
Expanding & Contracting 
Transport Networks 

using 
Standard Reconfigurations

by 
Andrew Kinney

N 0 R T E L
NETWORKS

UCIL
University College London

D issertation  subm itted  in partial fu lfilm ent o f  th e  requirements for  th e  
d egree  o f  M aster o f  S c ience  in Telecommunications.

1 o f  135



ProQuest Number: U643009

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest U643009

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



Abstract
The objective o f  this project is to report on the full software lifecycle in designing, 
developing and delivering the Standard Reconfigurations features o f  Add Node and 
Delete Node, using UML and Java as the means by which the design is described and 
implemented.

As with the software lifeeyele, the report follows the timeline from initial inception to 
final delivery, covering in sequence the aspects o f  requirements capture, high level 
design, detailed design, coding, unit test, and finally integration test.

This report documents my work in delivering the Standard Reconfigurations software 
feature which specifically encompasses the entirety o f  the Network Element software 
portion o f  this feature.

The submission does not contain material previously submitted for previous degree or 
academic award.

This report is the work o f  the author, with any contributions from others expressly 
acknowledged and/or cited.

2 of 135



Acknowledgements
The author gratefully acknowledges the contributions from colleagues in ensuring the 
successful delivery o f  the Standard Reconfigurations feature that forms the basis for 
much o f the work detailed in this report.

Specific mention should be made of:

- Dr. John Mitchell o f UCL who provided essential guidance and support in pulling 
this report together ready for submission

- Rabina Choudry o f UCL for ensuring that this project could be undertaken
- Nortel line manager, Andy Marker who provided valuable guidance and insight 

during the project
- Jeff Henderson, Martin Bluethner, Adrian Lee, and Mike Caithness who formed the 

Management Platform (MP) development team

3 of 135



Glossary

ADM Add/Drop Multiplexer

BLSR Bi-directional Line Switched Ring

ITU-T International Telecommunication Union -  
Telecommunication Standardization Sector

JNI Java Native Interface

MSOH Multiplex Section OverHead

NE Network Element

PCM Pulse Code Modulation

PDH Plesiochronous Digital Hierarchy

PG Protection Group

PGM Protection Group Member

MP Management Platform

RSOH Regenerator Section OverHead

SDH Synchronous Digital Hierarchy

SOH Section OverHead

SONET Synchronous Optical NETwork

SWERR Software ERRor

TLl Transaction Language 1

UCL University College London

UML Unified Modelling Language

Xcon Traffic Connection (Cross Connect)

4 of 135



Contents
1 Introduction.......................................................................................6
2 Terminology..................................................................................... 8

2.1 Transmission Systems............................................................................. 8
2.2 Transport Network................................................................................... 9
2.3 SDH Frame...............................................................................................10
2.4 Protection..................................................................................................10
2.5 Network Element..................................................................................11
2.6 Purpose o f  Standard R econfigs...........................................................13

3 Requirements.................................................................................. 14
4 Procedure Description..................................................................17

4.1 Add N o d e .................................................................................................17
4.2 Delete N od e.............................................................................................22

5 Use C ases....................................................................................... 27
5.1 Add Node -  success.............................................................................. 27
5.2 Add Node -  backout............................................................................. 27
5.3 Add Node -  failure................................................................................28
5.4 Delete Node -  su ccess..........................................................................28
5.5 Delete Node -  backout..........................................................................29
5.6 Delete Node -  failure............................................................................29

6 Detailed D esign............................................................................. 30
6.1 PG State Diagram ..................................................................................30
6.2 Connection State Diagram...................................................................31
6.3 Message Sequence Diagram ...............................................................32
6.4 Add Node Sequence Diagram............................................................ 33
6.5 Delete Node Sequence Diagram.........................................................37
6.6 Example Class D efinition....................................................................41

7 Test Strategy & Results............................................................... 44
7.1 Unit Testing.............................................................................................44
7.2 Unit Test C ases.......................................................................................45
7.3 Integration Testing.................................................................................46
7.4 Integration Test Cases...........................................................................49
7.5 Test R esu lts.............................................................................................50

8 Conclusions.................................................................................... 51
9 References.......................................................................................53

Appendix A: Java Implementation............................................ 54
Appendix B: Unit Test C ases....................................................121
Appendix C: Integration Test C ases........................................126
Appendix D: Test Engine...........................................................129

5 of 135



1 Introduction
The Standard Reconfigurations described within this report refer to those 
procedures developed, within Nortel N etw orks and delivered as part o f  the next 
generation transport platform, that allow a custom er to expand or contract their 
previously installed transport network

The following section entitled Term inology  on page 8 describes the terminology 
used w ithin this report whilst also introducing the concept o f  standard 
reconfigurations and why they are required.

I he report follows the full software lifecycle, from requirements capture through 
to delivery o f  the Standard Reeonflg feature.

T he main body o f  the report is structured around the process followed in 
developing the software associated with the Standard Reconfigurations feature 
as determ ined by the software lifecycle shown in Figure I which forms the basis 
o f  the approved quality process used w ithin Nortel Networks.

Figure 1 - S o ftw a re  Lifecycle

C u s t o m e r  ________________________________________________________________________ ^  Ve r i f i c a t i o n
R e q u i r e m e n t s  T e s t

I Test rtquiremen(s
S o f t w a r e  ._______________________________________ ^  I n t e g r a t i o r

R e q u i r e m e n t s  1 T e s t

A r c h i t e c t  
& D e s i g n

The Standard Reconfiguration procedures are termed Add N ode and Delete 
Node. A b rie f  definition o f  these terms, which also form the basic C ustom er 
Requirements, is given here for reference and will be expanded upon in 
subsequent sections:

Add Node - The purpose o f  the Add N ode procedure and associated 
software is to be able to safely add a new A D M  into an in-service 4P 
BLSR ring with the m inim um  o f  service disruption.

Delete Node - Delete N ode is the term  given to the procedure and 
associated software which allows the customer to safe I v rem ove an

6 o f  135



ADM from an in-service 4F BLSR ring with the minimum o f  service 
disruption

From these basic Customer Requirements the Software Requirements are 
derived, a subset o f  which are given in section 3 on page 14. With these more 
detailed requirements the procedures can be designed, o f which high level 
descriptions are given in section 4 on page 17.

To further expand upon the requirements and procedures a set o f  use cases is 
described to aid the readers understanding and also to add more detail in 
describing the behaviour o f  the software, given in section 5 on page 27.

Once the requirements and procedures have been reviewed and approved, the 
detailed design work is undertaken as shown in section 6 on page 30.

Prior to delivery to Verification, the software must be tested against the 
requirements as described in section 7 on page 44.

The project and this report is then summarised in the Conclusions on page 51, 
including a view o f the benefits o f using UML to describe the design and Java as 
the implementation o f  that design.

7 of 135



2 Terminology
Throughout this report general knowledge o f  transmission systems, and 
mechanisms such as protection is required. The terminology used within this 
document is gradually introduced in this section, providing sufficient basic 
information to understand the subsequent sections that detail the development o f  
the Standard Reconfigurations.

2.1 Transmission Systems
In the early 1970s, digital transmission systems began to appear, utilising 
Pulse Code Modulation (PCM) to convert voice (analogue) into binary 
(digital) form. Engineers saw the potential to produce more cost effective 
transmission systems by combining several PCM channels into a single 
high speed bit stream via Time Division Multiplexing (TDM). (Ref. [7])

As demand grew, higher data rates were required with subsequent need 
for further levels o f  multiplexing, resulting in the definition o f  the 
Plesiochronous Digital Hierarchy (PDH).

However, eventually this lead to the creation o f  the PDH ‘multiplexer 
mountain’ as displayed in Figure 2 that was required to access a single 
2Mbit/s channel from the high speed trunk.

Figure 2 -  PDH M ultiplexer Mountain

140 PAbh

te Uni na

14 ^
/% hu

Oj
Mal t i p lexei '  "moar i ' t a i f?"  

w h i c k  l é s a i t  f l o l n  

access! o n e  o f  t h e  

pa s s ing  2  M b / s  ch an n e l s

34  M b/s

8 M b/s

2 M b/s

2 M b/s

lT

^0
34

140 Mb/s

t e  Uni  nal

The next stage o f  evolution in the transport network was the introduction 
o f  synchronous transmission which overcame the ineffieieneies o f  PDH.

The ITU-T introduced the G.707 (Ref. [9]) G.708 (Ref. [10]) and G.709 
(Ref. [11]) standards to describe the Synchronous Digital Hierarchy 
(SDH) whilst in North America the Synchronous Optical NETwork 
(SONET) standard was introduced.

8 of 135



SDH brought about network siniplit'ication as a single synchronous 
multiplexer could replace an entire p lesiochronous 'm ultip lexer 
m ountain ' leading to a significant reduction in equipm ent being used.

This lead to the installation o f  SDH 'R in g s '  consisting o f  A dd/D rop 
M ultiplexers (A D M ) as show n in Figure 3.

Figure 3 - S 0 N E T /5 D H  Ring (Ref. [8])

I SONET 
1_ADW

2.2 Transport Network
A transport network, as show n in Figure 4 on page 9. is com posed o f  
num erous SDH Rings. In a custom er network these SDH rings may well 
overlay each other to create a tiered transport network, to facilitate 
different requirements, such as the Access N etw ork where data  rates are 
typically low, com pared  to the high data rates required at the trunk, or
Long Haul tier.

Figure 4  -  Transport Network

T r a n s p o r t  N e t w o r k  

A c c e s s  N e t w o r k
L o n g - H a u l

S D ll R in g s

\ e l «  ork  r  Icm en ts

9 or 135



2.3 SDH Frame
The data transported between nodes in a S D I1 Ring is achieved by 
parcelling this information into SDI I Frames. The SDH frame has a two- 
dimensional structure, as shown in Figure 5. Faeh frame is physically 
transmitted through the fibre row by row.

Figure 5 -  ST M l Frame (Ref. [6])

----------------------270 by tss--------------------------
_
X
0

Section ■DO
OverHead Cl

X Data
(SOH) X

Cl
(5
«

—  9 bytes----- I byte

Virtual Container VC-4

An STM-1 Frame

For the purposes o f  this report the element o f  the frame to highlight is the 
Section Overhead, which com bines the Regenerator and Multiplex 
Section Overheads.

Within the M ultiplex Section Overhead, the Kl and K2 bytes are o f  
specific importance as these bytes carry the Automatic Protection 
Switching (APS channel) information between nodes in the ring.

2.4 Protection
Considering the large quantity o f  traffic supported  by the transport 
network a key requirem ent is its ability to survive netw ork failures, such 
as fibre breaks with m in im um  disruption. This is achieved by 
im plementing the Bellcore G R -1230  protection protocol for Bi-direetion 
L ine Switched Rings (B LSR) in a 4-fibre configuration.

An exam ple o f  a fibre break scenario is shown in Figure 6 on page 11.

10 o f  135



Figure 6 - Fibre Break

I'W I’roU'cling \ \  csl 
t’l ProtCLiing Has!
\ \  \ \  W orkirig W csl 
W !■; W orking I asi

%

%

I ralT ic c ii ir ic d  o n  
w o rk in g  c lia n n c ls

I 'ib rc  b re a k  o n  the  

w o rk in g  lib re

\H -4 0 itl \ h  4 0 0 :

3  EE
I. mo

piv] [Ti7

ivw | [we
* ^

I ral lie  has a u lo -  
sw ilc h c d  a w a y  iVoin Ihe 

I'aiill o n to  tlic  p ro te e l io n  

l ib re  N o te  th is  is 
rel’eiTeci to  as a span  

sw itc h

T he example in Figure 6 is a s im ple one but is used to illustrate the 
eoneept o f  a protection svviteh, and specifically a span switch w hich is 
used within the Add N ode and Delete Node procedures to m ove ' traffic 
from working to protecting fibres or vice verse as appropriate.

N O TF: The Bellcore standard stipulates that a user requested protection 
switch must result in a traffic hit o f  <50m s i.e. service is restored in 
<5 0 ms.

2.5 Network Element
Each SDH ring contains a num ber o f  Network Elements (NE), or ‘n o d es’ 
which perform  the necessary traffic grooming. Note that a NE can be 
part o f  several rings (see Figure 7 on page 12).

I 1 o f  I 35



Figure 7 - Network Element

N etwork Element

Rino A

Ring B

Rino C

■1 ;

An abstraet deseription o f  a N etw ork  Element is shown in Figure 8 on 
page 12 as an aid to deseribing the remaining term inology used within 
this report.

Figure 8 - A bstraction  o f  N etwork Element

Diagram Key;
üluo luio - proloclioii fibre 

Red line - w orking fibre 

Arrows - indicnie traH’ie direction

M a iia g e m e n l P la U b n ii

P \\ Hroteeling West 
PE Protecting East 
WW  W orking W est 
W E W orking liast

Eaeh ring that an NE is part o f  results in a Proteetion Group (PG) being 
formed o f  the term ination points for eaeh o f  the 4-fibres that support the 
BLSR proteetion protoeol as referred to in Figure 8 by PG I and PG2.

12 o f  135



A protection groups encapsulates a number o f  attributes, o f  which the 
following are key to the Add Node and Delete Node procedures:

• node map -  which is the internal representation o f  the 
members o f the SDH ring that this PG is a member of. This is 
used to validate protection messages received via the Kl and 
K2 bytes.

• protection scheme -  is the scheme that this PG is provisioned 
with, e.g. BLSR 4F

• reconfiguration state -  an indication o f what state the PG is 
in, e.g. Add Node would indicate the PG is in the midst o f  an 
Add Node procedure

• special mode -  by setting this mode to pass through the traffic 
and kbyte channels on the protecting fibre are placed in fiill 
pass through thereby making the node ‘transparent’ to 
neighbouring nodes in the ring

The Management Platform (MP) provides the mechanism through which 
the NE can be managed singly, and as part o f  the ring.

NOTE: The work required on the Management Platform is outside the 
scope o f  the project which is limited to the software required on the NE.

2.6 Purpose of Standard Reconfigurations
Since it is very difficult to predict future network need at time o f first 
installation, or perhaps installation is limited by cost, there is a need to 
provide flexibility to expand or contract a ring based on current or future 
need. Hence the requirement for Add Node and Delete Node.

Scenarios that may result in the use o f  Add Node or Delete Node 
include:

• Expansion o f  transport network into new city, thereby adding 
a node to an existing ring

• Removal o f  node due to obsolescence
• Temporary removal o f  node to allow node to be physically 

moved elsewhere within office

One aspect o f  Standard Reconfigurations that is critical to appreciate is 
the need to perform these changes to the network whilst the ring is in- 
service, i.e. carrying live traffic. A Network Operator does not want to 
turn ‘o f f  the network to allow new nodes to be added or old nodes to be 
removed, as this would lead to downtime and loss o f  revenue.

This leads to the two main generic requirements:
• The Add Node and Delete Node procedures must be 

performed whilst the network is in-service
• Any traffic disruptions must be kept to a minimum, and at 

worst should not exceed 50ms, which is the specification for a 
traffic hit associated with a protection switch

13 of 135



3 Requirements
As shown in Figure 1 on page 6 the first stage o f  the software lifeeyele is to 
derive a set o f detailed software requirements based on the requirements that 
have been received from and agreed with the customer.

These detailed requirements, coupled with the customer requirements are used 
as part o f  the testing strategy to ensure what is delivered meets what is required.

[Rl] Safely add a new ADM into an in-service 4P BLSR ring with the 
minimum o f  service disruption 

[R2] Safely delete an ADM an in-service 4P BLSR ring with the minimum 
o f  service disruption

Requirements [Rl] and [R2] form the basic customer requirements, that the 
detailed software requirements listed below are derived from. The requirements 
listed below are abstract in nature, but their purpose becomes apparent when 
read in conjunction with the procedure descriptions that contain further 
explanation (section 4 on page 17).

Add Node:
[R3] On receipt o f  the ‘Add Node’ command the NE Software will validate 

that the following PG attributes are provisioned:
- node map is nil
- proteetion scheme is BLSR 4P
- reeonflg state is Idle

[R4] Once validated the NE Software will execute the following:
- sets the reeonflg state o f  the PG to Add Node
- sets the special mode o f  the PG to pass through

deletes all traffic connections terminated on PG
- raises reeonflg alarm
- generates log

[R5] On receipt o f  the ‘Idle’ command to backout the Add Node procedure, 
the NE Software will:

- clear the reeonflg alarm
- set the reeonflg state o f  the PG to Idle
- set the special mode o f  the PG to None
- delete all traffic connections terminated on PG

[R6] On receipt o f  a valid node map to complete and exit the Add Node
procedure, the NE Software will:

- clear the reeonflg alarm
- set the reeonflg state o f  the PG to Idle
- set the special mode o f  the PG to None

[R7] Add Node command can be executed on a PG while any other
configured PG in the NE carries live traffic 

[R8] Add Node will not affect traffic on any other PG in the NE

14 of 135



Delete Node:
[R9] On receipt o f  the ‘Delete Node’ command the NE Software will 

validate that the following PG attributes are provisioned:
- node map is non-nil
- protection scheme is BLSR 4F
- reeonflg state is Idle
- no non-pass through traffic connections terminate on the PG
- no active protection switches are in place on the PG

[RIO] Once validated the NE Software will execute the following:
- sets the reconfig state o f  the PG to Delete Node
- sets the special mode o f  the PG to pass through
- sets the node map o f  the PG to nil
- raises reconfig alarm
- generates log

[Rl 1] On receipt o f  the ‘Idle’ command to complete and exit the Delete Node 
procedure, the NE Software will:

- clear the reconfig alarm
- set the reconfig state o f  the PG to Idle

set the special mode o f  the PG to None
- delete all traffic connections terminated on PG

[R12] On receipt o f  a valid node map to backout the Delete Node procedure,
the NE Software will:

- clear the reconfig alarm
- set the reconfig state o f  the PG to Idle
- set the special mode o f  the PG to None

[RI3] Delete Node command can be executed on a PG while any other 
configured PG in the NE carries live traffic

[R14] Delete Node will not affect traffic on any other PG in the NE

Robustness:
[Rl 5] If the NE restarts during the execution o f  Add Node or Delete Node

then on recovery, the command can be entered again and be allowed to 
successfully complete i.e. there is no automatic recovery and complete 
option, the user must re-enter the command.

[RI6] If the NE restarts after the Add Node or Delete Node command has 
successfully completed, then the NE must be capable o f  recovering to 
the Add Node or Delete Node state

[R17] Add Node and Delete Node is unaffected by software upgrade

Error Handling:
[R18] Add Node command is denied if PG has a non-nil node map (“Node is 

configured in a network”)
[RI9] Delete Node command is denied if  a protection switch is active (“Node 

is currently handling a protection switch”)
[R20] Delete Node command is denied if  any non-pass through traffic 

connections are present (“Traffic connections are currently 
provisioned”)

[R21] Delete Node command is denied if the node map is nil (“Node is not 
configured in a network”)

15 of 135



[R22] Add Node and Delete Node commands will be denied if the PG is
already in an add node state (“Command is not valid while node is in 
Add Node mode”)

[R23] Add Node and Delete Node commands will be denied if the PG is
already in an delete node state (“Command is not valid while node is in 
Delete Node mode”)

[R24] Add Node and Delete Node commands will be denied if  the PG is not 
BLSR 4F (“Protection scheme is not valid”)

[R25] Deleting the PG will be denied if the reconfig state is set to add node 
(“Command is not valid while node is in Add Node mode”)

[R26] Deleting the PG will be denied if the reconfig state is set to delete node 
(“Command is not valid while node is in Delete Node mode”)

16 of 135



4 Procedure Description
The following sections: 4.1 on page 17 and 4.2 on page 22 provide high level 
descriptions o f  the add node and delete node procedures highlighting the 
so 11 ware algorithms required to facilitate the operations whilst also providing 
insight into the reasoning behind the requirements listed in section 3 on page 14.

4.1 Add Node
The diagram in Figure 9 on page 17 displays the initial state o f  an 
example network in readiness o f  the Add N ode procedure.

Figure 9 -  Configuration Prior to Add Node operation

Diagram Key
Blue l in e  - p r o l e e l in n  t 'ih re  

Red l in e  - uo rk m g  f i lir e  

Solid red blue line - tra lV ie  preseni 

D a-.lie d  red b lu e  line - n o  tra lV ie  preseni 

' i r r o « s  - in d is . i le  I r .d 'l ie  d i r e e l io n

NI : 4111)4 U) be  iu ld ed  
to  r in g

I'W Proteeting West 
PK Proleetuig bast 
W'W W orking West 
WK W orking bast

NH 4001 S1: 4 0 0 :

p
PG p  p PG

^  [PT~

/ ■
^  g

w  w

W

NT4(H)4 N'H 41H G

PG

3  E

OTv| [ we

PG

3  E

p

( \x n m s  tank

Step 1 -  Com m ission  the new  NE on the M anagem ent Platform (MP). 
Once the new NE has been com m issioned  it is then selectable on the MP.

Step 2 -  Issue the ‘Add N o d e ’ com m and from the MP via the Reconfig 
Assistant tool. This translates into a message sent dow n to the NE via the 
Com m s link.

On receipt o f  the A dd Node com m and the NE software will perform  
validation, before execution.

The com m and will be denied if:
• the protection group  (PG) has a non-nil node map

■ the presence o f  a non-nil node map indicates that the 
protection group  is already part o f  a ring, and could be 
earrving live traffic

7 o f  I 35



• the specified PG is not configured with a protection scheme 
o f  BLSR 4F

• there are any other reconfigurations in progress for the 
specified PG

■ this is a safety measure to prevent traffic loss in the 
event that an incorrect step o f  the procedure is 
executed due to confusion with another 
reconfiguration

Once validated, the NE software performs the following actions:
• sets the reconfig state o f  the PG to Add Node

■ this places the PG in Add Node mode, to be used by 
other applications as an indication o f  the current state 
o f the PG, e.g. prevent traffic connection edits that 
would cause loss o f  traffic

• deletes all existing traffic connections terminating on the 
specified PG

■ traffic connections could exist on the PG as part o f  a 
commissioning procedure to test the capability o f  the 
hardware, and this step ensures these ‘tesf  
connections are removed before the NE is placed in- 
service (IS)

• puts the protection lines o f the PG into fiill traffic and 
overhead k-byte pass through

■ This allows all traffic to pass through the node on the 
protection lines as is required at Step 6.

■ The k-bytes need to pass though the node unaffected 
so that the BLSR protocol is unaware that a new node 
has been fibred into the ring. Without k-byte pass­
through the protection switching in Step 6 would not 
be possible since the neighbour nodes would be 
receiving invalid k-bytes from the new node and 
would not be able to negotiate the protection switch.

• raises an alarm against the PG to alert the user that the PG is 
in a special reconfiguration state

A user visible log is generated to indicate success, or in the case o f  
failure, the reason for the command being denied.

On completion o f  the command the node is effectively ‘transparent’ to 
both traffic and proteetion protocols, thereby allowing it to be placed in 
the middle o f  an in-service ring without unnecessarily dropping traffic.

Step 3 -  Issue a ‘lockout o f  working -  span’ against the working facility 
at both NEs (e.g. WE o f NE:400I and WW ofNE:4003) on either end o f  
the span to which the new node is being added

• this prevents the use o f  the protection line on this span for any 
proteetion activity, i.e. preventing traffic loss when the 
protection fibres are moved to cable in the new node, as in the 
next step.

18 of 135



Step 4 -  Cable in the new node on its protecting equipm ent only. Then 
verify the optical integrity o f  the protection link (Figure 10)

Figure 1 0 -  Configuration a f t e r  S tep  4  o f  Add Node Operation

N'H 4iyi;

p pt; p p k;

in E
w w

\1-4»i4

PC,

[piT

mv] [otT 

Mv] [7 iT
P P

Step 5 -  Release the lo c k o u t  o f  w orking -  span ' on the w orking 
facilities o f  the nodes at both ends o f  the span

Step 6 -  At the MP the following steps are performed, via the Reconfig 
Assistant;

• the new NE is added to the m anagem ent representation o f  the 
ring

• pass-through connections are provisioned on the NE
■ these traffic connections match up to those already 

provisioned in the ring, and provide the nodal pieces 
that facilitate the traffic through the new node

■ e.g. for each traffic connection that links N E:400I and 
NE:4003 a corresponding pass-through connection 
needs to be provisioned on N E :4004 such that when 
the NE is added there is no loss o f  traffic due to an 
incomplete traffic path

19 o f  135



Step 7 -  At the M P a  connection audit is pertbrmed.
• This is a robustness check to confirm that the pass-through 

connections provisioned in the previous step are actually 
resident on the new node

Step 8 -  Perform a forced span switch against the w orking  t'acility at 
both ends o f  the span (e.g. WF. o f  NF:4001 and WW o f  N F:4003).

•  The forced span switch is issued at both NTs for robustness, 
in ease one o f  the span sw itches is pre-em pted and dropped

•  The ring will now carry traffic as show n in Figure 11 on page 
20 .

•  N O T F: traffic is now carried on the protection fibres th rough 
the new node, hence the reason why the protection channels 
must be in pass through, which allows the working fibres to 
be d isconnected, as indicated in the next step.

Figure 11 -  Configuration a f t e r  S tep  8 o f  Add N ode Operation

MP

PG

Step 9 -  Cable in the new node on its working equipment. Then verify 
the optical integrity o f  the w orking  link.

Step 10 -  Release the forced span switches
• the traffic will auto-sw itch  back to working, as indicated in 

Figure 12 on page 21.

20 o f  135



Figure 12 - Configuration a fter  Step  10 of Add Node
Operation

M P

Step 11 -  Issue a Global Loekout o f  Proteetion on the eonfiguration to 
vvhieh the new node has been added.

•  A Global Loekout o f  Proteetion is o f  the highest priority in 
the proteetion svviteh hierarehy and prevents any protection 
switch activity, in addition forcing all traffic to use the 
working channels, i.e. the proteetion fibres are o f f  limits.

• This is for robustness/safety, to prevent any inadvertent 
proteetion switching when the new node map is provisioned 
in the next step.

Step 12 -  Via the MP Reconfig Assistant, the new node map is 
provisioned for all nodes in the ring.

The NE reconfig software ‘listens’ for the node map provisioning event 
and;

• clears the reconfig alarm
• sets the special mode o f  the PG to None
• sets the reconfig state o f  the PG to Idle

i.e. receipt o f  a valid node map indicates the add node operation is 
complete

Step 13 -  Release the Global Lockout o f  Protection.

21 o f  135



4.2 Delete Node
H ie  diagram  in Figure 13 on page 22 shows the initial state o f  an 
example configuration prior to starting the Delete N ode Operation.

Figure 1 3 -  Configuration prior to D ele te  Node Operation

NE 40(11 M-: -41 «C

PO

E l EE

p p p<;
Pc] [inv

w w
E l EE

N ode lo be deleted

\K  41 «14

w  w

N E 4IH'4

FH!

ÜÀTI [wT 

ro~| [~piT

m v ] [we

E  E
P P

Step I -  Issue a Global Lockout o f  Protection on the configuration  to 
which the new node is to be removed.

•  This is for robustness/safety, to prevent any inadvertent 
protection switching when the node map is altered on the NLs 
in the ring.

Step 2 -  Issue the ‘Delete N o d e ’ com m and from MP via the Reeonflg 
Assistant tool This translates into a message sent dow n to the NE.

On receipt o f  the Delete N ode com m and the NE software will perform  
validation, before execution.

The com m and  will be denied if:
•  There are non-pass through traffic connections provisioned on 

the PG
■ Presence o f  non-pass through connections indicates 

the possibility o f  live traffic terminating at this PG, 
which would  be lost if the procedure was continued, 
as this PG will be removed from the ring.

•  the protection group (PG) has a nil node map
■ the presence o f  a nil node map indicates that the 

protection group  is not part o f  a ring, and therefore 
cannot be ’deleted '

22 o f  135



• the specified PG is not configured with a protection scheme 
o f BLSR 4F

• there are any other reconfigurations in progress for the 
specified PG

■ this is a safety measure to prevent traffic loss in the 
event that an incorrect step o f  the procedure is 
executed due to confusion with another 
reconfiguration

• there are any active protection switches in place on the PG 
being deleted

■ any active protection switches must be cleared before 
the delete node operation can proceed, otherwise the 
required protection switches required during the 
procedure may not be honoured.

Once validated, the NE software performs the following actions:
• sets the reconfig state o f  the PG to Delete Node

■ this places the PG in Delete Node mode, to be used by 
other applications as an indication o f  the current state 
o f  the PG, e.g. prevent traffic connection edits that 
would cause loss o f traffic

• clears the node map o f  the PG being deleted
■ this restores the PG to its initial state

• puts the protection lines o f the PG into full traffic and 
overhead k-byte pass through

■ This allows all traffic to pass through the node on the 
protection lines

■ The k-bytes need to pass though the node unaffected 
so that the BLSR protocol is unaware that the node is 
going to be fibred out o f  the ring. Without k-byte 
pass-through the protection switching would not be 
possible since the neighbour nodes would be receiving 
invalid k-bytes from the ‘old’ node and would not be 
able to negotiate the protection switch.

• raises an alarm against the PG to alert the user that the PG is 
in a special reconfiguration state

A user visible log is generated to indicate success, or in the case o f  
failure, the reason for the command being denied.

On completion o f  the command the node is effectively ‘transparent’ to 
both traffic and protection protocols, thereby allowing it to be removed 
from the middle o f  an in-service ring without unnecessarily dropping 
traffic.

Step 3 -  Via the MP Reconfig Assistant remove the node from the 
management view o f  the ring, and send new node maps to all the nodes 
in the ring.

Step 4 -  Release the Global Lockout o f  Protection.

23 of 135



Step 5 -  Perform a forced span switch against the w orking facility at 
both ends o f  the span (e.g. WF. o f  N F :400I and W W  o f  N F:4003).

• The forced span switch is issued at both NTs for robustness, 
in case one o f  the span sw itches is pre-em pted and dropped

• The ring w ill now carry traffic as shown in Figure 14 on page 
24

• NO I F; traffic is now carried on the protection fibres allow ing 
the working fibres to be removed as required in the next step

Figure 1 4 -  Configuration a f t e r  S te p  5 o f  D ele te  N ode
Operation

N'h4<Ki2

PC.

^  [pw
P PC

3  E
W W ^  EE

N4i 4004

IH'r
vvvv] p E

W w

P p

N l 400?

Step 6 -  Cable out the 'de le ted ’ node on its w orking equipm ent and 
validate the optical integrity o f  the working link (Figure 15 on page 25).

24 o f ! 35



Figure 15- Configuration a fter  Step  6 of Delete Node
Operation

\ h  40Û:

Step 7 -  Release the to reed span svvitehes
• the traflle will auto-switch back to working, as indicated in 

Figure 16

Figure 1 6 -  Configuration a f t e r  S te p  7  o f  D ele te  Node
Operation

VE+ifil

R}
^  [pw

F P

W w

NE 4I I W

— W

NE 4IK G

PG

pw] [pE~

iV
ïTiT] |wp

P ^
P P

XE 400:

25 o f ] 35



Step 8 -  Issue a ’lockout o f  w orking -  span ' against the working facility 
at both NHs (e.g. WH o fN E :4 0 0 l  and W W  o f  NE. 4003) on either end o f  
the span to which the node has been removed

• this prevents the use o f  the protection line on this span for any 
protection activity, i.e. preventing tral'fic loss when the 
protection libres are moved to cable in the new node, as in the 
next step.

Step 9 -  Cable out the deleted ' node on its protecting equipment. Then 
verify the optical integrity o f  the protection link (Figure 17)

Figure 1 7 -  Configuration a f t e r  S te p  9 o f  D ele te  Node
Operation

\'K4onl NT. 4..I:

p
PO p  p 1*11

7 T | [pu~

3  E:/ '

pg j

i f W  w

Nl{ ItXi'l d e le te d  I n u n  rin g

\E  4U04 NT. 4i»n

Pt’.

