1.1555 40.5 69.4

Kb) 17.73/113Â 1.1626 39.5 65.7

1(c) 17.73/105Â 1.1652 39.4 72.4

Table 5-6. Calculations of excitonic transition energies and separations for the 
structures deduced from the case II results. For each sample, the in-plane lattice 

constant of MQW is taken from Table. 5-4.

sample case structure
(%As/L^)

n=lhh
(eV)

n=l 1 hh-lh 1 
(meV)

n=2hh-lhh
(meV)

M395 IKa) 18.28/109Â 1.1561 36.5 70.8

IKb) 16.94/118Â 1.1673 34.1 61.3

IKc) 16.94/107Â 1.1706 34.0 69.8

M397 IKa) 25.82/109Â 1.0751 44.3 79.7

IKb) 24.82/113Â 1.0849 42.4 73.7

II(c) 24.82/105Â 1.0879 42.3 81.7

-160-



In comparing the results, (Tables 5-5 and 5-6), it is clear that using the compositions from 

004 reflections alone, sigpiificantly overestimates the predicted n=lhh transition (-30  

meV for M395, -70 meV for M397). With the benefit of the 115 reflections, this is seen to 

result from underestimating the arsenic composition in the structures. In contrast, the 

calculated n=lhh transitions in Table 5-6 show very good agreement with experimental 

positions. It is useful to compare the difference in predicted arsenic composition of M395 

and M397, with the difference in n=lhh transitions. Experimentally, we find -SOmeV 

separation between the n=lhh transitions, compared to -4% difference (case I) and - 8 % 

difference (case II) in the predicted arsenic compositions. Earlier considerations (§ 

5.1.3) had suggested a change of 1% arsenic yields -10 meV shift in energy, which is 

consistent with the findings here. In this respect, relaxation could have been suggested 

simply by considering the average arsenic values obtained from the 004 reflections.

Table 5-7. Experimental transition energies and splitting for M395, M396 and M397.

sample n=1hh (eV) 
(±0.5 meV)

n=l 1 hh-lh 1 
(meV)

n=2hh-lhh
(meV)

M395 1.169 37.3±1.2 62.3±1.2

M396 1.135 39.9±1.8 66.511.2

M397 1.089 45.6±1.8 74.0±1.2

Staying with the results from Table 5-6, the predicted heavy- to light- hole transition 

separation is seen to be slightly less than is measured (Table 5-7). The discrepancy 

could certainly be accounted for in the calculated binding energies, considering the 

reasons already noted in §4.4. Another possible source of error is the breakdown of the 

strong confinement approximation (SCA), mainly in calculating the light hole 

transition. As illustrated in figure 5-5, the strain splitting in the valence band leaves the 

light hole potential well fairly shallow, and comparable with binding energy values; a 

situation which contravenes the SCA, With the SCA no longer vahd, the result is the 

Coulomb potential significantly contributes to the confinement potential, effecting the 

confined states and binding energies. Wu and Nurmikko (1988), demonstrated that for 

shallow valence band confinement in II-VI systems, the Coulomb potential has a large 

contribution to the valence band states. The overall effect, increased the potential 

confinement for the state over that given by the ‘bare’ material potential difference. This 

resulted in an increase in binding energy and a decrease of the transition energy in 

comparison with calculations adopting the SCA. It would not be unreasonable to expect
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similar effects in the InAsP/InP system, given the band offset parameters and arsenic 

compositions used here. In this case, the measured splitting would be larger than that 

calculated, which is the situation found for all of the results in Table 5-6.

These points aside, the modelling using the structures deduced from the combined 

004/115 reflections and TEM ratios gave the best agreement with experiment.

§5.3 Devices around 1.06 |im: Further Investigation.

The present section details further experimental and theoretical work on structures 

designed to operate around 1.06 pm. Although this had been the overall aim of the 

InAsP/InP work, the initial problems with background doping in p-i-n diodes had to be 

overcome. The cause of this, the original phosphorus cell was eventually replaced with a 

higher purity one. Several intermediate MQW samples were grown (not presented here), 

which showed considerably better applied field responses, although the arsenic 

compositions were generally >25% (estimated from modelling).

§5.3.1 Fixed w ave len g th  design.

Varying both the width and arsenic composition in the InAs^P^,^ well material, a range 

of accessible wavelengths, covered by the zero field e lh h l (n=lhh) excitonic transition, 

can be found (see Fig.5-6a). As expected, for a given well width, increasing the arsenic 

composition shifts the n=lhh peak to longer wavelengths, ie. the effective band gap of the 

QW structure decreases. In the adjacent plot, (Fig.5-6b), the same data is displayed in a 

different format. Here, the curves demonstrate how a fixed n=lhh peak wavelength may 

be achieved using different well width and arsenic composition (illustrated with 

wavelengths corresponding to Nd:YLF (1.047 pm) and Nd:YAG (1.064 pm) lasers). For 

the arsenic values displayed in Fig.5-6b, the in-plane strain (w.r.t InP) is less than 1%. 

Taking a conservative, 100Â% estimate for the single layer critical thickness (cf. Fig.2- 

7a), the range of well widths and compositions considered in Fig.5-6b are clearly within 

this condition. The multilayer critical thickness will be discussed in §5.3.4.
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F igu re 5-6. Calculations of the zero field e lh h l excitonic transition (n=lhh), in 
InASy.Pj,y./InP QW structures. The hand offset parameters 75:25 are used throughout.

Previous theoretical and experimental work on GaAs/AlGaAs structures has 

demonstrated the well width significantly effects the QCSE in QW structures (see for eg. 

Bastard et al 1983, Brum and Bastard 1985, Whitehead et al 1988b). It should be 

emphasised, that in these works, the n=lhh peak occurred at different wavelengths, since 

GaAs was the well material. For the present strained case, I have carried out similar 

investigations hut with the n=lhh peaks of the structures occurring at the same 

wavelength. For the following work, two device structures are chosen; [(i)] 98Â 

InAsg 18^0 .82  [(ii)] 58Â InAsg 21^0 .7 9» with a zero field n=lhh peak wavelength at
1.064 pm.

Under the effects of an applied electric field, differences between the two structures 

are immediately evident (Fig.5-7). For the wide well structure, [(i)], the n=lhh transition 

shift per unit field is much larger than that for the narrow well (Fig.5-7a). Essentially, 

the lower lying states in the wider well are more strongly perturbed by the change in 

potential. A useful quantity to show is the calculated squared overlap integral for apphed 

field between the ground electron and heavy hole state, which closely follows the change 

in excitonic peak absorption (cf. 4.77). For an applied field, the narrow QW is seen to 

retain a larger overlap than the wide QW, (Fig.5-7b); a feature due to the smaller 

induced spatial separation of the states in the well (Bastard et al 1983). Experimental 

studies have shown that the implied trends are observed (Whitehead et al 1988b). The
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exciton absorption peaks in narrow QW maintain their shape but shift slowly, while 

larger well width structures rapidly lose their peak heights as field is applied.
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Figure 5-7. Applied electric field calculations for two I n A s ^ P I n P  QW structures, (a) 
The red shift in wavelength of the n=lhh exciton transition (b) The decrease in squared 
overlap integral between the e l and hhl states, representing the decrease in n=lhh peak 
absorption.

The squared overlap integral calculations with field, (Fig.5-7b), show the relative peak 

decrease (relative to the zero field peak), but they fail to demonstrate how the structures 

are related to each other in terms of absolute absorption. However, calculating the area of 

the exciton peak, from (4.82), can lead towards absolute values of the peak absorption 

coefficients. In Fig.5-8a, the calculated areas covering the range of 1.064 pm structures 

are presented, along with a scaled plot. It should be remembered that for a given well 

width the arsenic composition is different (cf. Fig.5-6b). Despite this, the calculated 

areas are seen to follow the dependence, a relationship first suggested from 

experimental and theoretical studies on GaAs QWs (Masumoto et al 1985, Masselink et 

al 1985). The increase in calculated area for narrow wells is a result of the shrinkage of 

the exciton wavefunction (Masumoto et al 1985). The resulting smaller in-plane radius 

(and hence larger binding energy) implies a higher probability of finding the electron 

and hole in the same position (cf. 4.63, 4.72). Extracting the peak absorption coefficient 

for a given structure, is accomplished by multiplying the area by /^ p , where F is the 

FWHM of a Lorentzian function (cf. §4.4.3 and 4.78). In this case for a given linewidth, 

the peak absorption coefficient for the narrow well structure, [(ii)], will clearly be higher
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since the area is larger. In fact, assuming a dependence, then the ratio of the two 

peak absorption values is given by the inverse ratio of the respective well widths; 

although, in practice many of the broadening mechanisms also show a well width 

dependence (see for eg. G Bastard 1988 chp. 7, J Singh 1993 chp. 16).
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F igu re  5-8. (a) The calculated integrated area of the n=lhh exciton for the fixed 
wavelength structures shown in Fig.5-5b. Also shown a scaled Ifl̂ ,̂ line, (b) The 
calculated reduction in n=lhh integrated area with field of two samples discussed in the 
text (cf Fig. 5-7).

The spectra are calculated up to apphed fields of 85 kV/cm, beyond 100 kV/cm both the 

heavy and light hole states fluctuated in value, rather than following a smooth linear 

increase (cf. Fig.5-7). For these applied fields the linewidths from the TRM calculations 

(§4.3) were above 10*̂  eV, which are at least an order of magnitude higher than values 

found in other systems (Miller et al 1985, P. J Stevens 1989). Presumably the states could 

no longer be considered as quasi-bound. The TRM linewidths, which are inversely 

related to the lifetime of the state, were seen to increase rapidly with apphed field. This 

mainly concerned the valence band, and was to be expected given the small valence band 

potential confinement found using the offset parameters 75:25. Experimental studies by 

Woodward and co-workers (1990), found rapid broadening of the n=lhh exciton as field 

was apphed, and above 100 kV/cm there was virtuaUy no evidence of the exciton. They 

suggested that field ionization is a dominant cause of the broadening, noting the small 

confinement potential of the system would facilitate this. Similar arguments have been 

used to explain the electro-absorption spectra of shaUow GaAs QW (Goossen et al 1990).
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F igu re  5-9 Calculated electroahsorption spectra for the two structures previously 
discussed. The dotted line corresponds to the zero field spectra, solid lines are for 
applied fields of 15, 35, 50, 75 and 85 kVIcm. (see text for further details on spectra).

Some comments regarding the construction of the spectra are made in preparation for a 

later comparison with experiment.

(i) The linewidths (HWHM) used for the zero field spectra (dotted lines) are; 7.5 [8], 10

[10] and 10 [10] meV for n=lhh, n=llh and n=2hh for (a)[(b)]. The n=lhh linewidths 

correspond to those measured for the real devices (in the next section). The others are 

arbitrarily chosen to produce realistic spectra, but are expected to be larger since the 

overlap (and hence confinement) of these states is smaller.

(ii) Electric field induced broadening of all the transitions was included. The 

linewidths from the TRM calculations were not used, since these are quite small for the 

fields considered. Furthermore there does not appear to be a consistent method in view of 

how to include them (Miller et al 1986). Broadening due to the background doping was 

included according to the method of Stevens et al (1988), which gives a non-uniform 

electric field across the MQW.

The line width of the resonance is given as (0) + (F, ), with

3EîL''"(F,L)= — ex AF
dr

(5 .4)
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where the excitonic transition energy at a given applied field isEg^'^(F, ), and 

AF = * MQWy/ the intrinsic region doping and Lĵ qw is the total MQW

length. For both spectra, a field variation of 20 kV/cm was used which corresponds to a 

background doping level of 2x10^^ cm*̂  over 0.7 pm.

(iii) I found it necessary to include the transition elhh2 (particularly for the wide well). 

The rapid decrease in the strength of the n=lhh transition is mostly transferred to the 

elhh2 transition which subsequently increases with field. In Fig.5-9(a), this occurs just 

behind the zero field n=lhh transition and is responsible for the ‘pinning’ of the 

absorption at these wavelengths. The growth of forbidden transitions is well understood 

in relation to the electro-absorption sum rules given by Miller et al (1986).

§5.3.2 Experim ental Results.

To investigate the results from the previous section, growth of the two example structures 

was requested. From the superlattice calculations, (§4.2.1), a barrier width of 100Â in 

both structures would keep the couphng of the first electron level <0.3meV. In the valence 

band, the heavy hole coupling was <0.05meV while for the light hole, the couphng was -2- 

5 meV. This demonstrated that despite the small valence band offset, i.e. 25%, the 

barrier width chosen should be sufficient to treat the n=lhh transition as uncoupled, 

especially if the built-in field of the diode is considered. The nominal details appear in 

Table 5-8.

