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ABSTRACT

Thyroid hormones (TH) play an important role in early neurogenesis in
utero. However, the biochemical and metabolic mechanisms underlying this
role has only been scantily investigated, although some reports exist pointing
to metabolic dysfunctions in the brain of rat progeny born to
hypothyroxinemic dams. In order to further investigate this role we have
studied the nature of thyroid hormones influence on amino acid uptake and
incorporation into protein as well as [3H]-2-deoxy-D-glucose (2DG) uptake
into neural cell culture. Uptake into synaptosomal fractions, prepared from

Euthyroid & Hypothyroid adult rats, was also studied.

The results show that 2DG uptake into synaptosomes, prepared from

euthyroid rats, was not influenced by T3 concentrations between 10-10-10-6

M- while those prepared from hypothyroid rats were responsive and uptake
was significantly stimulated by 1-100 nM T3 (by 20-70%,). 2DG uptake was

inhibited by 1 uM Tj (by 25-70%, P< 0.001) which was abolished by adding
5 mM ATP. However, 2DG uptake into astrocytic culture was totally non
responsive to the presence of TH. [3H]-Lysine uptake and incorporation into
protein in astrocytic culture was significantly inhibited by the presence of

TH. In neuronal culture, uptake and incorporation into acid soluble material

was enhanced by 10 nM T3. The uptake was dependent upon protein
synthesis, indicating that T3 mediated uptake of [3H]-Lysine in neurons is
dependent upon the binding of T3 to the nuclear receptors followed by

protein synthesis.

Results presented here, together with similar observations made by other
researchers, provide evidence that TH in early neurogenesis may have a
crucial influence on the metabolic homeostasis of the CNS. In addition, the

following postulates will be considered :



1) TH are selective in their influence on different brain cells and metabolic

parameters.
2) TH may directly affect the brain, independent of nuclear T3 receptors

mediation.

3) TH seems to modulate the optimisation of metabolic homeostatic

efficiency rather than drastically altering basic biochemical functions.
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1-1 The Thyroid Gland

Although there are many claims about the description of goitre in the
literature, the Chinese of the second millennium B.C. as well as the
Egyptians of the 1st millennium. described the gland fully. In 1564, Vesalius
gave a full description of the thyroid gland (390). However, the modern
description of the gland was first given by Wharton in 1656 (477), who also
gave the gland its name, derived from the Greek word "Thyrus" meaning
"shield-like", while Cooper (1827) described the thyroid gland in both man

and animals (85).

In spite of the fact that the thyroid was fairly well defined anatomically, its
function was far from understood. Many interesting speculations about the
role of the thyroid gland were suggested in early stages, included to
humidify the pharynx and trachea or to beautify the neck by filling the
vacant space around the larynx particularly in women (477). Vercelloni
(1711) and Hester (1717) even considered it to be a receptacle for worms
whose eggs, and occasionally the worms themselves, crossed into the
oesphagus for digestive purposes (300). Parry (1825) suggested that it
cushioned the brain against a sudden increase in blood flow (306). Von
Haller (in the 18th century) gave the thyroid gland a fairly correct
classification as a ductless gland secreting a special fluid into the blood
stream (493). King, 1n 1836, stated that the thyroid has an internal secretory
function (243). In 1912, Gudernatsch, experimenting on tadpoles,
demonstrated that the thyroid hormones have an important role in the

development and differentiation of the body (187).
1-1-1 Ontogenesis

In the human embryo, thyroid development commences at day 24 as a

midline thickening and then an epithelial proliferation of the endodermal

20



floor of the pharyngeal cavity between the tuberculum impar and the copula
(317, 488). The thyroid primodium penetrates the underlying mesoderm and
descends in front of the pharynx forming a sac-like diverticulum (317). This
enlarges progressively and by the 7th week of gestation acquires a clearly
bilobed shape, by differential mitosis of the epitheleal cells (136). At this
stage of development, the gland has already descended to its definitive
location, in the lower neck in front of the trachea, but it remains attached to
its point of origin by a narrow canal, the thyroglossal duct (488). The two
lobes of the thyroid rudiment, joined by a narrow isthmus, rest on either side
and slightly behind the trachea, while the isthmus at the midline runs across
the front of the trachea just below the larynx, in the human and most
mammals . Normally, the thyroglossal duct ruptures and the cells atrophy or
are reabsorbed by the second month of gestation (317) . However, the lower
portion of the duct may contribute to an upward finger-like extension of the

thyroid gland at the isthmus, the pyramidal lobe .

During the early stages of development (40-50 days of gestation), the
endodermal cells are broken up by an ingrowth of connective tissue of
mesenchymal origin carrying blood vessels, and the endodermal masses
become arranged in follicles. At about the 11th week, a central lumen
appears in the centre of each follicle surrounded by a single layer of cells .
At about the 14th week the gland is capable of trapping iodide, synthesizing
and releasing T4, yet it does not respond to thyrotropin (TSH) secretion until
the 22nd week (143, 145). In rats, however, thyroid gland embryogenesis
extends throughout the gestational period (22 days), while the pituitary
linked response does not occur until approximately 5 days after birth. As in
the human, the thyroglobulin hormone synthetic capacity correlates with the

period of follicular organization (317).

