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Abstract

At the present time there is considerable interest in the development of scaleable and
reproducible plasmid DNA purification protocols for vaccine and gene therapy. The work
presented in this thesis addresses two of the most significant purification challenges
namely, the initial purification of the plasmid DNA from related contaminants in high yield
and the subsequent high-resolution separation of different plasmid DNA forms.

The ability of nitrocellulose to selectively bind single stranded DNA (ssDNA), both in
powder and sheet membrane form, was initially investigated. In order to maximise the
volume of lysate that could be processed per m? membrane area, the use of an
integrated unit operation, comprising tangential-flow filtration coupled with the adsorption
of contaminants onto nitrocellulose membranes as a single processing step was then
examined, and indicated the utility of the operation to adsorb ssDNA and proteins from
model solutions. Tangential-flow filtration-adsorption of E.coli lysates containing a
plasmid product was shown to decrease the levels of chromosomal DNA contamination
by 75% wiw. Total plasmid DNA concentration and supercoiled content of the permeate
were virtually identical to those of the feed indicating close to 100 % yield. Results were
similar for E.coli lysates containing either a 6.9 kb or a 20 kb plasmid. Significant
reductions in RNA, endotoxin and protein levels were also observed.

The use of liquid-liquid countercurrent chromatography (CCC) for the preparative scale
fractionation of different forms of plasmid DNA was subsequently examined.
Fractionation of supercoiled and open circular plasmid DNA (6.9 kb) could be achieved
using a phase system comprising 12.5 % w/w PEG 600 and 18 % w/w K;HPO,. Addition
of isopropyl alcohol (2 % w/w) was found to be beneficial to the separation by alteration
of the phase physical properties. Residual protein, RNA and chromosomal DNA did not
co-purify with the plasmid DNA fractions further increasing the purity of the final product.
Preparation of lysate prior to loading onto the CCC column by aqueous two-phase
partitioning was found to decrease chromosomal contamination by 90 % with 25 % w/w
yield loss of plasmid DNA.
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1 Introduction

1.1 Significance and conceptual challenges

1.1.1 Use and formulation of pharmaceutical grade plasmid DNA

At present there is considerable interest in the development of new DNA
based therapeutics, many of which are currently in early stage clinical trials
(Hasan et al. 1999; Mountain 2000; Mhashilkar et al. 2001). DNA vaccines
against conditions such as HIV, various cancers and influenza are under
development at this time (Hasan et al. 1999; Shroff et al. 1999; Koide et al.
2000; Mhashilkar et al. 2001). Other therapeutic possibilities include gene
therapy products aimed at correcting at source the genetic defects involved in

inherited diseases (Taylor 1998).

Consequentially there is also a need for robust process scale protocols for
the production of large quantities of pure DNA products at a reasonable cost.
Much is expected from this new generation of vaccines, which utilise plasmid
DNA encoding antigenic proteins (expressed by the patients protein
expression system), for vaccination. Such DNA vaccines will be less heat
labile than conventional protein vaccines, (Hasan et al. 1999) thus eliminating
the need for cold chain transportation and reducing costs. Early indications
from clinical trials, following DNA vaccination with plasmid encoding antigen
(Tighe et al. 1998; Hassett et al. 2000; Powderject Pharmaceutical PLC.
2001; Vical Incorporated. 2001) indicate long-lived protection equal to, or
exceeding that resulting from conventional vaccination. Due to the similarity
of the DNA vaccines at molecular level, which differ only in the sequence of
the of the vaccine gene inserted into the vector, it should be possible to use
generic growth and purification processes for different DNA vaccines
(Robinson et al. 1997).
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There are several delivery systems that may be used for DNA vaccine, or
gene therapy applications (Mhashilkar et al. 2001). Replication deficient
recombinant retrovirus, adenovirus or adeno-associated viral vectors capable
of accommodating up to 9 kb of genetic information are being developed.
These are efficient with regard to gene transfer and are effective at
reproducing themselves, but may cause an immunogenic response within the
patient which is undesirable (Crystal 1995). The recent deaths of patients
involved in clinical trials using such vectors has caused concern
(Fox 1999). In order to circumvent the problems associated with viral vectors
other researchers are designing new methods for introducing DNA into cells.
Plasmid DNA-liposome complexes are under development (Crystal 1995),
and in many cases naked plasmid DNA may be used (Horn et al. 1995; Mahvi
et al. 1997; Robinson et al. 1997; Hasan et al. 1999). In 2001, 63% of
protocols approved by the US Recombinant Advisory Committee for the
delivery of therapeutic DNA to the target tissue employed retroviral vectors.
Adenoviral vectors were utilised in 16% of approved protocols, liposomes
accounted for 13 %, adeno-associated vectors 2 % and the remaining 6 % of
protocols employed a variety of vector systems, most of which are based
around the injection of naked DNA (Mhashilkar et al. 2001). If the amount of
information to be introduced increases substantially it may be necessary to
move to, much larger artificially constructed chromosomes (Willard 1998;
Brown et al. 2000). The final form of the DNA product will depend on the
method and purpose of administration, and may affect processes used for
plasmid DNA purification.