Table 5-8. Nominal structure details of the two InAs .̂ P^^^/InP MQW p-i-n samples.

sample % As well/barrier no. of QW ratio
in weU thickness (A) periods

M737 18.0 98/100 30 2.02

M738 21.0 58/100 30 2.72

Using double polished unprocessed parts of the wafers, the absorption spectra were 

measured. This typically involved taking an average of five scans to minimise noise 

in the spectra. The measured transition energies from the wafers used for absorption 

evaluation were compared to those found from the photocurrent measurements. 

Typically across the areas examined (10x15 mm), variations of ±2 nm were found in the
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variation in arsenic composition. The results presented in Figures 5-10 and 5-11, are 

converted photocurrent spectra using absorption spectra taken across the same range 

(Whitehead et al 1988b, M, Whitehead 1990).

Table 5-9. Tabulated results from the absorption spectra shown Figure (5-10).

sam ple n=lhh HWHM peak absorption product

(nm ) of n = lh h  (meV) «well (cm -1) ^wellkv

M 737 1.069 7.5 11105a 0.0117b

M 738 1.056 8 18344a 0.01 lO b

^ calculated assum ing the nom inal ratios in Table 5-8.

b the w ell w idth is found from the nominal ratios and m easured X-ray period in  Table 5-11.

20 -P

CO
o  150  15 -

5 - -

0 .9 9  1.01 1 .03  1 .0 5  1 .07  1 .09  1.110 .9 9  1.01 1 .03  1 .05  1 .07  1 .09  1.11
w avelen gth  (pm) 

(a)
w avelen gth  (pm) 

(b)

Figure 5-10. Zero applied field absorption spectra for (a) M737 (b) M738. Dotted lines 
indicate the absorption of the device (including the optically ‘inert’ barriers), Solid lines 
are extrapolated absorption in the well using the QW ratios in Table 5-8.

Comparisons with the predicted spectra, (Fig.5-9), show qualitative agreement in terms 

of the number of transitions visible across the range of wavelengths. As expected, for 

approximately the same potential confinement, a wider well can support more bound 

states (G. Bastard 1988). The n=lhh transitions from each sample do not occur at the 

same wavelength, and are separated by some 13nm. In the following section (§5.3.3), it 

is demonstrated that the period and arsenic compositions in both samples are larger than 

requested, and a significant arsenic variation across the wafers is indicated.
The HWHM of the n=lhh peak in both samples is similar, and in this case it is
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interesting to note the product of the peak absorption and well width (Table.5-9). The 

oscillator strength calculations, leading to excitonic area, in the last section showed that 

despite the different compositions, the area approximately follows a ^  dependence. 

Since the linewidths are similar, it follows that the product, , is expected to be
comparable in both samples.

Table 5-10. Electrical characterization results. The intrinsic region doping is 
calculated from C-V measurements and the applied electric field values giving dark 

currents -lOnA were carried out on bonded devices at UCL ( calculated assuming a IV
built-in field).

sam ple nominal 

i-region (pm)

i-region  

doping (cm'^)

m easured  

i-region (pm)

electric field  

at lOnA (kV/cm)

M 737 0 .7 4 4 1 -2 x 1 0 1 5 -0 .7 2 155

M 738 0 .6 2 4 4 -5 x 1 0 1 5 -0 .5 9 190

M738M737

212 -

COCO

10 - -

_o

5  -

1 .09  1.110 .9 9  1.01 1 .03  1 .05  1 .07  1 .09  1.11 1.13 0 .9 9  1.01 1 .03 1.05  1.07
w avelen gth  (pm) w avelen gth  (pm)

(a) (b)
Figure 5-11. Observation of the QCSE for the samples (a) M737 (b) M738. The applied 
field is estimated assuming a IV built in potential for each sample, the solid lines are 
fields of -15 , 35, 50, 70 and 85 kV/cm (cf. Fig.5-9). The dotted line corresponds to 152 
kV/cm in (a) and 186 kVf cm for (b). [note the 15 and 35 kV ! cm were scaled very slightly 
to account for the lower quantum efficiency of the diode at low fields. The later 
photocurrent response curves (Fig.5-13) attest to the small scaling required]

Since the background doping in the two structures was significantly better than the 

earlier samples (Table 5-10), the QCSE can be observed for both structures (Fig. 5-11).
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The relative decrease in peak height agrees well with the theory; the wider well 

sample (M737) reducing very quickly with applied field while for M738 the collapse is 

less dramatic. For both samples, broadening of the exciton feature with applied field is 

observed and above applied fields of 100 kV/cm the exciton is not clearly visible, 

presumably due to field ionization (Woodward et al 1990). Additional broadening could 

be attributed to the non-uniform electric field across the wells ( estimated from Table 5-10 

as 20 kV/cm and 30 kV/cm for M737 and M738 respectively). These two could adequately 

explain the observed results, although later results (§5.4), suggest that broadening due to 

strain relaxation in the samples can also play an important role (cf. Fig.5-19).

M737 and M738 differ slightly in arsenic composition from the theoretical examples 

of §5.3.2. However a comparison between calculated and experimental absorption 

spectra is still useful, since it appears that it is well width rather than As composition 

which mainly governs the form of the electro-absorption spectra. The QCSE for both 

structures is fairly well predicted, the experimental results clearly demonstrate what 

was expected from theory. For a given field (<100 kV/cm), the narrow quantum well 

retains the shape and strength of the n=lhh exciton much better than the wider well 

(compare solid lines in Fig.5-8 and Fig.5-11). The calculated spectra are not as good at 

shorter wavelengths, in fact they are more representative of the photocurrent spectra in 

terms of relative height of the n=lhh transition. To some extent this could probably be 

improved, for example by including the Sommerfeld factor (see for eg. Chemla et al 

1984, Stevens et al 1988). However, I believe the main cause of this discrepancy is the use 

of a simple in-plane description (ie. the diagonal approximation cf. §4.4.1), particular 

for the valence band (cf. §4.4.3).

Although by no means optimal structures, some indication as to the performance of the 

two devices can be undertaken. In figure 5-12, the change in absorption with respect to the 

zero applied field spectra is presented, ie. Aa(l,F) = a(X.,0) -  a ( l ,F ) . The change in 

absorption is averaged over the measured period (cf. Table 5-11) and so includes the 

optically ‘inert’ barrier material. From a device point of view, it is this averaged 

absorption (or absorption change) that is important.
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F igure 5-12. Absorption change (including barrier width) with applied field, (a) M737
(b) M738. The solid lines correspond to 35,50,75 and 85 for both samples, dotted lines are 
for 152kV/cm for (a) and 186kV/ cm for (b).

In both samples, the largest change in absorption, Aa(l,F), occurs at the zero field n=lhh 

peak wavelength. This represents a decrease in absorption as field is applied and so 

satisfies the requirement for SEED devices (see review by D.A.B Miller 1990). For low 

applied fields, ie. <100kV/cm, the wider well sample exhibits a slightly larger Aa(A-,F) at 

the zero field n=lhh peak (cf. solid lines in Fig.5-12). Moreover, the change at this 

wavelength does not increase significantly as the field is increased over lOOkV/cm. In 

contrast, in the narrow well Aa(F) continues to increase substantially (approx. 50%) as 

the field increases up to -180 kV/cm. [for fields >200 kV/cm, the photocurrent spectra for 

both samples became increasingly noisy]. Similar observations can be made 

concerning increasing absorption at wavelengths longer than the zero field n=lhh peak. 

The larger absorption change found in the narrow sample suggests this structure might 

be better suited to applications which require an increase in absorption at the operating 

wavelength, eg. in active mode-locking (eg. A.E Siegman 1986).

To my knowledge, the only other results demonstrating the QCSE in InAsP/lnP 

devices around 1pm are the CBE samples of Woodward and co-workers (1990, 1991). The 

two reported samples contain 50 periods of 100Â/100Â and 90Â/90Â of well and barrier 

material (hereafter referred to as W1 and W2 respectively). The zero applied field n=lhh 

transitions are at 1.05 pm (Wl) and 1.06 pm (W2). Interestingly, the n=lhh HWHM of 

these samples is 6 meV (Wl) and 9 meV (W2) yet the measured peak absorption appears 

to be the same in both cases (-12000 cm-t). Sample M737 (Fig.5-lla) with a HWHM of 7.5 

meV, is almost identical in terms of the QCSE and peak absorption. This is particularly
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encouraging since the zero field n=lhh transition for M737 is at 1.07 (im and presumably 

the sample has more arsenic in the wells leading to a greater misfit/relaxation (cf. 

§5.4). Using the Aa(X,,F) results at the n=lhh peak, the projected contrast ratio for M737 

(ie. exp[Aa(F)d]) for Ijim of material (same as Wl), is 1.3 (at 70 kV/cm) and 1.32 (at 152 

kV/cm). For 0.9 pm (same as W2), the contrast reduces to 1.26 (at 70 kV/cm) and 1.28 (at 

152 kV/cm). These can be compared to the results from Woodward et al, which are 1.35 

(at 60 kV/cm) and 1.4 (at 160 kV/cm) for W l (Woodward et al 1990), and 1.27 (at 120 

kV/cm). The lower values found in the present samples can be mainly attributed to the 

slightly lower zero apphed field peak absorption (which is typically 500 cm-i).

I
I
3

s

0 80 120 
applied field (kV/cm)

160 200100 150
applied field (kV/cm)

50

(a) (b)
Figure 5-13. Photocurrent vs applied field for the two structures (a) M737 a t 1.069 /im (b) 
M738 at 1.056 pm. In both cases the solid line corresponds to the zero applied field n=lhh 
exciton peak wavelength. These responses demonstrate the good quantum efficiency of 
the diodes.

Finally, to illustrate the electrical quality of the diodes, in figure 5-13 the photocurrent 

against apphed field is plotted for both samples at the wavelength of the zero apphed field 

n=lhh transition. At the n=lhh exciton peak wavelength, the negative conductance 

observed in both samples is due to the QCSE and can therefore explain the difference in 

negative conductance between the samples (cf. §5.3.1); essentially the rapid reduction in 

peak height and larger shift with field for the wider well leads to a larger negative 

conductance.
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§5.3.3 C a lc u la tio n s  using  HRXRD resuits.

To determine the compositions, HRXRD reflections were performed on parts of the 

unprocessed wafer from each sample. The fabricated devices were taken from around 

the centre of the wafer (G.Hill, private communication). For M737, a rectangular piece 

(~2 X 1 cm ) was used in the X-ray study. However, due to the fragmented pieces that were 

received, it could not be established which part of the wafer this represented. For M738, 

approximately half of the wafer was still intact, and the X-ray reflections were taken 

along the side nearest the center, ie. close to the diameter (-5cm). In all, three positions 

of each wafer were examined along the longest side. For each position, a total of 4 

reflections were taken, (004, 004 and 115, 1 15), to reduce any effects of tilt or growth 

misorientation (L.Hart, private communication). The results from the X-ray study are 

presented in Table 5-10, for each sample, the case (i) represents the results from the centre 

position of the particular wafer.

Table 5-10. Summary of HRXRD measurements from M737 and M738.

sample measured
&z (-̂ )

measured 
an (Â)

equivalent
ĉubic

average 
% As

measured 
period (A)

M737(i) 5.9002 5.8812 5.8901 10.869 210

M737(ii) 5.8984 5.8775 5.8873 9.384 207

M737(iii) 5.8989 5.8786 5.8882 9.835 210

M738(i) 5.8954 5.8753 5.8848 8.029 162

M738(ii) 5.8933 5.8831 5.8879 9.685 164

M738(iii) 5.8953 5.8756 5.8849 8.056 164

The measured periods are slightly larger than those requested, which was also the case 

with the earlier samples (cf. Table 5-2); although in comparison, the increase is 

certainly a lot less, ie. typically 2-3 monolayers from the nominal values. The average 

arsenic composition is found from constructing an equivalent cubic layer from the two 

measured lattice constants (an and a  ̂ ). [This is listed here since it will be useful for the 

following discussions on relaxation]. Compared to the nominal average arsenic 

compositions, which are 8.91% and 7.71% for M737 and M738 respectively (cf. Table 5-8 

and eqn.(5.2)), the values measured from the wafers are higher and vary depending on
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the position on the sample. In addition, measurements of the in-plane lattice constant 

show some relaxation has occurred in both samples, ie. a|| ^ aj^p (5.8696Â). In most 

cases, the variation of a|| appears to increase consistently with the increase in average 

arsenic found. The following section on relaxation, addresses this point in more detail.

