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ABSTRACT

A novel type of phased array, called a symmetric-pair array, is
described. Its antenna elements are arranged in pairs around a common
phase centre, which yields easy-to-process biphase output signals from
each pair. Symmetric-pair arrays are attractive for applications such as
direction finding and beam forming and, due to the nature of the pair
output signals, it is also possible to achieve gain with isotropic coverage on
reception.

The properties of symmetric-pair arrays are examined, both for ideal
conditions and in the presence of phase and amplitude errors. Graphical
representations of the pair output signals are introduced to aid in the
understanding of the properties of this type of antenna array.

The necessary algorithms and techniques to perform unambiguous
direction finding with symmetric-pairs are developed. A detailed outline
of a symmetric-pair direction finding system is given, and different
options to process its baseband signals are discussed. The performance of
the direction finder in low signal-to-noise environments is analysed using
the mathematics of random processes, and the probability of detection as a
function of false-alarm rate and angle of arrival is evaluated.

Beam forming techniques for symmetric-pair arrays are explained,
and it is shown that this type of array allows savings in the control
hardware due to its inherent symmetry. The problem of gain with
isotropic coverage for reception is discussed, and it is demonstrated how it
can be achieved with symmetric-pair arrays.

Computer simulations and experimental results are used throughout
the thesis to confirm and support the presented theory.
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1 INTRODUCTION

1.1. BACKGROUND

Phased arrays are nowadays well established work-horses in
surveillance and communications and have undergone rapid
development in their rather short history. Despite the fact that the
scientific and engineering basis for the field of microwave transmission
had been developed in the 1940's, the first microwave phased arrays did
not became available until a decade later. This was due to the fact that
electronic phase shifters and computers, two key components for a phased
array, had previously not been available [Sta 74].

A phased array consists of a group of spatially distributed radiators
which are fed from a single source and therefore coherently excited. For
beamforming purposes, the phasing of the individual antenna elements is
such that their contributions add constructively to a plane wavefront in a
chosen direction. By controlling the phase and the amplitude of each
radiator, it is possible to steer and form the beam pattern of the array. The
direction and shape of the beam can therefore be electronically
manipulated at microseconds speed without actually physically moving
the array structure, which provides considerable beam agility. The
antenna elements of the array act as interfaces that transduce guided
waves into free space waves and vice versa. The theory of phased array
beamforming and signal processing is well covered in the literature, and
standard array structures have been established such as linear, circular,
planar or conformal arrays ([Sta 74], [Mai 82], [Rud 83], [Hal 90], [Hay 92]).

Most phased arrays are periodic arrays with equally spaced elements,

which makes it easier to devise design procedures. Periodic arrays with
omnidirectional elements usually have spacings of d < A/2 to avoid grating

2
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lobes. They also suffer from the effects of mutual coupling, which is
caused by the close inter-element distance and changes the effective
element pattern. As a result, the gain, driving-point impedance and
effective aperture taper of the array can be a function of the scanning
angle. All these effects have to be considered in the design. The cost of any
array is approximately proportional to the number of elements, which
means that the cost for a linear periodic structure is proportional to its
length, and grows with the square of this quantity for a two-dimensional
periodic array.

The second category of phased arrays are aperiodic or thinned arrays,
which have unequally spaced elements. It is usually difficult to devise
design procedures for this type of array, except for the class of random
arrays [Ste 76]. A special case of random arrays, whereby the elements
are uniformly randomly distributed within a sphere, has received
considerable attention in the past, and Ender and Wilden actually
constructed and characterised such an array which they called the crow's
nest antenna ([Wil 90], [Wil 87], [End 81], [Lo 641, [Dze 78], [Lev 79]). The
objective of any aperiodic array design is to reduce costs by thinning
without sacrificing key array parameters like the mainlobe width or
average sidelobe level. Due to the reduced number of elements, there are
fewer degrees of freedom for the designer and hence less control of the
radiation pattern, which makes it harder to meet the specifications. The
hazard of grating lobes in aperiodic arrays due to inter-element distances
of more than half a wavelength, is avoided by unequal spacing of the
elements, and the larger inter-element spacing reduces the effect of
mutual coupling.