This project focuses on the downstream processing of naked plasmid DNA
and is concerned with investigation and development of two novel purification
concepts. The selective adsorption of single stranded chromosomal DNA and
other cellular contaminants from the double stranded plasmid DNA model
product was investigated as a primary purification step. Here the aim was to

increase the capacity of conventional chromatographic techniques for the
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subsequent high-resolution purification of plasmid DNA. In addition, a novel
high-resolution technique utilising countercurrent chromatography for the
separation of supercoiled plasmid DNA from contaminant open circular
plasmid DNA and chromosomal DNA was established. This approach has the
potential to circumvent many of the problems associated with conventional
purification techniques such as high cost of matrix, low capacity for plasmid
DNA, and processing difficulties associated with the loading of the high

viscosity process stream onto conventional packed columns.

1.1.2. Considerations for purification strategies

Therapies based on proteins produced through recombinant DNA technology
have been established for some time (Watson et al. 1992). Many
methodologies for the purification of such proteins on an industrial scale are
well documented and rationalised, with a wide range of chromatography
matrices for high-resolution protein separations being commercially available.
In contrast, although the structure of DNA is well known, and many
methodologies exist for the production, manipulation and purification of DNA
at the laboratory scale, most of these are not readily amenable to scale up
(Sambrook et al. 1989).

Another potential problem for the purification of DNA vectors is the shear
sensitivity of large nucleic acid molecules, which could result in high product
losses. The shear sensitivity of plasmid DNA increases sharply with the size
of the molecule and decreasing ionic strength (Levy et al. 1999a; Levy et al.
1999b). Chromosomal DNA from the cell strain used in the production of the
plasmid product will also be very shear sensitive. The degradation of such
molecules in the process stream may result in contaminant species of similar
size as the plasmid product, which will act in a similar manner during
subsequent purification steps, and therefore be difficult to remove (Levy et al.
2000c).
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DNA molecules with the same molecular mass as a given protein have a
significantly larger dynamic volume in comparison. Typical particle diameters
for a 3.8 kb plasmid (approximately 2500 kDa) in 20 mM Tris-HCI 1mM EDTA
pH 7.6 buffer are in the range 0.2 — 0.3 um as measured by visualisation with
atomic force microscopy (Lyubchenko and Shlyakhtenko 1997). This is 1 — 2
orders of magnitude greater than typical for proteins, which are generally
retained by ultrafiltration membranes of pore size 1 — 20 nm according to
molecular weight (Moses and Cape 1994). Over a decade ago Ellegren and
co-workers (Ellegren and Laas 1989) demonstrated that double stranded
DNA fragments of only 800 bp (approximately 530 kDa) were excluded from
100 nm diameter pores during size exclusion chromatography on Superose 6.
The limited diffusion of DNA molecules into the pores of chromatographic
matrices reduces the capacity of the matrix for plasmid DNA and
contaminating chromosomal DNA fragments. Traditional anion exchange
matrices are reported to typically have capacities 1000 fold lower for DNA
than for proteins (Collins et al.). Lyddiatt and co workers report that for 50 nm
diameter nano-particulates (i.e. viral particles or small plasmids) surface
binding alone can be calculated to account for the capacity of 100 nm

spherical adsorbent particles (Lyddiatt and O'Sullivan 1998).

