Expanding & Contracting
Transport Networks
using
Standard Reconfigurations

by
Andrew Kinney

NORTEL
NETWORKS

UCIL

University College London

Dissertation submitted in partial fulfilment of the requirements for the

degree of Master of Science in Telecommunications.

1 of 135

ProQuest Number: U643009

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Pro(Quest.
/ \

ProQuest U643009
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.
Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

The objective of this project is to report on the full software lifecycle in designing,
developing and delivering the Standard Reconfigurations features of Add Node and
Delete Node, using UML and Java as the means by which the design 1s described and
implemented.

As with the software lifecycle, the report follows the timeline from initial inception to
final delivery, covering in sequence the aspects of requirements capture, high level
design, detailed design, coding, unit test, and finally integration test.

This report documents my work in delivering the Standard Reconfigurations software
feature which specifically encompasses the entirety of the Network Element software
portion of this feature.

The submission does not contain material previously submitted for previous degree or
academic award.

This report is the work of the author, with any contributions from others expressly
acknowledged and/or cited.

2 0of 135

Acknowledgements

The author gratefully acknowledges the contributions from colleagues in ensuring the
successful delivery of the Standard Reconfigurations feature that forms the basis for
much of the work detailed in this report.

Specific mention should be made of:

- Dr. John Mitchell of UCL who provided essential guidance and support in pulling
this report together ready for submission

- Rabina Choudry of UCL for ensuring that this project could be undertaken

- Nortel line manager, Andy Harker who provided valuable guidance and insight
during the project

- Jeff Henderson, Martin Bluethner, Adrian Lee, and Mike Caithness who formed the
Management Platform (MP) development team

3of 135

Glossary

ADM Add/Drop Multiplexer

BLSR Bi-directional Line Switched Ring

ITU-T International Telecommunication Union —
Telecommunication Standardization Sector

JNI Java Native Interface

MSOH Multiplex Section OverHead

NE Network Element

PCM Pulse Code Modulation

PDH Plesiochronous Digital Hierarchy

PG Protection Group

PGM Protection Group Member

MP Management Platform

RSOH Regenerator Section OverHead

SDH Synchronous Digital Hierarchy

SOH Section OverHead

SONET Synchronous Optical NETwork

SWERR SoftWare ERRor

TL1 Transaction Language 1

UCL University College London

UML Unified Modelling Language

Xcon Traffic Connection (Cross Connect)

4 0of 135

Contents

1 INtrodUCtiONceiiiiiiiiiieeee e ce e e 6
2 Terminology ...c..ceeeeeeeeiiiiieieieee e 8
2.1 TransmiSSion SYSLEMS.......ccereerrueerrreerereereeiieeeininneeeesesereeeesnnnes 8
2.2 Transport NetWOrKceeiivvvuiiiiiiieiiiieereiee e 9
2.3 SDH Frame......ccccccvvreeeieiinnniriiiiereeeseereneeeceeeseesennnseeeeseeesssennnes 10
P S o (0] (o 1 0] o FOR OO PUPP O P RPPPRTT 10
2.5 Network Element........cccoivvvimiiiriiiiiiiiiiiiiiiiniccieneneeecens 11
2.6 Purpose of Standard Reconfigsccovvveeeveeeriieeiiinienniienennenns 13
3 REQUITCMENTS.....ceeiiiieriiiiieeiiiiiieeereniireeeeeesrreeeesesnreeeeeeaaas 14
4 Procedure Descriptionc.cceeeerveeerneniieiniiieeinnieennnene, 17
4.1 AdANOCE ...ttt es e eeee e e e e e e e e 17
4.2 Delete NOAEC ...uuiieeererrreeeiniireeeieerereeresreeeeeesrteeesesnreeeeseeneeesas 22
S USE CaSES ceiiiiiiiiiiiiiiieee e et e eeeeeetit e e s e e e eeeeeeaaaaaareas 27
5.1 Add NOE — SUCCESS .eeeriiruirrrrreeeeieeearirreeee s rrerreeeee e e e eeneeees 27
5.2 Add Node — bacKOULeeeiiiiiiiiiiiiieiiieececeeeeeee e 27
5.3 Add Node — failurecocvveeieeiiiiiieciiieesceieeeeecreee e 28
5.4 Delete NOAE — SUCCESS covvuuvrrrreerererrrenrinnnrrereeeesiireeeeeeesssesonnnnenees 28
5.5 Delete Node — backout........ceeevuveeerierirrereeciiiicniiiiceiineecenans 29
5.6 Delete Node — failureccccvvveeeeeeeiiiiiiiiieeeeeeeinneeeeececeee e 29
6 Detailed DeSign......ccccoveuiiieiiiiiiiiiiiiiiiiieninnceeinee 30
6.1 PG State Diagramcccccveeerieieeeiriiieeee e 30
6.2 Connection State Diagramcceceeveevuvereercercerreneeceenresnreeenenns 31
6.3 Message Sequence DiIiagramcccceeevevvuveeeesennnieneennseeceenecneenns 32
6.4 Add Node Sequence Diagramccccecvueereeecvvneeecennnnceeseesnneeens 33
6.5 Delete Node Sequence Diagram.........ccceeveveeereniencneeercnseceecneen. 37
6.6 Example Class Definitioncccooveeiinviievereecreeeneeeeerereerneeenn. 41
7 Test Strategy & ReSults.....cceevuuiiiiiiiiiiiiiiee e 44
7.1 UNQt TESEING eveivieeeireeeerieereiree s seiee e erte st seneeeesabesecsaee s 44
7.2 Unit TESt CaASES.cereerurrrrerrarrireernerrrreriennrreessesssneessssssseesssessanesess 45
7.3 Integration TeStING.....cccoervieeririiiiieer et 46
7.4 Integration TeSt CaseS....ccevvvrrrrrererierreriiiirereeeresereeeneeeeeeeseennnne 49
7.5 TSt RESUILS cooeeeieieieeeeeceerereee et e s 50
8 CONCIUSIONSuvviiiiieiiiiiiieeeriiieee e cerrirere e ee e e 51
O ReferenCeS ...ttt 53
Appendix A: Java Implementationccceeveveeernineeennne. 54
Appendix B: Unit Test Casesccceevuumriveeeeriieieiieeeeeeeen. 121
Appendix C: Integration Test Casescccvveeerrvevvereeennnne 126
Appendix D: Test ENginecoooveeeiiiiiiiieeiiiiieeeeen, 129

50f 135

Introduction

The Standard Reconfigurations described within this report refer to those
procedures developed, within Nortel Networks and delivered as part ofthe next
generation transport platform, that allow a customer to expand or contract their
previously installed transport network

The following section entitled Terminology on page 8 describes the terminology
used within this report whilst also introducing the concept of standard
reconfigurations and why they are required.

Ihe report follows the full software lifecycle, from requirements capture through
to delivery ofthe Standard Reeonflg feature.

The main body of the report is structured around the process followed in
developing the software associated with the Standard Reconfigurations feature
as determined by the software lifecycle shown in Figure I which forms the basis
ofthe approved quality process used w ithin Nortel Networks.

Figure 1 - Software Lifecycle

Customer n Verification

Requirements Test

1 Test rtquiremen(s
Software S Integratior

Requirements 1 Test

Architect
& Design

The Standard Reconfiguration procedures are termed Add Node and Delete
Node. A briefdefinition of these terms, which also form the basic Customer
Requirements, is given here for reference and will be expanded upon in
subsequent sections:

Add Node - The purpose ofthe Add Node procedure and associated
software is to be able to safely add a new ADM into an in-service 4P

BLSR ring with the minimum of service disruption.

Delete Node - Delete Node is the term given to the procedure and
associated software which allows the customer to safe lv remove an

6 of 135

ADM from an in-service 4F BLSR ring with the minimum of service
disruption

From these basic Customer Requirements the Software Requirements are
derived, a subset of which are given in section 3 on page 14. With these more
detailed requirements the procedures can be designed, of which high level
descriptions are given in section 4 on page 17.

To further expand upon the requirements and procedures a set of use cases is
described to aid the readers understanding and also to add more detail in
describing the behaviour of the software, given in section 5 on page 27.

Once the requirements and procedures have been reviewed and approved, the
detailed design work is undertaken as shown in section 6 on page 30.

Prior to delivery to Verification, the software must be tested against the
requirements as described in section 7 on page 44.

The project and this report is then summarised in the Conclusions on page 51,

including a view of the benefits of using UML to describe the design and Java as
the implementation of that design.

7 of 135

Terminology

Throughout this report general knowledge of transmission systems, and
mechanisms such as protection is required. The terminology used within this
document is gradually introduced in this section, providing sufficient basic
information to understand the subsequent sections that detail the development of
the Standard Reconfigurations.

2.1 Transmission Systems

In the early 1970s, digital transmission systems began to appear, utilising
Pulse Code Modulation (PCM) to convert voice (analogue) into binary
(digital) form. Engineers saw the potential to produce more cost effective
transmission systems by combining several PCM channels into a single
high speed bit stream via Time Division Multiplexing (TDM). (Ref. [7])

As demand grew, higher data rates were required with subsequent need
for further levels of multiplexing, resulting in the definition of the
Plesiochronous Digital Hierarchy (PDH).

However, eventually this lead to the creation of the PDH ‘multiplexer

mountain’ as displayed in Figure 2 that was required to access a single
2Mbit/s channel from the high speed trunk.

Figure 2 - PDH Multiplexer Mountain

34 Mb/s

140 Mb/s 140 Mb/s
- line 14 &0 line
tettminal | 134 8 Mb/s 34 3 |terminal
34, 3
8 8
2 Mb/s
2 8
Ma|ﬁp|exer *moantain” 2 2
which resalt from _I |_
accessing one of the 2 Mb/s

passing 2 Mb/s channels

The next stage of evolution in the transport network was the introduction
of synchronous transmission which overcame the inefficiencies of PDH.

The ITU-T introduced the G.707 (Ref. [9]) G.708 (Ref. [10]) and G.709
(Ref. [11]) standards to describe the Synchronous Digital Hierarchy
(SDH) whilst in North America the Synchronous Optical NETwork
(SONET) standard was introduced.

8 of 135

2.2

SDH brought about network siniplit'ication as a single synchronous
multiplexer could replace an entire plesiochronous 'multiplexer
mountain' leading to a significant reduction in equipment being used.

This lead to the installation of SDH 'Rings' consisting of Add/Drop
Multiplexers (ADM) as shown in Figure 3.

Figure 3 - SONET/SDH Ring (Ref. [8])

ég

Transport Network

A transport network, as shown in Figure 4 on page 9. is composed of
numerous SDH Rings. In a customer network these SDH rings may well
overlay each other to create a tiered transport network, to facilitate
different requirements, such as the Access Network where data rates are
typically low, compared to the high data rates required at the trunk, or

Long Haul tier.

Figure 4 - Transport Network

Transport Network

Long-Haul

Access Network

SDII Rings

\el« ork r Icments

9 or 135

2.3

2.4

SDH Frame

The data transported between nodes ina SDI1Ring is achieved by
parcelling this information into SDI I Frames. The SDH frame has a two-
dimensional structure, as shown in Figure 5. Faeh frame is physically
transmitted through the fibre row by row.

Figure 5 - STMI Frame (Ref. [6])

---------------------- 270 bytss
X
0
Section §
OverHead Data
(SOH) %
A

«

— 9 bytes--—- I byte
Virtual Container VC-4

An STM-1 Frame

For the purposes of this report the element of the frame to highlight is the
Section Overhead, which combines the Regenerator and Multiplex
Section Overheads.

Within the Multiplex Section Overhead, the K1 and K2 bytes are of
specific importance as these bytes carry the Automatic Protection
Switching (APS channel) information between nodes in the ring.

Protection

Considering the large quantity of traffic supported by the transport
network a key requirement is its ability to survive network failures, such
as fibre breaks with minimum disruption. This is achieved by
implementing the Bellcore GR-1230 protection protocol for Bi-direetion
Line Switched Rings (BLSR) in a 4-fibre configuration.

An example of a fibre break scenario is shown in Figure 6 on page 11.

10 of 135

2.5

Figure 6 - Fibre Break

I'W TroU'cling \\ csl

'l ProtCLiing Has!

WA Workirig Wesl I'ralTic ciiiricd on
Wi Working I asi working clianncls

%

I'ibrc break on the

working libre

%

\H-40it] Ih 400:
Irallie has aulo-
Lmo swilchcd away iVoin The
3 E AP LT I'aiill onto tlic proteelion

ivw| [wE libre Note this is

releiTeci to as a span

switch

The example in Figure 6 is a simple one but is used to illustrate the
eoneept of a protection svviteh, and specifically a span switch which is
used within the Add Node and Delete Node procedures to move' traffic
from working to protecting fibres or vice verse as appropriate.

NOTF: The Bellcore standard stipulates that a user requested protection
switch must result in a traffic hit of <50ms i.e. service is restored in
<50ms.

Network Element

k)

Each SDH ring contains a number of Network Elements (NE), or ‘nodes
which perform the necessary traffic grooming. Note that a NE can be
part of several rings (see Figure 7 on page 12).

I1of I35

Figure 7 - Network Element

Network Element

Rino A

Ring B o

Rino C

An abstraet deseription of a Network Element is shown in Figure 8 on
page 12 as an aid to deseribing the remaining terminology used within
this report.

Figure 8 - Abstraction of Network Element

Diagram Key;
iiluo luio - proloclioii fibre
Red line - working fibre Maiiagemenl PlaUbnii

Arrows - indicnie traH ie direction

P\\ Hroteeling West
PE Protecting East
Ww Working West
WE Working liast

Eaeh ring that an NE is part ofresults in a Proteetion Group (PG) being
formed of the termination points for eaeh of the 4-fibres that support the
BLSR proteetion protoeol as referred to in Figure 8 by PG I and PG2.

12 of 135

2.6

A protection groups encapsulates a number of attributes, of which the
following are key to the Add Node and Delete Node procedures:

e node map — which is the internal representation of the
members of the SDH ring that this PG is a member of. This is
used to validate protection messages received via the K1 and
K2 bytes.

e protection scheme — 1s the scheme that this PG is provisioned
with, e.g. BLSR 4F

e reconfiguration state — an indication of what state the PG is
in, e.g. Add Node would indicate the PG is in the midst of an
Add Node procedure

o special mode — by setting this mode to pass through the traffic
and kbyte channels on the protecting fibre are placed in full
pass through thereby making the node ‘transparent’ to
neighbouring nodes in the ring

The Management Platform (MP) provides the mechanism through which
the NE can be managed singly, and as part of the ring.

NOTE: The work required on the Management Platform is outside the
scope of the project which is limited to the software required on the NE.

Purpose of Standard Reconfigurations

Since it is very difficult to predict future network need at time of first
installation, or perhaps installation is limited by cost, there is a need to
provide flexibility to expand or contract a ring based on current or future
need. Hence the requirement for Add Node and Delete Node.

Scenarios that may result in the use of Add Node or Delete Node
include:
e Expansion of transport network into new city, thereby adding
a node to an existing ring
¢ Removal of node due to obsolescence
e Temporary removal of node to allow node to be physically
moved elsewhere within office

One aspect of Standard Reconfigurations that is critical to appreciate 1s
the need to perform these changes to the network whilst the ring is in-
service, i.e. carrying live traffic. A Network Operator does not want to
turn ‘off” the network to allow new nodes to be added or old nodes to be
removed, as this would lead to downtime and loss of revenue.

This leads to the two main generic requirements:
e The Add Node and Delete Node procedures must be
performed whilst the network is in-service
e Any traffic disruptions must be kept to a minimum, and at
worst should not exceed 50ms, which is the specification for a
traffic hit associated with a protection switch

13 of 135

Requirements

As shown in Figure 1 on page 6 the first stage of the software lifecycle is to
derive a set of detailed software requirements based on the requirements that
have been received from and agreed with the customer.

These detailed requirements, coupled with the customer requirements are used
as part of the testing strategy to ensure what is delivered meets what is required.

[R1] Safely add a new ADM into an in-service 4F BLSR ring with the
minimum of service disruption

[R2] Safely delete an ADM an in-service 4F BLSR ring with the minimum
of service disruption

Requirements [R1] and [R2] form the basic customer requirements, that the
detailed software requirements listed below are derived from. The requirements
listed below are abstract in nature, but their purpose becomes apparent when
read in conjunction with the procedure descriptions that contain further
explanation (section 4 on page 17).

Add Node:
[R3] Onreceipt of the ‘Add Node’ command the NE Software will validate
that the following PG attributes are provisioned:
- node map is nil
- protection scheme is BLSR 4F
- reconfig state is Idle
[R4] Once validated the NE Software will execute the following:
- sets the reconfig state of the PG to Add Node
sets the special mode of the PG to pass through
deletes all traffic connections terminated on PG
raises reconfig alarm
- generates log
[RS] Onreceipt of the ‘Idle’ command to backout the Add Node procedure,
the NE Software will:
- clear the reconfig alarm
- set the reconfig state of the PG to Idle
- set the special mode of the PG to None
- delete all traffic connections terminated on PG
[R6] Onreceipt of a valid node map to complete and exit the Add Node
procedure, the NE Software will:
- clear the reconfig alarm
- set the reconfig state of the PG to Idle
- set the special mode of the PG to None
[R7] Add Node command can be executed on a PG while any other
configured PG in the NE carries live traffic
[R8] Add Node will not affect traffic on any other PG in the NE

14 of 135

Delete Node:

[R9] Onreceipt of the ‘Delete Node’ command the NE Software will
validate that the following PG attributes are provisioned:
- node map is non-nil
- protection scheme is BLSR 4F
- reconfig state 1s Idle
- no non-pass through traffic connections terminate on the PG
- no active protection switches are in place on the PG
[R10] Once validated the NE Software will execute the following:
- sets the reconfig state of the PG to Delete Node
- sets the special mode of the PG to pass through
- sets the node map of the PG to nil
- raises reconfig alarm
- generates log
[R11] Onreceipt of the ‘Idle’ command to complete and exit the Delete Node
procedure, the NE Software will:
- clear the reconfig alarm
- set the reconfig state of the PG to Idle
- set the special mode of the PG to None
- delete all traffic connections terminated on PG

[R12] Onreceipt of a valid node map to backout the Delete Node procedure,

the NE Software will:
- clear the reconfig alarm
- set the reconfig state of the PG to Idle
- set the special mode of the PG to None

[R13] Delete Node command can be executed on a PG while any other
configured PG in the NE carries live traffic

[R14] Delete Node will not affect traffic on any other PG in the NE

Robustness:

[R15] Ifthe NE restarts during the execution of Add Node or Delete Node
then on recovery, the command can be entered again and be allowed to
successfully complete i.e. there is no automatic recovery and complete
option, the user must re-enter the command.

[R16] Ifthe NE restarts after the Add Node or Delete Node command has
successfully completed, then the NE must be capable of recovering to
the Add Node or Delete Node state

[R17] Add Node and Delete Node is unaffected by software upgrade

Error Handling:

[R18] Add Node command is denied if PG has a non-nil node map (“Node is

[R19]

[R20]

[R21]

configured in a network™)

Delete Node command is denied if a protection switch is active (“Node
is currently handling a protection switch™)

Delete Node command is denied if any non-pass through traffic
connections are present (“Traffic connections are currently
provisioned™)

Delete Node command is denied if the node map is nil (“Node is not
configured in a network™)

150f 135

[R22]

[R23]

[R24]
[R25]

[R26]

Add Node and Delete Node commands will be denied if the PG is
already in an add node state (“Command is not valid while node is in
Add Node mode™)

Add Node and Delete Node commands will be denied if the PG is
already in an delete node state (“Command is not valid while node is in
Delete Node mode™)

Add Node and Delete Node commands will be denied if the PG is not
BLSR 4F (“Protection scheme is not valid”)

Deleting the PG will be denied if the reconfig state is set to add node
(“Command is not valid while node is in Add Node mode™)

Deleting the PG will be denied if the reconfig state is set to delete node
(“Command is not valid while node is in Delete Node mode™)

16 of 135

4 Procedure Description

The following sections: 4.1 on page 17 and 4.2 on page 22 provide high level
descriptions ofthe add node and delete node procedures highlighting the

so llware algorithms required to facilitate the operations whilst also providing
insight into the reasoning behind the requirements listed in section 3 on page 14.

4.1 Add Node

The diagram in Figure 9 on page 17 displays the initial state of an
example network in readiness of the Add Node procedure.

Figure 9 - Configuration Prior to Add Node operation

Diagram Key
Blue line - proleclinn t'ihre
Red line - uorkmg filire
Solid red blue line - tralVie preseni
Da-.lied red blue line - no tralVie preseni

NH 4001 S1: 400

lirro«s - indis.ile Ir.d'lie direelion

. PG » » PG
[PT~
/.
g
w
NI : 4111)4 U) be iulded
to ring
NT4(H)4 N'H 41HG
PG PG
3 E 3 E
I'W Proteeting West
OTv| [WE

PK Proleetuig bast
WW Working West
WK Working bast

(\xnms tank

Step 1- Commission the new NE on the Management Platform (MP).
Once the new NE has been commissioned it is then selectable on the MP.

