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Abstract This article concerns second-order time discretization of subdiffu-
sion equations with time-dependent diffusion coefficients. High-order differ-
entiability and regularity estimates are established for subdiffusion equations
with time-dependent coefficients. Using these regularity results and a pertur-
bation argument of freezing the diffusion coefficient, we prove that the con-
volution quadrature generated by the second-order backward differentiation
formula, with proper correction at the first time step, can achieve second-
order convergence for both nonsmooth initial data and incompatible source
term. Numerical experiments are consistent with the theoretical results.
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1 Introduction

Let Ω ⊂ Rd (d = 1, 2, 3) be a convex polygonal domain with a boundary ∂Ω.
Consider the following subdiffusion equation

∂αt u(x, t)−∇ · (a(x, t)∇u(x, t)) = f(x, t), (x, t) ∈ Ω × (0, T ],

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ],

u(x, 0) = u0(x), x ∈ Ω,
(1.1)

where a(x, t) : Ω× (0, T )→ Rd×d is a positive definite matrix-valued function,
f and u0 are the source term and initial value, respectively, and

∂αt u(x, t) :=
1

Γ (1− α)

∫ t

0

(t− s)−α∂su(x, s)ds, (1.2)

denotes the Caputo fractional time derivative of order α ∈ (0, 1) [19, p. 70].
In recent years, there has been a growing interest in the mathematical and

numerical analysis of subdiffusion models due to their diverse applications
in describing subdiffusion processes arising from physics, engineering, biology
and finance. In a subdiffusion process, the mean squared particle displace-
ment grows only sublinearly with time, instead of growing linearly with time
as in a normal diffusion process. At a microscopic level, such processes can be
adequately described by continuous time random walk, and accordingly, at a
macroscopical level, the probability density function of the particle appearing
at certain time t and location x is described by a subdiffusion model of the
form (1.1). We refer interested readers to [29,30] for a long list of applications
arising in biology and physics. In the physical literature, a time-dependent dif-
fusion coefficient is often employed to study complex systems, e.g., turbulence
system [13,20,9] and cooling process in geology [6,10]; see also [32,11] for its
connection with birth-death processes.

The numerical analysis of the subdiffusion problem has been the topic
of many recent investigations. In particular, a large number of time-stepping
schemes for approximating the Caputo derivative have been developed. The
most popular ones include convolution quadrature [5,14,16,2], piecewise poly-
nomial approximation [36,23,1,27], and discontinuous Galerkin method [28].
For a given smooth source term f and initial value u0, these schemes generally
exhibit only first-order convergence due to the inherent weak singularity of the
solution at t = 0. If the solution u is smooth, then higher-order convergence
may be achieved, otherwise some modifications of the schemes [5,14,16] or
locally refined meshes [28,35,22] (see also [3] for related works in the context
of Volterra integral equations) can be used; see the recent survey [15] for fur-
ther references. All these works focus on subdiffusion with a time-independent
coefficient, i.e., a(x, t) ≡ a(x).

When the diffusion coefficient a(x, t) is time-dependent, the analysis of
regularity of solutions and the development and convergence analysis of nu-
merical schemes are rather limited, despite its obvious practical importance.
Many existing analytical techniques, e.g., Laplace transform and separation of
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variables, are not directly applicable, due to the time-dependency of the co-
efficient a(x, t). Kubica and Yamamoto [21] proved the existence and unique-
ness of a weak solution, and also several regularity results. In this work,
we present new regularity estimates in Theorems 1 and 2. For example, for
u0 ∈ L2(Ω) and f ≡ 0, under suitable conditions on a(x, t), there holds

‖ dk

dtk
(tku(t))‖L2(Ω) ≤ c‖u0‖L2(Ω). Such an estimate provides one crucial tool

for the error analysis of high-order time-stepping schemes.
So far there are very few works on the numerical approximation of the

model (1.1) [31,18]. Mustapha [31] analyzed a spatially semidiscrete Galerkin
finite element method (FEM) for the homogeneous problem, and showed op-
timal order convergence by a novel energy argument. In essence, the approach
extends the argument in [26] for standard parabolic problems to the frac-
tional case. In the authors’ prior work [18], we developed a different approach
to analyze the spatially semidiscrete Galerkin scheme, as well as a fully dis-
crete scheme based on convolution quadrature (CQ) generated by backward
Euler method (and L1 scheme), and showed optimal order convergence rates
for both semidiscrete and fully discrete schemes (up to a logarithmic factor),
based on a perturbation argument and new regularity results. However, the
discrete scheme in [18] is only first order accurate in time. To the best of our
knowledge, there is no proven second- or higher-order accurate time-stepping
scheme for the subdiffusion model with a time-dependent coefficient and non-
smooth problem data in the literature. This contrasts sharply with the case of
time-independent elliptic operators, for which there are several strategies for
devising high-order schemes, e.g., initial correction [16]. These observations
motivate the present work.

In this article, we propose a second-order time-stepping scheme for problem
(1.1) with nonsmooth initial data and incompatible source term. It is based
on the CQ generated by the second-order backward differentiation formula
(BDF2), with suitable correction at the first step. The correction is inspired
by the recent works [5,14,16] and essential for restoring the second-order con-
vergence. Further, we present a complete error analysis in Section 4, and prove
a convergence rate O(τ2) with τ being the time stepsize, for any fixed tn > 0, of
the scheme for both nonsmooth initial data and incompatible source term. The
error analysis relies heavily on new temporal regularity results for the model
(1.1) in Section 3 and a refined perturbation argument, which substantially
extends the prior work [18]. Specifically, the error analysis relies on suitable
nonstandard bounds for problem data in the space Ḣ−γ(Ω) (cf., Lemma 4
and Theorem 5), and perturbation estimates at both t = 0 and t = tm (cf.,
the proof of Lemma 7), which are substantially different from the one in [18]
which only requires estimates at t = tm for problem data in L2(Ω). The new
scheme, regularity results and time discretization errors represent the main
contributions of this work.

In the context of the standard parabolic counterpart with L2(Ω)-initial
data and zero forcing term, Luskin and Rannacher [26] analyzed a fully dis-
crete scheme based on Galerkin FEM in space and the backward Euler method
in time, and proved a first-order temporal convergence. Somewhat surprisingly,
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Sammon [34] proved that for standard parabolic problems with L2(Ω) initial
data, generally only second-order convergence can be achieved for a class of
single step and linear multi-step time stepping schemes (by ignoring the errors
at starting steps). The design and analysis of schemes with higher order accu-
racy remain largely elusive for standard parabolic models with time-dependent
elliptic operators and nonsmooth data. Thus, the development and analysis
of high-order time-stepping schemes for the model (1.1) with general problem
data is still very challenging; see Section 2 for further discussions.

The rest of the paper is organized as follows. In Section 2, we describe the
proposed time-stepping scheme. In Section 3, we prove new temporal regularity
results, and in Section 4, we give a complete error analysis for both smooth
and nonsmooth data. Finally in Section 5, we present numerical results to
complement the error analysis. Throughout, the notation c denotes a generic
constant which may differ at each occurrence, but it is always independent of
the time stepsize τ , but may depend on the final time T .

2 Derivation of the numerical scheme

In this section, we construct a second-order time-stepping scheme for problem
(1.1) using CQ generated by BDF2 with initial correction, derived from a
perturbation argument. For notational simplicity, we shall denote by v(t) =
v(·, t) for a function v defined on Ω × (0, T ].

Since the Riemann-Liouville derivative is equivalent to the Caputo one for
functions with zero initial value, we rewrite problem (1.1) as

R∂αt (u(t)− u0) +A(t)u(t) = f(t), (2.1)

where the Riemann-Liouville derivative R∂αt ϕ(t) is defined by R∂αt ϕ(t) =
d
dt

1
Γ (1−α)

∫ t
0
(t − s)−αϕ(s)ds, and the time-dependent elliptic operator A(t) :

H1
0 (Ω) ∩H2(Ω)→ L2(Ω) is defined by

A(t)φ = −∇ · (a(x, t)∇φ).

Let tn = nτ , n = 0, 1, . . . , N , be a uniform partition of the interval [0, T ]
with a time stepsize τ = T/N . BDF2–CQ approximates the Riemann-Liouville
derivative R∂αt ϕ(t) at the time t = tn by

∂̄ατ ϕ
n :=

1

τα

n∑
j=0

bjϕ
n−j with ϕn = ϕ(tn), (2.2)

where the weights {bj}∞j=0 are the coefficients in the power series expansion

δτ (ζ)α =
1

τα

∞∑
j=0

bjζ
j with δτ (ζ) :=

ζ2 − 4ζ + 3

2τ
(2.3)
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If the function ϕ is smooth and has sufficiently many vanishing derivatives
at t = 0, then BDF2–CQ is second-order accurate pointwise in time [24] [25,
Theorem 3.1].

By employing (2.2) to discretize the term R∂αt (u(t)−u0) in (2.1), we obtain
a BDF2–CQ scheme for (1.1): given u0 = u0, find un such that

∂̄ατ (u− u0)n +A(tn)un = f(tn), n = 1, 2 . . . , N. (2.4)

This scheme generally has only first-order accuracy, instead of second-order
accuracy, due to the low regularity of the solution u(t) at t = 0, unless restric-
tive compatibility conditions on the initial data u0 and f are satisfied (which
guarantee good solution regularity at t = 0). This has been observed for many
different time-stepping schemes for subdiffusion with a time-independent dif-
fusion coefficient [16,14,5]. Hence, the vanilla BDF2–CQ scheme (2.4) has to
be modified in order to achieve second-order convergence for general data.

