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Abstract—This paper presents a large-scale study that investigates the bug resolution characteristics among popular Github projects
written in different programming languages. We explore correlations but, of course, we cannot infer causation. Specifically, we analyse
bug resolution data from approximately 70 million Source Line of Code, drawn from 3 million commits to 600 GitHub projects, primarily
written in 10 programming languages. We find notable variations in apparent bug resolution time and patch (fix) size. While
interpretation of results from such large-scale empirical studies is inherently difficult, we believe that the differences in medians are
sufficiently large to warrant further investigation, replication, re-analysis and follow up research. For example, in our corpus, the median
apparent bug resolution time (elapsed time from raise to resolve) for Ruby was 4X that for Go and 2.5X for Java. We also found that
patches tend to touch more files for the corpus of strongly typed and for statically typed programs. However, we also found evidence for
a lower elapsed resolution time for bug resolution committed to projects constructed from statically typed languages. These findings, if
replicated in subsequent follow on studies, may shed further empirical light on the debate about the importance of static typing.

Index Terms—Programming language, bug resolution, empirical study

1 INTRODUCTION

For several decades there have been great debates about
the influence of programming language paradigm choices
(such as declarative/imperative or strong/weak typing) on
software engineering concerns (such as bug prevalence and
resolution characteristics). For the most part, such debates
have been largely uninformed by empirical scientific evid-
ence, having more the character of anecdotal opinion shar-
ing rather than thorough scientific evidence-based decision-
making. However, in 2014, Ray et al. [1] began a project of
reformulating such questions as large-scale empirical ana-
lyses. In particular, they addressed one of the most immedi-
ate and pressing questions: ‘which programming language
paradigms are more correlated with software quality?”.
There is a fundamental empirical spectrum, along which
researchers must make methodological choices when an-
swering such ‘great debate’ questions. At one end of the
spectrum lies the approach used by Ray et al. [1], which
sacrifices some degree of control over variables for greater
scalability and increased probability of generalisability. At
the other end of the spectrum lie specific, focused and
more ‘controlled” studies that seek to, at least partly, ac-

e Jie M. Zhang is the corresponding author. She has two affiliations, Peking
University and University College London, of which, for this paper, the
primary affiliation is with the Key Laboratory of High Confidence Software
Technologies (Peking University), MoE, China. She is currently with
UCL, but this work was started when she was a PhD student at Peking
University. Feng Li, Dan Hao, Hao Tang, and Lu Zhang are with the Key
Laboratory of High Confidence Software Technologies (Peking University),
MOoE, China.

e  Mark Harman is with University College London and Facebook London,
United Kingdom.

o Meng Wang is with the Department of Computer Science, University of
Bristol, UK.

count for tools, environments, ecosystems and engineers
involved in constructing software, thereby removing some
potential confounding factors. Such studies trade scale and
generalisability for greater control of variables that might
otherwise influence the results observed. There are several
previous studies [2]-[4] that lie at this end of the spectrum
methodological choices.

Since the essence of any ‘great debate’ question about
programming languages and software engineering tends to
rest on generalisations, any attempt at an answer is inher-
ently pushed towards the large-scale/less controlled end
this spectrum of methodological choices. As a result, one
can only speak of correlations observed between corpora
developed within the overall ecosystems that surround the
sets of programs and systems studied in such corpora.

Any such large scale study of systems in many languages
draws on data extracted from code repositories for which,
due to scale, analysis will be necessarily partly automated,
labelling will be partly subjective and data will be, itself,
partial and noisy. Consequently, there will be many inherent
potential treats to the validity of any scientific conclusions.
Actionability, for any initial study such as this, will also be
limited to suggesting the need for follow-on replication and
further and deeper study of some of the key observations.
If such empirical observations prove to hold up under
replication and re-analysis, then progress then can be made
towards shedding light on great debates. As the Chinese
proverb has it, “T B 247, 18T E 1", a journey of a
thousand miles begins with a first step.

In this paper we focus on the question: “for projects
constructed from popular programming languages in widespread
current use, which sets of projects exhibit more correlations with
longer bug resolution time and larger size of fix (or patch)?”. We
also explore correlations between bug resolution characteristics
and other aspects, such as categories of approaches to typing
(strong, weak, static, dynamic), project features (such as overall



age and size and domain of application).

Opinions and anecdotes about the importance (or other-
wise) of types and type systems have raged and ranged over
several decades. For example, some have argued that static
typing tends to result in better software quality and lower
bug-resolution cost because type checking is deemed to be
an effective way of catching bugs earlier [5]], [6], while others
have argued that dynamic typing eases reading, writing,
and understanding, thereby, so the argument goes, making
code constructed from such languages easier to debug [7].
Many more thorough empirical studies are required to move
the debate onto a firmer scientific footing.

Our starting point was the large-scale/less controlled
end the spectrum reminiscent Ray et al. [1]. We refined and
augmented their analysis approach (Section [2). Given the
inherent difficulties of large scale analysis there are many
threats to validity, and our methodology is, consequently,
surely far from perfect.