Due to the therapeutic application of plasmid DNA products highly pure
plasmid DNA, intact and in the supercoiled form is required (Bonilla et al.
1991; Middaugh et al. 1998; Bergan et al. 2000). Contaminating fragments of
host chromosomal DNA must be removed (Marquet et al. 1997b; Prazeres et
al. 1999; Levy et al. 2000c). Ribonucleic acids (RNA) are an essential part of
the cellular machinery, and are found in great quantities in cells. The
profusion of RNA molecules together with their chemical, and for larger
species, physical resemblance to the plasmid complicates purification (the
similarities will be considered in more detail in Section 1.2.2). Endotoxins,
lipopolysaccharides shed from the bacterial cell wall, although chemically
quite different to the plasmid product, have often been found to co-purify with
plasmid DNA (QIAGEN 07/1999). Due to the antigenic nature of endotoxin
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molecules, it is particularly important to ensure pharmaceutical products are
essentially free of endotoxin contamination. In addition host cell proteins
along with cellular debris must also be removed. These are generally quite
different chemically and in size from plasmid DNA, thus are likely to be the
least problematic. The structure and properties of plasmid DNA and the major
contaminants found in the process stream will be considered in more detail in
Section 1.2.

1.2 Molecular structure and properties of nucleic acids and

other cellular constituents

1.2.1 The molecular structure of DNA

1.2.1.1 Primary and secondary structure of DNA

Watson and Crick proposed the double helix structure of DNA in 1953
(Watson and Crick 1953). DNA can be thought of as a polymer comprised of
four types of very similar monomers known as nucleotides. Nucleotides
consist of a deoxyribose sugar and phosphate (which form the ‘backbone’ of
the DNA strand) plus one of four bases (adenine, guanine, thymidine or
cytosine). The order in which the bases appear along the DNA strand forms
the basis of the genetic code. The native form of DNA is the double helix
structure, which consists of two strands covelantly through specific hydrogen
bond formation between the bases placed opposite each other in the helix
(Watson and Crick 1953; Matthews and van-Holde 1990). The bases are
found in the centre of the double helix sandwiched between the phosphate-
sugar backbone. The molecular structure of the four bases is such that
hydrogen bonds can only form between specific pairs: Guanidine and
cytosine will form three hydrogen bonds between them, adenine and
thymidine are capable of forming two hydrogen bonds (Watson and Crick
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1.21.2 Tertiary structure, function and properties of DNA

The tertiary structure of DNA varies (Matthews and van-Holde 1990). In
eukaryotes the majority of DNA occurs as non-circular chromosomes,
whereas prokaryotic cells contain a large circular chromosome, and may also
have smaller circular DNA molecules known as plasmids. It is these plasmids,
once re-engineered in the laboratory to contain the nucleotide sequence
encoding the required information, which may be transformed back into a
suitable bacterial host, grown up and purified for use as gene therapy vectors

or DNA vaccines.

In vivo, the double helix of the DNA molecule will twist around itself, so that
the DNA assumes a supercoiled form. Enzymes called topoisomerases are
responsible for introducing (or removing) the extra twists in the DNA strand
that causes it to assume the supercoiled configuration (Matthews and van-
Holde 1990). The degree of supercoiling seen also varies, chromosomes will
become more tightly coiled just prior to cell division, but adapt a more relaxed
configuration during normal metabolism of the cell to facilitate access of
enzymes to sites on the DNA. /n vitro, a greater degree of supercoiling has
been artificially induced by the inclusion of 160 mM NaCl to the plasmid
suspension buffer (Lyubchenko and Shlyakhtenko 1997).

The majority of plasmid DNA isolated from the host cell will be in the
supercoiled (SC) form. Plasmids may also be present as dimers (due to the
two new plasmids becoming linked following replication) and the covelantly
closed open circular plasmid form (Matthews and van-Holde 1990). During
processing, shear and chemical degradation may cause nicks in one of the
DNA strands, which will cause the plasmid to relax from the SC form to open
circular (OC) plasmid form. If both DNA strands are broken in the same place,
linear plasmid forms will result (Levy et al. 1999b). It is desirable to remove
OC and linear forms of plasmid from the final product to ensure the potency
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and stability of the final dosage form (Bonilla et al. 1991; Middaugh et al.
1998; Bergan et al. 2000).

DNA molecules are negatively charged (Matthews and van-Holde 1990). This
is the basis of separation by anion exchange. As the charge carried by each
nucleotide is the same, the overall charge correlates directly to the size of the
DNA molecule. The backbone of the helix is hydrophilic, whereas the bases
at the centre of the helix are hydrophobic. Relaxed or linear forms of dsDNA
will tend to be more hydrophilic than tightly supercoiled forms, where the
hydrophobic bases may become partially exposed due to the contortion of the
DNA molecule. Lengths of ssDNA where the bases are completely exposed
are the most hydrophobic form of DNA (Mao et al. 1998; Prazeres et al. 1998,
Diogo et al. 1999). The shear sensitivity of DNA molecules increases with
size, with plasmids of 29 kb in size having been found to be readily degraded
by relatively moderate shear forces of a magnitude commonly found in
process equipment (Levy et al. 1999b; Levy et al. 2000c). Care must be taken
with the design of downstream processes to ensure the shear forces present
are kept below a critical level, both to ensure the integrity of larger product
molecules and to minimise shear of large contaminant chromosomal DNA
molecules during early stages of the process (Levy et al. 2000c).