In this work, we propose the following time-stepping scheme:{
∂̄ατ (u− u0)1 +A(t1)u1 + 1

2A(0)u0 = f(t1) + 1
2f(0),

∂̄ατ (u− u0)n +A(tn)un = f(tn), n = 2, 3, . . . , N,
(2.5)

which is obtained by first rewriting problem (1.1) into

R∂αt (u− u0) +A(0)u(t) = F (t) with F (t) = f(t) + (A(0)−A(t))u(t),

and then following [14,16] to modify the first step as

∂̄ατ (u− u0)1 +A(0)u1 + 1
2A(0)u0 = F (t1) + 1

2F (0).

Then substituting the expression of F (t) and collecting terms yield the correc-
tion in (2.5). In (2.5), the term A(0)u0 should be interpreted in a distributional
sense for weak initial data, e.g., u0 ∈ L2(Ω).

Note that F ′(0) is generally not defined in L2(Ω). Hence, the existing
correction methods in [16] for higher-order BDFs cannot be applied directly.
It is still very challenging to develop higher-order time discretization methods
for problem (1.1) with nonsmooth problem data. This seems to be open even
for the standard parabolic counterpart [34].

3 Regularity of solutions

We assume that the diffusion coefficient a(x, t) : Ω × (0, T ) → Rd×d satisfies
that for some real number λ ≥ 1, integer K ≥ 2 and i, j = 1, . . . , d:

λ−1|ξ|2 ≤ a(x, t)ξ · ξ ≤ λ|ξ|2, ∀ ξ ∈ Rd, ∀ (x, t) ∈ Ω × (0, T ], (3.1)

| ∂∂taij(x, t)|+ |∇x
∂k

∂tk
aij(x, t)| ≤ c, ∀ (x, t) ∈ Ω × (0, T ], k = 0, . . . ,K + 1,

(3.2)
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where · and | · | denote the standard Euclidean inner product and norm, re-
spectively. Under these conditions, there holds D(A(t)) = H1

0 (Ω)∩H2(Ω) for
all t ∈ [0, T ]. By the complex interpolation method [38], this implies

D(A(t)γ) = Ḣ2γ(Ω), ∀ t ∈ [0, T ], ∀ γ ∈ [0, 1],

where Ḣ2γ(Ω) = (L2(Ω), H1
0 (Ω) ∩H2(Ω))[γ] denotes the complex interpola-

tion space between L2(Ω) and H1
0 (Ω) ∩ H2(Ω). Equivalently, it can be de-

fined via spectral decomposition of the operator A(t) [37, Chapter 3]. Let
{(λj , ϕj)}nj=1 be the eigenpairs of A(t) with multiplicity counted and {ϕj}∞j=1

be an orthonormal basis in L2(Ω). Then the space Ḣγ(Ω) can be defined as

Ḣγ(Ω) =
{
v ∈ L2(Ω) :

∞∑
j=1

λγj (v, ϕj)
2 <∞

}
.

In particular, Ḣ2(Ω) = H1
0 (Ω) ∩ H2(Ω), Ḣ1(Ω) = H1

0 (Ω) and Ḣ0(Ω) =
L2(Ω). For γ ∈ [0, 2] we also denote by Ḣ−γ(Ω) the dual space of Ḣγ(Ω).
Then the norm of Ḣ−γ(Ω) satisfies

‖v‖Ḣ−γ(Ω) = ‖A(t)−
γ
2 v‖L2(Ω) ∀ v ∈ Ḣ−γ(Ω), ∀ t ∈ [0, T ].

In this section, we prove the following regularity results.

Theorem 1 (Homogeneous problem) If a(x, t) satisfies (3.1)-(3.2), u0 ∈
Ḣ2γ(Ω) with γ ∈ [0, 1] and f ≡ 0, then for all t ∈ (0, T ] and k = 0, . . . ,K, the
solution u(t) to problem (1.1) satisfies∥∥∥ dk

dtk
(tku(t))

∥∥∥
Ḣ2β(Ω)

≤ ct−(β−γ)α‖u0‖Ḣ2γ(Ω), ∀β ∈ [γ, 1].

Theorem 2 (Inhomogeneous problem) If a(x, t) satisfies (3.1)-(3.2), u0 ≡
0, then for all t ∈ (0, T ] and k = 0, . . . ,K, the solution u(t) to problem (1.1)
satisfies for any β ∈ [0, 1)∥∥∥ dk

dtk
(tku(t))

∥∥∥
Ḣ2β(Ω)

≤c
k−1∑
j=0

t(1−β)α+j‖f (j)(0)‖L2(Ω)

+ ctk
∫ t

0

(t− s)(1−β)α−1‖f (k)(s)‖L2(Ω)ds,

and similarly for β = 1,∥∥∥ dk

dtk
(tku(t))

∥∥∥
Ḣ2β(Ω)

≤ c
k∑
j=0

tj‖f (j)(0)‖L2(Ω) + ctk
∫ t

0

‖f (k+1)(s)‖L2(Ω)ds.

Remark 1 These regularity results are identical with that for subdiffusion with
a time-independent elliptic operator [33, Theorems 2.1–2.2], [15, Theorem 2.1].
All the constants in Theorems 1 and 2 may grow with k and blow up as
K → ∞, but stay bounded for any finite K. Further, these constants are
uniformly bounded as α → 1−, similar to the prior estimates in [18, Remark
2.1].
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Theorem 2 implies the following estimate for smooth initial data.

Corollary 1 If a(x, t) satisfies (3.1)-(3.2), u0 ∈ Ḣ2(Ω) and f ≡ 0, then for
w(t) = u(t)− u0, for all t ∈ (0, T ] and k = 0, . . . ,K, there holds∥∥∥ dk

dtk
(tkw(t))

∥∥∥
Ḣ2β(Ω)

≤ ct(1−β)α‖u0‖Ḣ2(Ω), ∀β ∈ [0, 1].

Proof The function w(t) satisfies ∂αt w(t)+A(t)w(t) = −A(t)u0 with w(0) = 0.
Then the assertion follows directly from Theorem 2. ut

The rest of this section is devoted to the proof of Theorems 1 and 2.

3.1 Preliminaries

First, we recall some preliminary results [17] on the solution representation
and smoothing properties of solution operators for subdiffusion with a time-
independent coefficient, i.e.,

∂αt u(t) +A∗u(t) = g(t), ∀t ∈ (0, T ], with u(0) = u0, (3.3)

where A∗ = A(t∗), for some fixed t∗ ∈ [0, T ] independent of t ∈ (0, T ]. By
means of Laplace transform, the solution u of (3.3) can be represented by (cf.
[15, Section 2] and [17, Section 2])

u(t) = F∗(t)u0 +

∫ t

0

E∗(t− s)g(s)ds, (3.4)

where the operators F∗(t) and E∗(t) are respectively defined by

F∗(t) :=
1

2πi

∫
Γθ,δ

eztzα−1(zα +A∗)
−1 dz, (3.5)

E∗(t) :=
1

2πi

∫
Γθ,δ

ezt(zα +A∗)
−1 dz, (3.6)

with the contour Γθ,δ (oriented with an increasing imaginary part):

Γθ,δ = {z ∈ C : |z| = δ, | arg z| ≤ θ} ∪ {z ∈ C : z = ρe±iθ, ρ ≥ δ}. (3.7)

Throughout, we choose a fixed angle θ ∈ (π2 , π) so that

zα ∈ Σαθ for z ∈ Σθ := {z ∈ C\{0} : |arg(z)| ≤ θ}.

From the definitions (3.5) and (3.6), we deduce

A∗E∗(t) = (I − F∗(t))′, (3.8)

which follows by straightforward computation

(I − F∗(t))′ = − 1

2πi

∫
Γθ,δ

eztzα(zα +A∗)
−1 dz
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= − 1

2πi

∫
Γθ,δ

ezt(I −A∗(zα +A∗)
−1) dz = A∗E∗(t).

The next lemma summarizes the smoothing properties of F∗(t) and E∗(t),
where ‖ · ‖ denotes the operator norm from L2(Ω) to L2(Ω).

Lemma 1 For any integer k = 0, 1, . . . , the operators F∗ and E∗ defined in
(3.5)-(3.6) satisfy for any t ∈ (0, T ]

(i) t−α‖A−1∗ (I − F∗(t))‖+ t1−α‖A−1∗ F ′∗(t)‖ ≤ c;

(ii) tk+1−α‖E(k)
∗ (t)‖+ tk+1‖A∗E(k)

∗ (t)‖+ tk+1+α‖A2
∗E

(k)
∗ (t)‖ ≤ c;

(iii) tk‖F (k)
∗ (t)‖+ tk+α‖A∗F (k)

∗ (t)‖ ≤ c.

Proof The assertions for k = 0, 1 were already given in [18, Lemma 2.2]. The
proof for k > 1 is similar. For example, in part (i), by (3.8) and choosing
δ = t−1 in the contour Γθ,δ and letting ẑ = tz:

‖A−1∗ F ′∗(t)‖ = ‖E∗(t)‖ ≤
1

2π

∫
Γθ,δ

e<(z)t‖(zα +A∗)
−1‖ |dz|

≤ ctα−1 1

2π

∫
Γθ,1

e<(ẑ)|ẑ|−α|dẑ|

≤ ctα−1 1

2π

∫
Γθ,1

ecos(θ)|ẑ|(1 + |ẑ|−1)|dẑ| ≤ ctα−1,

and in part (iii) with k = 0, ‖F∗(t)‖ can be bounded by

‖F∗(t)‖ ≤
1

2π

∫
Γθ,δ

e<(z)t|z|α−1‖(zα +A∗)
−1‖ |dz|

≤ 1

2π

∫
Γθ,δ

e<(z)t|z|−1|dz| ≤ c.

The proof of (3.8) gives A∗E∗(t) = − 1
2πi

∫
Γθ,δ

eztzα(zα + A∗)
−1dz, and since

‖A∗(zα +A∗)
−1‖ ≤ c, we deduce

‖A2
∗E∗(t)‖ ≤

1

2π

∫
Γθ,δ

e<(z)t|z|α|dz| ≤ ct−1−α.