In the remainder of the paper, we have attempted to
highlight potential threats to the validity of our observations
and conclusions, throughout the paper as well as in the
traditional ‘Threats to validity’ section (Section [7). Where
practical, we have taken steps to explore potential sources of
bias, mislabelling, miscatagorisation, noise and confounding
factors. Nevertheless, it is likely that we have overlooked
others, and so we make our data publicly available to
support subsequent authors in re-analysis and re-evaluation
of both our observations and the conclusions drawn from
them.

We analysed bug-resolution data from approximately
70 million Source Lines of Code (SLOC) drawn from 3
million commits to 600 GitHub projects in 10 languages.
We adopted a variety of measurement criteria to investigate
the data and provided empirical evidence to support the
scientific conclusions drawn from the data. Specifically,

1) We report results from multiple statistical analyses
(median-value comparison, multiple regression, and
ScottKnott analysis.

2) Some of our primary observations of note are made
using median values (of a large number of commits
and issue reports), which is comparatively simple and
intuitive. Median values also tend to be ‘less affected
by outliers and skewed data’ [8]-[10];

3) We manually inspected the data we analysed to invest-
igate and account for possible mislabelling problems
arising from automatic data extraction.

Our findings reveal notable differences in bug-resolution
size and time between individual languages and language
categories. In particular, we found evidence that projects
in our corpus constructed from Java and C# tended to
involve larger fix sizes than the other languages during bug
resolution. This finding, of replicated in subsequent studies,
may inform automated repair [11]-[13], which may need
to search larger spaces for candidate bug fixes. It may also
inform mutation testing [14]-[17], which may need more
code transformations to simulate real faults. Furthermore,
projects in our corpus constructed from Java, Go, and Py-
thon tended to consume less bug-resolution time. Systems
constructed from statically/strongly typed languages ten-
ded to involve larger modification sizes to resolve bugs.
We also found that systems in our corpus constructed
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from weakly/dynamically typed languages tended to have
longer bug-resolution time. The main contributions of this
paper are as follows:

1) A large scale empirical study on bug-resolution char-
acteristics among Github projects written in different pro-
gramming languages and categories. We perform a study of
10 popular programming languages.

2) Empirical evidence of notable differences in median
bug resolution time and size between the programs in our
corpus. Most notably:

a) Java and C# bug-resolutions change 2.2 times as many
lines as Ruby.
b) Java and C# bug-resolutions touch 2 times as many files
as Ruby and Python.
¢) Objective-C bug-resolution consumes 4.6/3.0 times as
much bug-resolution time as Go in project/commit-
level analysis; Ruby consumes 2.5/8.1 times as much
bug-resolution time as Java in project/commit-level
analysis;
3) Potentially interesting differences between categories
of programs within our corpus, based on their approach to
typing. For example, in our project-level analysis:

a) Dynamically typed language bug-resolutions change
37.5% fewer lines, yet consume 59.5% more bug-
resolution time than statically typed language bug res-
olutions.

b) Weakly typed language bug-resolutions change 20%
fewer lines, yet consume 46.5% more bug-resolution
time than strongly typed language bug resolutions.

In Section [6} we discuss some possible implications for
other software engineering research, from these findings.

2 METHODOLOGY

In this section, we describe how we extract bug-resolution
characteristics ( Section[2.1) and what statistical methods we
adopted to conduct the study (Section 2.2).

2.1 Bug-Resolution Size and Time

We consider bug-resolution size from two aspects to better
understand the dispersion degree of a bug fix: 1) Sloc
changed: the number of modified executable lines, which
indicates the amount of code that requires modification to
fix a bug; 2) Files touched: the number of modified files.
In addition to size, we also study bug-resolution time, i.e.,
the time lapse between the reporting and resolution of
bug. Zheng et al. [18] provided empirical evidence that the
timestamp of the last commit before issue closing is the most
reliable assessment of resolution time from the available
alternatives, so we adopt this during our measurement.

For each project, we collect bug-resolution size by ana-
lysing buggy commits (more details in Section [3). For an
experiment of this scale, such collection has to be automatic.
We favour precision to recall when selecting bug-resolution
commiits, considering that non-bug-resolution commits may
bring additional yet avoidable bias to the data. In particular,
we identified ‘fix” and ‘bug’ as being the best keywords for
searching, which are least exposed to false positives. This
choice is confirmed by our manual analysis (achieving 95%
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precision), whereas other candidate keywords ‘“issue’, ‘mis-
take’, or ‘fault” achieved only approximately 30% precisiOIﬂ
Once a bug-resolution commit is identified, we extract the
number of modified program files and lines belonging to
the project’s primary language (more details in Section [3.3).

When a bug is fixed, a range of files may be modi-
fied/updated. In our measurement, we exclude non-code
modifications such as documentation and comments but
count all code changes of both source and test programs.
This choice is deliberate, as we believe developer testing
is an integrated part of development [20], [21], and the
effort involved in updating test code is naturally part of
bug resolution and is language dependent.