ED E

PG

Pw] [ pT
p

Step 10 -  Release the lockout o f  working -  span ’ on the w orking 
facilities o f  the nodes at both ends o f  the span

Step 11 -  Issue reconfig idle com m and via MP R econtlg  Assistant to 
force the NE Reconfig Software to restore the PG to its initial state.

The NE Software performs the follow ing;
•  deletes all connections on the PG
• sets the PG recontlg state to Idle
• clears the recontlg alarm
• sets the PG special mode to None

26oTI35



5 Use Cases
The purpose o f the use cases is to add further description to the behaviour o f  the 
software, thereby forming additional, or clarifying existing, requirements.

The use cases are written using the procedure descriptions in section 4 on page 
17 as a basis. The use cases highlight the state transitions required when starting 
the procedure, backing out, and completing, which is displayed as a state 
diagram in Figure 18 on page 31.

5.1 Add Node - success
This is the basic use case from which alternatives are described. It 
describes a successful run through o f  the add node procedure, and the 
alternatives then add further behavioural information.

1. Commission NE on the MP
2. Issue Add Node command
3. Issue ‘lockout o f  working -  span’ on working facilities
4. Cable in new node on protecting equipment
5. Release ‘loekout o f working -  span’
6. Provision pass through connections
7. Perform connection audit
8. Issue ‘forced span switch’ on working facilities
9. Cable in new node on working equipment
10. Release ‘forced span switch’
11. Issue ‘global lockout o f  protection’
12. Provision new node map information in ring
13. Release ‘global lockout o f  protection’

5.2 Add Node - backout
This use case describes the behaviour when a fault occurs within the 
procedure that results in the need to backout.

1. Commission NE on the MP
2. Issue Add Node command
3. Issue ‘lockout o f  working -  span’ on working facilities
4. Cable in new node on protecting equipment
5. Release ‘lockout o f  working -  span’
6. Provision pass through connections
7. Perform connection audit
8. Issue ‘forced span switch’ on working facilities
9. Cable in new node on working equipment
10. Release ‘foreed span switch’
11. Issue ‘global lockout o f  protection’

27 of 135



At this stage o f  the process a network failure occurs which cannot be 
resolved within the time allowed for the add node procedure, and 
requires the procedure to be backed out:

12. Release ‘global lockout o f  protection’
13. Issue ‘forced span switch’ on working facilities
14. Cable out new node on working equipment
15. Release ‘forced span switch’
16. Issue ‘lockout o f  working -  span’ on working facilities
17. Cable out new node on protecting equipment
18. Release ‘lockout o f  working -  span’
19. Issue Idle command
20. Remove node from MP

NOTE: that the add node procedure can be backed out from any stage up 
to and including step 11. However, once the new node map information 
is provisioned the PG is no longer in an add node state and cannot be 
backed out without using the delete node command and procedure.

5.3 Add Node - failure
When the add node command is executed it can be denied at the 
validation stage:

1. Commission NE on the MP
2. Issue Add Node command
3. Command is denied
4. Log inspected for reason
5. Fault rectified
6. Re-issue Add Node command
7. ... add node procedure continues

5.4 Delete Node - success
This is the basic delete node use case from which alternatives are 
derived.

1. Issue ‘global lockout o f  protection’
2. Issue Delete Node command
3. Provision new node map information in ring
4. Release ‘global lockout o f  protection’
5. Issue ‘forced span switch’ on working facilities
6. Cable out node on working equipment
7. Release ‘forced span switch’
8. Issue ‘lockout o f  working -  span’ on working facilities
9. Cable out node on protecting equipment
10. Release ‘lockout o f  working -  span’
11. Issue Idle command

28 of 135



5.5 Delete Node - backout
This use case describes the behaviour when a fault occurs within the 
procedure that results in the need to backout.

1. Issue ‘global lockout o f  protection’
2. Issue Delete Node command
3. Provision new node map information in ring
4. Release ‘global lockout o f  protection’
5. Issue ‘forced span switch’ on working facilities
6. Cable out node on working equipment
7. Release ‘forced span switch’
8. Issue ‘lockout o f  working -  span’ on working facilities
9. Cable out node on protecting equipment
10. Release ‘lockout o f  working -  span’

At this stage o f the process a network failure occurs which cannot be 
resolved within the time allowed for the delete node procedure, and 
requires the procedure to be backed out:

11. Issue lockout o f  working -  span’ on working facilities
12. Cable in node on protecting equipment
13. Release ‘lockout o f  working -  span’
14. Issue ‘forced span switch’ on working facilities
15. Cable in node on working equipment
16. Release ‘forced span switch’
17. Issue ‘global lockout o f  protection’
18. Re-provision old node map information
19. Release ‘global lockout o f  protection’

NOTE: What this use highlighted was the need for the old-node map 
information to be stored, such that the backout could be achieved right 
up to step 10 o f  the procedure, otherwise step 2 would be the last step at 
which this procedure could be backed out.

5.6 Delete Node - failure
As with the similar add node use case described in section 5.3 on page 
28 the delete node failure case follows a similar path:

1. Issue ‘global lockout o f  protection’
2. Issue Delete Node command
3. Command is denied
4. Log inspected for reason
5. Fault rectified
6. Re-issue Delete Node command
7. ... delete node procedure continues

29 of 135



6 Detailed Design
The final stage before coding begins is the detailed design phase. Through this 
phase the design is elaborated and reviewed to ensure that it meets the 
requirements as laid down in the initial phases o f  the project.

Before delving into the specifics o f class definitions it is important to completely 
understand the software architecture required, and with the aid o f  UML this can 
be described in the form o f  state transition diagrams and sequence charts.

This section o f the report details:
• the reconfig states the PG can be placed in, and the transitions between 

those states (section 6.1 on page 30)
•  the connection management states, and the transitions between those 

states (section 6.2 on page 31)
• further information to the sequence o f  events from the insertion o f  the 

reconfig command (sections 6.3, 6.4, and 6.5)
•  the final sub-section describes one class through the use o f  pseudo code, 

as an illustration o f  the depth to which this part o f the process aims for 
before coding can commence.

It is important that at every stage o f the project the work is reviewed and 
approved to ensure that the requirements are still being met, therefore it is 
imperative that the design documentation is clear and concise whilst capturing 
the salient points.

6.1 PG S tate Diagram

Since the addition o f  the reconfig state attribute to the PG, the PG can be 
in one o f  three states:

1. Idle -  no reconfig in progress
2. Add Node -  PG currently within add node procedure
3. Delete Node -  PG currently within delete node procedure

Due to these states, the following state diagram (Figure 18 on page 31) 
applies:

30 of 135



Figure 18- ?& Reconfig S ta te  Diagram

sliirt (r e c o n fig  s tri te -  lakl n o d e)

C re a tio n

b a c k o u t  ( re c o n f ig  s ta te  =  id le )

c o m p le te  ( n o d e  m a p  se t )

b ackout ( n o d e  m ap  set i

c o m p le te  
re c o n f ig  s ta te  =  id le i

start I re co n fig  sta le  =  d e le te  n ode)

Idle A dd Node

Delete Node

6.2 Connection State Diagram

The following diagram conveys the states in which connections (Xcons) 
can be placed during the add node and delete node procedures.

K f  C re a t io n

b a c k o u t  ( re c o n f ig  s ta te  =  id le )

s ta r t  ( re c o n f ig  s ta te  =  a d d  n o d e )

M P  X e o n  
D e le te sM P  X e o n  

C re a te s
b a c k o u t

( r e c o n f ig  s ta te  =  id le )

c o m p le te  ( r e c o n f ig  s ta te  =  id le )

c o m p le te  ( n o d e  m a p  se t

b a c k o u t  ( n o d e  m a p  s e t)

s ta r t  I r e c o n f ig  s ta te  =  d e le te  n o d e  )

No Xcons + 
PG Idle

Real Xcons + 
PG Idle

No Xcons + 
PG Add N ode

PG Add Node

Real Xcons

PG Delete Node

Real Xcons

31 o f  135



It is envisaged that the MP sends connection create messages during the 
step in the add node procedure to provision real pass through connections 
on the NR.

The connections software uses an algorithm to determine the PG state 
(add node) before adding the real traffic connection associated with the 
MP create message.

Conversely, to backout, a delete message is sent from the MP to reverse 
the create.

i.e. the connections software determines that only pass through 
connections can be created/deleted whilst the PG is in add node, and no 
creates/deleted are allowed whilst the PG is in delete node. This prevents 
any traffic loss due to connection editing during the add node or delete 
node procedures.

6.3 Message Sequence Diagram

The reconfig com m and is initiated from the MP, or the com m and line, 
this is then sent via the session manager to the Database to be 'ac tioned '.  
See Figure 19:

Figure 1 9 -  M essage  Sequence Diagram

MP R econ fig  
A ssistan t

M e ssa g e
A gen t

N rR cD bnsSubscriber

Reconfig
message

C /Java
T ransactor M anager

avpLisl r-i.

nul i W ith Rtfsponse{ )
p re  \a liila riun

committed
notitvO

The above sequence describes the success path from the M P to the 
Standard Reconfig Database subscriber which initiates the add node or 
delete node processing. The continuation o f  this sequence is displayed in 
sections 6.4 and 6.5 on pages 33 and 37 respectively, where further detail 
is added on the processing o f  the add node and delete node commands.

32 o f  1 35



6.4 Add Node Sequence Diagram

As described in the sequenee diagram in the previous section the 
TpNrRcDhnsSuhscriher is informed hy the Database o f  any changes to 
the reconfig state attribute o f  the PG.

This is performed at the pre-validation stage so that subsequent changes 
to the database ean be processed within the same transaetion.

A summary o f  the Add Node actions is included here for referenee:

Validations; The add node command will be denied if:
• There are any other reeonfigurations eurrently in progress on 

that PG.
• The specified PG does not have a protection scheme o f  4F 

BLSR.
•  The PG has a non-nil node map 

Proeessing:
• Set the reconfig mode on the PG to Add Node
• All existing conneetions on the PG are deleted
• Set the special mode attribute o f  the PG to PASSTHRU.
• Raise the reconfig alarm
• Generate success log

The following sequence diagram (Figure 20 on page 34) indieates the 
full success path for an add node command.

NOTE: setting o f the reconfig state attribute to add node, is already part 
o f  the transaction due to the original message sent from the MP which 
triggers the remaining processing.

Also, the raising o f  alarm, and generation o f  success log are contained 
within the ‘commit’ processing o f  the transaction. This is done to ensure 
that if the transaction has failed due to any other validation reason, it 
does not result in conflicting indications that the command has 
successfully been completed.

33 of 135



Figure 20  - Add Node command - success

T pN rR cD bnsSubscriber

lUilityWilhKosponsi-'O

TpN rA ddN ode

Entity Pg

check recstale

I chcL'k p 
scheme 

I check node 
-4-1 map

sell'orcePass rimiO

^  deleie \ll.\c o n s()

TpNrUtllltles

If  a failure docs occur, then this is logged at the point o f  validation 
failure, resulting in a failure log being generated, as indicated in the 
following sequenee d iagram  (F igure 21 ).

Figure 2 1 -  Add N ode command - failure

TpN rR cD bnsSubscrlber TpN rA ddN ode

not ilyW it hResponse( )

processO

TpNrUtllities TpNrConnM ngm t

f

I check prol 
4 J  scheme

~~j check node

log(IA C316)

nolityO
restoreXconsO

NOTE; In the ease o f  any ' validation  failure the abort proeessing o f  
T pN rR eD bnsSubseriber is execu ted  to restore any connections that may 
have been deleted as part o f  the original com m and proeessing.

34 of 135



When the add node procedure is being completed, the 
TpN rN m D bnsSiibscriber is 'l is ten ing ’ for the pre-validation event which 
sets the node map to a non-nil value, thereby permitting the add node 
state to clear.

The following processing is executed when a node map set event is 
received;

I f  the add node BLSR PG object has a non-nil node map:
•  set the special mode o f  the PG to None
• Set the reconfig state o f  the PG to Idle
•  C lear the reconfig alarm.

NO 1 L: Similarly to the execution o f  the add node com m and  described 
before the clearing o f  the alarm is processed within the 'c o m m it '  phase.

Figure 22  - Add Node command - completion

TpN rR eD bnsSubseriber

T p N rN m D bn sS ubseriber

iu>lil\ \ \  illiRcsponscO

TpNrAddNexde

TpNrUtllltlesEntity Pg

n il  p i,-IC O

I ,h c ,k  iukIc map  ̂I Is non-nil

sal KorcePass lliriK )

sa tR ccS la lc ( )

laar alarmO

35 o f  135



Finally, add node can be 'b ack ed  ou t '  by sending a FLI com m and to 
'ed it '  the recontlg  state attribute back to 'Idle '.

The processing is similar to the 'c lear ' case above except that the setting 
o f  the reconfig state attribute to idle is already included in the transaction 
due to the initial reconfig com m and.

Figure 23  - Add Node command - backout

Tp N rR eD bnsSubseriber TpN rA ddN ode

iuililV\\'ilhRcNponM.'()
Entity Pg TpNrUtilities

backoiit( )

selForeelkiss'IhriK )

dololei^iss IliriLso

notilvO

lear alarm ()

36 of 135



6.5 Delete Node Sequence Diagram

The sequence o f  events triggered by a delete node command is very 
similar to that previously described for add node, with subtle differences.

Again as with add node the processing o f the delete node command is 
performed at the pre-validation stage so that subsequent changes to the 
database can be processed within the same transaction

A summary o f  the Delete Node actions is included here for reference:

Validations: The delete node command will be denied if:
•  There are any other reconfigurations currently in progress on 

that PG.
• The specified PG does not have a protection scheme o f  4F 

BLSR.
• There are any non-pass through connections on PG
• There are any ‘active’ protection switches on PG
• The node map is nil 

Processing:
• Set the reconfig mode on the PG to Delete Node
• Set the node map to nil
• Set the special mode attribute o f the PG to PASSTHRU.
• Raise the reconfig alarm
• Generate success log

The following sequence diagram (Figure 24 on page 38) indicates the 
full success path for a delete node command.

NOTE: setting o f  the reconfig state attribute to delete node, is already 
part o f  the transaction due to the original message from the MP which 
triggers the remaining processing.

As with add node before, the raising o f  alarm, and generation o f  success 
log are contained within the ‘commit’ processing o f the transaction. This 
is done to ensure that if the transaction has failed due to any other 
validation reason, it does not result in conflicting indications that the 
command has successfully been completed.

37 of 135



Figure 24 - Delete  Node command - success

TpN rR eD bnsSubseriber

\ \  ilhRosponsc()

procoss( )

T p N rD eleteN od e

-------

n o li iy o

hcck recstati;

I clwck p 
scheme

I cheek Xcons

I check prol 
slaliLs

I check iKxIc 
niiip
selNodcM apO

EntityPg

setl'orcel’ass riiriK )

TpNrUtllltles

If  a failure does oeeur, then this is logged at the point o f  validation 
failure, resulting in a failure log being generated, as indieated in the 
following sequence d iagram (F igure 25).

Figure 25  - D e le te  Node command - failure

T p N rR cD bnsSutscrlber T p N rD eleteN o d e

not il y Wit hRcsponse( )

processO

TpNrUtllltles TpNrConnM ngm t

check rec

I check pr 
^  scheme

3 - -

notiiyO
restoreXconsO

u

log(l-AC316)

N O T F; As with the add node abort proeessing, an attempt is made to 
restore any connections that have been deleted as part o f  the previous

38 or 135



com m and processing. In the case o f  delete node this happens when 
moving I'rom delete node to idle.

When the delete node procedure is being backed out, the 
T pN rN m D bnsSubseriber is “listening' for the pre-validation event which 
sets the node map to a non-nil value, thereby permitting the delete node 
state to clear.

The following processing is executed when a node map set event is 
received:

If  the delete node BL,SR PG object has a non-nil node map:
• set the special m ode o f  the PG to None
•  Set the reconfig m ode PG attribute to Idle
• C lear the recontlg alarm.

NOTE: Similarly to the execution o f  the delete node com m and 
described before, the clearing o f  the alarm is processed within the 
“com m it’ phase.

Figure 26  - D e le te  N ode command - backout

TpN rN m D bnsSubseriber

ioIiI'n W illiRospoascO

T p N rD eleteN od e

EntityPg TpNrUtilities

li i ick o u K  )

encek iu>ac ma 
^ I is non-nil 

set RceStaleO

setfo rcc rass fh ru O

alaniiO

39 o f  135



Finally, deleie node can be 'co m p le ted ' by sending a recontlg  com m and  
to 'ed it '  the recontlg  state attribute back to Idle'.

The processing is similar to the 'b ack o u t '  case above except that the 
setting o f  the recontlg  state attribute to idle is a lready included in the 
transaction due to the initial recontlg  com m and, and ALI, connections 
are deleted, which prepares the PG tor re-provisioning.

Figure 2 7  - D e le te  Node command - completion

T p N rN m D bn sS ubseriber T p N rD eleteN od e

m >ltt\\\ illiRcsponsc( I
EntityPg TpNrUtilities

omplelcO

heck node map

tl'oreePa.ss rimiO

delete A ll\eo iis( ) !

a la m i O

40  o f  135



6.6 Example Class Definition
For illustrative purposes the class definition for the TpNrReconfigNode 
class is given, including the pseudo code representation o f  the initialise 
method (section 6.6.1 on page 42).

The actual Java code can be found in Appendix A on page 54.

The TpNrReconfigNode class provides the methods that perform 
common processing between Add Node and Delete Node.

class TpNrReconfigNode 
{

// hook provided for Add Node & Delete Node initialisation 
/ / a s  part of system wide initialisation 
public void initialise();

// method provided to subscribe to pre-validation and commit 
// events for the reconfig state attribute 
private boolean subscribeReconfigState();

// method provided to subscribe to the prevalidate and 
// commit events associated with a node map set, for a 
// specific PG that is currently an add node or delete 
// node mode.
private boolean subscribeNodeMap ();

// method provided to generate the unit string associated 
// with the user visible log
private String genUnitString (EntityPg pgEntity);

// method provided to set the forcePassThru attribute 
private boolean setForcePassThru ( EntityPg pgEntity,

boolean value);
}

41 of 135



6.6.1 TpNrReconfigNode.initialiseO

Description:

This method performs the required initialisation for the Add 
Node and Delete Node features. Namely:

- subscription to the DBNS for edits to the PG Reconfig State 
attribute
- subscription to the DBNS for edits to the PG Node Map 
attribute
- get the list o f currently provisioned PG Entities from the 
Database
- for each o f these Entities:

- get the reconfig state value
- if reconfig state is Add Node or Delete Node:

- raise the ‘ADM in single node configuration’ 
alarm

public static void initialise()
{

try
{

// grab the restart instance
JavaRestart nrjr = JavaRestart.getInstance{);

// wait for NCDbReadyForApplicationsGate

// call subscribeReconfigState() method to subscribe 
// for edits to the reconfig state attribute of a PG

// call subscribeNodeMap() method to subscribe 
// for edits to the node map attribute of a PG

// wait for CardSuccessfullyStartedGate

// create database transaction 
DbTransaction nrTx;

// set the type to READ_WRITE 
// begin transaction

// get a set of all EntityPG objects

for ( each PG object )
{

// get reconfig state attribute value 
// get node map value 
boolean required = false;

switch (reconfig state)
{

case Add Node :
if (node map != nil)
{

/ / a  node map set event has been missed 
call TpNrAddNode.complete();

}
else

required = true;

break ;

42 of 135



case Delete Node:
if (node map != nil)
{

// a node map set event has been missed 
call TpNrDeleteNode.backout( ) ;

}
else

required = true;

break ;

default : 
break ;

}

if (required)
{

// call TpNrUtilities.alarm() to raise alarm
}

}

// validate transaction 
// commit transaction

}
catch (Exception e)
{

new Swerr(e .toString());
}

43 of 135



7 Test Strategy & Results
Within this section the testing strategy is explained, and the results published 
that prove the suceessful delivery o f the feature.

The testing strategy is split between two main sections, the PC simulator (Unit 
Testing) and the target hardware (Integration Testing).

7.1 Unit Testing
Sinee hardware is extremely expensive and limited, a fondamental aim o f  
the testing strategy is to minimise the amount o f  hardware time required, 
whilst ensuring that the software is still thoroughly tested. Therefore the 
Unit Testing phase should inelude suffieient test cases that all possible 
exeeution paths are exereised, i.e. all error paths.

The simulator environment consists o f  a number o f  sessions. Each 
session representing a spécifié eard in the target hardware. This allows 
flexibility when testing, in that a single session ean be fired up for those 
tests that only require a eertain eard, and a multi-session when 
interactions between cards are important.

Unit testing will inelude three main areas:

• Single simulator session
o Since the standard reconfig software resides on one 

spécifié card, the majority o f the unit test eases will foeus 
on a single simulator session

• Multi simulator session
o A certain minority o f  test eases are to be performed on a

multi-sim environment to mimic as best as possible the
hardware configuration before integration is performed.

• Manual
o Although the aim is to automate as much as possible, in

eertain eases this is not possible, as invasive 
instrumentation is required to foree the software to 
exeeute eertain unlikely/rare error paths.

Another aim for the single and multi simulator unit tests is to automate 
the test cases through the use o f  test seripts, as mueh as possible, with the 
subsequent benefit o f  providing a test suite for sanity and regression 
purposes. The test suite is described in Appendix D on page 129.

44 of 135



7.2 Unit Test Coses
A flill list (143) o f  the unit test cases used to test Add Node and Delete 
Node is contained in Appendix B on page 121. An example (U T l) is 
shown here to illustrate how each test case was written.

NOTE: The test case assumes basic knowledge o f  the equipment being 
tested, but indicates what results are required to indicate that this test 
case passes. Each unit test case listed in Appendix B has an associated 
description in the Designer Test Plan ([3]).

UT1 Successful Add Node command
Description:
Issue ED-FFP-LL TLl Add Node command on Quad CP in slot 
22, on PCI (port 2).
e.g.
ED-FFP-LL:OPTERA:PGLL-
000001220201 : CT AG : : RCST ATE=ADDNODE ;

Initial state:
• NE created
• Quad CP created, and associated 4F BLSR PG/PGMs

Results:
• TLl response is COMPLD
• AO Log is generated and indicates 

RCSTATE=ADDNODE
• ADM in single node configuration alarm is raised 

(MN,NSA)
• PG is in add node state:

o restate is add node 
o node map is nil 
o ieeemap is nil 
o special mode is passthru

• Network Reconfig FAC616 log is generated
o Logfac616
o Operation is Add Node
o Unit indicates PG + associated PGMs (LL)

• No SWERRs
• No Traps

45 of 135



7.3 Integration Testing
Although the simulator is a good approximation o f the hardware the 
simulated behaviour is not completely accurate with the actual target 
hardware. Also, since these procedures require traffic monitoring which 
the simulator cannot do, the integration testing is necessary and cannot 
be completely superseded by the simulator.

However, the simulator does provide a baseline performance or 
confidence factor that the hardware can be tested against. Also, due to 
time and hardware constraints it isn’t possible to fully exercise every 
execution path o f  the software on the target hardware. Therefore the 
strategy is to ensure full coverage is achieved through a combination o f  
unit testing and integration testing without sacrificing quality.

With this in mind each integration test case is assigned a priority, o f  1, 2 
or 3. Priority 1 test cases must be executed and passed before the 
software can be delivered to Verification for final testing prior to 
delivery to the customer. Priority 2 and 3 are to executed as time and 
equipment allows, but must be completed prior to customer delivery.

A full list o f  integration test cases and their priority are given in 
Appendix C on page 126.

In Figure 28 on page 47 and Figure 29 on page 48, the hardware 
configurations used in testing Add Node and Delete Node are illustrated.

When viewing the hardware configurations, TS-A and TS-B refer to the 
test sets that monitor the traffic in Ring-A and Ring-B respectively. The 
Add Node and Delete Node procedures operate on Ring-A, with the 
traffic being monitored in Ring-B to ensure there is no traffic disruption 
whilst Ring-A is being reconfigured.

e.g. the traffic hits that will be observed, should be on TS-A, and even 
then they should be <50ms i.e. the equivalent o f  a protection switch

46 of 135



Figure 28- Hardware Configuration: Add Node

( K 4 X  

N K  X0X2

D X ^L SR 2«)dcrinB
RING-A

/ / I V > / /  IFasll

(111 ' ' '  C',17 , ! i i  ' ' '  . ' ,1 7
W  1

^  P ^

NE 2328 
APS 2

NE 2331 
APS 1

NE 9300

Quad I.’O slot
10/lO O bT

Ethernet IT
^  MP Server/ Desktop

S  - l i

()C -»X

\ i ; x

lEasti

HDX ^ L S R  3nodc ring 
RING-B

or, 09
/ " « ' /  M («'/

GO ' ' ' GO
W 1

Sptifi 7

OKI 019 P p 010

NE 2328 
APS 4

NE 2331 
APS 5

NE 9300
/Kvsr/ APS 6

PI Quad t o  slot 5 f i8 _  P:

P I Q uad  L'O slo t _ 5 0 6 _  P :

u 10/iOObT *  Er" MR Server/D esktop
Ethernet = Is

47 o f  135



Figure 2 9 -  Hardware Configuration - D ele te  Node

HDX ^ L S R  3i¥xie ring 
RING-A

ü i s

NE 2328 
APS 2

NE 2331
APS 1

NE 9300
APS 3

10/lOObT " ' ' i |  
Ethernet ;  |

MP Server/ Desktop

(^ J l /O s lo i  5 r i? _

i^uid 1 O slot ■'*>7

HDX -BLSR 3i¥)de rin^ 
RING-B

lEasil

Ofi

Ü19

NE 2328 NE 2331 
APS 5APS 4

NE 9300
APS

I O slot 50S

Quad I'O slot 5rj6_

Hex I 0  501

10/lOObT f
Ethernet =

MP Server/ Desktop

48  o f  135



7.4 Integration Test Cases
A full list o f  integration test cases can be found in Appendix C on page 
126. As with the unit test case description in section 7.2 on page 45 the 
full description o f an integration test case is given here for illustrative 
purposes.

IT1 Add HDX Node to 4F BLSR Ring
Description:
Follow the Add Node procedure to add a node to an existing 4P 
BLSR Ring, (additionally for ITl monitor procedure from 
network management platform)

Add PGl, e.g. slot 21 (505), port 2.

Initial state:
• Hardware Configuration: Add Node

Results:
• On NE after add node command is sent from MP (Step 2):

o TLl response is COMPLD 
o AO Log is generated and indicates 

RCSTATE=ADDNODE 
o ADM in single node configuration alarm is raised 

(MN,NSA) 
o PG is in add node state:

■ restate is add node
■ node map is nil
■ ieeemap is nil
■ special mode is passthru

o Network Reconfig FAC616 log is generated
■ Logfac616
■ Operation is Add Node
■ Unit indicates PG + associated PGMs (LL) 

o No SWERRs
o No Traps

• On NE after pass-through connections are provisioned by 
MP (Step 6):

o Check that the expected pass through connections 
are created 

o No SWERRs 
o No Traps

• On NE after the node map has been sent (Step 12):
o TLl response is COMPLD 
o AO Log is generated and indicates 

RCSTATE=IDLE 
o ADM in single node configuration alarm is cleared 

(MN,NSA) 
o PG is in idle state:

49 of 135



■ restate is idle
■ node map is non-nil (value set by PMEM)
■ ieeemap is non-nil
■ special mode is none

o No Network Reconfig log is generated 
o NoSW ERRs 
o No Traps 

On MP:
o Check node has been added to the configuration 

Through out procedure;
o Monitor traffic and ensure no unexpected hits and 

no expected hits >5 0ms 
o Monitor traffic on other PG on Quad and ensure 

no traffic hits

7.5 Test Results
143 o f  143 unit test cases executed and passed
- 100% pass rate
- 100% execution rate
- 137 test cases automated

84 o f 84 integration test cases executed and passed
- 100% pass rate
- 100% execution rate

50 of 135



8 Conclusions
The Add Node and Delete Node features were sueeessfully delivered to 
Verifieation on time and according to schedule. During this final phase for 
customer acceptance, no faults were found in the NE Software, which has now 
been approved for the first release o f the next generation transport platform.

This report documents my work in delivering the Standard Reconfigurations 
software feature which specifically encompasses the entirety o f  the Network 
Element software portion o f this feature. The other aspect which completes this 
feature was the Management Platform work in delivering the Reconfig Assistant 
which is outside the scope o f  this report.

The success o f the project has been due to adhering to the software development 
process, ensuring that at each stage the artefacts produced are adequately 
reviewed and approved. The artefacts being the documentation that indicates the 
completion o f  a phase in the process e.g. requirements, procedures, design, code 
etc..

Initial customer requirements were received, broken down into more detailed 
software design requirements (section 3 on page 14) based on the procedures 
(section 4 on page 17) that dictated the behaviour o f  the software, coupled with 
the use cases (section 5 on page 27) to elaborate those points that were not clear.

Detailed design (section 6 on page 30) then added further detail in the form o f  
the implementation approach that would be taken, before the actual code writing 
was started.

Finally the designer testing (section 7 on page 44) phase started, with unit and 
integration testing combining to ensure full code coverage, whilst also cheeking 
the behaviour matched the initial requirements.

Although the project did encounter issues during the development o f  the 
features, especially during the unit testing phase, these proved to be minor in 
nature.

In essence due to the use o f  UML the design approach was easily and quickly 
understood by reviewers and other designers ensuring minimal integration 
issues.

As such, UML has proven to be a valuable addition to the design environment, 
providing a common language between designers for describing software.

Since the design was well described, and reviewed, the Java implementation 
proved to be relatively straight forward. The benefits o f  Java have been well 
documented, that include portability, ease o f  use, and inbuilt memory 
management.

51 of 135



However, there was no real indication as to whether Java was beneficial in the 
respect o f this feature. An equally effective implementation could have been 
achieved using C++.

