Clinical and Genetic Spectra of Autosomal Dominant Tubulointerstitial Kidney Disease due to Mutations in \textit{UMOD} and \textit{MUC1}

PII: S0085-2538(20)30539-1
DOI: https://doi.org/10.1016/j.kint.2020.04.038
Reference: KINT 2101

To appear in: \textit{Kidney International}

Received Date: 5 January 2020
Revised Date: 23 March 2020
Accepted Date: 2 April 2020

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2020, Published by Elsevier, Inc., on behalf of the International Society of Nephrology.
Clinical and Genetic Spectra of Autosomal Dominant Tubulointerstitial Kidney Disease due to Mutations in *UMOD* and *MUC1*

Clinical Characterization
- Freedom from ESKD
- Freedom from gout

Biological Characterization
- Urinary Uromodulin (mg/g creat) normalized to eGFR

Diagnostic Score
- Clinical *UMOD*-score + urinary uromodulin

Largest international retrospective ADTKD cohort study:
- Detailed clinical and genetic phenotyping of ADTKD-*UMOD* & ADTKD-*MUC1*
- Uromodulin biology is not altered in ADTKD-*MUC1*
- Clinical and biochemical *UMOD*-score discriminates between most common ADTKD subtypes

Olinger, Hofmann, Kidd et al, 2020
Clinical and Genetic Spectra of Autosomal Dominant Tubulointerstitial Kidney Disease due to Mutations in *UMOD* and *MUC1*

Olinger E^{1,2,16}, Hofmann P^{1,3}, Kidd K^{4,20}, Dufour I^{1,9}, Belge H⁵, Schaeffer C⁶, Kipp A¹, Bonny O⁷, Deltas C⁸, Demoulin N^{9,10}, Fehr T^{1,11}, Fuster DG², Gale DP¹², Goffin E^{9,10}, Hodanova K²⁰, Hyunh-Do U², Kistler AB¹³, Morelle J^{9,10}, Papagregoriou G⁸, Pirson Y⁹, Sandford R¹⁴, Sayer JA^{15,16}, Torra R¹⁷, Venzin C¹⁸, Venzin R¹⁹, Vogt B², Živná M²⁰, Greka A^{21,22}, Dahan K⁵, Rampoldi L⁶, Knoch S²⁰, Bleyer AJ, Sr.^{4,20}, Devuyst O^{1,19}

1) University of Zurich, Institute of Physiology, Zurich, Switzerland
2) Department of Nephrology and Hypertension, Inselspital Bern University Hospital, University of Bern, Switzerland
3)Department of Internal Medicine, Hospital Uster, Uster, Switzerland
4) Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC
5) Center for Human Genetics, Institute of Pathology and Genetics, Gosselies, Belgium
6) Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
7) Service of Nephrology, Lausanne University Hospital, Lausanne, Switzerland
8) Molecular Medicine Research Center and Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
9) Division of Nephrology, Cliniques universitaires Saint-Luc, Brussels, Belgium
10) Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
11) Department of Internal Medicine, Cantonal Hospital Graubuenden, Chur, Switzerland
12) Department of Nephrology, University College of London, London, United Kingdom
13) Department of Internal Medicine, Cantonal Hospital Frauenfeld, Switzerland
14) Academic Department of Medical Genetics, Cambridge Biomedical Campus, Cambridge, UK
15) Renal Services, Newcastle Upon Tyne Hospitals National Health Service Trust, Newcastle upon Tyne, UK
16) Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
17) Inherited Renal Disorders, Nephrology Department, Fundació Puigvert, REDINREN, IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
18) Department of Internal Medicine, Division of Nephrology, Hospital Davos, Davos, Switzerland
19) Department of Internal Medicine, Division of Nephrology, Cantonal Hospital Graubuenden, Chur, Switzerland
20) Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
21) Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
22) Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA
* Shared first authorship; † Shared last authorship

Correspondence: Eric Olinger or Olivier Devuyst, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland: eric.linger@ymail.ch or olivier.devuyst@uzh.ch; Anthony J. Bleyer Sr., Section on Nephrology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA: ableyer@wakehealth.edu.
Abstract

Autosomal dominant tubulointerstitial kidney disease (ADTKD) is an increasingly recognized cause of end-stage kidney disease, primarily due to mutations in *UMOD* and *MUC1*. The lack of clinical recognition and the small size of cohorts have slowed the understanding of disease ontology and development of diagnostic algorithms. To expand on this, we analyzed two registries from Europe and the United States to define genetic and clinical characteristics of ADTKD-*UMOD* and ADTKD-*MUC1* and develop a practical score to guide genetic testing. Our study encompassed 726 patients from 585 families with a presumptive diagnosis of ADTKD along with clinical, biochemical, genetic and radiologic data. Collectively, 106 different *UMOD* mutations were detected in 216/562 (38.4%) of families with ADTKD (303 patients), and 4 different *MUC1* mutations in 72/205 (35.1%) of the families that are *UMOD*-negative (83 patients). The median kidney survival was significantly shorter in patients with ADTKD-*MUC1* compared to ADTKD-*UMOD* (46 vs. 54 years respectively), whereas the median gout-free survival was dramatically reduced in patients with ADTKD-*UMOD* compared to ADTKD-*MUC1* (30 vs. 67 years respectively). In contrast to patients with ADTKD-*UMOD*, patients with ADTKD-*MUC1* had normal urinary excretion of uromodulin and distribution of uromodulin in tubular cells. A diagnostic algorithm based on a simple score coupled with urinary uromodulin measurements separated patients with ADTKD-*UMOD* from those with ADTKD-*MUC1* with a sensitivity of 94.1%, a specificity of 74.3% and a positive predictive value of 84.2% for a *UMOD* mutation. Thus, ADTKD-*UMOD* is more frequently diagnosed than ADTKD-*MUC1*, ADTKD subtypes present with distinct clinical features, and a simple score coupled with urine uromodulin measurements may help prioritizing genetic testing.

Keywords: Uromodulin, Mucin-1, Diagnostic score, Dominant kidney disease, Gout
Introduction

Autosomal dominant tubulointerstitial kidney disease (ADTKD) is characterized by tubular damage and interstitial fibrosis of the kidney in the absence of glomerular lesions. Affected individuals present with progressive chronic kidney disease (CKD), normal-to-mild proteinuria and normal sized kidneys, often with a positive family history. The disease invariably progresses to end-stage kidney disease (ESKD). Dominant mutations in *UMOD* were first associated with ADTKD. *UMOD* encodes uromodulin, a kidney-specific protein that is abundant in normal urine and plays multiple roles in the kidney. Mutations in *MUC1* were subsequently identified as a cause for ADTKD. *MUC1* encodes the glycoprotein mucin-1, which is important in epithelial barrier function and intracellular signaling. Rare forms of ADTKD have also been associated with mutations in *HNF1B*, which encodes the transcription factor hepatocyte nuclear factor 1β (HNF1β); *REN*, which encodes preprorenin, the precursor of renin; and *SEC61A1*, which encodes the α1 subunit of the SEC61 complex that forms the core of the endoplasmic reticulum (ER) translocon.

Due to the non-specific nature of the clinical, biological and pathological findings, ADTKD is underdiagnosed. In a recent study of whole exome sequencing in ~3000 CKD patients, *UMOD* mutations were detected in 3% of patients with a monogenic cause of CKD, making it the 6th most common genetic diagnosis in CKD. A single tertiary center survey in England estimated that up to 2% of patients with ESKD had ADTKD-UMOD, i.e. the most common monogenic kidney disease after autosomal dominant polycystic kidney disease (ADPKD). The prevalence of ADTKD-MUC1 remains unclear, as mutations in *MUC1* are not detected by next generation sequencing and require specialized genetic testing. However, previous studies have identified ADTKD-MUC1 and ADTKD-UMOD as the most common...
subtypes of ADTKD. The pathophysiology of ADTKD-UMOD involves retention of mutant uromodulin in the endoplasmic reticulum (ER) with ensuing ER stress (“gain of toxic function”) and a cascade leading to inflammatory cell infiltrate, tubular dysfunction and interstitial fibrosis. ADTKD-MUC1 is caused by mutations in the variable number of tandem repeat (VNTR) region of mucin-1, leading to the formation of a frameshift, truncated protein (MUC1fs) that accumulates in intracellular vesicles and cause tubulointerstitial damage.

To date, the largest clinical analysis of ADTKD-UMOD was performed in a cohort of French and Belgian ADTKD-UMOD patients (n=70 from 38 families), showing a median renal survival of 54 years and a 66% prevalence of gout. The phenotype of ADTKD-MUC1 patients was reported in a cohort of 95 patients from 24 families, with an age of onset of ESKD ranging from 16 to 80 years and a 24% prevalence of gout. A Spanish cohort of 90 ADTKD-MUC1 patients (16 families) showed a trend towards earlier age at ESKD and a lower prevalence of gout compared to ADTKD-UMOD patients (n=41 from 9 families). The small size of these cohorts prevented the detection of significant differences between ADTKD subtypes.