One threat to the validity of this approach is that some
bug-resolution commits may also contain code modification
unrelated to the bug, such as refactorings which are likely
to affect a disproportionally large amount of code [22]. To
check the severity of this potential source of bias, we manu-
ally analysed 520 randomly-chosen bug-resolution commits
from all our projects and found that 14.6% of commits
involved dealing with more than a single bug or other forms
of code modifications unrelated to bug resolution, indicating
a reasonable, yet not unassailable, level data integrityﬂ

To further reduce potential bias, for each project, we
used the median value of all the bug-resolution commits to
represent the project’s general level of line/file modification
in project-level analysis, which tends to be ‘less affected by
outliers and skewed data’ [§].

We acquire the bug-resolution time for each project by
analysing issue reports [8], [24]. We do not use commit
information here, because it gives us only the end time
but not the corresponding start time of bug—resolutiorﬂ
Instead, we search the issue tracking system for closed
issues with labels containing ‘bug’ (case insensitive), and
extract information from them. In Github, project issues are
manually labelled by the developers. We treated this as a
ground truth (another possible avenue for subsequent re-
analysis to assess any potential threats to validity arising
from such an assumption).

Inspired by the work of Zheng et al. [18], we define
the resolution time of each bug as the interval between
issue creation and the last comment before issue closing,
which has been demonstrated to be more accurate (than the
interval between creation and closing time) [18]. Again, we
use the median of the so-computed bug-resolution times as
a representation of the overall project level bug-resolution
time to remove potential bias due to extreme values.

2.2 Statistical Analysis Used in the Study

We collect the values of dependent variables (bug-resolution
size/time), independent variables (languages), and four
project features (project size, age, number of Contributors{ﬂ
and commits) for each project.

These keywords may also be widely used to describe problems unre-
lated to source code bugs (e.g., issues in documents), which has been
cited as one potential source of potential mislabelling [19].

The manual analysis results are on our project homepage [23].

When extracting bug-resolution size, we do not use issue reports
because we found that only around 50% of the issue reports are linked
with commits.

Contributors are not necessarily developers [19].
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We focus on comparison of median values. However,
following Ray et al. [1], we also report results for multiple
regression analysis. Furthermore, following the request of
an anonymous referee, we complement this with a report
of ScottKnott analysis (to indicate difference significance).
These three approaches may mutually validate each other
from different aspects when all produce similar outcomes.

For each analysis approach, we use two types of data.
The first type treats each project as an individual. During
this analysis, each data point concerns a single project. Each
project has its own median bug-resolution size/time among
all its commits, which represents this project’s overall bug-
resolution size/time. The second type treats each commit
for a given language as an individual. During analysis, each
data point denotes a single commit. For ease of presentation,
we represent the analysis for first type as project-level
analysis and the second type as commit-level analysis.

2.2.1 Comparison of Median Values

We calculate project-level and commit-level median values
to represent a language’s central tendency of bug-resolution
size and time [8]-[10], [25]. For project-level analysis, we
use the median bug-resolution size/time of all projects
belonging to a language to represent this language’s central
bug-resolution size/time. For commit-level analysis, we use
the median bug-resolution size/time of the whole set of
commits from all projects in a language to present this
language’s central bug-resolution size/time.

To help visualise, we present box plots, which contain
the 25", 50", and 75" percentiles in the distribution of
values. We also manually analysed scatter plots for each
language and each treatment (size in lines of code and
files, and duration). Space does not permit us to include
all 30 resulting scatter plots in the paper, but we make
these available on the companion website [23] for others
to investigate.

2.2.2 Multiple Linear Regression

We use multiple linear regression to indicate the contri-
bution of different (categories of) languages to the bug-
resolution characteristic§’l The comparison among bug-
resolution characteristics of different languages (and cat-
egories) can be regarded as an importance-determination
problem of categorical variables, and thus multiple linear
regression can be used to identify which (category of) lan-
guages contribute more to the bug-resolution size/time [27],
[28].

Through multiple linear regression of the language vari-
able and bug-resolution size/time of each project or commit,
each categorical variable has a regression coefficient, which
represents the mean change in the response given a one
deviation change in the regression model. Higher coeffi-
cients indicate larger means of bug-resolution size/time.
In addition to coefficients, we also present the following
statistics: 1) p-value; 2) t-value: a statistical test value that
measures the ratio between the coefficient and its standard
error [29|); 3) F-statistics: a statistical test value that checks

We use the most common ‘dummy coding’ [26] for categorical language
variables.



the null hypothesis that all of the regression coefficients are
equal to zero.

For p values, we make no correction for multiple statist-
ical testing, and prefer to place little emphasis on claims
to significance based on (somewhat arbitrary) choices of
statistical significance level. Instead, we have chosen to
report the raw p Valuesﬂ in order to allow the reader to
place whatever interpretation he or she deems appropriate
on these statistics. From the the raw values, it is easy to
compute, for example, a conservative Bonferroni correction
and/or to assess significance at some chosen level of statist-
ical significance [30].

Statistical significance (at any chosen level) is increas-
ingly likely to be observed for some comparison, as the
number of data points studied increases. Therefore, we
prefer to draw conclusions based primarily of median-value
differences observed, using significance test outcomes, less
formally (and less ritualistically). With this in mind, we use
the p values merely as one way to give an indication of the
confidence with which we observe that an effect is, indeed,
present, given the size of data we have been able to collect.