In §5.2.4, the importance of the well and barrier widths, or more precisely the ratio (5.2), 

for determining the arsenic composition in the well layer was demonstrated. Shown in 

figure (5-13) are the results of the calculated n=lhh, n=llh  and n=2hh excitonic 

transitions, based on the three arsenic values found from each wafer. For each average 

arsenic value and period in Table 5-12, a structure is determined by varying the ratio 

and finding the corresponding well width and well composition using (5.2). As before, 

the measured in-plane lattice constant (from Table 5-10) defines the strained state for 

both well and barrier layers. Also for the calculations, I paid particular attention to 

lowering  the nominal ratio since this had been suggested by the earlier results (cf. 

Table 5-2). Indeed for both samples, reducing the ratio does bring the calculated 

transitions into better agreement with those experimentally observed. The relative 

separation in transitions is well described although the absolute calculated values are 

somewhat lower than those observed. The discrepancy is most likely to come from using 

an incorrect arsenic value. The HRXRD results demonstrate an arsenic variation 

across the wafer, one possibility is that the actual devices used in the photocurrent 

measurements have a different composition from those used in the X-ray analysis. The 

variation in arsenic across the wafer was only brought to light with these samples. Until 

then it had been assumed that while some variation would be expected towards the edge of 

the samples, the center would be relatively uniform (M.Hopkinson, private 

communication). Even more alarming was the degree of variation, particularly for 

M737. Recalling that the piece used for X-ray was approximately half of the full 2 inch 

wafer, the reflections taken along the diameter revealed an asymmetric spread of over 

4% arsenic (in the well). It was asymmetric in that most of the variation was localised 

between the center and one edge, ie. the variation from the center to the other edge 

amounted to ~0.5%.

Since these findings, it has been decided that future work on strained, MQW devices 

should pay particular attention to which parts of the wafers are being investigated, ( cf. 

§7.1). Although, ironically, one valuable aspect of the arsenic variation across the 

samples is the increased range of information that has been obtained regarding 

relaxation in InAsP/InP MQW samples. Although on no account does this form a 

complete set, these preliminary results do bring to light some interesting features of 

relaxation in MQW samples.
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F igure 5-13. Comparison of calculated and experimental excitonic transitions for (a) 
M737 and (b) M738. The vertical lines in both plots are the experimental transitions 
from the photocurrent spectra. The calculated spectra are labeled n - lh h  (solid lines) 
n=llh (dotted) and n=2hh (dash-dotted). In addition, structures derived from the three 
average arsenic values (i),(ii) and (Hi) in Table 5-11 are labeled as, (i) open circles, (ii) 
solid diamonds and (Hi) open diamonds. See text for further details on constructing 
structures, eg. for r=2, M737(i) data gives 105A/ 105A with InAsg 2 1 7 ^ 0  783 weZZ
composition.
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§5.3.4 Relaxation in InAsP/inP MQW Structures.

X-ray diffraction on the samples presented in this chapter, demonstrate some relaxation 

in the samples has taken place, ie. the measured in-plane lattice constant is not the same 

as the substrate/barrier, InP (cf. Tables (5-4, 5-10). Despite this, the samples showed good 

optical and electrical properties with excitonic transitions clearly visible at room 

temperature. In Chapter 2 , (§2.4), two ‘popular’ relaxation mechanisms were presented 

(cf. Fig.2.6). In the first, the integrated strain throughout the MQW led to relaxation via 

dislocations generated at the base of the MQW, ie. forming at the MQW/substrate 

interface (Fig.2-6a). While for the second case, the individual strained layers are above 

their critical thickness, and relaxation occurs via dislocations generated at each 

interface. A key distinction between the two mechanisms is that the internal interfaces 

of the MQW remain coherent for the first mechanism. For the samples in this chapter, 

TEM imaging of M395, M396 and M397 showed the MQW layers to be free of dislocations 

ie. the dislocation density is <10^cm'^ (X.M. Zhang, private communication). HRXED 

from all the samples, revealed between 5 and 8  sharp satelhte peaks which is indicative 

of good MQW structure. Along with the optical measurements, the experimental results 

from the samples would indicate that relaxation has taken place at the base of the MQW. 

Moreover, the expected arsenic compositions for all the samples in the well regions are 

<30%, so that even using the ‘conservative’ Matthews and Blakeslee model (cf. Fig.2-7a), 

the well widths used are not expected to exceed the critical thickness.

Establishing that relaxation in the samples is probably by the first mechanism (cf. 

Fig.2-6a), it is appropriate to recall some further consequences. The in-plane lattice 

constant in the MQW region, a||^^^, is the same throughout, ie. the interfaces are 

coherent. However, as relaxation proceeds, a|^^^ tends towards the free standing 

value, (2.4). This is easily visualized, since in the limit of full relaxation, the

MQW is in effect separated from the substrate, ie. the substrate does not influence the 

layers making up the MQW in any way. As a|̂ ^^ tends towards the strain

distribution in the structure changes. For example, in an ideal coherent InAsP/InP 

structure (Fig.5-14a), for growth on InP only the well layers are required to accommodate 

the strain, such that = ag^y. With relaxation, which is

somewhat between the two limits of no relaxation, ag^y, and full relaxation, .

<: aiySTy'*: (5.3)

The barrier material (InP), must accommodate some strain to match the in-plane lattice
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constant, The increase of strain in the barriers occurs as strain in the well layer

reduces, since ŝub> therefore at fuU relaxation, the structure is essentially

strain balanced.

The evolution from ideal coherency to full relaxation is illustrated in figure 5-14. 

Calculated spectra on the right hand side are for an InAsg ^gPg gg/InP QW with zero field 

applied. The three excitonic transitions shown correspond to n=lhh, n=llh and n=2hh. 

Broadening values of 1 2  (5), 24 (1 0 ) and 24 (1 0 ) meV are used throughout for the FWHM of 

the peak and associated continuum (in brackets). The aim of the graphs, is to highlight 

the shift in transition energies one might expect as the degree of relaxation increases. 

As noted earlier, the separation between the heavy- to light-hole transitions is sensitive to 

the amount of strain in the well layer. As the strain in the well layer reduces (and 

increases in the barrier), the separation reduces. However even for full relaxation, there 

is still some strain in the well layers and hence, an appreciable separation of the heavy 

and light hole excitonic transitions. This aside, there is an overall shift to longer 

wavelengths (shorter energies) as the compressive strain in the well decreases. 

Considering the shift of the n-lhh transition with relaxation illustrates how with some 

degree of non-uniform relaxation, broadening of the exciton resonance observed in 

absorption or photocurrent measurements can occur. Throughout all cases, the 

separation between the two heavy hole transitions (n=lhh, n=2 hh), remains 

approximately constant. The decrease in conduction to heavy hole band gap for the bulk 

well layer, with decreasing strain, is matched by a similar decrease in the barrier, 

hence the potential confinement of electron and heavy hole states remains approximately 

the same. In contrast, the light hole confinement, from an already small value, reduces 

even further (cf. Fig.5-5),

In the figures, I have deliberately avoided comparing absolute absorption between the 

three cases, due to the uncertainty in broadening parameters and limitations of the 

present model. However some comments can be made. Previous studies (eg. Woodward 

et al 1990), and those presented here, consistently demonstrate an increase in FWHM of 

the n=lhh exciton peak with an increase in relaxation. Therefore for a given oscillator 

strength, a reduction of the exciton peak absorption would be expected with relaxation, (cf. 

§4.4.3). However, it can also be stated that with relaxation, the separation between heavy 

and hght hole states reduces, which would have some effect on the valence band in-plane 

mass, (cf. §2.2.2). For a compressively strained QW, the closer proximity of the first 

light hole state will typically increase the in-plane heavy hole mass at the top of the 

valence band. The resulting increase in reduced mass, and decrease in exciton radius, 

would increase the oscillator strength (§4.4.3). In this case relaxation increases the 

excitonic area and so for a given Hnewidth, the peak absorption would increase.
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F igu re  5-14. Calculations illustrating the effects of relaxation via the generation of 
misfit dislocations at the MQW/substrate interface, (a) ideal case, no relaxation 

(b) 50% relaxation, (c) full relaxation,
rô|| Vertical lines on calculated spectra show n=lhh, n=llh and n=2hh
excitonic transitions from (a).
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To recap, as dislocations are introduced at the base of the MQW, the MQW will relax 

towards its free standing or equilibrium state. Defining relaxation to be zero for the case 

in Fig.5-14a, and unity for the case in Fig.5-14c, an intermediate state of relaxation, 

Fig.5-14b, can be defined as:

-K ,
Therefore a measure of relaxation is given by the difference in the in-plane lattice 

constant of the MQW and substrate divided by the difference in the free standing lattice 

constant and the substrate, ie. this is a measure of how far the MQW has relaxed towards 

its equilibrium state. This expression is similar to that commonly used in HRXRD 

analysis on the relaxation of single layers. It has already been noted in §2.4.2, that the 

free standing lattice constant for the MQW can be shown to be equivalent to the cubic 

layer value, which is constructed from the X-ray measurements, [note: It is from

the equivalent cubic layer that the average arsenic is determined using Vegard’s Law]. 

Hence, a measure of relaxation can be similarly defined by (M.A.G Haliwell (1990)):

I ̂  cubic ^subj

The advantage here is that all the parameters are obtained from HRXRD, is the

measured in-plane lattice constant and â ŷ̂ c is calculated from the measured 

and â . Using the uncertainties in the QW ratio, which is required to evaluate (5.4)

are avoided. All of the samples so far discussed are listed in Table 5-11 with the 

relaxation values calculated from (5.5). The total length of the MQW is found by 

multiplying the measured X-ray period by the number of periods. The calculated misfit 

(2.16) between the cubic layer and InP substrate is also shown.

Although the structures do not represent a coordinated set designed to specifically 

investigate MQW relaxation, it is useful to attempt to make some comparisons. By 

considering the average arsenic in the MQW, ie. over a single period, the different well 

and barrier widths between the structures are automatically accounted for. In effect we 

can treat the MQW as a partially relaxed layer, as prescribed in most theories on MQW 

critical thickness (Hull et al 1986, R. People 1986, cf. §2-4).
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T able 5-11. InAs^ P^^JInP MQWp-i-n samples considered in the present work

sample equivalent

ĉubic

average
%As

%cubic misfit 
(wrt InP)

MQW 
length (pm)

%relaxation

M395 5.8834 7.309 0.24 1.365 33.5

M397 5.8892 10.327 0.33 1.350 55.3

M737(i) 5.8901 10.869 0.35 0.630 56.3

M737(ii) 5.8873 9.384 0.30 0.621 44.4

M737(iii) 5.8882 9.835 0.32 0.630 48.2

M738(i) 5.8848 8.029 0.26 0.486 37.5

M738(ii) 5.8879 9.685 0.31 0.492 73.7

M738(iu) 5.8849 8.056 0.26 0.492 39.2

Several interesting points arise, for example when M737(i) and M397 are compared both 

samples have approximately the same average arsenic in the MQW region and both 

samples are around 55% relaxed. However the total MQW length of M397 is over twice 

as long that of M737(i). Similarly consider M395, which despite having the thickest 

MQW region, actually exhibits the least degree of relaxation. These results imply that 

the total length of the MQW makes little difference to the relaxation. In fact the 

relaxation appears to depend more on the average arsenic composition, i.e. the misfit 

with the InP substrate (Fig.5-15). It must be emphasised that without other comparisons 

between similar structures of different length to infer the universality or this relation 

may be a little premature, particularly in view of the results firom InGaAs/GaAs MQWs 

on GaAs by Bender and co-workers (1993). Here the authors found that by increasing the 

number of periods, i.e. 10, 15 and 20, in the samples the relaxation increased. Their 

relaxation factor was defined with respect to the well layers, eg. M737(i) would be ~29% 

relaxed in their notation. Apart from the proposed mechanism, which they fail to 

comment on, a measure of relaxation is only a matter of notation and would not affect the 

observation of increasing relaxation (factor) for an increasing number of periods (i.e. 

MQW length). However these results do not necessarily discount the case of M737(i) and 

M397. For these samples the number of periods is 30 and 50 respectively. A possible 

explanation is that for a given average arsenic composition above a certain MQW 

length, an initial relaxation mechanism has proceeded to its maximum, i.e. simply 

adding more periods does not change the average composition and hence no further
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relaxation is required for the moment since the structure is stable. The maximum in 

this case does not correspond to the free standing limit, Fig.5-14c, but rather some point 

between Fig.5-14b and Fig.5-14c. Taking this picture further, it may be that above some 

thickness, say 80 periods, the structure will relax again, approaching the free standing 

limit in stepwise fashion. Of course, with the present set of samples, this can only be 

viewed as speculation.