Because of the nonspecific presentation and relative rarity, a clinical characterization of ADTKD subtypes and practical tools to guide genetic testing for suspected ADTKD are missing. Here, we compared the phenotype of the ADTKD-UMOD and ADTKD-MUC1 subgroups in two large cohorts from Europe (Belgo-Swiss ADTKD Registry) and the US (US ADTKD Registry) - representing the largest multicenter ADTKD cohort (726 patients from 585 families) to date. We observed distinct features among these ADTKD subtypes and established a simple score to orient diagnosis and prioritize genetic testing in ADTKD.
Results

Clinical and genetic characteristics of ADTKD patients

The International ADTKD Cohort included 726 patients from 585 families: 451 patients from 429 families from the US ADTKD Registry and 275 patients from 156 families from the Belgo-Swiss ADTKD Registry (Figure 1). 84% of patients presented with CKD, and 43% had reached ESKD. Gout had an overall prevalence of 66% and a family history of either CKD and/or gout was reported in 92% of all cases (Table 1). The main differences between the Belgo-Swiss and US Registries included age at presentation, which was older, and prevalence of ESKD, which was higher in the US Registry, possibly due to a higher rate of patient self-referral when the disease became symptomatic.

Most patients (703/726), from 562/585 families, underwent mutational screening in the *UMOD* gene as a first diagnostic test. *UMOD* mutations were detected in 216 out of 562 tested families (38.4%), corresponding to 303 out of 703 tested patients (43.1%) (Figure 1). The *UMOD* mutation detection rate was 40.0% in the US Registry and 34.6% in the Belgo-Swiss Registry (Table 1). Next, mutations in *MUC1* were screened in 218 *UMOD*-negative patients, from 205 *UMOD*-negative families, mostly from the US Registry. Of these, 83 patients from 72 families screened positive for *MUC1* mutations, yielding a proportion of 35.1% (72/205) families with ADTKD-*MUC1* among *UMOD*-negative ADTKD families. Of note, a subset of 23 patients from 23 ADTKD families (most of them previously linked to chromosome 1q22) were first screened for *MUC1*, with a mutation in *MUC1* detected in 21 of patients in this group (Figure 1). At the end of the screening process, 135 patients from 133 families were negative for mutations in both *UMOD* and *MUC1* (Figure 1). Based on these genetic results, the prevalence for ADTKD-
UMOD is 37.1% [216 positive /(585-2) tested families] and for ADTKD-MUC1 is 21.0% [93 positive /(585-141) tested families] among ADTKD families in this real-life cohort.

Spectrum of UMOD and MUC1 mutations

A total of 106 different UMOD mutations were detected in the 216 ADTKD-UMOD families (Figure 2A; Table S1). Variant calling was based on in silico prediction tools, previous reports and/or family segregation analysis for undescribed variants. Missense mutations were by far the most common type of UMOD mutations (101/106, 95.3%). Four different deletions (H177-R185del, E188-L221del, K246-S252del, Y272del) and one insertion-deletion (V93-G97del4ins) mutations were found. 95/106 (89.6%) mutations were clustered in exon 3 of the UMOD gene. 57/101 (56.4%) of all missense mutations involved cysteine bonds, either by substituting a cysteine residue by another amino acid or by inserting a new cysteine (Figure 2B). Among the 17 mutations not described before (Table S1), 6 involve a previously reported amino acid (N85S, C92G, C120R, C135W, V273L, C300S); two (Y272del, G201D) were validated in segregation analyses; and one (L284P) was clearly associated with ER retention in functional studies, similar to paradigm mutation C150S (Figure S1), along with family history (Three generations with CKD and gout, bland urine sediment) and the absence of this substitution in gnomAD. The remaining eight mutations were predicted disease causing using in silico prediction tools (Table S2).

We detected two families with genetically proven de novo UMOD mutations c.855C>A (p.A285E) and c.707C>T (p.P236L) and one family with clinically suspected neo-mutation c.707C>T (p.P236L). We did not detect UMOD mutations in the homozygous state.
Four different types of MUC1 mutations (27dupC; 28dupA; 26_27insG; 23delinsAT) in the VNTR domain of MUC1 were detected in this cohort (nomenclature based on the mutation position inside the canonical 60 nucleotide long wild-type VNTR repeat as identified by MUC1 VNTR sequencing\(^7\)). Their localization inside the MUC1 VNTR as well as their effect on the mucin-1 protein structure are shown in Figure 2C. All these mutations are predicted to lead to the same frame-shift and premature stop codon\(^7\). Among the 93 ADTKD-MUC1 families, 87 presented with a cytosine duplication (27dupC, 93.5%), three with an adenine duplication (28dupA, 3.2%) and two with a guanine insertion (26_27insG, 2.2%) and one with a small indel (23delinsAT, 1.1%)\(^\text{(Figure 2D)}\).

Clinical characteristics of ADTKD-UMOD and ADTKD-MUC1

The size of the International ADTKD Cohort allowed us to analyze the clinical characteristics of ADTKD-UMOD and ADTKD-MUC1 subtypes (Figure 3). Age at presentation (first patient contact) was earlier (median: 42 years [IQR 27; 53] vs. 47 years [IQR 37; 57], \(p=0.005\)) and a positive family history of CKD and/or gout more frequent (95% vs. 86%, \(p=0.007\)) in ADTKD-UMOD compared to ADTKD-MUC1 patients. While the overall prevalence of CKD was significantly higher in ADTKD-UMOD patients, ESKD was significantly more prevalent (44% vs. 58%, \(p=0.04\)) and of earlier onset (median: 46 years [IQR 39; 57] vs. 36 years [IQR 30; 46], \(p<0.001\)) in ADTKD-MUC1 patients (Figure 3B upper panel). Conversely, the prevalence of gout was significantly higher (79% vs. 26%, \(p<0.001\)) and gout onset was significantly earlier (median: 27 years [IQR 19; 37] vs. 45 years [IQR 29; 51], \(p=0.001\)) in ADTKD-UMOD patients (Figure 3B lower panel). These findings were generally consistent in both genders. In ADTKD-
UMOD patients, gout onset was significantly earlier in men compared to women (median: 26 years [IQR 18; 34] vs. 30 years [IQR 21; 43], p=0.013) (Figure 3A).

The key differences in terms of renal function and uric acid handling were substantiated by survival curves depicting freedom from ESKD and gout (Figure 4). Renal survival was significantly shorter in ADTKD-MUC1 compared to ADTKD-UMOD (Median: 54 years, 95% CI: 51.5-56.5) in ADTKD-UMOD vs. 46 years, 95% CI: 39.3-52.7 in ADTKD-MUC1, log rank test: p=0.013) (Figure 4A). Conversely, gout free survival was dramatically shorter in ADTKD-UMOD compared to ADTKD-MUC1 (Median: 30 years, 95% CI: 27.3-32.7 in ADTKD-UMOD vs. 67 years, 95% CI: 57.9-76.1 in ADTKD-MUC1, log rank test: p<0.001) (Figure 4B).

Among ADTKD-UMOD patients, carriers of missense mutations involving cysteines (either by substituting a cysteine residue by another amino acid or by inserting a new cysteine) did not experience a worse prognosis in terms of onset of ESKD or age of gout onset when compared with non-cysteine-involving ADTKD-UMOD patients (Figure S2).