2.2.3 ScottKnott Clustering Analysis

We then report ScottKnott clustering analysis (abbreviated
as ‘ScottKnott analysis” in this paper). The ScottKnott al-
gorithm clusters treatment means into distinct homogen-
eous groups without any overlapping, thus can indicate
which groups are significantly different.

When conducting multiple linear regression and Scot-
tKnott analysis, we perform log transformation of bug-
resolution size/time (a typical data transformation ap-
proach in statistical analysis, which is also adopted in pre-
vious work [1]]). The log transformation facilitates a better
non-linear fit and a normal data distribution.

3 EXPERIMENTAL SETUP

This study is designed to answer four research questions.
RQ1: What are the differences of bug-resolution size/-
time among projects written in different programming
languages?

RQ2: What are the differences of bug-resolution size/-
time among projects written in different programming
language categories?

The first two research questions aim to investigate the
differences in bug resolution characteristics among different
languages and categories. For each research question, we
ask three sub-RQs, with each sub-RQ covering the result
of one type of analysis approach: what is the result when
using median-value analysis/multiple-regression analysis/Scot-
tKnott analysis?

This paper does not aim to conduct any form of causal
analysis. However, to complement our analysis of language
and language categories, we design the following two re-
search questions to investigate the correlations between
bug resolution characteristics and other project features and
application domains.

RQ3: What evidence is there for correlations between
bug resolution characteristics and project features: SLOC,

When conducting ScottKnott analysis, it requires a specific significance
level to perform clustering, for which we use the typical level of 0.05.

4

Table 1: Target programming languages and their categories

Category | C| C#| C++ | Go | Java | JS | Objective-C | PHP | Python | Ruby
static x| x|« | x| * | | | | |
dynamic | | | I * IEE * [
swong ||+ ||« [« | | . [ -
weak [T T > 1 \ [ ] * [ \
Table 2: Basic information of projects.

Language SLOC Age (year) Commits Contributors
C 2,836-1,036,341 0.45-8.29 7-102,383 1-427
C# 710-5,556,924 0.27-8.53 11-25,543 1-387
C++ 1,115-4,182,449 0.40-8.42 52-44,071 2-435
Go 920-1,958,917 0.26-7.52 52-47,122 1-468
Java 323-644,003 0.22-7.34 17-38,379 1-407
JS 222-1,311,821 0.81-8.20 130-18,664 10464
PHP 161-1,314,420 1.43-7.68 10-52,493 2-432
Python 130-723,708 0.19-9.00  89-99,066 3-447
Objective-C 296-179,744 0.50-8.93 70-9,952 4-274
Ruby 353-99,250 1.21-9.32 212-63,882 12-443

number of commits, age and/or contributor?

RQ4: What evidence is there for correlations between bug
resolution characteristics and project domain?

These research questions aim to investigate the relative
degree of correlation observed in RQ1 and RQ2 with that
observed for other characteristics.

3.1 Target Programming Languages

To select a set of languages from which to choose programs
to study, we consult several rankings of the most popular
languages [31]-[35], and choose the following 10 (in alpha-
betical order) as our targets: C, C#, C++, Go, Java, JavaScript,
Objective-C, PHP, Python, and Ruby, to focus on the more
popular languages according to these rankings.

We categorise the programs’ languages according to two
classification systems following previous work [1], as shown
in Table |1} The compilation classification classifies a target
language into dynamic or static categories based on whether
types are checked dynamically during runtime or statically
during compilation. The fype classification classifies a tar-
get language into strongly typed and weakly typed based
on whether automatic type conversions are allowed. We
sometimes use static languages and dynamic languages to
refer to statically and dynamically typed languages, and use
strong languages and weak languages to refer to strongly and
weakly typed languages. We note that such classifications
are somewhat open to interpretation [19]. As such, our
choices of category also make a good topic for subsequent
re-analysis of our results.

We pay special attention to Python during classification.
Python has two major versions: Python 2 and Python 3.
Python 2 is dynamic, whereas static typing is introduced
in Python 3. We analyse the source code of all the Python
projects and find that only four projects contain static types
in a small number of files (less than 20% of files). Therefore,
we regard Python programs as dynamically typed, while
paying special attention to the four projects containing static
typing, when answering RQ2.
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3.2 Subjects

All our subjects are open-source projects from GitHub [36].
For each target language, we retrieve the project repositories
that are primarily written in that language, and select the 60
most popular projects based on their number of stars [37] as
in prior work [1], [2]. Choosing to focus our study on pop-
ular projects (and basing this on star ratings) is, of course,
another source of potential bias in our sample, that will
likely affect the degree to which we can generalise findings
beyond our corpus. There are difficulties in selection bias, no
matter how one chooses projects, so generalisations can only
be based on multiple such studies. We encourage others to
investigate replication using other choices of sample.