52 of 135



9 References
[1] Standard Reconfigurations High Level Design -  v 1.03 July 2002 -  Andy 

Kinney

[2] Standard Reconfigurations Detailed Design -  v l .l July 16, 2002 -  Andy 
Kinney

[3] Standard Reconfigurations Designer Test plan -  vO.5 July 8, 2002 -  Andy 
Kinney

[4] UML Distilled -  Applying the Standard Object Modelling Language -  
Martin Fowler with Kendall Scott -  Addison Wesley -  Printing 
December, 1997 -  ISBN 0-201-32563-2

[5] Java 2 Platform - Standard Edition v l .4.1 -  API Specification
httD://iava.sun.com/i2se/l .4. l/docs/api/

[6] Sonet (Synchronous Optical NETwork) and SDH (Synchronous Digital 
Hierarchy) -  Beginner Guide
http ://www. 1 i ghtread ing. com/document. asp?doc id=4432

[7] Synchronous Transmission Systems -  Doc GH9, Issue 3 -  Christopher 
Newall -  Northern Telecom Europe

[8] SONET/SDH Ring Technology -  Optical Networking
http://ntrg.cs.tcd.ie/undergrad/4ba2.02/optnet/pages/present/sont and sdh bandwidth.htm

[9] G.707 Network node interface for the synchronous digital hierarchy (SDH) 
- I T U -T -(10 /2000)

[10] G.708 Sub STM-0 network node interface for the synchronous digital 
hierarchy (SDH) -  ITU-T -  (06/99)

[11] G.709 Interfaces for the optical transport network (OTN) -  ITU-T -  
(02/2001)

53 of 135

http://ntrg.cs.tcd.ie/undergrad/4ba2.02/optnet/pages/present/sont


Appendix A: Java Implementation
The code listing for the Add Node and Delete Node feature is contained within 
various modules. An overview o f  the module structure is described here:

TpNetworkReconfiglnit.java - class definition which has an initialise method 
which serves as a hook into the system initialisation

TpNrReconfigNode.java - class definition which encapsulates the common 
functionality to support the Add Node and Delete Node reconfigurations

TpNrAddNode.java - class definition which encapsulates all the high level 
processing required for an Add Node operation

TpNrDeleteNode.java - class definition which encapsulates all the high level 
processing required for a Delete Node operation

TpNrConnM ngmt.java - class definition which encapsulates the functionality 
used to manipulate traffic connections associated with the reconfig commands

TpNrErrorCode.java - class definition which encapsulates all the network 
reconfig error strings that are used to inform the user o f  the reason the reconfig 
operation failed

TpNrNmDbnsSubscriber.java - performs the necessary processing when the 
node map is updated

TpNrRcDbnsSubscriber.java -  performs the necessary processing when the 
PG reconfig state is updated

TpNrRestartRecovery.java -  class which implements Runnable and 
encapsulates the methods to initialise the network reconfiguration code, thereby 
providing a thread in which the reconfig commands execute

TpNrUtilities.java - class definition which encapsulates the utilities to support 
network reconfig commands

TpNrValidations.java -  class definition which encapsulates the functionality 
used to validate network reconfig commands

54 of 135



Class: TpNetworkReconfiglnit

+ < 3 > F i l e : </B> < C O D E > T p N e t w o r k R e c o n f i g I n i t . j a v a < / C O D E >
*/

package e q u i n o x . p r o t e c t ;  i o n  . t r a f f i c  . r e c o n f i g ;

import e q i j i n o x  . p r o t e c t i o n  . t r a f  f  i  c . r e c o n f  i g . T p N r R e s  t a r  t R e c o v e r y  ; 
import e q u i n o x . f r a m e w o r k . u t i l i t i e s . e q x t h r e a d . E q x T h r e a d ;

* < P x B > C l a s s  : < -B> < C O D E > T p N e t w o r k R e c o n f i g I n i t < / C O D E x / P >

< P x B > D o c u m e n t : < / B >  S t a n d a r d  R e c o n f i g s  DD
* - a v a i l a b l e  i n  A t h e n a ,  f o l l o w i n g  t h i s  p a t h :
* <BR> - E q u i n o x
* <BR> - P r o d u c t  D e v e l o p m e n t
* <BR> -  S o f t w a r e
* <BR> - N e t w o r k  E l e m e n t  S o f t w a r e
■* <BR> F u n c t i o n a l  A r e a s
* <BR> - N e t w o r k  R e c o n f i g
* <BR> - D e s i g n  F o l d e r  </P>

* < B > D e s c r i p t i o n :< B>

* The T p N e t w o r k R e c f / n f i g l n i t  c l a s s  d e f i n i t i o n  h a s  an i n i t i a l i s e  m e t h o d  w h i c h
* s e r v e s  a s  a h o ok  int>. ’ t h e  s y s t e m  i n i t i a l i s a t i o n .

" Q a u t h o r  A n d y  K i n n e y

* M e t h o d s :

* v o i d  i n i t i a l i z e ()
* -  l a u n c h e s  t h e  t h r e a d  w h i c h  i n  t u r n  c a l l s  t h e  N e t w o r k  R e c o n f i g
* i n i t i a l i s a t i o n  c o d e

*/
public final class T p N e t w o r k R e c o n f i g l n i t

* s i n g l e t o n  i n s t a n c e  o f  t h i s  c l a s s
*  /

private static T p N e t w o r k R e c o n f i g l n i t  I NSTANCE = null;

55 of 135



< P x B > M e t h o d :  </B> <CODE >g ec l ns t anc e < / CODE >

< B R x B > D e s c r i p t i o n  : </B>

T h i s  m e t h o d  r e t u r n s  t h e  i n s t a n c e  o f  t h i s  s i n g l e t o n . < / P>

ê r e t u r n  T p N e t w o r k R e c o n f i g l n i t
- t h e  s i n g l e t o n  i n s t a n c e  o f  T p N e t w o r k R e c o n f i g l n i t

I n p u t s :  None

O u t p u t s :  None

public static synchronized T p N e t w o r k R e c o n f i g l n i t  getlnstance{)
{

if ( I NS TA NC E null)
(

I NSTANCE = new TpNetworkReconfiglnit();
)

return INS TANCE;

* C o n s t r u c t o r . made  p r i v a t e  a s  c l a s s  i s  s i n g l e t o n

private TpNetworkReconfiglnit ()
{
)

* < P><B>Me t hod: </ B>  < C O D E > i n i t i a l i z e < / C O D E >

* < B R x B > D e s c r i p t i o n  : < tB>

* T h i s  m e t h o d  l a u n c h e s  t h e  t h r e a d  w h i c h  i n  t u r n  c a l l s  t h e  N e t w o r k  R e c o n f i g  
*' I n i t i a l i s a t i o n  c o d e < / P >
* /

* I n p u t s :  None

* O u t p u t s :  None

* R e t u r n s :  None  

* /

public static void initialize ()
(

T p N r R e s t a r t R e c o v e r y  n r R s t  = new TpNrRestartRecovery();
E q x T h r e a d  e q x T h r e a d  = new EqxThread ( n r R s t ,  n r P . st.getName () ) ; 
e q x T h r e a d .start();

}

} / /  e n d  o f  T p N e t w o r k R e c o n f i g l n i t

56 o r  135



Class: TpNrReconfigNode

* < B > F i l e : < / B> <CO D E >Tp Nr Re c o n f i gN o de . j av a < /C O D E >
V

p a c k a g e  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g ;

i m p o r t  e q u i n o x . f r a m e w o r k . J a v a R e s t a r t A p i . J a v a R e s t a r t ;

i m p o r t  e q u i n o x . f r a m e w o r k . d a t a b a s e . D b T r a n s a c t i o n ; 
i m p o r t  e q u i n o x . f r a m e w o r k . d a t a b a s e . D b T r a n s a c t i o n S t a t e ;

i m p o r t  e q u i n o x . f r a m e w o r k . n o m . k e y s . E n t i t y P g K e y ; 
i m p o r t  e q u i n o x . f r a m e w o r k . n o m . k e y s . E n t i t y P g m K e y ; 
i m p o r t  e q u i n o x . f r a m e w o r k . n o m . b a s e s . E n t i t y K e y ;

i m p o r t  e q u i n o x . f r a m e w o r k . s w e r r . S w e r r ;

i m p o r t  e q u i n o x . f r a m e w o r k . n o m . o b j  s . E n t i t y O b j  B a s e  ; 
i m p o r t  e q u i n o x . f r a m e w o r k . n o m . o b j s . E n t i t y P g ;

i m p o r t  e q u i n o x . f r a m e w o r k . n o m . e n u m s . S p e c i a l M o d e E n u m ; 
i m p o r t  e q u i n o x . f r a m e w o r k . n o m . e n u m s . T P R e c o n f i g S t a t e E n u m ;  
i m p o r t  e q u i n o x . f r a m e w o r k . n o m . e n u m s . A F _ P r o b l e m T y p e E n u m ;  
i m p o r t  e q u i n o x . f r a m e w o r k . n o m . e n u m s . E n t i t y l d E n u m ;

i m p o r t  e q u i n o x . p r o t e c t i  o n . t r a f f i c . u t i 1 s . T p A i d A d a p t a t i o n l m p i ;

i m p o r t  e q u i n o x . f r a m e w o r k . d a t a b a s e . d b n s . D b n s ; 
i m p o r t  e q u i n o x . f r a m e w o r k . d a t a b a s e . d b n s . O p e r a t i o n ;  
i m p o r t  e q u i n o x . f r a m e w o r k . d a t a b a s e . d b n s . D b n s F i l t e r  ; 
i m p o r t  e q u i n o x . f r a m e w o r k . d a t a b a s e . d b n s . D b n s E v e n t ;

i m p o r t  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g . T p N r A d d N o d e ; 
i m p o r t  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g . T p N r D e l e t e N o d e ;  
i m p o r t  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g . T p N r V a l i d a t i o n s ; 
i m p o r t  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g . T p N r U t i l i t i e s ; 
i m p o r t  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g . T p N r R c D b n s S u b s c r i b e r , 
i m p o r t  e q u i n o x . p r o t e c t  i o n . t r a f f i c . r e c o n f i g . T p N r N m D b n s S u b s c r i b e r ,

i m p o r t  e q u i n o x . f r a m e w o r k . a v p . A v p L i s t ; 
i m p o r t  e q u i n o x . f r a m e w o r k . a v p . A v p F a c t o r y ;

i m p o r t  e q u i n o x . f r a m e w o r k . c f g u t i 1 . S l o t I d T r a n s l a t i o n ;

i m p o r t  j a v a . u t i l . H a s h S e t ; 
i m p o r t  j a v a . u t i l . I t e r a t o r ;

57 o f  135



/ * *

* < P > < B > C l a s s : </B> <CODE>TpNrR3Conf igNode</CODE></P>

* <P><B>Document : </B> S t a n d a r d  R e c o n f i g s  DD
* -  a v a i l a b l e  i n  A t h e n a ,  f o l l o w i n g  t h i s  p a t h :
* <BR> - E q u i n o x
* <BR> -  P r o d u c t  D e v e l o p m e n t
* <BR> -  S o f t w a r e
* <BR> - N e t w o r k  E l e m e n t  S o f t w a r e
* <BR> -  F u n c t i o n a l  A r e a s

<BR> -  N e t w o r k  R e c o n f i g
<3R> - D e s i g n  F o l d e r  < / P >

< B > D e s c r i p t i o n : </B>

The T p N r R e c o n f i g N o d e  c l a s s  d e f i n i t i o n  e n c a p s u l a t e s  t h e  common f u n c t i o n a l i t y  
t o  s u p p o r t  t h e  A d d  N o d e  a n d  D e l e t e  Node  r e c o n f i g u r a t i o n s .

Q a u t h o r  A n d y  K i n n e y
/

M e t h o d s  :

v o i d  i n i t i a l i z e ()
-  h o o k  p r o v i d e d  f o r  A d d  No d e  & D e l e t e  Node  i n i t i a l i s a t i o n  a s  p a r t  o f  

s y s t e m  w i d e  i n i t i a l i s a t i o n

b o o l e a n  s u b s c r i b e R e c o n f i g S t a t e O
- m e t h o d  p r o v i d e d  t o  s u b s c r i b e  t o  p r e - v a l i d a t i o n  a n d  c o m mi t  e v e n t s  

f o r  t h e  r e c o n f i g  s t a t e  a t t r i b u t e

v o i d  s u b s c r i b e N o d e M a p ()
-  m e t h o d  p r o v i d e d  t o  s u b s c r i b e  t o  p r e - v a l i d a t i o n  a n d  c ommi t  e v e n t s  

f o r  t h e  n o d e  map a t t r i b u t e

S t r i n g  g e n U n i t S t r i n g ( . . . )
- g e n e r a t e s  t h e  u n i t  s t r i n g  a s s o c i a t e d  w i t h  t h e  u s e r  v i s i b l e  l o g

b o o l e a n  s e t N o d e M a p ( . . . )
- s e t s  t h e  n o d e  map a t t r i b u t e  t o  n i l

b o o l e a n  s e t F o r c e P a s s T h r u ( . . . J
- s e t s  t h e  f o r c e  p a s s  t h r o u g h  a t t r i b u t e

public final class T p N r R e c o n f i g N o d e  
{

/ * *

* s i n g l e t o n  i n s t a n c e  o f  t h i s  c l a s s

private static T p N r R e c o n f i g N o d e  I NS TANCE = null;

58 or 135



* < P x B > M e t h o d :  </B> < CODE >g e t In s t an ce < /C O DE >

* < B R x B > D e s c r i p t i o n  : </B>

* T h i s  m e t h o d  r e t u r n s  t h e  i n s t a n c e  o f  t h i s  s i n g l e t o n . < / P >

* ^ r e t u r n  T p N r R e c o n f i g N o d e
* -  t h e  s i n g l e t o n  i n s t a n c e  o f  T p N r R e c o n f i g N o d e

* I n p u t s :  None

* O u t p u t s :  None  

V

public static synchronized T p N r R e c o n f i g N o d e  getlnstance()
{

if ( INS TANCE == null)
(

I NSTANCE = new TpNrReconfigNode();
}
return I NS TANCE;

}

* C o n s t r u c t o r , made  p r i v a t e  a s  c l a s s  i s  s i n g l e t o n  
* /
private TpNrReconfigNode ()
{
}

59 o f  135



<P><B>Me t bod: <.'B> <CODE>ini  t i a l i z e < / C O D E >

< B R > < B > D e s c r i p t i o n : < /B>

T h i s  m e t h o d  p e r f o r m s  t h e  r e q u i r e d  i n i t i a l i s a t i o n  f o r  t h e  Ad d  Node  a nd  
D e l e t e  No d e  f e a t u r e s . < / P>

<P>Namely  :
<BR> -  s u b s c r i p t i o n  t o  t h e  DBNS f o r  e d i t s  t o  t h e  r e c o n f i g  s t a t e  a t t r i b u t e
<BR> - s u b s c r i p t i o n  t o  t h e  DBNS f o r  e d i t s  t o  t h e  n o d e  map a t t r i b u t e
<BR> - g e t  t h e  l i s t  o f  c u r r e n t l y  p r o v i s i o n e d  PC E n t i t y s  i n  t h e  D a t a b a s e
<BR> - f o r  e a c h  o f  t h e s e  e n t i t i e s
<BR> - g e t  t h e  r e c o n f i g  s t a t e  v a l u e
<BR> - i f  Ad d  No d e  o r  D e l e t e  N o d e

* <B-R> -  r a i s e t h e  'ADM

* I n p u t s ; None

* O u t p u t s : None

* R e t u r n s : None

public void initialize 0
i

D b T r a n s a c t i o n  n r T x = null ;

try

/ /  g r a b  t h e  r e s t a r t  i n s t a n c e
J a v a R e s t a r t  n r J r  = J a v a R e s t a r t . getlnstance ( ) ;

w a i t  f o r  N C D b R e a d y F o r A p p l i c a t i o n s G a t e  
n r J r .waitForRestartGate( J a v a R e s t a r t . R S T _ G A T R _ N C _ D B _ R E A D Y ) ;

/ /  s u b s c r i b e  t o  t h e  r e c o n f i g  s t a t e  a t t r i b u t e  a n d  n o d e  map e v e n t s  
if (subscribeReconfigState() && 

subscrIbeNodeMap{))
{

/ /  w a i t  f o r  C a r d S u c c e s s f u l l y S t a r t e d G a t e  t o  a l l o w  f o r  a l a r m  
/ /  f r a m e w o r k  t o  i n i t i a l i s e ,  o t h e r w i s e  a l a r m  c a n n o t  b e  r a i s e d  
n r J r .waitForRestartGate( J a v a R e s t a r t . R S T _ G A T E _ S T A R T E D ) ;

/ /  c r e a t e  d a t a b a s e  t r a n s a c t i o n  
n r T x  = new DbTransaction ( ) ;

/ /  s e t  t h e  t r a n s a c t i o n  t o  i n d i c a t e  t h a t  t h i s  c o u l d  w r i t e  t o  a s  
/ /  w e l l  a s  r e a d  f r o m  t h e  d a t a b a s e ,  a n d  s t a r t  t h e  t r a n s a c t i o n  
n r T x . setType ( D b T r a n s a c t i o n , R E A D _ W R I T E ) ; 
n r T x . begin ( ) ;

/ /  g r a b  a s e t  o f  a l l  PG e n t i t i e s  i n  t h e  d a t a b a s e  
H a s h S e t  p g S e t  =

( T p N r U t i l i t i e s .getlnstance()).getSetOfObjects(
E n t i t y l d E n u m , E N _ P G ) ;

if ( p g S e t  ! =  null )
{

/ /  l o o p  t h r o u g h  a l l  t h e  PG e n t i t i e s
for ( I t e r a t o r  i  = p g S e t . iterator ( ) ;  i .hasNext ( ) ; )

{
E n t i t y P g  p g E n t i t y  -  ( E n t i t y P g ) i . next ( ) ;
int r e c S t a t e  = p g E n t i t y . getRcstate ( ) .intValue ( ) ;
boolean r e q u i r e d  = false;
T p N r V a l i d a t i o n s  t p N r V a l i d a t i o n s  =

T p N r V a l i d a t i o n s . getlnstance ( ) ;  
switch ( r e c S t a t e )
{

case T P R e c o n f i g S t a t e E n u m . T P _ R C _ S T A T E _ A D D N O D E _ V A L U E : 
c h e c k  t o  s e e  i f  n o d e  map i s  n o n - n i l  

if ( t p N r V a l i d a t i o n s . nodeMapIsNil ( p g E n t 1 t y )
!= null)

{
/ /  a n o n - n i l  n o d e  map i n d i c a t e s  a n o d e  map  
/ '  s e t  e v e n t  h a s  b e e n  m i s s e d ,  a n d  t h e  a d d

60 o f  135



/ ,  n o d e  command h a s  b e e n  c o m p l e t e d  
{ T p N r A d d N o d e . getlnstance()). 

complete ( p g E n t i t y ) ;
}
else
{

r e q u i r e d  true;
}
break;

case T P R e c o n f i g S t a t e E n u m . T P _ R C _ S T A T E _ D E L N O D E _ V A L U E :  
/  ̂ c h e c k  t o  s e e  i f  n o d e  map i s  non n i l  
if ( t p N r V a l i d a t i o n s . nodeMaplsNil ( p g E n t i  t y )

!= null)
{

'■/ a  n o n - n i l  n o d e  map i n d i c a t e s  a n o d e  map 
/ /  s e t  e v e n t  h a s  b e e n  m i s s e d ,  a n d  t h e  
/ /  d e l e t e  n o d e  command h a s  t o  b e  b a c k e d  o u t  
( T p N r D e l e t e N o d e . getlnstance()). 

backout ( p g E n t i t y ) ;

}
else

r e q u i r e d   ̂ true ; 

break;

case T P R e c o n f  i g S t a t e E n u m .  T P _ R C . _S TA TE_ I D LE_ VA LU E : 
do  n o t h i n g  

break;

default :
new Swerr ( " I n v a l i d  r e c o n f i g  s t a t e  ; +

r e c S t a t e ) ;
break;

if ( r e q u i r e d )
{

/ /  r a i s e  t h e  'ADM i n  s i n g l e  n o d e  c o n f i g u r a t i o n '  
/ /  a l a r m
( T p N r U t i l i t i e s .getlnstance0 ).alarm ( p g E n t i t y , 

A F _ P r o b l e m T y p e E n u m .
A F _ ADMI N S I N GL E N OD E C ON F I G_ P T , 

true);

}

/ /  v a l i d a t e  a n d  c ommi t  t h e  t r a n s a c t i o n  
n r T x .validate(); 
n r T x .commit();

}
}
catch ( E x c e p t i o n  e )

{
new Swerr(e.toString());

}
finally
{

if ( n r T x  != null)
{

try
(

if (! ( n r T x .getState()).isCommitted())
(

n r T x .abort();
}

}
catch ( E x c e p t i o n  e )
{

new Swerr(e .toString());
}

61 o r  I 35



* <P><B>Me t hod: </ B>  < C O D E > s u b s c r i b e R e c o n f i g S t a t e < / C O D E >

* < B R x B > D e s c r i p t i o n  : </B>

* T h i s  m e t h o d  s u b s c r i b e s  t o  t h e  DBNS f o r  e v e n t s  a s s o c i a t e d  w i t h  a n y  P C ' s
* r e c o n f i g  s t a t e  a t t r i b u t e  b e i n g  s e t ,  a n d  i s  c a l l e d  d u r i n g  t h e
* i n i t i a l i s a t i o n  o f  N e t w o r k  R e c o n f i g s . < ' ' P >

* <P>NOTE: B o t h  t h e  Commit  a n d  P r e - V a l i d a t i o n  e v e n t s  a r e  s u b s c r i b e d  t o .  The
* p r o c e s s i n g  o f  t h e  a d d  n o d e  o r  d e l e t e  n o d e  command v / i l l  b e  e x e c u t e d  w i t h i n
* t h e  c o n t e x t  o f  t h e  p r e - v a l i d a t i o n  e v e n t ,  a n d  t h e  f i n a l  p r o c e s s i n g
* ( g e n e r a t i o n  o f  s u c c e s s  l o g ,  s u b s c r i p t i o n  t o  n o d e  map s e t  e v e n t s ,  and
* r a i s i n g  o f  a l a r m )  i s  p e r f o r m e d  w i t h i n  t h e  c o m m i t  e v e n t . < / P >

* Q r e t u r n  b o o l e a n
* -  t r u e  i f  s u c c e s s f u l ,  f a l s e  o t h e r w i s e

I n p u t s :  None

* O u t p u t s :  None

public boolean subscribeReconfigState()
{

boolean r c  = true;

try
t

/ /  d e f i n e  w i l d c a r d  PG k e y
E n t i t y P g K e y  p g K e y  = n e w  E n t i t y P g K e y ( E n t i t y P g K e y . W C _ s h e l f i d ,

E n t i t y P g K e y . W C _ s l o t I d ,  
E n t i t y P g K e y . W C _ p o r t I d ,  
E n t i t y P g K e y . W C _ p i p e I d ) ;

/ /  s e t  t h e  o p e r a t i o n  t o  u p d a t e
O p e r a t i o n  r e c S t a t e S e t  = n e w  O p e r a t i o n ( t r u e ,  / /  i n s e r t

t r u e ,  / /  d e l e t e  
t r u e  ) ;  / /  u p d a t e

/ /  c r e a t e  a v p l i s t  w i t h  r e c o n f i g  s t a t e  a t t r i b u t e  
A v p L i s t  r e c S t a t e A v p L i s t  = n e w  A v p L i s t O ;  
r e c S t a t e A v p L i s t . a d d A v p ( A v p F a c t o r y . n e w A v p  { " r e s t a t e "  ) )  ;

/ /  c r e a t e  DBNS f i l t e r  f o r  r e c o n f i g  s t a t e  a t t r i b u t e  
D b n s F i l t e r  r e c S t a t e F i l t e r  = n e w  D b n s F i l t e r  ( r e c S t a t e S e t ,

p g K e y ,
r e c S t a t e A v p L i s t )

/ /  s u b s c r i b e  t o  t h e  p r e - v a l i d a t i o n  e v e n t  f o r  r e c o n f i g  s t a t e  
D b n s . s u b s c r i b e ( D b n s E v e n t . D B N S _ P R E _ V A L I DA T I O N _ E V E N T _ T Y P E ,  

T p N r R c D b n s S u b s c r i b e r . g e t l n s t a n c e ( ) ,  
r e c S t a t e F i l t e r ) ;

/ /  s u b s c r i b e  t o  t h e  c o m m i t  e v e n t  f o r  r e c o n f i g  s t a t e  
D b n s . s u b s c r i b e ( D b n s E v e n t . DBNS_ COMMI T_EVENT_TYPE,

T p N r R c D b n s S u b s c r i b e r . g e t l n s t a n c e ( )  , 
r e c S t a t e F i l t e r ) ;

/ /  s u b s c r i b e  t o  t h e  a b o r t  e v e n t  f o r  r e c o n f i g  s t a t e  
D b n s . s u b s c r i b e ( D b n s E v e n t . D B N S _ A B O R T _ E V E N T _ T Y P E ,

T p N r R c D b n s S u b s c r i b e r . g e t l n s t a n c e ( ) ,  
r e c S t a t e F i l t e r ) ;

)

catch ( E x c e p t i o n  e )

{
new Swerr (e .toString()); 
r c  = false;

}

return r c ;

62 or 135



* < P x B > M e t h o d :  < /B> <CODE>subscr ibeNodeMap</CODE>

* < B R x B > D e s c r i p t i o n  : < /B>

* T h i s  m e t h o d  s u b s c r i b e s  t o / u n s u b s c r i b e s  f r o m  t h e  DBNS f o r  e v e n t s
* a s s o c i a t e d  w i t h  a PG nodemap  a t t r i b u t e . < /P>

* Q r e t u r n  b o o l e a n
* - t r u e  i f  s u c c e s s f u l ,  f a l s e  o t h e r w i s e
*/

* I n p u t s :  None

* O u t o u t s :  None

public boolean subscribeNodeMap() 

boolean r c  = true;

try
{

d e f i n e  w i l d c a r d  PG k e y  
E n t i t y P g K e y  p g K e y  = new EntityPgKey ( E n t i  t y P g K e y . W C _ s h e I f I d ,

E n t i t y P g K e y , W C _ s l o t I d ,  
E n t i t y P g K e y . W C _ p o r t I d ,  
E n t i t y P g K e y - W C _ p i p e I d ) ;

s e t  t h e  o p e r a t i o n  t o  u p d a t e  
O p e r a t i o n  n o d e M a p S e t  = new Operation ( false, ' i n s e r t

false, d e l e t e
true ) ;  / /  u p d a t e

c r e a t e  a v p l i s t  w i t h  r e c o n f i g  s t a t e  a t t r i b u t e  
A v p L i s t  n o d e M a p A v p L i s t  = new AvpList(); 
n o d e M a p A v p L i s t . addAvp ( A v p F a c t o r y . newAvp ( n : d e m a p ' ) ) ;

c r e a t e  DBNS f i l t e r  f o r  r e c o n f i g  s t a t e  a t t r i b u t e  
D b n s F i l t e r  n o d e M a p F i l t e r  = new DbnsFilter ( n o d e M a p S e t ,

p g K e y ,
n o d e M a p A v p L i s t ) ;

/ /  s u b s c r i b e  t o  t h e  p r e - v a l i d a t i o n  e v e n t  f o r  n o d e  map  
D b n s . subscribe( D b n s E v e n t . D B N S _ P R E _ V A L I D A T I O N _ E V E N T _ T Y P E ,  

T p N r N m D b n s S u b s c r i b e r . getlnstance(), 
n o d e M a p F i I t e r ) ;

/ /  s u b s c r i b e  t o  t h e  c o m m i t  e v e n t  f o r  n o d e  map 
D b n s . subscribe( D b n s E v e n t . DBNS _ C OMMI T_ EV EN T_ TYP E,

T p N r N m D b n s S u b s c r i b e r . getlnstance(), 
n o d e M a p F i l t e r ) ;

}
catch ( E x c e p t i o n  e )

{
new Swerr {e .toString()); 
r c  = false;

}
return r c ;

63 or 135



* <P><B>Me t hod: </ B>  < CODE >g e nUni tS t r ing </ COD E>

* < B R x B > D e s c r i p t i o n :  </B>

* T h i s  m e t h o d  g e n e r a t e s  t h e  u n i t  s t r i n g  w h i c h  i s  s u b s e q u e n t l y  u s e d  i n  t h e
* T p N r U t i l i t i e s . l o g {) m e t h o d  f o r  g e n e r a t i n g  t h e  U s e r  V i s i b l e  L o g . < / P >

* 9param p g E n t i t y
* - t h e  PG upon w h i c h  t h e  r e c o n f i g  o p e r a t i o n  h a s  b e e n  e x e c u t e d

* Q r e t u r n  S t r i n g
* -  t h e  s t r i n g  a s s o c i a t e d  w i t h  t h e  u n i t  upon w h i c h  t h e
* r e c o n f i g  o p e r a t i o n  h a s  b e e n  e x e c u t e d
V

/
* O u t p u t s :  None  

*/

public String genUnitString ( E n t i t y P g  p g E n t i t y )
{

StringBuffer u n i t  = new StringBuffer ( ) ;  

try
I

T p A i d A d a p t a t i o n l m p i  t p A i d  = T p A i d A d a p t a t i o n l m p l , getlnstance( ) ;

u n i t  = u n i t . append ( t p A i d . EntityToAID( ( E n t i t y O b j B a s e ) p g E n t i t y )
^  I  )  ;

' '  g e t  s h e l f ,  s l o t  a n d  p o r t  i n f o r m a t i o n  f o r  e a c h  PGM t h a t  m ak e s  
/  up t h e  PG

E n t i t y P g m K e y [ ]  p g m L i s t  = p g E n t i t y . getMemberList ( ) ;  
byte p g m N u m b e r  = p g E n t i t y . getNumberOfPgm() ;

/ /  l o o p  t h r o u g h  t h e  pgm l i s t  a n d  a d d  t h e  s h e l f ,  s l o t ,  p o r t  i n f o  t o
/ /  t h e  u n i t  s t r i n g
int l a s t P g m  = p g m N u m b e r  -  1 ;
for (byte i n d e x  = 0 ;  i n d e x  < p g m N u m b e r ;  i n d e x + + )

{
E n t i  t y P g m K e y  p g m K e y  = p g m L i s t [ i n d e x ] ;

u n i t  = u n i t . append ( t p A i d . EntityToAID ( ( E n t i t y K e y ) p g m K e y ,
E n t i t y l d E n u m . E N _ P G M _ V A L U E ) ) ;

i f  ( i n d e x  ! =  l a s t P g m )
{

u n i t  = u n i t . append ( , " ) ;

/ /  i n  t h e  c a s e  w h e r e  4 PGMs a r e  b e i n g  s t o r e d  i n  t h e  u n i t  
/ /  s t r i n g  t h e  8 0  c h a r a c t e r  w i n d o w  l i m i t  i s  e x c e e d e d ,  a n d  
/ /  t h i s  a d d i t i o n a l  f o r m a t t i n g  i s  r e q u i r e d  
if ( i n d e x  == 1)

{
u n i t  = u n i t . append ( ' \ n \ t \ t " ) ;

}
/ /  a d d  t r a i l i n g  '] 
u n i t  = u n i t .append("1 );

}
catch ( E x c e p t i o n  e )
{

new Swerr(e .toString());
}

return u n i t .toString();

64 or 135



< P x B > M e t h o d : </B> <CODE >s e t For ce Pas s Thr u< / CODE>

* < B R x B > D e s c r i p t i o n :  < ''B>

* T h i s  m e t h o d  s e t s  t h e  f o r c e  p a s s  t h r o u g h  PG a t t r i b u t e  t o  t h e  v a l u e
* p a s s e d  i n .  S e t t i n g  t h e  f o r c e  p a s s  t h r o u g h  v a l u e  t o  t r u e  p l a c e s  t h e
* p r o t e c t i o n  c h a n n e l s  i n t o  f u l l  p a s s  t h r o u g h  mode  ( t r a f f i c  a n d  k b y t e s ) . < / P >

* Qparam p g E n t i t y
* - t h e  PG upon w h i c h  t h e  r e c o n f i g  o p e r a t i o n  h a s  b e e n  e x e c u t e d
* ê par am p a s s  t h r u
* -  t r u e  t o  e n a b l e  f o r c e  p a s s  t h r u ,  f a l s e  t o  d i s a b l e

* S r e t u r n  b o o l e a n
* -  t r u e  i f  s u c c e s s f u l ,  f a l s e  o t h e r w i s e

O u t p u t s  : None

public boolean setForcePassThru ( E n t i t y P g  p g E n t i t y ,
boolean p a s s t h r u )

{
boolean r c  = true,

try
{

f ( p a s s t h r u )

p g E n t i t y . setSpecialmode( S p e c i  a l M o d e E n u m . S PECI AL_ MODE_ P AS S THRU)  ;

Ise

p g E n t i t y . setSpecialmode ( S p e c i  a l M o d e E n u m . SPECTAL_MODE_NONE)  ;

}
catch ( E x c e p t i o n  e )
{

new Swerr(e.toString()); 
r c  = false;

return r c ;

/ /  e n d  o f  T p N r R e c o n f i g N o d e

65 o f  135



Class: TpNrAddNode
/ *  *

* < B > F i l e : < / B >  <CODE>TpNrAddNode. j ava< / CODE>

p a c k a g e  e q u i n o x . p r o t e c t  i o n . t r a f f i c . r e c o n f i g ;

i m p o r t  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g . T p N r E r r o r C o d e ; 
i m p o r t  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g . T p N r V a l i d a t i o n s ; 
i m p o r t  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g . T p N r U t  i l i t i e s  ; 
i m p o r t  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g . T p N r C o n n M n g m t ; 
i m p o r t  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g . T p N r R e c o n f i g N o d e ;

i m p o r t  e q u i n o x . f r a m e w o r k . s w e r r . S w e r r ;

i m p o r t  e q u i n o x . f r a m e w o r k . n o m . o b j  s . E n t i t y P g ;

i m p o r t  e q u i n o x . f r a m e w o r k . n o m . e n u m s . A F _ P r o b I e m T y p e E n u m ;  
i m p o r t  e q u i n o x . f r a m e w o r k . n o m . e n u m s . T P R e c o n f i g S t a t e E n u m ;

/* +
* < P x B > C l a s s  : < / B> <CODE>TpNrAddNode</CODE></P>

* < P x B > D o c u m e n t  : < B> S t a n d a r d  R e c o n f i g s  DD
* - a v a i l a b l e  i n  A t h e n a ,  t o i  l o w i n g  t h i s  p a t h :
* <BR> - E q u i n o x
* <BR> P r o d u c t  D e v e l o p m e n t
* <BR> - S o f t w a r e
* <BR> - N e t w o r k  E l e m e n t  S o f t w a r e
* <BR> - F u n c t i o n a l  A r e a s
* <BR> N e t w o r k  R e c o n f i g
* <BR> - D e s i g n  F o l d e r  </ P>

* < B > D e s c r i p t i o n : </B>

" The TpNrAddNode  c l a s s  d e f i n i t i o n  e n c a p s u l a t e s  a l l  t h e  h i g h  l e v e l  p r o c e s s i n g
* r e q u i r e d  f o r  an Add  Node  o p e r a t i o n .