Comparing ADTKD-UMOD with ADTKD-NOS (not otherwise specified, i.e. no mutation detected) in the US ADTKD Registry, we found that CKD (94.0% vs. 82.7%, p<0.001) and ESKD (46.5% vs. 26.2%, p<0.001) were more prevalent and the eGFR at diagnosis lower (34.7ml/min vs. 48.1ml/min, p<0.001) in ADTKD-UMOD vs. ADTKD-NOS, respectively. Similarly, CKD and ESKD were more prevalent in ADTKD-MUC1 compared to ADTKD-NOS (86.4% vs. 82.7%, p<0.001 and 54.8% vs. 26.2%, p<0.001, respectively) (Table S3). These findings suggest a more severe kidney phenotype in ADTKD-UMOD and ADTKD-MUC1 compared to ADTKD cases without genetic diagnosis – a finding confirmed in the Belgo-Swiss Registry (see below).
Uromodulin biology in ADTKD-UMOD and ADTKD-MUC1

Given the colocalization of mucin-1 with uromodulin in the kidney tubule and the fact that MUC1fs accumulates in several tissues without causing extrarenal manifestations, we tested the hypothesis that MUC1fs might interact with uromodulin processing in the TAL in ADTKD-MUC1. We used a validated ELISA to assess the levels of urinary uromodulin in a population-based cohort (Cohorte Lausannoise), confirming the positive correlation between urinary uromodulin (mg/g creatinine) and eGFR between 15 and 90mL/min/1.73m² (Figure S3A, test for linear trend, p: 0.001), as previously described. Normalizing urinary uromodulin for eGFR (in addition to urinary creatinine) mitigated the linear dependency (Figure S3B, test for linear trend, p: 0.54), allowing a more robust comparison of urinary uromodulin levels between patients and controls. We next measured urinary uromodulin levels in ADTKD-MUC1 and ADTKD-UMOD patients, compared to controls (n=180) from the population-based cohort strictly matched for eGFR (45-60mL/min/1.73m²). In contrast to ADTKD-UMOD patients, who showed strongly reduced urinary uromodulin levels (Median: 2.8 vs. 14.7mg/g creatinine, p<0.0001), ADTKD-MUC1 patients showed urinary levels of uromodulin similar to controls (Median: 15.7 vs. 14.7mg/g creatinine, p=0.99) (Figure 5A left panel). Normalizing urinary uromodulin levels to eGFR (mg/g creatinine/eGFR) confirmed strongly reduced levels in ADTKD-UMOD vs. 2717 controls with eGFR spanning 15-90 mL/min/1.73m² (0.05 vs. 0.23mg/g creatinine/eGFR, p<0.0001, respectively), in contrast with unchanged levels in ADTKD-MUC1 vs. controls (0.29 vs. 0.23mg/g creatinine/eGFR, p=0.29, respectively) (Figure 5A right panel).

Next, we performed immunofluorescence staining for uromodulin on kidney biopsies from healthy individuals (NHK, normal human kidney), from two ADTKD-UMOD patients and from two ADTKD-MUC1 patients. While we were able to see the characteristic intracellular
uromodulin deposits in the ADTKD-UMOD patients, uromodulin staining was largely confined to the apical membrane in ADTKD-MUC1 patients, similar to the pattern observed in normal kidney (Figure 5B). The accumulation of mutant uromodulin in the TAL cells from ADTKD-UMOD patients induced ER stress, as shown by colocalization with the unfolded protein response (UPR) regulator GRP78 (also known as Binding immunoglobulin protein, BiP). Conversely, GRP78 could not be detected in the TALs of ADTKD-MUC1 patients (Figure 5B; Figure S4).

Establishment of a clinical UMOD-score in the Belgo-Swiss ADTKD Registry
Based on the Belgo-Swiss ADTKD Registry with detailed phenotyping, including 54 UMOD-positive families (n=132 patients) and 102 UMOD-negative families (n=143 patients) (Figure 1; Figure S5), we designed a clinical score to estimate the probability of ADTKD-UMOD. Clinical characteristics in ADTKD patients with/without UMOD mutations guided the scoring system (Figure S6). Compared to UMOD-negative patients, patients with a UMOD mutation had a more frequent family history of CKD and/or gout (90% vs. 76%, p<0.001); a higher prevalence of CKD (83% vs. 75%, p=0.03) and ESKD (33% vs. 20%, p=0.02), with earlier onset of CKD (Median: 32 years vs. 42 years, p=0.002) and ESKD (Median: 42 years vs. 48 years, p=0.007); a higher level of serum uric acid (Mean: 507.0±131 vs. 454.5±153.4µmol/L, p=0.017) and an earlier onset of gout (Median: 24 years vs. 33 years, p=0.001). Of note, the prevalence of renal cysts, as detected by sonography and/or computed tomography or magnetic resonance imaging, was lower in ADTKD-UMOD compared to UMOD-negative patients (36% vs 57%, p=0.001) (Figure S6).
The weighted $UMOD$-score was developed on eight items using these discriminative clinical, biochemical, histological and imaging characteristics of ADTKD-$UMOD$ (Figure 6A). The maximal item value of +3 points was attributed to gout before 30 years and uricemia $>500\mu\text{mol/L}$ - the most specific discriminants (Figure S6). Since the prevalence of CKD and autosomal dominant inheritance was higher in ADTKD-$UMOD$, these criteria were weighted with +2 points. Clinical findings suggesting an alternative diagnosis (eg. proteinuria, uncontrolled hypertension) were attributed negative points. Values for each available item are added in order to obtain a final additive score for each patient. The clinical $UMOD$ score was applied on ADTKD patients from the Belgo-Swiss Registry, for which information for at least 5/8 items were present (n=211: 106 $UMOD$-positive and 105 $UMOD$-negative patients). The receiver operating characteristics (ROC) curve, with $UMOD$ mutation status as the dependent variable yielded an area under the curve (AUC) of 0.72 (95% CI 0.66; 0.79, $P<0.001$) (Figure 6B). The $UMOD$ score cut-off of ≥ 5 was selected, yielding a sensitivity of 98.1% and specificity of 41.4% for positive $UMOD$ mutation testing, corresponding to a negative predictive value (NPV) of 94.3% and a positive predictive value (PPV) of 59.1% (Figure 6C; Table S4). This cut-off also proved to be optimal for group discrimination corresponding to a Youden index (sensitivity+specificity-1) of 0.395 (Table S4).

The $UMOD$-score and urine uromodulin levels to guide genetic testing in ADTKD

The score was validated in $UMOD$-positive (n=124) and $UMOD$-negative (n=183) patients from the US ADTKD Registry, yielding similarly high sensitivity and low specificity for $UMOD$ mutations using a cut-off of ≥ 5 (Sensitivity: 97.6%, specificity: 16.4%, NPV: 91.0%, PPV: 44.2%, data not shown), altogether making ADTKD-$UMOD$ very unlikely for score results <5.
We tested how the clinical score separated the two most common etiologies of ADTKD in a subset of ADTKD-UMOD (n=125) and ADTKD-MUC1 (n=80) patients from the US Registry for which at least 5/8 clinical item and/or urinary uromodulin levels were available. The clinical UMOD-score alone separated the two entities with an AUC of 0.69 (95% CI 0.62; 0.77, p=0.037) (Figure 7A left panel). However, the specificity for UMOD increased considerably with higher UMOD-score values (for instance score ≥8 had a sensitivity of 48.8%, a specificity of 83.7%, a NPV of 50.8% and a PPV of 81.3% for an UMOD mutation) (Table S5). Only a few, mostly ADTKD-MUC1 patients had score results of <5 (Figure 7A right panel).

We next investigated whether addition of urinary uromodulin levels to the clinical score improved its ability to discriminate ADTKD-UMOD from ADTKD-MUC1. Based on the normalized urinary uromodulin values in the reference population (mg/g creatinine/eGFR) (Figure 5A right panel), we assigned respectively +1 and +3 points for urinary uromodulin values between the median and 25th percentile (0.14-0.23 mg/g creatinine/eGFR) and below the 25th percentile. Similarly, we assigned respectively -1 and -3 points for urinary uromodulin values between the median and 75th percentile (0.23-0.35 mg/g creatinine/eGFR) and above the 75th percentile. Applied to a cohort of 51 ADTKD-UMOD and 35 ADTKD-MUC1 patients for which urinary uromodulin data were available, this combined clinical and biochemical score separated ADTKD-UMOD from ADTKD-MUC1 with an improved AUC of 0.89 (95% CI 0.82; 0.96, p<0.001). The cut-off value of ≥5 still appears as the optimal cut-off value to discriminate ADTKD-UMOD from ADTKD-MUC1 (Youden index 0.684) with a sensitivity of 94.1% and specificity of 74.3% and a NPV 89.7%, PPV 84.2% for a UMOD mutation (Table S5 and Figure 7B). Based on the clinical and biochemical UMOD score, we suggest a diagnostic algorithm to guide genetic testing in ADTKD (Figure 8).
Discussion

This international cohort study represents the largest dataset of ADTKD-UMOD and ADTKD-MUC1 patients reported to date, providing new insights into the phenotype and disease progression of the main subtypes of ADTKD. Because of the autosomal dominant inheritance and regional familial clustering, considerable differences in the prevalence of ADTKD-subgroups are mentioned in national cohorts.2,16,21 In this international ADTKD cohort, ADTKD-UMOD represents the most frequent subtype of ADTKD with an estimated prevalence of 37.1%, followed by ADTKD-MUC1 in 35.1% of UMOD-negative families and an estimated overall prevalence of 21.0%. Of note, a systematic effort to screen for mutations in HNF1B, REN, DNAJB11 and SEC61A1 is ongoing in the 133 UMOD- and MUC1-negative families; and for mutations in MUC1 in the 141 UMOD-negative families in the registry.