Table [2| presents the basic information of all the pro-
jects. The ranges of four types of information are presen-
ted: 1) SLOC: the physical executable lines of code of the
newest version, which is calculated by the tool CLOC [38].
For multi-language projects, we only use the SLOC of the
primary language reported by CLOC. 2) #Commit: the total
number of commits downloaded from the GitHub API [39].
3) Age: the age of each project. We use the time interval from
creation time recorded to download time as the age (years).
4) #Contributor: the number of contributors, which is also
collected through GitHub APIL

The table shows that the projects of different languages
tend to have different project features. We study whether
these variables correlate with bug-resolution size/time (in

RQ3).

3.3 Experimental Procedure

The experimental procedure of this study can be divided
into data collection and data analysis.

3.3.1 Data Collection

First, we collect the projects in various programming lan-
guages for further analysis.

Step 1. Information retrieval from GitHub API. GitHub API
provides comprehensive information on commits, issues,
and project historyﬂ For commits, we download all the
JSON files of commits, which contain commit messages, the
number of line additions and deletions, file changes, and so
on. To compute bug-resolution time, we download the JSON
files of issues, which contain issue title, labels, state, creation
time, close time, and the times of every comment. Due to a
restriction of the GitHub API (5,000 accesses per hour), we
skip projects with very large commit history (which cannot
be downloaded within 24 hoursﬂ

Step 2. Extraction of related information. As described in
Section we identify bug-resolution commits through
keyword searches. Some projects contain multiple lan-
guages, for which we only extract changed code belonging
to their primary language (the language that occupies the
most executable lines of code). Specifically, we use Github’s
own file extension library, the Linguist libraryﬂ to identify
relevant changed files.

We did not use GitTorrent [40] to obtain the project information because
that it has not been maintained since 2015.

In total 15 projects (2.5%) were skipped due to this constraint.

https:/ /github.com/github /linguist
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As far as we know, the file extensions in the Linguist
library for the 10 languages we studied do not have coincid-
ental mislabelling that may lead to inaccurate language file
identification, which has been noted as a possible threat to
validity [19].

Step 3. Filtering. We observe that the ‘popular’ project
criterion (based on stars) is also associated with other indic-
ative metrics such as #issues, #contributors, and #commits.
For example, in our subjects, only 1 project has fewer than 10
issues; only 6 have fewer than 20 commits. We also manually
checked the corpus for duplicate projects and found no
evidence of duplication.

We first removed projects with no bug-resolution commit
(this resulted in 65 projects being excluded). Having applied
this filter, the language with fewest remaining projects had
46 projects. Therefore, in order that we maintain the same
number of projects per language, we chose 46 projects per
language from the remaining total data set, selected in
descending order of popularity, so that we now have the
46 most popular (non zero commit) projects per language.

When checking bug-resolution time, we removed pro-
jects with no bug-resolution issues (this resulted in 137
projects being excluded). The language with fewest projects,
after this filtering phase, had 35 projects. Therefore, we
chose 35 projects per language (once again, in descending
order of popularity).

Some issue resolutions consume surprisingly low time
(e.g., within one minute). After manual inspection, we
found that there are cases which developers may have
created issues for already-fixed bugs, then closed them
immediately, merely for the purpose of issue recording. To
ensure that such trivially immediately resolved issues do
not adversely affect our results, we removed 3,965 (3.5%)
issues whose resolution time is less than 2 minutes.

3.3.2 Data Analysis

To answer RQ1 and RQ2 we rank the languages and categor-
ies based on the median bug-resolution size/time, calculate
the multiple regression results (Section [2.2), and report the
ScottKnott analysis results. To answer RQ3, we calculate the
correlation between each project feature (including lines of
code, project age, number of commits and contributors) and
bug-resolution size/time. We also include these features in
multiple regression models and compare their coefficient
values with those of the languages. To answer RQ4, we fol-
low previous work [1] by manually classifying projects into
six domains: Application, Database, Codeanalyser, Middle-
ware, Library, and Framework (details are provided in our
web page [23] for this project, which contains data and res-
ults to support replication and re-analysis). We then analyse
the correlation between domains and bug-resolution size/-
time, to check the extent to which there is evidence for a
correlation between application domain and bug-resolution
size/time.

To reduce potential threats to validity arising from
manual classification, two authors classified all the projects
independently, and then a third author re-classified the
projects where the first two gave conflicting classification.
The Cohen’s Kappa coefficient [41] for inter-rater agree-
ment between the first two raters is 0.734. This indicates a
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Figure 1: RQ1.1: Median-value comparison. X-axis represents different languages ranked by medians in descending order.
The first row is for project-level median (each project contributes a single data point); the second row is for commit-level

median (each commit contributes a single data point).

reasonable level of agreement in manual classification out-
comes [42], [43]], but independent re-analysis and replication
would help to further reduce any threats to validity here.

4 RESULTS AND ANALYSIS

In this section, we present the results of our study. For
RQ1 and RQ2, we first give the observations of the three
analysis results: median-value analysis, multiple regression
analysis, and ScottKnott analysis (each analysis approach
corresponds to one sub-RQ), and then summarise the find-
ings.