1.2.2 Structure and properties of other cellular contaminants

Plasmid DNA is an intracellular product of the host cell, therefore it is to be
expected that a variety of cellular contaminants will be present in the process
stream. The structure and properties of chromosomal DNA has been
considered in Section 1.2.1. The same features will now be considered briefly
for other major contaminants of plasmid containing process streams.

RNA is a major contaminant in plasmid containing process streams. The
basic structure of is similar to that of DNA except that (l) the base uracil

replaces thymidine, (llI) the backbone of the molecule contains ribose sugar
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instead of deoxyribose and, (lll) RNA molecules are generally single stranded
(except for the hairpin loop structures formed within the strand by the transfer
RNA) (Matthews and van-Holde 1990). The chemical and structural
similarities, along with the profusion of RNA within cells, make this

contaminant difficult to separate from plasmid DNA.

There are three main types of RNA. Messenger RNA (mRNA) is responsible

for transferring the DNA encoded message from the chromosome to the
ribosome’s, which use the mRNA template to synthesise the encoded
polypeptide. The ribosome’s themselves contain ribosomal RNA (rRNA). The
third main type of RNA is transfer RNA (tRNA) which carries specific amino
acids and will recognise the sequence on the mRNA in the ribosome / mMRNA
complex; thus the correct sequence of amino acids is constructed (Matthews
and van-Holde 1990).

Endotoxins are lipopolysaccharide molecules shed from the surface of the
bacterial cell wall (Petsch and Anspach 2000). They possess both
hydrophobic and hydrophilic regions (Petsch and Anspach 2000) and so tend
to form micelle structures, which are similar in size and density to a large
DNA molecule, and will often interact in a similar way to DNA during anion
exchange chromatography. This particular contaminant, which is especially
undesirable due to the danger of eliciting an immunogenic response, can
thus also be particularly difficult to remove (QIAGEN 07/1999; Green et al.
1997, Prazeres et al. 1998).

Proteins tend to be globular molecules, and can have widely varying chemical
and physical properties. Proteins are made up of a chain of amino acids, of
which there are 20 different common naturally occurring forms (Matthews and
van-Holde 1990)). The structure of a protein can be thought of as the primary
sequence of amino acids, which then forms a secondary structure (o helix or
B sheet). Following the manufacture of the amino acid sequence upon the

cells ribosome’s, and formation of the secondary structure, the protein is
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folded into a complex tertiary globular structure, the shape being fixed by di-
sulphide bonds. The association of folded protein sub-units with other protein
sub-units, (and often specific metal ions), results in a quaternary structure for
some proteins. As discussed in Section 1.1.2 the overall size of a ‘typical’
protein molecule is much smaller than plasmid DNA of similar molecular
weight. Also, the charge carried varies between amino acids, and given the
variations possible in the arrangement of the amino acid monomers to make

up a protein, the net charge a particular protein may carry is highly variable.

Other contaminants which must be removed include lipids, cellular debris and
media components. However, there is no evidence from the literature to date
that any of these have been found problematic to purify from plasmid DNA,
and the importance is therefore considered negligible compared to the main

contaminants already discussed.

1.2.3 Typical product specifications

Given the therapeutic nature of plasmid DNA products, the international
regulatory authorities will set stringent standards for the maximum allowable
levels of cellular contaminants, such as chromosomal DNA, RNA, proteins
and endotoxins present in drug formulations. These, in turn, will be
dependent on the dose to be administered. The acceptable cellular DNA
contamination has been set at 100 pg per dose (Marquet et al. 1997b).
Maintaining such levels will be very challenging when quantities of plasmid in
the order of 100 pg are to be injected (Marquet et al. 1995). For example, the
release specifications for plasmid DNA to be used in a cancer clinical trial
have been stipulated for the various contaminants, RNA, protein,
chromosomal DNA and endotoxin, and are shown in Table 1.1 (Marquet et al.
1997a). As a rule of thumb 1EU can be taken as equivalent to 100 pg
endotoxin (Petsch et al. 1998).
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Test