Step 2 - Issue the ‘Add Node’ command from the MP via the Reconfig
Assistant tool. This translates into a message sent down to the NE via the
Comms link.

On receipt of the Add Node command the NE software will perform
validation, before execution.

The command will be denied if:
e the protection group (PG) has a non-nil node map
m the presence of a non-nil node map indicates that the
protection group is already part of a ring, and could be
earrving live traffic

7 of 135

e the specified PG is not configured with a protection scheme
of BLSR 4F
e there are any other reconfigurations in progress for the
specified PG
v this is a safety measure to prevent traffic loss in the
event that an incorrect step of the procedure is
executed due to confusion with another
reconfiguration

Once validated, the NE software performs the following actions:
¢ sets the reconfig state of the PG to Add Node

= this places the PG in Add Node mode, to be used by
other applications as an indication of the current state
of the PG, e.g. prevent traffic connection edits that
would cause loss of traffic

e deletes all existing traffic connections terminating on the
specified PG

» traffic connections could exist on the PG as part of a
commissioning procedure to test the capability of the
hardware, and this step ensures these ‘test’
connections are removed before the NE is placed in-
service (IS)

e puts the protection lines of the PG into full traffic and
overhead k-byte pass through

» This allows all traffic to pass through the node on the
protection lines as is required at Step 6.

* The k-bytes need to pass though the node unaffected
so that the BLSR protocol is unaware that a new node
has been fibred into the ring. Without k-byte pass-
through the protection switching in Step 6 would not
be possible since the neighbour nodes would be
receiving invalid k-bytes from the new node and
would not be able to negotiate the protection switch.

e raises an alarm against the PG to alert the user that the PG is
in a special reconfiguration state

A user visible log is generated to indicate success, or in the case of
failure, the reason for the command being denied.

On completion of the command the node is effectively ‘transparent’ to
both traffic and protection protocols, thereby allowing it to be placed in
the middle of an in-service ring without unnecessarily dropping traffic.

Step 3 —Issue a ‘lockout of working — span’ against the working facility
at both NEs (e.g. WE of NE:4001 and WW of NE:4003) on either end of
the span to which the new node is being added
e this prevents the use of the protection line on this span for any
protection activity, i.e. preventing traffic loss when the
protection fibres are moved to cable in the new node, as in the
next step.

18 of 135

Step 4 - Cable in the new node on its protecting equipment only. Then
verify the optical integrity of the protection link (Figure 10)

Figure 10- Configuration after Step 4 of Add Node Operation

Nty
p P P P, K;
in E
w w
\1-4»i4
PC
mv] [otT
[piT Mv] it
P P

Step 5 - Release the lockout of working - span' on the working
facilities of the nodes at both ends of the span

Step 6 - At the MP the following steps are performed, via the Reconfig
Assistant;
* the new NE is added to the management representation of the
ring
* pass-through connections are provisioned on the NE
m these traffic connections match up to those already
provisioned in the ring, and provide the nodal pieces
that facilitate the traffic through the new node
m e.g. for each traffic connection that links NE:400I and
NE:4003 a corresponding pass-through connection
needs to be provisioned on NE:4004 such that when
the NE is added there is no loss of traffic due to an
incomplete traffic path

19 of 135

Step 7 - At the M Pa connection audit is pertbrmed.
* This is a robustness check to confirm that the pass-through
connections provisioned in the previous step are actually

resident on the new node

Step 8 - Perform a forced span switch against the working t'acility at
both ends of the span (e.g. WF. of NF:4001 and WW of NF:4003).

* The forced span switch is issued at both NTs for robustness,
in ease one ofthe span switches is pre-empted and dropped

* The ring will now carry traffic as shown in Figure 11 on page
20.

* NOTF: traffic is now carried on the protection fibres through
the new node, hence the reason why the protection channels
must be in pass through, which allows the working fibres to
be disconnected, as indicated in the next step.

Figure 11 - Configuration after Step 8 of Add Node Operation

Step 9 - Cable in the new node on its working equipment. Then verify
the optical integrity ofthe working link.

Step 10 - Release the forced span switches

e the traffic will auto-switch back to working, as indicated in

Figure 12 on page 21.

20 of 135

Figure 12 - Configuration after Step 10 of Add Node
Operation

Step 11 - Issue a Global Loekout of Proteetion on the eonfiguration to
vvhieh the new node has been added.

* A Global Loekout of Protection is ofthe highest priority in
the proteetion svviteh hierarehy and prevents any protection
switch activity, in addition forcing all traffic to use the
working channels, i.e. the proteetion fibres are off limits.

e This is for robustness/safety, to prevent any inadvertent
proteetion switching when the new node map is provisioned
in the next step.

Step 12 - Via the MP Reconfig Assistant, the new node map is
provisioned for all nodes in the ring.

The NE reconfig software ‘listens’ for the node map provisioning event
and;

» clears the reconfig alarm

* sets the special mode ofthe PG to None

* sets the reconfig state ofthe PG to Idle
i.e. receipt of a valid node map indicates the add node operation is
complete

Step 13 - Release the Global Lockout of Protection.

21 of 135

4.2 Delete Node

Hie diagram in Figure 13 on page 22 shows the initial state of an
example configuration prior to starting the Delete Node Operation.

Figure 13- Configuration prior to Delete Node Operation

PO ») »s
Pc] [iIlV
El EE , B EE

Node lo be deleted

K 41«14 N E 41H4

Al [wT mv] [WE

o [T E E

Step I - Issue a Global Lockout of Protection on the configuration to
which the new node is to be removed.
* This is for robustness/safety, to prevent any inadvertent
protection switching when the node map is altered on the NLs

in the ring.

Step 2 - Issue the ‘Delete Node’ command from MP via the Reeonflg
Assistant tool This translates into a message sent down to the NE.

On receipt of the Delete Node command the NE software will perform
validation, before execution.

The command will be denied if:
* There are non-pass through traffic connections provisioned on
the PG
m Presence of non-pass through connections indicates
the possibility of live traffic terminating at this PG,
which would be lost ifthe procedure was continued,
as this PG will be removed from the ring.
* the protection group (PG) has a nil node map
m the presence of a nil node map indicates that the
protection group is not part ofa ring, and therefore
cannot be ’deleted’

22 of 135

e the specified PG is not configured with a protection scheme
of BLSR 4F
e there are any other reconfigurations in progress for the
specified PG
= this is a safety measure to prevent traffic loss in the
event that an incorrect step of the procedure is
executed due to confusion with another
reconfiguration
e there are any active protection switches in place on the PG
being deleted
= any active protection switches must be cleared before
the delete node operation can proceed, otherwise the
required protection switches required during the
procedure may not be honoured.

Once validated, the NE software performs the following actions:
e sets the reconfig state of the PG to Delete Node
= this places the PG in Delete Node mode, to be used by
other applications as an indication of the current state
of the PG, e.g. prevent traffic connection edits that
would cause loss of traffic
e clears the node map of the PG being deleted
= this restores the PG to its initial state
e puts the protection lines of the PG into full traffic and
overhead k-byte pass through
= This allows all traffic to pass through the node on the
protection lines
= The k-bytes need to pass though the node unaffected
so that the BLSR protocol is unaware that the node is
going to be fibred out of the ring. Without k-byte
pass-through the protection switching would not be
possible since the neighbour nodes would be receiving
invalid k-bytes from the ‘old’ node and would not be
able to negotiate the protection switch.
e raises an alarm against the PG to alert the user that the PG is
in a special reconfiguration state

A user visible log is generated to indicate success, or in the case of
failure, the reason for the command being denied.

On completion of the command the node is effectively ‘transparent’ to
both traffic and protection protocols, thereby allowing it to be removed
from the middle of an in-service ring without unnecessarily dropping
traffic.

Step 3 — Via the MP Reconfig Assistant remove the node from the
management view of the ring, and send new node maps to all the nodes

in the ring.

Step 4 — Release the Global Lockout of Protection.

23 of 135

Step 5 - Perform a forced span switch against the working facility at
both ends of the span (e.g. WF. of NF:4001 and WW ofNF:4003).
* The forced span switch is issued at both NTs for robustness,
in case one of the span switches is pre-empted and dropped
* The ring will now carry traffic as shown in Figure 14 on page
24
* NO IF; traffic is now carried on the protection fibres allow ing
the working fibres to be removed as required in the next step

Figure 14- Configuration after Step 5 of Delete Node

Operation
N'h4<Ki2
PC P PC
[pw 3 E
A
- - E
N4i 4004 N1 400?
THr w w

ww] pE

Step 6 - Cable out the 'deleted’ node on its working equipment and
validate the optical integrity of the working link (Figure 15 on page 25).

24 of!35

Figure 15- Configuration after Step 6 of Delete Node
Operation

h 400:

Step 7 - Release the toreed span svvitehes

¢ the traflle will auto-switch back to working, as indicated in
Figure 16

Figure 16- Configuration after Step 7 of Delete Node

Operation

VE+ifil m

R} F P

[pw

w w

NE 41W NE 4KG
PG — w iv
i wp
pwl DE- pA
P P

25 0 f]35

Step 8 - Issue a ’lockout of working - span' against the working facility
at both NHs (e.g. WH ofNE:4001 and WW of NE.4003) on either end of
the span to which the node has been removed
* this prevents the use ofthe protection line on this span for any
protection activity, i.e. preventing tral'fic loss when the
protection libres are moved to cable in the new node, as in the
next step.

Step 9 - Cable out the deleted' node on its protecting equipment. Then
verify the optical integrity ofthe protection link (Figure 17)

Figure 17- Configuration after Step 9 of Delete Node

Operation

\'K4onl NI 4.1:

» PO p p ol
pgl 7T [pu~

.
if 3 E
W w
NI{ ItXi'l deleted Inun ring

E 4004 NT. 4ixn

Pt PG
B E e

Step 10 - Release the lockout of working - span’ on the working
facilities of the nodes at both ends ofthe span

Step 11- Issue reconfig idle command via MP Recontlg Assistant to
force the NE Reconfig Software to restore the PG to its initial state.

The NE Software performs the follow ing;
* deletes all connections on the PG
* sets the PG recontlg state to Idle
* clears the recontlg alarm

* sets the PG special mode to None

260TI35

Use Cases

The purpose of the use cases is to add further description to the behaviour of the
software, thereby forming additional, or clarifying existing, requirements.

The use cases are written using the procedure descriptions in section 4 on page
17 as a basis. The use cases highlight the state transitions required when starting
the procedure, backing out, and completing, which is displayed as a state
diagram in Figure 18 on page 31.

5.1 Add Node - success

This is the basic use case from which alternatives are described. It
describes a successful run through of the add node procedure, and the
alternatives then add further behavioural information.

5.2

WRXNANN BN —

10.
11.
12.
13.

Commission NE on the MP

Issue Add Node command

Issue ‘lockout of working — span’ on working facilities
Cable in new node on protecting equipment
Release ‘lockout of working — span’

Provision pass through connections

Perform connection audit

Issue ‘forced span switch’ on working facilities
Cable in new node on working equipment
Release ‘forced span switch’

Issue ‘global lockout of protection’

Provision new node map information in ring
Release ‘global lockout of protection’

Add Node - backout

This use case describes the behaviour when a fault occurs within the
procedure that results in the need to backout.

WX —

10
11.

Commission NE on the MP

Issue Add Node command

Issue ‘lockout of working — span’ on working facilities
Cable in new node on protecting equipment
Release ‘lockout of working — span’

Provision pass through connections

Perform connection audit

Issue ‘forced span switch’ on working facilities
Cable in new node on working equipment
Release ‘forced span switch’

Issue ‘global lockout of protection’

27 of 135

5.3

54

At this stage of the process a network failure occurs which cannot be
resolved within the time allowed for the add node procedure, and
requires the procedure to be backed out:

12. Release ‘global lockout of protection’

13. Issue ‘forced span switch’ on working facilities

14. Cable out new node on working equipment

15. Release ‘forced span switch’

16. Issue ‘lockout of working — span’ on working facilities
17. Cable out new node on protecting equipment

18. Release ‘lockout of working — span’

19. Issue Idle command

20. Remove node from MP

NOTE: that the add node procedure can be backed out from any stage up
to and including step 11. However, once the new node map information
is provisioned the PG is no longer in an add node state and cannot be
backed out without using the delete node command and procedure.

Add Node - failure

When the add node command is executed it can be denied at the
validation stage:

1. Commission NE on the MP

2. Issue Add Node command

3. Command is denied

4. Log inspected for reason

5. Fault rectified

6. Re-issue Add Node command

7. ... add node procedure continues

Delete Node - success

This is the basic delete node use case from which alternatives are
derived.

Issue ‘global lockout of protection’

Issue Delete Node command

Provision new node map information in ring
Release ‘global lockout of protection’

[ssue ‘forced span switch’ on working facilities
Cable out node on working equipment

Release ‘forced span switch’

Issue ‘lockout of working — span’ on working facilities
Cable out node on protecting equlpment

10 Release ‘lockout of working — span’

11. Issue Idle command

XN R W=

28 of 135

5.5 Delete Node - backout

This use case describes the behaviour when a fault occurs within the
procedure that results in the need to backout.

1. Issue ‘global lockout of protection’®

2. [Issue Delete Node command

3. Provision new node map information in ring

4. Release ‘global lockout of protection’

5. Issue ‘forced span switch’ on working facilities

6. Cable out node on working equipment

7. Release ‘forced span switch’

8. Issue ‘lockout of working — span’ on working facilities
9. Cable out node on protecting equlpment

10. Release ‘lockout of working — span’

At this stage of the process a network failure occurs which cannot be
resolved within the time allowed for the delete node procedure, and
requires the procedure to be backed out:

11. Issue ‘lockout of working — span” on working facilities
12. Cable in node on protecting equipment

13. Release ‘lockout of working — span’

14. Issue “forced span switch’ on working facilitics

15. Cable in node on working equipment

16. Release ‘forced span switch’

17. Issue ‘global lockout of protection’

18. Re-provision old node map information

19. Release ‘global lockout of protection’

NOTE: What this use highlighted was the need for the old-node map
information to be stored, such that the backout could be achieved right
up to step 10 of the procedure, otherwise step 2 would be the last step at
which this procedure could be backed out.

5.6 Delete Node - failure

As with the similar add node use case described in section 5.3 on page
28 the delete node failure case follows a similar path:

1. Issue ‘global lockout of protection’
2. Issue Delete Node command

3. Command is denied

4. Log inspected for reason

5. Fault rectified

6. Re-issue Delete Node command

7. ... delete node procedure continues

29 of 135

6 Detailed Design

The final stage before coding begins is the detailed design phase. Through this
phase the design is elaborated and reviewed to ensure that it meets the
requirements as laid down in the initial phases of the project.

Before delving into the specifics of class definitions it is important to completely
understand the software architecture required, and with the aid of UML this can
be described in the form of state transition diagrams and sequence charts.

This section of the report details:

e the reconfig states the PG can be placed in, and the transitions between
those states (section 6.1 on page 30)

¢ the connection management states, and the transitions between those
states (section 6.2 on page 31)

e further information to the sequence of events from the insertion of the
reconfig command (sections 6.3, 6.4, and 6.5)

¢ the final sub-section describes one class through the use of pseudo code,
as an illustration of the depth to which this part of the process aims for
before coding can commence.

It is important that at every stage of the project the work is reviewed and
approved to ensure that the requirements are still being met, therefore it is
imperative that the design documentation is clear and concise whilst capturing
the salient points.

6.1 PG State Diagram

Since the addition of the reconfig state attribute to the PG, the PG can be
in one of three states:

1. Idle — no reconfig in progress
2. Add Node — PG currently within add node procedure
3. Delete Node — PG currently within delete node procedure

Due to these states, the following state diagram (Figure 18 on page 31)
applies:

30 of 135

Figure 18- ?& Reconfig State Diagram

sliirt (reconfig strite - lakl node)

Creation
backout (reconfig state = idle)
Idle complete (node map set) Add Node
backout (node map seti
complete
reconfig state = idlei

Delete Node

start Ireconfig stale = delete node)

6.2 Connection State Diagram

The following diagram conveys the states in which connections (Xcons)
can be placed during the add node and delete node procedures.

K f Creation

backout (reconfig state = idle)
No Xcons + No Xcons +
start (reconfig state = add node)
PG Idle PG Add Node
MP Xecon
MP Xeon Deletes
Creates
backout
(reconfig state = idle)
Real Xcons
complete (reconfig state = idle)

PG Add Node

complete (node map set

backout (node map set)

Real Xcons
Real Xcons +

start Ireconfig state = delete node) PG Idl
€
PG Delete Node

31 of 135

6.3

It is envisaged that the MP sends connection create messages during the
step in the add node procedure to provision real pass through connections
on the NR.

The connections software uses an algorithm to determine the PG state
(add node) before adding the real traffic connection associated with the
MP create message.

Conversely, to backout, a delete message is sent from the MP to reverse
the create.

i.e. the connections software determines that only pass through
connections can be created/deleted whilst the PG is in add node, and no
creates/deleted are allowed whilst the PG is in delete node. This prevents
any traffic loss due to connection editing during the add node or delete

node procedures.

Message Sequence Diagram

The reconfig command is initiated from the MP, or the command line,
this is then sent via the session manager to the Database to be 'actioned’.
See Figure 19:

Figure 19- Message Sequence Diagram

MP Reconfig M essage C/Java

Assistant Transactor Manager NrReDbnsSubscriber

Agent

Reconfig

message . .
e avpLisl r-i.

nuli WithRtfsponse{)
pre \aliilariun

committed
notitvO

The above sequence describes the success path from the MP to the
Standard Reconfig Database subscriber which initiates the add node or
delete node processing. The continuation of this sequence is displayed in
sections 6.4 and 6.5 on pages 33 and 37 respectively, where further detail
is added on the processing ofthe add node and delete node commands.

32 of 135

6.4 Add Node Sequence Diagram

As described in the sequence diagram in the previous section the
TpNrRcDbnsSubscriber is informed by the Database of any changes to
the reconfig state attribute of the PG.

This is performed at the pre-validation stage so that subsequent changes
to the database can be processed within the same transaction.

A summary of the Add Node actions is included here for reference:

Validations: The add node command will be denied if:
e There are any other reconfigurations currently in progress on

that PG.
e The specified PG does not have a protection scheme of 4F
BLSR.
e The PG has a non-nil node map
Processing:

e Set the reconfig mode on the PG to Add Node

All existing connections on the PG are deleted

Set the special mode attribute of the PG to PASSTHRU.
Raise the reconfig alarm

Generate success log

The following sequence diagram (Figure 20 on page 34) indicates the
full success path for an add node command.

NOTE: setting of the reconfig state attribute to add node, is already part
of the transaction due to the original message sent from the MP which
triggers the remaining processing.

Also, the raising of alarm, and generation of success log are contained
within the ‘commit’ processing of the transaction. This is done to ensure
that if the transaction has failed due to any other validation reason, it
does not result in conflicting indications that the command has
successfully been completed.

33 of 135

Figure 20 - Add Node command - success

TpNrRcDbnsSubscriber TpNrAddNode

Entity Pg TpNrUtlitles
1UilityWilhKosponsi-'O

check recstale

I chel'k p
scheme

I check node
4-1 map

sell'orcePass rimiO

A deleie \L\cons()

Ifa failure docs occur, then this is logged at the point of validation
failure, resulting in a failure log being generated, as indicated in the
following sequenee diagram (Figure 21).

Figure 21- Add Node command - failure
TpNrRcDbnsSubscrlber TpNrAddNode

TpNrUtllities TpNrConnMngmt

notilyW ithResponse()

processO
I check prol
4] scheme
~~j check node
log(IAC316)
nolityO
restoreXconsO

NOTE; In the ease of any' validation failure the abort proeessing of
TpNrReDbnsSubseriber is executed to restore any connections that may
have been deleted as part of the original command proeessing.

34 of 135

When the add node procedure is being completed, the
TpNrNmDbnsSiibscriber is 'listening’ for the pre-validation event which
sets the node map to a non-nil value, thereby permitting the add node

state to clear.

The following processing is executed when a node map set event is

received;

Ifthe add node BLSR PG object has a non-nil node map:
* set the special mode ofthe PG to None
* Set the reconfig state of the PG to Idle

+ Clear the reconfig alarm.

NO 1L: Similarly to the execution of the add node command described
before the clearing of the alarm is processed within the 'commit' phase.

Figure 22 - Add Node command - completion

TpNrReDbnsSubseriber

TpNrNmDbnsSubseriber TpNrAddNexde
Entity Pg TpNrUtllitles

=1\ illiRcsponscO
nilpi-ICO

I.hc.k 1UKIC map
A Tis non-nil

sal KorcePass 1liriK)

satRceSlale()

laar alarmO

35 of 135

Finally, add node can be 'backed out' by sending a FLI command to
'edit' the recontlg state attribute back to 'Idle'.