X 50-

8.0 9.0 10.0
% average arsenic in MQW

12.0

F igure 5-15. Measured relaxation (defined by (5.5)) against average arsenic 
composition in the MQW structure. The majority of the results appear to follow a linear 
relationship, indicated by the straight line.

So far, the results have been expressed in terms of average arsenic composition, more 

generally, the above implications can be stated as, increasing relaxation with 

increasing misfit between the MQW and substrate; the values of which are listed in 

Table 5-11. For these structures, the misfit strain is proportional to the average arsenic 

composition, i.e. the arsenic composition averaged over one period. It follows, that by 

increasing the InP barrier width the average arsenic (and hence misfit) reduces, and 

from the above arguments the relaxation reduces. As already noted, apart from the 

expected shift in transition energies with relaxation (cf. Fig.5-14), another factor that 

seems to be identified with increased relaxation is the increased broadening of the n=lhh 

exciton peak (Woodward et al 1991, Ghisoni et al 1994a). This is also observed with the 

present structures, for example, the HWHM of the n=lhh transition from M395 is -6.5 

meV, while from M737 it measures 7.5 meV. [note: these two structures are chosen 

because of the similarity of their well widths, since these are also known to effect
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linewidths.]

Reviewing the salient points mentioned above, for a given well width and well 

composition, increasing the barrier width reduces misfit strain between the MQW and 

substrate. From the above results, this suggests the relaxation in the structure reduces 

and so does the induced broadening of n=lhh transition. For the same excitonic 

oscillator strength, the expected end result is therefore an increase in the n=lhh excitonic 

peak absorption (cf. §4.4.3). However, it must be also be recognised that some changes in 

oscillator strength would be expected, given the sensitivity of the heavy and light hole 

splitting with relaxation, (Fig.5-14). As already noted with decreasing relaxation, the 

valence band in-plane mass becomes lighter which ultimately leads to a smaller 

oscillator strength (cf. §4.4.4). In this sense an interesting question is, would the 

reduced linewidth (and hence increase in peak absorption) found with reducing strain 

relaxation, out-weigh the expected increase in oscillator strength (and increase in 

linewidth) found with increasing relaxation?

The design of future strained MQW devices would clearly benefit from further 

investigations into MQW strain relaxation (§7.1). For example, some recent work on 

InGaAs/GaAs structures (on GaAs), with which I have had some involvement, 

investigated the effect of increasing barrier width while keeping both the well width and 

composition constant. Three structures comprising twenty periods of nominally 80Â 

Ino 20^^0.80-^® wells with 100Â, 200Â and 400Â GaAs barriers were grown (MBE) by 

Christine Roberts at Imperial College (IRC-SM). The electro-absorption properties for the 

three structures are shown in Fig.5-16.

The results quite clearly demonstrate an increase in zero field n=lhh  peak 

absorption (for the well material) as the average Indium over one period reduces; the 

average Indium (and MQW misfit w.r.t GaAs) reduces from Figs.5-16(a) to (c). From 

HRXRD analysis, the relaxation values for the samples are 56%, 26% and 14% for 

Figs.5-16 (a), (b) and (c) respectively. Thereby demonstrating that as the misfit w.r.t the 

substrate over one period reduces, the relaxation of the MQW reduces, which is in 

agreement with the InAs^P^.^nP results studied earlier. Furthermore, measurements 

of the excitonic area, taken at room temperature, indicated an increase in area with 

relaxation, whichwas also suggested. Although it is worth noting that the decrease in 

exciton linewidth with reducing relaxation has essentially made up for any decrease in 

oscillator strength; the improvements in linewidth are therefore the main cause of the 

higher peak absorption values. With the improved resolution of the peaks a much clearer 

QCSE is observed, [note: In some respects, the response in Fig.5-16a is similar to that 

found for M737 , i.e. the reduction in peak height is visible but the shift of the exciton is 

dominated by broadening (cf. Fig,5-lla)]. However, as noted for Fig.5-10, it is the device
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absorption which is important. The increase in absorption considering just the well 

material does not necessarily lead to increased device absorption, which includes the 

optically inert barrier material. For these devices, it turns out that Fig.5-15a has the 

larger device absorption, however the improved sharpness of the n=lhh transition 

between Fig.5-15a and Fig.5-15b, leads to considerable gains in terms of insertion loss 

and contrast ratio for operation at longer wavelengths than the zero applied field n=lhh 

transition (Ghisoni et al 1994b).

14 -

2 - 2 -
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w avelength  (nm)

940 960 980 1000 1020 1040
w avelen gth  (nm)

(a) (b)
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(c)

Figure 5-16. QCSE demonstrated in three twenty period InQ 2Goq qAs (80Â) /GaAs p-i-n 
diodes, (a) using 100A barriers (h) 200A barriers (c) 400A barriers. All the spectra are 
shown with increasing reverse bias of 0 to -12 V in 2V increments, [measurements by 
Dr. M. Ghisoni at Oxford (IRC-SM)]
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§5.4 Concluding Remarks.

Above all, this work has demonstrated that InAs^Pj.^/InP QW structures can be 

successfully grown by conventional MBE; structures are at least of comparable quality to 

those grown by different methods. Use of this material in QW devices is itself relatively 

new and has already indicated considerable improvements over traditional GaAs and 

InP based structures operating around 1.06|im and at longer wavelengths (Woodward et 

al 1992, Hou et al 1993, Yamamoto et al 1994). Ail of the structures investigated 

demonstrated clear room temperature excitonic absorption, and with improved MBE 

solid sources, excellent electrical properties.

On the modelling aspects, it was demonstrated that a main drawback of 

investigating a new material combination, is the lack of reliable bulk parameters, eg. 

the deformation potentials. In addition, attempting to calibrate parameters to fit 

published experimental results, relies heavily on the accuracy of values quoted, 

particularly the compositions. The majority of published work often determines 

compositions using X-ray diffraction, however, a straightforward comparative study of 

X-ray results from partially relaxed InAsP/InP MQW samples, demonstrated how 

uncertainties in the measured compositions can arise. Using measured QW parameters 

from X-ray and TEM and accounting for relaxation, the modelling results for the initial 

structures was shown to predict the measured experimental excitonic transitions 

reasonably well.

Exploratory calculations using the model, suggested a range of InAs^P^.^/InP QW’s 

samples, differing in well width and composition, could be used to obtain structures 

operating at the same wavelength. The zero field n=lhh exciton transition and the 

subsequent electro-absorption characteristics of QW’s are known to be strongly 

dependent on the well width (see eg. Whitehead et al 1988). However, the current interest 

in producing devices that work with neodymium based solid state lasers, requires 

structures to operate at specific wavelengths. In this sense, by effectively removing the 

dependence of the well width on the n=lhh transition, devices could chosen for a 

particular application solely in terms of the electro-absorption characteristics.

As a result of this work, two samples with different well widths and compositions 

were grown. Experimentally, the electro-absorption characteristics observed agreed 

well with the theory. The n=lhh exciton peak absorption in the wider well sample rapidly 

decreased in height as field was applied, while in the narrow well, strong retention of 

both the shape and height of the n=lhh peak was found. However, the observed n=lhh  

transitions were not at the same wavelength (~13nm apart). X-ray analysis from 

several parts of the wafers, revealed the arsenic compositions in both samples was larger
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than the nominal values. Moreover, a large variation in arsenic composition across the 

wafer was evident, the cause of which is not understood at present and was certainly not 

expected. This has important implications regarding the overall process of obtaining 

samples and performing characterization (§7.1).

[note: Since the original work here on fixed wavelength design, as part of a IRC-SM 

project, similar calculations were carried out for InGaAs/GaAs samples. Recently, 

experimental results from these designs have become available and demonstrate two 

structures, varying in well width and composition, with zero field n=lhh transitions less 

than Inm apart. Electro-absorption responses demonstrate similar results to those 

presented here (M.Ghisoni, private communication)]

Various degrees of partial relaxation was found in all the MQW samples 

investigated. Although the good structural and optical properties exhibited suggests this 

more likely refers to relaxation of the MQW with respect to substrate, ie. the internal 

structure of the MQW remains coherent. With measurements from X-ray diffraction, 

the degree of relaxation could be quantified. A surprising result came from comparing 

two structures with similar average arsenic values (similar misfits) but with different 

MQW lengths. Despite the difference in length (almost a factor of two), the measured 

state of relaxation was found to be the same. Typically, a comparison of relaxation in the 

samples indicated the dominant factor to be the average arsenic composition, ie. the 

MQW misfit with the substrate. Samples with a larger MQW/substrate misfit exhibited 

greater relaxation; the majority of the results displaying a linear dependence of 

relaxation with misfit.
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Chapter 6. Investigations into C om posite  
Quantum Weli Structures: A ttiree layer basis for 
an absorption edge biue shift.

The present chapter describes a novel method to obtain blue shifting structures, where an 

internal field is induced through the band offset ratios within the composite well region. 

This internal field is then cancelled by an opposing externally apphed field resulting in 

a blue shift of the absorption edge. To achieve the required band offset conditions, one of 

the constituent layers is a strained layer, hence the structure relies on the ability to 

accommodate strain. Theoretical calculations, from the model constructed in the earlier 

chapters, are used throughout to demonstrate the expected blue shift and associated 

absorption change. A short correspondence about the present work has been recently 

reported (Stavrinou et al 1994). Details of this are included in the present chapter along 

with a further investigation into the factors which govern the blue shift and ultimately the 

performance of such structures.
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§6.1 Introduction.

§6.1.1 Red or b lue shift Q W  structures?

To date the large body of work on electro-absorption MQW devices has utihzed, in some 

manner, the quantum confined Stark effect (QCSE) for operation. At the band edge, this 

manifests itself as a decrease in peak height and red shift of the n=lhh transition as 

electric field is applied (Fig. 6 -la). Choosing a fixed operating wavelength near the band 

edge, the resulting change in absorption with applied field admits a number of possible 

opto-electronic devices (cf. §1.3.3) One of the most widely studied bistable opto-electronic 

devices is the self-electro-optic effect device or SEED (see D.A.B Miller (1990) for a 

review on SEED’s). A detailed discussion on SEED devices is beyond the scope of this 

thesis, and this work will essentially regard SEED’s as two state devices which are ‘on’ 

when absorption is low and ‘off* when absorption is high. The operating wavelength for a 

SEED device corresponds to the zero applied field n=lhh transition, such that for 

increasing applied field, the absorption (and hence photocurrent) at this wavelength 

decreases through the QCSE, (cf. §1.2.3). This decreasing photocurrent with increasing 

field is the negative resistance that is required for all the various SEED configurations 

(D.A.B Miller 1990). For practical use of SEED devices in systems, several design 

optimisations and trade-offs are apparent (R.Grindle 1992). These inevitably depend 

heavily on the proposed application, for example, a large ratio of the maximum and 

minimum absorption (ie. off/on contrast ratio) is desirable in telecommunications 

system for a large extinction ratio between two signal channels. Although the of&'on 

contrast ratio is important, so are the individual absorption levels in the device. For 

example, maximizing the absorption leads to reduced light transmission in the ‘off 

state, which is beneficial in cascaded systems in which a number device outputs are 

essentially summed onto a single input. Whereas minimizing the absorption in the ‘on’ 

state, reduces the on state insertion loss and thereby power dissipation, an important 

consideration in two dimensional arrays of SEED’s for use in optical logic planes. For a 

recent review of SEED devices and application considerations see Lentine and Miller 

(1993), and references therein.

Traditionally SEED devices are based on decreasing absorption/photocurrent at the 

operating wavelength arises from the red shift of the n=lhh exciton transition (D.A.B 

Miller 1989). However it was recognized that SEED devices based on a blue shift can
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offer several advantages (eg. J Khurgin 1988, and next section). In a blue shifting 

structure, the band edge absorption (excitonic) shifts to shorter wavelengths (higher 

energies) on application of an electric field. Fig.6-1 (right). The situation in figure 6 -lb 

can be viewed as having a pre-biased conventional QW device, such that on removing 

the field the excitonic band edge returns to its con ven tion al zero applied field 

wavelength. However a key difference in the blue shift structure is that the field across 

the device is increased to produce the blue shift. Thus if the operating wavelength 

corresponds to the zero applied field band edge, the decreasing absorption (hence 

photocurrent) for increasing field will also produce negative device resistance, the 

condition required for the SEED devices. Fig.6 - 1  (right).