All other estimates can be proved similarly and the details are omitted. Note
that all the constants c remain bounded as α→ 1−. ut

The following perturbation estimate [18, Corollary 3.1] will be used exten-
sively. In particular, it implies that ‖A(s)−1A(t)‖ ≤ c for any s, t ∈ [0, T ], and
by interpolation also, ‖A(s)−βA(t)β‖ ≤ c for any β ∈ (0, 1).

Lemma 2 Under conditions (3.1)–(3.2), for any β ∈ [0, 1], there holds

‖(I −A(t)−1A(s))v‖Ḣ2β(Ω) ≤ c|t− s|‖v‖Ḣ2β(Ω), ∀v ∈ Ḣ2β(Ω). (3.9)
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The following regularity results for problem (1.1) were proved in [18] (also
see [21,7] for related results under different assumptions).

Theorem 3 Under conditions (3.1)–(3.2), the solution u(t) of problem (1.1)
satisfies the following estimates:

(i) If u0 ∈ Ḣ2γ(Ω), with some γ ∈ [0, 1], and f = 0, then

‖u(t)‖H2(Ω) ≤ ct−(1−γ)α‖u0‖Ḣ2γ(Ω) and ‖u′(t)‖L2(Ω) ≤ ctγα−1‖u0‖Ḣ2γ(Ω).

(ii) If u0 = 0, f ∈ C([0, T ];L2(Ω)) and
∫ t
0
(t− s)α−1‖f ′(s)‖L2(Ω) ds <∞, then

‖u′(t)‖L2(Ω) ≤ ctα−1‖f(0)‖L2(Ω) + c

∫ t

0

(t− s)α−1‖f ′(s)‖L2(Ω) ds.

Theorem 3 is a special case of Theorems 1 and 2 corresponding to (k, β) =
(0, 1) and (k, β) = (1, 0), respectively. These results were used in [18] to
prove first-order convergence of backward Euler CQ. But they are insufficient
to prove second-order convergence of the corrected BDF2–CQ scheme (2.5),
which requires the regularity results in Theorems 1 and 2 for k = 2. Below,
we prove Theorems 1 and 2 for a general nonnegative integer k.

3.2 Proof of Theorems 1 and 2

The overall proof strategy is to employ a perturbation argument [17,18] and
then to properly resolve the singularity. Specifically, for any fixed t∗ ∈ (0, T ],
we rewrite problem (1.1) into{

∂αt u(t) +A∗u(t) = (A∗ −A(t))u(t) + f(t), ∀t ∈ (0, T ],

u(0) = u0.
(3.10)

By (3.4), the solution u(t) of (3.10) is given by

u(t) = F∗(t)u0 +

∫ t

0

E∗(t− s)(f(s) + (A∗ −A(s))u(s))ds. (3.11)

The objective is to estimate the kth temporal derivative u(k)(t) := dk

dtk
u(t)

in Ḣ2β(Ω) for β ∈ [0, 1] using (3.11). However, direct differentiation of u(t) in
(3.11) with respect to t leads to strong singularity that precludes the use of
Gronwall’s inequality in Lemma 10, in order to handle the perturbation term.
To overcome the difficulty, we instead estimate ‖(tk+1u(t))(k)‖Ḣ2β(Ω) using the

expansion of tk+1 = [(t− s) + s]k+1 in the the following expression:

tk+1u(t) = tk+1F∗(t)u0 + tk+1

∫ t

0

E∗(t− s)f(s)ds (3.12)
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+

k+1∑
m=0

(
m

k + 1

)∫ t

0

(t− s)mE∗(t− s)(A∗ −A(s))sk+1−mu(s)ds,

where ( m
k+1) denotes binomial coefficients. One crucial part in the proof is to

bound kth-order derivatives of the summands in (3.12).
Now we can give the proof of Theorem 1.

Proof (of Theorem 1) When k = 0, setting f = 0 and t = t∗ in (3.11) yields

Aβ∗u(t∗) = Aβ∗F∗(t∗)u0 +

∫ t∗

0

Aβ∗E∗(t∗ − s)(A∗ −A(s))u(s)ds,

where β ∈ [γ, 1]. By Lemmas 1 and 2,

‖Aβ∗u(t∗)‖L2(Ω) ≤ ‖Aβ−γ∗ F∗(t∗)A
γ
∗u0‖L2(Ω)

+

∫ t∗

0

‖A∗E∗(t∗ − s)‖‖Aβ∗ (I −A−1∗ A(s))u(s)‖L2(Ω)ds

≤ ct−(β−γ)α∗ ‖Aγ∗u0‖L2(Ω) + c

∫ t∗

0

(t∗ − s)‖A∗E∗(t∗ − s)‖‖Aβ∗u(s)‖L2(Ω)ds

≤ ct−(β−γ)α∗ ‖u0‖Ḣ2γ(Ω) + c

∫ t∗

0

‖Aβ∗u(s)‖L2(Ω)ds.

This and Gronwall’s inequality in Lemma 10 with µ = (β − γ)α yield

‖Aβ∗u(t∗)‖L2(Ω) ≤ c(1− (β − γ)α)−1t
−(β−γ)α
∗ ‖u0‖Ḣ2γ(Ω).

In particular, we have ‖A
β+γ

2
∗ u(t∗)‖L2(Ω) ≤ ct

− β−γ2 α
∗ ‖u0‖Ḣ2γ(Ω), with c being

bounded as α→ 1−. This estimate and Lemmas 1(ii) and 2 then imply

‖Aβ∗u(t∗)‖L2(Ω) ≤ ‖Aβ−γ∗ F∗(t∗)A
γ
∗u0‖L2(Ω)

+

∫ t∗

0

‖A
β−γ

2
∗ A∗E∗(t∗ − s)‖‖A

β+γ
2
∗ (I −A−1∗ A(s))u(s)‖L2(Ω)ds

≤ ct−(β−γ)α∗ ‖Aγ∗u0‖L2(Ω) + c

∫ t∗

0

(t∗ − s)‖A
β−γ

2
∗ A∗E∗(t∗ − s)‖‖A

β+γ
2
∗ u(s)‖L2(Ω)ds

≤ c
(
t
−(β−γ)α
∗ +

∫ t∗

0

(t∗ − s)−
β−γ

2 αs−
β−γ

2 αds
)
‖u0‖Ḣ2γ(Ω) ≤ ct

−(β−γ)α
∗ ‖u0‖Ḣ2γ(Ω).

Equivalently, we have

‖Aβ∗ t∗u(t∗)‖L2(Ω) ≤ ct
1−(β−γ)α
∗ ‖u0‖Ḣ2γ(Ω),

where c is bounded as α→ 1−. This proves the assertion for k = 0.
Next we prove the case 1 ≤ k ≤ K using mathematical induction. Suppose

that the assertion holds up to k − 1 < K, and we prove it for k ≤ K. Indeed,
by Lemma 3 below,∥∥∥Aβ∗ dk

dtk

∫ t

0

(t− s)mE∗(t− s)(A∗ −A(s))sk+1−mu(s)ds|t=t∗
∥∥∥
L2(Ω)
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≤ct−(β−γ)α+1
∗ ‖u0‖Ḣ2γ(Ω) + c

∫ t∗

0

‖Aβ∗ (sk+1u(s))(k)‖L2(Ω)ds,

where m = 0, 1, . . . , k + 1. Meanwhile, the estimates in Lemma 1 imply∥∥Aβ∗(tk+1F∗(t)u0
)(k)∥∥

L2(Ω)
≤ ct−(β−γ)α+1‖u0‖Ḣ2γ(Ω).

By applying Aβ∗
dk

dtk
to (3.12) and using the last two estimates, we obtain∥∥Aβ∗ (tk+1u(t))(k)|t=t∗

∥∥
L2(Ω)

≤ct−(β−γ)α+1
∗ ‖u0‖Ḣ2γ(Ω)

+ c

∫ t∗

0

‖Aβ∗ (sk+1u(s))(k)‖L2(Ω)ds.

Last, applying the standard Gronwall’s inequality, we complete the induction
step and also the proof of the theorem. ut

In the proof of Theorem 1, we have used the following result.

Lemma 3 Under the conditions of Theorem 1, for m = 0, . . . , k + 1, there
holds ∥∥∥Aβ∗ dk

dtk

∫ t

0

(t− s)mE∗(t− s)(A∗ −A(s))sk+1−mu(s)ds|t=t∗
∥∥∥
L2(Ω)

≤ct−(β−γ)α+1
∗ ‖u0‖Ḣ2γ(Ω) + c

∫ t∗

0

∥∥∥Aβ∗ (sk+1u(s))(k)
∥∥∥
L2(Ω)

ds.

Proof Denote the integral on the left hand side by Im(t), and let vm = tmu(t)
and Wm(t) = tmE∗(t). Direct computation using product rule and changing
variables gives that for any 0 ≤ m ≤ k, there holds

I(k)m (t) =
dk−m

dtk−m

∫ t

0

W (m)
m (t− s)(A∗ −A(s))vk−m+1(s)ds

=
dk−m

dtk−m

∫ t

0

W (m)
m (s)(A∗ −A(t− s))vk−m+1(t− s)ds

=

∫ t

0

W (m)
m (s)

dk−m

dtk−m
(
(A∗ −A(t− s))vk−m+1(t− s)

)
ds

=

k−m∑
`=0

(
`

k −m

)∫ t

0

W (m)
m (s)(A∗ −A(t− s))(k−m−`)v(`)k−m+1(t− s)ds︸ ︷︷ ︸

Im,`(t)

.