The processing is similar to the 'clear' case above except that the setting

ofthe reconfig state attribute to idle is already included in the transaction

due to the initial reconfig command.

Figure 23 - Add Node command - backout

TpNrReDbnsSubseriber TpNrAddNode
Entity Pg TpNrUtilities

iuililV\VilhReNponM.'()
backoiit()

selForeelkiss'ThriK)

dololeiiss TliriLso

notilvO

lear alarm()

36 of 135

6.5 Delete Node Sequence Diagram

The sequence of events triggered by a delete node command is very
similar to that previously described for add node, with subtle differences.

Again as with add node the processing of the delete node command is
performed at the pre-validation stage so that subsequent changes to the
database can be processed within the same transaction

A summary of the Delete Node actions is included here for reference:

Validations: The delete node command will be denied if:
e There are any other reconfigurations currently in progress on
that PG.
e The specified PG does not have a protection scheme of 4F
BLSR.
e There are any non-pass through connections on PG
e There are any ‘active’ protection switches on PG
e The node map is nil
Processing:
e Set the reconfig mode on the PG to Delete Node
Set the node map to nil
Set the special mode attribute of the PG to PASSTHRU.
Raise the reconfig alarm
Generate success log

The following sequence diagram (Figure 24 on page 38) indicates the
full success path for a delete node command.

NOTE: setting of the reconfig state attribute to delete node, is already
part of the transaction due to the original message from the MP which
triggers the remaining processing.

As with add node before, the raising of alarm, and generation of success
log are contained within the ‘commit’ processing of the transaction. This
is done to ensure that if the transaction has failed due to any other
validation reason, it does not result in conflicting indications that the
command has successfully been completed.

37 of 135

Figure 24 - Delete Node command - success

TpNrReDbnsSubseriber TpNrDeleteNode

\\ ilhRosponsc() EntityPg TpNrUtllitles
procoss()

heck recstati;

I clwek p
scheme

I cheek Xcons

1 check prol
slaliLs

I check iKxlc
1ip

selNodecMapO

setl'orcel’ass riiriK)

noliiyo

If a failure does oeeur, then this is logged at the point of validation
failure, resulting in a failure log being generated, as indieated in the
following sequence diagram (Figure 25).

Figure 25 - Delete Node command - failure
TpNrRcDbnsSutscrlber TpNrDeleteNode

TpNrUtllitles TpNrConnMngmt

notily Wit hResponse()

processO
check rec
T check pr
n scheme
log(I-AC316)
notiiyO
restoreXconsO

NOTF; As with the add node abort proeessing, an attempt is made to

restore any connections that have been deleted as part ofthe previous

38 or 135

command processing. In the case of delete node this happens when
moving I'rom delete node to idle.

When the delete node procedure is being backed out, the
TpNrNmDbnsSubseriber is “listening' for the pre-validation event which
sets the node map to a non-nil value, thereby permitting the delete node

state to clear.

The following processing is executed when a node map set event is

received:

Ifthe delete node BL,SR PG object has a non-nil node map:
* set the special mode ofthe PG to None
* Set the reconfig mode PG attribute to Idle

* Clear the recontlg alarm.

NOTE: Similarly to the execution of the delete node command
described before, the clearing of the alarm is processed within the

“commit’ phase.

Figure 26 - Delete Node command - backout

TpNrNmDbnsSubseriber TpNrDeleteNode
EntityPg TpNrUtilities

ioli'nW illiRospoascO
lilickouK)

encek iu>ac ma
A Tis non-nil

setRceStaleO

setforccrassthruO

alaniiO

39 of 135

Finally, deleie node can be 'completed' by sending a recontlg command
to 'edit' the recontlg state attribute back to Idle'.

The processing is similar to the 'backout' case above except that the
setting of the recontlg state attribute to idle is already included in the

transaction due to the initial recontlg command, and ALI, connections
are deleted, which prepares the PG tor re-provisioning.

Figure 27 - Delete Node command - completion

TpNrNmDbnsSubseriber TpNrDeleteNode
EntityPg TpNrUtilities

m>1tt\\\ illiResponsc(1
omplelcO

heck node map

tl'oreePa.ss rimiO

delete All\eoiis() !

alamiO

40 of 135

6.6 Example Class Definition

For illustrative purposes the class definition for the TpNrReconfigNode
class is given, including the pseudo code representation of the initialise
method (section 6.6.1 on page 42).

The actual Java code can be found in Appendix A on page 54.

The TpNrReconfigNode class provides the methods that perform
common processing between Add Node and Delete Node.

class TpNrReconfigNode

{

// hook provided for Add Node & Delete Node initialisation
// as part of system wide initialisation
public void initialise();

// method provided to subscribe to pre-validation and commit
// events for the reconfig state attribute
private boolean subscribeReconfigStatel();

// method provided to subscribe to the prevalidate and
// commit events associated with a node map set, for a
// specific PG that is currently an add node or delete
// node mode.

private boolean subscribeNodeMap () ;

// method provided to generate the unit string associated
// with the user visible log
private String genUnitString (EntityPg pgEntity);

// method provided to set the forcePassThru attribute

private boolean setForcePassThru (EntityPg pgEntity,
boolean value) ;

41 of 135

6.6.1 TpNrReconfigNode.initialise()

Description:

This method performs the required initialisation for the Add
Node and Delete Node features. Namely:
- subscription to the DBNS for edits to the PG Reconfig State
attribute
- subscription to the DBNS for edits to the PG Node Map
attribute
- get the list of currently provisioned PG Entities from the
Database
- for each of these Entities:
- get the reconfig state value
- if reconfig state is Add Node or Delete Node:
- raise the ‘ADM in single node configuration’
alarm

public static void initialise()

{

try

{

// grab the restart instance
JavaRestart nrJr = JavaRestart.getInstance();

// wait for NCDbReadyForApplicationsGate

// call subscribeReconfigState() method to subscribe
// for edits to the reconfig state attribute of a PG

// call subscribeNodeMap () method to subscribe
// for edits to the node map attribute of a PG

// wait for CardSuccessfullyStartedGate

// create database transaction
DbTransaction nrTx;

// set the type to READ_WRITE
// begin transaction

// get a set of all EntityPG objects

for (each PG object)

{
// get reconfig state attribute value
// get node map value
boolean required = false;

switch (reconfig state)
{
case Add Node:
if (node map != nil)
{
// a node map set event has been missed
call TpNrAddNode.complete();
}
else
required = true;

break;

42 of 135

case Delete Node:
if (node map != nil)

{
// a node map set event has been missed

call TpNrDeleteNode.backout();
}
else

required = true;
break;

default:
break;

if (required)

// call TpNrUtilities.alarm() to raise alarm

)

// validate transaction
// commit transaction

}
catch (Exception e)
{

new Swerr(e.toString());

}

43 of 135

Test Strategy & Results

Within this section the testing strategy is explained, and the results published
that prove the successful delivery of the feature.

The testing strategy is split between two main sections, the PC simulator (Unit
Testing) and the target hardware (Integration Testing).

7.1 Unit Testing

Since hardware is extremely expensive and limited, a fundamental aim of
the testing strategy is to minimise the amount of hardware time required,
whilst ensuring that the software is still thoroughly tested. Therefore the
Unit Testing phase should include sufficient test cases that all possible
execution paths are exercised, i.e. all error paths.

The simulator environment consists of a number of sessions. Each
session representing a specific card in the target hardware. This allows
flexibility when testing, in that a single session can be fired up for those
tests that only require a certain card, and a multi-session when
interactions between cards are important.

Unit testing will include three main areas:

e Single simulator session
o Since the standard reconfig software resides on one
specific card, the majority of the unit test cases will focus
on a single simulator session

e Multi simulator session
o A certain minority of test cases are to be performed on a
multi-sim environment to mimic as best as possible the
hardware configuration before integration is performed.

e Manual
o Although the aim is to automate as much as possible, in
certain cases this is not possible, as invasive
instrumentation is required to force the software to
execute certain unlikely/rare error paths.

Another aim for the single and multi simulator unit tests is to automate
the test cases through the use of test scripts, as much as possible, with the
subsequent benefit of providing a test suite for sanity and regression
purposes. The test suite is described in Appendix D on page 129.

44 of 135

7.2 Unit Test Cases

A full list (143) ofthe unit test cases used to test Add Node and Delete
Node is contained in Appendix B on page 121. An example (UT1) is
shown here to illustrate how each test case was written.

NOTE: The test case assumes basic knowledge of the equipment being
tested, but indicates what results are required to indicate that this test
case passes. Each unit test case listed in Appendix B has an associated
description in the Designer Test Plan ([3]).

uT1

Successful Add Node command

Description:

Issue ED-FFP-LL TL1 Add Node command on Quad CP in slot
22, on PG1 (port 2).

e.g.

ED-FFP-LL:OPTERA:PGLL-
000001220201:CTAG::RCSTATE=ADDNODE;

Initial state:
e NE created
e Quad CP created, and associated 4F BLSR PG/PGMs

Results:
e TLI response is COMPLD
e AO Log is generated and indicates
RCSTATE=ADDNODE
e ADM in single node configuration alarm is raised
(MN,NSA)
e PG is in add node state:
o rcstate is add node
o node map is nil
o ieeemap is nil
o special mode is passthru
e Network Reconfig FAC616 log is generated
o Logfac616
o Operation is Add Node
o Unit indicates PG + associated PGMs (LL)
e No SWERRs
e No Traps

45 of 135

7.3 Integration Testing

Although the simulator is a good approximation of the hardware the
simulated behaviour is not completely accurate with the actual target
hardware. Also, since these procedures require traffic monitoring which
the simulator cannot do, the integration testing is necessary and cannot
be completely superseded by the simulator.

However, the simulator does provide a baseline performance or
confidence factor that the hardware can be tested against. Also, due to
time and hardware constraints it isn’t possible to fully exercise every
execution path of the software on the target hardware. Therefore the
strategy is to ensure full coverage is achieved through a combination of
unit testing and integration testing without sacrificing quality.

With this in mind each integration test case is assigned a priority, of 1, 2
or 3. Priority 1 test cases must be executed and passed before the
software can be delivered to Verification for final testing prior to
delivery to the customer. Priority 2 and 3 are to executed as time and
equipment allows, but must be completed prior to customer delivery.

A full list of integration test cases and their priority are given in
Appendix C on page 126.

In Figure 28 on page 47 and Figure 29 on page 48, the hardware
configurations used in testing Add Node and Delete Node are illustrated.

When viewing the hardware configurations, TS-A and TS-B refer to the
test sets that monitor the traffic in Ring-A and Ring-B respectively. The
Add Node and Delete Node procedures operate on Ring-A, with the
traffic being monitored in Ring-B to ensure there is no traffic disruption
whilst Ring-A is being reconfigured.

e.g. the traffic hits that will be observed, should be on TS-A, and even
then they should be <50ms i.e. the equivalent of a protection switch

46 of 135

Figure 28- Hardware Configuration: Add Node

lEasti

(11

or,

OKI

(K4X
NK X0X2

NE 2328
APS 2

(C-»X
\i;x

NE 2328
APS 4

DX*LSR2«)dcrinB

NE 9300

Quad 1O slot

RING-A

NE 2331
APS 1

10100bT » MP Server/ Desktop

Ethernet I I

HDX "L SR 3nodc ring

AR

09
7

019 P

NE 9300
/Kvsr/ APS 6

PI Quadto slot 5fi8

Pl Quad L'Oslot _506_

47 of 135

RING-B

M(«'/
GO (€]
1
P ot
NE 2331
APS 5
P:
P
"
10/i00bT * H MR Server/Desktop
Ethernet =Is

Figure 29- Hardware

Configuration - Delete Node

HDX * L SR 3i¥xie ring
RING-A

NE 2331
APS 1

10/100bT " '"i |
Ethernet

MP Server/ Desktop

HDX -BLSR 3i¥)de rin"

NE 2328
APS 2
NE 9300
APS 3
i*uid 10 slot w7
(~J1/Osloi 5ri?_
lEasil
019
NE 2328
APS 4
NE 9300
APS
10slot 508

Quad I'O slot 516

Hex 10 501

48 of 135

RING-B

NE 2331
APS 5

10/100bT f
Ethernet =

MP Server/ Desktop

7.4 Integration Test Cases

A full list of integration test cases can be found in Appendix C on page
126. As with the unit test case description in section 7.2 on page 45 the
full description of an integration test case is given here for illustrative
purposes.

IT1 Add HDX Node to 4F BLSR Ring

Description:

Follow the Add Node procedure to add a node to an existing 4F
BLSR Ring, (additionally for IT1 monitor procedure from
network management platform)

Add PG, e.g. slot 21 (5095), port 2.

Initial state:
e Hardware Configuration: Add Node

Results:
¢ On NE after add node command is sent from MP (Step 2):
o TLI1 response is COMPLD
o AO Log is generated and indicates
RCSTATE=ADDNODE
o ADM in single node configuration alarm is raised
(MN,NSA)
o PG is in add node state:
= rcstate is add node
* node map is nil
= ieeemap is nil
= gpecial mode is passthru
o Network Reconfig FAC616 log is generated
» Logfac616
= Operation is Add Node
= Unit indicates PG + associated PGMs (LL)
o No SWERRs
o No Traps
e On NE after pass-through connections are provisioned by
MP (Step 6):
o Check that the expected pass through connections
are created
o No SWERRs
o No Traps
¢ On NE after the node map has been sent (Step 12):
o TL1 response is COMPLD
o AO Log is generated and indicates
RCSTATE=IDLE
o ADM in single node configuration alarm is cleared
(MN,NSA)
o PG is in idle state:

49 of 135

7.5

= rcstate is idle
* node map is non-nil (value set by PMEM)
* jeeemap is non-nil
= special mode is none
o No Network Reconfig log is generated
o No SWERRs
o No Traps
e OnMP;
o Check node has been added to the configuration
e Through out procedure:
o Monitor traffic and ensure no unexpected hits and
no expected hits >50ms
o Monitor traffic on other PG on Quad and ensure
no traffic hits

Test Results

143 of 143 unit test cases executed and passed
- 100% pass rate

- 100% execution rate

- 137 test cases automated

84 of 84 integration test cases executed and passed

- 100% pass rate
- 100% execution rate

50 of 135

Conclusions

The Add Node and Delete Node features were successfully delivered to
Verification on time and according to schedule. During this final phase for
customer acceptance, no faults were found in the NE Software, which has now
been approved for the first release of the next generation transport platform.

This report documents my work in delivering the Standard Reconfigurations
software feature which specifically encompasses the entirety of the Network
Element software portion of this feature. The other aspect which completes this
feature was the Management Platform work in delivering the Reconfig Assistant
which is outside the scope of this report.

The success of the project has been due to adhering to the software development
process, ensuring that at each stage the artefacts produced are adequately
reviewed and approved. The artefacts being the documentation that indicates the
completion of a phase in the process e.g. requirements, procedures, design, code
etc..

Initial customer requirements were received, broken down into more detailed
software design requirements (section 3 on page 14) based on the procedures
(section 4 on page 17) that dictated the behaviour of the software, coupled with
the use cases (section 5 on page 27) to elaborate those points that were not clear.

Detailed design (section 6 on page 30) then added further detail in the form of
the implementation approach that would be taken, before the actual code writing
was started.

Finally the designer testing (section 7 on page 44) phase started, with unit and
integration testing combining to ensure full code coverage, whilst also checking
the behaviour matched the initial requirements.

Although the project did encounter issues during the development of the
features, especially during the unit testing phase, these proved to be minor in
nature.

In essence due to the use of UML the design approach was easily and quickly
understood by reviewers and other designers ensuring minimal integration
issues.

As such, UML has proven to be a valuable addition to the design environment,
providing a common language between designers for describing software.

Since the design was well described, and reviewed, the Java implementation
proved to be relatively straight forward. The benefits of Java have been well
documented, that include portability, ease of use, and inbuilt memory
management.

51 of 135

However, there was no real indication as to whether Java was beneficial in the
respect of this feature. An equally effective implementation could have been
achieved using C++.

52 of 135

References

[1]

[2]

[3]

(4]

(3]
[6]

[7]

[10]

[11]

Standard Reconfigurations High Level Design — v1.03 July 2002 — Andy
Kinney

Standard Reconfigurations Detailed Design — v1.1 July 16, 2002 — Andy
Kinney

Standard Reconfigurations Designer Test plan — v0.5 July 8, 2002 — Andy
Kinney

UML Distilled — Applying the Standard Object Modelling Language —
Martin Fowler with Kendall Scott — Addison Wesley — 5" Printing
December, 1997 — [SBN 0-201-32563-2

Java 2 Platform - Standard Edition v1.4.1 — API Specification
http://java.sun.com/j2se/1.4.1/docs/apy/

Sonet (Synchronous Optical NETwork) and SDH (Synchronous Digital
Hierarchy) — Beginner Guide

http://www lightreading. com/document.asp?doc_id=4432

Synchronous Transmission Systems — Doc GH9, [ssue 3 — Christopher
Newall — Northern Telecom Europe

SONET/SDH Ring Technology — Optical Networking
http://ntrg.cs.ted.ie/undergrad/4ba2.02/optnet/pages/present/sont_and_sdh_bandwidth.htm

G.707 Network node interface for the synchronous digital hierarchy (SDH)
—ITU-T - (10/2000)

(G.708 Sub STM-0 network node interface for the synchronous digital
hierarchy (SDH) — ITU-T — (06/99)

G.709 Interfaces for the optical transport network (OTN) —ITU-T —
(02/2001)

53 of 135

http://ntrg.cs.tcd.ie/undergrad/4ba2.02/optnet/pages/present/sont

Appendix A: Java Implementation

The code listing for the Add Node and Delete Node feature is contained within
various modules. An overview of the module structure is described here:

TpNetworkReconfiglnit.java - class definition which has an initialise method
which serves as a hook into the system initialisation

TpNrReconfigNode.java - class definition which encapsulates the common
functionality to support the Add Node and Delete Node reconfigurations

TpNrAddNode.java - class definition which encapsulates all the high level
processing required for an Add Node operation

TpNrDeleteNode.java - class definition which encapsulates all the high level
processing required for a Delete Node operation

TpNrConnMngmt.java - class definition which encapsulates the functionality
used to manipulate traffic connections associated with the reconfig commands

TpNrErrorCode.java - class definition which encapsulates all the network
reconfig error strings that are used to inform the user of the reason the reconfig
operation failed

TpNrNmDbnsSubscriber.java - performs the necessary processing when the
node map is updated

TpNrRcDbnsSubscriber.java — performs the necessary processing when the
PG reconfig state is updated

TpNrRestartRecovery.java — class which implements Runnable and
encapsulates the methods to initialise the network reconfiguration code, thereby
providing a thread in which the reconfig commands execute

TpNrUtilities.java - class definition which encapsulates the utilities to support
network reconfig commands

TpNrValidations.java — class definition which encapsulates the functionality
used to validate network reconfig commands

54 of 135

Class: TpNetworkReconfiglnit

+ <3>File: <CODE>TpNetworkReconfigInit.java</CODE>
4

package equinox.protect;ion .traffic .reconfig;

import eqijinox .protection .traffic.reconfig.TpNrRestartRecovery ;
import equinox.framework.utilities.eqxthread.EqxThread;

*

<PxB>Class :<-B> <CODE>TpNetworkReconfiglnit</CODEx/P>

<PxB>Document: Standard Reconfigs DD
- available in Athena, following this path:

*

*
 - Equinox

*
 - Product Development

*
 - Software

*
 - Network Element Software

&
 Functional Areas

*
 - Network Reconfig

*
 - Design Folder </P>

* Description:< B>

*

The TpNetworkRecf/nfiglnit class definition has an initialise method which
serves as a hook int>.’ the systeminitialisation.