Based on the large sample size, we observed distinct features in the clinical presentation of ADTKD-UMOD and ADTKD-MUC1, with relevance for clinical practice and patient counselling. Kidney disease appears more severe in ADTKD-MUC1, with a higher prevalence of ESKD (58% vs. 44% in ADTKD-UMOD, p=0.04), an earlier onset of ESKD (36 years vs. 46 years in ADTKD-UMOD, p<0.001) and a shorter median renal survival (46 years vs. 54 years in ADTKD-UMOD, p=0.013). Previous studies reported an older age at ESKD (Mean: 44.9 years) in ADTKD-MUC1 patients8, which could be explained by inclusion of historically affected patients (clinically affected relatives of genetically diagnosed patients) whereas we only included individuals with an established genetic diagnosis. The heterogeneity of ADTKD-MUC1 in terms of CKD and/or renal disease progression is intriguing and suggests considerable modifier effects.

Gout has been classically described in patients with UMOD mutations. Indeed, our data suggest that gout is strikingly more prevalent and of significantly earlier onset in ADTKD-
UMOD compared to ADTKD-MUC1. Defective urinary concentration resulting in polydipsia and polyuria has been described in ADTKD-UMOD patients, most likely because of impaired activity of TAL-based Na\(^+\)-K\(^+\)-2Cl\(^-\)-cotransporter NKCC2 \(^{16,18}\). Plasma volume contraction and compensatory higher reabsorption activity of the proximal tubule including upregulation of Na\(^+\)-coupled urate transporters most likely explain the hyperuricemia phenotype in ADTKD-UMOD \(^{24,25}\). A similar mechanism was shown in aged Umod KO mice that displayed reduced activity of NKCC2 \(^{25}\). Even though ADTKD-MUC1 presumably originates from the distal tubule, gout was considerably less prevalent in this disorder.

We investigated two cardinal biological features described in ADTKD-UMOD with likely pathophysiological relevance: aberration in uromodulin export mechanisms and induction of ER stress. Based on the observation that mucin-1 is expressed in the distal kidney tubule including the TAL where it colocalizes with uromodulin \(^6\) and on the observation that MUC1fs is accumulating in other mucin-1-expressing tissues (skin, breast, lung, colon) without causing extrarenal manifestations \(^7\), one could hypothesize that MUC1fs might interact with uromodulin in TAL. Yet, in contrast to ADTKD-UMOD, we found no difference in the urinary level of uromodulin between ADTKD-MUC1 patients and the normal population. Furthermore, analysis of MUC1-mutant kidney biopsies revealed a normal distribution of uromodulin in TAL cells, without evidence for ER stress (GRP78 expression) - a hallmark of ADTKD-UMOD. These novel findings suggest that the processing of uromodulin is not altered in ADTKD-MUC1 and that ER stress is not a main finding in ADTKD-MUC1. In line, a recent study found entrapment of MUC1fs in vesicles of the early secretory pathway in models of ADTKD-MUC1 \(^{20}\).

Previous reports described intracellular accumulation of uromodulin in kidney biopsies from ADTKD-UMOD patients \(^{1,2}\). However, such staining is not available in a large number of
patients, preventing us to speculate on its value in clinical decision making. In our experience, the uromodulin staining is operator-dependent, requiring rigorous positive and negative controls, and it might depend on the underlying UMOD mutation. Furthermore, the availability of kidney biopsies is restricted. The assessment of urinary uromodulin levels in patients at time of diagnosis and during disease progression might offer a non-invasive diagnostic tool and biomarker in ADTKD-UMOD. Since urinary uromodulin levels show a positive correlation with eGFR (for eGFR <90mL/min/1.73m^2) and tubular mass, they need to be normalized for residual eGFR and interpreted against matched controls. Based on data from a large control cohort, we show here that urinary uromodulin (in mg/g creatinine to account for urine concentration) normalized for eGFR can be applied in the clinical setting of ADTKD.

A recent study based on exome sequencing reported mutations in UMOD accounting for ~3% of all patients with a genetic finding in this cohort. However, considerable hurdles in the diagnostic approach of ADTKD-subtypes persist. These include but are not limited to: (i) limited availability of MUC1 testing due to technical challenges; (ii) lack of validated diagnostic/genetic algorithm due to unappreciated clinical differences between ADTKD subtypes; and (iii) missing disease biomarkers due to small and scattered disease cohorts. For everyday practice and cost-effectiveness, practical tools such as scoring systems are very useful to guide genetic testing. The Belgo-Swiss Registry was instrumental in delineating a clinical UMOD-score because it revealed key discriminatory clinical features, including positive family history of CKD and/or gout; age at presentation; prevalence of kidney disease and progression to ESKD; history of gout. Of interest, renal cysts are less common in ADTKD-UMOD patients, in line with previous studies. The delineated clinical UMOD-score showed an excellent negative predictive value for UMOD mutations (cut-off ≥5) in the Belgo-Swiss Registry (NPV: 94.3%) and in the
US ADTKD registry (NPV: 91.0%). As ADTKD-UMOD and ADTKD-MUC1 present considerable clinical overlap, we were not surprised that the clinical UMOD-score separated modestly between these two entities (AUC 0.69). Yet, higher UMOD-score values showed a solid specificity for UMOD mutations (e.g. cut-off ≥8: specificity of 83.7% and PPV of 81.3% for an UMOD mutation). Adding urinary uromodulin measurements, a pathophysiological biomarker for ADTKD-UMOD, considerably increased the discriminating power of the score (AUC 0.89) with a positive predictive value of 84.2% for an UMOD mutation (cut-off ≥5 points). Since the progression of kidney disease and the prevalence and onset of gout seems dependent on the underlying genetic diagnosis, a genetic diagnosis is recommended as it might impact on the management of ADTKD patients, e.g. follow-up, scheduling of renal transplantation and gout-preventive strategies. Furthermore, targeted therapies might be in reach at least for ADTKD-MUC1.

The limits of this study include the retrospective “real-life” cohort design of consecutively recruited patients, with inherent difficulties such as limited access to full clinical information, missing DNA samples for further genetic testing and lack of strict inclusion/exclusion criteria. We included all genetically resolved cases of a given family, potentially introducing the risk for selection bias. However, we estimate that this represents a neglectable risk as only 1-2 patients were in general included per family and considerable intrafamilial clinical variability exists in ADTKD. Since kidney biopsies are rarely performed in these diseases and yield non-specific findings (e.g. interstitial fibrosis, tubular atrophy), we did not to include histopathology information in the analysis. A survey of histopathology results from the Belgo-Swiss Registry showed that interstitial fibrosis with tubular atrophy (in ca. 60% of available pathology reports) and interstitial nephritis (in ca. 40% of available pathology...
reports) were the preponderant histological findings in ADTKD-
UMOD and UMOD-negative patients. A more detailed histological description of biopsies performed in ADTKD-UMOD and ADTKD-MUC1 warrants a dedicated analysis.

It should be pointed that systematic screening for UMOD mutations in all 10 coding exons has only been performed in a subset of ADTKD patients. Based on previous screens and WES, we estimate that very few UMOD mutations outside exons 3 and 4 might have been missed in ADTKD-UMOD. Furthermore, large deletions or insertions in UMOD are not detected by direct sequencing methods. With the availability of gene panel testing and NGS approaches, the utility of a clinical score in directing targeted gene testing will probably decrease. However, at the current stage, MUC1 mutations are missed by NGS and availability of specialized testing is limited. To the best of our knowledge, clinical-grade genetic testing for MUC1 is only performed by the Broad Institute (Cambridge, MA, USA). For these reasons, we estimate that simple clinical and biochemical tools to estimate pre-test probability impacts on diagnostic work-up and potentially reduces the costs associated with unjustified genotyping.

In conclusion, this large international retrospective cohort study provides a detailed phenotype analysis of ADTKD-UMOD and ADTKD-MUC1 patients. The clinical hallmarks of the two most common ADTKD subtypes are hyperuricemia and early gout in ADTKD-UMOD and a heterogeneous, but generally more severe kidney disease in ADTKD-MUC1. The clinical UMOD-score is a sensitive and, coupled to urinary uromodulin levels, potentially specific tool to select patients for genetic UMOD testing. These results should help clinicians to improve diagnostic rates, clinical management and patient counselling in ADTKD.
Material and Methods

International ADTKD Cohort

The International ADTKD Cohort consists of patients from the Belgo-Swiss ADTKD Registry and the US ADTKD Registry (see below). The inclusion criteria were those defined by the KDIGO consensus\(^2\), including: a family history compatible with autosomal dominant inheritance of chronic kidney disease (CKD) with features of ADTKD including progressive loss of kidney function, bland urinary sediment, absent-to-mild albuminuria/proteinuria, normal or small-sized kidneys on ultrasound; and/or (in absence of a positive family history of CKD) a history of early-onset hyperuricemia/gout and/or the presence of interstitial fibrosis/tubular atrophy on kidney biopsy. Exclusion criteria included: a different genetic diagnosis (non-ADTKD), the presence of enlarged cystic kidneys, proteinuria (>1g/24h) and/or consistent hematuria, longstanding or uncontrolled diabetes mellitus or arterial hypertension and the consumption of drugs linked to tubulointerstitial nephritis. Only patients screened for \textit{UMOD} and/or \textit{MUC1} mutations were included in the Cohort. Anonymized demographics, clinical and genetic information were recorded in a database. This study was approved by the institutional review board of Wake Forest School of Medicine, Winston-Salem, NC; the UCLouvain Medical School, Brussels; and the European Community's 7th Framework Programme “European Consortium for High-Throughput Research in Rare Kidney Diseases (EURenOmics).