* @ a u t h o r  A n d y  K i n n e y  
* /

* M e t h o d s :

* b o o l e a n  p r o c e s s  ( . . . )
* -  p r o c e s s i n g  r e q u i r e d  when an a d d  n o d e  o p e r a t i o n  i s  r e q u e s t e d

* b o o l e a n  b a c k o u t ( . . . }
* -  p r o c e s s i n g  i n v o l v e d  when a d d  n o d e  i s  b a c k e d  o u t

* b o o l e a n  c o m p l e t e ( . . . )
* -  p r o c e s s i n g  i n v o l v e d  i n  c o m p l e t i n g  t h e  a d d  n o d e  o p e r a t i o n

public final class T p N r A d d N o d e  
{

* s i n g l e t o n  i n s t a n c e  o f  t h i s  c l a s s  
* /
private static T p N r A d d N o d e  I NS TANCE = n u l l ;

66 or 135



* <P><3 >Me t ho d: </B> < CODE >g et Ins t anc e < / CO DE>

* < B R x B > D e s c r i p t i o n  : </B>

* T h i s  m e t h o d  r e t u r n s  t h e  i n s t a n c e  o f  t h i s  s i n g l e t o n . < / P >

* Q r e t u r n  TpNrAddNode
* -  t h e  s i n g l e t o n  i n s t a n c e  o f  TpNrAddNode  
*/
* I n p u t s :  None

* O u t p u t s :  None  

*/
public static synchronized T p N r A d d N o d e  getlnstance()
{

if ( I NS TA NC E == null)
{

I NS TANCE = new TpNrAddNode();
}
return INSTANCE;

* C o n s t r u c t o r , made  p r i v a t e  a s  c l a s s  i s  s i n g l e t o n

private TpNrAddNode ()
{
}

67 o f  135



< P x B > M e t h o d  : < /B> <CODE>process</CODE>

< B R x B > D e s c r i p t i o n  : < -'B>

T h i s  m e t h o d  i s  i n v o k e d  when t h e
<CODE> T p N r R c D b n s S u b s c r  i b e r  . n o t i f y ' j ' J i t h R e s p o n s e  (} </CODE>
m e t h o d  i s  c a l l e d  w i t h  a r e q u e s t  t o  p r e - v a l i d a t e  s e t t i n g  t h e  r e c o n f i g
s t a t e  PG a t t r i b u t e  t o  a d d  n o d e .

< P> T hi s  m e t h o d  t h e n  p e r f o r m s  t h e  r e q u i r e d  Ad d  No d e  v a l i d a t i o n s  an d  
p r o c e s s i n g ,  r e t u r n i n g  t r u e  i f  s u c c e s s f u l , f a l s e  o t h e r w i s e .  < / p >

<P>NOTE: The c r e a t i o n  o f  t h e  p a s s  t h r o u g h  c o n n e c t i o n s  on t h e  w o r k i n g  
c h a n n e l s  i s  o wn ed  b y  C o n n e c t i o n  Man ag e me nt  s o f t w a r e ,  a n d  n o t  i n c l u d e d  i n  
t h i s  m e t h o d .  < / P>

ÿ pa ra m p g E n t i t y
-  t h e  e n t i t y  i n  t h e  d a t a b a s e  upon w h i c h  t h e  a d d  n o d e  

o p e r a t i o n  h a s  b e e n  r e q u e s t e d .

ê r e t u r n  b o o l e a n
- TRUE i f  a d d  n o d e  command s u c c e s s f u l , FALSE o t h e r w i s e

O u t p u t s :  None

public boolean process ( E n t i t y P g  p g E n t i t y )
{

boolean r c  = false,
String e r r o r R e a s o n  -  T p N r E r r o r C o d e . TP_NR_ ERR_SWERR;

. v a l i d a t e  t h e  a d d  n o d e  command  
T p N r V a l i d a t i o n s  t p N r V a l i d a t i o n s  = T p N r V a l i d a t i o n s . getlnstance(); 
if ( ( ( e r r o r R e a s o n  = t p N r V a l i d a t i o n s . noActiveReconfigs ( p g E n t i t y ) )

== null) &&
( ( e r r o r R e a s o n  = t p N r V a l i d a t i o n s . isPgBlsr ( p g E n t i t y ) )

== null) &&
( ( e r r o r R e a s o n  = t p N r V a l i d a t i o n s . nodeMaplsNil ( p g E n t i t y ) )

== null) )
(

/ /  e x e c u t e  t h e  a d d  n o d e  command
if ( ( ( T p N r R e c o n f i g N o d e . getlnstance()).

setForcePassThru ( p g E n t i t y , true)) &&
( ( T p N r C o n n M n g m t . getlnstance ( )) .deleteAllXcons ( p g E n t i  t y ) )

{
r c  = true;

}
else
{

e r r o r R e a s o n  = T p N r E r r o r C o d e . TP_ NR_ERR_SWERR;
}

)
/ / i f  t h e  command h a s  f a i l e d ,  t h e n  g e n e r a t e  t h e  f a i l u r e  l o g  
if ( ! r c )
{

String o p e r a t i o n  = new String ( “A d d  N o d e " ) ;
String u n i t  = ( T p N r R e c o n f i g N o d e . getlnstance()).

genUnitString ( p g E n t i t y ) ;

( T p N r U t i 1 i t i e s . getlnstance()).log ( o p e r a t i o n ,  u n i t ,
e r r o r R e a s o n ,  false);

}
return r c ;

6X or 135



/* *

* < P x B > M e t h o d :  </B> <CODE>backout</CODE>

* < B R x B >  D e s c r i p t  i o n  : </B>

* T h i s  m e t h o d  i s  i n v o k e d  when t h e  T p N r R c D b n s S u b s c r i b e r . n o t i f y W i t h R e s p o n s e O
* m e t h o d  i s  c a l l e d  w i t h  a r e q u e s t  t o  p r e - v a l i d a t e  s e t t i n g  t h e  r e c o n f i g
* s t a t e  PG a t t r i b u t e  t o  i d l e . < / P >

* < P > S e t t i n g  t h e  r e c o n f i g  s t a t e  a t t r i b u t e  b a c k  t o  i d l e  i n d i c a t e s  t h e  a d d
* n o d e  command i s  b e i n g  b a c k e d  o u t . < / P >

* 0pa ra m p g E n t i t y
* - t h e  e n t i t y  i n  t h e  d a t a b a s e  upon w h i c h  t h e  a d d  n o d e
* o p e r a t i o n  h a s  b e e n  r e q u e s t e d .

* S r e t u r n  b o o l e a n
* - TRUE i f  a d d  n o d e  b a c k o u t  s u c c e s s f u l , FALSE o t h e r w i s e
V

O u t p u t s :  None

public boolean backout ( E n t i t y P g  p g E n t i t y )
(

boolean r c  = false;

/ ' /  c l e a r  t h e  a d d  n o d e  command
if ( (( T p N r R e c o n f i g N o d e .getlnstance()).

setForcePassThru( p g E n t i t y , false)) &&
( ( T p N r C o n n M n g m t.getlnstance()).deleteAllXcons( p g E n t i t y ) ) )

(
r c  = true;

}
return r c ;

69 o f  135



* <P><B>Me thod: < /B> <CODE>comple te</CODE>

* < B R > < B > D e s c r i p t i o n : < / B >

* T h i s  m e t h o d  i s  i n v o k e d  when t h e  T p N r N m D b n s S u b s c r i b e r . n o t i  f y W i t i i R e s p o n s e  ( )
* m e t h o d  i s  c a l l e d  w i t h  a r e q u e s t  t o  p r e - v a l i d a t e  s e t t i n g -  t h e  nod ema p  PG
* a t t r i b u t e . < / P >

* < P > P r o v i d i n g  t h e  nodemap  h a s  b e e n  s e t  t o  a n o n - n i l  v a l u e  i t  i n d i c a t e s  t h e
* c o m p l e t i o n  o f  t h e  a d d  n o d e  p r o c e d u r e ,  a n d  t h i s  m.e thcd c l e a r s  o u t  t h e  a d d
* n o d e  i n  f o r m a t i o n . < / P>

* <P>NOTE: The d e l e t i o n  o f  t h e  p a s s  t h r o u g h  c o n n e c t i o n s  on t h e  w o r k i n g
* c h a n n e l s  i s  o w n e d  b y  C o n n e c t i o n  Manageme nt  s o f t w a r e ,  a nd  n o t  i n c l u d e d  i n  
" t h i s  m e t h o d . < / P >

* Qparam p g E n t i t y
* -  t h e  e n t i t y  i n  t h e  d a t a b a s e  upon w h i c h  t h e  a d d  n o d e
■* o p e r a t i o n  h as  b e e n  r e q u e s t e d .

* ê r e t u r n  b o o l e a n
* -  TRUE i f  a d d  n o d e  c o m p l e t i o n  s u c c e s s f u l , EALSE o t h e r w i s e
*/

/*
* O u t p u t s :  None

public boolean con^lete ( E n t i t y P g  p g E n t i t y )
f

boolean r c  = false;

if ( ( T p N r V a l i d a t i o n s . getlnstance()) .nodeMaplsNil ( p g E n t i  t y )  ! =  null) 
(

/  c l e a r  a d d  n o d e
if ( ( ( T p N r U t i l i t i e s .getlnstance( ) ) . sotRecState( p g E n t i t y ,

T P R e c o n f i g S t a t e E n u m . T P _ R C _ S T A T E _ T D L E ) ) &&
( ( T p N r R e c o n f  i g N o d e . getlnstance()) .

setForcePassThru( p g E n t i t y , false)) )

r c  = true;

}
else
{

/ /  i f  t h e  n o d e  map i s  n i l ,  t h e n  d o  n o t h i n g ,  t h e  a d d  n o d e  
/ /  p r o c e d u r e  h a s  n o t  b e e n  f i n i s h e d  
r c  = true;

}
return r c ;

}
} / /  e n d  o f  TpNrAddNode

70 o f  I 35



Class: TpNrDeleteNode
/* *

* < B > F i l e : < / B >  <CODE>TpNr Del e t aNode .  j ava< / CODE>
*/

p a c k a g e  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g ;

i m p o r t  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g . T p N r E r r o r C o d e ;  
i m p o r t  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g . T p N r V a l i d a t i o n s ; 
i m p o r t  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g . T p N r U t i l i t i e s ; 
i m p o r t  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g . T p N r C o n n M n g m t ; 
i m p o r t  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g . T p N r R e c o n f i g N o d e ;

i m p o r t  e q u i n o x . f r a m e w o r k . n o m . o b j  s . E n t i t y P g ;

i m p o r t  e q u i n o x . f r a m e w o r k . s w e r r . S w e r r ;

i m p o r t  e q u i n o x . f r a m e w o r k . n o m . e n u m s . A F _ P r o b l e m T y p e E n u m ;  
i m p o r t  e q u i n o x . f r a m e w o r k . n o m . e n u m s . T P R e c o n f i g S t a t e E n u m ;

* < P x B > C l a s s  : < /B> < C O D E > T pN r De l e t e No d e< / CO D E x  > P>

* < P x B > D o c u m e n t  : < ,'B> S t a n d a r d  R e c o n f i g s  DD
* - a v a i l a b l e  i n  A t h e n a ,  f o l l o w i n g  t h i s  p a t h :
* <BR> - E q u i n o x
* <BR> - P r o d u c t  D e v e l o p m e n t
* <BR> - S o f t w a r e
* <BR> - N e t w o r k  E l e m e n t  S o f t w a r e
* <BR> F u n c t i o n a l  A r e a s
* <BR> - N e t w o r k  R e c o n f i g
* <BR> - D e s i g n  F o l d e r  < / P>

* < B > D e s c r i p t i o n : < / B >

* The T p N r D e l e t e N o d e  c l a s s  d e f i n i t i o n  e n c a p s u l a t e s  a l l  t h e  h i g h  l e v e l
* p r o c e s s i n g  r e q u i r e d  f o r  a D e l e t e  No d e  o p e r a t i o n .

* § a u t h o r  A n d y  K i n n e y  
*/

/*
* M e t h o d s :

* b o o l e a n  p r o c e s s f . . . J
* - p r o c e s s i n g  r e q u i r e d  when an d e l e t e  n o d e  o p e r a t i o n  i s  r e q u e s t e d

* b o o l e a n  b a c k o u t ( . . . )
* -  p r o c e s s i n g  i n v o l v e d  when d e l e t e  n o d e  i s  b a c k e d  o u t

* b o o l e a n  c o m p l e t e ( . . . )
* - p r o c e s s i n g  i n v o l v e d  i n  c o m p l e t i n g  t h e  d e l e t e  n o d e  o p e r a t i o n

* b o o l e a n  s e t N o d e M a p ( . . . )
* - s e t s  t h e  n o d e  map a t t r i b u t e  o f  t h e  PG t o  n i l  

*/
public final class T p N r D e l e t e N o d e  

{
/*■"

* s i n g l e t o n  i n s t a n c e  o f  t h i s  c l a s s  
*/
private static T p N r D e l e t e N o d e  I NS TANCE = null;

71 o r  135



/**
* < P x B > M e t h o d :  </B> <CODE >g et In s t an ce < / CO DE>

* < B R x B > D e s c r i p t i o n  : </B>

* T h i s  m e t h o d  r e t u r n s  t h e  i n s t a n c e  o f  t h i s  s i n g l e t o n . < / P >

* ê r e t u r n  T p N r D e l e t e N o d e
* - t h e  s i n g l e t o n  i n s t a n c e  o f  T p N r D e l e t e N o d e
* /

* I n p u t s :  None

* O u t p u t s  : None  

V

public static synchronized T p N r D e l e t e N o d e  getlnstance{)
{

if ( I NS TANCE == null)
{

I NSTANCE = new TpNrDeleteNode();
}
r e t u r n  I NS TANCE;

}

* C o n s t r u c t o r ,  made  p r i v a t e  a s  c l a s s  i s  s i n g l e t o n
* /
private TpNrDeleteNode ()
{
}

72 o f  135



* < P x B > M e t h o d :  </B> <CODE>process</CODE>

* < B R x B > D e s c r i p t i o n  : </B>

* T h i s  m e t h o d  i s  i n v o k e d  when t h e  TpNrRcDhns  S u b s c r  i h e r . n o t  i f y l ' I i t h R e s p o n s e  ( )
* m e t h o d  i s  c a l l e d  w i t h  a r e q u e s t  t o  p r e - v a l i d a t e  s e t t i n g  t h e  r e c o n f i g
* s t a t e  PG a t t r i b u t e  t o  d e l e t e  n o d e . < / P >

* <P> Thi s  m e t h o d  t h e n  p e r f o r m s  t h e  r e q u i r e d  D e l e t e  Node  v a l i d a t i o n s  and
* p r o c e s s i n g ,  r e t u r n i n g  t r u e  i f  s u c c e s s f u l , f a l s e  o t h e r w i s e . < / P >

* <P>NOTE: The c r e a t i o n  o f  t h e  p a s s  t h r o u g h  c o n n e c t i o n s  on t h e  w o r k i n g
* c h a n n e l s  i s  o wned  b y  C o n n e c t i o n  Manageme nt  s o f t w a r e ,  a n d  n o t  i n c l u d e d  i n
* t h i s  m e t h o d . <.'P>

* Qparam p g E n t i t y
" -  t h e  e n t i t y  i n  t h e  d a t a b a s e  upon w h i c h  t h e  d e l e t e  n o d e

o p e r a t i o n  h a s  b e e n  r e q u e s t e d .

@ r e t u z n b o o l e a n
- TRUE i f  d e l e t e  n o d e  command s u c c e s s f u l , FALSE o t h e r w i s e

O u t p u t s  : None

public boolean process ( E n t i t y P g  p g E n t i t y )
{

boolean rc = false,
String e r r o r R e a s o n  - T p N r E r r o r C o d e . T P _ N R _ ERR _ S WERR;

v a l i d a t e  t h e  d e l e t e  n o d e  command  
T p N r V a l i d a t i o n s  t p N r V a l i d a t i o n s  = T p N r V a l i d a t i o n s . getlnstance(); 
if ( ( ( e r r o r R e a s o n  = t p N r V a l i d a t i o n s .noActiveReconfigs( p g E n t i t y )

= = nu11) & &
( { e r r o r R e a s o n  = t p N r V a l i d a t i o n s . isPgBlsr ( p g E n t i t y ) )

= = null) ic&

( ( e r r o r R e a s o n  = t p N r V a l i d a t i o n s . noAddDrops ( p g E n t i t y ) )
= = nu11) &&

( ( e r r o r R e a s o n  = t p N r V a l i d a t i o n s . noProtSwActive ( p g E n t i t y ) )
= = null) )

{
if ( t p N r V a l i d a t i o n s . nodeMaplsNil ( p g E n t i t y )  == null)
(

e r r o r R e a s o n  = T p N r E r r o r C o d e . T P _ N R _ E R R _ N O T _ R T N G ;
)

else
!

/■■' e x e c u t e  t h e  d e l e t e  n o d e  command  
f  ( ( setNodeMap ( p g E n t i t y ) ) &&

( ( T p N r R e c o n f i g N o d e . getlnstance()).
setForcePassThru( p g E n t i t y ,  true)) )

r c  = true;

else

e r r o r R e a s o n  = T p N r E r r o r C o d e , T P _ N R _ E R R _ S W E R R ;

.'■ / i f  t h e  command h a s  f a i l e d ,  t h e n  g e n e r a t e  t h e  f a i l u r e  l o g  
if (Ire)

String o p e r a t i o n  = new String ( " D e l e t e  M o d e " ) ;
String u n i t  = ( T p N r R e c o n f i g N o d e . getlnstance()).

genUnitString( p g E n t i t y ) ;

( T p N r U t i l i t i e s . getlnstance0 ) . log ( o p e r a t i o n ,  u n i t ,
e r r o r R e a s o n ,  false);

r e t u r n  r c ;

73 o f  I 35



* < P x B > M e t h o d :  </B> <CODE>comple te</CODE>

* < B R x B > D e s c r i p t i o n  : </B>

* T h i s  m e t h o d  i s  i n v o k e d  when t h e  T p N r R c D b n s S u b s c r i b e r . n o t i f y W i t h R e s p o n s e  ( )
* m e t h o d  i s  c a l l e d  w i t h  a r e q u e s t  t o  p r e - v a l i d a t e  s e t t i n g  t h e  r e c o n f i g
* s t a t e  PG a t t r i b u t e  t o  i d l e . < / P >

* < P > S e t t i n g  t h e  r e c o n f i g  s t a t e  a t t r i b u t e  b a c k  t o  i d l e  i n d i c a t e s  t h e  d e l e t e
* n o d e  command i s  b e i n g  c o m p l e t e d . </P>

* Qparam p g E n t i t y
* - t h e  e n t i t y  i n  t h e  d a t a b a s e  upon w h i c h  t h e  d e l e t e  n o d e
* o p e r a t i o n  h a s  b e e n  r e q u e s t e d .

* Qparam b o o l e a n
* -  TRUE i f  d e l e t e  n o d e  c o m p l e t i o n  s u c c e s s f u l , FALSE o t h e r w i s e

* O u t p u t s :  None

public boolean complete { E n t i t y P g  p g E n t i t y )
{

boolean r c  = false;

' /  c l e a r  t h e  a d d  n o d e  command  
if ( ( ( T p N r R e c o n f i g N o d e .getlnstance()).

setForcePassThru( p g E n t i t y ,  false)) &&
( ( T p N r C o n n M n g m t.getlnstance()).deleteAllXcons( p g E n t i t y ) ) )

(

r c  = true;

return r c ;

74 o f  135



* < P x B > M e t h o d :  < .^B> <CODE>backout< ^CODE>

* < B R x B > D e s c r i p t i o n  : < /B>

* T h i s  m e t h o d  i s  i n v o k e d  when t h e  T p N r N m D b n s S u b s c r i b e r . n o t i f y W i t h R e s p o n s e O
* m e t h o d  i s  c a l l e d  w i t h  a r e q u e s t  t o  p r e - v a l i d a t e  s e t t i n g  t h e  n o de ma p PG
* a t t r i b u t e . < /p>

* < P > P r o v i d i n g  t h e  n ode map  h a s  b e e n  s e t  t o  a n o n - n i l  v a l u e  i t  i n d i c a t e s  t h e
* h a c k i n g  o u t  o f  t h e  d e l e t e  n o d e  p r o c e d u r e ,  a n d  t h i s  m,e thod  c l e a r s  o u t  t h e
* d e l e t e  n o d e  i n  f o r m a t i o n . <,^P>

* <P>NOTE: The d e l e t i o n  o f  t h e  p a s s  t h r o u g h  c o n n e c t i o n s  on t h e  w o r k i n g
* c h a n n e l s  i s  o wn ed  b y  C o n n e c t i o n  Manageme nt  s o f t w a r e ,  a n d  n o t  i n c l u d e d  i n
* t h i s  m e t h o d . < / P >

ê pa r a m  p g E n t i t y
-  t h e  e n t i t y  i n  t h e  d a t a b a s e  upon w h i c h  t h e  d e l e t e  n o d e  

o p e r a t i o n  h a s  b e e n  r e q u e s t e d .

ê r e t u r n  b o o l e a n
- TRUE i f  d e l e t e  n o d e  b a c k o u t  s u c c e s s f u l , FALSE o t h e r w i s e

O u t p u t s :  None

public boolean backout ( E n t i t y P g  p g E n t i t y )
{

boolean r c  = false;

if { { T p N r V a l i d a t i o n s . getlnstance()) nodeMapIsNil( p g E n t i t y )  ! =  null)
(

/ /  c l e a r  a d d  n o d e
i f  ( ( ( T p N r U t i ] i t i e s . getlnstance( ) ) . setRecState( p g E n t i t y ,

T P R e c o n f i g S t a t e E n u m . T P _ R C _ S T A T E _ I D L E ) ) &&
( ( T p N r R e c o n f i g N o d e . getlnstance()) .setForcePassThru( p g E n t i  t y ,

false)) )

r c  = true;

}
else
{

/ /  i f  t h e  n o d e  map i s  n i l ,  t h e n  d o  n o t h i n g ,  t h e  d e l e t e  n o d e  
/ /  p r o c e d u r e  h a s  n o t  b e e n  f i n i s h e d  
r c  = true;

}

return r c ;

75 o f  135



* < P x B > M e t h o d :  </B> <CODE>setNodeMap</CODE>

* < B R x B > D e s c r i p t i o n  : < /B>

* T h i s  m e t h o d  s e t s  t h e  n o d e  map a t t r i b u t e  o f  t h e  PG t o  n i l . < / P >

* Qparam p g E n t i t y
* - t h e  PG upon w h i c h  t h e  r e c o n f i g  o p e r a t i o n  h a s  b e e n  e x e c u t e d

* ê r e t u r n  b o o l e a n
* - t r u e  i f  s u c c e s s f u l , f a l s e  o t h e r w i s e

/*
* O u t p u t s :  None  

*/
private static boolean setNodeMap ( E n t i t y P g  p g E n t i t y )
{

boolean r c  = true;

byte [ ]  n o d e m a p  = new byte [ E n t i t y P g . S I Z E _ n o d e m a p ] ;

/  i n i t i a l i s e  t h e  nodemap  a r r a y  t o  t h e  d e f a u l t  v a l u e  (32)  
for (int i n d e x  = ; i n d e x  < E n t i t y P g . S I Z E _ n o d e m a p ;  i n d e x + + )
(

n o d e m a p [ i n d e x ]  = - z ;
}
/ /  i n i t i a l i s e  t h e  i e e e m a p  v a l u e  t o  
String i e e e m a p  -  new String ( ) ;

/ /  a t t e m p t  t o  s e t  t h e  n o d e m a p / i e e e m a p  v a l u e s  t o  t h e i r  d e f a u l t s  
try
{

p g E n t i t y . setNodemap( n o d e m a p ) ;  
p g E n t i t y . setIeeemap( i e e e m a p ) ;

}
catch ( E x c e p t i o n  e )
{

r c  false;
new Swerr(e.toString());

)

return r c ;

} / /  e n d  o f  T p N r D e l e t e N o d e

76 o f  135



Class: TpNrConnMngmt
/**

* < B > F i l e : < / B >  <CODE>TpNrConnMngmc. j ava< / CODE>

p a c k a g e  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g ;

i m p o r t  e q u i n o x . f r a m e w o r k . d a t a b a s e . D b A c c e s s ; 
i m p o r t  e q u i n o x . f r a m e w o r k . d a t a b a s e . D b T r a n s a c t i o n ;

i m p o r t  e q u i n o x . f r a m e w o r k . n o m . o b j  s . E n t i t y X c o n ; 
i m p o r t  e q u i n o x . f r a m e w o r k . n o m . o b j  s . E n t i  t y P g ;

i m p o r t  e q u i n o x . f r a m e w o r k . n o m . k e y s . E n t i t y X c o n K e y ;

i m p o r t  e q u i n o x _ n e _ c o n n e c t i o n s . e n g i n e . u s e r _ i n t e r f a c e . X c o n l i s t ; 
i m p o r t  e q u i n o x _ n e _ c o n n e c t i o n s . e n g i n e . u s e r _ i n t e r f a c e . X c o n ;  
i m p o r t  e q u i n o x _ n e _ c o n n e c t i o n s . e n g i n e . u s e r _ i n t e r f a c e . C m U s e r I n t e r f a c e  ; 
i m p o r t  e q u i n o x _ n e _ c o n n e c t i o n s . e n g i n e . u s e r _ i n t e r f a c e . C m u i d b ;

i m p o r t  e q u i n o x . f r a m e w o r k . s w e r r . S w e r r ;

i m p o r t  j a v a . u t i l . H a s h S e t ; 
i m p o r t  j a v a . u t i l . I t e r a t o r  ; 
i m p o r t  j a v a . u t i l . A r r a y L i s t ;

* < P> <B > Cl as s  : </B> <CODE>TpNrConnMngmt</CODEx/P>

" < P><B>Document : </B> S t a n d a r d  R e c o n f i g s  DD
* a v a i l a b l e  i n  A t h e n a ,  f o l l o w i n g  t h i s  p a t h :
* <BR> - E q u i n o x
* <BR> - P r o d u c t  D e v e l o p m e n t
* <BR> - S o f t w a r e
* <BR> -  N e t w o r k  E l e m e n t  S o f t w a r e
* <BR> ~ F u n c t i o n a l  A r e a s
* <BR> - N e t w o r k  R e c o n f i g
* <BR> - D e s i g n  F o l d e r  </P>

* < B > D e s c r i p t i o n : < / B >

* The TpNrConnMngmt c l a s s  d e f i n i t i o n  e n c a p s u l a t e s  t h e  f u n c t i o n a l i t y  u s e d  t o
* m a n i p u l a t e  X c o n s  on t h e  NE a s s o c i a t e d  w i t h  t h e  r e c o n f i g  commands .