RED-SHIFT SEED BLUE-SHIFT SEED

LASER
Of A

REVERSE BIAS

REVERSE
BIAS

LASER
a

REVERSE BIAS

Figure 6-1. Schematic ofSEEDs employing red-shifting (left) and blue-shifting (right) 
QW structures, [taken from Goossen et al 1990]

In fact, irrespective of a red or blue shift device, provided the operating wavelength is 

chosen to be the zero applied field n=lhh transition, applying an electric field will 

produce the negative device resistance required for SEED configurations. It is only 

when a SEED application is envisaged that the relative merits of either structure are 

revealed. That is, although the contrast ratio may be comparable, red shifting SEED’s 

give a high absorbing ‘off state whereas blue shifting SEED’s suggest a low absorbing 

‘on’ state (cf. §6 .1 .2 ).

The comments so far have been directed mainly towards electro-absorption SEED 

devices, it should be noted that electro-refraction devices, ie. devices utilizing the 

accompanying change in refractive index with a change in absorption, are expected to 

exhibit advantages by using a blue shifting mechanism (Zucker et al 1990a). Blue 

shifting devices allow operation at smaller detuning  energies from the zero applied
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field exciton resonance than red shifting devices. Hence large changes in refractive 

index are available for optical phase modulation with minimal intensity modulation 

(Zucker et al 1990b).

§6.1.2 O btain ing b iue stiifting structures.

The work by J.Khurgin (1988) and then D.A.B Miller (1989) first established the 

advantages that could be gained by using blue shifting SEED devices. Operating in the 

high transmitting ‘on’ state (ie. with applied field), the residual absorption in the device 

takes on sub gap values or at least the low absorption in the n=lhh tail. On the other hand, 

a red shift SEED in its ‘on’ state still experiences significant absorption from either the 

e lh h l continuum or other transitions. For sufficient contrast, a red shift device places 

the usual demands on the quality of the zero field exciton peak in relation to linewidth 

and hence peak absorption (cf. §4.4.3). To some extent, this fixes the operating 

wavelength to the n=lhh peak wavelength. In a blue shift device although the ‘off state 

absorption is less the contrast ratio can still be the same, due to the small ‘on’ state 

absorption. In addition, the operating range of the device is increased and to some extent, 

less emphasis is placed on good quality exciton peaks (D.A.B Miller 1990).

Many of the blue shifting structures which have been proposed actually exhibit a quasi- 

blue shift of the absorption edge. For example, a net blue shift of the absorption edge was 

shown to occur in superlattice structures, (cf. §1.3.3), through Wannier-Stark 

localization (Bleuse et al 1988a, Bleuse et al 1988b). A similar outcome was 

demonstrated using symmetric coupled QWs (Onose et al 1989). Here the QCSE rapidly 

diminished the strength of the n=lhh transition, allowing higher energy transitions to 

dominate, eg. e lh h 2 . In contrast to these localization induced quasi-blue shifts, 

structures achieving an actual blue shift of the absorption edge have been demonstrated 

in strained MQWs grovm on [111] orientated substrates (Goossen et al 1990, Pabla et al 

1993, 1994); as previously noted in §2.3, such growth leads to piezoelectric fields in the 

strained MQW region. In operation an electric field is applied in the opposite direction to 

the internal piezoelectric field, essentially reducing the pre-biased state of the structure. 

Recently, such structures have been used to demonstrate all-optical bistable sivitching for 

an S-SEED configuration (Pabla et al 1994). Opposing a built-in field is the underlying 

principle behind many of the proposed [100] structures. A built in field which is then 

cancelled by an applied field, can be achieved using either graded gap QWs (Hiroshima 

and Nishi 1987) or asymmetric coupled QWs (J. Khurgin 1988, D.A.B. Miller 1989). The
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internal field in these structures is implied from the spatial separation of the ground 

state electron-hole pair, caused by the asymmetry of the structure. However, the 

magnitude of the blue shifts in these works is likely to be comparable to phenomena such 

as excitonic broadening and would therefore be difficult to observe at room temperature 

(Leavitt and Little 1990). More recently, it was predicted that using a three step 

asymmetric coupled QW, substantial blue shifts could be obtained, due to the larger 

internal field generated, ie. larger spatial separation of the electron-hole pair (Susa and 

Nakahara 1992). Finally, another device that has been shown to exhibit a blue shift is the 

BRAQWET structure (Wegener et al 1990) where the applied electric field sweeps 

electrons into the well region causing a blue shift of the absorption edge via band filling 

effects.

As noted, it is with the principle of inducing (and then opposing) an internal field 

that the present work is concerned. A large blue shift, sufficient for room temperature 

operation around 1.55 pm, can be achieved.

§6.2 A Three Layer Basis for an Absorption Edge Blue Shift.

The three layer device proposed has an asymmetric well structure resulting in a 

potential profile of the form shown in Fig.6-2. The composite well region (layers B and 

C) consists of two materials which are chosen because of the opposite weighting of the 

band offset parameters, Qc:Qy, with respect to the barrier material (layer A), [note: the 

band offset parameters refer to the percentage share of the total confinement potential 

between the conduction and heavy hole valence band]. To illustrate this point, consider a 

structure similar to Fig.6-2, and assume that layers B and C have comparable band gaps. 

The offset parameters for layers A and B are such that , so the band gap

difference is shared in favour of the conduction band. Conversely, the parameters for 

materials A and C are such that , indicating the difference in band gaps is

shared in favour of the valence band. With layer A enclosing the structure, the resulting 

hne-up between the B and C layers is a staggered or type II one. Clearly to obtain this type 

of profile in practice, requires knowledge of the band offset parameters for various 

material systems. These have often proved difficult to determine, although recent work 

suggests that by growth of the appropriate structures they may be found to a high degree of 

accuracy (Kopf et al 1992).
The materials chosen to fulfil the offset conditions expressed above, and provide 

operation around the 1.55 pm region, are InP as the barrier material (layer A) enclosing 

a composite weU region of InAsg ^Po.e (layer B) and lattice matched Ing ggGag^yAs (layer
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C). Growth is taken to be on [100] InP substrates, hence the effects of strain are only 

considered for the InAsP material which is assumed to accommodate the -1.3% 

compressive strain coherently (cf. the single layer critical thickness model of Matthews 

and Blakeslee, §2.4.2). Cumulative effects of strain in a MQW are for the moment 

neglected (cf. Chapter 7), noting that the average misfit of one period would be less than 

that for the well alone and ultimately depend on the dimensions of the lattice matched 
layers (A and C).
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(a) (b)
Figure 6 -2 . (a) Potential profile (illustrating only the conduction and heavy hole bands) 
of a InP(A) / InAsQ^PQ g (B) IInQ g^GaQ^jAs (C) composite structure. The direction of 
applied field (right diagram) is chosen to produce an blue shift of the absorption edge, (b) 
Ground state envelope functions, e l (solid) and hhl (dash-dotted), for zero applied field 
and 240 kV I cm.

A type II line-up between layers B and C, (cf. Fig.6-2a), is due to the contrasting offset 

parameters with respect to the InP barriers. Initially, these are taken as 75:25 for 

InAsP/InP (Schneider and Wessels 1991) and 40:60 for InGaAs/InP (Skolnick et al 

1987). Given that the InAsP/InP offset is the least studied of the two, it is useful to note a 

type II line-up may still be achieved using an offset of up to 55:45 for InAsP/InP. 

Naturally, the potential steps between the B and C layers will be reduced, but as 

demonstrated in the following section, (§6.3.1), the general principle expressed here will 

still hold. The following results are for a structure with dimensions, 100Â (layer A), 60Â 

(layer B), and 40À (layer C). These well widths and compositions are initially chosen 

simply to demonstrate the general principle of achieving a blue shift.

At zero applied field for the structure of Fig.6-2a, the calculated hhl state is strongly 

confined in layer C (cf. upper plot (dash-dotted line) in Fig.6-2b). Whereas the first
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electron state, e l, is situated in layer B, some 32 meV below the conduction band edge of 

layer C. At zero applied field, the observed spatial separation of the ground state envelope 

functions, (upper plot of Fig.6-2b), may also be inferred from the low squared overlap 

integral. Fig. 6-3a. This situation is analogous to a symmetric square QW with a field 

applied, the resulting asymmetric potential polarizes the states to opposite sides of the 

well, thereby inducing a spatial separation. This is im ita te d  in the three layer 

structure, with the separation resulting fi*om the asymmetric type II potential profile in 

the composite well region. Thus, an induced internal field is present in the three layer 

structure.
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(a) (b)
F igure 6-3. Calculated performance of the structure in Fig.6-2a with an applied electric 
field, (a) Spatial separation of the e l and hhl envelope functions, (h) Squared overlap 
integral between e l and hhl states.

In order to achieve a blue shift of the n=lhh transition, an external electric field is 

applied in the direction illustrated in right hand side of Fig.6-2a. Increasing the applied 

field in this direction, essentially acts against the internal field and the spatial 

separation of the electron and hole states reduces, Fig.(6-3a). The resulting QCSE then 

starts out as a blue shift (D.A.B Miller 1989). The envelope functions, Fig.6-2b, 

demonstrate the re-distribution of the states as field is applied. The first electron state, 

e l, is pulled towards the layer C as the potential here gradually lowers with respect to 

layer B. Less noticeably, the heavy hole, hhl, is pulled towards layer B, however it is still 

very much confined in layer C due to the large potential barrier it experiences. The 

decrease in spatial separation is explicitly demonstrated in figure 6-3a, and causes a 

subsequent increase in the squared overlap integral between the states, Fig.6-3b. The 

corresponding blue shift of the n=lhh excitonic transition is shown in Fig.6-4a. It can be 

noted the linear increase in transition energy for low applied fields tends to a quadratic
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one with high fields. This is opposite to that found in conventional red shift quantum 

wells (eg. Bastard smd Brum 1986), and so supports the idea of an induced internal field 

which is gradually reduced with apphed field, ,

0,81 120

0 ,80:.
9 1 0 0 -

0,79

80--0 ,78:

S 0,77 :. 60
0 ,7 6 -

40--

0,74
100 150 I

applied field (kV/cm)
200 250 100 150 :

apphed field (kV/cm)
200 250

(a) (b)
F igure 6-4. Calculations of the excitonic properties for the structure in Fig. 6-2a under an 
applied electric field, (a) The n=lhh excitonic transition energy, (h) The n=lhh  
excitonic area.

As is the case with calculations in conventional QW structures, many of the excitonic 

properties, such as the change in oscillator strength (or integrated area) with field, are 

well described in form by the squared overlap between the individual states (cf, Fig,5-7b 

and Fig,5-8b and see Miller et al 1986), This is demonstrated in figure 6-4b, where the 

calculated excitonic area, (4,82), is shown to increase with apphed field (similar in form 

to Fig,6-3b), Calculations in the following section will initially use the squared overlap, 

exploiting its correspondence with the excitonic features, to discuss excitonic absorption. 

Although not shown, it is noted that the excitonic binding energy for e lh h l increases with 

field and the in-plane radius decreases with field; again, exactly the opposite to that 

found for conventional square QW structures, (cf, Fig,4,9), All of these results for the 

present composite structure indicate an increase in excitonic absorption as electric field 

is apphed. This is implicit from both the increase of the squared overlap integral and  

the decrease between the expectation values (zg) and (z^) with apphed field where.

(zi>= J/J(Zi)Zj/j(Zi)dZj (6 ,1)

Having demonstrated the basic principle behind the blue shift structure, the next section 

concentrates on the main parameters affecting the performance, eg, band offsets, and on
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design optimization, eg. tailoring the ‘built-in’ field. Specific comments about the 

modelling are brought in as the situation arises, however some general points common to 

all calculations can be made:

(i) Despite the composite nature of the structure, the common assumption that the Kane 

matrix element is the same throughout the structure is used (Bastard 1981). However, 

unlike a conventional symmetric QW (where it is reasonable to assume the value for the 

well material), for the composite structures I used a weighted average of the two respective 

well values; the ratio of the layer width to the composite well width was used as the weight.

(ii) For absorption calculations, the real part of the refractive index and the optical 

matrix element from the fu ll model (§3.2.2) are averaged over a two dimensional 

configuration space (Zg, z^) weighted by the envelope functions. As with the reduced mass 

and dielectric constant calculations (§4.4.2), the reasoning behind this method is in the 

assumption that the exciton resides in some embedding space determined by both electron 

and heavy hole distributions. Hence:

(a:) = x jj|/g^ (Z ef|//i(Z h f dzgdzh (6.2)

with

X  =  -,-------   r Ï  % ( z ) d z

Fe-Zhly

where x corresponds to either Ep or n, the matrix element and the real part of the 

refractive index respectively.

§6.3 A Re-examination of the Governing Factors.