The type of phased array investigated in this thesis is called a
symmetric-pair array. Dependent on the application, this novel type of
array belongs to the category of aperiodic or random aperiodic arrays.
(However, it should be noted that certain periodic structures could also be
treated as symmetric-pair configurations, but these special cases will not
be considered here.) Aperiodic symmetric-pair configurations are used for
direction finding, and random aperiodic symmetric-pair arrangements
can be employed for beam forming and have significant attractions, if
gain with isotropic coverage on reception is to be achieved.
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1.2. OBJECTIVES

The concept of symmetric-pair arrays and possible applications of it
have only recently been reported by Benjamin and Griffiths [Ben 89]. Such
arrays consist of pairs of antenna elements that can be arranged in three
dimensions around a common phase centre. Each of the antenna pairs
can be regarded as an independent sub array, which substantially
simplifies the analysis. Symmetric-pair arrays have output signals that
are easy to process, and are therefore attractive for mobile
communications and any kind of application where versatility at
moderate hardware expense is required. The pair concept also allows the
matching of the antenna configuration to the structural constraints of a
building or vehicle.

The objective of this thesis is therefore to investigate the fundamental
properties of symmetric-pair antenna arrays, both under ideal and
imperfect conditions. Having established an understanding of this novel
type of array, its potential for direction finding (DF) is examined in some
detail. This leads to the development of a symmetric-pair DF system and
the discussion of its predicted performance. Two possible applications of
the symmetric-pair concept in communications are also investigated in
this thesis. One of them is beam forming, and the second is gain with
isotropic coverage on reception. It will be shown that the latter could not be
implemented with other array structures.

1.3. STRUCTURE OF THE THESIS

The substance of the thesis is contained in the next five chapters. The
properties of symmetric-pairs, different ways of processing and
graphically representing their signals as well as the effects of phase and
amplitude errors are covered in chapter 2. This lays the foundations
necessary for the understanding of the different applications of this type of
antenna array and is therefore essential reading.

Chapters 3 to 5 are devoted to direction finding with symmetric-pairs.
The basic techniques used for direction finding with symmetric-pairs are
outlined in chapter 3. To focus on the key principles, an idealised world



1.3. Structure of the Thesis 25

with a single infinitely strong CW carrier as received signal is assumed
in this chapter. In chapter 4, realistic signals with a certain bandwidth
and finite signal-to-noise ratio are introduced. After solution of the
associated problems, a symmetric-pair direction finding system is
developed, and different methods to process its baseband signal are
discussed and compared. The performance of the proposed DF system in
low signal-to-noise environments is assessed in chapter 5. This is done by
taking the mathematics of random Gaussian noise at the antenna
elements into account. Expressions for the probability of detection of the
direction finder as a function of false-alarm rate and angle of arrival are
finally derived in this chapter.

The applications of symmetric-pair arrays in communications are
covered in chapter 6. Different beam forming techniques as well as the
concept of gain with isotropic coverage for reception are introduced here.
A summary and recommendations for future work are contained in
chapter 7.

An additional note on the citation of references. All references can be
found in a block before the appendices and they are grouped by chapters.
In the text, they are referred to with the first three letters of the first
author's surname and the year of publication. Since all references are
(just about) from the 20th century, the digits representing the century
have been omitted.



2 PROPERTIES OF SYMMETRIC-PAIRS

2.1. DEFINITION OF A SYMMETRIC-PAIR ARRAY

Symmetric-pair arrays consist of a number of antenna pairs of
arbitrary inter-element spacing, arranged around a common phase
centre in a two or even three dimensional configuration as shown in Fig.
2-1. The centre point of the two elements of each pair is called the phase
centre of a pair. In principle, it is possible to use any kind of antenna
elements for this type of array. The only constraint is that the elements of
a pair must be identical and point in the same direction.

Common
phase centre

Figure 2-1: 3D array of random symmetric-pairs

Due to the common phase centre, each pair can be treated as an
independent sub-array, which simplifies the calculation of the radiation
pattern of the array and allows us to use the superposition principle. This
applies only as long as no mutual coupling has to be taken into account.
In the case of mutual coupling, possible simplifications depend on the
symmetry of the array geometry.
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2.2. PROCESSING OF THE SIGNALS OF A SINGLE SYMMETRIC-PAIR

To make full use of the information contained in the symmetry of the
signals of each pair, processing on a pair basis is necessary. The two
methods introduced in the following sections describe the fundamentals of
symmetric-pair signal processing and are used in one way or another in
all applications of this kind of antenna array.

2.2.1. Sum and difference processing

Because of the pair symmetry, an incident wavefront will always
encounter one member of the pair, say M1, with a certain time (and hence
phase) lead before that front reaches the phase centre. The other member,
M2, will be excited with an equal phase lag (Fig. 2-2). With a definition of
the angle of incidence 0 as the angle between the element axis of the pair
and the direction of propagation, counted clockwise from the reference
element M1, the two elements will be excited at phases -¢ and +¢ relative to
the phase centre:

ntd
= ——cos9
¢ A ..(2.1)

where A is the wavelength and d the spacing between the elements.