* ^ a u t h o r  A n d y  K i n n e y  
* /

/ *
* M e t h o d s :

* H a s h s e t  g e t D e l e t e d L i s t ()
* -  g e t s  t h e  l i s t  o f  x c o n s  d e l e t e d  w h i l e  p r o c e s s i n g  a d d / d e l e t e  n o d e

* v o i d  c l e a r D e l e t e d L i s t I )
* -  c l e a r s  t h e  l i s t  o f  d e l e t e d  x c o n s

* b o o l e a n  d e l e t e A l l X c o n s ( . . . )
* -  d e l e t e s  a l l  t h e  x c o n s  a s s o c i a t e d  w i t h  a s p e c i f i c  PG

* v o i d  r e s t o r e x c o n s ( . . . )
* -  c r e a t e s  X c o n s  p a s s e d  i n

public final class T p N r C o n n M n g m t
{

/■ *  *

* s i n g l e t o n  i n s t a n c e  o f  t h i s  c l a s s  
* /
private static T p N r C o n n M n g m t  I NS TANCE = null;

77 o f  135



* l i s t  o f  c o n n e c t i o n s  t h a t  h a v e  b e e n  d e l e t e d  w h i c h
* i s  u s e d  t o  r e s t o r e  t h e  NE i n  c a s e  o f  v a l i d a t i o n
* f a i l u r e  when p r o c e s s i n g  t h e  r e s t a t e  c h a n g e  
V
private static A r r a y L i s t  x c o n D e l L i s t  = null ;

+ < P x B > M e t h o d : < / B> < C O D E > g e t D e l e t e d L i s t < / C O D E >

* < B R x B > D e s c r i p t i o n  : < /B>

* T h i s  m e t h o d  r e t u r n s  t h e  l i s t  o f  d e l e t e d  x c o n s  t h a t  a r e  t o  b e
* r e s t o r e d  i n  c a s e  o f  t h e  r e s t a t e  c h a n g e  b e i n g  f a i l e d . < / P>

* S r e t u r n  A r r a y L i s t
* -  l i s t  o f  d e l e t e d  x c o n s  
V

* i n p u t s :  None

* O u t p u t s  : None

public A r r a y L i s t  getDeletedList()
{

return x c o n D e l L i s t ;
)

* < P x B > M e t h o d :  < / B> < C O D E > c l e a r D e l e t e d L i s t < / C O D E >

* < B R x B > D e s c r i p t i o n  : </B>

* T h i s  m e t h o d  c l e a r s  t h e  l i s t  o f  d e l e t e d  x c o n s  . </P>

* /
/ *  R e t u r n s :  None

* I n p u t s :  None

* O u t p u t s :  None

* /

public void clearDeletedList()
{

if { x c o n D e l L i s t  != null)
{

x c o n D e l L i s t .clear(); 
x c o n D e l L i s t  = null;

}
}

78 o f  135



/ * *

* < P x B > M e t h o d : </B> <CODE >ge t Ins t anc e < / CO DE>

* < B R x B > D e s c r i p t i o n  : </B>

* T h i s  m e t h o d  r e t u r n s  t h e  i n s t a n c e  o f  t h i s  s i n g l e t o n .  </P>

* Q r e t u r n  TpNrConnMngmt
* - t h e  s i n g l e t o n  i n s t a n c e  o f  TpNrConnMngmt  

/*
* I n p u t s :  None

* O u t p u t s :  None  

*/
public static synchronized T p N r C o n n M n g m t  getlnstance()
{

if ( I NS TA NC E == null)
{

I NSTANCE = new TpNrConnMngmt();
}
return I NS TA NC E;

}

/  + *

* C o n s t r u c t o r ,  made  p r i v a t e  a s  c l a s s  i s  s i n g l e t o n  
*/
private TpNrConnMngmt ()
f
}

o f  I 35



< P x B > M e t h o d :  </B> < CO D E > d e l e t e A l l Xc o n s < / C O D E >

< B R x B > D e s c r i p t i o n  : </B>

T h i s  m e t h o d  o b t a i n s  a l i s t  o f  a l l  X c o n s  f o r  t h e  PGMs i n v o l v e d  i n  t h e  
r e c o n f i g ,  a n d  d e l e t e s  them a l l . < / P >

<P>NOTE: T h i s  m e t h o d  i s  c a l l e d  f r o m  w i t h i n  a DBNS P r e - V a l i d a t i o n  
e v e n t . <.'P>

ê pa ra m p g E n t i t y
- PG E n t i t y  upon w h i c h  t h e  r e c o n f i g  o p e r a t i o n  h a s  b e e n  

e x e c u t e d

ê r e t u r n  b o o l e a n
- t r u e  i f  s u c c e s s f u l , f a l s e  o t h e r w i s e

* O u t p u t s :  None

* /

public boolean deleteAllXcons (EntityPg pgEntity)
{

boolean rc = true;
DbTransaction nrTxn = null;
DbTransaction curTxn = null; 
xconDelList = new ArrayList();

try
{

g e t  t h e  c u r r e n t  t r a n s a c t i o n  
curTxn = DbTransaction.getCurrentDbTransaction(); 
curTxn.leave();

HashSet xconList = Xconlist.getXconsOnPg(pgEntity);

if (!xconList.isEmpty())
{

// l o o p  t h r o u g h  a l l  x c o n s  
Iterator i = xconList.iterator(); 
while (i .hasNext())
{

// o p e n  a n ew t r a n s a c t i o n  f o r  e a c h  x c o n  d e l e t e  
nrTxn = new DbTransaction(); 
nrTxn.setType( DbTransaction.READ_WRITE ); 
nrTxn.begin();

// r e t r i e v e  t h e  m em or y  c o p y  o f  t h e  x c o n  f r o m  t h e  l i s t  
Xcon xc = (Xcon)i.next();

// create a k e y
EntityXconKey xconKey = new EntityXconKey(xc.getXcId());

// r e t r i e v e  t h e  r e a l  e n t i t y  f rom t h e  d a t a b a s e  
EntityXcon xcon = (EntityXcon)DbAccess.gueryByKey(xconKey)

// g e t  t h e  u s e r  l a b e l  f r o m t h e  d a t a b a s e  t o  b e  u s e d  when 
g e n e r a t i n g  t h e  AO Lo g  

String xconLabel = new String(xcon.getUserLabel());

// d e l e t e  t h e  e n t i t y  
DbAccess.delete(xcon);

nrTxn.validate(); 
nrTxn.commit(); 
nrTxn = null;

/ d e l e t e  e n t r y  i n  x c o n l i s t  
Xconlist.delXconFromList(xc);

' g e n e r a t e  AO Log f o r  MP t o  i n d i c a t e  d e l e t i o n  
int deleteXcon = : ;

80 or 135



( C m U s e r l n t e r f a c e .getlnstance()),logXCAction{ d e l e t e X c o n ,
x c o n L a b e l , 
x c )  ;

/ /  a d d  d e l e t e d  x c o n  t o  l i s t  f o r  l a t e r  r e s t o r a t i o n  i n  
/ /  c a s e  o f  v a l i d a t i o n  f a i l u r e
/ /  NOTE: o r d e r i n g  o f  a d d e d  o b j e c t s  i m p o r t a n t , a n d  a s s u m e d  
/ /  i n  r e s t o r e X c o n s  c a l l
x c o n D e l L i s t . add ( x c ) ; 
x c o n D e l L i s t . add ( x c o n L a b e l ) ;

}
}

}
catch ( E x c e p t i o n  e )

{
new Swerr(e .toString()); 
r c  = false;

}
finally
(

try
{

if ( n r T x n  ! =  null)

n r T x n .abort{);
)

if ( c u r T x n  != null)
{

r e j o i n  t r a n s a c t i o n  
c u r T x n .join();

}

}
catch ( E x c e p t i o n  e )

new Swerr(e .toString());
}

return r c ;

81 or 135



/ * >

* < P x B > M e t h o d :  </B> <CODE>res t oreXcons < / CODE>

* < B R x B > D e s c r i p t i o n :  </B>

* T h i s  m e t h o d  r e s t o r e s  t h e  l i s t  o f  x c o n s  p a s s e d  i n . < / P >

* êparam. A r r a y L i s t  x c o n L i s t
* -  l i s t  o f  x c o n s  t o  b e  r e s t o r e d

* I n p u t s :  None

* O u t p u t s :  None

public void restoreXcons A r r a y L i s t  x c o n L i s t )
{

boolean s u c c e s s  - true;

try
{

if (I x c o n L i s t .isEmpty())
{

/ /  l o o p  t h r o u g h  a l l  x c o n s  
I t e r a t o r  i  = x c o n L i s t .iterator(); 
while (i  hasNext() && s u c c e s s )

{
/ ' /  r e t r i e v e  t h e  x c o n  f r o m  t h e  l i s t  
X c o n  x c  = ( X c o n ) i .next();

/  g e t  t h e  u s e r  l a b e l  f o r  g e n e r a t i n g  t h e  AO Log  
String x c o n L a b e l  = new String((String)1.next());

/ /  i n s e r t  t h e  x c o n  i n t o  t h e  d a t a b a s e  
C mu i  d b .insertXcObj ect ( x c , x c o n L a b e 1 );

/ /  a d d  e n t r y  t o  x c o n l i s t  
if ( X c o n l i s t .addXconToList ( x c ) )
{

/ /  g e n e r a t e  AO Log f o r  MP t o  i n d i c a t e  c r e a t i o n  
int c r e a t e X c o n  = 0 ;
( C m U s e r l n t e r f a c e .getlnstance()).logXCAction(c r e a t e X c o n ,

x c o n L a b e l , 
x c )  ;

)
else
{

s u c c e s s  = false;
)

}
}

}
catch ( E x c e p t i o n  e )
{

new Swerr(e.toString());
}
finally
{

if (! s u c c e s s )
{

new Swerr(" C o u l d  n o t  c r e a t e  x c o n ");
}

}

} t /  e n d  o f  TpNrConnMngmt

82 or 135



Class: TpNrErrorCode

< B > F i l e : < / B >  <CODE>TpNrErrorCode .  j ava< ' CODE>
* /

p a c k a g e  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g ;

* < P > < B > C l a s s  : < /B> <CODE>TpNrErrorCode< - 'CODEX/P>

* < P><B>Do cume nt : </B> S t a n d a r d  R e c o n f i g s  DD
" -  a v a i l a b l e  i n  A t h e n a ,  f o l l o w i n g  t h i s  p a t h :
* <BR> - E q u i n o x
* <BR> - P r o d u c t  D e v e l o p m e n t
* <BR> - S o f t w a r e
"■ <BR> - N e t w o r k  E l e m e n t  S o f z w a r e

<BR> - F u n c t i o n a l  A r e a s
<8R> N e t w o r k  R e c o n f i g
<BR> -  D e s i g n  F o l d e r  </'P>

< B > D e s c r i p t i o n : </B>

The T p N r E r r o r C o d e  c l a s s  d e f i n i t i o n  e n c a p s u l a t e s  a l l  t h e  n e t w o r k  r e c o n f i g  
e r r o r  s t r i n g s  t h a t  a r e  u s e d  t o  i n f o r m  t h e  u s e r  t h e  r e a s o n  t h e  r e c o n f i g  
o p e r a t i o n  f a i l e d

ê a u t h o r  A n d y  K i n n e y

public final class T p N r E r r o r C o d e  

{
/  + *

* I n d i c a t e s  a r e c o n f i g  o p e r a t i o n  was r e q u e s t e d  w h i l s t  t h e  n o d e  was
* a l r e a d y  e x e c u t i n g  an a d d  n o d e  o p e r a t i o n

public static final String TP_ N R _ E R R „ I N _ A D D _ N OD E  = new String (
C o m m a n d  i s  n o t  v a l i d  w h i l e  n o d e  i s  i n  A d d  N o d e  m o d e  ) ;

/ *  *

* I n d i c a t e s  a r e c o n f i g  o p e r a t i o n  was  r e q u e s t e d  w h i l s t  t h e  n o d e  was
* a l r e a d y  e x e c u t i n g  a d e l e t e  n o d e  o p e r a t i o n  
*/
public static final String T P _ N R _ E R R _ I N_ D E L _ N O D E  = new String (

C o mm a n d  i s  n o t  v a l i d  w h i l e  n o d e  i s  i n  D e l e t e  N o d e  m o d e " ) ;

/ * *

* I n d i c a t e s  a r e c o n f i g  o p e r a t i o n  was  r e q u e s t e d  w h i l s t  t h e  n o d e  was
* a l r e a d y  c o n f i g u r e d  i n  a r i n g  
* /

public static final String T P _ NR_ ERR_ VALI D_ NODE_ MAP = new String (
" N o d e  i s  c o n f i g u r e d  i n  a  n e t w o r k " ) ;

/**
* I n d i c a t e s  a r e c o n f i g  o p e r a t i o n  was  r e q u e s t e d  w h i l s t  t h e  n o d e  h a s
* an a c t i v e  p r o t e c t i o n  s w i t c h  
*/
public static final String T P _ N R _ E RR _ P R OT _ S W_ A CT I V E  = new String (

' N o d e  i s  c u r r e n t l y  h a n d l i n g  a  p r o t e c t i o n  s w i t c h " ) ;

/ *  *

* I n d i c a t e s  a r e c o n f i g  o p e r a t i o n  was r e q u e s t e d  w h i l s t  t h e  n o d e  h a s
* n o n - p a s s t h r o u g h  c o n n e c t i o n s  p r o v i s i o n e d  
* /
public static final String TP_ NR_ ERR_ ADD_ DROP = new String (

"Traffic connecti ns are current- Iv pi. vi<i ned ) ;

S3 or 135



* I n d i c a t e s  a r e c o n f i g  o p e r a t i o n  i va s  r e q u e s t e d  w h i l s t  t h e  n o d e  h a s
* a n  i n v a l i d  p r o t e c t i o n  s c h e m e

public static final String TP_ NR_ ERR_ PROT_ S CHEME_ I NVAL = new String
Pr'  t e c t i - i n  s c h e m e  i s  n r  t  v a l i d  ) ;

/ * *
* I n d i c a t e s  a s o f t w a r e  e r r o r  o c c u r e d  d u r i n g  t h e  e x e c u t i o n  o f  t h e
* r e q u e s t e d  r e c o n f i g  o p e r a t i o n  
V
public static final String TP_NR_ERR_SWERR  ̂ new String (

S f c w a r e  E r r o r " ) ;

/**
* I n d i c a t e s  a r e c o n f i g  o p e r a t i o n  was  r e q u e s t e d  w h i l s t  t h e  n o d e  was
* n o t  c o n f i g u r e d  i n t o  a n e t w o r k  
*/
public static final String T P_ NR_ERR_NOT_ RTNG = new String (

N o d e  i s  n- t  c  n t  i g u r e d  i n  a  n e t w c  rk." ) ;

* I n d i c a t e s  t h a t  t h e  PGM o b j e c t s  c o u l d  n o t  b e  l o c k e d  t o  t h e  t r a n s a c t i o n
* f o r  t h e  r e q u e s t e d  r e c o n f i g  o p e r a t i o n

public static final String TP_NR_ERR_LOCK_NOT_GRANTED_PGM = new String (
C - . u l d  n.  : 1- o k  a l l  r e q u i r e d  PGM b j e c t s  f o r  t h i s  r p e r a t  i o n  " ) ;

/**
* I n d i c a t e s  t h a t  a r e q u e s t  t o  c r e a t e  a PG i n  a d d  n o d e  mode  was  r e c e i v e d

public static final String TP_ NR_ ERR_ CREATE_ PG_ ADD = new String (
Co mma nd  t  - r e a t e  PG i n  A d d  Nr d e  m o d e  i s  n o t  v a l i d '  ) ;

/*♦
* I n d i c a t e s  t h a t  a r e q u e s t  t o  c r e a t e  a PG i n  d e l e t e  n o d e  mode  was  r e c e i v e d

public static final String T P_ N R _ ERR _ C REA TE_ PG_ DEL = new String (
"Comman d  t o  c r e a t e  PG i n  D e l e t e  N o d e  m o d e  i s  n o t  v a l i d " ) ;

* I n d i c a t e s  t h a t  t h e  TLl  r e q u e s t  was  an i n v a l i d  f o r m a t  
V
public static final String T P _ N R _ E R R _ I N V A L I D _ T L 1  = new String {

' T L l  c o m m a n d  c o n t a i n e d  m o r e  t h a n  r e c o n f i g  s t a t e  a t t r i b u t e " ) ;

/ * *

* I n d i c a t e s  t h a t  a r e q u e s t  t o  c h a n g e  t h e  s t a t e  f r o m I d l e  t o  I d l e  h a s
* b e e n  r e c e i v e d ,  a n d  d e n i e d .
* /

public static final String T P _ N R _ E R R _ I D L E _ T O _ I D L E  = new String (
" T L l  c o m m a n d  r e q u e s t e d  R e c o n f i g  S t a t e  c h a n g e  f r o m  I d l e  t o  I d l e " ) ;

/ »  *

* s i n g l e t o n  i n s t a n c e  o f  t h i s  c l a s s

private static T p N r E r r o r C o d e  I NS TANCE = null;

84 o f  135



<P><B>Me t hod: </B> <C O D E >g et In s t an ce < /C O D E >

< B R x B > D e s c r i p t i o n  : </B>

T h i s  m e t h o d  r e t u r n s  t h e  i n s t a n c e  o f  t h i s  s i n g l e t o n . < / P>

ê r e t u r n  T p N r E r r o r C o d e
-  t h e  s i n g l e t o n  i n s t a n c e  o f  T p N r E r r o r C o d e

I n p u t s :  None

* O u t p u t s :  None

* /

public static synchronized T p N r E r r o r C o d e  getlnstance()
{

if ( I NS TA NC E null)
{

I NS TANCE = new TpNrErrorCode();

return I NS TANCE;

* C o n s t r u c t o r , made  p r i v a t e  a s  c l a s s  i s  s i n g l e t o n  
*/
private TpNrErrorCode ()
{

} / /  e n d  o f  T p N t E r r o r C o d e

X5 or 135



Class: TpNrNmDbnsSubscriber

* < B > F i l e : < / 3 >  < CODE >Tp Nr NmDb nsSub s c r ib er . j ava< / CODE>

p a c k a g e  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g ;

i m p o r t  e q u i n o x  . p r o t e c t i o n  . t r a f f i c ,  r e c o n f i g . T p N r A d c i N o d e ;  
i m p o r t  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g . T p N r D e l e t e N o d e ;  
i m p o r t  e q u i n o x . p r o t e c t  i o n . t r a f f  i c . r e c o n f  i g . T p N r V a l i d a t  i o n s  ;

i m p o r t  e q u i n o x . f r a m e w o r k . d a t a b a s e . d b n s . D b n s S u b s c r i b e r ; 
i m p o r t  e q u i n o x . f r a m e w o r k . d a t a b a s e . d b n s . D b n s E v e n t ;  
i m p o r t  e q u i n o x . f r a m e w o r k . d a t a b a s e . d b n s . D b n s S i n g l e E v e n t ;

i m p o r t  e q u i n o x . f r a m e w o r k . n o m . k e y s . E n t i t y P g K e y ;

i m p o r t  e q u i n o x . f r a m e w o r k . n o m . o b j  s . E n t i  t y P g ;

i m p o r t  e q u i n o x . f r a m e w o r k . n o m . e n u m s . E n t  i t y l d E n u m ;  
i m p o r t  e q u i n o x . f r a m e w o r k . n o m . e n u m s . T P R e c o n f i g S t a t e E n u m ;

i m p o r t  e q u i n o x . f r a m e w o r k . s w e r r . S w e r r ;

< P > < B > C l a s s : < /B> <CODE>TpNr NmDbnsSubscr iber</CODE></P>

<P><B>Document : < /B> S t a n d a r d  R e c o n f i g s  DD
- a v a i l a b l e  i n  A t h e n a ,  f o l l o w i n g  t h i s  p a t h :

<BR> - E q u i n o x
<BR> - P r o d u c t  D e v e l o p m e n t
<BR> - S o f t w a r e
<BR> - N e t w o r k  E l e m e n t  S o f t w a r e
<BR> - F u n c t i o n a l  A r e a s
<BR> - N e t w o r k  R e c o n f i g
<BR> -  D e s i g n  F o l d e r  <-P>

< B > D e s c r i p t i o n : < / B >

T h i s  s i n g l e t o n  c l a s s  i m p l e m e n t s  t h e  D b n s S u b s c r i b e r  i n t e r f a c e ,  w h i c h  p r o v i d e s  
t h e  me a n s  b y  w h i c h  DBNS i n f or m. s  i n t e r e s t e d  p a r t i e s  o f  e v e n t s  t h a t  h a v e  
b e e n  p r e v i o u s l y  s u b s c r i b e d  t o .

T h i s  i m p l e m e n t a t i o n  p e r f o r m s  t h e  n e c e s s a r y  p r o c e s s i n g  when t h e  PG n o d e  
map a t t r i b u t e  i s  u p d a t e d .

ê a u t h o r  A n d y  K i n n e y
/

M e t h o d s  :

T p N r R c D b n s S u b s c r i b e r  g e t l n s t a n c e I )
- r e t u r n s  t h e  i n s t a n c e  o f  t h i s  o b j e c t

b o o l e a n  d b A c c e s s O p t i o n ()
- r e t u r n s  t r u e  t o  i n d i c a t e  t h a t  t h e  s u b s c r i b e r  w i l l  b e  a c c e s s i n g  t h e  

d a t a b a s e

b o o l e a n  s i n g l e N o t i f i c a t i o n O p t i o n ( J
- r e t u r n s  f a l s e  t o  i n d i c a t e  t h a t  t h i s  s u b s c r i b e r  i s  r e g i s t e r i n g  f o r  m u l t i p l e  

s i n g l e  e v e n t s ,  r a t h e r  t h a n  o n e  c o mi bi ned  e v e n t

v o i d  n o t i f y ( . . . )
- m e t h o d  c a l l e d  t o  d e a l  w i t h  t h e  c o m m i t  o f  t h e  n o d e  map a t t r i b u t e  c h a n g e  

b o o l e a n  n o t i  f yWi  t h R e s p o n s e  ( .  . .
-  m.ethod c a l l e d  t o  h a n d l e  t h e  p r e - v a l  i d a t i o n  o f  t h e  n o d e  map a t t r i b u t e  

c h a n g e

86 or 135



public final class T p N r N m D b n s S u b s c r i b e r  implements D b n s S u b s c r i b e r
(

* s i n g l e t o n  i n s t a n c e  o f  t h i s  c l a s s
* /
private static T p N r N m D b n s S u b s c r i b e r  I NSTANCE = null;

/*”

■* < P> <8 >Me t ho d: </B> <CODE > ge t In s t an ce < 'CO DE>

* < B R > < B > D e s c r i p t i o n : < ‘B>

* T h i s  m e t h o d  r e t u r n s  t h e  i n s t a n c e  o f  t h i s  s i n g l e t o n .  < 'P>

* @ r e t u r n  T p N r N m D b n s S u b s c r i b e r
'  - t h e  s i n g l e t o n  i n s t a n c e  o f  T p N r N m D b n s S u b s c r i b e r

* I n p u t s :  None

* O u t p u t s :  None

public static synchronized T p N r N m D b n s S u b s c r i b e r  getlnstance()
(

if { I NSTANCE == null)
{

I NSTANCE = new TpNrNmDbnsSubscriber();
}
return I NS TANCE;

}

* C o n s t r u c t o r , made  p r i v a t e  a s  c l a s s  i s  s i n g l e t o n  
' /
private TpNrNmDbnsSubscriber()
{

)

/ -  "

* < P x B > M e t h o d :  </B> <CODE>dbAcces sOpt ion</ CODE>

* < B R x B > D e s c r i p t i o n  : < /B>

* T h i s  m e t h o d  d e t e r m i n e s  w h e t h e r  t h e  s u b s c r i b e r  w i l l  a c c e s s  t h e
* d a t a b a s e  v i a  t h e  n o t i f y ,  o r  n o t i f y W i t h R e s p o n s e  m e t h o d s .  I n  t h i s  
’* c a s e  t h e  m e t h o d  a l w a y s  r e t u r n s  t r u e  t o  i n d i c a t e  t h a t  t h e
* s u b s c r i b e r  w i l l  b e  a c c e s s i n g  t h e  d a t a b a s e . </P>

* ^ r e t u r n  b o o l e a n
* -  t r u e  t o  i n d i c a t e  a c c e s s  t o  d a t a b a s e  r e q u i r e d  
* /

/ *

* I n p u t s :  None

* O u t p u t s :  None  

V

public boolean dbAccessOption()
{

return true ;
}

87 or I 35



* < P x B > M e t h o d : < / B>  < C O D E > s i n g l e N o t i f i c a t i o n O p t i o n < / C O D E >

* < B R x B > D e s c r i p t i o n :  < /B>

* T h i s  m e t h o d  i n d i c a t e s  w h e t h e r  t h e  s u b s c r i b e r  w i l l  h a n d l e  m u l t i p l e  s i n g l e
* e v e n t s  o r  o n e  c o m b i n e d  e v e n t .  In  t h i s  c a s e  t h e  m e t h o d  w i l l  a l w a y s  r e t u r n
* f a l s e  t o  i n d i c a t e  m u l t i p l e  s i n g l e  e v e n t s . < /P>

b o o l e a n
- f a l s e  t o  i n d i c a t e  m u l t i p l e  s i n g l e  e v e n t

None

None

* ^ r e t u r n

V 
/*

* I n p u t s :

* O u t p u t s :

*/

public boolean singleNotificationOption()
(

return false,
}

88 or 135



* < P x B > M e t h o d :  < / B> <CODE>not i f y</CODE>

* < B R x B > D e s c r i p t i o n  : < /B>

* T h i s  m e t h o d  p e r f o r m s  t h e  c ommi t  p r o c e s s i n g  on r e c e i p t  o f  a r e q u e s t  t o
* c h a n g e  t h e  n o d e  map a t t r i b u t e  o f  a PG E n t i t y . </P>

* < P > I t  c h e c k s  t h a t  t h e  n o t i f i c a t i o n  i s  f o r  a c o m mi t  e v e n t ,  a n d  f o r  a  PG 
E n t i t y , b e f o r e  i t  t h e n  r e t r i e v e s  t h e  r e c o n f i g  s t a t e  a t t r i b u t e  v a l u e .  T h i s

* v a l u e  s h o u l d  b e  I d l e ,  a s  t h i s  m e t h o d  b e i n g  c a l l e d  i n d i c a t e s  t h a t  e i t h e r
* Add  X o d e  h a s  b e e n  c o m p l e t e d ,  o r  D e l e t e  N o de  h a s  b e e n  b a c k e d  o u t ,  i n
* e i t h e r  c a s e  t h e  a l a r m  s h o u l d  b e  c l e a r e d ,  a n d  t h e  n o d e  map s e t  e v e n t
* s h o u l d  b e  u n s u b s c r i b e d  f r o m . < / P >

* ê pa r am e
* - n o d e  map e v e n t

* O u t p u t s :  None

* R e t u r n s :  None
- - V

p u b l i c  v o i d  n o t i f y ( D b n s E v e n t  e )
(

D b n s S i n g l e E v e n t  e v e n t  = ( D b n s S i n g l e E v e n t ) e ;

t r y
{

i f  ( ( e v e n t . g e t E v e n t T y p e 0  == D b n s E v e n t . DBNS_COMMIT E V E N T _ T Y P E ) && 
( e v e n t  g e t E n t i t y ( ) . g o t K e y ( ) . g e t E n t i t y l d {) ==

E n t i t y T d E n u m . EN_PG)  )
{

E n t i t y P g  p g E n t i t y  = ( E n t i t y P g ) e v e n t . g e t E n t i t y ( ) ;  
i n t  r e c S t a t e  = p g E n t i t y . g e t R c s t a t e ( ) . i n t V a l u e ( ) ;

s w i t c h  ( r e c S t a t e )
{

c a s e  T P R e c o n f i g S t a t e E n u m . T P _ R C _ S T A T E _ I D L E _ V A L U E :
/ /  t h e  T p N r R c D b n s S u b s c r i b e r . n o t i f y l )  m e t h o d  h a n d l e s  t h e
/ /  c l e a r i n g  o f  t h e  a l a r m  a n d  u n s u b s c r i p t i o n  f ro m t h e
/ /  n o d e  map s e t  e v e n t
/ /  i . e .  n o t h i n g  i s  r e q u i r e d  h e r e
b r e a k ;

c a s e  T P R e c o n f i g S t a t e E n u m . TP_ R C _ S T A T E _ D E L N OD E _ V A L U E :
/ /  c h e c k  t o  make  s u r e  t h a t  t h e  n o d e  map i s  n i l  
i f  ( ( T p N r V a l i d a t i o n s . g e t l n s t a n c e ( ) ) .

n o d e M a p I s N i l ( p g E n t i t y )  == n u l l )
{

/ /  i f  i t  i s  n i l  t h e n  t h e  r e c o n f i g  i s  i n  t h e  c o r r e c t
/ /  s t a t e
b r e a k ;

j
/ /  s i n c e  t h e  no d ema p  i s  n o n - n i l ,  a n d  i n  d e l e t e  n o d e  
/ /  d r o p  t h r o u g h  t o  d e f a u l t  c a s e  t o  r a i s e  s w e r r  

c a s e  T P R e c o n f i g S t a t e E n u m . T P _ R C _ S T A T E _ A D D N O D E _ V A L U E :
/ /  s h o u l d  n o t  b e  i n  a d d  n o d e  when t h i s  m e t h o d  i s  c a l l e d  
/ /  d r o p  t h r o u g h  t o  d e f a u l t  t o  r a i s e  s w e r r  

d e f a u l t  :
n e w  S w e r r ( " I n v a l i d  r e c o n f i g  s t a t e  ; + r e c S t a t e ) ;
b r e a k ;

1
}
e l s e
(

n e w  S w e r r ( " I n v a l i d  e v e n t  t y p e  r e c e i v e d  : " + 
e v e n t . g e t E v e n t T y p e ( ) ) ;  

n e w  S w e r r  ( " I n v a l  : : e n t i t y  r e c e i v - = d  : +
e v e n t  g e t E n t i t y ( ) . g e t K e y ( ) . g e t E n t i t y l d ( ) ) ;

}
}
c a t c h  ( E x c e p t i o n  e x )
{

n e w  S w e r r ( e x . g e t M e s s a g e ( ) ) ;
}

SQor 135



<P><B>Mechod: </B> < CO D E > no t i f y Wi t hR e sp o n s e < /C O D E >

< B R > < B > D e s c r i p t i o n : </B>

T h i s  m e t h o d  p e r f o r m s  t h e  p r e - v a l i d a t i o n  p r o c e s s i n g  on r e c e i p t  o f  a 
r e q u e s t  t o  c h a n g e  t h e  n o d e  map a t t r i b u t e  o f  a PG E n t i t y ,  t h a t  i s  
c u r r e n t l y  i n  a d d  n o d e  o r  d e l e t e  n o d e  m o d e . < / P >

< P > I t  c h e c k s  t h a t  t h e  n o t i f i c a t i o n  i s  f o r  a p r e - v a l i d a t i o n  e v e n t ,  a nd  
f o r  a PG E n t i t y ,  b e f o r e  i t  t h e n  r e t r i e v e s  t h e  r e c o n f i g  s t a t e  a t t r i b u t e  
t o  d e t e r m i n e  if/hat o p e r a t i o n  h a s  b e e n  p e r f o r m e d .  </P>

<P>NOTE: In  t h e  c a s e  o f  t h e  r e c o n f i g  s t a t e  b e i n g  Add  N o de ,  A d d  N o d e  i s  
b e i n g  c o m p l e t e d ,  a n d  f o r  D e l e t e  No d e ,  i t  i s  b e i n g  b a c k e d  o u t . < / P >

* ê p a r a m  e
* - n o d  map e v e n t

* O u t p u t s :  None

* R e t u r n s :  b o o l e a n
* -  t r u e  i f  s u c c e s s f u l , f a l s e  o t h e r w i s e

public boolean notifyWithResponse ( D b n s E v e n t  e )
{

D b n s S i n g l e E v e n t  e v e n t  = ( D b n s S i n g l e E v e n t ) e ;  
boolean r c  = false;

try

if ( ( e v e n t . getEventType( )
D b n s E v e n t . DBNS _ P R E_ V Ar , ID A TI ON_ EV EN T_ TY P E)  &&

( e v e n t  getEntity ( )  getKey ( ) .getEntityld ( )  ==
E n t i t y l d E n u m . EN_PG)  )

{
E n t i t y P g  p g E n t i t y  = ( E n t i t y P g ) e v e n t . getEntity() ;  
int r e c S t a t e  = p g E n t i t y . getRcstate ( ) . intValue ( ) ;

switch ( r e c S t a t e )
{

case T P R e c o n f i g S t a t e E n u m . T P _ R C _ S T A T E _ A DD N OD E _ V AL U E ;
r c  = ( T p N r A d d N o d e .getlnstance0 ) .complete( p g E n t i t y ) ; 
break;

case T P R e c o n f i g S t a t e E n u m . TP_ R C _ S T A T E _ D E L N OD E _ V A L U E :
r c  = ( T p N r D e l e t e N o d e . getlnstance0 ) -backout( p g E n t i t y )  
break;

case T P R e c o n f I g S t a t e E n u m . T P _ R C _ S T A T E _ I D L E _ V A L U E :
/ / '  d o  n o t h i n g  
r c  = true; 
break;

default :
new Swerr ( " I n v a l i d  r e c o n f i g  s t a t e  ; " + r e c S t a t e ) ; 
break;

}
)
else

new Swerr ( ' I n v a l i d  e v e n t ,  t y p e  r e c e i v e d  : " + 
e v e n t . getEventType ( ) ) ;  

new Swerr ( " I n v a l i d  e n t i t y  r e c e i v e d
e v e n t  getEntity ( ) .getKey ( ) .getEntityld ( ) ) ;

}

}
catch ( E x c e p t i o n  e x )
{

new Swerr ( e x  . getMessage 0 )  ;

}
return r c ;

}
} / e n d  o f  T p N r N m D b n s S u b s c r i b e r

90 o f  135



Class: TpNrRcDbnsSubsriber
< B > F i l e :  < /B> <CODE > Tp Nr Rc Dh nsS ub s cr i he r .  java<-'CODE>

p a c k a g e  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g ;

i m p o r t  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g . T p N r A d d N o d e ;  
i m p o r t  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g . T p N r D e l e t e N o d e ;  
i m p o r t  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g . T p N r R e c o n f i g N o d e ;  
i m p o r t  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g . T p N r E r r o r C o d e ;  
i m p o r t  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g . T p N r U t i 1 i t i e s  
i m p o r t  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g . T p N r C o n n M n g m t

i m p o r t  e q u i n o x . f r a m e w o r k . d a t a b a s e . D b T r a n s a c t i o n ;

i m p o r t  e q u i n o x . f r a m e w o r k . d a t a b a s e . d b n s . D b n s S u b s c r i b e r ; 
i m p o r t  e q u i n o x . f r a m e w o r k . d a t a b a s e . d b n s . D b n s E v e n t ; 
i m p o r t  e q u i n o x . f r a m e w o r k . d a t a b a s e . d b n s . D b n s S i n g l e E v e n t ; 
i m p o r t  e q u i n o x . f r a m e w o r k . d a t a b a s e . d b n s . O p e r a t i o n ;

i m p o r t  e q u i n o x . f r a m e w o r k . n o m . k e y s . E n t i t y P g K e y ;

i m p o r t  e q u i n o x . f r a m e w o r k . n o m . o b j s . E n t i t y P g ;

i m p o r t  e q u i n o x . f r a m e w o r k . n o m . e n u m s . E n t i t y l d E n u m ; 
i m p o r t  e q u  i n o x . f r a m e w o r k . n o m . e n u m s . T P R e c o n f i g S t a t e E n u m ; 
i m p o r t  e q u i n o x . f r a m e w o r k . n o m . e n u m s . AF P r o b l e m T y p e E n u m ;

i m p o r t  j a v a . u t i l . V e c t o r  ; 
i m p o r t  j a v a . u t i l . A r r a y L i s t ;

i m p o r t  e q u i n o x . f r a m e w o r k . s w e r r . S w e r r ;

91 o r  I 35



/**
* < P >< B> Cl a s s  : < 'B> < C O D E > T p N r R c D b n s S u b s c r i b e r < / C O D E x / P >

* <P><B>Documenc:< /B> S t a n d a r d  R e c o n f i g s  DD
* -  a v a i l a b l e  i n  A t h e n a ,  f o l l o w i n g  t h i s  p a t h :
* <BR> - E q u i n o x
* <BR> -  P r o d u c t  D e v e l o p m e n t
* <BR> -  S o f t w a r e
* <BR> -  N e t w o r k  E l e m e n t  S o f t w a r e
* <BR> - F u n c t i o n a l  A r e a s
* <SR> -  N e t w o r k  R e c o n f i g
* <BR> - D e s i g n  F o l d e r  </P>

* < B > D e s c r i p t i o n : </B>

* T h i s  s i n g l e t o n  c l a s s  i m p l e m e n t s  t h e  D b n s S u b s c r i b e r  i n t e r f a c e ,  w h i c h  p r o v i d e s
* t h e  m e a n s  b y  w h i c h  DBNS i n f o r m s  i n t e r e s t e d  p a r t i e s  o f  e v e n t s  t h a t  h a v e
* b e e n  p r e v i o u s l y  s u b s c r i b e d  t o .