Next we bound the integrand

Ĩm,`(s) := W (m)
m (A∗ −A(t∗ − s))(k−m−`)v(`)k−m+1(t∗ − s)

of the integral Im,`(t∗). We shall distinguish between β ∈ [γ, 1) and β = 1.
First we analyze the case β ∈ [γ, 1). When ` < k, by Lemmas 1(ii) and 2 and

the induction hypothesis, we bound the integrand Ĩm,`(s) by

‖Aβ∗ Ĩm,`(s)‖L2(Ω)
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≤ ‖Aβ∗W (m)
m (s)‖‖(A∗ −A(t∗ − s))(k−m−`)v(`)k−m+1(t∗ − s)‖L2(Ω)

≤

 cs(1−β)α−1s‖A∗v(k−m)
k−m+1(t∗ − s)‖L2(Ω), ` = k −m,

cs(1−β)α−1‖A∗v(`)k−m+1(t∗ − s)
∥∥∥
L2(Ω)

, ` < k −m,

≤

{
cs(1−β)α(t∗ − s)1−(1−γ)α‖Aγ∗u0‖L2(Ω), ` = k −m,
cs(1−β)α−1(t∗ − s)k−m−`+1−(1−γ)α‖Aγ∗u0‖L2(Ω), ` < k −m.

Similarly for the case ` = k (and thus m = 0), there holds

‖Aβ∗ Ĩ0,k(s)‖L2(Ω) ≤ ‖A∗E∗(s)‖‖Aβ∗ (I −A−1∗ A(t∗ − s))v(k)k+1‖L2(Ω)

≤ c‖Aβ∗v
(k)
k+1(t∗ − s)‖L2(Ω).

Thus, for 0 ≤ m ≤ k and ` = k −m, upon integrating from 0 to t∗, we obtain

‖Aβ∗ I(k)m (t∗)‖L2(Ω) ≤ ct
2+(γ−β)α
∗ ‖Aγ∗u0‖L2(Ω) + c

∫ t∗

0

‖Aβ∗v
(k)
k+1(s)‖L2(Ω)ds,

and similarly for 0 ≤ m ≤ k and ` < k −m,

‖Aβ∗ I(k)m (t∗)‖L2(Ω) ≤c((1− β)α)−1t
1+(γ−β)α
∗ ‖Aγ∗u0‖L2(Ω)

+ c

∫ t∗

0

‖Aβ∗v
(k)
k+1(s)‖L2(Ω)ds.

Meanwhile, for m = k + 1, we have

Aβ∗ I
(k)
k+1(t∗) =

∫ t∗

0

Aβ+1−γ
∗ W

(k)
k+1(t∗ − s)Aγ∗(I −A−1∗ A(s))u(s)ds,

and consequently, by Lemmas 1(ii) and 2 and the induction hypothesis,

‖Aβ∗ I
(k)
k+1(t∗)‖L2(Ω)

≤
∫ t∗

0

‖Aβ+1−γ
∗ W

(k)
k+1(t∗ − s)‖‖Aγ∗(I −A−1∗ A(s))u(s)‖L2(Ω)ds

≤ c
∫ t∗

0

(t∗ − s)1−(β−γ)α‖Aγ∗u(s)‖L2(Ω)ds ≤ ct
2+(γ−β)α
∗ ‖Aγ∗u0‖L2(Ω).

In the case 0 ≤ m ≤ k and ` < k − m, the preceding estimates require
β ∈ [0, 1). When 0 ≤ m ≤ k, ` < k−m and β = 1, we apply the identity (3.8)
and rewrite A∗Im,`(t∗) as

A∗Im,`(t∗) =

∫ t∗

0

(sm(I − F∗(s))′)(m)(A∗ −A(t∗ − s))(k−m−`)v(`)k−m+1(t∗ − s)ds.

Then integration by parts and product rule yield

A∗Im,`(t∗) = −
∫ t∗

0

D(s)(A∗ −A(t∗ − s))(k−m−`+1)v
(`)
k−m+1(t∗ − s)ds
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−
∫ t∗

0

D(s)(A∗ −A(t∗ − s))(k−m−`)v(`+1)
k−m+1(t∗ − s)ds

−D(0)(A∗ −A(t∗ − s))(k−m−`)|s=0v
(`)
k−m+1(t∗), (3.13)

with

D(s) =

{
I − F∗(s), m = 0,

(sm(I − F∗(s))′)(m−1), m > 0.

By Lemma 1(iii), ‖D(s)‖ ≤ c, and thus the preceding argument with Lemmas

1 and 2 and the induction hypothesis allows bounding the integrand A∗Ĩm,`(s)
of (3.13) by

‖A∗Ĩm,`(s)‖L2(Ω) ≤ c(t∗ − s)k−`−(1−γ)α‖u0‖Ḣ2γ(Ω)

+

{
c‖A∗v(k)k+1(t∗ − s)‖L2(Ω), ` = k − 1,

c(t∗ − s)k−1−`−(1−γ)α‖u0‖Ḣ2γ(Ω), ` < k − 1,

where for ` = k − 1, we have m = 0 and hence D(0) = 0.
Combining the last estimates and then integrating from 0 to t∗ in s, we

obtain the desired assertion of Lemma 3. All the estimates are based on Lem-
mas 1 and 2, and thus the constants c in Lemma 3 is bounded as α→ 1−. ut

The proof of Theorem 2 is similar to that of Theorem 1. The lengthy and
technical proof is deferred to Appendix B.

4 Error analysis

In this section, we present error estimates for the scheme (2.5). To this end,
let w(t) = u(t)− u(0), which satisfies the equation{

∂αt w(t) +A(0)w(t) = g(t), ∀t > 0,

w(0) = 0.
(4.1)

with
g(t) := (A(0)−A(t))w(t)−A(t)u0 + f(t).

Then the error en := un − u(tn) of the numerical solution un is given by

en = wn − w(tn), with wn = un − u0. (4.2)

We also introduce an intermediate solution wn defined by{
∂̄ατ w

1 +A(0)w1 = g(t1) + 1
2g(t0),

∂̄ατ w
n +A(0)wn = g(tn), n = 2, 3, . . . , N.

(4.3)

which is the numerical approximation of (4.1) with the source g(t). Using wn,
we further decompose the error en into

en = (wn − wn) + (wn − w(tn)) =: %n + ϑn,
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where ϑn is the error due to time discretization of problem (4.1) with a “time-
independent” operator A(0), and %n is the error between two numerical solu-
tions due to the perturbation of the source term.

It suffices to estimate the two terms %n and ϑn. The analysis for ϑn will
employ the following nonstandard error estimates.

Lemma 4 Let u(t) be the solution of problem (3.3) with u0 ≡ 0 and un, with
u0 = 0, defined by{

∂̄ατ u
1 +A(t∗)u

1 = g(t1) + 1
2g(0),

∂̄ατ u
n +A(t∗)u

n = g(tn), n = 2, . . . , N.

Then the following statements hold.

(i) If β, γ ∈ [0, 1) and β + γ < 1, then

‖u(tn)− un‖Ḣ2β(Ω) ≤ cτ
2
(
t(1−β)α−2n ‖g(0)‖L2(Ω) + t(1−β)α−1n ‖g′(0)‖L2(Ω)

+

∫ tn

0

(tn+1 − s)(1−β−γ)α−1‖g′′(s)‖Ḣ−2γ(Ω) ds
)
.

(ii) If β = 1, then

‖u(tn)− un‖Ḣ2(Ω) ≤cτ
2
(
t−2n ‖g(0)‖L2(Ω) + t−1n ‖g′‖C([0,τ ];L2(Ω))

+

∫ tn

τ

(tn+1 − s)−1‖g′′(s)‖L2(Ω)ds
)
.

Lemma 4 can be proved using discrete Laplace transform (generating func-
tion technique) similarly as the error estimation for CQ–BDFk [16]. This type
of error estimation yields an error bound directly from a contour integral, while
the constant produced from a contour integral is bounded as α→ 1−. We will
use Lemma 4 and a perturbation argument to bound ϑn and %n, respectively,
and derive error estimates for numerical solutions.

For the convenience of error analysis, we further split w(t) into w(t) =
w0(t) + w1(t), where w0(t) and w1(t) are respectively solutions of

∂αt w0(t) +A(0)w0(t) = (A(0)−A(t))w(t), with w0(0) = 0, (4.4)

∂αt w1(t) +A(0)w1(t) = −A(t)u0 + f(t), with w1(0) = 0. (4.5)

Correspondingly, we split wn into wn = wn0 + wn1 , defined by w0
0 = 0,

∂̄ατ w
n
0 +A(0)wn0 = (A(0)−A(tn))w(tn), n = 1, 2, 3, . . . , N, (4.6)

and w0
1 = 0 and{
∂̄ατ w

1
1 +A(0)w1

1 = −A(t1)u0 − 1
2A(0)u0 + f(t1) + 1

2f(t0),

∂̄ατ w
n
1 +A(0)wn1 = −A(tn)u0 + f(tn), n = 2, 3, . . . , N,

(4.7)

The functions wn0 and wn1 approximate w0(tn) and w1(tn), respectively.
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4.1 Error analysis for the homogeneous problem

Now we analyze the scheme (2.5) for the homogeneous problem with f ≡ 0.
First, we bound the function g(t) = (A(0)−A(t))w(t) in equation (4.4).

Lemma 5 Let Assumptions (3.1)–(3.2) hold. For the function g(t) = (A(0)−
A(t))w(t), the following statements hold when f ≡ 0.

(i) u0 ∈ Ḣ2(Ω) and β ∈ [0, 1], then ‖g′(0)‖L2(Ω) + t1−αβ‖g′′(t)‖Ḣ−2β(Ω) ≤
c‖u0‖Ḣ2(Ω).

(ii) u0 ∈ L2(Ω), then ‖g′(t)‖Ḣ−2(Ω) + t‖g′′(t)‖Ḣ−2(Ω) ≤ c‖u0‖L2(Ω).

