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Abstract

Adult neuropsychological models predict that exact representations of number are
language-dependent while representations of approximate number relate to visuo-spatial
processing. Interestingly, individuals with Williams syndrome (WS) present with a
relative proficiency in language coupled with weak visuo-spatial abilities, which might
predict good exact and weak approximate number abilities. However, while the cognitive
profile of individuals with WS is well studied, little is known about their numerical
abilities. This thesis begins to fill this gap by exploring the numerical abilities in this
clinical group and by considering whether WS exhibit dissociation between exact and
approximate numerical abilities. Chapters 1 and 2 report results from standardized
measures and from a parental number abilities questionnaire. The results reveal that
number abilities are severely delayed in WS and fall between their verbal and visuo-
spatial abilities. Chapters 4-6 examine the underlying developmental trajectories of basic
exact and approximate representations of number. The data from these chapters
demonstrate that the early development of exact number representation (the
understanding of the meaning of counting) is not only delayed but follows an atypical
developmental trajectory. The investigation of non-verbal, approximate number abilities
(magnitude comparison and numerical estimation) indicate that participants with WS are
severely delayed and that underlying developmental changes diverge in subtle ways from
typical developmental trajectories. The results demonstrate that individuals with WS do
not present with an exact-approximate dissociation of numerical representations. Instead,
impairments and subtle differences in developmental trajectories exist for both,
highlighting the importance of adopting a developmental perspective. The thesis also
evaluates the wider implications of the methodological and theoretical approach adopted
here for the study of atypical trajectories of number development in general. It is
contended that the investigation of how ‘low-level’ number representations and their
developmental trajectories impact on the development of ‘high-level’ numerical

cognition is a vital way in which to study both typical and atypical number development.



For Emily



Acknowledgments

My thanks go, first of all to my supervisors Annette Karmiloff-Smith and Chris Donlan
for their trust, patience, guidance, enormous theoretical and methodological inspiration
and unfaltering support, encouragement and constructive criticism. I also owe a huge debt
of gratitude to the Williams Syndrome Foundation, U.K for generously funding my PhD
and for helping me with contacting families. Here, I would particularly like to thank John
and Pam Nelson for their support and advice. Without the help of all the families that
have taken part in my research, the work presented in this thesis would have been
impossible. I would like to thank all of them for inviting me into their homes, sharing
their experiences with me and providing me with vital cups of coffee after long train
journeys. I am also indebted to all the schools that kindly allowed me to carry out testing

in their classrooms.

I also owe thanks to numerous colleagues: Susan Carey, Wim Fias and Patrick Lemaire
for helpful discussions about the work presented in this thesis; Michael (Fred) Thomas
for his invaluable advice and for the countless discussions of methodological, statistical
and theoretical issues related to the study of atypical and typical development; Sarah
Grice and Gaia Scerif for their friendship, advice and for sharing the experience of
writing a thesis; Sandra Ewing and Charlotte Parmigiani for their help with testing
participants. And finally, my enduring thanks to Emily Abrams, Salman and Ingrid

Ansari for their patience, love and support.



Table of Contents

ABSTRACT 3
1 GENERAL INTRODUCTION 16
1.1 NUMERICAL COGNITION 17
1.1.1 PHYLOGENETIC BASIS OF NUMBER REPRESENTATION 18
1.1.2 SYSTEMS OF NUMBER REPRESENTATION IN HUMAN ADULTS 22
1.1.3 THE ONTOGENY OF NUMBER REPRESENTATION 31
1.1.4 SUMMARY AND RELEVANCE TO WILLIAMS SYNDROME 55
1.2 WILLIAMS SYNDROME 58
1.2.1 WILLIAMS SYNDROME GENOTYPE 58
1.2.2  WILLIAMS SYNDROME PHYSICAL CHARACTERISTICS 59
1.2.3 WILLIAMS SYNDROME BRAIN MORPHOLOGY AND NEUROCHEMISTRY 60
1.2.4 WILLIAMS SYNDROME SOCIAL-COGNITIVE PROFILE 61
1.2.5 WILLIAMS SYNDROME COGNITIVE PHENOTYPE 61
1.3 THEORETICAL PERSPECTIVE 66
1.4 METHODOLOGICAL ISSUES 69
1.4.1 CONTROL GROUPS — GENERAL ISSUES 70
1.4.2 CONTROL GROUPS IN WILLIAMS SYNDROME RESEARCH 71
1.4.3 DEVELOPMENTAL TRAJECTORIES 73
1.4.4 GENERAL COMMENTS IN RESEARCH WITH ATYPICAL POPULATIONS 74
1.4.5 NOTES ON STATISTICAL ANALYSES 76
1.5 AIMS AND STRUCTURE 77
2 NUMERICAL COMPETENCE IN WILLIAMS SYNDROME - EVIDENCE FROM

STANDARDIZED MEASURES 80
2.1 INTRODUCTION 80
2.2 QUESTIONS 82



EXPERIMENT 1 82

23 METHOD 82
2.3.1 PARTICIPANTS 82
2.3.2 STANDARDIZED TESTS USED 83
2.4 RESULTS 84

2.4.1 COMPARISON OF VERBAL, VISUO-SPATIAL AND NUMERICAL MENTAL AGES AT BOTH
TESTING TIMES 84

2.4.2 DIFFERENTIAL DEVELOPMENTAL DIFFERENCES IN PERFORMANCE ON STANDARDIZED

TESTS OF VERBAL, VISUO-SPATIAL AND NUMERICAL ABILITY 86
2.4.3 PERFORMANCE ON THE WECHSLER OBJECTIVE NUMERICAL DIMENSIONS 89
2.5 DISCUSSION 91
2.5.1 QOUTSTANDING QUESTIONS AND FUTURE OUTLOOK 96

3 DEVELOPMENT AND USE OF A NUMERACY QUESTIONNAIRE FOR

PARENTS 98
3.1 INTRODUCTION 98
3.2 THE CONSTRUCTION OF THE NUMERACY QUESTIONNAIRE 100
3.3 QUESTIONS AND HYPOTHESES 101
EXPERIMENT 2 102
3.4 METHODS 102
3.4.1 DATA COLLECTION 102
3.4.2 COMPOSITE SCORES FOR MAIN CONSTRUCTS 103
3.4.3 OTHER QUESTIONS 106
3.44 PARTICIPANTS 106
3.5 RESULTS 107
3.5.1 ANALYSIS OF “COUNTING” DATA 107
3.5.2 ANALYSIS OF “CARDINALITY” DATA 109
3.5.3 ANALYSIS OF “ADDITION AND SUBTRACTION” DATA 110
3.5.4 ANALYSIS OF TOTAL SCORE 112
3.5.5 ANALYSIS OF “EVERYDAY NUMBER” DATA 114
3.5.6 READING VS. NUMBER 115
3.6 DISCUSSION 116
3.6.1 DISCUSSION OF DATA FROM COMPOSITE SCORES 116