*

" Qauthor Andy Kinney

* Methods:

*

void initialize()

* - launches the thread which in turn calls the Network Reconfig
* initialisation code
¥

public final class TpNetworkReconfiglnit

* singleton instance of this class
*/
private static TpNetworkReconfiglnit INSTANCE = null;

55 of 135

<PxB>Method: <CODE>geclnstance</CODE>
<BRxB>Description :
This method returns the instance of this singleton.</P>
éreturn TpNetworkReconfiglnit

- the singleton instance of TpNetworkReconfiglnit
Inputs: None

Qutputs: None

public static synchronized TpNetworkReconfiglnit getlnstance()

{
if (INSTANCE null)

(
INSTANCE = new TpNetworkReconfiglnit();

return INSTANCE;

* Constructor. made private as class is singleton

private TpNetworkReconfiglnit ()

* <P>Method: <CODE>initialize</CODE>
* <BRxB>Description :<tB>

* This method launches the thread which in turn calls the Network Reconfig
*Initialisation code</P>

*/
* Inputs: None
* Qutputs: None
* Returns: None
*/

public static void initialize ()

(
TpNrRestartRecovery nrRst = new TpNrRestartRecovery();

EqxThread eqxThread = new EqxThread (nrRst, nrP.st.getName ()) ;
eqxThread.start();

} /1 end of TpNetworkReconfiglnit

56 or 135

Class: TpNrReconfigNode

* File: <CODE>TpNrReconfigNode.java</CODE>
\%

package equinox.protection.traffic.reconfig;
import equinox.framework.JavaRestartApi.JavaRestart;

import equinox.framework.database.DbTransaction;
import equinox.framework.database.DbTransactionState;

import equinox.framework.nom.keys.EntityPgKey;
import equinox.framework.nom.keys.EntityPgmKey;
import equinox.framework.nom.bases.EntityKey;

import equinox.framework.swerr.Swerr;

import equinox.framework.nom.objs .EntityObj Base ;
import equinox.framework.nom.objs.EntityPg;

import equinox.framework.nom.enums.SpecialModeEnum;
import equinox.framework.nom.enums.TPReconfigStateEnum;
import equinox.framework.nom.enums.AF_ProblemTypeEnum;

import equinox.framework.nom.enums.EntityldEnum;
import equinox.protecti on.traffic.utils . TpAidAdaptationlmpi;

import equinox.framework.database.dbns.Dbns;
import equinox.framework.database.dbns.Operation;
import equinox.framework.database.dbns.DbnsFilter ;
import equinox.framework.database.dbns.DbnsEvent;

import equinox.protection.traffic.reconfig.TpNrAddNode;

import equinox.protection.traffic.reconfig.TpNrDeleteNode;
import equinox.protection.traffic.reconfig. TpNrValidations;
import equinox.protection.traffic.reconfig. TpNrUtilities;

import equinox.protection.traffic.reconfig. TpNrRcDbnsSubscriber,
import equinox.protection.traffic.reconfig. TpNrNmDbnsSubscriber,

import equinox.framework.avp.AvpList;
import equinox.framework.avp.AvpFactory;

import equinox.framework.cfgutil.SlotIdTranslation;

import java.util.HashSet;
import java.util.Iterator;

57 of 135

* <P>Class: <CODE>TpNrR3ConfigNode</CODE></P>

* <P>Document: Standard Reconfigs DD
* - available in Athena, following this path:
*
 - Equinox
*
 - Product Development
*
 - Software
*
 - Network Element Software
*
 - Functional Areas

 - Network Reconfig
<3R> - Design Folder </P>

Description:

The TpNrReconfigNode class definition encapsulates the common functionality
to support the Add Node and Delete Node reconfigurations.

Qauthor Andy Kinney

Methods :

void initialize()
- hook provided for Add Node & Delete Node initialisation as part of
system wide initialisation

boolean subscribeReconfigStateO
- method provided to subscribe to pre-validation and commit events
for the reconfig state attribute

void subscribeNodeMap ()
- method provided to subscribe to pre-validation and commit events

for the node map attribute

String genUnitString(...)
- generates the unit string associated with the user visible log

boolean setNodeMap(...)
- sets the node map attribute to nil

boolean setForcePassThru(...J
- sets the force pass through attribute

public final class TpNrReconfigNode
{

Joww
* singleton instance of this class

private static TpNrReconfigNode INSTANCE = null;

58 or 135

* <PxB>Method: <CODE>getInstance</CODE>
* <BRxB>Description :
This method returns the instance of this singleton.</P>

Areturn TpNrReconfigNode
- the singleton instance of TpNrReconfigNode

* Inputs: None
* Qutputs: None
A%

public static synchronized TpNrReconfigNode getlnstance|)

{
if (INSTANCE == null)

(

}

return INSTANCE;

INSTANCE = new TpNrReconfigNode();

* Constructor, made private as class is singleton
*/
private TpNrReconfigNode ()

59 of 135

<P>Metbod:<'B> <CODE>ini tialize</CODE>

Description:

This method performs the required initialisation for the Add Node and
Delete Node features. </P>

<P>Namely :
- subscriptionto the DBNS for edits tothe reconfig state attribute
- subscriptionto the DBNS for edits to the node map attribute

- get the listof currently provisioned PC Entitys in the Database
- for each of these entities

* <B-R>

* Inputs;

* Qutputs:

* Returns:

- get the reconfig state value

if Add Node or Delete Node
- raise the 'ADM

None

None

None

public void initialize o

i

DbTransaction nrTx = null;

try

//

grab the restart instance

JavaRestart nrJr = JavaRestart.getlnstance();

wait for NCDbReadyForApplicationsGate

nrJr .waitForRestartGate(JavaRestart.RST_GATR_NC_DB_READY);

11
if

subscribe to the reconfig state attribute and node map events

(subscribeReconfigState() &&
subscrIbeNodeMap{))

/1 wait for CardSuccessfullyStartedGate to allow for alarm
/'l framework to initialise, otherwise alarm cannot be raised
nrJr .waitForRestartGate(JavaRestart.RST_GATE_STARTED);

/'l create database transaction
nrTx = new DbTransaction();

/| set the transaction to indicate that this could write to as
// well as read from the database, and start the transaction
nrTx.setType(DbTransaction,READ_WRITE);

nrTx.begin();

/I grab a set of all PG entities in the database
HashSet pgSet =
(TpNrUtilities .getlnstance()).getSetOfObjects(
EntityldEnum,EN_PG);

if (pgSet != null)

/1 loop through all the PG entities
for (Iterator i = pgSet.iterator(); i .hasNext();)

{

EntityPg pgEntity - (EntityPg)i.next();
int recState = pgEntity.getRcstate() .intValue();
boolean required = false;

TpNrValidations tpNrValidations =
TpNrValidations.getlnstance();
switch (recState)
{
case TPReconfigStateEnum.TP_RC_STATE_ADDNODE_VALUE:
check to see if node map is non-nil
if (tpNrValidations.nodeMapIsNil(pgEntlty)
= null)

/1 a non-nil node map indicates a node map
/' set event has been missed, and the add

60 of 135

}

/, node command has been completed
{TpNrAddNode.getlnstance()).
complete(pgEntity);

else
required true;

break;

case TPReconfigStateEnum.TP_RC_STATE DELNODE_VALUE:

/| ~ check to see if node map is non nil
if (tpNrValidations.nodeMaplsNil(pgEntity)
'= null)

'w a non-nil node map indicates a node map

/1 set event has been missed, and the

/1 delete node command has to be backed out

(TpNrDeleteNode.getlnstance()).
backout(pgEntity);

}

else

required * true ;

break;

case TPReconfigStateEnum. TP_RC._STATE_IDLE_VALUE :

do nothing
break;

default :
new Swerr("Invalid reconfig state ;

recState);
break;

if (required)

/1 raise the 'ADM in single node configuration’

// alarm
(TpNrUtilities .getlnstancel).alarm(pgEntity,

AF_ProblemTypeEnum.
AF_ADMINSINGLENODECONFIG_PT,

true);

/1 validate and commit the transaction
nrTx .validate();
nrTx .commit();

}

catch (Exception e)

{

new Swerr (e.toString());

finally

{

if (narTx !'= null)

{
try

(
if (!'(nrTx .getState()).isCommitted())

(

}

nrTx .abort();

}

catch (Exception e)

new Swerr (e .toString());

61 or I35

* <P>Method: <CODE>subscribeReconfigState</CODE>
* <BRxB>Description :
* This method subscribes to the DBNS for events associated with any PC's

* reconfig state attribute being set, and is called during the
initialisation ofNetwork Reconfigs.<''P>

*

<P>NOTE: Both the Commit and Pre-Validation events are subscribedto. The
processing of the add node or delete nodecommand v/ill beexecutedwithin
the context of the pre-validation event, and the final processing
(generation of success log, subscription to node map set events, and
raising of alarm) is performed within the commit event.</P>

®* % % % %

* Qreturn boolean

* - true if successful, false otherwise
Inputs: None

* Qutputs: None

public boolean subscribeReconfigState|()
boolean rc¢ = true;

try
t
/I define wildcard PG key
EntityPgKey pgKey = new EntityPgKey(EntityPgKey.WC_shelfid,
EntityPgKey.WC_slotld,
EntityPgKey.WC_portld,
EntityPgKey . WC_pipeld);

/| set the operation to update

Operation recStateSet = new Operation(true, /1 insert
true, /1 delete
true); // update

// create avplist with reconfig state attribute
AvpList recStateAvpList = new AvpListO;
recStateAvpList.addAvp(AvpFactory.newAvp {"restate")) ;

I/l create DBNS filter for reconfig state attribute

DbnsFilter recStateFilter = new DbnsFilter (recStateSet,
pgKey,
recStateAvpList)

/'l subscribe to the pre-validation event for reconfig state

Dbns.subscribe(DbnsEvent.DBNS_PRE_VALIDATION_EVENT_TYPE,
TpNrRcDbnsSubscriber.getlnstance(),
recStateFilter);

/!l subscribe to the commit event for reconfig state

Dbns.subscribe(DbnsEvent.DBNS_COMMIT_EVENT_TYPE,
TpNrRcDbnsSubscriber.getlnstance() ,
recStateFilter);

/1 subscribe to the abort event for reconfig state

Dbns.subscribe(DbnsEvent. DBNS_ABORT_EVENT_TYPE,
TpNrRcDbnsSubscriber.getlnstance(),
recStateFilter);

)
catch (Exception e)

{
new Swerr (e .toString());

rc = false;

return rec;

62 or 135

* <PxB>Method: <CODE>subscribeNodeMap</CODE>
* <BRxB>Description :

This method subscribes to/unsubscribes from the DBNS for
associated with a PG nodemap attribute.</P>

*

* Qreturn boolean

* - true if successful, false otherwise
¥

* Inputs: None

* Qutouts: None

public boolean subscribeNodeMap ()
boolean rc¢ = true;
try

{
define wildcard PG key

events

EntityPgKey pgKey = new EntityPgKey(Enti tyPgKey.WC_shelfld,
EntityPgKey,WC _slotld,
EntityPgKey.WC _portld,
EntityPgKey-WC _pipeld);

set the operation to update

Operation nodeMapSet = new Operation(false, ‘insert
false, delete
true); // update

create avplist with reconfig state attribute
AvpList nodeMapAvpList = new AvpList();
nodeMapAvpList.addAvp(AvpFactory.newAvp(n:demap'));

create DBNS filter for reconfig state attribute

DbnsFilter nodeMapFilter = new DbnsFilter (nodeMapSet,

pgKey,

nodeMapAvpList);

/1 subscribe to the pre-validation event for node map
Dbns.subscribe(DbnsEvent.DBNS_PRE_VALIDATION_EVENT_TYPE,

TpNrNmDbnsSubscriber.getlnstance(),
nodeMapFilter);

/1 subscribe to the commit event for node map

Dbns.subscribe(DbnsEvent.DBNS_COMMIT_EVENT_TYPE,
TpNrNmDbnsSubscriber.getlnstance(),
nodeMapFilter);

catch (Exception e)

new Swerr {e .toString());
rc = false;

}

return rc;

63 or 135

* <P>Method: <CODE>genUnitString</CODE>

* <BRxB>Description:

This method generates the unit string which is subsequently used in the

* TpNrUtilities.log{) method for generating the User Visible Log.</P>

9param

QOreturn

\%
/

* Qutputs

¥

pgEntity
- the PG upon which the reconfig operation hasbeen executed

String
- the stringassociated with the unit upon which the
reconfig operation has been executed

: None

public String genUnitString (EntityPg pgEntity)

{

StringBuffer unit = new StringBuffer();

try

I
TpAidAdaptationlmpi tpAid = TpAidAdaptationlmpl,getlnstance();
unit = unit.append(tpAid.EntityToAID((EntityObjBase)pgEntity)

"

/

get shelf, slot and port information for each PGM that makes
up the PG

EntityPgmKey[] pgmList = pgEntity.getMemberList();
byte pgmNumber = pgEntity.getNumberOfPgm();

/1

loop through the pgm list and add the shelf, slot, port info to

// the unit string
int lastPgm = pgmNumber - 1;
for (byte index = 0; index < pgmNumber; index++)
Enti tyPgmKey pgmKey = pgmList[index];
unit = unit.append(tpAid.EntityToAID((EntityKey)pgmKey,

}

1/
un

catch
{

EntityldEnum.EN_PGM_VALUE));

if (index != lastPgm)

{
unit = unit.append(, ");

/'l in the case where 4 PGMs are being stored in the unit
/1 string the 80 character window limit is exceeded, and
// this additional formatting is required

if (index == 1)

{

unit = unit.append('\n\t\t");

add trailing ']
it = unit.append ("1);

(Exception e)

new Swerr (e .toString());

}

return

unit.toString();

64 or 135

<PxB>Method: <CODE>setForcePassThru</CODE>
* <BRxB>Description: <'"B>
* This method sets the force pass through PG attribute to the value

*passed in. Setting the force pass through value to true places the
* protection channels into full pass through mode (traffic and kbytes).</P>

Oparam pgEntity
* - the PG upon which the reconfig operation has been executed
* éparam passthru

- true to enable force pass thru, false todisable

* Sreturn boolean
* - true if successful, false otherwise
Outputs : None

public boolean setForcePassThru (EntityPg pgEntity,
boolean passthru)

boolean r¢ = true,
try
{
f (passthru)
pgEntity.setSpecialmode(Speci alModeEnum.SPECIAL_MODE_PASSTHRU) ;

Ise
pgEntity.setSpecialmode(Speci alModeEnum.SPECTAL_MODE_NONE) ;
catch (Exception e)
new Swerr (e.toString());

rc = false;

return rec;

/I end of TpNrReconfigNode

65 of 135

Class: TpNrAddNode

s

* File: <CODE>TpNrAddNode.java</CODE>
package equinox.protection.traffic.reconfig;
import equinox.protection.traffic.reconfig. TpNrErrorCode;
import equinox.protection.traffic.reconfig.TpNrValidations;
import equinox.protection.traffic.reconfig. TpNrUtilities ;
import equinox.protection.traffic.reconfig.TpNrConnMngmt;
import equinox.protection.traffic.reconfig.TpNrReconfigNode;
import equinox.framework.swerr.Swerr;

import equinox.framework.nom.objs .EntityPg;

import equinox.framework.nom.enums.AF_ProblemTypeEnum;
import equinox.framework.nom.enums.TPReconfigStateEnum;

[+
* <PxB>Class : <CODE>TpNrAddNode</CODE></P>

* <PxB>Document :< B> Standard Reconfigs DD

* - available in Athena, toilowing this path:
*
 - Equinox

*
 Product Development

*
 - Software

*
 - Network Element Software

*
 - Functional Areas

*
 Network Reconfig

*
 - Design Folder </P>

* Description:

" The TpNrAddNode class definition encapsulates all the high level processing
* required for an Add Node operation.

* @author Andy Kinney
*/

* Methods:

* boolean process (...)
* - processing required when an add node operation is requested

* boolean backout(...}
- processing involved when add node is backed out

* boolean complete(...)
* - processing involved in completing the add node operation

public final class TpNrAddNode
{

* singleton instance of this class

*/
private static TpNrAddNode INSTANCE = null;

66 or 135

* <P><3>Method: <CODE>getInstance</CODE>
* <BRxB>Description :

* This method returns the instance of this singleton.</P>

* Qreturn TpNrAddNode

* - the singleton instance of TpNrAddNode
¥

* Inputs: None

* Qutputs: None

¥

public static synchronized TpNrAddNode getlnstance ()
if (INSTANCE == null)

INSTANCE = new TpNrAddNode ();

}

return INSTANCE;

* Constructor, made private as class is singleton

private TpNrAddNode ()

{
}

67 of 135

<PxB>Method : <CODE>process</CODE>

<BRxB>Description :<-'B>

This method is invoked when the

<CODE> TpNrRcDbnsSubscriber .notify'j'JithResponse (} </CODE>

method is called with a request to pre-validate setting the reconfig

state PG attribute to add node.

<P>This method then performs the required Add Node validations and
processing, returning true if successful, false otherwise. </p>

<P>NOTE: The creation of the pass through connections on the working

channels is owned by Connection Management software, and not included in
this method. </P>

yparam pPg8Entity
- the entity in the database upon which the add node
operation has been requested.
éreturn boolean

- TRUE if add node command successful, FALSE otherwise

Outputs: None

public boolean process (EntityPg pgEntity)

boolean rc¢ = false,
String errorReason - TpNrErrorCode.TP_NR_ERR_SWERR;

validate the add node command

TpNrValidations tpNrValidations = TpNrValidations.getlnstance();
if (((errorReason = tpNrValidations.noActiveReconfigs(pgEntity))
== null) &&
((errorReason = tpNrValidations.isPgBlsr(pgEntity))
== null) &&
((errorReason = tpNrValidations.nodeMaplsNil(pgEntity))
== null))

/1 execute the add node command
if (((TpNrReconfigNode.getlnstance()).
setForcePassThru(pgEntity, true)) &&
((TpNrConnMngmt.getlnstance()) .deleteAllXcons(pgEntity))

r¢ = true;

}

else

{
}

errorReason = TpNrErrorCode.TP_NR_ERR_SWERR;

)

/1if the command has failed, then generate the failure log

if (!'re)
String operation = new String (“Add Node");
String unit = (TpNrReconfigNode.getlnstance()).

genUnitString(pgEntity);
(TpNrUtilities.getlnstance()).log (operation, wunit,

errorReason, false);

return rec;

6X or 135

/**

* <PxB>Method: <CODE>backout</CODE>

%

<BRxB>Description :

%

This method is invoked when the TpNrRcDbnsSubscriber.notifyWithResponseO
* method is called with a request to pre-validate setting the reconfig
state PG attribute to idle.</P>

*

*

<P>Setting the reconfig state attribute back to idle indicates the add
node command is being backed out.</P>

*

* Oparam pgEntity
* - the entity in thedatabase uponwhich theadd node
* operation has been requested.
Sreturn boolean
- TRUE if addnodebackoutsuccessful, FALSEotherwise
A%
Outputs: None

public boolean backout (EntityPg pgEntity)
boolean rc¢ = false;

/'l clear the add node command
if (((TpNrReconfigNode .getlnstance()).
setForcePassThru(pgEntity, false)) &&
((TpNrConnMngmt .getlnstance()) .deleteAllXcons(pgEntity)))

(
}

return rec;

rc = true;

69 of 135

*

*

%

w *

*

<P>Method: <CODE>complete</CODE>

Description:

This method is invoked when the TpNrNmDbnsSubscriber.noti fyWitiiResponse ()
method is called with a request to pre-validate setting- the nodemap PG
attribute.</P>

<P>Providing the nodemap has been set to a non-nil value it indicates the
completion of the add node procedure, and this m.ethcd clears out the add
node information.</P>

<P>NOTE: The deletion of the pass through connections on the working
channels is owned by Connection Management software, and not included in
this method.</P>

Oparam pgEntity
- the entity inthe database upon whichthe add node
operation has been requested.

éreturn boolean
- TRUE if addnode completion successful, EALSE otherwise

Outputs: None

public boolean con”lete (EntityPg pgEntity)

}

11

boolean rc¢ = false;
if ((TpNrValidations.getlnstance()) .nodeMaplsNil(pgEntity) != null)

/ clear add node
if (((TpNrUtilities .getlnstance()).sotRecState(pgEntity,
TPReconfigStateEnum.TP_RC_STATE_TDLE)) &&
((TpNrReconfigNode.getlnstance()) .
setForcePassThru(pgEntity, false)))

re¢ = true;

}

else
/1 if the node map is nil, then do nothing, the add node

// procedure has not been finished
rc¢ = true;

}

return rc;

end of TpNrAddNode

70 of 135

Class: TpNrDeleteNode

/**

* File: <CODE>TpNrDeletaNode. java</CODE>

4
package equinox.protection.traffic.reconfig;
import equinox.protection.traffic.reconfig.TpNrErrorCode;
import equinox.protection.traffic.reconfig.TpNrValidations;
import equinox.protection.traffic.reconfig.TpNrUtilities;
import equinox.protection.traffic.reconfig. TpNrConnMngmt;
import equinox.protection.traffic.reconfig.TpNrReconfigNode;
import equinox.framework.nom.objs .EntityPg;

import equinox.framework.swerr.Swerr;

import equinox.framework.nom.enums.AF_ProblemTypeEnum;
import equinox.framework.nom.enums.TPReconfigStateEnum;

* <PxB>Class : <CODE>TpNrDeleteNode</CODEXx >P>

* <PxB>Document :<,'B> Standard Reconfigs DD
- available in Athena, following this path:

*
 - Equinox

*
 - Product Development

*
 - Software

*
 - Network Element Software

*
 Functional Areas

*
 - Network Reconfig

*
 - Design Folder </P>

* Description:

* The TpNrDeleteNode class definition encapsulates all the high level
* processing required for a Delete Node operation.