Proof By Theorem 1 and triangle inequality, ‖w(t)‖Ḣ2(Ω) ≤ ‖u(t)‖Ḣ2(Ω) +

‖u0‖Ḣ2(Ω) ≤ c‖u0‖Ḣ2(Ω). Thus, by Lemma 2,

‖g′(t)‖L2(Ω) ≤ ‖(A(0)−A(t))w′(t)‖L2(Ω) + ‖A′(t)w(t)‖L2(Ω)

≤ ct‖u′(t)‖Ḣ2(Ω) + c‖w(t)‖Ḣ2(Ω) ≤ c‖u0‖Ḣ2(Ω),

Thus, ‖g′(0)‖L2(Ω) ≤ c‖u0‖Ḣ2(Ω). Since g′′(t) = (A(0)−A(t))w′′(t)−2A′(t)w′(t)−
A′′(t)w(t), it follows from Corollary 1 and Theorem 1 that for β ∈ [0, 1]

‖g′′(t)‖Ḣ−2β(Ω) = ‖(A(0)−A(t))w′′(t)− 2A′(t)w′(t)−A′′(t)w(t)‖Ḣ−2β(Ω)

≤ ct‖w′′(t)‖Ḣ2−2β(Ω) + c‖w′(t)‖Ḣ2−2β(Ω) + c‖w(t)‖Ḣ2−2β(Ω)

≤ ctαβ−1‖u0‖Ḣ2(Ω).

Similarly, when u0 ∈ L2(Ω), repeating the preceding argument shows (ii).

The next lemma bounds ϑn = wn − w(tn).

Lemma 6 Let conditions (3.1)-(3.2) hold, and w be the solution to problem
(4.1) with f ≡ 0. Let ϑn := wn − w(tn). Then there hold

‖ϑn‖Ḣ2β(Ω) ≤ cτ
2tα(1−β)−2n ‖u0‖Ḣ2(Ω), ∀β ∈ [0, 1/2),

‖ϑn‖L2(Ω) ≤ cτ2t−2n `n‖u0‖L2(Ω), with `n = log(1 + tn/τ).

Proof Using the decompositions w(t) = w0(t) + w1(t) and wn = wn0 + wn1
defined in (4.4)-(4.5) and (4.6)-(4.7), respectively, we have

‖ϑn‖Ḣ2β(Ω) ≤ ‖w
n
0 − w0(tn)‖Ḣ2β(Ω) + ‖wn1 − w1(tn)‖Ḣ2β(Ω). (4.8)

We discuss the cases u0 ∈ Ḣ2(Ω) and u0 ∈ L2(Ω), separately.

Case (i): u0 ∈ Ḣ2(Ω). Lemma 4(i) with g(t) = A(t)u0, for β ∈ [0, 1/2), implies

‖wn1 − w1(tn)‖Ḣ2β(Ω) ≤ cτ
2t(1−β)α−2n ‖u0‖Ḣ2(Ω). (4.9)

For g(t) = (A(0)−A(t))w(t) and any β ∈ [0, 1/2), Lemmas 4(i) and 5 imply

‖wn0 − w0(tn)‖Ḣ2β(Ω)
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≤ cτ2t(1−β)α−1n ‖g′(0)‖L2(Ω) + cτ2
∫ tn

0

(tn+1 − s)(1−2β)α−1‖g′′(s)‖Ḣ−2β(Ω) ds

≤ cτ2
(
t(1−β)α−1n +

∫ tn

0

(tn+1 − s)(1−2β)α−1sαβ−1ds
)
‖u0‖Ḣ2(Ω)

≤ cτ2tα(1−β)−1n ‖u0‖Ḣ2(Ω).

This and (4.9) yield the desired estimate for u0 ∈ Ḣ2(Ω).

Case (ii): u0 ∈ L2(Ω). By Lemma 4(ii), we have

‖wn1 − w1(tn)‖L2(Ω) ≤ cτ2t−2n `n‖u0‖L2(Ω).

Meanwhile, by Lemmas 4(ii) and 5, we have

‖wn0 − w0(tn)‖L2(Ω)

≤ cτ2
(
t−1n ‖g′‖C([0,τ ];Ḣ−2(Ω)) +

∫ tn

τ

(tn+1 − s)−1‖g′′(s)‖Ḣ−2(Ω) ds
)

≤ cτ2
(
t−1n +

∫ tn

τ

(tn+1 − s)−1s−1ds
)
‖u0‖L2(Ω) ≤ cτ2t−1n `n‖u0‖L2(Ω).

These two estimates give the second assertion, completing the proof. ut

We need a temporally semidiscrete solution operator Enτ,m defined by

Enτ,m =
1

2πi

∫
Γ τθ,δ

eznτ (δτ (e−zτ )α +A(tm))−1 dz, (4.10)

with the contour Γ τθ,δ given by

Γ τθ,δ := {z ∈ Γθ,δ : |=(z)| ≤ π/τ}, (4.11)

oriented with an increasing imaginary part. The following smoothing property
of the operator Enτ,m holds [18, Lemma 4.3]: for any β ∈ [0, 1]

‖A(tm)βEnτ,m‖ ≤ c(tn + τ)(1−β)α−1, n = 0, 1, . . . , N. (4.12)

We have the following L2(Ω) stability for %n.

Lemma 7 Let conditions (3.1)-(3.2) be fulfilled, and u the solution to problem
(1.1) with f ≡ 0. Let %n = wn−wn. Then with `n = log(1 + tn/τ), there holds

‖%m‖L2(Ω) ≤ cτ
m∑
k=1

‖%k‖L2(Ω) +

{
cτ2tα−1m ‖u0‖Ḣ2(Ω), if u0 ∈ Ḣ2(Ω),

cτ2t−1m `2m‖u0‖L2(Ω), if u0 ∈ L2(Ω).
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Proof It follows from (2.5) and (4.3) that %n satisfies %0 = 0 and

∂̄ατ %
n+A(tm)%n = ∂̄ατ (wn − wn) +A(tm)(wn − wn)

= (A(tm)−A(tn))wn − (A(tm)−A(0))wn − (A(0)−A(tn))w(tn)

= (A(tm)−A(tn))%n − (A(tn)−A(0))ϑn, n = 1, 2, . . . , N.

Using the operator Enτ,m in (4.10), %m is represented by

%m = τ

m∑
k=1

Em−kτ,m

[
(A(tm)−A(tk))%k − (A(tk)−A(0))ϑk

]
.

Consequently, by triangle inequality,

‖%m‖L2(Ω) ≤ τ
m∑
k=1

‖Em−kτ,m (A(tm)−A(tk))%k‖L2(Ω)

+ τ

m∑
k=1

‖Em−kτ,m (A(tk)−A(0))ϑk‖L2(Ω) := I + II.

For the term I, by (4.12) with β = 1 and Lemma 2, we have

‖A(tm)Em−kτ,m ‖‖(I −A(tm)−1A(tk))%k‖L2(Ω) ≤ ct−1m−k+1tm−k‖%
k‖L2(Ω),

and thus

I ≤ cτ
m∑
k=1

‖%k‖L2(Ω). (4.13)

For the term II, we discuss the cases u0 ∈ Ḣ2(Ω) and u0 ∈ L2(Ω) separately.
Case (i): u0 ∈ Ḣ2(Ω). The estimate (4.12) with β = 3

4 , Lemmas 2 and 6 with
β = 1

4 imply that IIm,k = ‖Em−kτ,m (A(tk)−A(0))ϑk‖L2(Ω) is bounded by

IIm,k ≤ ct
α
4−1
m−k+1tk‖ϑ

k‖
Ḣ

1
2 (Ω)

≤ cτ2t
α
4−1
m−k+1t

3α
4 −1
k ‖u0‖Ḣ2(Ω)

and further, since τ
∑m
k=1 t

α
4−1
m−k+1t

3α
4 −1
k ≤ ctα−1m , there holds

II ≤ τ
m∑
k=1

IIm,k ≤ cτ2tα−1m ‖u0‖Ḣ2(Ω).

Case (ii): u0 ∈ L2(Ω). By (4.12) and Lemmas 6 and 2,

IIm,k ≤ ‖Em−kτ,m A(tm)‖‖A(tm)−1A(0)‖‖(I −A(0)−1A(tk))ϑk‖L2(Ω)

≤ ct−1m−k+1tk‖ϑ
k‖L2(Ω) ≤ cτ2`mt−1m−k+1t

−1
k ‖u0‖L2(Ω).

This and the inequality τ
∑m
k=1 t

−1
m−k+1t

−1
k ≤ ct−1m `m yield

II ≤ cτ2t−1m `2m‖u0‖L2(Ω).

In either case, combining the bounds on I and II gives the desired assertion.
ut
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Now we can derive error estimates for the homogeneous problem.

Theorem 4 Let u and un be the solutions to problems (1.1) and (2.5) with
f ≡ 0, respectively. Then with `n = log(1 + tn/τ), there holds

‖u(tn)− un‖L2(Ω) ≤
{
cτ2tα−2n ‖u0‖Ḣ2(Ω), if u0 ∈ Ḣ2(Ω),

cτ2t−2n `2n‖u0‖L2(Ω), if u0 ∈ L2(Ω).

Proof It follows directly from Lemma 7 that

‖%m‖L2(Ω) ≤ cτ
m∑
k=1

‖%k‖L2(Ω) +

{
cτ2tα−1m ‖u0‖Ḣ2(Ω), if u0 ∈ Ḣ2(Ω),

cτ2t−1m `2m‖u0‖L2(Ω), if u0 ∈ L2(Ω).

Thus, by the discrete Gronwall’s inequality from Lemma 11 (with µ = 1− α)
and Lemma 12,

‖%m‖L2(Ω) ≤
{
cτ2tα−1m ‖u0‖Ḣ2(Ω), if u0 ∈ Ḣ2(Ω),

cτ2t−1m `2m‖u0‖L2(Ω), if u0 ∈ L2(Ω).