* T h i s  i m p l e m e n t a t i o n  p e r f o r m s  t h e  n e c e s s a r y  p r o c e s s i n g  when t h e  PG r e c o n f i g  
s t a t e  a t  t r i b u t e  i s  u p d a t e d .  D u r i n g  t h e  s y s t e m  i n i t i a l i s a t i o n ,  s t a n d a r d

* r e c o n f i g s  s u b s c r i b e s  t o  t h e  p r e - v a l i d a t i o n  a n d  c o mmi t  e v e n t s ,  t h a t
* s p e d  f i c a l l y  r e f e r e n c e  t h e  r e c o n f i g  s t a t e  a t t r i b u t e .

* ^ a u t h o r  A n d y  K i n n e y  
V

/*
* M e t h o d s :

* T p N r R c D b n s S u b s c r i b e r  g e t l n s t a n c e ()
* -  r e t u r n s  t h e  i n s t a n c e  o f  t h i s  o b j e c t

* b o o l e a n  d b A c c e s s O p t i o n ()
* -  r e t u r n s  t r u e  t o  i n d i c a t e  t h a t  t h e  s u b s c r i b e r  w i l l  b e  a c c e s s i n g  t h e
* d a t a b a s e

* b o o l e a n  s i n g l e N o t i f i c a t i o n O p t i o n I )
* -  r e t u r n s  f a l s e  t o  i n d i c a t e  t h a t  t h i s  s u b s c r i b e r  i s  r e g i s t e r i n g  f o r  m u l t i p l e
* s i n g l e  e v e n t s ,  r a t h e r  t h a n  o n e  c o m b i n e d  e v e n t

* v o i d  n o t i f y f .  . . )
* - m e t h o d  c a l l e d  t o  d e a l  w i t h  t h e  c o m m i t  o f  t h e  r e c o n f i g  s t a t e  a t t r i b u t e
* c h a n g e

* b o o l e a n  n o t i f y W i t h R e s p o n s e f . . . J
* -  m e t h o d  c a l l e d  t o  h a n d l e  t h e  p r e - v a l i d a t i o n  o f  t h e  r e c o n f i g  s t a t e  a t t r i b u t e
* c h a n g e

public final class T p N r R c D b n s S u b s c r i b e r  implements D b n s S u b s c r i b e r  

{

* s i n g l e t o n  i n s t a n c e  o f  t h i s  c l a s s  
* /

private static T p N r R c D b n s S u b s c r i b e r  I NS TANCE = null;

92 o n  35



/**

* < P x B > M e t h o d : </B> < CODE > ge t In s t an ce < /CO DE>

* < B R > < B > D e s c r i p t i o n  : </B>

* T h i s  m e t h o d  r e t u r n s  t h e  i n s t a n c e  o f  t h i s  s i n g l e t o n . < / P >

* Q r e t u r n  T p N r R c D b n s S u b s c r i b e r
* -  t h e  s i n g l e t o n  i n s t a n c e  o f  T p N r R c D b n s S u b s c r i b e r  
* /

* I n p u t s :  None

* O u t p u t s :  None

public static synchronized T p N r R c D b n s S u b s c r i b e r  getlnstance()
{

if ( I NS TA NC E == null)
I

I NS TANCE = new TpNrRcDbnsSubscriber();
)

return I NS TANCE;

C o n s t r u c t o r ,  made  p r i v a t e  a s  c l a s s  i s  s i n g l e t o n

private TpNrRcDbnsSubscriber(
(
}

* < P x B > M e t h o d :  < / B> <CODE>dbAcces sOp t ion< / CODE>

* < B R x B > D e s c r i p t i o n :  </B>

* T h i s  m e t h o d  d e t e r m i n e s  w h e t h e r  t h e  s u b s c r i b e r  w i l l  a c c e s s  t h e
* d a t a b a s e  v i a  t h e  n o t i f y ,  o r  n o t i f y W i t h R e s p o n s e  m e t h o d s .  In  t h i s
* c a s e  t h e  m e t h o d  a l w a y s  r e t u r n s  t r u e  t o  i n d i c a t e  t h a t  t h e
* s u b s c r i b e r  w i l l  b e  a c c e s s i n g  t h e  d a t a b a s e . < / P >

* S r e t u r n  b o o l e a n
* - t r u e  t o  i n d i c a t e  a c c e s s  t o  d a t a b a s e  r e q u i r e d  
* /

/ *
* I n p u t s :  None

* O u t p u t s :  None  

* /

public boolean dbAccessOption()
{

return true,
}

93 or 135



/**

* < P x B > M e t h o d :  </B> < C O D E > s i n g l e N o t i f i c a t i o n O p t i o n < / C O D E >

* < B R x B > D e s c r i p t i o n  : </B>

* T h i s  m e t h o d  i n d i c a t e s  w h e t h e r  t h e  s u b s c r i b e r  w i l l  h a n d l e  m u l t i p l e  s i n g l e
* e v e n t s  o r  o n e  c o m b i n e d  e v e n t .  I n  t h i s  c a s e  t h e  m e t h o d  w i l l  a l w a y s  r e t u r n
* f a l s e  t o  i n d i c a t e  m u l t i p l e  s i n g l e  e v e n t s . < /P>

* ê r e t u r n  b o o l e a n
* -  f a l s e  t o  i n d i c a t e  m u l t i p l e  s i n g l e  e v e n t  
* /

/ *
* I n p u t s :  None

* O u t p u t s  : None  

* /

public boolean singleNotificationOption()
{

return false,
}

94 o f  I 35



* < P x B > M e t h o d :  </B> <CODE>nc t i fy< ' CODE>

* < B R > < B > D e s c r i p t i o n : </B>

* T h i s  m e t h o d  p e r f o r m s  t h e  a b o r t / c o m m i t  p r o c e s s i n g  on r e c e i p t  o f  a r e q u e s t
* t o  c h a n g e  t h e  r e c o n f i g  s t a t e  a t t r i b u t e  o f  a PG E n t i t y .  < /P>

* < P > I t  f i r s t  c h e c k s  w h e t h e r  t h e  e v e n t  i s  a b o r t ,  i n  w h i c h  c a s e  i t  a t t e m p t s
* t o  r e s t o r e  t h e  l i s t  o f  d e l e t e d  c o n n e c t i o n s . < / P>

* < P > I t  t h e n  c h e c k s  t h a t  t h e  n o t i f i c a t i o n  i s  f o r  a c o m mi t  e v e n t ,  a n d  f o r  a
* PG E n t i t y , b e f o r e  i t  t h e n  r e t r i e v e s  t h e  r e c o n f i g  s t a t e  a t t r i b u t e  v a l u e  t o  
'  d e t e r m i n e  wha t  o p e r a t i o n  h a s  b e e n  p e r f o r m e d . T h i s  i s  t h e n  u s e d  t o
* g e n e r a t e  t h e  o p e r a t i o n  s t r i n g  f o r  t h e  u s e r  v i s i b l e  l o g ,  t h a t  i s
■' g e n e r a t e d  a f t e r  s u b s c r i b i n g  t o  t h e  n o d e  map s e t  e v e n t ,  a n d  r a i s i n g  o f
* t h e  'ADM i n  s i n g l e  n o d e  c o n f i g u r a t i o n '  a l a r m .  < /P>

* ê p ar am e
" -  r e c o n f i g  s t a t e  e v e n t
*/

’* O u t p u t s :  None

* R e t u r n s :  None

public void notify ( D b n s E v e n t  e )

1
D b n s S i n g l e E v e n t  e v e n t  = ( D b n s S i n g l e E v e n t ) e ;  
D b T r a n s a c t i o n  n r T x  = null;

try

/ /  i n  c a s e  t h e  v a l i d a t i o n  o f  t h e  r e s t a t e  c h a n g e  f a i l e d ,  t h e n
/' a t t e m p t  t o  r e s t o r e  a n y  c o n n e c t i o n s  t h a t  w e r e  d e l e t e d

i f  ( e v e n t . g e t E v e n t T y p e 0  ==  D b n s E v e n t . DBNS _ABORT_EVENT_TYPE)
{

A r r a y L i s t  x c R e s L i s t  = ( T p N r C o n n M n g m t . g e t l n s t a n c e ( ) ) .
g e t D e l e t e d L i s t ( ) ;

V  c h e c k  t o  make  s u r e  t h e  l i s t  h a s  b e e n  i n s t a n t i a t e d  
i f  ( x c R e s L i s t  ! =  n u l l )
(

/ /  r e s t o r e  t h e  d e l e t e d  x c o n s
/ /  NOTE: SWERR i s  r a i s e d  b y  t h e  c a l l e d  m e t h o d  i f  t h e
/ /  r e s t o r a t i o n  f a i l s
( T p N r C o n n M n g m t . g e t l n s t a n c e ( ) ) . r e s t o r e X c o n s ( x c R e s L i s t ) ;

}

r e t u r n ;
}

/ /  h a n d l e  t h e  c ommi t  e v e n t
i f  ( ( e v e n t . g e t E v e n t T y p e ( )  == D b n s E v e n t . DBNS_COMMIT_EVENT_TYPE)  && 

( e v e n t . g e t E n t i t y ( )  g e t K e y ( ) . g e t E n t i t y l d ()  ==
E n t i t y l d E n u m . EN_PG)  )

{
E n t i t y P g  p g E n t i t y  = ( E n t i t y P g ) e v e n t . getEntity();

int r e c S t a t e  = p g E n t i t y . getRcstate().intValue();

boolean r e q u i r e d  = false;

String o p e r a t i o n  = null ;

switch ( r e c S t a t e )
{

case T P R e c o n f i g S t a t e E n u m . T P _ R C _ S T A T E _ A D D N O D E _ V A L U E :  
/  s e t  o p e r a t i o n  s t r i n g  t o  a d d  n o d e  

o p e r a t i o n  = new String ( A d d  N . d e " ) ;

r e q u i r e d  true; 
break;

95 o f  135



case T P R e c o n f i g S t a t e E n u m . T P _ R C _ S T A T E _ D E L N O D E _ V A L U E :
, ' /  s e t  o p e r a t i o n  s t r i n g  t o  d e l e t e  n o d e  
o p e r a t i o n  = new String ( ' D e l e t e  N o d e " ) ;

r e q u i r e d  = true; 
break;

case T P R e c o n f I g S t a t e E n u m . T P _ R C _ S T A T E _ I D L E  _VALUE:
■ c l e a r  a l a r m  

( T p N r U t i l i t i e s .getlnstance{)).alarm ( p g E n t i t y ,
A F _ P r o b l e m T y p e E n u m . AF_ADMTNSTNGI. ENODECONFTG_PT,

false);
break; 

default :
new Swerr ( " I n v a l i d  r e c o n f i g  s t a t e  : " + r e c S t a t e ) ;  
break;

}

i f  ( r e q u i r e d )
{

r a i s e  a l a r m
( T p N r U t i l i t i e s . g e t l n s t a n c e ( ) ) . a l a r m ( p g E n t i t y ,

A F _ P r o b l e m T y p e E n u m . A F _ A D 1 ^ I NS I NG L E N 0 D E C 0 N F I G_ PT ,
t r u e ) ;

S t r i n g  u n i t  = ( T p N r R e c o n f i g N o d e . g e t l n s t a n c e ( ) ) .
g e n U n i t S t r i n g ( p g E n t i t y ) ;

/ g e n e r a t e  t h e  s u c c e s s  (FAC616) l o g  w i t h  dummy v a l u e  f o r  
/  e r r o r R e a s o n

S t r i n g  e r r o r R e a s o n  = T p N r E r r o r C o d e . T P _ N R _ E RR _ S WE RR ;
( T p N r U t  i l i t i e s . g e t l n s t a n c e ( ) )  . l o g ( o p e r a t i o n ,  u n i  t ,

e r r o r R e a s o n ,  t r u e ) ;

}

/ /  c l e a r  t h e  l i s t  o f  d e l e t e d  X c o n s ,  s i n c e  t h e  c h a n g e  t o  t h e  
/ /  r e s t a t e  v a l u e  h a s  b e e n  c o m m i t t e d  s u c c e s s f u l l y  a n d  t h e r e  i s  
/ . '  no n e e d  t o  no w r e s t o r e  them
( T p N r C o n n M n g m t . g e t l n s t a n c e ( ) ) . c l e a r D e l e t e d L i s t ( ) ;

}
e l s e
{

n e w  S w e r r  ( • ' I n v a l i d  e v e n t  t y p e  r e c e i v e d  ; " •
e v e n t . g e t E v e n t T y p e ( ) ) ;  

n e w  S w e r r  (" I n v a l i d  e n t i t y  r e c e i v e d  : *-
e v e n t . g e t E n t i t y  ( ) . g e t K e y ( )  . g e t E n t i t y l d ( ) ) ;

}
}
c a t c h  ( E x c e p t i o n  e x )

{
n e w  S w e r r ( e x . g e t M e s s a g e ( ) ) ;

)

96 or 135



* < P x B > M e t h o d :  </B> < C O D E > n o t i f y Wi t h R e s pc n s e </ C O D E >

* < B R x B > D e s c r i p t i o n :  </B>

* T h i s  m e t h o d  p e r f o r m s  t h e  p r e - v a l i d a t i o n  p r o c e s s i n g  on r e c e i p t  o f  a
* r e q u e s t  t o  c h a n g e  t h e  r e c o n f i g  s t a t e  a t t r i b u t e  o f  a PG E n t i t y . < / P >

* < P > I t  c h e c k s  t h a t  t h e  n o t i f i c a t i o n  i s  f o r  a p r e - v a l i d a t i o n  e v e n t ,  a n d
* f a r  a PG E n t i t y ,  b e f o r e  c h e c k i n g  t h e  v a l u e  t o  w h i c h  t h e  r e c o n f i g  s t a t e
* a t t r i b u t e  i s  t o  b e  s e t ,  upon w h i c h  t h e  s p e c i f i c  p r o c e s s i n g  f o r  Add  N o d e
* o r  D e l e t e  Node  i s  c a l l e d . < / P >

* <P>NOTE: I n  t h e  c a s e  o f  t h e  r e c o n f i g  s t a t e  b e i n g  s e t  t o  I d l e ,  A d d  Node
* i s  b e i n g  b a c k e d  o u t ,  an d  D e l e t e  Node  i s  b e i n g  c o m p l e t e d .  To d e t e r m i n e  
 ̂ w h i c h ,  t h e  p r e v i o u s  v a l u e  o f  t h e  r e c o n f i g  s t a t e  a t t r i b u t e  i s

" r e t r i e v e d . < / P>

■* ièparam e
* -  r e c o n f i g  s t a t e  e v e n t

* @ r e t u r n  b o o l e a n
- t r u e  i f  s u c c e s s f u l , f a l s e  o t h e r w i s e

* /

' O u t p u t s :  None

public boolean notifyWithResponse ( D b n s E v e n t  e )
i

D b n s S i n g l e E v e n t  e v e n t  = ( D b n s S i n g l e E v e n t ) e ; 
boolean r c  = false;

t r y

{
/ /  c h e c k  t h e  e v e n t  i s  f o r  t h e  c o r r e c t  t y p e  a n d  e n t i t y  
i f  ( ( e v e n t . g e t E v e n t T y p e ( )  ==

D b n s E v e n t . D B N S _ P R E _ V A L I D A T I O N _ EV E N T _ T Y P E ) && 
( e v e n t  . g e t E n t i t y ( )  g e t K e y ( ) . g e t E n t i t y l d ()  ==

E n t i t y l d E n u m . E N _ P G )  )
(

E n t i t y P g  p g E n t i t y  = ( E n t i t y P g ) e v e n t . getEntity ( ) ;

/ /  g e t  t h e  o p e r a t i o n  t y p e  
switch ( e v e n t . getOperation()) 

i
/ /  a  PG c r e a t e  w i l l  b e  d e n i e d  i f  t h e  r e s t a t e  a t t r i b u t e  i s
/ /  s e t  t o  a n y t h i n g  o t h e r  t h a n  IDLE
case O p e r a t i o n . O P _ I N S E R T :

r c  = processlnsert ( p g E n t i t y ) ; 
break;

/ /  a  PG d e l e t e  w i l l  b e  d e n i e d  i f  t h e  r e s t a t e  a t t r i b u t e
/ /  i s  s e t  t o  a n y t h i n g  o t h e r  t h a n  IDLE
case O p e r a t i o n . O P _ D E L E T E :

r c  = processDelete ( p g E n t i t y ) ; 
break;

/ /  i n  no r m a l  o p e r a t i o n  t h e  r e s t a t e  a t t r i b u t e  i s  u p d a t e d  
/ /  t o  e n t e r  a d d  n o d e  o r  d e l e t e  n o d e  
case O p e r a t i o n . O P _ U P D A T E ;

- /  c h e c k  t h a t  t h i s  e v e n t  o n l y  c o n t a i n s  a c h a n g e  t o  t h e  
/ /  r e s t a t e  a t t r i b u t e  
if (validChange( p g E n t i t y ) )
;

/ /  p r o c e s s  t h e  c h a n g e  t o  t h e  r e s t a t e  a t t r i b u t e  
r c  = processChange ( p g E n t i t y ) ;

}
break; 

default :
new Swerr ( I n v a l i d  ' . 'peia" i  . n f e v e n t  . getOperation ( ) ) ; 
break;

97  o f  135



}
else

n e w  S w e r r ( . a v a l i d  e v e n t  t y p e  r e c e i v e d  ;
e v e n t . g e t E v e n t T y p e ( ) ) ;  

n e w  S w e r r ( " n v a L i U  e n :  t y  r e c e i v e d  :
e v e n t . g e t E n t i t y ( ) . g e t K e y ( ) . g e t E n t i t y l d ( ) )

}
catch ( E x c e p t i o n  e x )

new Swerr(e x .toString());
}

return r c ;

98 or 135



* < P x B > M e t h o d ;  </B> <CODE>val idChange</CODE>

* < B R x B > D e s c r i p t i o n  : </B>

* T h i s  m e t h o d  d e t e r m i n e s  w h e t h e r  t h e  r e s t a t e  a t t r i b u t e  i s  t h e  o n l y
* a t t r i b u t e  on t h e  PG b e i n g  c h a n g e d . < / P >

'  < p > < / p >

ê p a r am p g E n t i t y
* -  t h e  PG e n t i t y  upon w h i c h  t h e  r e c o n f i g  o p e r a t i o n  i s  b e i n g
* p e r f o r m e d

'  ê r e t u r n  b o o l e a n
* -  t r u e  i f  o n l y  r e s t a t e  i s  b e i n g  c h a n g e d ,  f a l s e  o t h e r w i s e

■* O u t p u t s ;  None

private static boolean validChange ( E n t i t y P g  p g E n t i t y )

{
boolean r c  = false;

try
(

g e t  a l i s t  o f  t h e  c h a n g e d  a t t r i b u t e s  
V e c t o r  c h a n g e d A t t r  = p g E n t i t y . getDelta ( ) ;

if ( c h a n g e d A t t r . contains ( E n t i t y P g . A T T R _ r c s t a t e ) )
{

' /  c h e c k  t o  make  s u r e  t h i s  l i s t  o n l y  c o n t a i n s  o n e  a t t r i b u t e ,
/  i . e .  t h e  r e s t a t e  a t t r i b u t e  

if ( c h a n g e d A t t r . size() ! =  1 )
{

String e r r o r R e a s o n  = T p N r E r r o r C o d e . T P _ N R _ E R R _ I N V A L I D _ T L 1 ; 
( T p N r U t i 1 i t i e s . getlnstance()).log ( p g E n t i t y ,  e r r o r R e a s o n ,

false);
}
else
(

r c  = true;
}

}
else
(

new Swerr ( ' Comma n d  d i d  n o t  c o n t a i n  r e s t a t e " ) ;
}

catch ( E x c e p t i o n  e )
{

new Swerr(e .toString());
}

return r c ;

99 or 135



* < P x B > M e t h o d : < /B> <CODE>proces sChange</CODE>

* < B R x B > D e s c r i p t i o n  : </B>

* T h i s  m e t h o d  p r o c e s s e s  t h e  c h a n g e  t o  t h e  r e c o n f i g  s t a t e  a t t r i b u t e . < / P>

* S p a r  am p g E n t i t y
* -  t h e  PG e n t i t y  upon  w h i c h  t h e  r e c o n f i g  o p e r a t i o n  i s  b e i n g
* p e r f o r m e d

* Q r e t u r n  b o o l e a n
* -  t r u e  i f  t h e  r e c o n f i g  s t a t e  c h a n g e  i s  s u c c e s s f u l ,
* f a l s e  o t h e r w i s e

* O u t p u t s :  None

private static boolean processChange ( E n t i t y P g  p g E n t i t y )
{

boolean rc : false;
int r e c S t a t e  - p g E n t i t y . getRcstate{ ) .intValue ( ) ;

switch ( r e c S t a t e )

{

case T P R e c o n f  i g S t a t e E n u m . TP_ R C _ S T A T E _ A D D N OD E _ V A L U E :
r c  = ( T p N r A d d N o d e .getlnstance{ ) )  .process( p g E n t i t y )  ,■ 
break,

case T P R e c o n f i g S t a t e E n u m . T P „ R C _ S T A T E _ D E L N O D E _ V A L U E ;
r c   ̂ ( T p N r D e l e t e N o d e . getlnstance0 ) . process ( p g E n t i t y ) ; 
break;

case T P R e c o n f i g S t a t e E n u m . T P _ R C _ S T A T E _ I D L E _ V A L U E :
/ . /  g e t  t h e  o l d  PG e n t i t y  f o r  t h e  p r e v i o u s  r e c o n f i g  
/ /  s t a t e  v a l u e
E n t i t y P g  o l d P g  = ( E n t i t y P g ) p g E n t i t y . g e t o l d o b j ( ) ;  
i n t  o l d R c S t a t e  = o l d P g . g e t R c s t a t e ( ) . i n t V a l u e ( ) ;

switch ( o l d R c S t a t e )
(

case T P R e c o n f i g S t a t e E n u m . T P _ R C _ S TA TE_ A DD N OD E_ V ALU E:
/ /  m o v i n g  f r o m  a d d  n o d e  t o  i d l e  i n d i c a t e s
/ /  t h a t  a d d  n o d e  i s  b e i n g  b a c k e d  o u t
r c  = (TpNrAddNode.getInstance()) backout ( p g E n t i t y ) ;
break;

case T P R e c o n f i g S t a t e E n u m . TP_ R C _ S T A T E _ D E L N OD E _ V A L U E :
/ /  m o v i n g  f r o m  d e l e t e  n o d e  t o  i d l e  i n d i c a t e s
/ /  t h a t  d e l e t e  n o d e  i s  b e i n g  c o m p l e t e d
rc = (TpNrDeleteNode . getlnstance 0). conç>lote (pgEnti ty)
break;

case T P R e c o n f i g S t a t e E n u m . T P _ R C _ S T A T E _ I D L E _ V A L U E :
/ /  m o v i n g  f r o m  i d l e  t o  i d l e  i s  h a r m l e s s , b u t  t h i s
/ /  s h o u l d  b e  d e n i e d
String e r r o r R e a s o n  = T p N r E r r o r C o d e .

T P _ N R _ E R R _ I D L E _ T O _ I D L E ; 
( T p N r U t i l i t i e s .getlnstance()).log ( p g E n t i t y ,

e r r o r R e a s o n ,  false) ;
rc = false; 
break;

d e f a u l t  ;
new Swerr ( ' I n v a l i d  o l d  r e c o n f i g  s t a t e  : "

+ O l d R c S t a t e ) ;
break;

}

break; 

default ;
new Swerr(Invalid recnfig state : f recState);
break;

}
return r c ;

100 o f  135



/**

* <P><B>Me t hod: </ B>  < C O D E > p r o c e s s I n s e r t < / C O D E >  

< B R x B > D e s c r i p t i o n  : </B>
*

■* T h i s  m e t h o d  p r o c e s s e s  t h e  e v e n t  c o r e s p o n d i n g  t o  c r e a t i n g  t h e
* r e s t a t e  a t t r i b u t e < / P >

* <P> O n l y  an r e s t a t e  v a l u e  o f  IDLE i s  a c c e p t a b l e  when d e l e t i n g
* t h e  PG. </P>

ê pa r a m  p g E n t i t y
-  t h e  PG e n t i t y  upon w h i c h  t h e  r e c o n f i g  o p e r a t i o n  i s  b e i n g  

p e r f o r m e d

ê r e t u r n  b o o l e a n
-  t r u e  i f  t h e  r e c o n f i g  s t a t e  i n s e r t  i s  s u c c e s s f u l , 

f a l s e  o t h e r w i s e

* O u t p u t s :  None

private static boolean processlnsert ( E n t i t y P g  p g E n t i t y )
j

boolean r c  = false;

int r e c S t a t e  p g E n t i t y  getRcstate().intValue(),

/  o n l y  t h e  IDLE v a l u e  i s  a c c e p t a b l e  when c r e a t i n g  t h e  PG 
if ( r e c S t a t e  ! =  T P R e c o n f i g S t a t e E n u m . T P _ R C _ S T A T E _ I D L E _ V A L U E )
(

String e r r o r R e a s o n  = null;

switch ( r e c S t a t e )
(

case T P R e c o n f  i g S  t a t e E n u m . TP_RC _STATE_ADDNODE_VALUE:
e r r o r R e a s o n  = T p N r E r r o r C o d e . TP_NR _ ERR _ C REA TE_ PG_ AD D ;  
break;

case T P R e c o n f i g S t a t e E n u m . TP _ R C _ S T A T E _ D E L N O D E _ V A L U E :
e r r o r R e a s o n  = T p N r E r r o r C o d e . T P _ N R _ E R R _ C R E A T E _ P G _ D E L ; 
break;

default :
new Swerr (" I n v a l i d  s t a t e  ; " +■ r e c S t a t e ) ;
break;

1

if ( e r r o r R e a s o n  ! =  null)
{

( T p N r U t i l i t i e s . getlnstance()).log ( p g E n t i t y ,
e r r o r R e a s o n ,  false) ;

}
)
else
{

r c  = true;
}

return r c ;

101 o f  135



* <P><B>Me t hod: < /B> < CO D E > p ro c e s sD e l e t e < /C OD E >

* < B R x B > D e s c r i p t i o n  : </B>

* T h i s  m e t h o d  p r o c e s s e s  t h e  e v e n t  c o r e s p o n d i n g  t o  d e l e t i n g  t h e
* r e s t a t e  a t t r i b u t e < / P >

* <P> O n l y  an r e s t a t e  v a l u e  o f  IDLE i s  a c c e p t a b l e  when d e l e t i n g
* t h e  PG. </P>

êp ar am p g E n t i t y
-  t h e  PG e n t i t y  upon w h i c h  t h e  r e c o n f i g  o p e r a t i o n  i s  b e i n g  

p e r f o r m e d

Q r e t u r n  b o o l e a n
-  t r u e  i f  t h e  r e c o n f i g  s t a t e  d e l e t e  i s  s u c c e s s f u l , 

f a l s e  o t h e r w i s e

* O u t p u t s :  N o n e

private static boolean processDelete ( E n t i t y P g  p g E n t i t y )
{

boolean r c  - false;

int r e c S t a t e  = p g E n t i t y , getRcstate ( ) . intValue ( } ;

if ( r e c S t a t e  ! -  T P R e c o n f i g S t a t e E n u m . T P _ R C _ S T A T E _ I D L E _ V A L U E )

{
String e r r o r R e a s o n  = null ;

switch ( r e c S t a t e )
{

case T P R e c o n f i g S t a t e E n u m . T P _ R C _ S T A T E _ A DD N OD E _ V AL U E :
e r r o r R e a s o n  = T p N r E r r o r C o d e . TP _ N R _ E R R _ I N _ A D D _ N O D E ;  
break;

case T P R e c o n f  i g S t a t e E n u m . TP_ R C _ S T A T E _ D E L N OD E _ V A L U E :
e r r o r R e a s o n  = T p N r E r r o r C o d e . T P _ N R _ E R R _ I N _ D E L _ N O D E ; 
break;

default :
new Swerr ( " I n v a l i d  s t a t e  : + r e c S t a t e ) ;
break;

}

if ( e r r o r R e a s o n  ! =  null)
{

( T p N r U t i l i t i e s . getlnstance()).log ( p g E n t i t y ,
e r r o r R e a s o n ,  false);

}
}

else
i.

r c  = true;
}

return r c ;
}

} / /  e n d  o f  T p N r R c D b n s S u b s c r i b e r

102 o f  135



Class: TpNrRestartRecovery
* < B > F i l e : </B> < C O D E > T p N r R e s t a r t R a c o v e r y . j ava< / CODE>
V

package e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g ;

import e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g . T p N r R e c o n f i g N o d e ;

< P x B > C l a s s  : </B> < C O D E > Tp N r R es t a r t R ec o v e ry < / C O D E> < /P >

<P><B>Document : < /B> S t a n d a r d  R e c o n f i g s  DD
-  a v a i l a b l e  i n  A t h e n a ,  f o l l o w i n g  t h i s  p a t h :

<BR> -  E q u i n o x
<BR> - P r o d u c t  D e v e l o p m e n t
<BR> - S o f t w a r e
<BR> - N e t w o r k  E l e m e n t  S o f t w a r e
<BR> - F u n c t i o n a l  A r e a s
<BR> - N e t w o r k  R e c o n f i g
<BR> - D e s i g n  F o l d e r  </P>

< B > D e s c r i p t i o n  : </'B>

The T p N r R e s t a r t R e c o v e r y  c l a s s  i m p l e m e n t s  R u n n a b l e  a n d  e n c a p s u l a t e s  t h e  
m e t h o d s  t o  i n i t i a l i s e  t h e  n e t w o r k  r e c o n f i g u r a t i o n  c o d e .