3.6.2 GENERAL IMPLICATIONS OF THE DATA AND LIMITATIONS OF THE QUESTIONNAIRE 121

3.6.3 CONCLUDING COMMENTS AND FUTURE QUTLOOK 125
4 COUNTING AND CARDINALITY IN WILLIAMS SYNDROME 127
4.1 INTRODUCTION 127
4.2 QUESTIONS AND HYPOTHESES 133
EXPERIMENT 3 135
43 METHOD 135
4.3.1 PARTICIPANTS 135
4.3.2 BACKGROUND MEASURES 136
43.3 PROCEDURE 138
4.3.4 TASKS 138
4.4 RESULTS 139
44.1 “HOW MANY” TASK 139
442 “GIVE A NUMBER” TASK 139
4.4.3 RELATIONSHIP BETWEEN “HOW MANY” AND “GIVE A NUMBER” TASKS 140

444 RELATIONSHIP BETWEEN LANGUAGE, VISUO-SPATIAL COGNITION AND UNDERSTANDING

OF CARDINALITY 141
4.5 DISCUSSION 145
EXPERIMENT 4 152
4.6 INTRODUCTION 152
4.7 METHOD 152
4.7.1 PARTICIPANTS 152
4.7.2 BACKGROUND MEASURES 153
4.7.3 PROCEDURE 153
474 TASK 154
4.8 RESULTS 154

4.8.1 RELATIONSHIP BETWEEN LANGUAGE, VISUO-SPATIAL COGNITION AND UNDERSTANDING

OF CARDINALITY OF LARGE NUMBERS 155
4.8.2 RELATIONSHIP BETWEEN EXPERIMENTS 3 AND 4 156
4.9 DISCUSSION 157
4.10 CONCLUSION AND FUTURE DIRECTIONS 159



5 DEVELOPMENT OF MAGNITUDE COMPARISON ABILITIES IN WILLIAMS
SYNDROME 162

5.1 INTRODUCTION 162
5.1.1 THE DISTANCE AND SIZE EFFECTS — BASIC METRICS OF NON-VERBAL MAGNITUDE

PROCESSING 163
5.1.2  'WHAT REPRESENTATIONS UNDERLIE RELATIVE MAGNITUDE COMPARISONS? 164
5.1.3 ARE NON-VERBAL REPRESENTATIONS OF MAGNITUDE SPATIALLY ORIENTED? 166
5.1.4 THE NEURAL BASIS OF NON-VERBAL MAGNITUDE REPRESENTATION 167
5.1.5 THE DEVELOPMENT OF NON-VERBAL MAGNITUDE REPRESENTATION 169
5.2 QUESTIONS AND HYPOTHESES 173
EXPERIMENT § 174
5.3 METHODS 174
5.3.1 PARTICIPANTS 174
5.3.2 BACKGROUND MEASURES 176
5.3.3 PROCEDURE 177
5.3.4 APPARATUS 177
5.3.5 TASKS 177
5.4 RESULTS 181
5.4.1 COMPARISON OF WS GROUPS AND INDIVIDUALLY MATCHED CONTROLS 181

5.4.2 COMPARISON OF WILLIAMS SYNDROME AND TYPICAL DEVELOPMENTAL TRAJECTORIES

186
543 A CLOSER LOOK AT INDIVIDUAL DIFFERENCES IN TASK PERFORMANCE 192
5.5 DISCUSSION 193

5.5.1 IMPLICATIONS OF COMPARISONS BETWEEN WS AND INDIVIDUALLY MATCHED MA
CONTROLS 194
5.5.2 IMPLICATIONS OF COMPARISON BETWEEN WS AND TYPICAL DEVELOPMENTAL
TRAJECTORIES 197
5.5.3 INDIVIDUALLY MATCHED CONTROL ANALYSIS AND COMPARISON OF DEVELOPMENTAL

TRAJECTORY — ARE TWO ANALYSES BETTER THAN ONE? 200
5.5.4 OUTSTANDING QUESTIONS AND FUTURE OUTLOOK 202
EXPERIMENT 6 204
5.6 INTRODUCTION 204
5.7 METHODS 204



5.7.1 TASKS 204
5.8 RESULTS 206
5.9 DISCUSSION 209
6 DEVELOPMENT OF NUMERICAL ESTIMATION ABILITIES IN WILLIAMS
SYNDROME 212
6.1 INTRODUCTION 212
6.1.1 WHY MAGNITUDE COMPARISONS ARE ONLY INDIRECT MEASURES OF NON-VERBAL
QUANTITY REPRESENTATIONS 212
6.1.2 DIRECT TESTS OF NON-VERBAL NUMERICAL MAGNITUDE REPRESENTATIONS 213
6.2 HYPOTHESES 217
EXPERIMENT 7 218
6.3 METHOD 218
6.3.1 PARTICIPANTS 218
6.3.2 BACKGROUND MEASURES 219
6.3.3 PROCEDURE 220
6.3.4 TASKS 220
6.4 RESULTS 223
6.4.1 DESCRIPTIVE ANALYSES 223
6.4.2 SUBITIZING 227
6.4.3 'WERE PARTICIPANTS ESTIMATING NUMBER? 227
6.4.4 EFFECTS OF NUMBER ON COEFFICIENT OF VARIATION . 229

6.4.5 NUMERICAL ESTIMATION - ANALYSES OF GROUP AND DEVELOPMENTAL DIFFERENCES 230

6.4.6 INDIVIDUAL DIFFERENCES IN THE MAIN MEASUREMENTS OF ESTIMATION ABILITIES 235
6.5 DISCUSSION 235
6.5.1 DIFFERENTIAL DEVELOPMENT OF “FIVENESS” IN WS AND TYPICALLY DEVELOPING

CONTROLS. 238
6.5.2 IMPLICATIONS FOR NUMBER DEVELOPMENT IN WS 240
6.5.3 OUTSTANDING QUESTIONS AND FUTURE OUTLOOK 244
7 GENERAL DISCUSSION 247
7.1 INTRODUCTION 247