This, Lemma 6 and the triangle inequality complete the proof. The preceding
estimates are based on Lemma 7 and Lemmas 11–12. In particular, applying
Lemma 11 to the case u0 ∈ Ḣ2(Ω) yields a constant c depending on 1/α.
Therefore, the constants c in Theorem 4 is bounded as α→ 1−. ut

Remark 2 The error estimate for u0 ∈ Ḣ2(Ω) in Theorem 4 is identical with
that for the case of a time-independent elliptic operator, and that for nons-
mooth initial data is also nearly identical, up to the factor `2n [14]. The `n factor
is also present for backward Euler convolution quadrature [18] for subdiffusion,
and backward Euler method [26] and general single-step and multi-step meth-
ods [34] for standard parabolic problems with a time-dependent coefficient.

4.2 Error analysis for the inhomogeneous problem

Now we analyze the scheme (2.5) for u0 ≡ 0. We need the following inequality.

Lemma 8 For any β ∈ (0, 1/2) and s ∈ [0, tm], the following inequality holds

τ

m∑
k=1

tβα−1m−k+1(tk+1 − s)(1−2β)α−1χ[0,tk](s) ≤ c(tm − s)
(1−β)α−1.

Proof We denote the left-hand side by I(s). For any s ∈ [ti−1, ti), i ≤ m,

I(s) = τ

m∑
k=i

tβα−1m−k+1(tk+1 − s)(1−2β)α−1

≤ τ
m∑
k=i

tβα−1m−k+1t
(1−2β)α−1
k+1−i ≤ ct(1−β)α−1m−i+1 ≤ c(tm − s)(1−β)α−1.

This completes the proof of the lemma. ut
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The next result gives a bound on g(t) = (A(0)−A(t))w(t) when u0 ≡ 0.

Lemma 9 Let g(t) = (A(0)−A(t))w(t) (with u0 ≡ 0). Then there holds

‖g′(0)‖L2(Ω) ≤ c‖f(0)‖L2(Ω), (4.14)

and further, for any β ∈ (0, 1/2)

τ

m∑
k=1

tβα−1m−k+1tk

∫ tk

0

(tk − s)(1−2β)α−1‖g′′(s)‖Ḣ−2β(Ω) (4.15)

≤ctα−1m ‖f(0)‖L2(Ω) + tαm‖f ′(0)‖L2(Ω) + tm

∫ tm

0

(tm − s)α−1‖f ′′(s)‖L2(Ω)ds.

Proof It follows from Lemma 2 that

‖g′(t)‖L2(Ω) ≤ ‖(A(0)−A(t))w′(t)‖L2(Ω) + ‖A′(t)w(t)‖L2(Ω)

≤ ct‖u′(t)‖Ḣ2(Ω) + c‖u(t)‖Ḣ2(Ω).

Then by Theorem 2, ‖g′(0)‖L2(Ω) ≤ c‖f(0)‖L2(Ω), showing the estimate (4.14).
Next, by Lemma 8, the left hand side (LHS) of (4.15) is bounded by

LHS ≤ tm
∫ tm

0

(
τ

m∑
k=1

tβα−1m−k+1(tk − s)(1−2β)α−1χ[0,tk](s)
)
‖g′′(s)‖H−2β(Ω)ds

≤ ctm
∫ tm

0

(tm − s)(1−β)α−1‖g′′(s)‖H−2β(Ω)ds.

Since g′′(t) = (A(0)−A(t)u′′(t)− 2A′(t)u′(t)−A′′(t)u(t), Theorem 2 implies

‖g′′(t)‖H−2β(Ω) ≤ ct‖u′′(t)‖H2−2β(Ω) + c‖u′(t)‖H2−2β(Ω) + c‖u(t)‖H2−2β(Ω)

≤ ctβα−1‖f(0)‖L2(Ω) + ctβα‖f ′(0)‖L2(Ω)

+ ct

∫ t

0

(t− s)βα−1‖f ′′(s)‖L2(Ω) ds.

Combining the last two estimates yields the desired assertion. ut

Now we can derive error estimates for the inhomogeneous problem.

Theorem 5 Let u and un be the solutions to (1.1) and (2.5) with u0 = 0

and f ∈ C1([0, T ];L2(Ω)) and
∫ t
0
(t− s)α−1‖f ′′(s)‖L2(Ω)ds <∞, respectively.

Then under conditions (3.1)–(3.2), there holds

‖u(tn)− un‖L2(Ω) ≤cτ2
(
tα−2n ‖f(0)‖L2(Ω) + tα−1n ‖f ′(0)‖L2(Ω)

+

∫ tn

0

(tn − s)α−1‖f ′′(s)‖L2(Ω)ds
)
.
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Proof The overall proof strategy is similar to Theorem 4. First, we bound
ϑn := wn − w(tn). By Lemma 4(i), for any β ∈ [0, 1/2), there holds

‖wn1 − w1(tn)‖H2β(Ω) ≤ cτ2R(tn).

with R(tn) defined by

R(tn) = t(1−β)α−2n ‖f(0)‖L2(Ω) + t(1−β)α−1n ‖f ′(0)‖L2(Ω)

+

∫ tn

0

(tn+1 − s)(1−β)α−1‖f ′′(s)‖L2(Ω) ds.

Meanwhile, for any β ∈ [0, 1/2), by Lemma 4(i) and (4.14), with g(t) = (A(0)−
A(t))u(t),

‖wn0 − w0(tn)‖Ḣ2β(Ω)

≤cτ2
(
t(1−β)α−1n ‖f(0)‖L2(Ω) +

∫ tn

0

(tn+1 − s)(1−2β)α−1‖g′′(s)‖Ḣ−2β(Ω)ds
)
.

Thus, by the splitting (4.8) and triangle inequality, for any β ∈ [0, 1/2),

‖ϑn‖Ḣ2β(Ω) ≤cτ
2R(tn) + cτ2

∫ tn

0

(tn+1 − s)(1−2β)α−1‖g′′(s)‖Ḣ−2β(Ω)ds.

Next we bound %n := wn −wn, by repeating the argument for Lemma 7. The
term I can be bounded as (4.13). Further, by (4.12) and Lemma 2, for any
β ∈ (0, 1/2),

II ≤ τ
m∑
k=1

‖Em−kτ,m (A(tk)−A(0))ϑk‖L2(Ω) ≤ c
m∑
k=1

tβα−1m−k+1tk‖ϑ
k‖Ḣ2β(Ω).

Then the preceding bound on ϑn implies

II ≤ cτ3
m∑
k=1

tβα−1m−k+1tk

(
R(tk) +

∫ tk

0

(tk+1 − s)(1−2β)α−1‖g′′(s)‖Ḣ−2β(Ω)

)
.

This and (4.15) imply

‖%m‖L2(Ω) ≤cτ
m∑
k=1

‖%k‖L2(Ω) + cτ2
(
tα−1m ‖f(0)‖L2(Ω) + tαm‖f ′(0)‖L2(Ω)

+ tm

∫ tn

0

(tn − s)α−1‖f ′′(s)‖L2(Ω)ds
)
.

Thus, by the discrete Gronwall’s inequality from Lemma 11 with µ = 1− α,

‖%m‖L2(Ω) ≤cτ2
(
tα−1m ‖f(0)‖L2(Ω) + tαm‖f ′(0)‖L2(Ω)

+ tm

∫ tn

0

(tn − s)α−1‖f ′′(s)‖L2(Ω)ds
)
,

where the constant c depends on α as O(α−1). This and the bound on ϑn with
β = 0 complete the proof. ut
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Remark 3 The error estimate in Theorem 5 is identical with that for the sub-
diffusion model with a time-independent diffusion coefficient [14].

Remark 4 In the proof of Theorems 4 and 5, (discrete) Gronwall’s inequality
was employed a few times to bound %m. This leads to a dependence on α
as 1/α, which is nevertheless uniformly bounded on α for α → 1−. Further,
the constants in the bounds on ϑ are also bounded. Thus, the constants in
Theorems 4 and 5 are bounded as the fractional order α→ 1−. We refer to [4]
for an in-depth discussion and many further references on the important issue
of α-robustness.

5 Numerical results and discussions

Now we present numerical results to illustrate the convergence behavior of
the scheme (2.5). To this end, we consider the domain Ω = (0, 1) and the
subdiffusion model (1.1) with a time-dependent diffusion operator A(t) =
−(2 + cos(t))∆. We consider the following three examples:

(a) u0(x) = x−1/4 ∈ H1/4−ε(Ω) with ε ∈ (0, 1/4) and f ≡ 0.
(b) u0(x) = 0 and f = et(1 + χ(0, 12 )

(x)).

(c) u0(x) = 0 and f = t0.5x(1− x).

To discretize the problem, we divide the domain Ω into M subintervals of
equal length h = 1/M . The numerical solutions are computed by the standard
Galerkin FEM (with P1 element) in space, and BDF2-CQ in time. Since the
spatial convergence was already studied in [18], we only study the temporal
convergence below. To this end, we fix a small spatial mesh size h = 1/1000
so that the spatial discretization error is negligible, and compute the L2(Ω)
error:

e(tN ) = ‖uNh − uh(tN )‖L2(Ω).

Since the exact semidiscrete solution uh(t) is unavailable, we compute the
reference solutions on a finer temporal mesh with a time stepsize τ = 1/5000.

The numerical results for the homogeneous case (a) by the schemes (2.4)
and (2.5) are presented in Tables 1 and 2, respectively. It is clearly observed
that the vanilla BDF2-CQ scheme (2.4) can only achieve a first-order conver-
gence, whereas the corrected scheme (2.5) achieves the desired second-order
convergence. The convergence is fairly robust with respect to the fractional
order α, despite the low regularity of the initial data u0. Further, the error is
larger when the time tN gets closer to zero, which agrees well with the regu-
larity theory in that the second-order temporal derivative of the solution has
strong singularity at t = 0, cf. Theorem 1.