The vector sum V5 of the signals of a pair, obtained with a lossless
power combiner, is given by:

V= %(Ve"("’“’) + Vej(mt'°)) =~/2V cos ¢ e/

..(2.2)

where V is the amplitude of the excitation of each element. The resultant
is a real signal with positive or negative sign, dependent on whether the
sum signal is in phase or anti-phase with the reference phase at the
phase centre.

The vector difference V, of a single pair is:
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V,= 712-(Vej(°’t+°) - Vej(“"‘"’)) = /2V sin ¢ /™) 2.3

This signal is orthogonal to the reference phase and can also be of
either sign. All the sum outputs of an array of symmetric-pairs are either
in phase or anti-phase to each other, and so are the difference signals.

Arriving wavefront

M1
(Reference element

of the pair)
pair \d lag

\
11 \ oy
Output: zi l A A

I

Figure 2-2: Symmetric-pair with sum and difference processing of the
signals

A very simple way of testing whether signals are in phase or within
+n/2 of the reference phase is to use a power combiner and to add the
output of a symmetric-pair and the phase reference signal. (The latter can
be provided by an extra element at the phase centre.) If their phase
difference is less than +n/2 the combined signal will be larger than the
reference signal alone, otherwise it will be smaller. In the case of the
difference signals, a 90° phase shifter has to be inserted, to account for the
orthogonality of the difference signal.
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The standard device for generating the sum (X) and difference (A)
vectors is a 180° hybrid. Hence, the two vectors of equal amplitude and
unknown phase at the elements of any pair can be converted into two
vectors of unknown amplitudes but known phases (except for the sign
ambiguity) at the sum and difference outputs of the hybrid. There is no
power wasted, and the combined power of the output signals is 2V2, as
expected.

Before the sign of the sum or difference signal changes, the
corresponding amplitude shrinks to zero. The angles of incidence at
which the sign changes occur are called phase transition angles. The
sign bit of the £ output changes, if the phase difference ¢, between one
element of the pair and the phase reference is:

A A)2n
¢x=(z+n§)T , my >2n 20

where n is an integer and my = d/A - 0.5 rounded down to the next integer.
The phase transition angles 05, for 0° < 6 < 90° are now defined as follows:

Oy, = arccos(mg—/;x/z-J = arccos(o'g/;n) , my 2n 20 ..(2.4)

Since the X pattern of a symmetric-pair is symmetrical about
boresight and the element axis, the phase transition angles for the other
quadrants are easily calculated.

In the difference pattern, the sign changes for:

¢A=(n%)2_:’ mp 2n20

where n is an integer and my = d/A rounded down to the next integer. For
0° =8 < 90° the phase transition angles 6,; of the difference pattern are:

ni/2 A
0, = arccos( d/g )= arccos(%—) , my2n20 ...(2.5)
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Figure 2-3: Measured and calculated sum pattern of a symmetric-pair
with 2A spacing
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Figure 2-4: Measured and calculated difference pattern of a symmetric-
pair with 2A spacing
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This pattern is also symmetrical about boresight and the element
axes and has a phase transition at 90° and 270° irrespective of the element
spacing. However, the polarity of the sign zones is now anti-symmetric
about boresight.

The phase transition angles coincide with nulls in the amplitude
pattern of a pair. Because of the symmetry of both patterns about the
element axis, no phase transition can occur at 0° or 180°, but there may
well be zeros in the antenna pattern, dependent on the element spacing
(for the sum pattern: d = odd multiple of A/2, difference pattern: d =
multiple of A).

The calculated and measured sum and difference amplitude patterns
of a symmetric-pair with 2 A spacing are shown in Fig. 2-3 and Fig. 2-4
respectively. The prototype consisted of two monopoles on a ground plane
with 2 A spacing at 10 GHz. Fig. 2-4 demonstrates that the difference
pattern has, as expected, nulls at 0° and 180° for a spacing of 2 A. The two
neighbouring grating lobes at each of the endfire positions therefore have
the same sign.

2.2.2. Equal and opposite phase shifts at the elements

As in any antenna array, it is also possible to process the signals of
symmetric-pairs with the help of phase shifters. However, to retain the
symmetry of the arrangement and to keep the location of the phase centre
of each pair unchanged, the phase shifts applied to each element of a pair
must be equal and opposite (see Fig. 2-5) ([Fra 67],[Gly 68]). The output V_,
of a pair with such phase shifting networks and subsequent sum
processing is equal to:

Voo =5 (V#1099 1 VeIo49) = VBV cos(o + A0) o

eo

...(2.6)
where tA¢ is the applied phase shift at each element.