10



7.2 AIM 1: DEVELOPMENTAL TRAJECTORIES OF NUMBER DEVELOPMENT IN WILLIAMS
SYNDROME 248
7.2.1 'WHAT IS THE LEVEL OF NUMERICAL ABILITIES IN WS? 248
7.2.2 'WHAT IS THE RELATIONSHIP BETWEEN LANGUAGE, VISUO-SPATIAL SKILLS AND
NUMERICAL COGNITION IN WS? 250
7.2.3 IS THE DEVELOPMENT OF BASIC NON-VERBAL REPRESENTATIONS OF NUMERICAL
MAGNITUDE IMPAIRED IN WILLIAMS SYNDROME? 254
7.2.4 DOES NUMERICAL COGNITION IN WS DEVELOP ALONG A TYPICAL OR ATYPICAL
DEVELOPMENTAL TRAJECTORY? 259
7.2.5 CHARTING DEVELOPMENTAL TRAJECTORIES VS. MATCHED CONTROL- EXPERIMENTAL
GROUP COMPARISONS 261
7.2.6 WHAT HAS THE STUDY OF NUMBER IN WS REVEALED ABOUT THE TYPICAL NUMERICAL
COMPETENCE? 263
7.3 AIM 2: TYPICAL AND ATYPICAL DEVELOPMENTAL TRAJECTORIES OF NUMBER: FROM
THE CASE STUDY TO WIDER IMPLICATIONS 267

7.3.1 DOES CHARTING DEVELOPMENTAL TRAJECTORIES OF LOW-LEVEL REPRESENTATIONS OF

NUMBER ELUCIDATE DEVELOPMENTAL IMPAIRMENTS OF NUMERICAL COGNITION? 267
7.3.2 WHAT ARE THE IMPLICATIONS FOR DIAGNOSIS AND REMEDIATION? 271
7.4 OUTSTANDING QUESTIONS AND FUTURE STUDIES 272

7.4.1 WHAT ARE THE FUNCTIONAL IMPLICATIONS OF DEVELOPMENTAL IMPAIRMENTS OF BASIC
NUMBER REPRESENTATIONS? 272
7.4.2 WHAT IS THE DEVELOPMENTAL RELATIONSHIP BETWEEN BASIC VERBAL AND NON-
VERBAL NUMBER REPRESENTATIONS? 274
7.4.3 HOW DO NUMBER ABILITIES IN WS COMPARE WITH THOSE OF INDIVIDUALS WITH OTHER

DEVELOPMENTAL DISORDERS? 275
7.4.4 WHAT ARE THE IMPLICATIONS OF INDIVIDUAL DIFFERENCES? 276
7.5 CONCLUDING COMMENTS 277
REFERENCE 279
Appendix A Numeracy Questionnaire for Parents 296

Appendix B Individual participants’ data for distance effect 307

11



Appendix C Individual participants’ data estimation (Accuracy) 315

Appendix D Individual participants’ data estimation (Accuracy approx) 321

Appendix E Individual participants’ data estimation (COV) 326

12



Table of Figures

FIGURE 2.1 MEAN CHRONOLOGICAL, VERBAL, VISUO-SPATIAL AND NUMBER MENTAL AGES

FOR BOTH TESTING SESSIONS......ccutiietiiitietresiesteereesreessesseessesseesesseessessessseessesssessenes 85
FIGURE 3.1 MEAN COUNTING COMPOSITE SCORE BY GROUP .......cccvveveerreennreerresveenneens 108
FIGURE 3.2 MEAN CARDINALITY COMPOSITE SCORE BY GROUP........ccccvrrerenrrreeneercrasneenns 109
FIGURE 3.3 MEAN ADDITION AND SUBTRACTION COMPOSITE SCORE BY GROUP.............. 111
FIGURE 3.4 MEAN TOTAL SCORE BY GROUP .......ccceevvienreeireeeerreenrennraenes e 113

FIGURE 4.1 COMPARISON OF MEAN NUMBER OF TIMES CORRECT NUMBER OF MARBLES
GIVEN (OUT OF 3 TRIALS) FOR NUMBERS 1-6 FOR WS AND INDIVIDUALLY MATCHED
CONTROL GROUP IN “GIVE A NUMBER” TASK......cccsuierieruireeeenresesienseseeneeenesseesesneens 140

FIGURE 4.2 COMPARISON OF MEAN CORRECT NUMBER OF MARBLES GIVEN (OUT OF 3
TRIALS) BETWEEN INDIVIDUALS WITH WS IN THE HIGH LANGUAGE ABILITY GROUP

(HLA) AND INDIVIDUALS WITH WS IN THE LOW LANGUAGE ABILITY GROUP (LLA).

CHILDREN WITH WS ...ttt ettt esseeae e enean 155
FIGURE 5.1 EXAMPLES OF STIMULUS PRESENTATION: NUMBER COMPARISON TASK ....... 178
FIGURE 5.2 MEAN REACTION TIME FOR CLOSE VS. FAR DISTANCES BY GROUP................. 182
FIGURE 5.3 MEAN NUMBER OF ERRORS FOR CLOSE VS. FAR DISTANCES BY GROUP .......... 184
FIGURE 5.4 MEAN DISTANCE EFFECT ON REACTION TIME BY GROUP.......cccvveervervnirinenns 187

FIGURE 5.5 MEAN REACTION TIME FOR SMALL (1-4) AND LARGE (5-8) DISTANCES FOR
“YOUNG’ AND “OLD’ WS GROUPS......coeerverererieetieseeesrseesisessessesssessssesssesssesssasenses 189
FIGURE 5.6 MEAN REACTION TIME FOR SMALL (1-4) AND LARGE (5-8) DISTANCES FOR
“YOUNG’ AND ‘OLD’ GROUPS OF TD CHILDREN. ......c.cevvvvrrrreeireerrrecneesieesssesisesssenennns 189
FIGURE 5.7 MEAN DISTANCE EFFECT ON ACCURACY BY GROUP..........ccccceereureearireeereeeannns 191
FIGURE 5.8 EXAMPLES OF STIMULUS PRESENTATION: BLOCK SIZE COMPARISON TASK .. 205
FIGURE 5.9 MEAN DISTANCE EFFECT REACTION TIME BY CONDITION FOR WS ADULT GROUP