Realizing a blue shifting three layer structure lies in obtaining a spatial separation of 

the electron and hole ground states at zero applied field. Since the separation is induced 

by the asymmetric potential of the structure, parameters such as material composition, 

well widths and offset parameters will significantly effect the degree of spatial 

separation. In the present section examples of the governing factors are investigated in 

relation to the blue shifting performance of prospective devices. While by no means 

exhaustive, these preliminary results demonstrate the electro-absorption properties may 

be tailored in some fashion towards an optimum design.
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§6.3.1 Band offset param eters  a n d  com positions.

In the composite well considered in §6.2, it is recognized that the offset parameters for 

InAsP/InP are the least studied of the two. However, evidence in the hterature points to 

an offset in favour of the conduction band (e.g. Schneider and Wessels 1991, Yamamoto 

et al 1994). To date, two very similar parameters have been reported, namely, 75:25 

from samples containing -67% arsenic (Schneider and Wessels 1991) and more 

recently, 70:30 from samples containing -21% (Hou and Tu 1994). The slight difference 

could be attributed to the different compositions and hence different strain in the 

samples. Although as the previous chapter demonstrated the offset parameter in 

symmetric QWs can conceivably take on a range of values, (cf. Fig,5-2a), yet still 

satisfy experimental transition energies due to uncertainties in material parameters.

For the present work, the InAsP/InP offset parameter is varied while still keeping the 

share of confinement potential in favour of the conduction band. The lattice matched 

InGaAs/InP offset is fixed at 40:60, since next to the GaAs/AlGaAs system this remains 

one of the most widely investigated, and hence estabhshed, offset parameters for a III-V 

material system.

For the first example, both well materials are kept as InAsg ^Pg g and Ing sgGag 47AS, i.e. 

the same as in the previous section. Three offset parameters for InAsg ^Pg g/InP are 

chosen which comfortably cover the range suggested in the literature. The second set of 

calculations uses fixed offset parameters but varies the arsenic composition. For both 

sets of examples, the constituent widths in the composite well are kept the same, i.e. 60Â 

(layer B) and 40Â (layer C). Rather than show the potential profiles the essential details 

of the line-ups can be obtained from Table 6-1.

At zero applied field, the heavy hole potential confinement between layers B and C, , 

is sufficiently large to confine the hhl state strongly in the C layer. In this sense, (z^) is 

typically at the centre of layer C for all the above examples, (Fig.6 -6 a,b). [note: The x- 

axis zero in figures 6-5a,b represents the B/C interface] Conversely, the changes in offset 

parameters or composition indicated in Table 6-1 strongly effect the energy of the e l  state 

in relation to the structure and hence (zg). However, whether the e l  state lies above or 

below the conduction band edge of the C layer, there is always a significant non-zero 

spatial separation between the states at zero applied field, i.e. (ze)-(zh ) ^ 0, (Fig.6 -6 a,b). 

Furthermore, since the (z^) is relatively insensitive to the modifications in the structure, 

the change in spatial separation is almost entirely due to the change in the expected 

position of e l, (zg).
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Table 6 -1 . The energy separations between the conduction and valence band of the 
layers for the example structures considered in this section, i.e. varying offset 
parameters Q ^ : Q ^  and layer B composition. Also indicated is the position of the e l 
state with respect to the conduction band edge of layer C (for 60Al40A composite well). 
The energy zero is taken to be at the heavy hole band edge of the layer B, and the 
separations are described as AE^ = E f -E^. Negative values of AE®  ̂ and AE®  ̂ im ply  
a type II line-up between layers B and C (cf. Fig.6-2a). In all cases, layer C is lattice 
matched InGaAs and has the same potential offset as illustrated in Fig.6 -2 a..

InASo.4Po.6 InAsosPo.s InAso.aEo.?
75:25 65:35 55:45 75:25 75:25

A E ^: 328 284 240 399 252

-82 -38 6 -153 - 6

el: <E? >E? >E? <E? >E?

A E ^: -109 -153 -197 -133 -84

AEgf: -259 -215 -172 -235 -284

Considering specific structures in relation to a reference  sample used in §6.2, 

increasing the valence band share of confinement potential (e.g. from 75:25 to 55:45) 

produces qualitatively the same results as decreasing the arsenic composition in layer B 

(e.g. 40% to 30%). In both cases, the e l  state lies above the conduction band edge of the B 

and C layer and is therefore localised over both layers. As a result, (zg) is closer to the 

B/C interface which consequently decreases the zero applied field spatial separation 

(w.r.t reference sample). With these results it can be generally stated that as the 

potential step in the conduction band between layers B and C increases, (zg) is situated 

further towards the centre of layer B, (Fig.6-5a,b). Accordingly, the overlap between the 

ground electron and hole states reduces.

The applied field results for the both example sets all demonstrate varying degrees of 

n=lhh blue shift and corresponding increase in overlap integral (Fig.6-5). Comparative 

analysis indicates they can be explained by considering varying strengths of internal 

field vis-à-vis  the zero applied field spatial separation. Structures giving rise to a 

smaller zero applied field spatial separation, either through reducing arsenic 

composition or increasing the valence band offset parameter, show a smaller n=lhh blue 

shift across the range of applied fields (Fig.6-5e,f).
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Figure 6-5. Calculated applied field characteristics for the two example sets in Table 6- 
1. Left hand graphs are varying for InAsQ^Pg e/InQ g^GaQ^yAs (60Â/40Â).
Right graphs are varying x for I n A s ^ P I n Q  ^^GaQ^yAs (60Â/40Â) with Q ^ :Q ^  
(75:25). (a) and (b) expectation values for el and hhl. (c) and (d) e lhh l squared overlap 
integral, (d) and (e) blue shift of n=lhh transition, (labelling in (a) and (b) is the same 
in associated plots directly below)
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For increasing applied field, the quadratic dependence of the n=lhh the blue shift clearly 

dominates which in turn reduces the blue shift per unit field, in some cases eventually 

resulting in a red shift . The respective overlap calculations are similar in form, 

(Fig.6-5c,d). Recalling the analogy with prebiasing a conventional square QW, the 

early quadratic nature of n=lhh blue shift with applied field suggests these structures 

induce less of an internal field than the reference sample. Similar reasoning applies to 

the other structures, where the e l  state is increasingly confined in the B layer, ie. e l  state 

lies below the C layer conduction band edge (cf. Table 6-1). The zero applied field spatial 

separation is larger and by implication the internal field in these structures is greater. 

The resulting n=lhh blue shift retains an almost linear dependence with increasing 

applied field, and only at large fields does the quadratic nature becomes apparent. In 

this sense, the late quadratic nature of the n=lhh blue shift is consistent with a larger 

internal field in these structures, which was suggested by the larger spatial separation at 

zero applied field.

The results have shown that even accounting for a larger valance band offset, an n=lhh  

blue shift and increase in overlap integral with apphed field can be achieved, though at a 

decreased rate since the zero field separation is reduced. To some extent this can be 

compensated for by increasing the arsenic composition, ie. further reducing the 

conduction band potential in layer B. Subsequently, through the stronger localization of 

e l  in the B layer an increase in the zero applied field spatial separation results.

In both sets of structures, where the well widths remain constant, the magnitude of the 

spatial separation is shown to be proportional to the strength of the internal field induced. 

This is borne out by considering the form of the n=lhh blue shift with applied field. It is 

also interesting to note that the n=lhh transition at zero applied field is very sensitive to 

the offset parameters used, (Fig.6-5e). This suggests an asymmetric structure of this type 

would be useful in investigating the InAsP/InP offset.
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§6.3.2 W ell width selection for internal fields.

To investigate the effect of structure dimensions the example system to be considered 

consists of InAsQ^Pg g/InQ ggGag^yAs as the composite well region. All of the results will 

assume the offset parameters of 75:25 for the InP/InAsP interface. For the initial study, 

the zero apphed field characteristics of the structure are investigated. The method here 

consists of varying the width of layer B (InAsQ^Pg g) while keeping the width of layer C 

(Ing 53 Gag 4 7As) constant. As suggested in the previous section, the position of the 

electron state with respect to the bulk band edges plays an important role in these 

characteristics.

The calculations, over a range of B layer widths, are carried out for two values of layer 0, 

ie. 20Â and 40Â. Increasing the width of layer B causes the first electron state to become 

more confined in layer B, ie. further below the conduction band edge of layer C, (Fig.6 - 

6 a). Accordingly, the expectation value, (zg), moves further away from the B/C interface 

and tends towards the center of the B layer for large Zg. Consequently, the overlap with 

the h h l state reduces as the distribution of the e l  envelope function into the C layer 

decreases, (Fig.6 -6 b). To some extent the width of layer C effects the energy position of 

the conduction band states, with higher energy states found for a smaller C layer, (Fig.6 - 

6 a). In many respects the situation is similar to the higher energies found in narrow 

square QWs, ie. for the present case the smaller C layer reduces the total length of the 

composite well. As Zg increases the effect of the C layer on the conduction band states 

reduces, a feature also found in wide square QWs in relation to the small changes in 

confined state energies as the well width increases. However an additional effect, quite 

relevant for e l  state in the present structures, is the reduced distribution of this state into 

the C layer as Zg increases above ~40Â, ie. the C layer essentially becomes potential 

barrier which has a diminishing effect on the e l  state which is predominantly localised 

in layer B.
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F igure 6-6. Calculations for a three layer structures with varying B width and fixed C 
width, Iq=40A (solid) and Iq =20A (dotted) . (a) The conduction band states in relation to 
the band edges of the structure, (b) The squared overlap integral between el and hhl.

The effect of layer C on the calculated expectation values for the ground states, show for a 

given l-Q, (zg) is situated closer towards the B/C interface for a wider C layer. However, 

it should be remembered the total lengths of the structures are different for a given /g, 

and so is the position of B/C interface in relation to the composite length. The question of 

comparing spatial separation for different composite lengths is discussed later in 

relation to the blue shift properties. For increasing Zg, the effect of layer C on (zg) 

reduces, in a similar manner as found with the e l energy. Results for hhl justify the 

reference to a strongly confined hhl state in layer C. Both the expectation value,(zj^), 

and hhl energy are unaffected by the width of layer B. However the difference in n=lhh 

transition energies for the 40Â and 2 0 Â layer C widths is mainly due to the difference in 

hhl energy (-50 meV) which is in turn determined by the width of layer C, (Fig.6-7a).
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F igure 6-7. Calculations for a three layer structures with varying B width and fixed C 
width, Iq=40A (solid) and Iq=20Â (dotted), (a) The n -lh h  excitonic transition, (h) The 
n -lh h  excitonic absorption area.

The calculated excitonic absorption area is illustrated in figure 6 -8 b, and is seen to 

reduce as Zg increases, in a similar way to the overlap integrals (Fig.6 -6 b and cf. 

(4.77)). However, as the last chapter demonstrated, comparing the overlap integral 

between two dissimilar structures can be misleading, it reveals nothing about the 

difference in absolute absorption. This is demonstrated by a comparison of figures 6 -6 b 

and 6-7b, In figure 6 -6 b for small Zg, the wider C layer structure produces a higher 

overlap integral between e l  and hhl; however the calculated excitonic absorption area 

lower. That is, the overall smaller composite width accompanies a larger calculated 

absorption area, [note: The increase of absorption area with reducing well width (or in 

this case composite width) is well established, (cf. Fig.5-8a), although it is also 

recognized that the overlap integral is an important factor (cf. (4.77).]

In the design of a blue shifting electro-absorption device, eg. a SEED device, the 

absorption at the operating wavelength for zero applied field is an important 

consideration (D.A.B Miller 1989). The operating wavelength, is typically chosen 

near the zero applied field n=lhh exciton transition, (cf. Fig.6 -lb). To a first 

approximation, the absorption change of the device with field is determined from the zero 

applied field peak absorption at assuming that with field the absorption at l^p tends to 

zero. However the oscillator strength, leading to excitonic absorption, follows the same 

trend as the squared overlap integral between the states forming the exciton, Fig.6 -6 b and
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(cf. §4.3.3 and (4.77)). Clearly a trade off exists between obtaining a reasonable zero 

applied field absorption, ie. a large overlap integral, and achieving a sufficient n=lhh  

blue shift, ie. requiring an internal field and hence a reduction in the overlap integral.

In addressing the zero applied field absorption for the present materials, reducing the 

width of layer B is seen predominantly to increase the overlap (and hence absorption), 

[note: It may also be recalled an additional way of increasing the overlap integral at zero 

applied field is to reduce the arsenic composition in layer B (cf. Fig.6-5d)j. The width of 

the C layer, although importantly governing the zero applied field n=lhh transition, in 

the following examples is also seen to determine the performance of the n=lhh blue shift, 

(Fig.6 -8 a).
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F igure 6 -8 . Calculations for three layer structures with 30Â layer B and varying layer C 
width, (a) The n=lhh transition energy for applied electric field, (b) The spatial 
separation of the e l and hhl envelope functions.