4.1

This section introduces our experimental results for answer-

ing RQL1.

RQ1: Differences among Programming Languages

4.1.1 RQ1.1: Median Value Comparison

We rank the bug-resolution size/time of programs written
in each language according to the medians of their project
efforts in project and commit level analysis respectively.
Figure|I|shows the results. From the figure we observe that,
for both types of median value comparison Java and C#
projects exhibit a higher median number of modified lines
and files during bug resolution than the other languages,
while Python and Ruby projects lie at the opposite end.
Additionally, we observe that Java have only one eighth (29
vs. 236) of the resolution time of Ruby in the commit-level
median comparison.

Analysis of the scatter plots provides further insights
into the differences observed in the median size of commits,
and the median bug resolution time differences between lan-
guages. For example, looking at the scatter plot for bug res-
olution time for Ruby and Java, we see that the Java projects
in our corpus include six with a large number of quickly-
resolved issues. These kinds of projects consequently have
a very low medium resolution time, whereas Ruby has only
one such project.

4.1.2 RQ1.2: Multiple Regression

Table [3|shows the regression analysis results. The languages
are ranked based on their project-level coefficient values
(smallest first).

We observe that similar to median-value analysis, pro-
jects in the corpus written in Java and C# have the largest
coefficient values for bug-resolution size for both project-
level and commit-level analysis, while those in Python,
C and Ruby have smallest coefficient values. For bug-
resolution time, projects in Go has the smallest coefficient
in project-level analysis, projects in Java has the smallest
coefficient in commit-level analysis. Ruby has the largest
coefficients for both project-level and commit-level analysis.

4.1.3 RQ1.3: ScottKnott Analysis

The results of ScottKnott analysis are shown by Column ‘SK’
of Table 3] Each letter represents one clustered group. The
ranking of letters corresponds to the ranking of languages
based on treatment means.

We observe that each analysis has at least two groups, in-
dicating that significant differences exist among the projects
written in different programming languages in our corpus
for bug-resolution size/time. Commit-level analysis yields
more groups than project-level analysis. This is because in
project-level analysis, there is one data point for each project
with a median bug-resolution size/time among all commits
of this project, and the diversity of bug-resolution size/time
is reduced.

For commit-level analysis, the rankings of different pro-
gramming languages are consistent with the results we
witnessed using both multiple regression and median-value
comparison. We do not repeat the observations here, but
summarise our conclusions from the three analyses in the
below.



Table 3: RQ1.2&RQ1.3: Multiple linear regression and Scot-
tKnott results for different languages. In each cell, the
first/second value is for project/commit level analysis.

Lines of code for bug-resolution

Language Coeff. t-value Pr(>t) | SK
C# 334 /3.62 2246 /69140 <2e-16 / <2e-16 | a/a
Java 321 /357 21.60/694.00 <2e-16 / <2e-16 | a/b
Go 293 /349 19.68 /836.80 <2e-16 / <2e-16 | a/c
C++ 2.77 /330 18.62 /81550 <2e-16 / <2e-16 | b/d
JavaScript 2.56 /3.00 1720 /679.50 <2e-16 / <2e-16 | b /e
Objective-C 251 /299 1692 /32070 <2e-16 / <2e-16 | b/ f
Ruby 244 /248 1639 /69950 <2e-16 / <2e-16 | b/h
C 237 /272 1597 /81040 <2e-16 / <2e-16 | b/g
PHP 229 /300 1537 /87570 <2e-16 / <2e-16 | b /e
Python 225/272 1512 /76290 <2e-16 / <2e-16 | b/ g
F-statistics: 247.4 / 5.384e+05

Number of files for bug-resolution
Language Coeff. t-value Pr(>t) | SK
C# 0.77 /1.03 1042 / 382.60 <2e-16 / <2e-16 | a/a
Java 0.55/094 743 /35330 5054e-13/ <2e-16 | b /b
JavaScript 039 /0.62 536 /27340 1.33e-07/ <2e-16 | c/ g
Go 039 /082 524 /38190 25le-07/ <2e-16 | ¢/ ¢
Ruby 0.38 / 0.48 516 /26030 3.79e-07 / <2e-16 | ¢ /i
C++ 0.35 / 0.71 4.73 / 34250 3.00e-06 / <2e-16 | c /e
Objective-C 033 /0.70  4.47 / 145.80 9.83e-06 / <2e-16 | c/ f
PHP 0.23 /0.77  3.09 / 433.60 0.002 / <2e-16 | d / d
Python 0.18 / 0.44 2.37 / 238.10 0.018 / <2e-16 | d/j
C 0.13 /071 1.71 / 342.50 0.088 / <2e-16 | d / gl
F-statistics: 30.7 / 1.021e+05