Belgo-Swiss ADTKD Registry: The Belgo-Swiss ADTKD Registry has been developed by academic partners with input from clinicians in Belgium and Switzerland. In 2019, the registry includes 275 patients enrolled since 2003. The clinical data included a family pedigree, onset and evolution of kidney function decline, onset of hyperuricemia/gout (age of gout onset was defined as the patient’s age at the first episode of gouty arthritis) and fractional excretion of uric acid,
imaging and histopathology data (where available) and information on potential extrarenal manifestations (e.g. pancreatic enzymes, liver function tests). ESKD was defined as eGFR<10mL/min or initiation of renal replacement therapy (dialysis or kidney transplantation).

US ADTKD Registry: The US ADTKD Registry includes families with tubulointerstitial kidney disease referred to Wake Forest School of Medicine (Winston-Salem, NC) since 1999. Information collected included demographics, pedigree, age of ESKD (defined as above), laboratory values, and ultrasound results.

Genetic testing

Informed written consent was obtained from all patients. Genomic DNA was isolated from peripheral blood leukocytes using standard procedures and DNA was stored at 4°C.

UMOD testing: Direct sequencing of *UMOD* exons was initially performed by Sanger sequencing, as previously described. More recently, *UMOD* gene is analyzed by massive parallel sequencing using a tubulopathy gene panel designed by the work package tubulopathies of the European Consortium EUREnomics. Mutational analysis was carried out in exons 3 and 4 for all enrolled patients and in all 10 coding exons for a subset of patients.

MUC1 genotyping was performed using a *MUC1* VNTR sequencing approach coupled to a spectrometry-based probe extension assay as previously described. *MUC1* testing was provided by the Broad Institute of MIT and Harvard, Cambridge, MA and the 1st Faculty of Medicine, Charles University, Prague, Czech Republic. Nucleotide numbering reflects cDNA numbering with +1 corresponding to the A of the ATG translation initiation codon in the reference sequence (NM_003361.3). Alamut®Visual software (www.interactivebiosoftware.com) was used to assist in determining variant pathogenicity.
Identified variants were successively checked against relevant databases, such as Clinvar (https://www.ncbi.nlm.nih.gov/clinvar/), HGMD (http://www.hgmd.cf.ac.uk/ac/index.php), Varsome (https://varsome.com/) and local databases to assess for previous publication. Variants were considered disease-causing based on previous reports, family segregation analysis or prediction algorithms (SIFT, Align GVD, mutation taster and Polyphen2) for pathogenicity. The variants were classified according to the guidelines published by the American College of Medical Genetics ACMG 201533. Variants of interest were verified by Sanger sequencing.

Measurements of urinary levels of uromodulin

A validated ELISA method was used to measure urinary uromodulin levels (second morning urine sample) from 86 patients with ADTKD22. Urinary creatinine was measured using a Synchron DXC800 analyzer (Beckman Coulter, Fullerton, CA) and used to normalize for urine concentration. The reference samples (n=2717) were obtained from the Cohorte Lausannoise (CoLaus), a population-based study including 6000 people aged 35–75 years from the city of Lausanne, Switzerland23. eGFR was calculated using the CKD-EPI equation. Informed consent was obtained from all participating individuals.

Uromodulin expression constructs

cDNA of human wild type uromodulin was cloned in pcDNA 3.1(+) (Thermofisher, Waltham, MA) and an HA tag was inserted after the leader peptide in between T26 and S27 in the protein sequence34. The C150S and L284P mutant isoforms were obtained by mutagenesis using the Quickchange Lightning mutagenesis kit (Agilent, Santa Clara, CA) following the manufacturer’s instructions. Primers were designed using the software QuikChange® Primer Design Program.
Primers used for mutation C150S: forward (5’->3’) gatggcactgtgagtcctccccgggctcctg, reverse (5’->3’) caggagccgggaggactcacagtgcac and for mutation L248P: forward (5’->3’) cccgagtgtacccggtactgcaca, reverse (5’->3’) tgtgcagttacgcgggtgacactggg.

Cell culture conditions

HEK293 cells were grown in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% Fetal Bovine Serum (FBS), 200 U/ml penicillin, 200 µg/ml streptomycin and 2 mM glutamine at 37°C, 5% CO₂. HEK293 cells were transfected using lipofectamine 2000 (Thermofisher) following the manufacturer’s protocol and analyzed 24 h after transfection.

Western blot

Cells were lysed in octylglucoside lysis buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 60 mM octyl β-D-glucopyranoside, 10 mM NaF, 0.5 mM Sodium orthovanadate, 1 mM glycerophosphate and protease inhibitor cocktail (Sigma)) for 1 h at 4 °C under rotation followed by 10 min centrifugation at 17,000 g. Soluble fractions were quantified by the Bio-Rad Protein Assay (Bio-Rad). Western blot experiments were performed as described in Schaeffer et al.³⁴ Antibodies: Mouse purified anti-HA.11 Epitope Tag antibody (Cat# 901502, Biolegend, San Diego, CA, dilution 1:1,000), mouse monoclonal anti-β-actin (A2228, Sigma, dilution 1:20,000).

Immunofluorescence

Kidney biopsies: Immunodetection of uromodulin and GRP78 was performed on 5 µm-thick kidney sections obtained from nephrectomy samples of ADTKD-UMOD (Female, 41-year-old, ESKD; Male, 42-year-old, ESKD) and ADTKD-MUC1 patients (Female, 60-year-old, ESKD;
Male, 47-year-old, ESKD). Slides were deparaffinized in xylene and rehydrated in a graded ethanol series. Antigen retrieval was carried out for 10 minutes with citrate buffer (pH 6.0) at 98°C. After 20 minutes in blocking solution, slides were incubated overnight with GRP78 primary antibody (1/300; Abcam ab21685), followed by incubation with AlexaFluor555-conjugated goat anti-rabbit antibody for 45 minutes (1/200; Invitrogen). The slides were probed with sheep anti-uromodulin primary antibody (1/800; Meridien Life Science Inc. K90071C), followed by AlexaFluor488-conjugated donkey anti-sheep (1/200; Invitrogen). Coverslips were mounted with Prolong gold antifade reagent with 4′,6-diamidino-2-phenylindole (DAPI, Invitrogen) and analyzed under a Zeiss LSM 510 Meta Confocal microscope (Carl Zeiss, Jena, Germany) with high numerical aperture lenses (Plan-Neofluar 20x/0.5). The use of these samples has been approved by the UCLouvain Ethical Review Board.

HEK293 cells: Cells grown on coverslip were fixed in 4% paraformaldehyde (PFA) for 15 min, permeabilized 10 min with 0.5 % triton and blocked 30 min with 10 % donkey serum. Cells were labelled for 1 h 30 min at room temperature with a mouse purified anti-HA.11 Epitope Tag antibody (Cat# 901502, Biolegend, dilution 1:500) and a rabbit polyclonal anti-calreticulin (C4606, Sigma, dilution 1:500) followed by 1h incubation with the appropriate Alexa-Fluor conjugated secondary antibodies (Thermofisher, dilution 1:500). Cells were stained with 4,6-diamidino-2-phenylindole (DAPI) and mounted using fluorescence mounting medium (DAKO, Agilent). All pictures were taken with an UltraVIEW ERS spinning disk confocal microscope (UltraVIEW ERS-Imaging Suite Software, Zeiss 63X/1.4; PerkinElmer Life and Analytical Sciences Boston, MA). All images were imported in Photoshop CS (Adobe Systems, Mountain View, CA) and adjusted for brightness and contrast.
Generation and validation of the ADTKD-UMOD score

The weighted UMOD-score was based on ADTKD-criteria, specific clinical characteristics of ADTKD-UMOD (i.e. early gout onset and hyperuricemia) and parameters that are negatively associated with ADTKD (i.e. providing alternative explanation for CKD: proteinuria/hematuria, diabetes/uncontrolled hypertension, renal cysts/enlarged kidneys) \(^2,^{16,21}\). For weighting the items of the score, we used integer values between -1 and +3. A score of +2 was given for the general ADTKD-criteria \(^2\); +1 or +3, for the UMOD-specific clinical and laboratory findings; and -1 for each negatively-associated item. The score was first tested in the Belgo-Swiss ADTKD Registry and validated in the US ADTKD Registry. In order to discriminate ADTKD-UMOD from ADTKD-MUC1, we defined a normal range of urinary uromodulin (mg/g creatinine/eGFR) using 2717 urine samples from the general population. Based on the pathophysiology of ADTKD-UMOD, on previous reports \(^3,^{36}\) as well as on our findings (Figure 5A), we assigned respectively +1 and +3 points for urinary uromodulin values between the median and 25\(^{th}\) percentile and below the 25\(^{th}\) percentile of normal urinary uromodulin levels. Similarly, we assigned respectively -1 and -3 points for urinary uromodulin values between the median and 75\(^{th}\) percentile and above the 75\(^{th}\) percentile of normal urinary uromodulin levels. Conceptualization of the score was based on the previously published HNF1\(\beta\) score \(^37\).