For the final examples, InAsg g/Ing ggGag ^yAs are used for the composite well, the B 

layer width is fixed at 30Â while the C layer is varied. For all cases, at zero apphed field 

the e l  state is above the conduction band edge of layer 0, and for increasing C layer width 

this resides closer towards the bulk band edge of layer C, (cf. Fig.6 -6 a). As the composite 

length increases the spatial separation increases, (Fig.6 -8 b), which can mainly be 

attributed to (z^) following the centre of the layer C. In otherwords, the lower potential in 

the B layer causes (zg) to be reasonably ‘pinned’ close to the B/C interface, which 

gradually moves through the interface towards the C layer for larger values of Iq . At a 

given applied field, the ground states in the wider structure experience a larger change 

in potential. Consequently, although the zero field spatial separation is larger, the
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reduction in separation per unit field for the wider composite well is greater, (Fig.6 -8 b). 

The maximum blue shift (and maximum increase in excitonic area) occurs for a net 

zero separation, and a red shift results as (zg) and (z^) effectively pass one another ie. 

represented as a negative separation. Recalling the analogy with conventional QW’s, a 

zero separation represents a complete cancelling of the internal field by the applied field. 

The positive spatial separation that still exists at large applied fields in structures with a 

narrower C layer suggests a residual internal field is still present. Accordingly, the 

maximum blue shift and increase in absorption area have yet to be achieved, (Fig.6 -8 b). 

By considering both the decrease in spatial separation and the form of the blue shifts (and 

excitonic area) for apphed field, it is concluded that structures with a wider C layer 

induce a smaller internal field.
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Figure 6-9. Calculations for three layer structures with 30À layer B and varying layer C 
width, (a) The relative n=lhh shift for applied electric field, [note: positive values 
denote a blue shift] (b) The n=lhh excitonic area for applied field.

A potentially confusing point arises from the conclusions made in §6.3.2, in that a larger 

spatial separation at zero applied field implies a larger internal field, exactly the 

opposite of what is found here. To unravel this apparent contradiction, it is useful to 

consider conventional QW structures. For wide wells the spatial separation rapidly 

increases as field is applied, while for a narrow well the rate of increase is somewhat 

less, such that at a given field a larger separation is found in a wider well. Then for the 

same prebiased field across each QW, simply taking the spatial separation to be a 

measure of the prebiased (or internal) field yields an incorrect result. The point is the
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well width is a governing factor in the spatial separation. In fact determining the size of 

the prebiased field could be achieved by applying an opposing field and observing the 

value that produces zero separation, ie. exactly the method employed here. For the 

structures in §6.3.2, the composite length was the same and so comparing the zero applied 

field spatial separation is justified, and consistently agrees with applied field results. 

To compare structures with different composite widths, the form of the applied field blue 

shift (and overlap integral) appear to be the best methods along with observing the applied 

field at which a net zero separation occurs.

For a typical electro-absorption device, the blue shift must be sufficient to reduce the 

absorption at the operating wavelength. If the zero field n=lhh transition is the operating 

wavelength, a sensible condition to aim for is the n=lhh blue shift to be at least 

comparable to the half-width half-maximum (HWHM) of the n=lhh resonance. From 

the series considered in figure 6-9a, nearly all exhibit blue shifts in excess of 20 meV 

which is actually larger than the full width half maximum (FWHM) of typical 

InGaAs/InP QW’s (see eg. Sugawara et al 1990). Moreover, up to this value, the shift per 

unit applied field is very efficient essentially following a linear relationship rather than 

a quadratic one.

To illustrate possible devices operating around the optical fibre low loss window (1.55 

pm), the electro-absorption spectra for two structures, ie. 30Â/35Â and 30Â/40À from 

figure 6 -8 a, was calculated and presented in figure 6-10. The spectra assume light 

propagating perpendicularly to the layers, ie. such as in a transverse MQW device. 

Only the n=lhh exciton and the corresponding continuum were computed, since the next 

closest transition for both structures is some 60 meV away, ie. the n=llh exciton. In both 

the cases, the InP width (A layer) was taken to be 100Â. For this width, couphng between 

adjacent composite wells would be negligible, ie. the e l state has a miniband width of 

-10'^ eV. Further examination with the superlattice dispersions, (§4.2.1), indicate for 

the well widths used, the InP width could be reduced to 80Â giving a miniband width of 

~0.5meV.

At zero applied field the n=lhh transitions are -19 nm apart, ie. 1.555 pm and 1.574 

pm in figures 6-10a,b respectively. The bunching of the spectra at large applied fields is 

a result of the quadratic nature of the blue shift which starts to dominate, (cf. Fig.6-9a). In 

this regime, the n=lhh transition and absorption strength is less sensitive to changes in 

applied field. However, before this occurs the linear blue shift is sufficient to allow 

decreasing absorption for increasing applied field at the chosen operating wavelength, 

ie. 1.555 pm (Fig.6-10c). Were the structures incorporated in the intrinsic region of a p- 

i-n diode, the decreasing absorption would give rise to a decreasing photocurrent and 

hence satisfy the conduction for a SEED configuration. It is noted the calculated change
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in absorption is larger than the InGaAs/InP square QW devices used by Bar-Joseph and 

co-workers (1988) to demonstrate bistable operation with a D-SEED configuration.

30Â/35Â 30Â/40Â
8 - - 8 - -

co CO

2 - . 2 - .

1.45 1.5 1.55 1.6 1.5 1.651.65 1.45 1.55 1.6
w avelen gth  (|im) 

(a)

w avelen g th  (qm) 

(b)

at 1 .555  qm

  30Â /35Â

  30Â /40Â
CO

3--

40 120 200 2400 80 160
applied field (kV/cm)

(c)
F igure 6-10. Calculated absorption spectra for an applied field (0-240 kV/cm in steps of 
40 kV/ cm) for two three layer structures. The zero applied field spectra is shown as a 
solid line, the absorption refers to the composite well region, (a) a 30Â/35Â structure,
(b) a 30AI40Â. structure, (c) the absorption with applied field at 1.555 am which 
corresponds to the zero applied n=lhh transition of (a). Line widths used are 8 meV 
(HWHM) for the exciton resonance, and 8 meV for the continuum.

Although encouraging, the above spectra can only be indicative of the performance, 

mainly due to the uncertainty in broadening mechanisms contributing to the exciton 

resonance, eg. alloy broadening and interface roughness. I have attempted to use 

realistic line widths for structures which are slightly larger than those typically found in
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InGaAs/InP MQW structures (see eg. Sugawara et al 1990). Although given the 

different nature of the structures, linewidths from square QW’s with a single well layer, 

may not be representative of a composite one. Another factor that has been previously 

mentioned in §4.4.3 is the choice of line shape functions for the exciton resonance. The 

use of Lorentzian functions are well known to exaggerate the absorption in the tail of the 

resonance (eg. P. Zouganelli 1993). This is particularly relevant for blue shift 

structures, since the resonance tails effectively set the minimum absorption, and hence 

contrast ratio. Switching to Gaussian lineshapes which some authors use (eg. Shim and 

Lee 1993), the problem reverses with the minimum absorption tending to be 

underestimated (actually becoming zero at 1.555 pm for large applied fields). In 

addition to this, the peak absorption of the resonance for a given linewidth increases by 

-50% (cf. §4.4.3). In this respect the predicted electroabsorption performance of the 

structures would be substantially improved, simply by changing to a different lineshape 

function! Similar problems have arisen in device modelling containing square QW’s, 

thereby producing unreliable evaluations of device performance (eg. P. Zouganelh 1993, 

chp. 3). To circumvent these problems, the tails of a Lorentzian line shape were modified 

to fit experimental results, and subsequently gave a better indication of device 

performance. In view of the above comments, it is felt further calculations of the 

absorption spectra should await experimental results.

§6.4 Concluding Remarks.

In summary, a novel composite structure has been proposed which can provide a blue 

shift and increase of the n=lhh transition on application of an electric field. A two-layer 

well region, consisting of materials that exhibit contrasting band offsets (w.r.t InP 

barrier layer), provides a non-zero spatial separation of the ground states at zero applied 

field. The direction of the applied field is chosen to reduce this separation, leading to a 

blue shift of the n=lhh transition and an increase in excitonic absorption. While the 

underlying principle is common to many previous structures (cf. inducing an internal 

field, §6 .1 .2 ), the use of band offset parameters in a composite well to induce the spatial 

separation had not previously been considered.

With two different constituent materials comprising the well region, the nature of the 

structure admits a range of independent parameters which were shown to govern the 

performance. Although the conditions on the band offset parameters are important, it 

was demonstrated that a range of values could provide blue shifting operation, (Figs.6 - 

5a,c and d). In fact, a structure of this type would be useful for determining the offset
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parameters given the strong dependence of the ground state transition for fixed 

dimensions. The compositions of the well layers represented another governing factor, 

(Figs.6-5b,d and e). Varying the InAsP composition affected the position of the electron 

state which largely determined the spatial separation of the ground states; the heavy hole 

state were found to be insensitive to the changes because of the strong localization in the 

InGaAs layer. Comments on changing composition of the InGaAs layer are made in 

Chapter 7, giving rise to further design issues.

The final set of parameters studied were the dimensions of the composite well. 

Although largely exploratory in approach, these latter studies centred on satisfying a 

typical electroabsorption device specification, suitable for SEED type operation. Such 

criteria for blue shift devices had been previously noted (eg. D.A.B Miller 1989); 

namely, the need for reasonable zero applied field n=lhh absorption which decreased 

with applied field via the blue shift; with the zero applied field absorption essentially 

setting the contrast ratio of the device. However, these two conditions are conflicting 

given that the blue shift arises from the spatial separation of the ground states, which in 

turn reduces the absorption vis-à-vis the overlap integral, [note: This conflicting 

nature is inherent in all blue shifting structures, and therefore represents a need to tailor 

the properties carefully (cf. work on (111) structures from Goossen et al (1989) and Pabla 

et al (1993)]. In the composite structures, the InAsP width was shown to mainly govern 

the overlap integral of the ground state transition; a smaller width providing a larger 

overlap and consequently, a larger excitonic area (Fig.6 -6 b). The relative  

unimportance of the InGaAs layer in relation to the zero applied field absorption was 

further demonstrated by fixing the InAsP layer and performing calculations for an 

applied electric field on structures with increasing InGaAs width, (Fig.6-9b). However, 

the maximum attainable n=lhh blue shift did  exhibit a strong dependence on the width of 

the InGaAs layer; a smaller width providing a larger maximum blue shift (-30 meV) for 

applied fields up to 240 kV/cm. By examining the form of the n=lhh blue shift and 

excitonic area with field, the results suggested the implied in ternal field for these 

structures can exceed 240 kV/cm. Following the investigations, the absorption spectra 

from two structures operating around 1.55 pn was computed, (Fig.6-10a,b). Choosing an 

operating wavelength, at 1.555 |im, both structures demonstrated decreasing absorption 

with increasing applied field, thereby satisfying the conditions for SEED based devices.

In Chapter 7, some practical issues relating to the growth of these structures are 

discussed. In addition to this, a further development of these type of structures is noted 

which can bring further functionality to the present design.
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§7.1 InAsxP] _x/XnP Multiple Quantum Wells.

It is quite clear, even from the existing work in the literature, that the InAs^Pi.^ material 

shows considerable promise for use in InP based heterostructures. With the work in 

Chapter 5, heterostructures comprising InAsP/lnP quantum wells have now been grown, 

and devices demonstrated, by all the major growth techniques. Above all the present work 

has highlighted the flexibility of InAsP/lnP design, particularly for the wavelength range 

specified by the commercially available high power and compact neodymium based solid 

state lasers. The study into this heterostructure combination, ie. where the InAsP layer is 

nominally strained w.r.t the InP substrate, deliberately concentrated on multiple 

quantum well (MQW) samples. Relaxation due to the cumulative strain in the structures 

was investigated and highlighted several interesting features that have a direct bearing on 

the optical quality devices. It is felt further work with this material combination should 

look at the question of relaxation in more detail. From this point of view, several sets of 

wafers could be studied, for example:

(i) For a given composition and period, investigate the effect of increasing the number 

periods. Using, say 10, 30, and 50 periods, it may be possible to observe the onset of 

relaxation as the number of periods is increased. The set would also be able to identify 

any 'clamping' of relaxation between two samples that have already relaxed, ie. verify 

the implications from M737(i) and M395 results.