................................................................................................................................. 206
FIGURE 5.10 MEAN DISTANCE EFFECT ON ACCURACY BY CONDITION ........cccoveecveeveeannnn. 208
FIGURE 6.1 EXAMPLES OF DOT STIMULL......cccoveeitieeiiesienereesiiessseeersesseesssesessssssassssssssneens 222
FIGURE 6.2 MEAN ACCURACY BY GROUP AND NUMEROSITY .....c..ccoveivieriereerrenreneeereenenns 225

13



FIGURE 6.3 MEAN APPROXIMATE ACCURACY BY GROUP AND NUMEROSITY ...ooveeveereennn.
FIGURE 6.4 MEAN COV BY GROUP AND NUMEROSITY ...eevevertieeeeereeeeereseesnneeereesessesseesesins
FIGURE 6.5 RELATIONSHIP BETWEEN MEAN ESTIMATE AND TARGET NUMBERS FOR ALL

GROUPS ...ttt e e e rnn e era e ra s e e n e eras

14



Table of Tables

TABLE 2.1 STANDARD SCORES FOR WOND SUBTESTS, COMPOSITE SCOREAND BPVS ... 89
TABLE 3.1 CHILDREN’S BACKGROUND DATA ......oovtiuiveuiretaeeeteseesesesseseesssessansasseseesssessessssesessessssesensssansens 107
TABLE 3.2 PERCENTAGE OF CHILDREN IN EACH CATEGORY BY GROUP .....coeruiiiieiireeneniseeeeseseniesessenessasenns 115
TABLE 4.1 PARTICIPANT BACKGROUND DATA...c..coviiiiiiiiitiiencire et enteseeee s s e eres e seesbesaesens 137

TABLE 4.2 SIMPLE PEARSON’S CORRELATIONS BETWEEN VERBAL MENTAL AGE (VMA), PATTERN
CONSTRUCTION RAW SCORE AND TOTAL NUMBER OF MARBLES CORRECTLY GIVEN IN THE “GIVE A

NUMBER” TASK ...ettitiesieittetesiestte s tesatssse st eebaeseeseeesaansessseateasessteeste b eesbeeemeesebeanesatenbesaeesberasenseanenses 143

THE DEPENDENT VARIABLE. ....cocutiiuittiitiiieieeterete et eateeeneeeue e seeesaseesamee e st e saasaaresnnessaeenseersnesmeraven 145
TABLE 4.4 PARTICIPANT BACKGROUND DATA.....c..ooiiiiiiiiiirietiie sttt ettt et et sve st ae e e neens 153
TABLE 5.1 PARTICIPANT BACKGROUND MEASURES ......ccovtiuiiiietiieetresreeeasesieestessaessessesesessesssessaesasssasseens 176
TABLE 6.1 PARTICIPANTS’ BACKGROUND DATA ...ccitiiiiiniieeisiecireeteie et esie st esbetesesaesasaesessasassesanansenes 219

TABLE 6.2 SUMMARY OF RESULTS FOR THE COMPARISON OF THE DEVELOPMENTAL DIFFERENCE BETWEEN 4-5
AND 6-7 YEAR OLDS WITH THE DIFFERENCE BETWEEN CHILDREN AND ADULTS WITH WILLIAMS
SYNDROME. ... e e e e s e se e b s seae e e s e s s e e se s e e e e e e e b e e e s e e n e s aaa s 232

TABLE 6.3 SUMMARY OF THE RESULTS FOR THE COMPARISON OF THE DEVELOPMENTAL DIFFERENCE
BETWEEN 4-5 AND 9-10 YEAR OLDS WITH THE DIFFERENCE BETWEEN CHILDREN AND ADULTS WITH

WILLIAMS SYNDROME. .....tiiuitiiiiittetesiieeie et es it testeessee st esasesasr e she e eese st e es s be e ameeaneeesbeensteesasensaesmees srens 233

15



Chapter 1 General Introduction

1 General Introduction

Numbers are a constant feature of our lives. Typically developing individuals use and
manipulate basic numerical quantities with great ease and sometimes without conscious
awareness. The ability to deal efficiently and accurately with numerical quantity and its
transformations is crucial to ensure an individual’s independence, their success in
working life and their general social functioning. Failure to develop a good understanding
of number can have serious consequences for an individual in multiple aspects of their
life. In view of these facts, it is crucial to have good models of the conditions under
which children develop or fail to develop a proficient grasp of number. Despite the fact
that deficits in number are as common as impairments of reading and writing, research
into the causes of numeracy deficits have been scarce. Specific difficulties with number,
in children with otherwise normal intelligence, are commonly referred to as dyscalculia
or mathematical disability. Impairments of numerical cognition are also found in a wide
range of developmental disorders. The finding that developmental impairments are
relatively common both among typically as well as atypically developing children
indicates that number is a particularly vulnerable cognitive domain. Great advances have
been made in the understanding of how normal numerical competence develops and how
brain representations of number are constructed. However, the wealth of knowledge
pertaining to the typical development and brain representation of number has not yet been
fully exploited to develop a clear research strategy for investigating the bases of number
impairments both in typically developing children and those with developmental
disorders. The time is ripe for an approach to the study of mathematical dysfunction that
is based on recent advances in the understanding of numerical representations, their

neural instantiation and their developmental time course.

This thesis provides a developmental assessment of number skills in children with one
genetic developmental disorder, Williams syndrome (WS), where severe deficits in
number processing have been reported. The aims of this thesis are both specific and
general. The specific aim is to explore how numerical cognition develops in WS and how

numerical competence is related to other cognitive functions in this particular disorder.
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Chapter 1 General Introduction

From a more general perspective, the thesis aims to offer a novel, developmental research
strategy for investigating the bases of number deficits. It is proposed that, in the future,
this research strategy be applied to the study of number deficits in typically developing

children and those with other developmental disorders.

The purpose of this introduction will be to firstly review the literature on typical number
representation through a review of evidence from animals followed by a review of what
is know from both behavioural and brain-imaging studies of how number is represented
in adulthood. Subsequently, the insights from empirical research into both typical and
atypical number development from infancy onwards will be discussed. Against the
background of this survey of the animal, adult and developmental literature on numerical
cognition several leading questions and themes in the literature will be identified and
their relevance to the study of numerical cognition in WS will be outlined. It will
become apparent how WS could help to elucidate how different systems of number
representation may go awry. Furthermore, in view of the detailed review of typical
number representation it will be discussed how insights into typical number
representations might be exploited to develop a novel approach to the study of atypical
number development. Finally, the theoretical and methodological roadmap of this thesis

will be presented.