The numerical results for Examples (b) and (c) are presented in Tables
3–5, where the source term f is smooth and nonsmooth in time, respectively.
Note that for Example (c), the corrected and uncorrected schemes are identi-
cal, since f(0) ≡ 0. The observations from Example (a) remain valid for the
inhomogeneous problems: the correction at the first step in the scheme (2.5)
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Table 1 Temporal errors e for Example (a), uncorrected BDF2-CQ (2.4) with τ = 1/N .

tN α\N 10 20 40 80 160 320 rate
0.25 2.96e-4 1.49e-4 7.45e-5 3.73e-5 1.86e-5 9.32e-6 1.00

1 0.50 4.12e-4 2.12e-4 1.07e-4 5.37e-5 2.69e-5 1.35e-5 1.00
0.75 3.00e-4 1.62e-4 8.34e-5 4.22e-5 2.12e-5 1.06e-5 1.00
0.25 1.16e-3 5.80e-4 2.89e-4 1.45e-4 7.23e-5 3.62e-5 1.00

10−3 0.50 5.49e-3 2.70e-3 1.34e-3 6.59e-4 3.34e-4 1.67e-4 1.00
0.75 5.18e-3 2.54e-3 1.26e-3 6.28e-4 3.13e-4 1.57e-4 1.00

Table 2 Temporal errors e for Example (a), corrected BDF2-CQ (2.5) with τ = 1/N .

tN α\N 10 20 40 80 160 320 rate
0.25 4.20e-5 9.77e-6 2.36e-6 5.79e-7 1.44e-7 3.57e-8 2.01

1 0.50 8.82e-5 2.04e-5 4.91e-6 1.20e-6 2.98e-7 7.41e-8 2.01
0.75 1.01e-4 2.34e-5 5.60e-6 1.37e-6 3.38e-7 8.41e-8 2.01
0.25 1.50e-4 3.49e-5 8.44e-6 2.07e-6 5.14e-7 1.28e-7 2.01

10−3 0.50 4.77e-4 1.13e-4 2.74e-5 6.77e-6 1.68e-6 4.19e-7 2.00
0.75 3.68e-4 8.67e-5 2.11e-5 5.21e-6 1.29e-6 3.22e-7 2.00

can restore the desired second-order convergence, whereas the vanilla BDF2–
CQ scheme (2.4) can only give a first-order convergence, and the convergence
rate does not depend on the fractional order α.

The second-order convergence of the scheme (2.5) in Theorem 5 requires

suitable temporal regularity of the source f , i.e.,
∫ t
0
(t−s)α−1‖f ′′(s)‖L2(Ω)ds <

∞, in the absence of which, the convergence rate suffers from a loss. This
is clearly observed from the numerical results in Table 5 for Example (c),
where the source term f does not satisfy the condition. Actually, by means
of interpolation, the theoretical convergence rate is O(τ3/2). The corrected
scheme (2.5) can achieve a convergence rate O(τ3/2), which agrees well with
the theoretical one and is faster than the first-order convergence as exhibited
by the scheme (2.4). These numerical results show clearly the robustness and
efficiency of the corrected scheme (2.5).

Table 3 Temporal errors e for Example (b), uncorrected BDF2-CQ (2.4) with τ = 1/N .

tN α\N 10 20 40 80 160 320 rate
0.25 2.22e-5 1.15e-5 5.81e-6 2.92e-6 1.46e-6 7.33e-7 1.00

1 0.50 3.09e-5 1.64e-5 8.35e-6 4.21e-6 2.11e-6 1.06e-6 1.00
0.75 2.36e-5 1.28e-5 6.57e-6 3.32e-6 1.67e-6 8.36e-6 1.00
0.25 9.12e-5 4.56e-5 2.28e-5 1.14e-5 5.70e-6 2.85e-6 1.00

10−3 0.50 4.32e-4 2.12e-4 1.05e-4 5.26e-5 2.62e-5 1.31e-5 1.00
0.75 3.54e-4 1.74e-4 8.61e-5 4.28e-5 2.14e-5 1.07e-5 1.00
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Table 4 Temporal errors e for Example (b), corrected BDF2-CQ (2.5) with τ = 1/N .

tN α\N 10 20 40 80 160 320 rate
0.25 4.46e-6 1.04e-6 2.51e-7 6.16e-8 1.53e-8 3.80e-9 2.01

1 0.50 8.51e-6 1.96e-6 4.70e-7 1.15e-7 2.85e-8 7.09e-9 2.01
0.75 8.13e-6 1.85e-6 4.40e-7 1.07e-7 2.64e-8 6.56e-9 2.01
0.25 1.18e-5 2.75e-6 6.64e-7 1.63e-7 4.05e-8 1.01e-8 2.01

10−3 0.50 3.70e-5 8.75e-6 2.13e-6 5.26e-7 1.31e-7 3.26e-8 2.00
0.75 5.66e-6 1.38e-6 3.42e-7 8.52e-8 2.12e-8 5.30e-9 2.00

Table 5 Temporal errors e for Example (c), corrected BDF2-CQ (2.5) with τ = 1/N .

tN α\N 50 100 200 400 800 1600 rate
0.25 2.31e-8 8.65e-9 3.18e-9 1.15e-9 4.11e-10 1.44e-10 1.52

1 0.50 2.77e-8 1.11e-8 4.24e-9 1.58e-9 5.73e-10 2.02e-10 1.50
0.75 6.59e-9 4.94e-9 2.40e-9 1.01e-9 3.93e-10 1.45e-10 1.44
0.25 3.65e-9 1.27e-9 4.41e-10 1.54e-10 5.37e-11 1.84e-11 1.54

10−3 0.50 1.72e-8 5.92e-9 2.05e-9 7.15e-10 2.48e-10 8.51e-11 1.55
0.75 1.24e-8 4.37e-9 1.55e-9 5.45e-10 1.91e-10 6.59e-11 1.54

A Gronwall’s inequalities

In this appendix, we collect several useful Gronwall’s inequalities. The following generalized
Gronwall’s inequality is useful [12, Exercise 4, p. 190].

Lemma 10 Let the function ϕ(t) ≥ 0 be continuous for 0 < t ≤ T . If

ϕ(t) ≤ at−µ + b

∫ t

0
(t− s)β−1ϕ(s)ds, 0 < t ≤ T,

for some constants a, b ≥ 0, 0 ≤ µ, β < 1, then there is a constant c = c(b, T, β) such that

ϕ(t) ≤
ac

1− µ
t−µ, 0 < t ≤ T.

The next result is a discrete analogue of Lemma 10 [8, Lemma 7.1].

Lemma 11 Let ϕn ≥ 0 for 0 ≤ tn ≤ T . If

ϕn ≤ at−µn + bτ

n∑
j=1

ϕj , 0 < tn ≤ T,

for some constants a, b ≥ 0, and bτ < 1/2, 0 ≤ µ < 1, then there is constant c = c(b, T )
such that

ϕn ≤
ac

1− µ
t−µn , 0 < tn ≤ T.

Proof This lemma is a special case of [8, Lemma 7.1], but without explicit dependence on
α. We give a short proof for completeness following [37, p. 258]. Let σn = τ

∑n
j=1 ϕ

n, and

φn = at−µn . Then
τ−1(σn − σn−1) ≤ φn + bσn,

i.e., σn ≤ (1− bτ)−1σn−1 + (1− bτ)−1τφn. Consequently, since the time interval is finite,

σn ≤ τ
n∑
j=1

(1− bτ)j−n−1φj ≤ e2bT τ
n∑
j=1

φj ≤
ae2bT

1− µ
t1−µn ,

since (1− x)−1 ≤ e2x for x ∈ [0, 1/2]. This directly shows the desired assertion. ut
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The next result is a variant of Lemma 11 with log factors [37, p. 258].

Lemma 12 Let ϕn ≥ 0 for 0 ≤ tn ≤ T . With `n = log(1 + tn/τ), if

ϕn ≤ at−1
n `pn + bτ

n∑
j=1

ϕj , 0 < tn ≤ T,

for some constants a, b ≥ 0 and p > 0, then there is constant c = c(b, T ) such that

ϕn ≤ cat−1
n `pn, 0 < tn ≤ T.

B Proof of Theorem 2

In this part, we prove Theorem 2, by considering (tku(t))(k), instead of (tk+1u(t))(k) for the

proof of Theorem 1. We begin with a bound on dk

dtk
(tk
∫ t
0 E(t− s; t∗)f(s)ds), which follows

from straightforward but lengthy computation.

Lemma 13 Let k ≥ 1. Then for any β ∈ [0, 1), there holds

∥∥∥Aβ∗ dk

dtk

(
tk
∫ t

0
E∗(t− s)f(s)ds

)
|t=t∗

∥∥∥
L2(Ω)

≤c
k−1∑
m=0

t
(1−β)α+m
∗ ‖f (m)(0)‖L2(Ω) + ctk∗

∫ t∗

0
(t∗ − s)(1−β)α−1‖f (k)(s)‖L2(Ω)ds,

and further, ∥∥∥A∗ dk

dtk

(
tk
∫ t

0
E∗(t− s)f(s)ds

)
|t=t∗

∥∥∥
L2(Ω)

≤c
k∑

m=0

tm∗ ‖f (m)(0)‖L2(Ω) + ctk∗

∫ t∗

0
‖f (k+1)(s)‖L2(Ω)ds.

Proof Let I(t) = dk

dtk
(tk
∫ t
0 E∗(t− s)f(s)ds). It follows from the elementary identity

dm

dtm

∫ t

0
E∗(s)f(t− s)ds =

m−1∑
`=0

E
(`)
∗ (t)f (m−1−`)(0) +

∫ t

0
E∗(s)f

(m)(t− s)ds

and direct computation that

I(t) =
k∑

m=0

(
m
k

)2

tm
(m−1∑
`=0

E
(`)
∗ (t)f (m−1−`)(0) +

∫ t

0
E∗(s)f

(m)(t− s)ds
)
.