Time for bug resolution

Language Coeff. t-value Pr(>t) | SK
Ruby 547 /5.10 19.09 / 136.91 <2e-16 / <2e-16 | a/a
Objective-C 519 / 468  18.13 / 69.88  <2e-16 / <2e-16 | a/b
C++ 490 /441 1711 / 141.03 <2e-16 / <2e-16 | a/c
C 470 /439 1640 /9469  <2e-16 / <2e-16 | a/c
C# 462 /441 1614 /16758 <2e-16 / <2e-16 | a/c
JavaScript 438 /431 1528 /148.63 <2e-16 / <2e-16 | b/c
Java 424 /332 1481 /9678 <2e-16 / <2e-16 | b/ f
PHP 422 /428 1474 /20519 <2e-16 / <2e-16 | b/c
Python 415/378 1449 /18564 <2e-16 / <2e-16 | b /e
Go 3.84 /392 1340 /14328 <2e-16 / <2e-16 | b/d
F-statistics: 257.5 / 2.091e+04

Finding for RQ1: In our corpus, projects written in
Java and C# exhibit notably higher bug-resolution
size than the other languages. Projects written in
Ruby consume notably higher bug-resolution time
than those written in the other languages.

In particular, if we use the median bug-resolution size/-
time of the projects in each language to conduct quantitative
comparison, we have the following findings for the pro-
grams in our corpus that, we believe, merit closer scrutiny,
re-analysis and replication attempts in future work: 1) Java
and C# bug-resolutions occupy 2/3 times as many lines as
Ruby and Python in project/commit-level analysis; 2) Java
and C# bug-resolutions touch 2 times as many files as Ruby
and Python; 3) Ruby bug-resolution consumes 2.5/8.1 times
as much time as Java in project/commit-level analysis.

Connection between RQ1 and Great Debates

In the following, we examine the results within each lan-
guage, exploring the extent to which they confirm and relate
to existing perceptions of the language. Clearly with such
a large scale study (with so many potentially confounding
factors), any analysis based on our initial results will be
somewhat speculative. Nevertheless, we include this discus-
sion here, and its relation to great debates on programming
languages, as one way of highlighting potential avenues for
future work.
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An interesting multi language pattern we can observe
is that Go and Java both have more line/file modifications
yet exhibit lower bug-resolution time, which leads to the
conclusion that programs occupying more line/file modifications
do not necessarily consume more bug-resolution time. Similarly,
Ruby has fewer line/file modifications yet exhibits longer
bug-resolution time, which leads to the conclusion that
programs occupying fewer lineffile modifications do not neces-
sarily consume less bug-resolution time. If replicated, more
widely, this pattern may partially explain the great debates
regarding the perceived impact of programming languages
on bug-resolution characteristics.

We now turn to exploration of the results for each
individual language, and the connection between these and
claims in the literature about such languages.

Results on Java. Java project bug fixes occupy more
line/file modification, yet consume less bug-resolution time. The
finding about bug-resolution size concurs with the claim
that Java is a verbose language [44]. Our results indicate that
this perceived verbosity may carry over to bug resolution
(and, indeed, to commit size more generally, see Section.

Despite the perceived verbosity we find, Java is one of
the languages with lower bug-resolution time. In particular,
in commit-level analysis, Java projects have the least bug-
resolution time. One reason may relate to the claim that
there are large number of declarations required in Java, such
as type declaration, method parameter types, return types,
access levels of classes, exception handling [44]. Perhaps
this makes the language verbose yet at the same time
provides additional documentation, making the code easier
to understand and, thereby, to debug [45].

Results on Python. Python projects in our corpus occupy
less bug-resolution size and time. Python is widely believed to
have a large set of libraries and a very active community,
which may make it easier for developers to find support
during bug resolution. It is also reported that there has
been a trend in the Python community to improve code
quality by dictating “one right way” [46]. The maturity of
the community and the effort of adhering to best practices
may facilitate bug resolution.

Results on Ruby. Ruby projects in our corpus exhibit
longer bug-resolution time. As a dynamic language, Ruby
is designed to make programming a “pleasant” and “pro-
ductive” experience [47], which does not have hard rules on
writing code [48]. One example of the flexible features of
Ruby is “monkey patching”, which refers to the extension
or modification of existing code by changing classes at run-
time, where any class can be re-opened at any time and
amended in any way. It is a flexible technique that has
become popular in the Ruby community; but this flexibility
may lead to hard-to-diagnose clashes [49].

We investigated how frequently “monkey patching” is
used within the Ruby projects we studied. As “monkey
patching” refers to dynamic modifications of a class or
module at runtime, it is not easy to judge whether a project
has adopted it merely based on static analysis. Instead, we
searched all Ruby project sources (comment, commit mes-
sages, issue discussions) using keyword “monkey patch”.
We then manually confirmed the search hits. Overall, key
word searching helped us to confirm that at least 40 out of
the original 57 Ruby projects have used monkey patching.



Results on C, C++ and Objective-C. When compar-
ing C, C++ and Objective-C, we observe that projects in
Objective-C exhibit higher bug-resolution time. We note that
Objective-C has a mixture of static and dynamic typing,
whereas plain C and C++ objects are statically typed.

To investigate, in more detail, how often dynamic typ-
ing is used in the Objective-C programs we studied, we
manually analysed the source code files of the Objective-
C projects. As mentioned in the Apple documentatiorm
Objective-C uses the id data type to represent a variable
that is an object without specifying what sort of object it is
(dynamic typing). With this information and manual con-
firmation, we found that 90% of our projects have adopted
dynamic typing.