1.1 Numerical cognition

What enables animals and humans to make sense of numerical quantities in their
environment? What systems enable us to judge that one set of objects is less or more
than another one? What role in numerical cognition does our understanding of spatial
relationships in the environment play, and how might language contribute to our

numerical abilities and thus set us apart from non-verbal species?

Over the past 10 years there has been an increasing interest in questions such as those
posed above. This has led cognitive psychologists and neuroscientists to join forces in an
effort to understand more about the evolutionary roots of number, the brain systems that

support number representation and the ontogenesis of numerical competence
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Chapter 1 General Introduction

(Butterworth, 1999; Dehaene, 1997). The starting point for such an analysis has been to
establish the extent to which systems of number representation are available to other
species. Understanding whether and how other species represent numerical quantity may
help reveal the systems of number that have an evolutionary history and are biologically
more basic to numerical development in human children. Scientific understanding of the
numerical abilities of non-verbal animals has had a major effect on current thinking and

research into numerical cognition.

1.1.1 Phylogenetic basis of number representation

Perhaps the most famous claim for numerical abilities in animals came from the
description of a horse named ‘Clever Hans’ in the early 20™ century. Newspaper reports
suggested that this horse could solve simple arithmetic tasks. When it was presented with
arithmetical problems by its trainer, the horse apparently stamped its hoof on the ground
the number of times that equaled the correct answer to an arithmetical problem. While
these findings seemed very exciting, careful analyses revealed that ‘Clever Hans’ did not
actually engage in arithmetical processing at all. Rather the horse had developed
sensitivity to hidden signals by his master that indicated when to stop stamping its hoof.
This was revealed when the horse was presented with arithmetical problems that his
trainer could not see. In this condition, the horse performed at chance (Butterworth, 1999;

Dehaene, 1997).

Rather less well known, but significantly more influential for the field of numerical
cognition, are a series of animal studies, which tested rats’ ability to process and use
numerical quantity. In the first of these studies by (Mechner, 1958), food-deprived rats
were placed in a cage with two levers (Lever A and B). Lever B was connected to a
food-releasing mechanism. However, pressing Lever B only led to food release if the
animal first pressed Lever A a certain number of times. Different groups of animals were
trained to press Lever A 4, 8, 12 and 16 times before switching to Lever B. If animals
switched after the correct number of trials they received a food reward. However,
premature switching from Lever A to Lever B resulted in a penalty being administered to

the animal. Similar findings were obtained by (Platt & Johnson, 1971).
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Chapter 1 General Introduction

After training, the experimenter plotted the distribution of the rats’ number of presses for
each target number. The animals were clearly not responding by pressing the exact
number of times required; rather, they were responding by estimating the required
number of presses. A clear relationship between the required number of presses and the
variability in the animals responses was evident from the data. Namely, the variability in
the rats’ attempts to press Lever A the required number of times turned out to be
proportional to the magnitude of the target number of presses. The variability in the
animals’ responses was found to be linearly and positively related to the number of
presses required. This phenomenon is often referred to as ‘scalar variability’ (Gibbon,

Church, & Meck, 1984).

It could be argued that the rats were simply representing the duration of the required
number of presses rather than estimating the number of presses needed to obtain their
reward, since duration and number were confounded in the experiment. In order to
establish whether rats represent duration or number, (Meck & Church, 1983) conducted
an experiment in which rats were trained to press a lever on the left when they heard a
short two-tone sequence and a lever on the right when they heard a long eight-tone
sequence. After training, rats were exposed to two variations of the stimuli. In one case
the duration was kept constant at four seconds, but the number of tones varied between
two and eight tones. In another condition the duration varied between two and eight
seconds, while the number of tones was kept constant at four. The authors found that
when duration was held constant, rats used number information to guide their choice of
which lever to press, but when number was held constant, rats relied on duration
information. These findings show that rats can spontaneously use number or duration
information interchangeably. In other words, animals seem to be equipped with neural
mechanisms that allow them to process spontaneously the approximate numerical
dimensions of stimuli in their environment. Furthermore, in the same study (Meck &
Church, 1983) found that animals can enumerate both light flashes and sounds and can
even combine light flashes and sounds in order to make numerical judgments, indicating

that animals possess the ability to represent number in an abstract, amodal format.
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Chapter 1 General Introduction

The findings from the animal studies discussed above led to a very influential model of
animal counting: ‘The Accumulator Model’ (Meck & Church, 1983). The authors
describe a system consisting of an impulse generator or pacemaker, a gate and the
accumulator itself, which is likened to a container in which the impulses are collected.
The impulse generator outputs a stream of impulses at a relatively constant rate. These
impulses are passed through a gate, which opens to allow the impulses to flow into the
accumulator. The gate opens for a fixed amount of time for each enumerated item and
thus passes an equal amount to the accumulator for each entity that is enumerated. The
level of the accumulator after counting represents the total number of entities that have
been counted. The representation in the accumulator is not exact. Consistent with the
notion of ‘scalar variability’, the greater the magnitude that is represented by the

accumulator the more it will overlap with representations of adjacent magnitudes.

The accumulator allows for the representation of what is known as “approximate
number”. Number in animals, it is posited, is thereby represented in a continuous rather
than an exact format. Humans, however, have developed the ability to use numerical
symbols that stand for exact representation of number. Do animals possess the ability to
process exact number? There have been a number of training studies with monkeys
indicating that, after extensive training, these animals are able to learn symbolic
representations of numbers and their ordinal relationships (Matsuzawa, 1985), as well as
to sum arrays of up to four items or Arabic numerals placed in different spatial locations
(Boysen & Bermntson, 1989). Recent evidence suggests that rhesus macaque monkeys
trained to order arrays of 1-4 items can spontaneously generalize their representation of

ordinality to numerosities of 5-9 (Brannon & Terrace, 2000).