Specification

Method

Appearance

Clear colourless solution

Visual observation

Size of plasmid product

Approximate size predicted
from plasmid map

Agarose gel electrophoresis

Circular plasmid DNA

> 95 % (nucleic acids)

Agarose gel electrophoresis
and anion exchange HPLC

Chromosomal DNA

<0.01 pg pug" plasmid DNA

Southem blot

Protein Undetectable BCA protein assay

RNA Undetectable Agarose gel electrophoresis

Residual ethanol < 250 ppm Gas chromatography

Endotoxin <0.1 EU g™ plasmid DNA | LAL assay

Sterility No growth through 14 days UsP

Gene expression Expression similar to working | In vitro transfection / FACS
reference standard assay

General safety test Per USP Per USP

Table 1.1. Release specification for Allovectin-7 plasmid DNA. Compiled from Marquet et
al. 1997a. See Figure 1.3 for the purification process associated with this particular product

Horn et al. 1995.

Although the removal of all contaminants must be considered, the greatest

challenge at this stage remains the removal of chromosomal DNA, given the

similarities of the product and contaminant molecules. The SC plasmid form

is also the type form required for the final product. Hence it is desirable to

purify, if possible, OC and linear forms of plasmid from the SC plasmid

product to ensure the potency and stability of the final dosage form (Bonilla et
al. 1991; Middaugh et al. 1998; Bergan et al. 2000).
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1.3 The manufacturing process for plasmid DNA

1.3.1 Production and primary recovery operations

1.3.1.1 Fermentation

Eschericia coli is by far the most common choice to date as host for the
production of plasmid DNA. The organism is well characterised and there
exist a multitude of strains with various characteristics that may be desirable.
E. coli grows quickly and is amenable to industrial scale fermentation. Due to
the large amount of information that it may be necessary to include in a gene
therapy vector, it may ultimately be necessary to use a vector other than
plasmid, such as Human Artificial Chromosomes (Taylor 1998; Willard 1998,
Brown et al. 2000). However, plasmid DNA produced using E. coli as host is a
good model system given products under development at this time
(Mhashilkar et al. 2001).

To ensure that the maximum amount of plasmid product is produced during
fermentation, various strategies have been developed. It is desirable that
each cell produces the highest possible number of plasmids. As the
production of plasmid DNA will place a metabolic burden on the host cells,
those which have ‘lost’ the plasmid during growth will grow more quickly than
cells containing plasmid (Watson et al. 1992). Thus it is desirable to select for
those cells which contain plasmid. An antibiotic resistance marker is
commonly incorporated onto the plasmid for this reason and the
corresponding antibiotic introduced into the medium to select for plasmid
containing cells (Sambrook et al. 1989; Watson et al. 1992). Due to concerns
regarding the spread of antibiotic resistance and potential allergic reactions,
care is needed to ensure antibiotics utilised in the fermentation stages are
removed downstream. Alternative antibiotic free strategies, such as the ORT

vector which enables de-repression of an essential chromosomal gene hence
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exerting selection for cells containing the ORT vector, have also been
developed (Williams et al. 1998). Some plasmids naturally occur in greater
numbers in their host cells than do other plasmids. Such high copy number
plasmids are therefore desirable as a base vector for plasmid DNA
therapeutic products, in order to maximise yield of plasmid (Watson et al.
1992). Plasmid production may be induced near the end of the fermentation,
using various techniques, for example through the use of a heat inducible
origin of replication for the plasmid or by chloramphenicol induction
(Sambrook et al. 1989; Chen et al. 1997). By optimising the combination of
host strain, vector and growth conditions (i.e. fed batch versus batch
fermentation and the use of defined as opposed to complex culture media)
plasmid yield can be enhanced. Yields as high as 220 pg plasmid DNA mL™
fermentation broth have been reported (Lahijani et al. 1996). A high titre of
plasmid from the fermentation, in addition to increasing the profitability of the
process through increased yield, also has the effect of decreasing the relative
level of contaminants. It is therefore essential that reproducibly high plasmid
titres be achieved during fermentation for the success of the downstream
processes, both in terms of the purification achieved and for the maximum

quantity of end product.