Consequently, by Lemma 1, for β ∈ [0, 1),

‖Aβ∗ I(t∗)‖L2(Ω) ≤ c
k∑

m=0

tm∗

m−1∑
`=0

∥∥∥Aβ∗E(`)
∗ (t∗)

∥∥∥‖f (m−1−`)(0)‖L2(Ω)

+ c
k∑

m=0

tm∗

∫ t∗

0
‖Aβ∗E∗(s)‖‖f (m)(t∗ − s)‖L2(Ω)ds

≤c
k∑

m=0

tm∗

m−1∑
`=0

t
(1−β)α−1−`
∗ ‖f (m−1−`)(0)‖L2(Ω)
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+ c

k∑
m=0

tm∗

∫ t∗

0
s(1−β)α−1‖f (m)(t∗ − s)‖L2(Ω)ds

≤c
k−1∑
m=0

t
(1−β)α+m
∗ ‖f (m)(0)‖L2(Ω) + c

k∑
m=0

tm∗

∫ t∗

0
s(1−β)α−1‖f (m)(t∗ − s)‖L2(Ω)ds.

Next we simplify the second summation. The following elementary identity: for m < k,

f (m)(s) =

k−m−1∑
j=0

f (m+j)(0)
sj

j!
+

1

(k −m)!

∫ s

0
(s− ξ)k−m−1f (k)(ξ)dξ, (B.1)

and the semigroup property of the Riemann-Liouville fractional integral operator imply∫ t∗

0
(t∗ − s)(1−β)α−1‖f (m)(s)‖L2(Ω)ds ≤

∫ t∗

0
(t∗ − s)(1−β)α−1

×
( k−m−1∑

j=0

‖f (m+j)(0)‖L2(Ω)

sj

j!
+

1

(k −m)!

∫ s

0
(s− ξ)k−m−1‖f (k)(ξ)‖L2(Ω)dξ

)
ds

≤c
k−m−1∑
j=0

t
(1−β)α+j
∗ ‖f (m+j)(0)‖L2(Ω) + ctk−m∗

∫ t∗

0
(t∗ − s)(1−β)α−1‖f (k)(s)‖L2(Ω)ds.

Combining these estimates gives the desired assertion for β ∈ [0, 1). For β = 1, by the
identity (3.8) and integration by parts (and the identity I − F∗(0) = 0),

A∗

∫ t∗

0
E∗(s)f

(m)(t∗ − s)ds =

∫ t∗

0
(I − F∗(s))′f (m)(t∗ − s)ds

= (I − F∗(t∗))f (m)(0) +

∫ t∗

0
(I − F∗(s))f (m+1)(t∗ − s)ds,

and thus

‖A∗I(t∗)|t=t∗‖L2(Ω) ≤c
k∑

m=0

tm∗

(m−1∑
`=0

∥∥∥A∗E(`)
∗ (t∗)

∥∥∥‖f (m−1−`)(0)‖L2(Ω)

+ ‖f (m)(0)‖+

∫ t∗

0
‖f (m+1)(s)‖L2(Ω)ds

)
.

Then repeating the preceding argument completes the proof. ut

Now we can present the proof of Theorem 2.

Proof Similar to Theorem 1, the proof is based on mathematical induction. Let vk(t) =
tku(t) and Wk(t) = tkE∗(t). For k = 0, by the representation (3.11), we have

Aβ∗u(t∗) =

∫ t∗

0
Aβ∗E∗(t∗ − s)f(s)ds+

∫ t∗

0
Aβ∗E∗(t∗ − s)(A∗ −A(s))u(s)ds.

Then for β ∈ [0, 1), by Lemma 1(ii) and 2 there holds

‖Aβ∗u(t∗)‖L2(Ω) ≤
∫ t∗

0
‖Aβ∗E∗(t∗ − s)‖‖f(s)‖L2(Ω)ds

+

∫ t∗

0
‖A∗E∗(t∗ − s)‖‖Aβ∗ (I −A−1

∗ A(s))u(s)‖L2(Ω)ds

≤ c
∫ t∗

0
(t∗ − s)(1−β)α−1‖f(s)‖L2(Ω)ds+ c

∫ t∗

0
‖Aβ∗u(s)‖L2(Ω)ds.



26

The case β = 1 follows similarly from the identity (3.8) and integration by parts:

‖A∗u(t∗)‖L2(Ω) ≤ c‖f(0)‖L2(Ω) + c

∫ t∗

0
‖f ′(s)‖L2(Ω)ds+ c

∫ t∗

0
‖A∗u(s)‖L2(Ω)ds.

Then standard Gronwall’s inequality gives the assertion for the case k = 0. Now suppose
the assertion holds up to k − 1 < K, and we prove it for k ≤ K. Now note that

v
(k)
k (t) =

dk

dtk

(
tk
∫ t

0
E∗(t− s)f(s)ds

)
+

k∑
m=0

(
k
m

)
dk

dtk

∫ t

0
Wm(t− s)(A∗ −A(s))vk−m(s)ds.

This, Lemmas 13 and 14 and triangle inequality give

‖Aβ∗v
(k)
k (t)|t=t∗‖L2(Ω) ≤ c

∫ t∗

0
‖Aβ∗v

(k)
k (s)‖L2(Ω)ds

+


c

k−1∑
m=0

t
(1−β)α+m
∗ ‖f (m)(0)‖L2(Ω) + ctk∗

∫ t∗

0
(t∗ − s)(1−β)α−1‖f (k)(s)‖L2(Ω)ds, β ∈ [0, 1),

c

k∑
m=0

tm∗ ‖f (m)(0)‖L2(Ω) + ctk∗

∫ t∗

0
‖f (k+1)(s)‖L2(Ω)ds, β = 1.

This and the standard Gronwall’s inequality complete the induction step. ut

The following result is needed in the proof of Theorem 2.

Lemma 14 Under the conditions in Theorem 2, for any β ∈ [0, 1] and m = 0, . . . , k, there
holds∥∥∥Aβ∗ dk

dtk

∫ t

0
(t− s)k−mE∗(t− s)(A∗ −A(s))smu(s)ds|t=t∗

∥∥∥
L2(Ω)

≤ c0
∫ t∗

0
‖Aβ∗ (sku(s))(k)‖L2(Ω)ds

+


c

k−1∑
m=0

t
(1−β)α+m
∗ ‖f (m)(0)‖L2(Ω) + ctk∗

∫ t∗

0
(t∗ − s)(1−β)α−1‖f (k)(s)‖L2(Ω)ds, β ∈ [0, 1),

c

k∑
m=0

tm∗ ‖f (m)(0)‖L2(Ω) + ctk∗

∫ t∗

0
‖f (k+1)(s)‖L2(Ω)ds, β = 1.

Proof Let vk = tku(t) and Wk(t) = tkE∗(t). By the induction hypothesis and (B.1), for
` < m, we have

‖A∗v(`)m (s)‖L2(Ω) ≤ cs
m−`

(∑̀
j=0

sj‖f (j)(0)‖L2(Ω) + s`
∫ s

0
‖f (`+1)(ξ)‖L2(Ω)dξ

)

≤ csm−`
( k−1∑
j=0

sj‖f (j)(0)‖L2(Ω) + sk−1

∫ s

0
‖f (k)(ξ)‖L2(Ω)dξ

)
. (B.2)

We denote the term in the bracket by T(s; f, k). Now similar to the proof of Lemma 3, let
Im(t) be the integral on the left hand side. Then in view of the identity

I
(k)
m (t) =

k−m∑
`=0

( `
k −m

)∫ t

0
W

(m)
m (A∗ −A(t∗ − s))(k−m−`)v(`)k−m(s)ds︸ ︷︷ ︸

Im,`(t)

,
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it suffices to bound the integrand Ĩm,`(s) of the integral Im,`(t∗), ` = 0, 1, . . . , k−m. Below
we discuss the cases β ∈ [0, 1) and β = 1 separately, due to the difference in singularity, as
in the proof of Lemma 3.
Case (i): β ∈ [0, 1). For the case ` < k, Lemmas 1(ii) and 2 lead to

‖Aβ∗ Ĩm,`(s)‖L2(Ω) ≤ ‖A
β
∗W

(m)
m ‖‖(A∗ −A(t∗ − s))(k−m−`)v(`)k−m(t∗ − s)‖L2(Ω)

≤

 cs(1−β)α−1s‖A∗v(k−m)
k−m (t∗ − s)‖L2(Ω), ` = k −m,

cs(1−β)α−1‖A∗v(`)k−m(t∗ − s)‖L2(Ω), ` < k −m,

≤
{

cs(1−β)αT(t∗ − s; f, k), ` = k −m,

cs(1−β)α−1(t∗ − s)k−m−`T(t∗ − s; f, k), ` < k −m,

where the last step is due to (B.2). Note that for ` < k, the derivation requires β ∈ [0, 1).
Similarly, for the case ` = k (and thus m = 0),

‖Aβ∗ Ĩ0,k(s)‖L2(Ω) ≤ c‖A
β
∗v

(k)
k (t∗ − s)‖L2(Ω). (B.3)

Case (ii): β = 1. Note that for ` < k, the derivation in case (i) requires β ∈ [0, 1). When
` < k and β = 1, using the identity (3.13) and Lemma 1 and repeating the argument of
Lemma 3, we obtain

‖A∗ Ĩm,`(s)‖L2(Ω) ≤

 c(t∗ − s)k−m−`−1T(t∗ − s; f, k), ` < k − 1,

cT(t∗ − s; f, k) + c‖A∗v(k)k (t∗ − s)‖L2(Ω), ` = k − 1,

Combining the preceding estimates, integrating from 0 to t∗ in s and then applying standard
Gronwall’s inequality complete the proof. ut
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