While these studies have revealed that monkeys have some concept of exact number, the
findings are often based on a single animal and are sometimes the product of years of
intensive and structured training. This raises the question whether animals are able to
represent exact numerosity spontaneously, in their natural habitat. This question was
addressed by (Hauser, Carey, & Hauser, 2000). These authors studied whether semi-free-

ranging rhesus monkeys were able to choose one of two containers that contained more
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Chapter 1 General Introduction

food after watching an experimenter place different numbers of apple slices into each
container. The results suggest that this species of monkey is able to choose the larger
number of food items when the numbers involved are small (1-5 items) but they
systematically failed at larger comparisons. These findings, consistent with the results
from the training studies, indicate that the representation of number in rhesus monkeys is
limited to small numbers and does not mirror the exact system of number representation
found in humans, which at least in older children and adults does not have an upper limit
of 5. It would seem that the animals do not represent number by means of the
accumulator system with scalar variability, as there is nothing inherent about this system
that would suggest an upper limit of 4 items. It has been suggested that rather than
representing number symbolically, rhesus monkeys represent each object separately in
what has been referred as an ‘object-file’ (Hauser, 2000; Hauser et al., 2000). This object-
file system of representation is limited to small numbers of objects, which could explain
why monkeys in the experiments discussed above failed to operate numerically on
numbers greater than 4. The notion of an ‘object file’ system of number representation

will be further discussed in 1.1.3 below.

It has been speculated that the apparent absence of sophisticated exact representation of
number in animals may be a result of the fact that they do not acquire language, whereas
in humans the development of linguistic representations may allow for the construction of
exact representations of number (Hauser, 2000). This hypothesis will be discussed in

greater depth below.

In sum, the findings presented above show that the numerical abilities of animals are not
as spectacular as the supposed abilities of Clever Hans might initially have led us to
believe, although there is abundant evidence to indicate that animals do represent number
in some form. However, their representations seem to be approximate and fuzzy.
Although animals can be trained to manipulate symbolic representations of number, these
abilities break down for numerosities greater than 4, suggesting the operation of a non-
symbolic system of object representation. So is there any level of convergence between

animal and human numerical cognition? And are some similar systems of representation
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involved? Are there systems of number representation that are uniquely human? These
and other questions pertaining to human number representation will be addressed in the

following sections.

1.1.2 Systems of number representation in human adults
Non-verbal system of magnitude representation

The finding that non-verbal species can represent numerosities alongside the models that
have been put forward to account for their behaviours, have together had a profound
effect on research and thinking about human number representation (Dehaene, 1997;
Dehaene, Dehaene-Lambertz, & Cohen, 1998; Gallistel & Gelman, 2000). At around the
same time as findings on the numerical abilities of rats were emerging, a paper was
published by (Moyer & Landauer, 1967) that has had a deep influence on the way in
which numerical representations in humans are understood. In Moyer and Landauer’s
experiment, participants were asked to indicate the numerically larger of two numbers.
The data revealed that reaction time is inversely related to the numerical difference
between the two numbers. In other words, the further apart the numbers were from each
other the faster participants were able to choose the larger one. The same negative
correlation was found between the percentage of errors made by subjects and the
numerical difference between numbers. This has been referred to as the ‘distance
effect’. As well as clearly observing the ‘distance effect’ (Moyer & Landauer, 1967) also
noted that the ratio between numbers was significantly related to reaction time and
accuracy. This has since been referred to as the ‘size effect’, since the greater the relative
size of the number pairs, the longer it takes individuals to discern which is the larger
number and the more errors they make. In other words, if the numerical distance

between numbers is kept constant, the greater the numbers, the slower the response.

These findings suggest that human adults, like non-verbal animals, do not represent
number exactly, but that number comparisons involve access to a non-verbal
representation of magnitudes. The psychophysical functions that describe this

representation (the ‘distance’ and ‘size’ effects) can be construed as indirect indices of
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the representational system that underlies the approximate representation of number in
animals. As discussed above, the greater the number of presses required, the more
variable is the response of animals and the greater the overlap with adjacent numerosities.
This implies that the greater the distance between numbers, the smaller is the overlap in
their subjective representation (‘distance effect’). Where distance is held constant,
greater magnitudes will overlap more than lesser magnitudes (‘size effect’). Since these
first experiments by (Moyer & Landauer, 1967), these effects have been replicated
several times (Buckley & Gillman, 1974; Dehaene, Dupoux, & Mehler, 1990). Access to
the non-verbal representation of magnitude appears to be automatic, as distance and size
effects obtain even when participants judge whether two numbers are the same or
different (Dehaene et al., 1990). For further, detailed discussion of the non-verbal,

approximate representation of numerical magnitude; see the Introduction to Chapter 5.

Using functional imaging techniques, it has become possible to examine non-invasively
the neural basis of quantity representation in humans. In a functional Magnetic
Resonance Imaging study (fMRI), (Pinel et al., 1999) measured the areas of the brain
which are activated while participants performed number comparisons. A distance effect
on brain activation was observed in the left inferior parietal lobule as well as in the right
postcentral/inferior parietal region. In other words the amount of activations in these
brain regions was found to be negatively correlated with the distance between numbers,
thus the greater the distance the smaller the degree of neural activity in these areas.
Furthermore, this effect of distance was found to be independent of response side (left vs.
right) and of notation (verbal vs. Arabic). Further evidence for an abstract representation
of quantity in the parietal lobe comes from a brain-imaging study in which participants
computed numerical comparisons with both symbolic (Arabic numerals) and non-
symbolic (angles, lines) stimuli. Conjunction analysis revealed activation of an area in the
left intraparietal sulcus over and above differences between stimuli (Fias, Lammertyn,

Reynvoet, Dupont, & Orban, 2003).

While fMRI affords the experimenter very good spatial resolution, it provides poor

information about the temporal dimension of brain processing. In order to establish
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whether number processing involves a stage of processing that is affected by distance
over and above stimulus characteristics and response side, ERPs were recorded from the
scalp of adults while they performed verbal and Arabic number comparisons (Dehaene,
1996; Pinel, Dehaene, Riviere, & LeBihan, 2001). The findings suggest that early
processing is affected by response side and stimulus characteristics. However, at around
200 msecs, no significant differences in the ERPs were found over and above distance,
suggesting that at this point in processing time, magnitude and semantic distance are

processed in an abstract format.

As the above discussion demonstrates, the distance and size effects have been heavily
examined to gain insight into the nature of human quantity processing and the findings
suggest some convergence between the way in which non-verbal animals and humans
represent quantity. However, distance and size effects are only an indirect measurement

of the non-verbal system or ‘scalar variability’ in magnitude representations.