S a u t h o r  An dy  K i n n e y

M e t h o d s  : 

v o i d  r u n ()
- c o n t a i n s  t h e  n e t w o r k  r e c o n f i g  i n i  t i a l i s a t i o n  c o d e  

S t r i n g  g e t N a m e O
-  r e t u r n s  t h e  name a s s o c i a t e d  w i t h  t h e  t h i s  r e c o n f i g  t h r e a d

public final class T p N r R e s t a r t R e c o v e r y  implements R u n n a b l e  

{
/ ’

* name u s e d  t o  i d e n t i f y  t h i s  t h r e a d  w i t h  e q u i n o x  t h r e a d  r e g i s t r y  

private static final String n a m e  = now String ( "NR_RESTART_ D' ' ) ;

D e f a u l t  C o n s t r u c t o r
/ ’

public TpNrRestartRecovery!)
{
}

03 o f  135



* < P x B > M e t h o d :  < /B> <CODE>geCName</CODE>

* < B R x B > D e s c r i p t i o n :  </B>

* T h i s  m e t h o d  r e t u r n s  t h e  name o f  t h e  t h r e a d  r e g i s t e r e d  w i t h  t h e
* e q u i n o x  t h r e a d  r e g i s t r y < / P >

* ^ r e t u r n  S t r i n g
* -  name o f  t h e  e q u i n o x  t h r e a d  

/ *
* I n p u t s :  None

* O u t p u t s :  None

- - * /

public String getName ()
i

return this.n a m e ;
I

* < P x B > M e t h o d :  < / B> <CODE>run</CODE>

+ < B R x B > D e s c r i p t i o n :  </B>

* T h i s  m e t h o d  c o n t a i n s  t h e  n e t w o r k  r e c o n f i g  i n i t i a l i s a t i o n  c o d e . < / P >
V

/  *

* I n p u t s :  None

* O u t p u t s :  None

* R e t u r n s :  None  

* /

public void run ()
{

/ /  n e t w o r k  r e c o n f i g  i n i t i a l i s a t i o n  c o d e  

/ /  a d d  n o d e  a n d  d e l e t e  n o d e  i n i t i a l i s a t i o n
T p N r R e c o n f i g N o d e  t p N r R e c o n f I g N o d e  = T p N r R e c o n f i g N o d e . getlnstance() 
t p N r R e c o n f i g N o d e . initialize();

}

} / /  e n d  o f  T p N r R e s t a r t R e c o v e r y

104 o r  135



Class: TpNrUtilities
< B > F i l e : </B> < C O D E > T p N r U t i l i t i e s . j av a </ CODE >

p a c k a g e  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g ;  

i m p o r t  e q u i n o x . f r a m e w o r k . d a t a b a s e . D b A c c e s s ;
i m p o r t  e q u i n o x . f r a m e w o r k . d a t a b a s e . D b L o c k N o t G r a n t e d E x c e p t i o n ;

i m p o r t  e q u i n o x . f r a m e w o r k . n o m . k e y s . E n t i  t y L o g i c a l L i n e K e y ; 
i m p o r t  e q u i n o x . f r a m e w o r k . n o m . k e y s . E n t i t y P g K e y ; 
i m p o r t  e q u i n o x . f r a m e w o r k . n o m . k e y s . E n t i  t y N e K e y ;

i m p o r t  e q u i n o x . f r a m e w o r k . s w e r r . S w e r r ;

i m p o r t  e q u i n o x . f r a m e w o r k . n o m . o b j  s . E n t i  t y P g ;  
i m p o r t  e q u i n o x . f r a m e w o r k . n o m . o b j s . E n t i t y N e ;  
i m p o r t  e q u i n o x . f r a m e w o r k . n o m . o b j s . E n t i t y P r o p e r t y L i s t ;

i m p o r t  e q u i n o x . f r a m e w o r k . n o m . e n u m s . A F _ R e t u r n C o d e E n u m ;  
i m p o r t  e q u i n o x . f r a m e w o r k . n o m . e n u m s . A F _ I n p u t I m p a c t E n u m ; 
i m p o r t  e q u i n o x . f r a m e w o r k . n o m . e n u m s . A F _ P r o b l e m T y p e E n u m ; 
i m p o r t  e q u i n o x . f r a m e w o r k . n o m . e n u m s . T P R e c o n f i g S t a t e E n u m ;  
i m p o r t  e q u i n o x . f r a m e w o r k . n o m . e n u m s . E n t i t y l d E n u m ;

i m p o r t  e q u i n o x . f r a m e w o r k . a l a r m s . e x t e r n a l . A l a r m F r a m e w o r k ;

i m p o r t  e q u i n o x . l o g s . u s e r V i s i b l e . L o g F a c 6 1 6 ; 
i m p o r t  e q u i n o x . l o g s . u s e r V i s i b l e . L o g F a c 3 1 6 ;

i m p o r t  j a v a . u t i l . H a s h S e t ; 
i m p o r t  j a v a . u t i l . I t e r a t o r ;

* < P x B > C l a s s  : < /B> < C O D E > T p N r U t i l i t i e s < / C O D E x / P >

* < P x B > D o c u m e n t  : < /B> S t a n d a r d  R e c o n f i g s  DD
* - a v a i l a b l e  i n  A t h e n a ,  f a l l o w i n g  t h i s  p a t h :
* <BR> - E q u i n o x
* <BR> - P r o d u c t  D e v e l o p m e n t
* <BR> -  S o f t w a r e

<BR> -  N e t w o r k  E l e m e n t  S o f t w a r e
* <BR> -  F u n c t i o n a l  A r e a s
* <BR> -  N e t w o r k  R e c o n f i g
* <BR> - D e s i g n  F o l d e r  < / P>

* < B > D e s c r i p t i o n : < /B>

* The T p N r U t i l i t i e s  c l a s s  d e f i n i t i o n  e n c a p s u l a t e s  t h e  u t i l i t i e s  t o  s u p p o r t
* N e t w o r k  R e c o n f i g s .

* ê a u t h o r  A n d y  K i n n e y

* M e t h o d s :

* b o o l e a n  s e t R e c S t a t e ( . . . )
* -  s e t s  t h e  r e c o n f i g  s t a t e  a t  t r i b u t e

* v o i d  l o g O
* - m e t h o d  t o  g e n e r a t e  N e t w o r k  R e c o n f i g  s u c c e s s  (FAC616)  a n d  f a i l e d  (FAC316)
* u s e r  v i s i b l e  l o g s

* v o i d  a l a r m { J
■' -  m e t h o d  t o  r a i c e / c l e a r  'ADM i n  s i n g l e  n o d e  c o n f i g u r a t i o n '  a l a r m  

'  H a s h S e t  g e t S e t O f O b j e c t s ( . . . }
* -  m e t h o d  t o  r e t r y  l o c k i n g  o f  o b j e c t s  i n  d a t a b a s e  t o  c u r r e n t  t r a n s a c t i o n

05 o f  135



public final class T p N r U t i l i t i e s  

{
/ * *

* s i n g l e t o n  i n s t a n c e  o f  t h i s  c l a s s  
* /
private static T p N r U t i l i t i e s  I NSTANCE - null;

<P><B>Me t hod: < / B> <CODE >g et In s t an ce < / CO DE>

< B R x B > D e s c r i p t i o n  : </B>

T h i s  m e t h o d  r e t u r n s  t h e  i n s t a n c e  o f  t h i s  s i n g l e t o n . </ P>

Q r e t u r n  T p N r U t i l i t i e s
- t h e  s i n g l e t o n  i n s t a n c e  o f  T p N r U t i l i t i e s

/

I n p u t s :  None

O u t p u t s :  None

/

public static synchronized T p N r U t i l i t i e s  getlnstance()

if ( I NS TA NC E == null)
{

I NS TANCE = new TpNrUtilities();

return I NS TA NC E;

* C o n s t r u c t o r , ma d e  p r i v a t e  a s  c l a s s  i s  s i n g l e t o n

private TpNrUtilities ()
{

}

06 o f  135



< P x B > M e t h o â  : < /B> <COD E >s e t Re cS ta t e < /C OD E >

< B R x B > D e s c r i p t i o n :  </B>

T h i s  m e t h o d  s e t s  t h e  r e c o n f i g  s t a t e  PG a t t r i b u t e .  < /P>

* ê par am

* ê pa ra m

* è r e t u r n

*/

* O u t p u t s :  

* /

p g E n t i t y
- t h e  PG upon w h i c h  t h e  r e c o n f i g  o p e r a t i o n  h a s  b e e n  

e x e c u t e d

r e c S t a t e
-  t h e  r e c o n f i g  s t a t e  t h a t  t h e  a t t r i b u t e  i s  t o  b e  s e t  t o .  

b o o l e a n
- t r u e  i f  s u c c e s s f u l , f a l s e  o t h e r w i s e

None

public boolean setRecState ( E n t i t y P g  p g E n t i t y ,
T P R e c o n f d g S t a t e E n u m  r e c S t a t e )

I

boolean r c  = true;

p g E n t  i  t y .setRcstate(r e c S t a t e ) ;

try
{

}
catch ( E x c e p t i o n  e )
{

new Swerr(e .toString()); 
r c  false;

return r c ;

107 o f  135



* < P x B > M e t h o d : < / B >  <CODE>log</CODE>

< B R x B > D e s c r i p t i o n :  </B>

* T h i s  m e t h o d  d e t e r m i n e s  t h e  u n i t  a n d  o p e r a t i o n  s t r i n g s  f r o m  t h e
* p g E n t i t y  a n d  t h e n  c a l l s  t h e  l o g  m e t h o d  t o  g e n e r a t e  t h e
* u s e r  v i s i b l e  l o g . < / P >

* @param p g E n t i t y
* - t h e  PG e n t i t y  upon  w h i c h  t h e  r e c o n f i g  o p e r a t i o n  i s  b e i n g
* p e r  form,ed

* Qparam e r r o r R e a s o n
* -  t h e  r e a s o n  t h e  r e c o n f i g  command f a i l e d

* ê p a r am  s u c c e s s
* - t r u e  t o  g e n e r a t e  s u c c e s s  l o g ,  f a l s e  f o r  f a i l e d  l o g .

* R e t u r n s :  None

* O u t p u t s :  None

public void log ( E n t i t y P g  p g E n t i t y ,  String e r r o r R e a s o n ,  boolean s u c c e s s )
{

int r e c S t a t e  = p g E n t i t y . getRcstate().intValue();

String o p e r a t i o n  = null;
String u n i t  - null;

switch ( r e c S t a t e )

case T P R e c o n f  i g S t a t e E n u m . TP_ R C _ S T A T E _ A D D N OD E _ V A L U E ; 
o p e r a t i o n  = new String ( A d d  N o d e " ) ;  
u n i t  = ( T p N r R e c o n f i g N o d e . getlnstance()).

genUnitString ( p g E n t i t y ) ;
break;

case T P R e c o n f I g S t a t e E n u m . T P _ R C _ S T A T E _ D E L N O D E _ V A L U E : 
o p e r a t i o n  = new String ( D e l e t e  N o d e " ) ;  
u n i t  = ( T p N r R e c o n f i g N o d e . getlnstance()).

genUnitString ( p g E n t i t y ) ;
break,

case T P R e c o n f  i g S t a t e E n u m . T P _ R C _ S T A T E _ I D L E _ VA L U E  :
/ /  i t  i s  i m p o r t a n t  t h a t  a l o g  i s  g e n e r a t e d  e v e n  when t h e  s t a t e  
/ /  i s  i d l e  t o  e n s u r e  t h a t  t h e  e r r o r R e a s o n  i n f o r m a t i o n  i s  
/ /  d i s p l a y e d  t o  t h e  u s e r
o p e r a t i o n  = new String { " R e c o n f i g  S t a t e  -  I d l e " ) ;  
u n i t  = ( T p N r R e c o n f i g N o d e . getlnstance()) .

genUnitString ( p g E n t i t y ) ;
break; 

default :
new Swerr ( " C a n n o t  d e t e r m i n e  l o g  t y p e  : + r e c S t a t e ) ;
break;

}

/ /  c h e c k  t h a t  t h e  u n i t  a n d  o p e r a t i o n  s t r i n g s  h a v e  b e e n  i n i t i a l i s e d  a n d  
/ /  g e n e r a t e  t h e  a p p r o p r i a t e  n e t w o r k  r e c o n f i g  l o g  
if ( ( o p e r a t i o n  ! =  null) && ( u n i t  ! = null) )
{

( T p N r U t i l i t i e s . getlnstance0 ) . log ( o p e r a t i o n ,  u n i t ,
e r r o r R e a s o n ,  s u c c e s s ) ;

I OX or 135



"  <P><B>Me t hod: < /B> <CODE>log</CODE>

* < B R x B > D e s c r i p t i o n  : </B>

* T h i s  m e t h o d  g e n e r a t e s  e i t h e r  t h e  s u c c e s s  (FAC616)  o r  f a i l e d  (FAC316)  
 ̂ N e t w o r k  R e c o n f i g  u s e r  v i s i b l e  l o g . < / P >

* @param u n i t
* ■ t h e  s t r i n g  a s s o c i a t e d  v / i t h  t h e  u n i t  upon w h i c h  t h e  r e c o n f i g
* o p e r a t i o n  h a s  b e e n  p e r f o r m e d

* ê p a r am  o p e r a t i o n
* - t h e  r e c o n f i g  o p e r a t i o n  e . g .  Ad d  Node

* ê p a r am e r r o r R e a s o n
* - t h e  e r r o r  r e a s o n  i n  c a s e  o f  f a i l u r e

* ê p a r am s u c c e s s
* - t r u e  t o  g e n e r a t e  s u c c e s s  l o g ,  f a l s e  f o r  f a i l e d  l o g .

 ̂ O u t p u t s :  None

* R e t u r n s :  None

public void log (String o p e r a t i o n ,
String u n i t ,
String e r r o r R e a s o n ,  
boolean s u c c e s s )

i
try
{

/ /  c h e c k  w h e t h e r  s u c c e s s  (FAC616)  o r  f a i l e d  (FAC316)  l o g  i s  t o  b e  
/ /  c r e a t e d  
if ( s u c c e s s )
{

/ /  g e n e r a t e  s u c c e s s  l o g
L o g F a c 6 1 6  l o g  = new LogFac616 ( o p e r a t i o n ,  u n i t ) ;

if ( l o g .generateLog() == - 1 )
{

/ /  NOTE: s i n c e  t h i s  i s  a u s e r  v i s i b l e  l o g ,  i t  i s  n o t  
/ /  n e c e s s a r y  t o  r e t r y  on f a i l u r e  
new Swerr ( " F a i l e d  t o  g e n e r a t e  N e t w o r i c  R e c o n f i g  

s u c c e s s  l o g " ) ;
}

}
else

/ /  g e n e r a t e  f a i l e d  l o g
L o g F a c 3 1 6  l o g  = new LogFac316 ( o p e r a t i o n ,  u n i t ,  e r r o r R e a s o n ) ;

if (l o g .generateLog() == - 1 )

/ /  NOTE: s i n c e  t h i s  i s  a u s e r  v i s i b l e  l o g ,  i t  i s  n o t  
/ /  n e c e s s a r y  t o  r e t r y  on f a i l u r e
new Swerr(" F a i l e d  t o  g e n e r a t e  N e t w o r k  R e c o n f i g  f a i l e d  l o g " ) ;

}

}
}
catch ( E x c e p t i o n  e )
(

new Swerr(e.toString());
}

109 o f  135



< P x B > M e t b o d :  < /B> <CODE>aIarm</CODE>

< B R x B > D e s c r i p t i o n :  </B>

T h i s  m e t h o d  p r o v i d e s  t h e  m e c h a n i s m  t o  r a i s e / c l e a r  t h e  'ADM i n  s i n g l e  
n o d e  c o n f i g u r a t i o n  a l a r m ' < /P>

'êparam p g E n  t i t y
- PG e n t i t y  upon w h i c h  t h e  a l a r m  i s  t o  b e  r a i s e d - ' c l e a r e d

ê p a r a m  p r o b l e m T y p e
- t h e  a l a r m  t y p e  t o  b e  r a i s e d

ê p a r a m  r a i s e
- t r u e  t o  r a i s e  a l a r m ,  f a l s e  t o  c l e a r

/

O u t p u t s :  Mane

R e t u r n s :  None

public void alarm{EntityPg pgEntity,
A F _ P r o b l e m T y p e E n u m  p r o b l e m T y p e ,  
boolean r a i s e )

{
try

/ /  g e t  PG k e y  f r o m e n t i t y
E n t i t y P g K e y  p g K e y  = ( E n t i t y P g K e y ) p g E n t i t y , g e t K e y ( ) ;

■ c r e a t e  L o g i c a l L i n e K e y  t o  r a i s e / c l e a r  a l a r m  a g a i n s t  
s h o r t  dummy = 1 ;
E n t i t y L o g i c a l L i n e K e y  1 1 K e y  = n e w  E n t i t y L o g i c a l L i n e K e y  (

p g K e y . g e t S h e l f I d ( ) ,  
p g K e y . g e t s i o t i d 0 ,  
p g K e y . g e t P o r t I d ( ) ,
d ummy,
p g K e y . g o t P i p e l d ( ) ) ;

/ /  s e t u p  s e c o n d a r y  k e y  f o r  i n t e r f a c e  w i t h  a l a r m  f r a m e w o r k  
/ /  wh i c h  i s n ' t  u s e d  i n  t h e  r e c o n f i g  c a s e ,  a s  i t  o n l y  a p p l i e s  
/ /  f o r  i n t e r / i n t r a  s h e l f  a l a r m s  
E n t i t y P g K e y  s e c o n d K e y  = n u l l ;

/ /  c a l l  a l a r m  f r a m e w o r k  i n t e r f a c e  t o  r a i s e / c l e a r  t h e  
/ /  'ADM i n  s i n g l e  n o d e  c o n f i g u r a t i o n ' a l a r m  
A F _ R e t u r n C o d e E n u m  r c  = A l a r m F r a m e w o r k . n o t i f y P r o b l e m ( 

p r o b l e m T y p e ,
1 I K e y ,
s e c o n d K e y ,
r a i s e ,
A F _ I n p u  t I m p a c  t  E n u m . A F _ N A _ 1 1 ) ;

/ /  NOTE: AF_NA_II  i s  u s e d  t o  i n d i c a t e  t h e  d e f a u l t  s e v e r i t y  o f  m , n s a  
/ /  s i n c e  t h e  r e c o n f i g  a l a r m  h a s  no o t h e r  s e t t i n g

i f  ( r c  ! =  A F _ R e t u r n C o d e E n u r a . A F _ S U C C E S S _ R C )
(

n e w  S w e r r ( r c . t o S t r i n g ( ) ) ;

/ /  NOTE: c o n s i d e r i n g  w h e r e  t h i s  m e t h o d  i s  c a l l e d ,  t h e r e  i s  no  
/ /  b e n e f i t  i n  r e t u r n i n g  s u c c e s s / f a i l u r e ,  h e n c e  s w e r r i n g  i s  
/ /  s u f f i c i e n t

}

catch ( E x c e p t i o n  e )

{
new Swerr (e .toString(});

}

1 10 o f  135



"  < P x B > M e t h o d :  < /B> < C O D E > g e t S e tO f Oh j ec t s < / C O D E>

* < B R x B > D e s c r i p t i o n :  < /B>

" T h i s  m e t h o d  a c t s  a s  a w r a p p e r  t o  t h e  <CODE>DbAcces s . q u e r y B y C l a s s ( ) </CODE>
* m e t h o d  t o  i m p l e m e n t  a r e t r y  m e c h a n i s m  i n  t h e  c a s e  t h a t  a
* <CO D E >D b Lo c k N o t Gr an te d Ex c e p t i on </ CO D E > h a s  b e e n  t h r o w n . < / P >

* <P>The m e t h o d  r e - t r i e s  4 t i m e s ,  w i t h  a s p a c e  o f  500ms b e t w e e n  e a c h
* a t t e m p t .  <.'P>

* Sparam e n t i t y l d
* - u s e d  b y  t h e  <CODE>DbAcces s . q u e r y B y C l a s s ( ) </CODE> m e t h o d
* t o  a t t e m p t  t o  l o c k  a l l  o b j e c t s  w i t h  t h i s  i d  i n  t h e
* d a t a b a s e  t o  t h e  c u r r e n t  t r a n s a c t i o n

 ̂ @ r e t  urn  H a s h S e t
* -  e i t h e r  n u l l  i f  t h e  o b j e c t s  c o u l d  n o t  b e  l o c k e d ,  o r  a
* s e t  o f  t h e  r e q u i r e d  o b j e c t s

O u t p u t s :  None

public H a s h S e t  getSetOfObjects ( E n t i t i y T d E n u m  e n t i t y l d )

/ /  i n d i c a t e s  w h e t h e r  a n o t h e r  a t t e m p t  s h o u l d  b e  made  t o  l o c k  t h e  o b j e c t s  
boolean t r y a g a i n  = true;

' /  i n i t i a l i s e  t h e  a t t e m p t  c o u n t e r  
int a t t e m p t s  = 1;

i n i t i a l i s e  t h e  r e t u r n  s e t  
H a s h S e t  p g S e t   ̂ null;

/ k e e p  g o i n g  w h i l s t  t h e  a t t e m p t s  h a v e  n o t  b e e n  e x h a u s t e d  
while ( ( t r y a g a i n )  && ( p g S e t  ==  null))
(

try
{

/ /  a t t e m p t  t o  l o c k  a l l  t h e  o b j e c t s  i n  t h e  d a t a b a s e
E n t i t y P r o p e r t y L i s t  p r o p L i s t  = E n t i t y P r o p e r t y L i s t . getlnstance();
p g S e t  = D b A c c e s s . queryByClass(

p r o p L i s t . getEntityClass ( e n t i t y l d ) . getName());
}
catch ( D b L o c l c N o t G r a n t e d E x c e p t i o n  e )

{
/ /  c h e c k  t o  s e e  i f  t h e  a t t e m p t s  h a v e  b e e n  e x h a u s t e d  
if ( a t t e m p t s  > 3 )
(

t r y a g a i n  = false;
p g S e t  = null;
new Swerr(e.toString());

)

else
{

a t t e m p t s + + ;

try
{

/ /  p u t  t h i s  t h r e a d  t o  s l e e p  f o r  500ms  
T h r e a d . sleep ( ( long)5 0 0 ) ;

}
catch ( E x c e p t i o n  e x )
(

' in  t h e  c a s e  o f  a n y  E x c e p t i o n ,  S w e r r  a n d  e x i t  
new Swerr(ex .toString()); 
p g S e t  = null; 
break;

}

}

)

1 1 1 or 135



catch ( E x c e p t i o n  e )
{

i n  t h e  c a s e  o f  a n y  o t h e r  E x c e p t i o n ,  S w e r r  a n d  e x i t  
new Swerr(e .toString()); 
p g S e t  = null; 
break;

}
}

return p g S e t ;

}

) / /  e n d  o f  T p N r U t i l i t i e s

112 o f  135



Class: TpNrValidations
* < B > F i l e : < / 3 >  < C O D E > T p N r V a l i d a t i o n s . j ava< / CODE>
V

p a c k a g e  e q u i n o x . p r o t e c t  i o n . t r a f f i c . r e c o n f i g ;  

i m p o r t  e q u i n o x . f r a m e w o r k . n o m . k e y s . E n t i t y P g m K e y ; 

i m p o r t  e q u i n o x . f r a m e w o r k . d a t a b a s e . D b A c c e s s ;
i m p o r t  e q u i n o x . f r a m e w o r k . d a t a b a s e . D b L o c k N o t G r a n t e d E x c e p t i o n ;

i m p o r t  e q u i n o x . f r a m e w o r k . n o m . o b j s . E n t i t y P g ;  
i m p o r t  e q u i n o x . f r a m e w o r k . n o m . o b j s . E n t i t y P g m ;

i m p o r t  e q u i n o x _ n e _ c o n n e c t i o n s . e n g i n e . u s e r _ i n t e r f a c e . X c o n l i s t ; 
i m p o r t  e q u i n o x _ n e _ c o n n e c t i o n s . e n g i n e . u s e r _ i n t e r f a c e . X c o n ;

i m p o r t  e q u i n o x . f r a m e w o r k . n o m . e n u m s . F o r c e S t a t u s E n u m ;  
i m p o r t  e q u i n o x . f r a m e w o r k . n o m . e n u m s . M a n u a l S t a t u s E n u m ;  
i m p o r t  e q u i n o x . f r a m e w o r k . n o m . e n u m s . T P R e c o n f i g S t a t e E n u m ;  
i m p o r t  e q u i n o x . f r a m e w o r k . n o m . e n u m s . P r o t e c t i o n S c h e m e E n u m ;

i m p o r t  e q u i n o x . p r o t e c t i o n . t r a f f i c . r e c o n f i g . T p N r E r r o r C o d e ;

i m p o r t  e q u i n o x . f r a m e w o r k . s w e r r . S w e r r ;

i m p o r t  j a v a . u t i 1 . H a s h S e t ;  
i m p o r t  j a v a . u t i l . I t e r a t o r  ;

* < P x B > C l a s s  : </B> <CODE>TpNrVal ida t  i on s< /CODE > </ P >

* <P><B>Document :< / B>  S t a n d a r d  R e c o n f i g s  DD
* -  a v a i l a b l e  i n  A t h e n a ,  f o l l o w i n g  t h i s  p a t h :
* <BR> ■ E q u i n o x
* <BR> - P r o d u c t  D e v e l o p m e n t
■* <BR> - S o f t w a r e
* <BR> - N e t w o r k  E l e m e n t  S o f t w a r e
* <BR> - F u n c t i o n a l  A r e a s
* <BR> -  N e t w o r k  R e c o n f i g
* <BR> - D e s i g n  F o l d e r  < / P>

* < B > D e s c r i p t i o n : </B>

* The  T p N r V a l i d a t i o n s  c l a s s  d e f i n i t i o n  e n c a p s u l a t e s  t h e  f u n c t i o n a l i t y  u s e d  t o
* v a l i d a t e  n e t w o r k  r e c o n f i g  commands.

* @ au t h o r  A n d y  K i n n e y
V 

/ *
* M e t h o d s :

* b o o l e a n  n o d e M a p I s N i l ( . . . }
* -  c h e c k s  t h a t  t h e  n o d e  map a t t r i b u t e  o f  t h e  PG i s  n i l

* b o o l e a n  n o A c t i v e R e c o n f i g s ( . . . )
* -  c h e c k s  t h a t  no o t h e r  r e c o n f i g s  a r e  i n  p r o g r e s s

* b o o l e a n  n o P r o t S w A c t i v e ( . . . )
* -  c h e c k s  t h a t  t h e r e  a r e  n o  a c t i v e  p r o t e c t i o n  s w i t c h e s

* b o o l e a n  i s P g B l s r ( . . . )
- c h e c k s  t h a t  t h e  PG i s  a c t u a l l y  4F BLSR

* b o o l e a n  n o A d d D r o p s ( . . . )
* -  c h e c k s  t h e r e  a r e  no a d d / d r o p  c o n n e c t i o n s  on t h e  PG

113 o f  135



public final class T p N r V a l i d a L i o n s
f

/ * *
* s i n g l e t o n  i n s t a n c e  o f  t h i s  c l a s s  
* /

p r i v a t e  s t a t i c  T p N r V a l i d a t i o n s  I NS TA NC E = n u l l ;

/ * *

* < P x B > M e t h o d :  </B> < CODE > ge t In s t an ce < /CO DE>

* < B R x B > D e s c r i p t i o n  : </B>

' T h i s  m e t h o d  r e t u r n s  t h e  i n s t a n c e  o f  t h i s  s i n g l e t o n . < / P>

* Q r e t u r n  T p N r V a l i d a t i o n s
* -  t h e  s i n g l e t o n  i n s t a n c e  o f  T p N r V a l i d a t i o n s
V 

/ *

* I n p u t s :  None

* O u t p u t s :  None

V

public static synchronized T p N r V a l i d a t i o n s  getlnstance()
{

if ( I NS TA NC E ==  null)
{

I NSTANCE = new TpNrValidations();
}

return I NS TA NC E;

C o n s t r u c t o r , made  p r i v a t e  a s  c l a s s  i s  s i n g l e t o n  

p r i v a t e  T p N r V a l i d a t i o n s  ()

I 14 o r  135



* < P x B > M e t h o d :  </B> <CODE>nodeMapIsNi l</CODE>

* < B R x B > D e s c r i p t i o n :  </B>

* T h i s  m e t h o d  c h e c k s  t h e  c u r r e n t  v a l u e  o f  t h e  n o d e  map PG a t t r i b u t e ,  a n d
* r e t u r n s  t r u e  i f  t h e  v a l u e  i s  n i l  ( i . e .  t h e  n o d e  map h a s  n o t  b e e n  s e t )  a n d
* f a l s e  o t h e r w i s e . < / P>

* < P > I t  a c h i e v e s  t h i s  b y  c h e c k i n g  t h e  l e e e M a p  a t t r i b u t e  v a l u e .  I f  t h i s  i s  “ ‘
* t h e n  t h e r e  i s  n o  n o d e  m a p . < / P >

ê p a r a m  p g E n t i t y
-  PG E n t i t y  upon w h i c h  t h e  r e c o n f i g  o p e r a t i o n  h a s  b e e n  

e x e c u t e d

è r e  t u r n S t r i n g
- n u l l  i n d i c a t e s  n o d e  map i s  n i l ,  n o n - n u l l  i n d i c a t e s  n o n - n i l

* O u t p u t s ;  None

V

public String nodeMapIsNil ( E n t i t y P g  p g E n t i t y )
(

String r c  = null;

if ( ( p g E n t i t y . getleeemap()).equals( ) !- true)
(

r c  = T p N r E r r o r C o d e . T P _ N R _ E R R _ V A L 1 D _ N 0 D E  MAP;

return r c ;

115 o f  135



* < P x B > M e t h o d : < / B >  < CO D E >n oA c t i ve Re c o n f i g s< /C OD E >

* < B R x B > D e s c r i p t i o n  : < /B>

* T h i s  m e t h o d  d e t e r m i n e s  w h e t h e r  t h e  r e c o n f i g  s t a t e  a t t r i b u t e  o f  t h e  PG
* i n d i c a t e s  t h a t  t h e r e  i s  a r e c o n f i g  i n  p r o g r e s s . </ P>

* <P>NOTE: T h i s  m e t h o d  m u s t  b e  c a l l e d  w i t h i n  a p r e - v a l i d a t i o n  e v e n t  t o
* e n s u r e  t h e r e  i s  an o l d  o b j e c t  t o  r e t r i e v e . < / P>

* ê p ar am p g E n t i t y
'* -  PG E n t i t y  upon w h i c h  t h e  r e c o n f i g  o p e r a t i o n  h a s  b e e n
* e x e c u t e d

* ê r e t u r n  S t r i n g
* - n u l l  i n d i c a t e s  n o  a c t i v e  r e c o n f i g s , n o n - n u l l  o t h e r w i s e
* /

* O u t p u t s :  None

public String noActiveReconfigs (EntityPg pgEntity)

String rc null;

/ /  g e t  t h e  o l d  PG e n t i t y
Ent.ityPg oldPg = (EntityPg) pgEntity. getOldObj () ;

int OldRcState = oldPg.getRcstate().intValue();

switch (OldRcState)

case TPReconfigStateEnum.TP_RC_STATE_ADDNODE_VALUE: 
rc = TpNrErrorCode.TP_NR_ERR_IN_ADD_NODE; 
break;

case TPReconfigStateEnum.TP_RC_STATE_DELNODE_VALUE: 
rc = TpNrErrorCode.TP_NR_ERR_IN_DEL_NODE; 
break;

case TPReconfigStateEnum.TP_RC_STATE_IDLE_VALUE:
/ /  t h e r e  a r e  no a c t i v e  r e c o n f i g s  
break;

default :
now Swerr(oldRcState);
rc = TpNrErrorCode.TP_NR_ERR_SWERR;
break;

}

return rc;

1 16 o f  135



/ * *

* < P x B > M e t h o d :  </B> <CODE>noPro t SwAct ive< / CODE>

* < B F > < B > D e s c r i p t i o n : </B>

* T h i s  m e t h o d  d e t e r m i n e s  w h e t h e r  t h e r e  i s  a n y  p r o t e c t i o n  a c t i v i t y  on a n y
* o f  t h e  PGMs t h a t  f o rm  t h e  PG on w h i c h  t h e  r e c o n f i g  o p e r a t i o n  h a s  b e e n
* e x e c u t e d  u p o n . < / P >