21
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(263, 500) and Marine and Feiss (1915) who demonstrated the ability of the
thyroid gland to absorb iodide (199). Following the unsuccessful trial of
Oswald in 1910 to concentrate thyroxine,v using concentrated barium
hydroxide (199), Kendall in 1914, obtained thyroxine in a crystalline form
by alkaline hydrolysis of thyroid tissue and also gave it its name (239). The
isolation method was then improved by Harrington in 1926 (198 199) and, a
year later, Harrington and Barger' elucidated the chemical structure and
synthesized thyroxine (T4) (200). Due to the low concentration of
triiodothyronine (T3) as well as its functional similarity to thyroxine, its
existence was not discovered until 1950 when Gross and co-workers
identified the presence of iodinated compounds other than monoiodotyrosine
(MIT), diiodotyrosine (DIT) and thyroxine (T4) in rat thyroid gland (180). In
1954 Gross J, and Pitt-Rivers discovered triiodothyronine (T3) and
suggested that this is the peripheral thyroid hormone while T4 is its
precursor (184, 185). Beside T4 and T3, other iodothyronines exist in blood
as a result of peripheral deiodination of both T4 and T3. These include
3,3',5"-Triiodothyronine (rT3) and 3,3'-diiodothyronine (T2) which are of
some biological interest. Both compounds were isolated from rat plasma a
few years after T3 was discovered. It is thought that the chemical structure

of these iodothyronines decides their biological activites (118).

The function and structure of the thyroid gland is mainly controlled by
thyrotropin hormone (TSH) which is secreted by the anterior pituitary gland.
TSH is in turn controlled by a feed-back mechanism; a process activated by
the level of thyroid hormone in the circulation. In the subsequent sections,
the production and regulation of thyroid hormones will be dealt with in

detail.
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1-2-1 Structural Features of The Thyroid Hormones

There is clear evidence for the importance of the various structural features
of the thyroid hormones with respect to the production of hormonal
responses, particularly their involvement in the two main steps required for
hormonal action; first the binding to a specific site on the macromolecular
receptor followed by an interaction between some chemically reactive
feature of the hormone and a complementary component on the receptor,
resulting in a chemical change in the latter. Thyroid hormones are derived
from a thyronine nucleus (Fig. 3b) by partial or complete iodination of the
positions 3, 5, 3' and 5' (Fig. 3c). There are six important structural features
in the thyronine nucleus labelled a-f in Fig. 3b (reviewed in 227, 228 364,
445). Their importance for thyroid hormone activity can be summarized as

follows :.

1) A central lipophilic core of two aromatic rings bridged together by an

appropriate atom (O,S,C), termed the diphenyl ether nucleus (feature b, in
Fig. 3b). The plane of the phenolic ring is kept in a perpendicular position to
the 'plane of the tyrosyl ring, to create a minimal energy conformation (Fig.
4) (249).

2) Non-polar groups in positions 3 and 5, which are limited in size such as
halogen and methyl groups, provide a hydrophobic binding interaction with
the receptor, and the steric constraint which defines the minimal energy
conformation of the aromatic rings. These groups impart maximal hormonal

activity, but are not responsible for the full activity (24, 68, 71).

3) Specific polar groups are required at opposite ends of the central diphenyl
ether core; an anionic side chain in position 1, such as alanine (L-residues
are more active than D-residues, while a zwitterionic side chain contributes

significantly to hormonal activity) (174), and a phenolic hydroxyl or
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functionally equivalent group, such as amino, in position 4', which is
important for the association to the transport protein and for hormone

receptor interaction (23, 195, 458).

A - Precursors

I I

H H
| )
HO@ CH2—(|:— COO HO CH,— (::_ 6003

NH,* NH,*

3 - Monoiodotyrosine (MIT) 3, 5 - Diiodotyrosine (DIT)

B - Thyronine nucleus

f - Phenolic b- Diphcnyl nucleus a - Amino acid (alanine)

hydroxyl e - Phenolic; c- Tyrosyl: side chain

group | (outer) rmg' ! (1nner) rmgl

|
|
@ 0
|

!

d - The brldgmg atom

C - Active Hormones

@ @& oo @@ & -coo

3,5,3, 5' - Tetraiodothyronine 3,5, 3' - Triiodothyronine (T 3)
(Thyroxine - T,)

Figure 3. Structural formula of the thyroid hormones.

4) A single lipophilic, non-polar substituent of limited size, such as halogen
atom or an alkyl or aryl group, in position 3' adjacent to the phenolic ring

and in distal position to the inner-ring, i.e. sterically constrained analogues
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(227). On the other hand, a second lipophilic substituent in 5'-position

reduces activity in direct relationship to its size (330).

HO

a

2 201 1

0 /NH©

\
I co0®
-

Figure 4. The minimal energy conformation of the diphenyl ether
nucleus of thyroxine.

1-2-2 Thyroid Hormone Biosynthesis and Release

Apart from being one of the largest endocrine glands in the human body, the
thyroid gland also possesses certain unique features; it requires iodide for
hormone synthesis, it is capable of accumulating large amount of iodide and
possesses a high capacity for hormone storage within its structural units, the

follicules.
A- Biosynthesis

Thyroid hormone biosynthesis in the thyroid gland involves the uptake of
iodide from the blood stream, followed by its immediate oxidization and
incorporation into tyrosyl residues on the thyroglobulin molecule. The
resulting precursor hormones are stored within the follicular lumen. These

processes are interdependent and occur simultaneously.
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