* Sauthor Andy Kinney
¥/
/*

* Methods:

boolean processf...J
- processing required when an delete node operation is requested

* boolean backout(...)
- processing involved when delete node is backed out

* boolean complete(...)
- processing involved in completing the delete node operation

* boolean setNodeMap(...)
* - sets the node map attribute of the PG to nil

*/
public final class TpNrDeleteNode

(I

* singleton instance of this class
%,

private static TpNrDeleteNode INSTANCE = null;

71 or 135

/**
* <PxB>Method: <CODE>getInstance</CODE>
* <BRxB>Description :

* This method returns the instance of this singleton.</P>

* éreturn TpNrDeleteNode

* - the singleton instance of TpNrDeleteNode
¥

* Inputs: None

* Qutputs : None

A%

public static synchronized TpNrDeleteNode getlnstance()

if (INSTANCE == null)

INSTANCE = new TpNrDeleteNode();

}

return INSTANCE;

* Constructor, made private as class is singleton
%,

private TpNrDeleteNode |

|

72 of 135

* <PxB>Method: <CODE>process</CODE>
* <BRxB>Description :
* This method is invoked when the TpNrRcDhnsSubscriher.notifyl'lithResponse ()

method is called with a request to pre-validate setting the reconfig
state PG attribute to delete node.</P>

*

*

%

<P>This method then performs the required Delete Node validations and
processing, returning true if successful, false otherwise.</P>

* <P>NOTE: The creation of the pass through connections on the working

* channels is owned by Connection Management software, and not included in
* this method. <'P>

* Qparam pPgEntity

" - the entity in the database upon which the delete node

operation has been requested.

@retuzn boolean
- TRUE if delete node command successful, FALSE otherwise

Outputs : None

public boolean process (EntityPg pgEntity)

boolean rc = false,
String errorReason - TpNrErrorCode.TP_NR_ERR_SWERR;

validate the delete node command

TpNrValidations tpNrValidations = TpNrValidations.getlnstance();
if (((errorReason = tpNrValidations.noActiveReconfigs(pgEntity)
== null) &&
({errorReason = tpNrValidations.isPgBlsr(pgEntity))
== null) &
((errorReason = tpNrValidations.noAddDrops(pgEntity))
== null) &&
((errorReason = tpNrValidations.noProtSwActive(pgEntity))
== null))
if (tpNrValidations.nodeMaplsNil(pgEntity) == null)
errorReason = TpNrErrorCode.TP_NR_ERR_NOT_RTNG;
)
else

!
/m execute the delete node command
f ((setNodeMap(pgEntity)) &&
((TpNrReconfigNode.getlnstance()).
setForcePassThru(pgEntity, true)))
re¢ = true;

else

errorReason = TpNrErrorCode,TP_NR_ERR_SWERR;

w if the command has failed, then generate the failure log

if (Ire)
String operation = new String ("Delete Mode");
String unit = (TpNrReconfigNode.getlnstance()).

genUnitString(pgEntity);
(TpNrUtilities.getlnstancel). log (operation, unit,

errorReason, false);

return rc;

73 of 135

<PxB>Method: <CODE>complete</CODE>
<BRxB>Description :

This method is invoked when the TpNrRcDbnsSubscriber.notifyWithResponse ()

* method is called with a request to pre-validate setting the reconfig

*

*

state PG attribute to idle.</P>

<P>Setting the reconfig state attribute back to idle indicates the delete
node command is being completed. </P>

Oparam pgEntity
- the entity in the database upon whichthe delete node

operation has been requested.

Oparam boolean
- TRUE if delete node completionsuccessful, FALSE otherwise
Outputs: None

public boolean complete {EntityPg pgEntity)

{

boolean rc¢ = false;
'/ clear the add node command
if (((TpNrReconfigNode .getlnstance()).
setForcePassThru(pgEntity, false)) &&
((TpNrConnMngmt.getlnstance()) .deleteAllXcons(pgEntity)))

rc = true;

return rec;

74 of 135

* <PxB>Method: <."B> <CODE>backout< ~"CODE>

*

<BRxB>Description :

* This method is invoked when the TpNrNmDbnsSubscriber.notifyWithResponseO
method is called with a request to pre-validate setting the nodemap PG
attribute.</p>

*

*

* <P>Providing the nodemap has been set to a non-nil value it indicates the
* hacking out of the delete node procedure, and this m,ethod clears out the
* delete node information. < P>

* <P>NOTE: The deletion of the pass through connections on the working
channels is owned by Connection Management software, and not included in
* this method.</P>

%

éparam pgEntity
- the entity in the database upon which the delete node
operation has been requested.

éreturn boolean
- TRUE if delete node backout successful, FALSE otherwise

Outputs: None

public boolean backout (EntityPg pgEntity)

{
boolean rc¢ = false;

if {{TpNrValidations.getlnstance()) nodeMapIsNil(pgEntity) != null)
(
/'l clear add node
if (((TpNrUtiJities.getlnstance()).setRecState(pgEntity,
TPReconfigStateEnum.TP_RC_STATE_IDLE)) &&
((TpNrReconfigNode.getlnstance()) .setForcePassThru(pgEntity,
false)))

rec = true;
else
/1 if the node map is nil, then do nothing, the delete node

// procedure has not been finished
rec = true;

return rec;

75 of 135

* <PxB>Method: <CODE>setNodeMap</CODE>

* <BRxB>Description :

* This method sets the node map attribute of the PG to nil.</P>

* Qparam pg8Entity
* - the PGupon whichthereconfig operation has been executed
* éreturn boolean

- true ifsuccessful, false otherwise

/*

* Qutputs: None
¥
private static boolean setNodeMap (EntityPg pgEntity)
boolean rc¢ = true;
byte[] nodemap = new byte[EntityPg.SIZE_nodemap];
/ initialise the nodemap array to the default value (32)

for (int index = ; index < EntityPg.SIZE_nodemap; index++)
(

}

/1 initialise the ieeemap value to
String ieeemap - new String(H

nodemaplindex] = -z;

H

/1l attempt to set the nodemap/ieeemap values to their defaults
try
pgEntity.setNodemap(nodemap);
pgEntity.setIeeemap(iceemap);

}
catch (Exception e)

{
re false;

new Swerr (e.toString());

return rec;

} /1 end of TpNrDeleteNode

76 of 135

Class: TpNrConnMngmt

/**

* File: <CODE>TpNrConnMngmc.java</CODE>

package

import
import

import
import

import

import
import
import
import

import
import

import

import

equinox.protection.traffic.reconfig;

equinox.framework.database.DbAccess;
equinox.framework.database.DbTransaction;

equinox.framework.nom.objs .EntityXcon;
equinox.framework.nom.objs .Enti tyPg;

equinox.framework.nom.keys.EntityXconKey;

equinox_ne_connections.engine.user_interface.Xconlist;
equinox_ne_connections.engine.user_interface.Xcon;
equinox_ne_connections.engine.user_interface.CmUserInterface ;
equinox_ne_connections.engine.user_interface.Cmuidb;

equinox.framework.swerr.Swerr;
java.util.HashSet;

java.util . Iterator ;
java.util.ArrayList;

* <P>Class : <CODE>TpNrConnMngmt</CODEx/P>

®* % % %X % % %

<P>Document: Standard Reconfigs DD

available in Athena, following this path:

- Equinox
- Product Development
- Software

- Network Element Software
~ Functional Areas
- Network Reconfig
- Design Folder </P>

* Description:

The

TpNrConnMngmt class definition encapsulates the functionality used

* manipulate Xcons on the NE associated with the reconfig commands.

* Nquthor Andy Kinney

*/
/o

* Methods:

* Hashset getDeletedList()
* - gets the list of xcons deleted while processing add/delete node

* void clearDeletedListl)

- clears the list of deleted xcons

* boolean deleteAllXcons(...)
* - deletes all the xcons associated with a specific PG

* void restorexcons(...)

public
{

——

- creates Xcons passed in

final class TpNrConnMngmt

* singleton instance of this class

*/

private static TpNrConnMngmt INSTANCE = null;

77 of 135

to

* list of connections that have been deleted which
* is used to restore the NE in case of validation
* failure when processing the restate change

v
private static ArrayList xconDelList = null ;
+ <PxB>Method: <CODE>getDeletedList</CODE>

* <BRxB>Description :

%

This methodreturns thelist of deletedxcons that are to
restored in case of therestate changebeing failed. </P>

* Sreturn ArrayList

* - list of deleted xcons
\Y%

* inputs: None

* Qutputs : None

public ArrayList getDeletedList(
{

)

return xconDelList;

* <PxB>Method: <CODE>clearDeletedList</CODE>
* <BRxB>Description :

* This method clears the list of deleted xcons .</P>

¥
/* Returns: None
* Inputs: None
* Qutputs: None
*/

public void clearDeletedList|()

if {xconDelList !'= null)

{
xconDelList.clear();

xconDelList = null;

78 of 135

be

* <PxB>Method: <CODE>getInstance</CODE>
* <BRxB>Description :

* This method returns the instance of this singleton. </P>

* Qreturn TpNrConnMngmt

* - the singleton instance of TpNrConnMngmt
/*

* Inputs: None

* Qutputs: None

¥
public static synchronized TpNrConnMngmt getlnstance(
if (INSTANCE == null)

INSTANCE = new TpNrConnMngmt();

}

return INSTANCE;
}

/] +*

* Constructor, made private as class is singleton
*/

private TpNrConnMngmt ()

of 135

*

*/

<PxB>Method: <CODE>deleteAllXcons</CODE>
<BRxB>Description :

This method obtains a list of all Xcons for the PGMs involved in the
reconfig, and deletes them all.</P>

<P>NOTE: This method is called from within a DBNS Pre-Validation
event.<'P>

éparam pg8Entity
- PG Entity upon which the reconfig operation has been
executed
éreturn boolean

- true if successful, false otherwise

Outputs: None

public boolean deleteAllXcons (EntityPg pgEntity)

{

boolean rc = true;
DbTransaction nrTxn = null;
DbTransaction curTxn = null;
xconDellList = new ArrayList();
try

{

get the current transaction
curTxn = DbTransaction.getCurrentDbTransaction();
curTxn.leave ();

HashSet xconList = Xconlist.getXconsOnPg(pgEntity) ;
if (!xconList.isEmpty())

// loop through all xcons

Iterator i = xconList.iterator|();

while (i .hasNext())

{
// open a new transaction for each xcon delete
nrTxn = new DbTransaction();
nrTxn.setType (DbTransaction.READ_WRITE);
nrTxn .begin ();

// retrieve the memory copy of the xcon from the list
Xcon xc = (Xcon)i.next();

// create a key
EntityXconKey xconKey = new EntityXconKey (xc.getXcId());

// retrieve the real entity from the database
EntityXcon xcon = (EntityXcon)DbAccess.gueryByKey (xconKey)

// get the user label from the database to be used when
generating the AO Log
String xconLabel = new String(xcon.getUserLabel());

// delete the entity
DbAccess .delete (xcon) ;

nrTxn.validate();
nrTxn.commit();

nrTxn = null;

/ delete entry in xconlist
Xconlist.delXconFromList (xc) ;

' generate AO Log for MP to indicate deletion
int deleteXcon = :;

80 or 135

(CmUserlnterface .getlnstance()),logXCAction{deleteXcon,
xconLabel,
xe)

/! add deleted xcon to list for later restoration in

// case of validation failure

// NOTE: ordering of added objects important, and assumed
/7 in restoreXcons call

xconDelList.add(xc);

xconDelList.add(xconLabel);

}
}

catch (Exception e)

{
new Swerr (e .toString());
rc¢ = false;
}
finally
(
try
{
if (nrTxn != null)

nrTxn .abort{);

if (curTxn !'= null)

{
rejoin transaction
curTxn .join();

}

catch (Exception e)

new Swerr (e .toString());

return rec;

81 or 135

* <PxB>Method: <CODE>restoreXcons</CODE>
* <BRxB>Description:

* This method restores the list of xcons passed in.</P>

* éparam. ArrayList xconlList

* - list of xcons to be restored
* Inputs: None

* Qutputs: None

public void restoreXcons ArrayList xconList)
{

boolean success - true;
try
if (IxconList.isEmpty())

/1 loop through all xcons
Iterator i = xconList.iterator();
while (i hasNext() && success)

{
/'l retrieve the xcon from the list
Xcon xc¢ = (Xcon)i.next();

/ get the user label for generating the AO Log
String xconLabel = new String((String)l.next());

/1 insert the xcon into the database
Cmuidb .insertXcObject(xc,xconLabel);

/1 add entry to xconlist
if (Xconlist.addXconToList(xc))

{
/I generate AO Log for MP to indicate creation

int createXcon = 0 ;

(CmUserlnterface .getlnstance()).logXCAction(createXcon,
xconLabel,
xc)

else

success = false;

}

catch (Exception e)
new Swerr (e.toString());
finally

if (Ysuccess)

new Swerr ("Could not create xcon");

} t/ end of TpNrConnMngmt

82 or 135

Class: TpNrErrorCode

File: <CODE>TpNrErrorCode. java<'CODE>
®/

package equinox.protection.traffic.reconfig;

* <P>Class : <CODE>TpNrErrorCode<-'CODEX/P>

* <P>Document: Standard Reconfigs DD
" - available in Athena, following this path:

*
 - Equinox
*
 - Product Development
*
 - Software
‘s
 - Network Element Sofzware

 - Functional Areas
<8R> Network Reconfig

 - Design Folder </'P>

Description:

The TpNrErrorCode class definition encapsulates all the network reconfig
error strings that are used to inform the user the reason the reconfig
operation failed

éauthor Andy Kinney

public final class TpNrErrorCode

¢
| +*

* Indicates a reconfig operation was requested whilst the node was
* already executing an add node operation

public static final String TP_NR_ERR,IN_ADD_NODE = new String (
Command is not valid while node is in Add Node mode);

*

* Indicates a reconfig operation was requested whilst the node was
* already executing a delete node operation
%,

public static final String TP_NR_ERR_IN_DEL_NODE = new String (
Command is not valid while node is in Delete Node mode");

¥ x

* Indicates a reconfig operation was requested whilst the node was
* already configured in a ring

*
public static final String TP_NR_ERR_VALID_NODE_MAP = new String (
"Node is configured in a network");

/**

* Indicates a reconfig operation was requested whilst the node has

* an active protection switch

4

public static final String TP_NR_ERR_PROT_SW_ACTIVE = new String (
'Node is currently handling a protection switch");

* Indicates a reconfig operation was requested whilst the node has

* non-passthrough connections provisioned

*/

public static final String TP_NR_ERR_ADD_DROP = new String (
"Traffic connecti ns are current- Iv pi. vi<i ned);

S3 or 135

* Indicates a reconfig operation ivas requested whilst the node has
* an invalid protection scheme

public static final String TP_NR_ERR_PROT_SCHEME_INVAL = new String

Pr' tecti-in scheme is nrt valid);
/**

* Indicates a software error occured during the execution of the
* requested reconfig operation
v
public static final String TP_NR_ERR_SWERR % new String (
S fecware Error");

/**

* Indicates a reconfig operation was requested whilst the node was
;:not configured into a network

public static final String TP_NR_ERR_NOT_RTNG = new String (
Node is n-t ¢ ntigured in a netwe rk.");

* Indicates that the PGM objects could not be locked to the transaction
* for the requested reconfig operation

public static final String TP_NR_ERR_LOCK_NOT_GRANTED_PGM = new String (
C-.uld n. : 1- ok all required PGM bjects for this rperation ");
/**

* Indicates that a request to create a PG in add node mode was received

public static final StringTP_NR_ERR_CREATE_PG_ADD = new String (
Command t -reate PG in Add Nr de mode is not valid');

I*¢

* Indicates that a request to create a PG in delete node mode was received

public static final StringTP_NR_ERR_CREATE_PG_DEL = new String (

"Command to create PG inDelete Node mode is notvalid");

* Indicates that the TLI request was an invalid format

\%

public static final String TP_NR_ERR_INVALID_TL1 = new String {
'TLI command contained more than reconfig state attribute");

Jox
Indicates that a request to change the state from Idle to Idle has
* been received, and denied.

*/
public static final String TP_NR_ERR_IDLE_TO_IDLE = new String (
"TLlI command requested Reconfig State change from Idle to Idle");

[y *

* singleton instance of this class

private static TpNrErrorCode INSTANCE = null;

84 of 135

}

<P>Method: <CODE>getInstance</CODE>
<BRxB>Description :
This method returns the instance of this singleton.</P>
éreturn TpNrErrorCode
- the singleton instance of TpNrErrorCode

Inputs: None

* Qutputs: None

*/

public static synchronized TpNrErrorCode getlnstance(

{
if (INSTANCE null)

{
INSTANCE = new TpNrErrorCode();

return INSTANCE;

* Constructor, made private as class is singleton
%,

private TpNrErrorCode |

{

// end of TpNtErrorCode

X5 or 135

Class: TpNrNmDbnsSubscriber

* File:</3> <CODE>TpNrNmDbnsSubscriber.java</CODE>

package equinox.protection.traffic.reconfig;
import equinox .protection .traffic, reconfig.TpNrAdciNode;
import equinox.protection.traffic.reconfig. TpNrDeleteNode;
import equinox.protection.traffic.reconfig.TpNrValidations ;
import equinox.framework.database.dbns.DbnsSubscriber;
import equinox.framework.database.dbns.DbnsEvent;
import equinox.framework.database.dbns.DbnsSingleEvent;
import equinox.framework.nom.keys.EntityPgKey;
import equinox.framework.nom.objs .Enti tyPg;
import equinox.framework.nom.enums.EntityldEnum;
import equinox.framework.nom.enums.TPReconfigStateEnum;
import equinox.framework.swerr.Swerr;

<P>Class: <CODE>TpNrNmDbnsSubscriber</CODE></P>

<P>Document: Standard Reconfigs DD

- available in Athena, following this path:

 - Equinox

 - Product Development

 - Software

 - Network Element Software

 - Functional Areas

 - Network Reconfig

 - Design Folder <-P>

Description:

the DbnsSubscriber
interested parties

This singleton class implements
the means by which DBNS inform.s
been previously subscribed to.

interface,
of events

which provides
that have

This implementation performs when the PG node

map attribute is updated.

the necessary processing

éauthor Andy Kinney

Methods :

TpNrRcDbnsSubscriber getlnstancel)

returns the instance of this object

boolean dbAccessOption()

- returns true to indicate that the subscriber will be accessing the
database
boolean singleNotificationOption(J

- returns false to indicate that this subscriber is registering for multiple
single events, rather than one comibined event

void notify(...)