In an effort to gain a more direct and quantitative insight into the variability of magnitude
representation in humans, (Whalen, Gallistel, & Gelman, 1999) tested human adults on a
paradigm that is very similar to the experiments with rats described above (Mechner,
1958; Platt & Johnson, 1971). In one experiment, adults were presented with a target
number and were instructed to press a key approximately the target number of times.
Participants were instructed not to count and to do the task very quickly to avoid
subvocal counting. The findings revealed striking similarities with the animal data.
Human adults, like rats, were found to respond with approximately the correct number of
presses and the variability (standard deviation) increased linearly with the magnitude of
the target number (‘scalar variability’). These findings confirm the high level of
convergence between animal and human representation of approximate quantity. For a
more detailed discussion of these and other related findings, see the Introduction to

Chapter 6.

Thus far the discussion has focused on approximate number representation and its distinct

psychophysical signature. But what about the exact representation of number? The ability
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to manipulate numbers exactly clearly plays an important role in arithmetic. Recent
evidence suggests that language may play a crucial role in the representation of exact
quantity. Indeed, there are suggestions that language may afford humans the ability to

represent exact number. The evidence for these claims will now be discussed.

The role of language in numerical cognition in adults

The above review of animal and human numerical competence demonstrates that some
numerical representations are similar in animals and humans. The evidence suggests that
animals and humans share an ability to represent approximate numerosity and that their
representations can be described by quantitatively similar psychophysical characteristics
(‘scalar variability’, ‘distance’ and ‘size’ effects). However, evidence from animals also
suggests aspects of a discontinuity between animal and human systems of number
representations. Training studies with chimpanzees (Boysen & Bermntson, 1989;
Matsuzawa, 1985) and research examining spontaneous number representation of rhesus
monkeys in the wild (Hauser et al., 2000), suggest that monkeys are unable to represent
exact numerical sets that exceed four items. In contrast, human adults readily represent
exact numbers that exceed four and perform calculations to obtain exact numerical results
of additions, subtractions, multiplications and divisions with large numbers (Dehaene,

1997).

This disparity between animal and human numerical cognition raises questions about the
mechanisms that may account for the apparently uniquely human ability to represent
exact large numbers. It has been suggested that this is due to a close link between human
language and numerical cognition (Chomsky, 1986; Hurford, 1987). Theoretical
explanations of counting systems posit that, like language, number systems allow for
infinite combinations of a finite set of rules and that this shared property suggests a clear
link between numbers and language. Is it language, therefore, that allows humans to go

beyond approximate systems of number representation?

Recent behavioural and brain-imaging evidence suggests that humans make sense of

number using two systems of representation: 1. A system for the representation of
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approximate number, believed to be tightly intertwined with visuo-spatial
representations, to be language-independent and qualitatively similar to systems for
numerosity representation found in non-human species, and 2. A language-dependent

system allowing for the exact representation of numerical information.

In a set of experiments, adult bilinguals were trained in both exact and approximate
arithmetic (Spelke & Tsivkin, 2001). The differences between exact and approximate
arithmetic lies in the choice of answers that participants were given. For exact problems,
participants were given the choice between the correct and a wrong result. In the
approximate condition, participants were given the same problems, but presented with
two incorrect solutions, with one being closer to the correct answer than the other. In a
first session, participants were trained in solving both exact and approximate numerical
problems in one of their languages. During a second session participants were asked to
solve the same problems both in the language in which these problems were trained as
well as in their other language. A comparison of approximate and exact calculation in
both the trained and untrained language indicated that while participants were equally fast
at solving approximate calculation in their two languages, they were significantly faster
at retrieving exact number facts in the training language than in the untrained language.
Thus, while there is no cost for switching languages during approximate calculation,
there is a significant increase in latency and decrease in accuracy when switching from

the trained to untrained language for exact arithmetic.

In addition to being presented with the same problems that participants had been trained
with, they were also presented with novel exact and approximate problems during the test
session. These problems involved numbers comparable in magnitude to the problems
presented during training. It was found that while participants did not show a difference
in reaction time and accuracy when solving new approximate problems, they were
significantly slower at solving exact problems in the untrained language. These findings
suggest that the retrieval of exact numerical facts is strongly language dependent,
whereas retrieval of approximate number facts is language independent. Moreover, while

the training of approximate calculation readily generalizes to new problems that are
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similar in magnitude, the processing of new exact number problems during the test phase
is less efficient. This suggests that approximate calculation draws on representations of a
range of numbers (scalar variability), where magnitudes adjacent to the solution are also
encoded and thus readily retrieved during generalization. Exact calculation, by contrast,
seems to involve exact representation without any overlap with close numerosities, and
thus the calculation of novel number problems involving adjacent or magnitudes requires
new effort (Spelke & Tsivkin, 2001).

If indeed approximate and exact systems of number representation are distinguished by
their relative dependence on language processing, then exact calculation should draw on
neural circuits typically associated with language processing, while approximate
calculation should not. The hypothesis that different brain circuits are involved in
approximate and exact number processing was explicitly tested in a brain-imaging
experiment by (Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999). In this fMRI
experiment, monolingual adults performed both approximate and exact additions.
Approximate addition was found to activate bilateral parietal circuits to a greater extent
than exact addition. These areas are also activated while participants engage in magnitude
comparison tasks. In contrast, exact additions were found to activate areas in the left
frontal lobe to a greater extent than approximate addition. Areas in the left frontal lobe
are typically found to be activated during certain language tasks (such as verbal
association). Thus, while approximate calculation appears to draw on circuits in the
parietal lobe that are associated with the processing of non-verbal magnitudes and visuo-
spatial attention, exact calculation is dependent on language-related areas of the brain.
These findings from functional brain imaging lend further support to the notion that exact
and approximate calculation are dissociable in adults and differ with respect to their

dependence on language processing.

More evidence is needed to establish precisely how language is involved in exact number
processing, and what aspects of human language may account for the emergence of exact
number. In a speculative theoretical account, (Spelke & Tsivkin, 2001) suggest that

language may serve as a bridge between a system that allows for the representation of
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small exact numerosities (up to 4) and a large approximate or non-verbal system of
number representation. In humans, language may allow for the construction of a system
for the representation of exact numerosity without an upper limit through the integration
of the two types of number representation present, though unconnected, in non-human
species. A uniquely human system for exact number representation may be possible
through language as a tool for combining phylogenetically ancient systems of

representation into ontogenetically novel ones (Spelke, 2003; Spelke & Tsivkin, 2001).