Statistical analysis

Quantitative parameters are presented as median and interquartile range (25th to 75th percentiles) (for scale variables) or means ± standard deviation (for continuous variables), and qualitative parameters are presented as fractions with percentages. Categorical variables were compared using the chi-squared test. Continuous variables were compared using the Mann–
Whitney U test or unpaired t-test. ANOVA testing with Tukey’s multiple comparison test was used to compare urinary uromodulin levels. Kaplan-Meier curves were generated to display ESKD- and gout-free survival. Patients who had not reached ESKD or developed gout at the end of the study (outcome of interest not occurred during follow-up time) were considered as censored individuals. Censoring time was defined as age at last follow-up. A log-rank test was used for comparison of survival curves. The performance of the $UMOD$ score was assessed by calculating the area under the curve of the receiver operating characteristic (ROC) curve. The Youden’s index was used to define the optimal discriminatory cut-off point for the $UMOD$-score. Statistical analysis was performed using SPSS Statistics (Armonk, NY: IBM Corp). $p<0.05$ was considered statistically significant, two sided tests were used.

Disclosure

The authors declare no potential conflict of interest relevant to this article.
Acknowledgements

We thank all participating patients and families. The Cohorte Lausannoise (CoLaus) is acknowledged for providing reference urine samples and eGFR informations.

EO is supported by the Fonds National de la Recherche Luxembourg (6903109), and the University Research Priority Program "Integrative Human Physiology, ZIHP" of the University of Zürich.

LR is supported by the Italian Society of Nephrology (SIN) under the “Adotta un progetto di ricerca” program, Telethon-Italy (GGP14263); the Italian Ministry of Health (grant RF-2010-2319394).

KK and AJB are supported by NIH-NIDDK R21 DK106584.

MŽ, KH and SK were supported by grants NV17-29786A from the Ministry of Health of the Czech Republic, LTAUSA19068 from the Ministry of Education of the Czech Republic and by institutional programs of Charles University in Prague (UNCE/MED/007 and PROGRES-Q26/LF1) and they thank to The National Center for Medical Genomics (LM2015091) for help in UMOD and MUC1 sequencing.

OD is supported by the European Community's 7th Framework Programme (FP7) under grant agreement n° 305608 (EURenOmics); the European Reference Network for Rare Kidney Diseases (ERKNet) – project ID N° 739532; the NCCR Kidney.CH program (Swiss National Science Foundation); and the Swiss National Science Foundation 310030-189044. OD and OB were supported by the Gebert-Rüf Foundation for research on ADTKD-UMOD.

JAS is supported by Kidney Research UK and the Northern Counties Kidney Research Fund.
RT is funded by ISCIII: RETIC REDINREN RD16/0009 FIS FEDER FUNDS (PI15/01824, PI18/00362).

JM is supported by the Fonds de la Recherche Scientifique – FNRS (Communauté Française de Belgique, Belgium).

DGF was supported by the Swiss National Centre of Competence in Research NCCR TransCure, the Swiss National Centre of Competence in Research NCCR Kidney.CH and the Swiss National Science Foundation (grants # 31003A_152829 and 33IC30_166785/1).

Genetic testing for \textit{MUC1} is supported by the Slim Initiative for Genomic Medicine in the Americas (SIGMA), a collaboration of the Broad Institute with the Carlos Slim Foundation.

We are grateful to Maegan Harden and her team on the Broad Genomics Platform for expert assistance with genetic testing for \textit{MUC1}.

Parts of these data have been presented as a poster during the 2017 ASN Kidney Week (October 31-November 5, 2017, New Orleans, Louisiana).

Supplementary Material

Referring Physicians
Supplementary Figures S1-S6
Supplementary Tables S1-S5

Supplementary information is available at \textit{Kidney International}’s website.
References

Figure Legends

Figure 1. Design and flowchart of mutation detection in the International ADTKD Cohort

*Clinical characteristics of ADTKD are based on the KDIGO Consensus Report ², see Material & Methods for more details.

n=number of patients; N=number of families. ADTKD, autosomal dominant tubulointerstitial kidney disease; CKD, chronic kidney disease; UMOD, gene encoding uromodulin; MUC1, gene encoding mucin-1.

Figure 2. Spectrum of mutations in UMOD and MUC1

A: UMOD gene and protein domain structure with the 106 UMOD mutations reported in the International Cohort depicted relative to domain localization. Mutations involving cysteine residues are indicated in italics, on top of each box. B: Prevalence of different UMOD mutations: missense mutations (101/106; 95.3%), affecting cysteine (57/106; 53.8%) or non-cysteine (44/106; 41.5%) amino acids and insertion/deletions (5/106; 4.7%). C: MUC1 gene exon-intron structure (middle panel) and normal protein structure (above) with the 4 detected mutations (in red) in the variable number tandem repeat (VNTR) domain and the consequence on protein structure (below). TM, transmembrane domain; SEA domain, self-cleavage module. D: Prevalence of identified MUC1 mutations in reported ADTKD-MUC1 families.

Figure 3. Clinical characteristics of ADTKD-UMOD and ADTKD-MUC1
A: Quantitative parameters are presented as median and quartiles or means±SD. Qualitative parameters are presented as fractions with percentages. Chi-square test for categorial variables, Mann-Whitney U and unpaired t-test for quantitative parameters were used. # and $ represent gender comparison within ADTKD-UMOD and ADTKD-MUC1, respectively. Column n (UMOD/MUC1) denotes the number of ADTKD-UMOD and ADTKD-MUC1 patients analyzed for the respective parameter. Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; ESKD, end stage kidney disease. B: Scatter plots for age at ESKD and onset of gout for ADTKD-UMOD and ADTKD MUC1 patients. Bars indicate means±SD.

Figure 4. Freedom from ESKD and gout in ADTKD-UMOD and ADTKD-MUC1

A: Kaplan-Meier curve of renal survival in ADTKD-UMOD and ADTKD-MUC1 patients. Median renal survival was 54 years (95% CI, 51.5-56.5) in ADTKD-UMOD and 46 years (95% CI, 39.3-52.7) in ADTKD-MUC1. B: Kaplan-Meier gout-free survival curve in ADTKD-UMOD and ADTKD-MUC1 patients. Median gout-free survival was 30 years (95% CI, 27.3-32.7) in ADTKD-UMOD and 67 years (95% CI, 57.9-76.1) in ADTKD-MUC1. Log rank test was used. Censored: event of interest has not occurred during the follow-up time.