- method called to deal with the commit of the node map attribute change

boolean noti fyWithResponse (. ..
m.ethod called to handle the pre-validation
change

of the node map attribute

86 or 135

public final class TpNrNmDbnsSubscriber implements DbnsSubscriber
(

**/singleton instance of this class
private static TpNrNmDbnsSubscriber INSTANCE = null;

[%

& <P><8>Method: <CODE>getInstance<'CODE>

*
Description:<‘B>
This method returns the instance of this singleton. <'P>

* @return TpNrNmDbnsSubscriber

Inputs: None

* Qutputs: None

public static synchronized TpNrNmDbnsSubscriber getlnstance|()

(
if {INSTANCE == null)

{

}

return INSTANCE;

INSTANCE = new TpNrNmDbnsSubscriber();

* Constructor, made private as class is singleton
’

private TpNrNmDbnsSubscriber ()

* <PxB>Method: <CODE>dbAccessOption</CODE>
* <BRxB>Description :

This method determines whether the subscriber will access
database via the notify, or notifyWithResponse methods. In
case the method always returns true to indicate that the

subscriber will be accessing the database. </P>

* o % %

* Areturn boolean

* - true to indicate access to database required
*/
/*

* Inputs: None

* Qutputs: None

v

public boolean dbAccessOption|()
{

}

return true ;

87 or 135

- the singleton instance of TpNrNmDbnsSubscriber

the

this

* <PxB>Method: <CODE>singleNotificationOption</CODE>
* <BRxB>Description:
* This method indicates whether the subscriber will handle multiple single

events or one combined event. In this case the method will always return
* false to indicate multiple single events.</P>

* Areturn boolean
- false to indicate multiple single event
v
/*
* Inputs: None
* Qutputs: None

*/

public boolean singleNotificationOption ()
(

return false,

88 or 135

%

<PxB>Method: <CODE>notify</CODE>
* <BRxB>Description :

* This method performs the commit processing on receipt of a request to
change the node map attribute of a PG Entity.</P>

%

%

<P>It checks that the notification is for a commit event, and for a PG
Entity,before it then retrieves the reconfig state attribute value. This
value should be Idle, as thismethodbeing calledindicates that either
Add Xode has beencompleted, or DeleteNode has been backed out, in
either case the alarm should be cleared, and the node map set event
should be unsubscribed from.</P>

* % % %

* éparam e

* - node map event
* Qutputs: None

* Returns: None

-V

public void notify(DbnsEvent e)

(
DbnsSingleEvent event = (DbnsSingleEvent)e;

try
if ((event.getEventType0 == DbnsEvent.DBNS_COMMIT EVENT_TYPE) &&
(event getEntity().gotKey().getEntityld{) ==
EntityTdEnum.EN_PG))

EntityPg pgEntity = (EntityPg)event.getEntity();
int recState = pgEntity.getRcstate().intValue();

switch (recState)

{ case TPReconfigStateEnum.TP_RC_STATE_IDLE_VALUE:
/1 the TpNrRcDbnsSubscriber.notifyl) method handles the
// clearing of the alarm and unsubscription from the
// node map set event
// i.e. nothing is required here
break;

case TPReconfigStateEnum.TP_RC_STATE_DELNODE_VALUE:
/'l check to make sure that the node map is nil
if ((TpNrValidations.getlnstance()).
nodeMapIsNil(pgEntity) == null)

/1 if it is nil then the reconfig is in the correct
// state
break;

J

/I since the nodemap is non-nil, and in delete node

// drop through to default case to raise swerr

case TPReconfigStateEnum.TP_RC_STATE_ADDNODE_VALUE:
/1 should not be in add node when this method is called
// drop through to default to raise swerr

default :
new Swerr("Invalid reconfig state ; + recState);
break;
1
e}lse
(
new Swerr("Invalid event type received : " +
event.getEventType());
new Swerr ("Inval: : entity receiv-=d : +
event getEntity().getKey().getEntityld());
}
}
catch (Exception ex)
{

new Swerr(ex.getMessage());

SQor 135

<P>Mechod: <CODE>notifyWithResponse</CODE>

Description:

This method performs the pre-validation processing on receipt of a
request to change the node map attribute of a PG Entity, that is
currently in add node or delete node mode.</P>

<P>It checks that the notification is for a pre-validation event, and
for a PG Entity, before it then retrieves the reconfig state attribute
to determine if/hat operation has been performed. </P>

<P>NOTE: In the case of the reconfig state being Add Node, Add Node is
being completed, and for Delete Node, it is being backed out.</P>

* éparam e

* - nod map event
* Qutputs: None

* Returns: boolean

- true if successful, false otherwise

public boolean notifyWithResponse(DbnsEvent e)

{

DbnsSingleEvent event = (DbnsSingleEvent)e;
boolean rc¢ = false;
try

if ((event.getEventType()
DbnsEvent.DBNS_PRE_VAr,IDATION_EVENT_TYPE) &&
(event getEntity() getKey() .getEntityld() ==
EntityldEnum.EN_PG))

EntityPg pgEntity = (EntityPg)event.getEntity ();
int recState = pgEntity.getRcstate().intValue();

switch (recState)

{
case TPReconfigStateEnum.TP_RC_STATE_ADDNODE_VALUE;

rc = (TpNrAddNode.getlnstancel) .complete(pgEntity);
break;

case TPReconfigStateEnum.TP_RC_STATE_DELNODE_VALUE:
rc = (TpNrDeleteNode.getlnstancel) -backout(pgEntity)
break;

case TPReconflgStateEnum.TP_RC_STATE_IDLE_VALUE:
/' do nothing
rec = true;
break;

default :
new Swerr("Invalid reconfig state ; " + recState);
break;
else
new Swerr ('Invalid event, type received : " +
event.getEventType());

new Swerr("Invalid entity received
event getEntity() .getKey() .getEntityld());

catch (Exception ex)
new Swerr (ex .getMessage 0) ;

return rec;

} | end of TpNrNmDbnsSubscriber

90 of 135

Class: TpNrRcDbnsSubsriber

File: <CODE>TpNrRcDhnsSubscriher. java<-'"CODE>

package

import
import
import
import
import

import
import
import
import
import
import
import
import
import
import

import

import
import

import

eq

equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ
equ
equ

equ

jav
jav

equ

uinox.protection.traffic.reconfig;

.traffic.reconfig.TpNrAddNode;
.traffic.reconfig.TpNrDeleteNode;

inox.protectio
inox.protectio
inox.protection.traffic.reconfig.TpNrReconfigNode;
inox.protection.traffic.reconfig.TpNrErrorCode;
inox.protection.traffic.reconfig. TpNrUtilities
inox.protection.traffic.reconfig. TpNrConnMngmt
inox.framework.database.DbTransaction;

inox.framework.database.dbns.DbnsSubscriber;
inox.framework.database.dbns.DbnsEvent;
inox.framework.database.dbns.DbnsSingleEvent;
inox.framework.database.dbns.Operation;
inox.framework.nom.keys.EntityPgKey;
inox.framework.nom.objs.EntityPg;
inox.framework.nom.enums.EntityldEnum;
inox.framework.nom.enums.TPReconfigStateEnum;

inox.framework.nom.enums.AF ProblemTypeEnum;

a.util.Vector ;
a.util.ArrayList;

inox.framework.swerr.Swerr;

91 or I35

/%%
* <P>Class :<'B> <CODE>TpNrRcDbnsSubscriber</CODEx/P>

* <P>Documenc: Standard Reconfigs DD

* - available in Athena, following this path:
*
 - Equinox

*
 - Product Development

*
 - Software

*
 - Network Element Software

*
 - Functional Areas

* <SR> - Network Reconfig

*
 - Design Folder </P>

* Description:

* This singleton class implements the DbnsSubscriber interface, which provides
* the means by which DBNS informs interested parties of events that have
* been previously subscribed to.

* This implementation performs the necessary processing when the PG reconfig
state attribute is updated. During the system initialisation, standard

* reconfigs subscribes to the pre-validation and commit events, that

*sped fically reference the reconfig state attribute.

* Nauthor Andy Kinney

* Methods:

* TpNrRcDbnsSubscriber getinstance()
* - returns the instance of this object

* boolean dbAccessOption()
* - returns true to indicate that the subscriber will be accessing the
* database

* boolean singleNotificationOptionl)
- returns false to indicate that this subscriber is registering for multiple
single events, rather than one combined event

*

*

*

void notifyf. ..)
* - method called to deal with the commit of the reconfig state attribute
change

*

*

boolean notifyWithResponsef...J
* - method called to handle the pre-validation of the reconfig state attribute
* change

public final class TpNrRcDbnsSubscriber implements DbnsSubscriber

{

* singleton instance of this class
*/
private static TpNrRcDbnsSubscriber INSTANCE = null;

92 on 35

JE*
* <PxB>Method: <CODE>getInstance</CODE>
*
Description :

* This method returns the instance of this singleton.</P>

Qreturn TpNrRcDbnsSubscriber
* - the singleton instance of TpNrRcDbnsSubscriber
®/
* Inputs: None
* Qutputs: None

public static synchronized TpNrRcDbnsSubscriber getlnstance|)

{
if (INSTANCE == null)

1
INSTANCE = new TpNrRcDbnsSubscriber();

return INSTANCE;

Constructor, made private as class is singleton

private TpNrRcDbnsSubscriber (
(
}

* <PxB>Method: <CODE>dbAccessOption</CODE>

* <BRxB>Description:

*

This method determines whether the subscriber will access the
database via the notify, or notifyWithResponse methods. In this
case the method always returns true to indicate that the
subscriber will be accessing the database.</P>

% % %

* Sreturn boolean
* - true to indicate access to database required
*/
/*
* Inputs: None
* Qutputs: None
*/

public boolean dbAccessOption ()

{

return true,

93 or 135

/%%
* <PxB>Method: <CODE>singleNotificationOption</CODE>
* <BRxB>Description :
* This method indicates whether the subscriber will handle multiple single

* events or one combined event. In this case the method will always return
* false to indicate multiple single events.</P>

* éreturn boolean
* - false to indicate multiple single event
*/
/*
* Inputs: None
* Qutputs : None
*/

public boolean singleNotificationOption ()
{

return false,

94 of 135

* <PxB>Method: <CODE>nctify<'CODE>

*

Description:

This method performs the abort/commit processing on receipt of a request
to change the reconfig state attribute of a PG Entity. </P>

*

<P>It first checks whether the event is abort, in which case it attempts
to restore the list of deleted connections.</P>

*

%

<P>It then checks that the notification is for a commit event, and for a
PG Entity,before it then retrieves the reconfig state attribute value to
' determine what operation has been performed. This is then used to
generate the operation string for the uservisible log, that is
generated after subscribing to the node map set event, and raising of
the 'ADM in single node configuration' alarm. </P>

*

*

* B

* éparam e

" - reconfig state event
*/

* Qutputs: None

* Returns: None

public void notify(DbnsEvent e)

DbnsSingleEvent event = (DbnsSingleEvent)e;
DbTransaction nrTx = null;
try

/1 in case the validation of the restate change failed, then
I attempt to restore any connections that were deleted
if (event.getEventType0 == DbnsEvent.DBNS_ABORT_EVENT_TYPE)
{
ArrayList xcResList = (TpNrConnMngmt.getlnstance()).
getDeletedList();

V check to make sure the list has been instantiated

if (xcResList != null)

(
/I restore the deleted xcons
// NOTE: SWERR is raised by the called method if the
// restoration fails
(TpNrConnMngmt.getlnstance()).restoreXcons(xcResList);

return;

/I handle the commit event
if ((event.getEventType() == DbnsEvent.DBNS_COMMIT_EVENT_TYPE) &&
(event.getEntity() getKey().getEntityld() ==
EntityldEnum.EN_PG))

{ EntityPg pgEntity = (EntityPg)event.getEntity();
int recState = pgEntity.getRcstate().intValue();
boolean required = false;

String operation = null ;

switch (recState)

{
case TPReconfigStateEnum.TP_RC_STATE_ADDNODE_VALUE:

/ set operation string to add node

operation = new String(Add N.de");
required true;
break;

95 of 135

case TPReconfigStateEnum.TP_RC_STATE_DELNODE_VALUE:
,'/ set operation string to delete node

operation = new String('Delete Node");
required = true;
break;

case TPReconflgStateEnum.TP_RC_STATE_IDLE _VALUE:
mclear alarm
(TpNrUtilities .getlnstance{)).alarm(pgEntity,
AF_ProblemTypeEnum.AF_ADMTNSTNGI.ENODECONFTG_PT,

false);
break;
default :
new Swerr("Invalid reconfig state : " + recState);
break;
}
if (required)
{
raise alarm
(TpNrUtilities.getlnstance()).alarm(pgEntity,
AF_ProblemTypeEnum.AF_AD1~"INSINGLENODECONFIG_PT,
true);
String unit = (TpNrReconfigNode.getlnstance()).
genUnitString(pgEntity);
/| generate the success (FAC616) log with dummy value for
/ errorReason
String errorReason = TpNrErrorCode.TP_NR_ERR_SWERR;
(TpNrUtilities.getlnstance()) .log(operation, unit,
errorReason, true);
}

/1 clear the list of deleted Xcons, since the change to the
// restate value has been committed successfully and there is
/.' no need to now restore them
(TpNrConnMngmt.getlnstance()).clearDeletedList();

}
else
{
new Swerr (*'Invalid event type received ; " -«
event.getEventType());
new Swerr ("Invalid entity received : %
event.getEntity () .getKey() .getEntityld());
}
}
catch (Exception ex)
{
new Swerr(ex.getMessage());
)

96 or 135

* <PxB>Method: <CODE>notifyWithRespcnse</CODE>
* <BRxB>Description:

This method performs the pre-validation processing on receipt of a
request to change the reconfig state attribute of a PG Entity.</P>

*

* <P>It checks that the notification is for a pre-validation event, and
* far a PG Entity, before checking the value to which the reconfig state
* attribute is to be set, upon which the specific processing for Add Node
or Delete Node is called.</P>

*

* <P>NOTE: In the case of the reconfig state being set to Idle, Add Node
*is being backed out, and Delete Node is being completed. To determine
which, the previous value of the reconfig state attribute is
retrieved.</P>

>

W iéparam e
* - reconfig state event
* @return boolean
- true if successful, false otherwise
*/
" OQutputs: None

public boolean notifyWithResponse(DbnsEvent e)

i

DbnsSingleEvent event = (DbnsSingleEvent)e;
boolean rc¢ = false;
try

{
/'l check the event is for the correct type and entity

if ((event.getEventType() ==
DbnsEvent.DBNS_PRE_VALIDATION_EVENT_TYPE) &&
(event .getEntity() getKey().getEntityld() ==
EntityldEnum.EN_PG))

EntityPg pgEntity = (EntityPg)event.getEntity();

/I get the operation type
switch (event.getOperation())
i
/1 a PG create will be denied ifthe restate attribute is
/1 set to anything other than IDLE
case Operation.OP_INSERT:
rc = processlnsert(pgEntity);
break;

/1 a PG delete will be denied ifthe restate attribute
/| is set to anything other than IDLE
case Operation.OP_DELETE:

rc = processDelete(pgEntity);

break;

/1 in normal operation the restate attribute is updated
// to enter add node or delete node
case Operation.OP_UPDATE;
-/ check that this event only contains a change to the
// restate attribute
if (validChange(pgEntity))
H

/I process the change to the restate attribute

rc = processChange(pgEntity);
}
break;
default :
new Swerr (Invalid ‘'.'peia" i.n f event .getOperation ());
break;

97 of 135

}

else
new Swerr(.avalid event type received ;
event.getEventType());

new Swerr("nvaLiU en: ¢ty received
event.getEntity().getKey().getEntityld())

}

catch (Exception ex)

new Swerr (ex.toString());

return rc;

98 or 135

*

*

<PxB>Method; <CODE>validChange</CODE>
<BRxB>Description :

This method determines whether the restate attribute is the only
attribute on the PG being changed.</P>

being

<p></p>
éparam pgEntity
- the PGentity uponwhich thereconfig operation is
performed
éreturn boolean
- true if onlyrestate isbeing changed, falseotherwise
OQutputs; None

private static boolean validChange (EntityPg pgEntity)

{

boolean rc¢ = false;

try

(
get a list of the changed attributes
Vector changedAttr = pgEntity.getDelta();

if (changedAttr.contains(EntityPg.ATTR rcstate))

{
'/ check to make sure this list only contains one attribute,
/ i.e. the restate attribute
if (changedAttr.size() != 1)
{
String errorReason = TpNrErrorCode.TP_NR_ERR_INVALID_TL1;
(TpNrUtilities.getlnstance()).log(pgEntity, errorReason,
false) ;
}
else
(
rc¢ = true;
}
}
else
(
new Swerr('Command did not contain restate'");
}

catch (Exception e)
{

new Swerr (e .toString());

return rec;

99 or 135

private static

{

*

<PxB>Method:

<CODE>processChange</CODE>

<BRxB>Description :

This method processes

Sparam

Qreturn

OQutputs:

boolean rc

the change to

pgEntity

- the PG entity wuponwh
performed

boolean

- true if thereconfig
false otherwise

None

boolean processChange (

false;

the reconfig state attribute.</P>

ich thereconfig operation is being

statechange issuccessful,

EntityPg pgEntity)

int recState - pgEntity.getRcstate{) .intValue();

switch (recState)

{

case TPReconfigStateEnum.TP_RC_STATE_ADDNODE_VALUE:

= (TpNrAddNode.getlnstance{)) .process(pgEntity) =
break,

rc

case TPReconfigStateEnum.TP,RC_STATE_DELNODE_VALUE;

rc

A

break;

(TpNrDeleteNode.getlnstancel). process(pgEntity);

case TPReconfigStateEnum.TP_RC_STATE_IDLE_VALUE:

/. get
1

int

switch

(

the old

state value
EntityPg oldPg = (EntityPg)pgEntity.getoldobj();
= oldPg.getRcstate().intValue();

oldRcState

(oldRcState)

PG entity for the previous reconfig

case TPReconfigStateEnum.TP_RC_STATE_ADDNODE_VALUE:
/1 moving from add node to idle indicates
/'l that add node is

re =
break;

being backed out

(TpNrAddNode.getInstance()) backout(pgEntity);

case TPReconfigStateEnum.TP_RC_STATE_DELNODE_VALUE:

/I moving from delete node to idle indicates
// that delete node

re =
break;

is being completed

(TpNrDeleteNode .getlnstance 0) . cong>lote (pgEnti ty)

case TPReconfigStateEnum.TP_RC_STATE_IDLE_VALUE:
/'l moving from idle

// sho

uld be denied

String errorReason

to idle is harmless, but this

= TpNrErrorCode.
TP_NR_ERR_IDLE_TO_IDLE;

(TpNrUtilities. .getlnstance()).log(pgEntity,

rc = false;

break;

default ;

new Swerr('Invalid

break;

break;

default ;

return

new Swerr (Invalid recnfig state

break;

re;

H

100 of 135

errorReason, false);

old reconfig state : "
+ OldRcState);

f recState);

/%%
* <P>Method: <CODE>processInsert</CODE>
<BRxB>Description :

& This method processes the event coresponding to creating the
* restate attribute</P>

* <P> Only an restate value of IDLE is acceptable when deleting
the PG. </P>

*

éparam pgEntity
- the PG entity upon which the reconfig operation is being
performed

éreturn boolean

- true if the reconfig state insert is successful,
false otherwise

* Qutputs: None

private static boolean processlnsert (EntityPg pgEntity)
i
boolean rc¢ = false;

int recState pgEntity getRcstate().intValue(),

/' only the IDLE value is acceptable when creating the PG
if (recState != TPReconfigStateEnum.TP_RC_STATE_IDLE_VALUE)

(
String errorReason = null;

switch (recState)

(
case TPReconfigS tateEnum.TP_RC _STATE_ADDNODE_VALUE:

errorReason = TpNrErrorCode.TP_NR_ERR_CREATE_PG_ADD;
break;

case TPReconfigStateEnum.TP_RC_STATE_DELNODE_VALUE:

errorReason = TpNrErrorCode.TP_NR_ERR_CREATE_PG_DEL;
break;
default :
new Swerr ("Invalid state ; " wmrecState);
break;
1
if (errorReason != null)

{
(TpNrUtilities.getlnstance()).log(pgEntity,
errorReason, false);

else

rc = true;

return rec;

101 of 135

* <P>Method: <CODE>processDelete</CODE>

* <BRxB>Description :

*

This method processes the event coresponding to deleting the
restate attribute</P>

*

* <P> Only an restate value of IDLE is acceptable when deleting
* the PG. </P>

éparam pg8Entity
- the PG entity upon which the reconfig operation is being
performed

QOreturn boolean

- true if the reconfig state delete is successful,
false otherwise

* Qutputs: None

private static boolean processDelete (EntityPg pgEntity)
{

boolean rc¢ - false;
int recState = pgEntity,getRcstate().intValue(};
if (recState !- TPReconfigStateEnum.TP_RC_STATE_IDLE_VALUE)
{
String errorReason = null ;

switch (recState)
{
case TPReconfigStateEnum.TP_RC_STATE_ADDNODE_VALUE:
errorReason = TpNrErrorCode.TP_NR_ERR_IN_ADD_NODE;
break;

case TPReconfigStateEnum.TP_RC_STATE_DELNODE_VALUE:

errorReason = TpNrErrorCode.TP_NR_ERR_IN_DEL_NODE;
break;
default :
new Swerr("Invalid state : + recState);
break;
}
if (errorReason != null)
{
(TpNrUtilities.getlnstance()).log(pgEntity,
errorReason, false);
}
}
else
i
rc = true;

return rec;

} // end of TpNrRcDbnsSubscriber

102 of 135

Class: TpNrRestartRecovery

* File: <CODE>TpNrRestartRacovery.java</CODE>
v

package equinox.protection.traffic.reconfig;

import equinox.protection.traffic.reconfig. TpNrReconfigNode;

<PxB>Class : <CODE>TpNrRestartRecovery</CODE></P>

<P>Document: Standard Reconfigs DD
- available in Athena, following this path:

 - Equinox

 - Product Development

 - Software

 - Network Element Software

 - Functional Areas

 - Network Reconfig

 - Design Folder </P>

Description :</'B>

The TpNrRestartRecovery class implements Runnable and encapsulates the
methods to initialise the network reconfiguration code.

Sauthor Andy Kinney

Methods :

void run()
- contains the network reconfig initialisation code

String getNameO
- returns the name associated with the this reconfig thread

public final class TpNrRestartRecovery implements Runnable

{
I
* name used to identify this thread with equinox thread registry

private static final String name = now String ("NR_RESTART_D');

Default Constructor

public TpNrRestartRecovery!)