The role of visuo-spatial representations in numerical cognition in adults

The functional imaging data discussed above suggests that areas in the parietal lobes
contribute to the processing of approximate number. It is evident from
neurophysiological studies with monkeys and fMRI studies with humans, that number
processing is not the only cognitive function subserved by the parietal cortex. The
parietal cortex is a polymodal area, also referred to as ‘association cortex’, and receives
inputs from different areas of the brain and from different input modalities. Among many
other functions, activation in the parietal cortex occurs during visuo-spatial processing
and visual attention (Culham & Kanwisher, 2001; Wojciulik & Kanwisher, 1999). It has
been contended that approximate number may be represented in a quasi-spatial format.
The distance and size effects have led to the proposal that numbers are represented on a
‘mental number line’, with fuzzy magnitudes spaced far apart being more easily
discriminated from one another than those that are situated in close proximity (Dehaene,
1997).

More direct evidence for the involvement of spatial representation in magnitude
comparisons has been reported by (Dehaene, Bossini, & Giraux, 1993). They found that
participants were significantly faster and more accurate at indicating that a number
presented was larger than a target when they had to press a button with their right hand
than with their left hand. The effect was the same for both right and left-handers. This
phenomenon has been coined the ‘Spatial-Numerical Association of Response Codes’
effect (SNARC). The SNARC effect lends support to the hypothesis that numbers are

represented on a ‘mental number line’ with smaller numbers on the left and larger
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numbers on the right hand side of representational space. It should be noted, however,
that individuals who write in languages that spell from right to left instead of left to right
such as Arabic, show a reversed SNARC effect with faster and more accurate responses
if the larger numbers are indicated with their left hand. This suggests a strong effect of
culture on the spatial organization of mental number representation. For a more detailed

discussion of the literature on the SNARC effect, see the introduction to Chapter 5.

More recent evidence for a spatial organization of numerical representation comes from
the study of patients suffering from unilateral neglect following parietal lesions. Neglect
patients show a spatial deficit for stimuli presented in the visual field contralateral to their
lesion side. For example, patients with right parietal lesions cannot mark the midpoint of
a line and will place their mark to the right of the midpoint. (Zorzi, Priftis, & Umilta,
2002) investigated whether these patients also showed deficits in number bisection tasks.
While the patients had normal numerical and arithmetical skills, they made systematic
errors when they were presented with two spoken number words and were asked to state
the midpoint number. The greater the numerical distance between the two numbers
patients heard, the more their midpoint answer shifted to the right. In other words, the
errors that the neglect patients made when indicating the midpoint between two numbers
were very similar to the errors these patients made during line bisection tasks. These
findings lend further support to the notion that numerical and visuo-spatial

representations are highly interrelated.

Neuropsychological models of number processing: Evidence from brain-damaged
patients

As is evident from the above discussion of neglect patients, the study of brain-damaged
patients can provide insights into the organization of numerical cognition in the adult
brain. Indeed, the study of brain-damaged patients who exhibit difficulties in different
aspect of number processing has been the basis of a number of models of number
processing. One such model, proposed by (McCloskey, Caramazza, & Basili, 1985),
suggests that all numerical processing is carried out by an abstract, central, amodal

number module and hence that numerical computations never involve notation-specific
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representations. According to McCloskey, input to this ‘central module’ comes from
notation-specific modules (Arabic, written). These notation-specific modules serve to
translate notation-specific representations for number into amodal formats which are then
processed in the central abstract module of number processing. The model also predicts
the existence of notation-specific output modules that serve to translate numerical

operations computed in the central abstract module into notation-specific outputs.

Perhaps the best-known adult neuropsychological model is the ‘triple-code’ model put
forward by (Dehaene, 1992; Dehaene & Cohen, 1995). As its name suggests, the premise

of this model is that number is represented in three different codes:

. The auditory verbal code (which interfaces with general language processing)

it. The visual Arabic code (which serves to manipulate numbers presented in Arabic
format)

1ii. The non-verbal magnitude code (representation of numerical magnitudes)

On the basis of single-case studies of brain-damaged adults who exhibit functional
dissociation between these codes as well as evidence from functional brain imaging
studies, (Dehaene & Cohen, 1995) argue that these three codes of representation are
functionally independent. While McCloskey’s model, discussed above, is merely
concerned with the functional organization of number processing at the cognitive level,
the triple-code model also makes explicit predictions about the anatomical organization
of these different numerical codes in the human brain. It predicts that the visual
identification of numbers is subserved by the occipital areas of the brain involved in
visual processing, that non-verbal representations of magnitude are organized in areas of
the left and right parietal cortex, and that quantity representation in the left parietal lobe is
interconnected with representations of verbal numerals, with exact arithmetic facts in the
left frontal areas of the brain. Connections via the corpus callosum are thought to exist
between left and right visual cortices for the identification of numbers and between left
and right parietal areas subserving magnitude or quantity representation (Dehaene &

Cohen, 1995).
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Chapter 1 General Introduction

was crucial to children’s number development but instead sought to understand how
children construct numerical skills over developmental time. According to Piaget,
children have a true representation of quantity only when they pass the so-called
‘conservation of number’ task. In this task children are initially shown two separate rows
of objects, which are both in spatial and numerical one-to-one correspondence. The child
is asked whether the rows contain the same or different number of objects. Even very
young children reply correctly. Subsequently, the experimenter spaces the items one row
further apart, thereby making one of the rows longer than the other one. Then, the
experimenter asks the child again whether there is the same number of objects in each
row. Strikingly, almost all children under the age of 6 or 7 will now indicate that there are
more objects in the row that was transformed spatially by the experimenter. Piaget
concluded from these experiments that the pre-school child does not appreciate that
number remains invariant despite changes in continuous variables such as spatial
arrangements. According to Piaget, a child’s success on the number conservation task is a
clear indication that the child has understood the concept of number. For Piagetian
theory, counting is merely a rote activity, which only becomes a way of establishing
quantitative meaning when supported by the cognitive structures that are indicated by the

ability to pass conservation tests.

Piaget’s notion that the preschooler lacks an understanding of number has since been
seriously challenged. One of the first challenges came from (Gelman & Gallistel, 1978).
These authors argued that counting plays a significant role in actually developing
children’s understanding of numerical quantity. Furthermore they argued that the
development of numerical competence is driven by a set of innate, domain-specific
competencies, an account that opposes the Piagetian notion that representations of
number are constructed from domain-general knowledge structures. According to
Gelman and Gallistel, young children have an understanding of the principles that define
conventional counting even before they are able to recite the count sequence (for a more
detailed review of this position and alternatives thereto, see Chapter 4 of the present

thesis).
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