1.31.2 Alkaline Lysis

As plasmid DNA is intracellular, the plasmid product must be released from
the cells following harvest from the fermenter, before purification can take
place. Due to the shear sensitivity of both the plasmid and chromosomal
DNA, mechanical disruption techniques commonly used for the release of
recombinant protein from cells are not effective as too much plasmid DNA
product is lost (Carlson et al. 1995). The alkaline lysis method of Birnboim
and Doly (Birnboim and Doly 1979; Birnboim 1983), has the advantage of
being a low shear operation, and also facilitates the purification due to the
precipitation of contaminant molecules during the neutralisation step. Alkaline

lysis is almost universally utilised in published plasmid purification processes
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for those reasons (the exception being the heat lysis step developed by
Merck Research Laboratories (Merck Incorporated. 1995)).

The lysis reaction is initiated by the addition of an equal volume of 0.2 M
sodium hydroxide (NaOH) containing 1% w/v sodium dodecyl sulphate (SDS)
to the harvested cells, suspended in 10 mM Tris-HCI, 1 mM EDTA, pH 8 (TE)
buffer. The SDS interacts with the proteins and lipids in the cell wall to render
them soluble causing the cells to lyse. The pH of the solution is such that
proteins and chromosomal DNA, once released from the cells are irreversibly
denatured, while the denaturation of plasmid DNA is reversible (Sambrook et
al. 1989). Typically, five minutes is allowed for the completion of the lysis
reaction and the denaturation of DNA and protein (Ciccolini et al. 1998). The
reaction mixture is then neutralised by the addition of one volume of 3.0 M
chilled potassium acetate. The solubility of SDS decreases with temperature,
so that SDS-protein complex precipitate at this point. RNA, cell debris, high
molecular weight chromosomal DNA and other impurities also precipitate with
the salt-detergent complexes to form an insoluble floc. However plasmid DNA
will re-nature and remains in solution as the pH is reduced upon potassium

acetate addition.

At large scale the mixing of the lysis reaction mixture after the addition of the
alkaline detergent and potassium acetate presents a challenge (Doran 1995).
It is important to ensure thorough mixing of the cell suspension and alkaline
detergent to avoid localised extremes of pH, since irreversible plasmid
denaturation will occur at pH values over 12.5 (Prazeres et al. 1998).
However, shear levels must be kept to a minimum during mixing for the
neutralisation step to avoid damaging the delicate floc and releasing
contaminants back into the plasmid-containing liquor (Levy et al. 2000c). One
approach is the use of dough mixing equipment developed for use in the food
industry (Marquet et al. 1995). Ciccolini and co-workers (Ciccolini et al. 1999)
have suggested two separate mixing strategies. Mixing for the lysis step
utilises impinging jets, while for the neutralisation step, air assisted injection
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of cold potassium acetate into the base of the reactor is used. Additional air
sparged in through the base of the reactor following neutralisation will provide
additional low shear mixing and aid the flotation of the floc (Ciccolini and al
1999).

For large plasmids (>100kb), there is an apparent loss of the desired plasmid
product when the above alkaline lysis procedure is performed using
potassium acetate for the neutralisation step (Sinnett et al. 1998). This may
be because larger plasmids have insufficient time to reanneal during the
reaction. The procedure can be modified to utilise sodium acetate instead of
potassium acetate. Under these conditions a higher yield of plasmid is
achieved, but this is offset by higher levels of contaminants such as RNA and
protein in the final supernatant. In the adapted protocol suggested by Sinnett
and co-workers, sodium N-lauroylsarcosine (SLS) was employed instead of
SDS, and in this case no loss of large plasmids was observed when the lysis

was performed.

Following lysis, the aqueous layer containing the desired plasmid product
must be separated from the floc. At laboratory scale this is commonly
achieved by centrifugation (QIAGEN 07/1999). For industrial scale processes
it is likely that filtration will be the preferred choice of unit operation due to the
high shear forces commonly encountered in industrial scale centrifuges (Levy
et al. 2000c). Work carried out by Theodossiou and co-workers (1997)
suggested that the best compromise between purity and loss of plasmid
during filtration is achieved with a 5 um polypropylene cloth. Filtration
resulted in 99.4 % w/w removal of solids and 96.8 % w/w removal of protein,
at the expense of a 33 % w/w loss of plasmid. The addition of a filter-aid was
not found to be useful. Improved removal of protein and solids in this case
was offset by a 70 % w/w loss of plasmid (due to plasmid DNA adsorbing
onto the diatomaceous earth) and a marked reduction in the rate of filtration,
(Theodossiou et al. 1997).



































































































































































































































































































































































































































































































































































