{
}

03 of 135

* <PxB>Method: <CODE>geCName</CODE>
* <BRxB>Description:

* This method returns the name of the thread registered with the
* equinox thread registry</P>

* Areturn String

* - name of the equinox thread
/x

* Inputs: None

* Qutputs: None

public String getName ()
1
return this.name;

* <PxB>Method: <CODE>run</CODE>
+ <BRxB>Description:

* This method contains the network reconfig initialisation code.</P>

\%
* Inputs: None
* Qutputs: None
* Returns: None
*/

public void run |

{
/1 network reconfig initialisation code
/1 add node and delete node initialisation

TpNrReconfigNode tpNrReconfIgNode = TpNrReconfigNode.getlnstance ()
tpNrReconfigNode.initialize();

} /1 end of TpNrRestartRecovery

104 or 135

Class: TpNrUtilities

File: <CODE>TpNrUtilities.java</CODE>

package equinox.protection.traffic.reconfig;

import equinox.framework.database.DbAccess;
import equinox.framework.database.DbLockNotGrantedException;

import equinox.framework.nom.keys.EntityLogicalLineKey;
import equinox.framework.nom.keys.EntityPgKey;
import equinox.framework.nom.keys.Enti tyNeKey;

import equinox.framework.swerr.Swerr;

import equinox.framework.nom.objs .Enti tyPg;
import equinox.framework.nom.objs.EntityNe;
import equinox.framework.nom.objs.EntityPropertyList;

import equinox.framework.nom.enums.AF_ReturnCodeEnum;
import equinox.framework.nom.enums.AF_InputimpactEnum;
import equinox.framework.nom.enums.AF_ProblemTypeEnum;
import equinox.framework.nom.enums.TPReconfigStateEnum;
import equinox.framework.nom.enums.EntityldEnum;

import equinox.framework.alarms.external.AlarmFramework;

import equinox.logs.userVisible.LogFac616;
import equinox.logs.userVisible.LogFac316;

import java.util.HashSet;
import java.util.lterator;

%

<PxB>Class : <CODE>TpNrUtilities</CODEx/P>

* <PxB>Document : Standard Reconfigs DD
* - available in Athena, fallowing this path:
*
 - Equinox
*
 - Product Development
*
 - Software

 - Network Element Software
*
 - Functional Areas

 - Network Reconfig
*
 - Design Folder </P>

* Description:

*

The TpNrUtilities class definition encapsulates the utilities to support
Network Reconfigs.

*

*

éauthor Andy Kinney

*

Methods:

* boolean setRecState(...)
- sets the reconfig state attribute

*

%

void log0O
- method to generate Network Reconfig success (FAC616) and failed (FAC316)
user visible logs

*

*

* void alarm{J
i - method to raice/clear 'ADM in single node configuration' alarm

' HashSet getSetOfObjects(...}
* - method to retry locking of objects in database to current transaction

05 of 135

public final class TpNrUtilities
{

Joaw
* singleton instance of this class
*/
private static TpNrUtilities INSTANCE - null;
<P>Method: <CODE>getInstance</CODE>
<BRxB>Description :
This method returns the instance of this singleton.</P>
Qreturn TpNrUtilities
- the singleton instance of TpNrUtilities
/
Inputs: None
Outputs: None
/

public static synchronized TpNrUtilities getlnstance|)
if (INSTANCE == null)

{
INSTANCE = new TpNrUtilities();

return INSTANCE;

* Constructor, made private as class is singleton

private TpNrUtilities |

{
}

06 of 135

*

*

<PxB>Method : <CODE>setRecState</CODE>
<BRxB>Description:

This method sets the reconfig state PG attribute. </P>

éparam pgEntity
- the PG upon which the reconfig operation
executed
éparam recState

- the reconfig state that the attribute is

* éreturn boolean
- true if successful, false otherwise
*/
* Qutputs: None
*/

public boolean setRecState (EntityPg pgEntity,

TPReconfdgStateEnum recState)
boolean rc¢ = true;

try
{

pgEnt ity .setRcstate(recState);
}

catch (Exception e)

{
new Swerr (e .toString());
re false;

return rc;

107 of 135

has been

to be

set

to.

* <PxB>Method: <CODE>log</CODE>
<BRxB>Description:
* This method determines the unit and operation strings from the

*pgEntity and then calls the log method to generate the
* user visible log.</P>

@param pgEntity
* - the PG entity upon which the reconfig operation is being
* perform,ed
* Qparam errorReason
* - the reason thereconfig command failed
éparam success
* - true to generate success log,false for failed log.
* Returns: None
* Qutputs: None

public void log(EntityPg pgEntity, String errorReason, boolean success)
{

int recState = pgEntity.getRcstate().intValue();
String operation = null;
String unit - null;

switch (recState)

case TPReconfigStateEnum.TP_RC_STATE_ADDNODE_VALUE;
operation = new String(Add Node");
unit = (TpNrReconfigNode.getlnstance()).
genUnitString(pgEntity);
break;

case TPReconflgStateEnum.TP_RC_STATE_DELNODE_VALUE:
operation = new String(Delete Node");
unit = (TpNrReconfigNode.getlnstance()).
genUnitString(pgEntity);
break,

case TPReconfigStateEnum.TP_RC_STATE_IDLE_VALUE :
/1 it is important that a log is generated even when the state
// is idle to ensure that the errorReason information is
// displayed to the user

operation = new String{"Reconfig State - Idle");
unit = (TpNrReconfigNode.getlnstance()) .
genUnitString(pgEntity);
break;
default :
new Swerr("Cannot determine log type : + recState);
break;

/1 check that the unit and operation strings have been initialised and
// generate the appropriate network reconfig log
if ((operation != null) && (unit != null))
{
(TpNrUtilities.getlnstancel). log (operation, unit,
errorReason, success);

I0Xor 135

<P>Method: <CODE>log</CODE>
* <BRxB>Description :
This method generates either the success (FAC616) or failed (FAC316)

Network Reconfig user visible log.</P>

@param unit
mthe string associated v/ith the unit upon which the reconfig
operation has been performed

éparam operation
- the reconfig operation e.g. Add Node

éparam errorReason
- the error reasonin case offailure

* éparam success

* - true to generate success log, false for failed log.
N Qutputs: None

* Returns: None

public void log (String operation,
String unit,
String errorReason,
boolean success)

try
{
/1 check whether success (FAC616) or failed (FAC316) log is to be
// created
if (success)
{
/1 generate success log
LogFac616 log = new LogFac6l6 (operation, unit);
if (log .generatelog() == -1)
{
/I NOTE: since this is a user visible log, it is not
// necessary to retry on failure
new Swerr ("Failed to generate Networic Reconfig
success log'");
}
}
else
/I generate failed log
LogFac316 log = new LogFac316 (operation, unit, errorReason);
if (log .generatelog() == -1)
/1 NOTE: since this is a user visible log, it is not
// necessary to retry on failure
new Swerr ("Failed to generate Network Reconfig failed log");
H
}
}

catch (Exception e)

(
new Swerr (e.toString());

109 of 135

<PxB>Metbod: <CODE>alarm</CODE>
<BRxB>Description:
This method provides the mechanism to raise/clear the 'ADM in single
node configuration alarm'</P>
'éparam pgEntity
- PG entity upon which the alarm is to be raised-'cleared

éparam problemType
- the alarm type to be raised

éparam raise
- true to raise alarm, false to clear
/
Outputs: Mane
Returns: None

public void alarm{EntityPg pgEntity,
AF_ProblemTypeEnum problemType,
boolean raise)

try

/1 get PG key from entity
EntityPgKey pgKey = (EntityPgKey)pgEntity,getKey();

m create LogicallLineKey to raise/clear alarm against

short dummy = 1;

EntityLogicalLineKey 11Key = new EntityLogicalLineKey (
pgKey.getShelfld(),
pgKey.getsiotido,
pgKey.getPortlId(),
dummy,
pgKey.gotPipeld());

/1 setup secondary key for interface with alarm framework

/I which isn't used in the reconfig case, as it only applies
// for inter/intra shelf alarms

EntityPgKey secondKey = null;

/1 call alarm framework interface to raise/clear the
// 'ADM in single node configuration' alarm
AF_ReturnCodeEnum rc¢ = AlarmFramework.notifyProblem (

problemType,

1IKey,

secondKey,

raise,

AF_Inputlmpact Enum.AF_NA_11);

/1 NOTE: AF _NA_II is used to indicate the default severity of m,nsa
/I since the reconfig alarm has no other setting

if (rc != AF_ReturnCodeEnura.AF_SUCCESS_RC)

new Swerr(rc.toString());

/1 NOTE: considering where this method is called, there is no
/I benefit in returning success/failure, hence swerring is
/1 sufficient

}

catch (Exception e)

{

new Swerr (e .toString(});

110 of 135

<PxB>Method: <CODE>getSetOfOhjects</CODE>
* <BRxB>Description:
" This method acts as a wrapper to the <CODE>DbAccess.queryByClass()</CODE>

* method to implement a retry mechanism in the case that a
<CODE>DbLockNotGrantedException</CODE> has been thrown.</P>

*

* <P>The method re-tries 4 times, with a space of 500ms between each
* attempt. <'P>

* Sparam entityld
* - used by the <CODE>DbAccess.queryByClass()</CODE> method
* to attempt to lock all objects with this id in the
* database to the current transaction
A @return HashSet
* - either null if the objects could not belocked, or a
* set of the required objects
Qutputs: None

public HashSet getSetOfObjects (EntitiyTdEnum entityld)

/I indicates whether another attempt should be made to lock the objects
boolean tryagain = true;

'/ initialise the attempt counter
int attempts = 1;

initialise the return set
HashSet pgSet * null;

/| keep going whilst the attempts have not been exhausted
while ((tryagain) && (pgSet == null))
(
try
{
/I attempt to lock all the objects in the database
EntityPropertyList propList = EntityPropertyList.getlnstance();
pgSet = DbAccess.queryByClass (
propList.getEntityClass(entityld).getName());

}
catch (DbLoclcNotGrantedException e)

{
/1 check to see if the attempts have been exhausted
if (attempts > 3)
(
tryagain = false;
pgSet = null;
new Swerr (e.toString());

)
else

{
attempts++;

try
{
/1 put this thread to sleep for 500ms
Thread.sleep((long)500);
}
catch (Exception ex)
(
' in the case of any Exception, Swerr and exit
new Swerr (ex.toString());
pgSet = null;
break;

I11or 135

catch (Exception e)

{
in the case of any other Exception, Swerr and exit
new Swerr (e .toString());
pgSet = null;
break;

}

return pgSet;

)y /1 end of TpNrUtilities

112 of 135

Class: TpNrValidations

* File:</3> <CODE>TpNrValidations. java</CODE>

v

package

import

import

import

import
import

import
import

import
import
import
import
import

import

import
import

equinox.protection.traffic.reconfig;
equinox.framework.nom.keys.EntityPgmKey;

equinox.framework.database.DbAccess;
equinox.framework.database.DbLockNotGrantedException;

equinox.framework.nom.objs.EntityPg;
equinox.framework.nom.objs.EntityPgm;

equinox_ne_connections.engine.user_interface.Xconlist;
equinox_ne_connections.engine.user_interface.Xcon;

equinox.framework.nom.enums.ForceStatusEnum;
equinox.framework.nom.enums.ManualStatusEnum;
equinox.framework.nom.enums.TPReconfigStateEnum;
equinox.framework.nom.enums.ProtectionSchemeEnum;
equinox.protection.traffic.reconfig.TpNrErrorCode;

equinox.framework.swerr.Swerr;

java.util.HashSet;
java.util.Iterator ;

* <PxB>Class : <CODE>TpNrValidations</CODE></P>

% % B % k% %

%

*

<P>Document: Standard Reconfigs DD

- available in Athena, following this path:
m Equinox
- Product Development
- Software
- Network Element Software
- Functional Areas
- Network Reconfig
- Design Folder </P>

* Description:

The

*

TpNrValidations class definition encapsulates the functionality used

validate network reconfig commands.

* @author Andy Kinney

v
/'k
* Meth

ods:

* boolean nodeMapIsNil(...}

* - ch

ecks that the node map attribute of the PG is nil

* boolean noActiveReconfigs(...)

* - ch

ecks that no other reconfigs are in progress

* boolean noProtSwActive(...)

* - ch

ecks that there are no active protection switches

* boolean isPgBlsr(...)

- ch

ecks that the PG is actually 4F BLSR

* boolean noAddDrops(...)

* - ch

ecks there are no add/drop connections on the PG

113 of 135

to

public final class TpNrValidaLions
f
e
* singleton instance of this class

*/
private static TpNrValidations INSTANCE = null;

* <PxB>Method: <CODE>getInstance</CODE>
* <BRxB>Description :

" This method returns the instance of this singleton.</P>

* Qreturn TpNrValidations

* - the singleton instance of TpNrValidations
\Y%

/'k

* Inputs: None

* Qutputs: None

A%

public static synchronized TpNrValidations getlnstance|()

{
if (INSTANCE == null)

{
INSTANCE = new TpNrValidations();

return INSTANCE;

Constructor, made private as class is singleton

private TpNrValidations ()

114 or 135

* <PxB>Method: <CODE>nodeMaplIsNil</CODE>

* <BRxB>Description:

*

This method checks the current value of the node map PG attribute, and
returns true if the value is nil (i.e. the node map has not been set) and
* false otherwise.</P>

*

“s

*

<P>It achieves this by checking the leeeMap attribute value. If this is
then there is no node map.</P>

*

éparam pgEntity
- PG Entity upon which the reconfig operation has been
executed
éreturn String
- null indicates node map is nil, non-null indicates non-nil
* Qutputs; None
A%
public String nodeMapIsNil (EntityPg pgEntity)
(
String rc¢ = null;
if ((pgEntity.getleeemap()).equals() !'- true)

(
rc = TpNrErrorCode.TP_NR_ERR_VALID_NODE MAP;

return rec;

115 of 135

* <PxB>Method: <CODE>noActiveReconfigs</CODE>
* <BRxB>Description :

* This method determines whether the reconfig state attribute of the PG
* indicates that there is a reconfig in progress.</P>

* <P>NOTE: This method must be called within a pre-validation event to
ensure there is an old object to retrieve.</P>

éparam pgEntity
" - PG Entity upon which the reconfigoperation has been
executed

* éreturn String

* - null indicates noactive reconfigs, non-nullotherwise
*/

* QOutputs: None

public String noActiveReconfigs (EntityPg pgEntity)
String rc null;

/'l get the old PG entity
Ent.ityPg oldPg = (EntityPg) pgEntity.get01dObj () ;

int OldRcState = oldPg.getRcstate().intValue();
switch (OldRcState)

case TPReconfigStateEnum.TP_RC_STATE_ADDNODE_VALUE:
rc = TpNrErrorCode.TP_NR_ERR_IN_ADD_NODE;
break;

case TPReconfigStateEnum.TP_RC_STATE_DELNODE_VALUE:
rc = TerErrorCode.TP_NR_ERR_IN_DEL_NODE;
break;

case TPReconfigStateEnum.TP_RC_STATE_IDLE_VALUE:
/| there are no active reconfigs
break;

default :
now Swerr (oldRcState) ;
rc = TpNrErrorCode.TP_NR_ERR_SWERR;
break;

}

return rc;

116 of 135

[
* <PxB>Method: <CODE>noProtSwActive</CODE>
* <BF>Description:
* This method determines whether there is any protection activity on any

* of the PGMs that form the PG on which the reconfig operation has been
executed upon.</P>

*

@param pPgEntity
- PG Entity upon which the reconfig operation has been
executed
Oreturn String
- null indicates no active protection switches, non-null
otherwise

* Qutputs: None

public String noProtSwActive (EntityPg pgEntity)

String rc = null ;

try
{
-m got the PGM list from the PG Entity
EntityPgmKey[J pgmList = pgRntity.getMemberList();
work through the list of PGMs
int index = 0;
while {(index < pgmList.length) && (rc == null))
{
EntityPgm pgm = (EntityPgm)DbAccess.queryByKey (pgmList[index])

// check to see if either a force or manual request is active

if ((pgm.getForceReq|() true) ||
(pgm.getManualReq () = true) ||
(pgm.getRingforceReq () !=ForceStatusEnum.FORCE_OFF ||
(pgm.getRingmanualReq|() !=ManualStatusEnum .MANUAL_OFF))

rc = TpNrErrorCode.TP_NR_ERR_PROT_SW_ACTIVE;

index++;

}
catch (DbLockNotGrantedException Ick)

{
rc = TpNrErrorCode .'I'P_NR_ERR_LOCK_NOT_GRANTED_PGM;

}

catch (Exception e)

{

new Swerr (e.toString()) ;
rc = TpNrErrorCode,TP_NR_ERR_SWERR;

return rc;

117 of 135

Ex:

*

*
*/
Vi

*

*/

<PxB>Method: <CODE>isPgBlsr</CODE>

<BRxB>Description :

This method checks that the PG protection scheme is 4F BLSR.</P>

éparam P8Entity
- PG Entity upon which thereconfigoperation has
executed
éreturn String

- null indicates PG is BLSR, non-null otherwise

Outputs: None

public String isPgBlsr (EntityPg pgEntity)

{

String rc = null ;

/I get the protection scheme from the PG
ProtectionSchemeEnum prSch = pgEntity.getProtectionScheme();

/'l check the protection scheme is 4F BLSR

if (prSch !'= ProtectionSchemeEnum.PROT_FOUR_FIBER”BLSR)

i

rc = TpNrErrorCode. TP_NR_ERR_PROT_SCHEME_INVAL;

return rc;

118 of 135

been

+ <PxB>Method : <CODE>n0AddDz'ops </ CODE>

<BRxB>Description :

This method obtains a list of all Xcons for the PGMs involved in the
reconfig, and determines whether any of them are non-passthrough thereby
indicating that the delete node operation cannot proceed.</P>

éparam. pgEntity
- PG Entity upon which the reconfig operation has been
executed
éreturn String
- null indicates no add drop connections, non-null otherwise
v
,
* Qutputs: None
-V

public String noAddDrops (EntityPg pgEntity)
String rc¢ - null ;

try
{
get the list of Xcons that appiy to this PG
HashSet xconList - XconIist.getXconsOnPg (pgEntity)

if (xconList !- null)
{
get list of PGMs from PG Entity
EntityPgmKey[] pgmList = pgEntity.getMemborList();
byte pgmNumber = pgEntity.getNumberOfPgm();

/1 loop through all xcons
Iterator i = xconList.iterator();
while (i,hasNext() && (rc == null))

{
Xcon xcon = (Xcon)i.next();

boolean sourceFound = false;
boolean sin)cFound = false ;

/1 get the source information

short xconShelf = xcon .getPhysicalEndpointA(0).getSholf();
short xconSlot = xcon .getPhysicalEndpointA(0).getSlot();
short xconPort = xcon .getPhysicalEndpointA(0).getPort();

loop through the pgm list to find a match on the source
for (byte index = 0; index < pgmNumber; index++)
{

/1 if the source matches

if ((pgmUList[index].getShelfId|(xconShelf) &&
(pgmList[index].getSlotId() xconSlot) &&
(pgmList[index].getPortId|(xconPort))
{
sourceFound = true;
break;

/1 get the sink information

xconShelf = xcon .getPhysicalEndpointZ(.).getShelf() ;
xconSlot ~ xcon .getPhysicalEndpointZ () .getSlot() ;

xconPort = xcon .getPhysicalEndpointZ() getPort();

/1 loop through the pgm list again to match the
/1 other side of the comnection, i.e. looking
/1 for a pass through connection
for (byte loop = ; loop < pgmNumber,- loop-t--t-)
{
mif the sink matches
if ((pgmList[loop] .getShelfId() == xconShelf) &&

119 of 135

(pgmList[loop] ,getSlotld() == xconSlot) &&

(pgmList[loop] .getPortId|() == xconPort))
sinkFound = true;
break;

short srcPld = xcon.getPhysicalEndpointA(0).getTimeslot|()
short dstPld = xcon.getPhysicalEndpointZ (0).getTimeslot()

,/ :f thua connection is a passthrough
if ((sourceFound) && (sinkFound) && (srcPid == dstPid))

{

/'l pass through connection

else

{
rc = TpNrErrorCode.TP_NR_ERR.ADD_DROP;

}

catch (Exception e)

{

new Swerr (e.toString());
rc = TpNrErrorCode .TP_NR_ERR_SWERR;

return rc;

) /1 end of TpNrValidations

20 of 135

Appendix B: Unit Test Cases

In the tables below the unit test cases are listed, using the naming convention as
used in the original documentation ([3]).