Figure 5. Uromodulin processing in ADTKD-UMOD and ADTKD-MUC1

A: Urinary uromodulin excretion normalized to urinary creatinine (mg/g creatinine) (left panel) and normalized to urinary creatinine and eGFR (mg/g creatinine/eGFR) (right panel) in ADTKD-MUC1 patients, ADTKD-UMOD patients and a reference population. Median, 25th percentile and 75th percentile values in the reference population are indicted in Figure 5A right
panel. Numerical values (median and quartiles) for urinary uromodulin, eGFR and sample size are below the graph. Outlier removed with GraphPad (ROUT Q=1%), One-way ANOVA p<0.0001 for both graphs, Tukey’s multiple comparison test was applied. B: Immunofluorescence staining for uromodulin (green) and GRP78 (red) in ADTKD-\textit{MUC1}, ADTKD-\textit{UMOD} and normal human kidney (NHK) biopsy. Scale bar: 50\mu m

\textbf{Figure 6. Clinical UMOD-score and performance in the Belgo-Swiss ADTKD Registry}

\textbf{A:} Clinical UMOD-score based on clinical, biochemical, histological and imaging data. Attributed points for specific characteristics are shown on the right. a After routine work-up including urinary sediment and urinalysis, kidney imaging; b Interstitial fibrosis, tubular atrophy, thickening and lamellation of tubular basement membranes, tubular dilatation (microcysts), negative immunofluorescence for complement and immunoglobulins; c Proteinuria >300mg/dL, persistent hematuria (both eumorphic and dysmorphic) in repeated urinalysis; d HbA1c >10% or repeated blood pressure measurements > 160/100mmHg and/or corresponding clinical findings of hypertensive cardiopathy/nephropathy; e \geq 1 cyst at any location diagnosed by ultrasonography, CT-scan or MRI. Example: 35-year-old patient, gout onset 32y (+1), serum uric acid 550\mu mol/L (+3), eGFR 55mL/min/1.73m2, bland urine analysis and sediment, kidneys without cysts and normal size on MRI, no diabetes or hypertension (+2 for CKD of unknown origin), family history of CKD documented on three generations (+2), total clinical UMOD-score of 8 points. Abbreviations: CKD, chronic kidney disease; ADTKD, autosomal dominant tubulointerstitial kidney disease. B: Receiver operating characteristics (ROC) curve of the clinical UMOD-score in the Belgo-Swiss Registry (n=211 ADTKD patients with available data), AUC 0.72 , 95\% CI 0.66; 0.79, p<0.001, the cut-off value of \geq 5 has a sensitivity of 98.1\% and
specificity of 41.4% for UMOD mutation, NPV 94.3%, PPV 59.1%. C: Histogram of clinical UMOD-score results in UMOD-positive (n=106) and UMOD-negative (n=105) patients. The red horizontal line indicates the cut-off value of 5.

Figure 7. UMOD-score comparing ADTKD-UMOD vs. ADTKD-MUC1 in the US ADTKD Registry

A: Left panel: Receiver operating characteristics (ROC) curve of the clinical UMOD-score in the US Registry (n=205 ADTKD-UMOD and MUC1 patients with available data), AUC 0.69, 95% CI 0.62; 0.77, p<0.037. A cut-off value of ≥8 has a sensitivity of 48.8% and specificity of 83.7% for UMOD mutations, while a cut-off value of ≥5 has a sensitivity of 97.6% and specificity of 15.0% for UMOD mutations. Right panel: Histogram of clinical UMOD-score results in ADTKD-UMOD (n=125) and ADTKD-MUC1 (n=80) patients. B: Left panel: Receiver operating characteristics (ROC) curve of the clinical UMOD-score including urine uromodulin levels in the US Registry (n= 86 ADTKD-UMOD and MUC1 patients with available urinary uromodulin data), AUC 0.89, 95% CI 0.82; 0.96, p<0.001. The cut-off value of ≥5 has the highest Youden index for discrimination (0.684) and has a sensitivity of 94.1% and specificity of 74.3% for UMOD mutation, NPV 89.7%, PPV 84.2%. Right panel: Histogram of clinical + urinary uromodulin UMOD-score results in ADTKD-UMOD (n=51) and ADTKD-MUC1 (n=35) patients. The red horizontal line indicates the cut-off value of 5.

Figure 8. Diagnostic algorithm for suspected ADTKD based on clinical UMOD-score and urinary uromodulin levels
Progressive loss of renal function, bland urinary sediment, normal-to-mild albuminuria/proteinuria, normal sized kidneys on ultrasound, no consumption of drugs linked to tubulointerstitial nephritis.

Assessed by validated ELISA and normalized to urinary creatinine and eGFR. Obtained values should be interpreted against UMOD-negative family members or reference populations \(^{26,27}\). See results and discussion section for more details.

For diagnostic algorithm including other ADTKD genes, refer to Devuyst et al.\(^1\). Alternative diagnosis include nephronophthisis (autosomal recessive), ADPKD (large cystic kidneys), autosomal dominant glomerulopathies (proteinuria/hematuria), other causes of tubulointerstitial kidney disease (autoimmune, TINU) including drugs and toxins (NSAID, aristolochic acid, calcineurin inhibitors, lithium).

Abbreviations: ADTKD, autosomal dominant tubulointerstitial kidney disease; CKD, chronic kidney disease; UMOD, gene encoding uromodulin.
Table 1. Clinical and genetic characteristics of ADTKD patients

<table>
<thead>
<tr>
<th></th>
<th>International ADTKD Cohort (n=726)</th>
<th>Belgo-Swiss ADTKD Registry (n=275)</th>
<th>US ADTKD Registry (n=451)</th>
<th>n (BE-CH/US)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of families</td>
<td>N=585</td>
<td>N=156</td>
<td>N=429</td>
<td></td>
</tr>
<tr>
<td>Sex (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Female</td>
<td>332/726 (46)</td>
<td>115/275 (42)</td>
<td>217/451 (48)</td>
<td></td>
</tr>
<tr>
<td>Age at presentation (y)</td>
<td>45 (31; 58)</td>
<td>34 (22; 49)</td>
<td>49 (37; 62)</td>
<td>174/377</td>
</tr>
<tr>
<td>Positive family history</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Gout/CKD) (%)</td>
<td>625/679 (92)</td>
<td>191/227 (84)</td>
<td>434/451 (96)</td>
<td></td>
</tr>
<tr>
<td>eGFR at diagnosis (mL/min)</td>
<td>44.3 ± 30.0</td>
<td>45.1 ± 20.9</td>
<td>43.8 ± 34.3</td>
<td>137/229</td>
</tr>
<tr>
<td>CKD (%)</td>
<td>492/586 (84)</td>
<td>205/258 (80)</td>
<td>287/328 (88)</td>
<td></td>
</tr>
<tr>
<td>ESKD (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Age at ESKD (y)</td>
<td>216/503 (43)</td>
<td>70/258 (27)</td>
<td>146/245 (60)</td>
<td>245/146</td>
</tr>
<tr>
<td>Serum uric acid (µmol/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Female</td>
<td>472.0 ± 140.7</td>
<td>479.4 ± 145.3</td>
<td>454.6 ± 128.4</td>
<td>173/74</td>
</tr>
<tr>
<td>- Male</td>
<td>452.2 ± 148.8</td>
<td>456.7 ± 158.4</td>
<td>443.1 ± 128.7</td>
<td>67/33</td>
</tr>
<tr>
<td>Gout (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Female</td>
<td>305/461 (66)</td>
<td>130/218 (60)</td>
<td>175/243 (72)</td>
<td>106/41</td>
</tr>
<tr>
<td>- Male</td>
<td>98/256 (38)</td>
<td>40/91 (44)</td>
<td>58/165 (35)</td>
<td></td>
</tr>
<tr>
<td>Age at gout onset (y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Female</td>
<td>30 (20; 45)</td>
<td>31 (20; 47)</td>
<td>30 (21; 40)</td>
<td>235/160</td>
</tr>
<tr>
<td>- Male</td>
<td>35 (22; 50)</td>
<td>40 (23; 56)</td>
<td>35 (22; 50)</td>
<td>98/55</td>
</tr>
<tr>
<td>Mutations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- UMOD</td>
<td>N=216/562 (38.4%)</td>
<td>N=54/156 (34.6%)</td>
<td>N=162/406 (40.0%)</td>
<td></td>
</tr>
</tbody>
</table>

Quantitative parameters are presented as median and quartiles or means±SD. Qualitative parameters are presented as fractions with percentages. N=families, n=patients; Column n(BE-CH/US) denotes the number of patients from the Belgo-Swiss and US Registry analyzed for the respective parameter; BE-CH, Belgo-Swiss; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; ESKD, end-stage kidney disease.
Inclusion criteria for ADTKD:
- Family history compatible with autosomal dominant inheritance of CKD fulfilling the clinical characteristics of ADTKD
 - In absence of a positive family history of CKD:
 • Demonstration of tubulointerstitial damage on kidney biopsy or
 • History of early-onset hyperuricemia and/or gout
Exclusion criteria:
- Different genetic diagnosis (non-ADTKD)
- Enlarged cystic kidneys
- Proteinuria (>1g/24h) and/or consistent hematuria
- Longstanding/uncontrolled diabetes mellitus/arterial hypertension

N=429 families (n=451 patients) from US Registry
N=156 families (n=275 patients) from Belgo-Swiss Registry

International ADTKD Cohort (N=585; n=726)

1st Screening: UMOD mutations
N=562; n=703
ADTKD-UMOD
N=216/562 (38.4%)
n=303/703 (43.1%)

UMOD-negative
N=346/562 (61.6%)
n=400/703 (56.9%)

2nd Screening: MUC1 mutations
N=205; n=218
ADTKD-MUC1 in UMOD-negative
N=72/205 (35.1%)
n=83/218 (38.1%)
ADTKD-MUC1 total: N=93; n=104

UMOD and MUC1 negative
N=133; n=135

1st Screening: MUC1 mutations
N=23; n=23
MUC1-negative
N=2; n=2
Figure 2

(A) UMOD (chr 16p12.3) and mutations.