Eqn. 2.6 shows that the output signal of a symmetric-pair after the
use of equal and opposite phase shifts is still bi-phasal, but phase
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transition will now occur at different angles of incidence. The condition
for phase transition is then:

ALA A \2n
Peot =(Z+n§_A¢ﬂ)T , m; 2n 2 my

where:

m, = %—(0.5 - Anql) , rounded down to the next integer

m, = :; —(0.5 —%) , rounded up to the next integer

¢ is the phase difference between one of the elements and the phase
centre and A¢ is the phase shift applied at the reference element M1 of a
pair (see Fig. 2-2). Due to the phase shifts, the symmetry of the phase
transition angle pattern about boresight is lost, whereas the symmetry
about the element axis still remains. The above values for n define the
phase transition angles 6, for 0° < 6 <180°:

o, = arccos( A/4+n)/2-Ad x/(zn)J _ arccos(0.5 +n-A¢/n

d/2 d/A ) 2.7
where n is again an integer number between m; and ms,.

Phase centre of the pair

- q) Output: A

)2 — |

Figure 2-5: Symmetric-pair with equal and opposite phase shifts
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Equal and opposite phase shifts with -90° at the reference element of
the symmetric-pair yield the same pattern of phase transition angles as
difference processing. The only difference is that the bi-phasal output
signals are now still in phase or anti-phase to the reference signal and not
orthogonal to it, as is the case after difference processing.

If the applied phase shift at element M1 is positive, the pattern of the
phase transition angles for 0° < 6 < 180° rotates clockwise, and the pattern
for 180° < 8 < 360° rotates counter-clockwise. For negative phase shift at
element M1 the directions of rotation are reversed. These relations can be
easily visualised with the help of the graphical representations introduced
in the next section.

It is convenient at this point to give a general formula for the phase
transition angles (i.e. nulls) and the maxima of a symmetric-pair pattern
that covers all types of processing. The conditions for a maximum can be
derived by considerations similar to the ones for the phase transition
angles. The respective values of n yield nulls and maxima for 0° £0 <180°:

+n
0= arccos(a ) m; 2n 2m,
d/A ...(2.8)
where:
m, =—-a, rounded down to the next integer

A

m, = —d_ a, rounded up to the next integer

A
Processing technique } Naull Values for jEllVIaximu m
X processing 0.5 0
A processing 0 -0.5
¥ processing with equal 0.5 - Ad _Ae
and opposite phase shifts n T

Table 2-1:  Values of constant a for the calculation of maxima and nulls

The value of the constant a is given in Table 2-1 and depends on the
processing technique and whether the location of nulls or maxima is
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calculated. It should be noted that any integer could be added in the
definition of a, since the values for m; and mgy would be automatically
adjusted, so that eqn. (2.8) would still be correct.

2.3. GRAPHICAL REPRESENTATION OF THE SIGNALS OF
SYMMETRIC-PAIRS

In the last section it has been shown that the output signals of
symmetric-pairs are essentially always just in phase or anti-phase with
each other. Since this is very important for symmetric-pair applications,
two ways to represent this property graphically are introduced. For the
sake of simplicity, the patterns of the antenna elements are assumed to be
isotropic.

2.3.1. Single symmetric-pair but variable angle of arrival

This first representation is in its 2 dimensional version a cross
section of the sign bit pattern of one symmetric-pair. Fig. 2-6a shows the
cross section of the sum pattern of a pair with 4A spacing, and Fig. 2-6b,
represents the difference pattern of the same pair. Both pictures show
clearly the symmetries of the two patterns about boresight and the element
axis. It should also be noted that the sectors around boresight are rather
narrow, whereas the sectors in the endfire areas of the pair are very
broad. Each of the sectors contains a grating lobe of the amplitude pattern
with a maximum in the middle of the sector and nulls at the borders.
However, the sectors around the endfire area may just contain a fraction
of a lobe dependent on the spacing of the elements. The endfire lobes do not
exist at all for element spacings that produce a null in the endfire
direction. It can be seen that for 0° < 6 < 180° the sum pattern consists of
2m + 1 lobes of alternate sign (Fig. 2-6a), and the difference pattern of 2m
such lobes (Fiig. 2-6b). Whereby m is defined as follows:

Sum pattern: m=d/A-0.5, rounded up to the next integer
Difference pattern: m = d/A, rounded up to the next integer
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Figure 2-6a: Cross section of the sum sign bit pattern of a symmetric-pair
with 4 A spacing
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Figure 2-6b: Cross section of the difference sign bit pattern of a symmetric-
pair with 4 A spacing
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Figure 2-7: Cross section of the sum sign bit pattern of a symmetric-pair
with 60°equal and opposite phase shift and 4 A spacing
























































































































































































































































































































































































































































































































































































