Single Session:

TCID |Title

UTI1 Successful Add Node command

UT2 |Repeat UT1 for PG2

UT3 |Repeat UT1 for PG3

UT4 |Repeat UTI for PG4

UTS |Repeat UTI for PGS

UT6 |[Repeat UTI1 for PG6

UT7 |Repeat UT1 for PG7

UT8 |Repeat UTI for PG8

UT9 |Repeat UTI for PG9

UT10 |Repeat UT1 for PG10

UT11 |Repeat UT1 for PG11

UT12 |Repeat UT1 for PG12

UT13 |Place ALL 4F PGs into Add Node

UT14 |Successful Delete Node command

UT15 |[Repeat UT14 for PG2

UT16 |Repeat UT14 for PG3

UT17 |Repeat UT14 for PG4

UT18 |Repeat UT14 for PGS

UT19 |Repeat UT14 for PG6

UT20 |[Repeat UT14 for PG7

UT21 |[Repeat UT14 for PG8

UT22 |[Repeat UT14 for PG9

UT23 |Repeat UT14 for PG10

UT24 |Repeat UT14 for PG11

UT25 |[Repeat UT14 for PG12

UT26 |[Place ALL 4F PGs into Delete Node

UT27 [Successful Delete Node backout command

121 of 135

TCID | Title

UT28 |Repeat UT27 for PG2

UT29 |Repeat UT27 for PG3

UT30 [Repeat UT27 for PG4

UT31 [Repeat UT27 for PGS

UT32 |Repeat UT27 for PG6

UT33 |Repeat UT27 for PG7

UT34 |Repeat UT27 for PG8

UT35 |[Repeat UT27 for PG9

UT36 |Repeat UT27 for PG10

UT37 |Repeat UT27 for PG11

UT38 [Repeat UT27 for PG12

UT39 |Successful Add Node backout command

UT40 |[Repeat UT39 for PG2

UT41 |Repeat UT39 for PG3

UT42 |Repeat UT39 for PG4

UT43 |[Repeat UT39 for PGS

UT44 |Repeat UT39 for PG6

UT45 |Repeat UT39 for PG7

UT46 |Repeat UT39 for PG8

UT47 |Repeat UT39 for PG9

UT48 |[Repeat UT39 for PG10

UT49 |Repeat UT39 for PG11

UT50 |Repeat UT39 for PG12

UTS51 |Successful Add Node complete command

UTS52 |Repeat UT51 for PG2

UT53 |[Repeat UTS1 for PG3

UT54 |Repeat UTS1 for PG4

UTS55 |Repeat UTS1 for PGS

UT56 |[Repeat UTSI for PG6

UT57 |Repeat UTS1 for PG7

UTS58 |[Repeat UTS1 for PGS

UTS9 {Repeat UTS1 for PG9

UT60 [Repeat UTS1 for PG10

122 of 135

TCID

Title

UTe6l

Repeat UTS1 for PG11

UTe62

Repeat UTS1 for PG12

UT63

Successful Delete Node complete command

UTo64

Repeat UT63 for PG2

UT65

Repeat UT63 for PG3

UT66

Repeat UT63 for PG4

UTé67

Repeat UT63 for PGS

UT68

Repeat UT63 for PG6

UT69

Repeat UT63 for PG7

UT70

Repeat UT63 for PG8

UT71

Repeat UT63 for PG9

UT72

Repeat UT63 for PG10

UT73

Repeat UT63 for PG11

UT74

Repeat UT63 for PG12

UT75

Add Node command denied when PG in Add Node

UT76

Add Node command denied when PG in Delete Node

uT77

Add Node command denied when PG is not 4F BLSR

UT78

Add Node command denied when PG has a non-nil nodemap

UT79

Delete Node command denied when PG in Delete Node

UT80

Delete Node command denied when PG in Add Node

UT8l1

Delete Node command denied when PG is not 4F BLSR

UT82

Delete Node command denied when PG has a nil nodemap

UT83

PG Create denied if setting rcstate to add node

UTg4

PG Create denied if setting rcstate to delete node

UT85

PG Create successful if setting rcstate to idle

UT86

PG Delete denied if PG in Add Node

UT87

PG Delete denied if PG in Delete Node

UT88

PG Delete successful if PG in Idle

uUTg&9

Multiple attribute ED-FFP-LL command denied, PG Idle

UuTo0

Multiple attribute ED-FFP-LL command denied, PG Add Node

UT91

Multiple attribute ED-FFP-LL command denied, PG Delete Node

uT92

Multiple attribute ED-FFP-LL command denied, PG Idle

UT93

Multiple attribute ED-FFP-LL command denied, PG Add Node

123 of 135

TCID

Title

UT9%4

Multiple attribute ED-FFP-LL command denied, PG Delete Node

UT95

Multiple attribute ED-FFP-LL command denied, PG Idle

UT96

Multiple attribute ED-FFP-LL command denied, PG Add Node

uT97

Multiple attribute ED-FFP-LL command denied, PG Delete Node

UT98

Idle command has no effect with PG in IDLE

UT99

Nil Nodemap command has no effect with PG in Add Node

UT100

Nil Nodemap command has no effect with PG in Delete Node

UT101

ED-FFP-LL command denied, rcstate=unknown, PG Idle

UT102

ED-FFP-LL command denied, rcstate=unknown, PG Add Node

UT103

ED-FFP-LL command denied, rcstate=unknown, PG Delete Node

UT104

Successful Add Node command with full Xcons provisioned

UTI105

Successful Add Node backout command with full Xcons

UT106

Successful Add Node complete command with full Xcons

UT107

Successful Delete Node command with full Xcons

UT108

Successful Delete Node backout command with full Xcons

UT109

Successful Delete Node complete command with full Xcons

UT110

Add/Drop Xcons denied when in Add Node

UTI111

Add/Drop Xcons denied when in Delete Node

UT112

Pass-through Xcons can be created when in Add Node

UTI113

Pass-through Xcons can be created when in Delete Node

UT114

PG Delete denied if PG has add/drop connection: STS1 PLD1

UTI115

Repeat UT113 for STS1 PLD96

UT116

Repeat UT113 for STS1 PLD192

UTl117

Repeat UT113 for STS-3C PLD1

UT118

Repeat UT113 for STS-3C PLD49

UT119

Repeat UT113 for STS-3C PLD190

UT120

Repeat UT113 for STS-12C PLD1

UTI121

Repeat UT113 for STS-12C PLD97

UTI122

Repeat UT113 for STS-12C PLD181

UTI123

Repeat UT113 for STS-48C PLD1

UT124

Repeat UT113 for STS-48C PLD49

UT125

Repeat UT113 for STS-48C PLD145

124 of 135

Multi-Session:

TCID

Title

UT126

Delete Node command denied when manual span switch active

UT127

Repeat UT125 for PG2

UT128

Repeat UT125 with forced span switch active

UT129

Repeat UT127 for PG2

UT130

Repeat UT125 with manual ring switch active

UT131

Repeat UT129 for PG2

UT132

Repeat UT125 with forced ring switch active

UT133

Repeat UT131 for PG2

UT134

Successful Delete Node command with LOCKOUT active

UT135

Repeat UT133 for active RINGLOCKOUT

UT136

Successful Add Node command

UT137

Successful Delete Node command

Manual:

TCID

Title

UT138

SC Restart, PG in Add Node with non-nil nodemap

UT139

SC Restart, PG in Delete Node with non-nil nodemap

UT140

PGMs are locked when attempting delete node

UT141

PG is locked when reconfig is initializing

UT142

SC Restart, PG in Delete Node

UT143

SC Restart, PG in Add Node

125 of 135

Appendix C: Integration Test Cases

In the table below the integration test cases are listed, using the naming
convention as used in the original documentation ([3]).

NOTE: the test cases are split into prority 1, 2 and 3. The purpose is to ensure
that as a minimum, priority 1 test cases which test 80% of the functionality are
executed and passed before the software can be delivered to Verification. The
remaining priority 2 and 3 test cases are executed to ensure conistency with the
results obtained from the unit testing with the simulator which then provide
100% coverage.

TCID |Title Priority

ITt Add Node to 4F BLSR Ring

IT2 Repeat IT 1 for PG2

IT3 Repeat IT1 for PG3

IT4 Repeat IT1 for PG4

IT5 Repeat IT1 for PG5

IT6 Repeat [T1 for PG6

IT7 Repeat [T1 for PG7

IT8 Repeat IT1 for PG8

IT9 Repeat IT1 for PG9

IT10 Repeat IT1 for PG10

IT11 Repeat IT1 for PG11

IT12 Repeat IT1 for PG12

IT13 Add DX Node into a mixed ring configuration

IT14 Add CLASSIC 192 Node into mixed ring configuration

IT15 Add Node - Backout

IT16 Repeat IT15 for a DX bay

IT17 Repeat IT15 for a CLASSIC bay

IT18 Add Node between two OPC span of control

IT19 Add Node with Extra Traffic connections provisioned

IT20 Add DX Node with Extra Traffic connections provisioned

— AN W IN W | = | Q== | W[N] WIN|W[IN[W I W] ~—=m|~—

IT21 Add Node is denied when in Delete Node

1T22 Add Node is denied when DX in Delete Node 2
IT23 Add/Drop connection provisioning denied while in reconfig 1
IT24 Issue Add Node on a missing PG 2
IT25 Repeat 1T24 except via command line 1

126 of 135

TCID |Title Priority
IT26 Issue Add Node when switch cards are missing 2
IT27 Issue Add Node when port cards are missing 2
IT28 Issue Add Node when there are existing connections on the 1
PG
IT29 Issue Add Node on a PG already configured into a ring 1
IT30 Issue Add Node on a 1+1 Linear PG 1
IT31 Issue Add Node after restarting NCSC 1
IT32 Repeat IT31 after NE has just been commissioned 2
IT33 Repeat IT31 restart NCSC during command 2
IT34 Repeat IT31 restart MXT after command successfully 2
completed
IT35 Repeat IT31 restart Port after command successfully 3
completed
IT36 Issue AddNode and leave for an extended period of time 3
(overnight)
IT37 Ensure Add Node status is maintained over a SC software 3
download
IT38 Repeat IT37 downloading MXT card 3
IT39 Repeat [T37 downloading both port cards in group 3
IT40 Repeat IT37 downloading switch card 3
IT41 Delete Node from a 4F BLSR Ring 1
IT42 Repeat IT41 for PG2 1
IT43 Repeat IT41 for PG3 2
IT44 Repeat IT41 for PG4 3
IT45 Repeat [T41 for PG5 2
IT46 Repeat IT41 for PG6 3
1T47 Repeat IT41 for PG7 2
IT48 Repeat [T41 for PGS 3
IT49 Repeat IT41 for PG9 2
IT50 Repeat [T41 for PG10 3
ITS51 Repeat IT41 for PG11 2
ITS2 Repeat [T41 for PG12 3
IT53 Delete DX Node from a mixed ring configuration 1
IT54 Delete CLASSIC 192 Node from a mixed ring configuration 3
ITS5 Delete Node - Backout 1
IT56 Repeat IT55 for a DX node 1
IT57 Repeat IT55 for a CLASSIC 192 node 3

127 of 135

TCID | Title Priority
ITS58 Delete Node between two OPC spans of control 2
IT59 |Delete Node with Extra Traffic connections provisioned 2
IT60 [Delete DX Node with Extra Traffic connections provisioned 2
ITeé1 Delete Node is denied when in Add Node 1
IT62 Delete Node is denied when DX in Add Node 2
IT63 Issue Delete Node on a missing PG 2
IT64 Repeat IT63 except via command line 1
IT65 Issue Delete Node when switch cards are missing 1
IT66 Issue Delete Node when port cards are missing 1
IT67 Issue DeleteNode when there are add/drop connections on the 1
PG
IT68 Repeat IT67 with pass through connections only 1
[T69 Repeat [T67 with inter-ring connections 1
[T70 Issue Delete Node with active protection switch 1
IT71 Repeat IT70 with forced span switch active 1
IT72 Repeat [T70 with manual ring switch active 1
IT73 Repeat [T70 with forced ring switch active 1
IT74 Issue Delete Node on a 1+1 Linear PG 1
[T75 Issue Delete Node after restarting NCSC 1
IT76 Repeat IT75 after NE has just been commissioned 2
IT77 Repeat IT75 restart NCSC during command 1
[T78 Repeat IT75 restart MXT after command successfully 2
completed
IT79 |Repeat [T7S restart Port after command successfully 2
completed
IT80 Ensure Delete Node status is maintained over a software 3
download
IT81 Repeat IT80 downloading MXT card 3
IT82 Repeat IT80 downloading both port cards in group 3
IT83 Repeat IT80 downloading switch card 3
IT84 Issue Delete Node and leave for extended period of time 3

(overnight)

128 of 135

Appendix D: Test Engine

This section describes the unit test scripts prov ided as part ofthe Standard
Reconfig test suite.

Load the test suite into the Iest Lngine:

Te*1 Engine
File Clear Help

Flun Clear Connections Fteset Interpreter U Interactive

+ StandardReconfig.suite Status IReports Scripts [Connections Variables *Information j
o- *+ V'xSim suite

©- @ SingieVxSim suite

0- # MultiWoim.suite

®- + ReconfigCommands.suite

Cm+ CommonCornmands group

Number of nodes: [280 | Failed: |o | Aborted: [0____ | Not Evaluated: 269 | Passed: 11__ | Skipped: |0

In the test suite there are the scripts necessary for launching both the single, and

multi simulator sessions required to execute the unit test cases.
For the single simulator, the following is required:

e Launch SC Slot 2

¢ Initialise SC Slot 2

e Connect ILI

¢ Commission SONFT NE

In addition in the SingleVxSim.suite under VxSimSetup.group further scripts are

added to complete the setup:
* Disable Connection Broker

* Create Quad I0G CPs
e Create Hex 2.50 CP

129 of) 35

;Test Engine
File Clear Help
TRuMJ Clear Connections||Reset|!Interpreter| F Interactive

+ StandardReconfig.suite Status”Reports Scripts {Connections Variables finformation |
9 « VxSIrn suite
9 + ControlCardSetup.group
« Launch MXT slot 0
« Initialize t"XITslot O

+« Launch MXT slot 1
« TInitialize Mi<T slot 1 All connections were initialised

V Launch SC slot 2 and have been created.

y Initialise SC slot 2

« Launch SC slot 3

« Initialise SC slot 3
* HexCardSetup group

® + QuadCardSetup.group Starting Testing below the following nodes

+ SwitchCardSetup.group VxSirnSetup.group
» CornrTionCornrnands group
* Remove Flash Files
y Connect TL1
y Commission SONET NE
« Commission SDH NE

* Launch MCEMON Card
« Launch MCEMON all Exiting test case: Disable Connection Broker

Result: Passed

Starting TestCase Disable Connection Broker at Wed Jul 03 13 29 04 0ST 2002

y List and Clear Swerrs

y Listand ClearTraps

¢ Tear Down Card

¢ Tear Down All

* Update All Card Presence

< ¢ SingleVxSim.suite Starting TestCase: Create Quad 10G CPs at Wed Jul 03 13:29:05 BST 2002

Exiting test case Create Quad 10G CPs
Result Passed

9 'y VXSimSetup,group
y Disable Connection BrokeM
y Create Quad 10G CPs
y Create Hex 2 50 CP
¢ UnitTest suite
®- + MultiVXSim.suite

+ ReconfigCommands.suite Starting TestCase: Create Hex 2.5G CP at Wed Jul 03 13:30:38 BST 2002

Exiting test case: Create Hex 2.5G CP
Result: Passed

* ComimonCommands group

Number of nodes: [280 | Failed: |o | Aborted: |o | Not Evaluated: 271 | Passed: |9 Skipped: |o

130 of 135

In addition the SingieVxSim.suite contains the Unit lest.suite. The
Unit lest.suite contains all the automated test scripts that execute the unit test

cases.
e.g.
M Text Engine
File Clear Help
Run] Clear Connections| Reset] Interpreter] O Interactive
+ StandardReconfig.suite fstatus Reports chripts [Connections Variables finformation]
®- + V'xSim.suite 'Result Massed

* SingleWSim.suite
Cm y VxSimSetup group
<2 # UnitTest.suite
®- « Unitlestt group
@ UnitTest]. group All connections were initialised
« UnitTestS.group and have been created.
A« UnitTest4 group
©- + UnitTestS group
Cm @ UnitTest6 group
©- + UnitTest?. group
®- « UnitTestS.group Starting Testing below the following nodes
O + UnitTestS group I>TCID U2
®- + UnitTestl 0 group
* MultiVxSim suite
* ReconfigCommands.suite
0- @ CommonCornmands.group

Starting TestCase: TCID: U2 at Wed Jul 03 13:32:33 BST 2002

A

Number of nodes:]280 ; Failed: [O , Aborted: [O] Not Evaluated: 269 | Passed: \v[J Skipped: [O

31 or 135

10 execute an individual lest case, open up a test group, and run that test case;

m Te*l Engine
File Clear Help

Run [clear Connections [[Reset| Interpreter! Interactive
+ StandardReconfig.suite Status [*Fteports Scripts 'Connections Variables j-InformationX
¢ VxSim suite Result Passed

9 e SingieVxSim suite
o V VxSimSetup group

9 . UnitTest.suite
9 + UnitTestl group

y TCID: Ul All connections were initialised
y TCID U2 and have been created.
« TCID: U3
« TCID: U4
e TCID: US
« TCID: U6
« TCID: U7 starting Testing below the following nodes:
« TCID: U8 >TCID: U2
e TCID: U9
e TCID: U10
« TCID Ull
« TCIDUI12
« TCID: Ul 3
®- @ UnltTest2.group Starting TestCase: TCID: U2 at Wed Jul 03 13 32:33 BST 2002
O + UnitTest3 group tcid u2 successful add node command
O « UnitTest4 group tcid_u2: Slot:21 Potl:4-TL1 command COMPLD
O- + UnitTestS group tcld_u2: Slot:21 Port:4 - AO Log state is add node
UnitTestS group tcid_u2: Slot:21 Port:4 - Alarm raised
®- + UnitTest? group tcid u2: Slot:21 Port 4 - restate is add node
* UnitTestS.group tcid u2 Slot:21 Port 4 - nodemap is nil
O + UnitTestS group tcid_u2: Slot:21 Port:4 - leeemap is ml
®- @ UnitTestl 0 group tcld_u2: Slot:21 Port:4 - special mode is passthru
Cm » MultiVxSim suite tcid_u2: Slot:21 Port:4 - Success log generated
o * ReconfigCommands.suite tcid_u2: no swerrs
®- « CommonCornmands.group teid_u2 no traps

Slot:21 Port:4 - idle
{Exiting test case: TCID: U2
iResult: Passed

Nutnbei of nodes: 280 [Failed: jc j Aborted: [0 [Nol Fvaliiated: 269 ; Passed: jl 1 | Skipped: jo

NOTE: that with each UnitTest#.group there is a UnitTest#.es file associated

with it that contains the actual script to perform the test case.

132 of 135

In the MultiVxSim.suite there is the MuitiUnit lest l.group. The
MultiUnit lest l.group contains those test scripts that apply to the multi v.xsim

contlouration.

;Te*] Engine
File Clear Help

iRunl Clear Connections Reset Interpreter 0 Interactive
+ StandardReconfig,suite Status IReports Scripts Connections Variables [information{
Ca # VxSim suite iResult; Passed '

+ SingieVxSim suite
9 « tvlultiVxSim.suite
<2« MultiUnitTestl group
« TCID U125
« TCID U126 LAIconnections were initialised
+ TCID U127 land have been created.
< TCID UI2B
- TCID U129
- TCID U13U
« TCID U131
« TCID Ut32 Starting Testing below the following nodes;
e TCID Ut33 > TCID: U2
0 TCID: U134
+ TCID: Ul 35
« TCID: Ut36
o- @ ReccmtlgCommands suite
Cm+ CommonCornmands group
Starting TestCase: TCID U2 at Wed Jul 03 13 32:33 BST 2002

Nurntiei of noiJes: [280 | Failoit: |o | Ahnifeil: lo | Nol Fvaluateit: 269 | Passed: |11 j Skipped: [o

133 of 135

The ReconfigCommands.suite contain uselbI utilities to put specific PGs into
add node, delete node, send node maps etc..

Te*1 Engine
File Clear Help

[Runl - M. Clear Connections Reset Interpreter o Interactive

+ StandardReconfig.suite Status [pteports Scripts Connections i*riables finformation |
0- + 'V'xSim suite

0- « SingieVxSim suite
®- « MultiVVSim suite
9 + ReconfigCommands.suite
9 ® slot2]1 group
¢ Create Quad 10G CP
* Add Node - PGI
* Add Node - PG2
0 Delete Node - PG 1
¢ Delete Node - PG2
+ Idle - PGl
¢ ldle-PG2
@ Node Map - PGI
0 Node Map - PG2
O Display - PGl
O Display- PG2
0- O slot23.group
0- O slot25 group
cm O slot27.group
0- O slot29.group
0- O slot31 group

0- O CommonCornmands group

Number of nodes: 1280j failed: [o Aborted: 0 Not evaluated: 269 Passed: 11 | Skipped: [¢CJ

134 of 135

Finally, the CommonCornmands.group contain the generic commands to list and

clear reconilg logs etc..

[Te*1 Engine
File Clear Help

ijRunj I’ m Clear Connections Reset Interpreter o Interactive

+ StandardReconfig.suite Status \Fteports Scripts Connections Variables iCInforrnationl
* VVSim suite
®- @ SingieVxSim suite
* MultiwSim suite
O + ReconfigCommands.suite
* CommonCornmands,group
» List and Clear Reconfig Logs
* Retrieve PG Info

Number of nodes: |280J railed; 0 Aborted: [o Not Evaluated: 269 Passed: 11 j Skipped: [o J

135 ot'135