@param p g E n t i t y
- PG E n t i t y  upon w h i c h  t h e  r e c o n f i g  o p e r a t i o n  h a s  b e e n  

e x e c u t e d

Q r e t u r n  S t r i n g
- n u l l  i n d i c a t e s  no a c t i v e  p r o t e c t i o n  s w i t c h e s , n o n - n u l l  

o t h e r w i s e

* O u t p u t s :  None

public String noProtSwActive (EntityPg pgEntity)

String rc = null ;

try
{

-■ g o t  t h e  PGM l i s t  f rom t h e  PG E n t i t y  
EntityPgmKey[J pgmList = pgRntity.getMemberList();

. wor k  t h r o u g h  t h e  l i s t  o f  PGMs 
int index = 0;
while {(index < pgmList.length) && (rc == null))
{

EntityPgm pgm = (EntityPgm)DbAccess.queryByKey(pgmList[index])

// check to see if either a force or manual request is active 
if ((pgm.getForceReq() true) ||

(pgm.getManualReq() == true) ||
(pgm.getRingforceReq() != ForceStatusEnum.FORCE_OFF ) ||
(pgm.getRingmanualReq() != ManualStatusEnum.MANUAL_OFF))

{
rc = TpNrErrorCode.TP_NR_ERR_PROT_SW_ACTIVE;

}

index++;
}

}
catch (DbLockNotGrantedException Ick)
{

rc = TpNrErrorCode.TP_NR_ERR_LOCK_NOT_GRANTED_PGM;
}
catch (Exception e)
{

new Swerr(e.toString()) ;
rc = TpNrErrorCode,TP_NR_ERR_SWERR;

}

return rc;

117 o f  135



/ * *

* < P x B > M e t h o d : < / B >  <CODE>isPgBlsr</CODE>

* < B R x B > D e s c r i p t i o n  : < /B>

* T h i s  m e t h o d  c h e c k s  t h a t  t h e  PG p r o t e c t i o n  s c h e m e  i s  4F B L SR . < / P>

* êpar am p g E n t i t y
* - PG E n t i t y  upon w h i c h  t h e  r e c o n f i g  o p e r a t i o n  h a s  b e e n
* e x e c u t e d

* ê r e t u r n  S t r i n g
* -  n u l l  i n d i c a t e s  PG i s  BLSR, n o n - n u l l  o t h e r w i s e
* /

/ *
* O u t p u t s :  None

* /

public String isPgBlsr (EntityPg pgEntity)
{

String rc = null ;

/ /  g e t  t h e  p r o t e c t i o n  s c h e m e  f r o m  t h e  PG
ProtectionSchemeEnum prSch = pgEntity.getProtectionScheme();

/ /  c h e c k  t h e  p r o t e c t i o n  s c h e m e  i s  4F BLSR
if (prSch != ProtectionSchemeEnum.PROT_FOUR_FIBER^BLSR)
i

rc = TpNrErrorCode.TP_NR_ERR_PROT_SCHEME_INVAL;

r e t u r n  r c ;

118 o f  135



*  < P x B > M e t h o d  : < /B> <CODE>n oAddDz 'ops  < /  CODE>

< B R x B > D e s c r i p t i o n  :</B>

T h i s  m e t h o d  o b t a i n s  a l i s t  o f  a l l  X c o n s  f o r  t h e  PGMs i n v o l v e d  i n  t h e  
r e c o n f i g ,  a n d  d e t e r m i n e s  w h e t h e r  a n y  o f  them a r e  n o n - p a s s t h r o u g h  t h e r e b y  
i n d i c a t i n g  t h a t  t h e  d e l e t e  n o d e  o p e r a t i o n  c a n n o t  p r o c e e d . < / P >

êparam. p g E n t i t y
-  PG E n t i t y  upon w h i c h  t h e  r e c o n f i g  o p e r a t i o n  h a s  b e e n  

e x e c u t e d

ê r e t u r n  S t r i n g
- n u l l  i n d i c a t e s  n o  a d d  d r o p  c o n n e c t i o n s , n o n - n u l l  o t h e r w i s e

V
/ '

* O u t p u t s :  None

- V

public String noAddDrops ( E n t i t y P g  p g E n t i t y )  

String r c  - null ;

try
{

g e t  t h e  l i s t  o f  X c o n s  t h a t  appiy to t h i s  PG 
HashSet xconList - XconIist.getXconsOnPg(pgEntity);

if (xconList ! - null)
{

g e t  l i s t  o f  PGMs f r o m PG E n t i t y  
EntityPgmKey[] pgmList = pgEntity.getMemborList(); 
byte pgmNumber = pgEntity.getNumberOfPgm();

/ /  l o o p  t h r o u g h  a l l  x c o n s  
Iterator i = xconList.iterator(); 
while (i,hasNext() && (rc = = null))
{

Xcon xcon = (Xcon)i.next();

boolean sourceFound = false; 
boolean sin)cFound = false ;

/ /  g e t  t h e  s o u r c e  i n f o r m a t i o n
short x c o n S h e l f  = x c o n .getPhysicalEndpointA(0).getSholf(); 
short x c o n S l o t  = x c o n .getPhysicalEndpointA(0).getSlot(); 
short x c o n P o r t  = x c o n .getPhysicalEndpointA(0).getPort();

for
{

l o o p  t h r o u g h  t h e  pgm l i s t  t o  f i n d  a m a t c h  on t h e  s o u r c e  
(byte i n d e x  = 0 ;  i n d e x  < p g m N u m b e r ;  i n d e x + + )

/ /  i f  t h e  s o u r c e  m a t c h e s  
if ( ( p g m L i s t [ i n d e x ] . getShelfId() 

( p g m L i s t [ i n d e x ] . getSlotId() 
( p g m L i s t [ i n d e x ] . getPortId()

x c o n S h e l f )  
x c o n S l o t  ) 
x c o n P o r t  )

&&
&&
)

{
s o u r c e F o u n d  = true; 
break;

}

/ /  g e t  t h e  s i n k  i n f o r m a t i o n
x c o n S h e l f  = x c o n .getPhysicalEndpointZ(.).getShelf() ; 
x c o n S l o t   ̂ x c o n .getPhysicalEndpointZ( ) . getSlot() ; 
x c o n P o r t  = x c o n .getPhysicalEndpointZ( ) getPort();

/ /  l o o p  t h r o u g h  t h e  pgm l i s t  a g a i n  t o  m a t c h  t h e  
/ /  o t h e r  s i d e  o f  t h e  c o n n e c t i o n ,  i . e .  l o o k i n g  
/ /  f o r  a  p a s s  t h r o u g h  c o n n e c t i o n  
for (byte l o o p  = ; l o o p  < p g mNu mb e r , -  loop-t - - t -)
{

■ i f  t h e  s i n k  m a t c h e s  
if (( p g m L i s t [l o o p ] .getShelfId() == x c o n S h e l f )  &&

1 19 o f  135



(pgmList[loop],getSlotld() == xconSlot ) && 
(pgmList[loop].getPortId() == xconPort ) )

sinkFound = true; 
break;

short s r c P l d  = x c o n . getPhysicalEndpointA(0 ).getTimeslot() 
short d s t P l d  = x c o n . getPhysicalEndpointZ(0 ).getTimeslot ( )

, /  : f  t h ù  c o n n e c t i o n  i s  a p a s s t h r o u g h
if ( ( s o u r c e F o u n d )  && ( s i n k F o u n d )  && ( s r c P i d  = =  d s t P i d )  )
{

/ /  p a s s  t h r o u g h  c o n n e c t i o n

else
{

r c  = T p N r E r r o r C o d e . T P _ N R _ E R R . ADD_DROP;
)

}
catch (Exception e)
{

new Swerr(e.toString());
rc -= TpNrErrorCode .TP_NR_ERR_SWERR;

}

return rc;

) / /  e n d  o f  T p N r V a l i d a t  i o n s

20 o f  135



Appendix B: Unit Test Cases
In the tables below the unit test cases are listed, using the naming convention as 
used in the original documentation ([3]).

Single Session:

TCID Title

UTl Successful Add Node command

UT2 Repeat UTl for PG2

UT3 Repeat UT 1 for PG3

UT4 Repeat UT 1 for PG4

UT5 Repeat UTl for PG5

UT6 Repeat UT 1 for PG6

UT7 Repeat UTl for PG7

UT8 Repeat UT 1 for PG8

UT9 Repeat UT 1 for PG9

UTIO Repeat UTl for PGIO

U T ll Repeat UTl for PGl 1

UT12 Repeat UTl for PG l2

UT13 Place ALL 4F PGs into Add Node

UT14 Successfiil Delete Node command

UT15 Repeat U T l4 for PG2

UT16 Repeat U T l4 for PG3

UT17 Repeat U T l4 for PG4

UT18 Repeat U T l4 for PG5

UT19 Repeat UT 14 for PG6

UT20 Repeat U T l4 for PG7

UT21 Repeat U T l4 for PG8

UT22 Repeat U T l4 for PG9

UT23 Repeat U T l4 for PGIO

UT24 Repeat U T l4 for PGl 1

UT25 Repeat U T l4 for PG l2

UT26 Place ALL 4F PGs into Delete Node

UT27 Successfiil Delete Node backout command

121 of 135



TCID Title

UT28 Repeat UT27 for PG2

UT29 Repeat UT27 for PG3

UT30 Repeat UT27 for PG4

UT31 Repeat UT27 for PG5

UT32 Repeat UT27 for PG6

UT33 Repeat UT27 for PG7

UT34 Repeat UT27 for PG8

UT35 Repeat UT27 for PG9

UT36 Repeat UT27 for PGIO

UT37 Repeat UT27 for PGl 1

UT38 Repeat UT27 for PG l2

UT39 Successful Add Node backout command

UT40 Repeat UT39 for PG2

UT41 Repeat UT39 for PG3

UT42 Repeat UT39 for PG4

UT43 Repeat UT39 for PG5

UT44 Repeat UT39 for PG6

UT45 Repeat UT39 for PG7

UT46 Repeat UT39 for PG8

UT47 Repeat UT39 for PG9

UT48 Repeat UT39 for PGIO

UT49 Repeat UT39 for PGl 1

UT50 Repeat UT39 for PG12

UT51 Successful Add Node complete command

UT52 Repeat UT51 for PG2

UT53 Repeat UT51 for PG3

UT54 Repeat UT51 for PG4

UT55 Repeat UT51 for PG5

UT56 Repeat UT51 for PG6

UT57 Repeat UT51 for PG7

UT58 Repeat UT51 for PG8

UT59 Repeat UT51 for PG9

UT60 Repeat UT51 for PGIO

122 of 135



TCID Title

UT61 Repeat UT51 for PGl 1

UT62 Repeat UT51 for PG l2

UT63 Successful Delete Node complete command

UT64 Repeat UT63 for PG2

UT65 Repeat UT63 for PG3

UT66 Repeat UT63 for PG4

UT67 Repeat UT63 for PG5

UT68 Repeat UT63 for PG6

UT69 Repeat UT63 for PG7

UT70 Repeat UT63 for PG8

UT71 Repeat UT63 for PG9

UT72 Repeat UT63 for PGIO

UT73 Repeat UT63 for PGl 1

UT74 Repeat UT63 for PG l2

UT75 Add Node command denied when PG in Add Node

UT76 Add Node command denied when PG in Delete Node

UT77 Add Node command denied when PG is not 4F BLSR

UT78 Add Node command denied when PG has a non-nil nodemap

UT79 Delete Node command denied when PG in Delete Node

UT80 Delete Node command denied when PG in Add Node

UT81 Delete Node command denied when PG is not 4P BLSR

UT82 Delete Node command denied when PG has a nil nodemap

UT83 PG Create denied if  setting restate to add node

UT84 PG Create denied if  setting restate to delete node

UT85 PG Create successful if setting restate to idle

UT86 PG Delete denied if  PG in Add Node

UT87 PG Delete denied if PG in Delete Node

UT88 PG Delete successful if PG in Idle

UT89 Multiple attribute ED-FFP-LL command denied, PG Idle

UT90 Multiple attribute ED-FFP-LL command denied, PG Add Node

UT91 Multiple attribute ED-FFP-LL command denied, PG Delete Node

UT92 Multiple attribute ED-FFP-LL command denied, PG Idle

UT93 Multiple attribute ED-FFP-LL command denied, PG Add Node

123 of 135



TCID Title
UT94 Multiple attribute ED-FFP-LL command denied, PG Delete Node

UT95 Multiple attribute ED-FFP-LL command denied, PG Idle

UT96 Multiple attribute ED-FFP-LL command denied, PG Add Node

UT97 Multiple attribute ED-FFP-LL command denied, PG Delete Node

UT98 Idle command has no effect with PG in IDLE

UT99 Nil Nodemap command has no effect with PG in Add Node

UTl 00 Nil Nodemap command has no effect with PG in Delete Node

UTlOl ED-FFP-LL command denied, rcstate=unknown, PG Idle

U Tl 02 ED-FFP-LL command denied, rcstate=unknown, PG Add Node

UTl 03 ED-FFP-LL command denied, rcstate=unknown, PG Delete Node

UTl 04 Successful Add Node command with full Xcons provisioned

UTl 05 Successful Add Node backout command with full Xcons

UTl 06 Successful Add Node complete command with full Xcons

UTl 07 Successful Delete Node command with full Xcons

UTl 08 Successful Delete Node backout command with full Xcons

UTl 09 Successful Delete Node complete command with full Xcons

UTl 10 Add/Drop Xcons denied when in Add Node

UTl 11 Add/Drop Xcons denied when in Delete Node

UTl 12 Pass-through Xcons can be created when in Add Node

UTl 13 Pass-through Xcons can be created when in Delete Node

UTl 14 PG Delete denied if PG has add/drop connection: STSl PLDI

UT115 Repeat UTl 13 for STSl PLD96

UT116 Repeat UTl 13 for STSl PLD192

UTl 17 Repeat U Tl 13 for STS-3C PLDI

UTl 18 Repeat UTl 13 for STS-3C PLD49

U Tl 19 Repeat UTl 13 for STS-3C PLDI90

UT120 Repeat U Tl 13 for STS-12C PLDI

UT121 Repeat U Tl 13 for STS-12C PLD97

UT122 Repeat UTl 13 for STS-12C PLD181

UT123 Repeat U Tl 13 for STS-48C PLDI

UTl 24 Repeat UTl 13 for STS-48C PLD49

UTl 25 Repeat U Tl 13 for STS-48C PLD145

124 of 135



Multi-Session:

TCID Title

UT126 Delete Node command denied when manual span switch active

UT127 Repeat UT125 for PG2

UT128 Repeat UT125 with forced span switch active

UTI29 Repeat UT127 for PG2

UT130 Repeat UT125 with manual ring switch active

UT131 Repeat UT129 for PG2

UT132 Repeat UT125 with forced ring switch active

UT133 Repeat U T131 for PG2

UT134 Successful Delete Node command with LOCKOUT active

UT135 Repeat UT133 for active RINGLOCKOUT

UT136 Successful Add Node command

UT137 Successful Delete Node command

Manual:

TCID Title
UT138 SC Restart, PG in Add Node with non-nil nodemap

UT139 SC Restart, PG in Delete Node with non-nil no demap

UT140 PGMs are locked when attempting delete node

UT141 PG is locked when reconfig is initializing

UT142 SC Restart, PG in Delete Node

UT143 SC Restart, PG in Add Node

125 of 135



Appendix C\ Integration Test Cases
In the table below the integration test cases are listed, using the naming 
convention as used in the original documentation ([3]).

NOTE: the test cases are split into prority 1, 2 and 3. The purpose is to ensure 
that as a minimum, priority I test cases which test 80% o f the fimctionality are 
executed and passed before the software can be delivered to Verification. The 
remaining priority 2 and 3 test cases are executed to ensure conistency with the 
results obtained from the unit testing with the simulator which then provide 
100% coverage.

TCID Title Priority
IT! Add Node to 4F BLSR Ring 1

IT2 Repeat IT 1 for PG2 1

IT3 Repeat IT 1 for PG3 2

IT4 Repeat IT 1 for PG4 3

IT5 Repeat IT 1 for PG5 2

IT6 Repeat IT 1 for PG6 3

IT7 Repeat IT 1 for PG7 2

ITS Repeat IT 1 for PG8 3

IT9 Repeat IT 1 for PG9 2

ITIO Repeat IT l for PGIO 3

I T l l Repeat IT l for PG l 1 2

IT 12 Repeat IT l for P G l2 3

IT13 Add DX Node into a mixed ring configuration 1

IT14 Add CLASSIC 192 Node into mixed ring configuration 3

IT15 Add Node - Backout 1

IT16 Repeat IT 15 for a DX bay 1

IT17 Repeat IT 15 for a CLASSIC bay 3

IT18 Add Node between two OPC span o f control 2

IT19 Add Node with Extra Traffic connections provisioned 3

IT20 Add DX Node with Extra Traffic connections provisioned 2

IT21 Add Node is denied when in Delete Node 1

IT22 Add Node is denied when DX in Delete Node 2

IT23 Add/Drop connection provisioning denied while in reconfig 1

IT24 Issue Add Node on a missing PG 2

IT25 Repeat IT24 except via command line 1

126 of 135



TCID Title Priority
IT26 Issue Add Node when switch cards are missing 2

IT27 Issue Add Node when port cards are missing 2

IT28 Issue Add Node when there are existing connections on the 
PG

1

IT29 Issue Add Node on a PG already configured into a ring 1

IT30 Issue Add Node on a I+ I Linear PG 1

IT31 Issue Add Node after restarting NCSC 1

IT32 Repeat IT 3 1 after NE has just been commissioned 2

IT33 Repeat IT31 restart NCSC during command 2

IT34 Repeat IT31 restart MXT after command successfully 
completed

2

IT35 Repeat IT31 restart Port after command successfully 
completed

3

IT36 Issue AddNode and leave for an extended period o f time 
(overnight)

3

IT37 Ensure Add Node status is maintained over a SC software 
download

3

IT38 Repeat IT37 downloading M XT card 3

IT39 Repeat IT37 downloading both port cards in group 3

IT40 Repeat IT37 downloading switch card 3

IT41 Delete Node from a 4F BLSR Ring 1

IT42 Repeat IT41 for PG2 1

IT43 Repeat IT41 for PG3 2

IT44 Repeat IT4I for PG4 3

IT45 Repeat IT4I for PG5 2

IT46 Repeat IT4I for PG6 3

IT47 Repeat IT41 for PG7 2

IT48 Repeat IT41 for PG8 3

IT49 Repeat IT4I for PG9 2

IT50 Repeat IT4I for PGIO 3

IT51 Repeat IT41 for P G l I 2

IT52 Repeat IT41 for P G l2 3

IT53 Delete DX Node from a mixed ring configuration 1

IT54 Delete CLASSIC 192 Node from a mixed ring configuration 3

IT55 Delete Node - Backout 1

IT56 Repeat ITS5 for a DX node 1

IT57 Repeat IT55 for a CLASSIC 192 node 3

127 of 135



TCID Title Priority
IT58 Delete Node between two OPC spans o f control 2

IT59 Delete Node with Extra Traffic connections provisioned 2

IT60 Delete DX Node with Extra Traffic connections provisioned 2

IT61 Delete Node is denied when in Add Node 1

IT62 Delete Node is denied when DX in Add Node 2

IT63 Issue Delete Node on a missing PG 2

IT64 Repeat IT63 except via command line 1

IT65 Issue Delete Node when switch cards are missing 1

IT66 Issue Delete Node when port cards are missing 1

IT67 Issue DeleteNode when there are add/drop connections on the 
PG

1

IT68 Repeat IT67 with pass through connections only 1

1T69 Repeat IT67 with inter-ring connections 1

IT70 Issue Delete Node with active protection switch 1

IT71 Repeat IT70 with forced span switch active 1

IT72 Repeat IT70 with manual ring switch active 1

IT73 Repeat 1T70 with forced ring switch active 1

IT74 Issue Delete Node on a 1+1 Linear PG 1

IT75 Issue Delete Node after restarting NCSC 1

IT76 Repeat IT75 after NE has just been commissioned 2

IT77 Repeat IT75 restart NCSC during command 1

IT78 Repeat 1T75 restart MXT after command successfully 
completed

2

IT79 Repeat IT75 restart Port after command successfully 
completed

2

IT80 Ensure Delete Node status is maintained over a software 
download

3

IT81 Repeat IT 80 downloading M XT card 3

IT82 Repeat IT 80 downloading both port cards in group 3

IT83 Repeat IT 80 downloading switch card 3

IT84 Issue Delete Node and leave for extended period o f time 
(overnight)

3

128 of 135



Appendix D: Test Engine
This section describes the unit test scripts prov ided as part o f  the Standard
R econfig test suite.

Load the test suite into the I est Lngine:

Te*l Engine
File Clear Help

Flun Clear Connections Fteset

•  StandardReconf ig .su ite
o -  •  V'xSim suite
©- @ SingieVxSim suite
0 -  #  MultiWoim.suite
®- •  R ec onf igC om m a nds .su i te
©■ •  C o m m o n C o rn m a n d s  group

Interpreter Ü  Interactive

Status I Reports Scripts [ Connections Variables ^Information j

Number of nodes: |280 | Failed: |o | Aborted: |0___ | Not Evaluated: |269 | Passed: 11___| Skipped: |0

In the test suite there are the scripts necessary for launching both the single, and 
m ulti s im ula to r sessions required  to  execute the unit test cases.

For the single sim ulator, the fo llow ing is required:

•  L aunch SC Slot 2
•  Initialise SC Slot 2
•  C onnect I LI
•  C om m ission  SO N F T  NE

In addition in the S ingleV xSim .su ite  under V xS im Setup .group further scripts are 
added to com plete the setup:

•  D isable C onnection  B roker
•  C reate  Q uad IOG CPs
•  C reate  Hex 2 .5 0  CP

e.o.

129  o f )  35



; Test Engine

File Clear Help

IrumJ' Clear Connections||R eset|!lnterpreter| F  Interactive

•  S tandardReconfig .suite  
9  •  VxSIrn suite

9  •  ControlCardSetup.group
•  Launch MXT slot 0
•  Initialize t' X̂TT slot 0
•  Launch MXT slot 1
•  Initialize M:<T slot 1 
V  Launch SC slot 2 
y  Initialise SC slot 2
•  Launch SC slot 3
•  Initialise SC slot 3

•  HexCardSetup group 
®- •  Q uadCardSetup .g roup

•  SwitchCardSetup.group
•  CornrTionCornrnands group

•  R em ove F la sh  Files 
y  C onnec t  TL1
y  C o m m is s io n  SONET NE
•  C o m m is s io n  SDH NE
•  Launch MCEMON Card
•  Launch MCEMON all 
y  List and  Clear Swerrs 
y  List and  C le a r T ra p s
•  Tear  Down Card
•  Tear Down All
•  Update  All Card P r e s e n c e  

<p •  SingleVxSim.suite
9  y  VXSimSetup,group

y  D isable  Connection BrokeM 
y  Create  Quad 1 OG C P s  
y  C reate  Hex 2 5 0  CP

•  UnitTest sui te 
®- •  MultiVXSim.suite

•  R econf igC om m a nds .su i te
•  C o m im o n C o m m a n d s  group

Status^Reports Scripts { Connections Variables finformation |

All connections  w ere  initialised 
and have been  created.

Starting Testing below the following n o d e s  
VxSirnSetup.group

Starting T e s tC a s e  Disable  Connection Broker at W ed Jul 03 13 29 04 0ST 2002 
Exiting te s t  case: Disable  Connection Broker 
Result: P a s s e d

Starting T e s tC as e :  Create Quad 1 OG C P s  at Wed Jul 03 13:29:05 BST 2002 
Exiting te s t  c a s e  C reate  Quad 10G C Ps  
Result  P a s s e d

Starting Tes tC ase :  Create  Hex 2.5G CP at Wed Jul 03 13:30:38 BST 2002 
Exiting te s t  case :  C reate  Hex 2.5G CP 
Result: P a s s e d

Number of nodes: |280 | Failed: |o | Aborted: |o | Not Evaluated: |271 | Passed: |9 Skipped: |o |

130 o f  135



In addition the S ingieV xSim .su ite  con tains the Unit l est.suite. The 
Unit l est.suite contains all the au tom ated  test scripts that execute the unit test 
cases.

e.g.

M
File Clear Help

Text Engine

Run] Clear Connections| Reset] Interpreter] O  Interactive

•  StandardReconfig .suite 
®- •  V'xSim.suite

•  SingleWSim.suite
©■ y  VxSimSetup group
<? #  UnitTest.suite 

®- •  U n it le s t t  group 
@ UnitTest]. g roup
•  UnitTestS.group 

^  •  UnitTest4 group 
©- •  UnitTestS group 
©■ @ UnitTest6 group 
©- •  UnitTest?. g roup 
®- •  UnitTestS.group 
O  •  UnitTestS group 
®- •  UnitTestI 0 group

•  MuItiVxSim suite
•  Reconf igCom m ands .su i te  

0 -  @ C om m onC o rn m an d s .g ro u p

f Status Reports j Scripts [ Connections Variables  finformation]
'R e su l t  M assed

All connec t ions  w e re  initialised 
and have been  created.

Starting Testing be low  the following n o d e s  
I > TCID U2

Starting T es tC a s e :  TCID: U2 at W ed Jul 03 1 3:32:33 BST 2002

Number of nodes: ]280 ; Failed: [Ô , Aborted: [Ô ]  Not Evaluated: 269 ] Passed: \v[ J  Skipped: [Ô

31 or 135



10  e x e c u t e  a n  in d i v i d u a l  l e s t  c a s e ,  o p e n  u p  a  t e s t  g r o u p ,  a n d  r u n  t h a t  t e s t  c a s e ;

Te*l Enginem
File Clear Help

Run

•  StandardReconfig .suite  
•  VxSim suite 

9  •  SingieVxSim suite 
o  V  VxSimSetup group 
9 •  UnitTest.suite 

9  •  UnitTestI group 
y  TCID: U1 
y  TCID U2
•  TCID: U:3
•  TCID: U4 
e  TCID: U5
•  TCID: U6
•  TCID: U7
•  TCID: U8 
e  TCID: U9 
e  TCID: U10
•  TCID U11
•  T C ID U 1 2
•  TCID: U1 3 

®- @ UnltTest2.group 
O  •  UnitTest3 group 
O  •  UnitTest4 group 
O- •  UnitTestS group

#  UnitTestS group 
®- •  UnitTest? group

•  UnitTestS.group 
O  •  UnitTestS group 
®- @ UnitTestI 0 group

©■ •  MultiVxSim suite 
o  •  Reconf igC om m ands .su i te  
®- •  C om m o n C o rn m an d s .g ro u p

[clear Connections [[Reset| Interpreter! Interactive

Status [^Fteports Scripts ' Connections Variables j-lnformationX
R esu lt  P a s s e d

All connec tions  w e re  initialised 
and  have been  created .

starting Testing be low  the following nodes: 
> TCID: U2

Starting T e s tC as e :  TCID: U2 at W ed Jul 03 1 3 32:33 BST 2002
tcid_u2 s u cc e ss fu l  add node  co m m an d
tcid_u2: Slot:21 Pot1:4-TL1 co m m a n d  COMPLD
tcld_u2: Slot:21 Port:4 - AO Log s ta te  is add node
tcid_u2: Slot:21 Port:4 - Alarm ra ised
tcid_u2: Slot:21 Port 4 - restate is add  node
tcid_u2 Slot:21 Port 4 - n o d e m a p  is nil
tcid_u2: Slot:21 Port:4 - le e e m a p  is ml
tcld_u2: Slot:21 Port:4 - spec ia l  m ode  is pass th ru
tcid_u2: Slot:21 Port:4 - S u c c e s s  log generated
tcid_u2: no sw errs
tcid_u2 no t raps
Slot:21 Port:4 - idle

{Exiting t e s t  c ase :  TCID: U2
iResult: P a s s e d

Nutnbei of nodes: 280 [ Failed: jc j Aborted: |o [ Nol Fvaliiated: 269 j Passed: jl 1 | Skipped: jjo ' :

N O T E :  t h a t  w i t h  e a c h  U n i t T e s t # . g r o u p  t h e r e  is a  U n i t T e s t # . e s  f i le  a s s o c i a t e d  

w i t h  it t h a t  c o n t a i n s  t h e  a c t u a l  s c r i p t  to  p e r f o r m  t h e  t e s t  c a s e .

132 o f  135



In the M ultiV xSim .suite there is the M uitiU nit le s t 1.group. The 
M ultiU nit l est 1.group contains those test scripts that apply to the m ulti v.xsim 
contlouration .

;Te*l Engine

File Clear Help 

iRunI Clear Connections R eset Interpreter □  Interactive

•  Sta n d a r d R e c o nfi g ,s u ite 
©■ #  VxSim suite 

•  SingieVxSim suite 
9  •  tvlultiVxSim.suite

<? •  Multi UnitTestI group
•  TCID U125
•  TCID U126
•  TCID U127
•  TCID U12B
•  TCID U129
•  TCID U13Ü
•  TCID U131
•  TCID U t3 2
e  TCID U t3 3
0  TCID: U134
•  TCID: U1 35
•  TCID: U t3 6

o -  @ R eccm tlgCom m ands  suite 
©■ •  C o m m o n C o rn m a n d s  group

Status I Reports Scripts Connections Variables [information{
iResul t; P a s s e d  '

I .AI I connec t ions  were  initialised 
land have been  created.

Starting Testing below the following nodes; 
> TCID: U2

Starting T es tC as e :  TCID U2 at W ed Jul 03 13 32:33 BST 2002

Nurntiei of noiJes:  [280 | Failoit: |o | AhnifeiJ: lo | Nol Fvaluateit: |269 | P a s s e d :  |l 1 j Skipped: [o |

133 o f  135



The R econfigC om m ands.su ite contain  use lb I utilities to put specific PGs into 
add node, delete node, send node m aps etc..

Te*l Engine

File Clear Help

[RunI • IV}..:

•  S tandardReconfig .suite  
0 -  •  'V'xSim suite 
0 -  •  SingieVxSim suite 
®- •  MultiVVSim suite 
9  •  Reconf igC om m ands .su i te  

9  ®  slot21 group
•  Create  Quad 10G CP
•  Add Node - PGl
•  Add Node - PG2
0  Delete Node - PG l
•  Delete Node - PG2
•  Idle - PGl
•  l d l e -P G 2
@ Node Map - PGl
0 Node Map - PG2
0 Display - PGl
0 Display- PG2 

0 -  0 slot23.group 
0 -  0 slot25 group 
©■ 0 slot27.group 
0 -  0 slot29.group 
0 -  0 slot31 group 

0 -  0 C o m m o n C o rn m a n d s  group

Clear Connections Reset Interpreter □  Interactive

Status [ pteports Scripts Connections i^riab les finformation |

Number of nodes: l2 8 0 j failed: [o Aborted: 0 Not evaluated: 269 Passed: 1 1  | Skipped: [cC J

134 o f  135



Finally, the C om m onC ornm ands.g roup  contain the generic com m ands to list and 
clear reconilg  logs etc..

|Te*l Engine

File Clear Help

ijRunj I'-’ ■ Clear Connections Reset Interpreter □  Interactive

•  StandardReconf ig .su ite
•  VVSim suite

®- @ SingieVxSim suite
•  MuItiWSim suite

O  •  R econf igC om m ands .su i te
•  C o m m o n C o rn m a n d s ,g ro u p

•  List and Clear Reconfig Logs
•  Retrieve PG Info

Status \Fteports Scripts Connections Variables iCInforrnationl

Number of nodes: |2 8 o J  railed; 0 Aborted: [o Not Evaluated: 269 Passed: 11 j Skipped: [o J

135 o t ' 135