(ii) For a given composition, well width and number of periods, investigate the effect of 

increasing the barrier width in successive samples. In effect this reduces the average 

arsenic composition over one period. Again, if the initial results on relaxation presented 

here are representative, then a decrease of relaxation would be expected as the barrier 

width increased.

From each case, a better understanding of relaxation in MQW structures will follow 

which is directly relevant to the design of these types of strained MQW structures. For 

example, one issue raised by work on InGaAs/GaAs (on GaAs) MQW devices (Ghisoni 

et al 1994), is the improved resolution of the exciton peak as relaxation reduces, ie. a 

reduction in linewidth. A question arises as to whether the improved sharpness of the 

exciton (and hence absorption in the well, cf. Fig.5-16) translates to an o vera ll 

improvement in absorption of the structure. Clearly a trade off exists between increasing 

the barrier width to reduce relaxation and simultaneously increasing the amount of
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optically inert material in the intrinsic region. Studying case (ii), above should go some 

way to determine the optimum bairrier thickness.

It is also clear from the present work, that the process in which the samples are 

characterized should be changed. In future, some form a wafer mapping would be 

beneficial. Growth on double polished substrates would allow transm ission  

measurements to be taken in which the n=lhh transition can be easily observed. Since 

the thickness variation appears to be small, (cf. Table 5-10), any shift of the n=lhh  

transition is likely to arise from a variation in arsenic and/or strain relaxation. 

Through mapping, areas can be selected for fabrication into mesas for photocurrent 

measurements. In addition, this would indicate the uniformity of the wafers in relation 

to the n=lhh transition energy. Large areas exhibiting uniform n=lhh transitions are 

desirable if arrays of electro-optical devices, eg. SEED’S, are to be envisaged. Of course 

HRXED would be an ideal mapping technique, although in practice, the duration of the 

scans may hmit this to selected parts of the wafer or wafers.

Keeping with the InAs^Pj.x well material, another option is to investigate using In^Ga^. 

jP  as the barrier material (Woodward et al 1992). Recall, that for the present work, the 

implication of increasing relaxation with increasing average arsenic is more correctly 

stated, as increasing relaxation with increasing misfit strain between ag^y and 

^MQW.fs Without growing on a pseudo-substrate (ie. buffer layer), another other way of 

reducing the misfit is to use a barrier material under tensile strain with respect to InP. 

It follows from (2.4), that for a given InAs^P .̂  ̂well width, a suitable In^Ga^.^P barrier 

width can result in =^sub» least a reduced misfit, thereby reducing MQW

relaxation. However, an overriding consideration would be the ease of growth in the 

present MBE system, given the limited number of sources. It is worth emphasizing, an 

attractive feature of InAsP/InP QW’s is that only two III-V materials are used 

throughout, with the wells being effectively defined by modulating the arsenic shutter.

To conclude, immediate recommendations focus on relaxation in strained MQW 

structures. Any advantages of using strain balanced structures will become more 

obvious following a coordinated study of the effects of relaxation on device performance. 

Depending on the application, it may be the case that accommodating a certain amount 

relaxation is not necessarily detrimental to device performance. In this sense, the 

emphasis would shift to reducing relaxation rather than attempting to avoid it.
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§7.2 Composite Structures.

The work in Chapter 6  introduced the idea of using composite structures to provide a blue 

shift of the n=lhh transition for an applied electric field. Clearly a future direction for 

this work would be to experimentally verify the predictions. A set of structures, based on 

compositions described in §6.2 with varying InAsP width, are currently waiting to be 

grown. Although with the limited cells available on the MBE kit at Sheffield the 

structures are somewhat difficult to grow (M. Hopkmson, private communication). The 

InASjPj^.jj (x=0.4) layer requires a controlled low arsenic flux, with the As fraction 

approximately given by (As/In =0.4). The growth of the next layer, In^Ga .̂^As requires 

almost four times the arsenic level, with (As/(In+Ga) = 1.5; where In=Ga for InGaAs). 

Difficulties arise due to the instability of the arsenic flux from layer to layer, as the 

arsenic fraction is switched from a low value (InAsP) to a high value (InGaAs). 

Currently, the MBE kit at Sheffield is being overhauled, including installation of a new 

valved cracker arsenic cell to provide better control of the arsenic flux.

As for as the structures themselves, further work should concentrate on optimizing 

for different applications by adjusting parameters such as well width and composition. 

Throughout the study, there was httle mention of the strain in the structures. For all the 

examples, strain was assumed to be accommodated solely in layer B (InAsP), with the 

effect on the bulk band structure included. In essence, the development of the 

asymmetric potential profile rested on the ability to accommodate strain, rather than 

using it as a means to tailor band structure properties, (cf. §2.2.2). It is acknowledged the 

distinction is a subtle one, since with strain the band structure does change. However the 

essential point is that by accommodating strain, this allowed different materials to be 

used (with different offset parameters) which gave rise to the necessary asymmetric 

potential. In addition, it could also be argued that the relevant valence band states in the 

structure are localised in the unstrained lattice matched InGaAs layer. Further work 

might look at using strain effects on the band structure to both to increase the flexibihty of 

the design and/or improve the stability of the structure from the viewpoint of cumulative 

effects of strain.

To demonstrate these latter points, consider the effect of changing the composition in 

the InGaAs layer from the lattice matched values, (x=0.53), to values which result in a 

tensile strain (w.r.t InP substrate), ie. x<0.53. The valence band potential of the 

structure would resemble that illustrated in figure 7-1.
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Figure 7-1. Schematic illustrating the valence hand profile in a composite structure. 
Unstrained InGaAs layer (left), InGaAs layer under tensile strain (right).

With compressive strain in the InAsP layer and tensile strain in the InGaAs layer, in 

principle the net strain in the composite well region could be made zero. However, 

rather than simply balancing the in-plane strain tensors in each material, the 

dimensions of the materials would need to be considered, since it is the strain energy that 

should be balanced. The approach I have taken for the following results, is to use the 

Matthews and Blakeslee expression ie. (2.4), which predicts the in-plane lattice constant 

that results from two lattice mismatched bulk layers, ie.

or rewritten as.

an =

h GB̂ aii - a ^  j
(7.1)

The subscripts, B and C, represent layers B (InAsP) and C (InGaAs) in the composite 

structure. The term ‘r’ is introduced to denote the ratio of the layer widths forming the 

well region, as before the G’s are the shear moduli and a^'s are the bulk lattice constants 

of each layer, (cf. (2.4)). Since growth is on InP, the in-plane lattice constant, an, that is 

usually calculated is this time set equal to the InP lattice constant.
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F igure 7-2. (a) Evaluation of equation (7.1) for three arsenic compositions, (h) 
Calculated n=lhh (solid) and n=llh (dotted) transitions for three composite width ratios. 
Band offsets parameters used are 75:25 and 40:60, see text for further details.

By choosing the compositions in each layer, equation (7.1) provides the correct layer 

width ratio to ensure the combined misfit of layers B and C with the substrate (and layer 

A) is zero; referred to hereafter as the balanced ratio. In figure 7-2a, (7.1) is evaluated 

for three arsenic compositions in layer B. Any point along the line can be projected to 

each axis to establish the indium fraction in layer C and the ratio of the layer dimensions 

required. The results in Fig.7-2a, show that for a given ratio in the composite well, 

increasing the arsenic composition in the B layer (ie. increasing the compressive 

strain) would require a decreasing indium composition in layer C (ie. increasing 

tensile strain). It is useful to express these conditions in terms of the layer widths since it 

was shown that they determine the blue shifting properties of the structures, (cf. §6.3.2). 

[For example, the structures in Fig.6-9 would correspond to r~0.86 (30Â/35Â), r=0.75 

(30Â/40Â), r=0.6 (30Â/50Â) and r-0.43 (30Â/70Â)]

A further consequence of employing a tensile strain InGaAs layer, is the resulting 

closer proximity of the n=llh transition in relation to the n=lhh transition, (Fig.7-2b). 

Choosing an arsenic composition for layer B, ie. InAsg 5P0 .5 , three indium compositions 

for layer C are found corresponding to a balanced layer ratio, ie. 42%In (r=0 .6 ), 38%In 

( r= 0.8) and 35%In (r= 1 ). For reducing indium in layer C (increasing tensile strain), 

the separation between the heavy and light hole band edges increases, with the light hole 

band edge higher in energy, (cf. §2.2.2 and Fig.7-1). As noted in §2.2.2, the splitting 

between the hhl and Ihl states, confined in layer C, will reduce, and can result in Ihl 

becoming the highest valence band state. A feature which is demonstrated by calculating
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both the n=lhh and n=llh transitions for a range of structures, (Fig. 7-2b). [note: The 

structures are formed from a given InAsP width which then specifies the InGaAs wridth 

prescribed by the balanced ratio. The compositions used are those discussed earher.] In 

Fig.7-2b, a potentially useful situation arises for layer widths of 40Â (B) and 50Â (C), ie. 

(r=0 .8 ), where both zero apphed field transitions occur around 1.55 |im. As discussed in 

§2.3 structures exhibiting this feature can overcome several difficulties relating to the 

polarization sensitivity of a device (in waveguide configuration). Benefits may also be 

present for transverse devices, where enhanced absorption can be found.

Although experimental verification must take precedent in the development of the 

composite structures. This rather limited study has clearly hinted at the further design 

issues that are available. I beheve several of these are worth pursuing; eg. a strain- 

balanced blue-shifting polarization-insensitive structure. In this sense, some 

comments should be made about improving the level of modelling, eg. to include in­

plane mixing. This is particularly important if further study into the merging of the 

n=lhh and n=llh transitions is undertaken. For example, it is well known that when the 

light-and heavy-hole states are close together, in-plane mixing can cause the light -hole 

dispersion to exhibit an electron-like curvature resulting in a negative value for the in­

plane effective mass (eg. E.P O’Reilly 1989). With the subsequent increase in the heavy 

hole mass, the diagonal approximation is clearly becoming too severe an approximation.
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Appendix A. Material Parameters.
Unless otherwise stated all parameters obtained from the Landolt-Bornstein compilations.

InAs^Pl.^ In^Ga .̂^As

Lattice constant (Â) 5.8696 +(0.18943 x)a 5.6533 + (0.40573

Elastic moduli (10^  ̂ dyn/cm^)

Cii 10.11 -(1.78 x) 11.88-(3.55

^21 5.61-(1.08 x) 5.38-(0.85
Deformation potentials (eV)

ĝap -8 . 6  +(1.9918 x)b -8.3768 +(1.7686x1

b -2 .0  +(0 .2 -1.7 (O.W
Conducion band effective mass (mg) 0.084 - (0.0621 x) 0.0665-(0.0446x1

Luttinger parameters

■Vl.L 4.95 + (14.72 x) 6.85+ (12.82x1

Ï2.L 1.65 +(6.72 x) 2.1 +(6.27
Spin-orbit splitting, A (eV) 0.11 +(0.12 x)+(0.15 x2)C 0.341 -(0.09x1+ (0.14x21

Bulk band gap (300K), Eg (eV) 1.351 -(1.315 x) + (0.32 x2)C 1.424-(1.5x1+ (0.4x21

Kane matrix element, Ep, (eV) 19.7 +(2.5 x)d 28.8-(6.6

refractive index, n [3.279 - 0.442 fitù +0.382(A(Op [3.33- 0.133 ti(ù +0.229(%ù)l2

+ (0.1244 + 0.4184AO) + 0.2165(W p x)]^ + (0.1244 + 0.4184W  + 0.2165(Wl2 xl]

dielectric constant, e, (Eq) 12.56 +(2.59 x) 12.53 +(2.62 3̂



notes on m a teria l param eters.
[a]: Lattice constants provided by Dr. Linda Hart from High Resolution Simulation, 1 ®̂  
ed, Phillips Electronics NV, Sept, 1993. The values determined at standard 
temperatures and pressure.
[b]: The values used here are derived from measured pressure dependence of the bulk 

band gap, (10"® eV/bar). Explicitly,

ĝap = “ 2 (^1 1 + 2 0 1 2 ) (A .l)

(note: 10^^ dyn/cm^ x 10'® eV/bar = 0.1 eV)

[c]: Nicholas et al (1979)

[d] : Corzine et al (1993)

[e]: Fitted polynomial of each binary covering the energy range, 1.4 > Am > 0 .9  (eV), then 

linear interpolation. Binary values obtained from E.D Palik (1991).

[f]: Fitted polynomial of each binary covering the energy range, 1 . 4 > Aco > 0 . 35 (eV). 

Binary values obtained from E.D Palik (1991).
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