(B) Missense mutations of different alleles.

(C) Schematic representation of the MUC1-1 gene.

(D) Distribution of indels and Cys vs. Non Cys mutations.
Table

<table>
<thead>
<tr>
<th></th>
<th>ADTKD-UMOD (n=303)</th>
<th>ADTKD-MUC1 (n=104)</th>
<th>n (UMOD/MUC1)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of families</td>
<td>N=216</td>
<td>N=93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Female</td>
<td>130 (51)</td>
<td>40 (50)</td>
<td>257/80</td>
<td>1.0</td>
</tr>
<tr>
<td>- Male</td>
<td>127 (49)</td>
<td>40 (50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at presentation (y)</td>
<td>42 (27;53)</td>
<td>47 (37;57)</td>
<td>218/78</td>
<td>0.005</td>
</tr>
<tr>
<td>Positive family history (Gout/CKD) (%)</td>
<td>243/257 (95)</td>
<td>69/80 (86)</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>eGFR at presentation (mL/min)</td>
<td>39.2 ± 20.3</td>
<td>50 ± 51.9</td>
<td>136/52</td>
<td>0.157</td>
</tr>
<tr>
<td>CKD (%)</td>
<td>231/257 (90)</td>
<td>53/80 (66)</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>ESKD (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Age at ESKD (y)</td>
<td>112/257 (44)</td>
<td>46/80 (58)</td>
<td>224/80</td>
<td>0.04</td>
</tr>
<tr>
<td>- Female</td>
<td>46 (39; 57)</td>
<td>36 (30; 46)</td>
<td>117/40</td>
<td><0.0001</td>
</tr>
<tr>
<td>- Male</td>
<td>44 (40; 55)</td>
<td>34 (28; 46)</td>
<td>107/40</td>
<td>0.002</td>
</tr>
<tr>
<td>Serum uric acid (µmol/L)</td>
<td>497.9 ± 136.6</td>
<td>443.6 ± 121.7</td>
<td>110/14</td>
<td>0.159</td>
</tr>
<tr>
<td>- Female</td>
<td>478.7 ± 133.2</td>
<td>418.7 ± 136.1</td>
<td>53/5</td>
<td>0.341</td>
</tr>
<tr>
<td>- Male</td>
<td>515.7 ± 138.5</td>
<td>457.4 ± 119.2</td>
<td>57/9</td>
<td>0.237</td>
</tr>
<tr>
<td>Gout (%)</td>
<td>202/257 (79)</td>
<td>21/80 (26)</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>- Female</td>
<td>96/130 (74)</td>
<td>4/40 (10)</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>- Male</td>
<td>106/127 (83)</td>
<td>17/40 (43)</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Age at gout onset (y)</td>
<td>27 (19; 37)</td>
<td>45 (29; 51)</td>
<td>199/18</td>
<td>0.001</td>
</tr>
<tr>
<td>- Female</td>
<td>30 (21; 43)</td>
<td>28 (21; 41)</td>
<td>93/4</td>
<td>0.828</td>
</tr>
<tr>
<td>- Male</td>
<td>26 (18; 34)</td>
<td>45 (33; 54)</td>
<td>106/14</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Figures

Figure A

- **A1**: Comparison of ADTKD-UMOD and ADTKD-MUC1 with respect to number of families, sex, age at presentation, positive family history, eGFR, CKD, ESKD, serum uric acid, Gout, and age at gout onset.

Figure B

- **B1**: Distribution of age at ESKD and age at gout onset for ADTKD-UMOD and ADTKD-MUC1.
Figure 4

ADTKD-UMOD (n=257)
ADTKD-MUC1 (n=80)

ADTKD-UMOD censored
ADTKD-MUC1 censored

A

B

Freedom from ESKD
Time to ESKD (y)

Freedom from gout
Time to gout (y)

p=0.013
p<0.001
Figure 5

A

Urinary Uromodulin (mg/g creat)

Urinary Uromodulin (mg/g creat) normalized to eGFR

A B

[nanxnan]Urinary uromodulin /creatinine Controls (n=180) eGFR: 55.5 (51.7; 58.0) uUMOD: 14.7 (8.6; 22.6)

ADTKD-MUC1 (n=35) eGFR: 55.1 (45.0; 68.3) uUMOD: 15.7 (9.7; 22.0)

ADTKD-UMOD (n=51) eGFR: 51.6 (37.0; 69.2) uUMOD: 2.8 (1.1; 5.9)

A

B

B

Uromodulin

GRP78

Uromodulin/GRP78/DAPI

NHK

ADTKD-MUC1

ADTKD-UMOD

<table>
<thead>
<tr>
<th>Urinary uromodulin /creatinine</th>
<th>Controls (n=180)</th>
<th>ADTKD-MUC1 (n=35)</th>
<th>ADTKD-UMOD (n=51)</th>
</tr>
</thead>
<tbody>
<tr>
<td>eGFR: 55.5 (51.7; 58.0)</td>
<td>eGFR: 55.1 (45.0; 68.3)</td>
<td>eGFR: 51.6 (37.0; 69.2)</td>
<td></td>
</tr>
<tr>
<td>uUMOD: 14.7 (8.6; 22.6)</td>
<td>uUMOD: 15.7 (9.7; 22.0)</td>
<td>uUMOD: 2.8 (1.1; 5.9)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Urinary uromodulin /creatinine and eGFR</th>
<th>Controls (n=2717)</th>
<th>ADTKD-MUC1 (n=35)</th>
<th>ADTKD-UMOD (n=53)</th>
</tr>
</thead>
<tbody>
<tr>
<td>eGFR: 78.0 (70.3; 84.1)</td>
<td>eGFR: 55.1 (45.0; 68.3)</td>
<td>eGFR: 53.5 (37.0; 73.6)</td>
<td></td>
</tr>
<tr>
<td>uUMOD: 0.23 (0.14; 0.35)</td>
<td>uUMOD: 0.29 (0.22; 0.36)</td>
<td>uUMOD: 0.052 (0.029; 0.10)</td>
<td></td>
</tr>
</tbody>
</table>
Figure 6

Clinical UMOD-score

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family history of CKD or early gout (<40y) compatible with autosomal dominant inheritance</td>
<td>+ 2</td>
<td></td>
</tr>
<tr>
<td>CKD of unknown origin</td>
<td></td>
<td>+ 2</td>
</tr>
<tr>
<td>Age at gout onset</td>
<td><30 years</td>
<td>+ 3</td>
</tr>
<tr>
<td></td>
<td>>30 years</td>
<td>+ 1</td>
</tr>
<tr>
<td>Serum uric acid</td>
<td>>500 µmol/L (>8.41mg/dL)</td>
<td>+ 3</td>
</tr>
<tr>
<td></td>
<td><500 µmol/L (<8.41mg/dL)</td>
<td>+ 1</td>
</tr>
<tr>
<td>Histological findings compatible with ADTKD</td>
<td></td>
<td>+ 2</td>
</tr>
<tr>
<td>Proteinuria/Hematuria</td>
<td></td>
<td>- 1</td>
</tr>
<tr>
<td>Diabetes/Uncontrolled hypertension</td>
<td></td>
<td>- 1</td>
</tr>
<tr>
<td>Renal cysts/Enlarged kidneys</td>
<td></td>
<td>- 1</td>
</tr>
</tbody>
</table>

AUC = 0.72 (95% CI, 0.66; 0.79)
AUC = 0.89 (95% CI, 0.82; 0.96)

AUC = 0.69 (95% CI, 0.62; 0.77)

Clinical UMOD-score + Urinary uromodulin (mg/g creatinine/eGFR)

Median-Q25 + 1 <Q25 + 3 Median-Q75 -1>Q75 -3

Figure 7

UMOD-positive MUC1-positive

Clinical UMOD-score + Urinary uromodulin (mg/g creatinine/eGFR)

Median-Q25 + 1 <Q25 + 3 Median-Q75 -1>Q75 -3

UMOD-positive MUC1-positive
Criteria for suspecting a diagnosis of ADTKD
- Family history compatible with autosomal dominant inheritance of CKD fulfilling the clinical characteristics of ADTKD
- In absence of a positive family history of CKD:
 - Demonstration of tubulointerstitial damage on kidney biopsy or
 - History of early-onset hyperuricemia and/or gout

Clinical UMOD-score

≥8

UMOD gene analysis

positive

negative

≥5

<5

Clinical UMOD-score + urinary uromodulin

urine uromodulin not available

Test for MUC1 or other ADTKD genes or consider alternative diagnosis

<5