4.2 RQ2: Differences among Language Categories

To answer the second research question, we apply the three
analysis approaches to the same projects as we used in RQ1.
In RQ1, each project was labelled with a single program-
ming language, whereas in RQ2, each project has two labels
according to its language’s approach to types: dynamically
or statically typed, and strongly or weakly typed. We first
compare dynamically and statically typed sets of programs,
then compare strongly and weakly typed sets of programs.

Naturally, such categorisations are fraught with potential
issues, so we must be careful in drawing conclusions. Nev-
ertheless, where differences in median values observed are
sufficiently large, this may highlight potential avenues for
which follow-on research, re-analysis and replication effort
are worthwhile.

4.2.1 RQ2.1: Median-value analysis

We give the results of the median-value analysis as shown
in Figure [2 From these box plots, differences are revealed
between different language categories for patchloc and res-
olutiontime. In particular, dynamically/weakly typed pro-
gram sets occupy fewer line modifications, but longer bug-
resolution time.

4.2.2 RQ2.2: Multiple Regression

The same as RQ1.2, we perform multiple linear regression
analysis, and observe the coefficient values of different lan-
guage categories. Larger coefficients indicate more contribu-
tions the variable has to the regressed model. Table #shows
the results. In the table, we observe that dynamically typed
program sets have lower coefficient values in bug-resolution
size but a higher coefficient value in bug-resolution time,
than statically typed program sets. The p values and t values
give some degree of confidence in these observations, but
further study with other corpora and re-analysis would be
beneficial to confirm or refute.

Based on these observations, there is evidence that
dynamically typed program sets contribute less to bug-
resolution size but more to bug-resolution time than stat-
ically typed program sets in the regression model. Similarly,
we observe that bug fixes in weakly typed program sets
occupy more lines and files than strongly typed program
sets, but consume lower bug-resolution time.

Olhttps:/ /developer.apple.com/library/archive/documentation/
General /Conceptual/DevPedia-CocoaCore/DynamicTyping.html
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Figure 2: RQ2.2: Median value comparison. The first/second
two rows are for project/commit-level analysis.

Table 4: RQ2.2&RQ2.3: Multiple regression and ScottKnott
results for different language categories.

Lines of code for bug-resolution

Category Coeff. t-value Pr(>t) | SK
static 292 /323 4297 /1694 <2e-16 / <2e-16 | a/ a
dynamic 241 /279 3540 /1525 <2e-16 / <2e-16 | b /Db
F-statistics: 1550 / 2.597e+06
strong 2.83 / 3.03 40.88 /1599 <2e-16 / <2e-16 | a/ a
weak 2.50 / 2.98 36.09 / 1593  <2e-16 / <2e-16 | b /Db
F-statistics: 1487 / 2.547e+06

Number of files for bug-resolution
Category Coeff. t-value Pr(>1t) | SK
static 043 /074 1265 /74510 <2e-16 / <2e-16 | a/a
dynamic 030 /058 876/612.50 <2e-16 / <2e-16 | b /Db
F-statistics: 118.4 / 4.651e+05
strong 0.45/0.66 13.18 / 680.60 <2e-16 / <2e-16 | a/a
weak 028 /064 833/669.50 9.34e-16/ <2e-16 | b /Db
F-statistics: 121.5 / 4.557e+05

Time for bug resolution

Category Coeff. t-value Pr(>t) | SK
dynamic 4.68 /421 3561 /34520 <2e-16 / <2e-16 | a/a
static 446 /410 33.93/290.70 <2e-16 / <2e-16 | a/b

1210 / 1.018e+05

4.68 /434 35.58/310.50
4.47 /403 33.96 / 328.50
1210 / 1.022e+05

F-statistics:

weak
strong
F-statistics:

<2e-16 / <2e-16 | a/a
<2e-16 / <2e-16 | a/b

4.2.3 RQ2.3: ScottKnott analysis

To answer RQ2.3, we report the results of the ScottKnott
analysis in Column ‘SK’ of Table [d] For bug-resolution size,
different categories are clustered into different groups. This
means both project-level and commit-level analysis reveal
significant differences (significance level: 0.05) between dif-
ferent categories. For bug-resolution time, there are signi-
ficant difference for commit-level analysis. Nevertheless, for
project-level analysis, we did not observe such significance.

Compared with median-value comparison in RQ2.1
and multiple regression in RQ2.2, statically/strongly typed
program sets tend to occupy more line/file modifica-
tions yet lower bug-resolution time compared to dynam-
ically /weakly typed program sets, but the difference is not
large for bug-resolution time.


https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/DynamicTyping.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/DynamicTyping.html

As mentioned in Section four Python projects in our
dataset contain a small amount of static typing. We checked
the number of files containing static typing for these four
projects and found that projects with more static typing
tend to consume less bug-resolution time. Obviously, this is
not a finding that we can support with inferential statistical
analysis due to the small number of projects with static
typing. Nevertheless, it is an interesting observation and
suggests further research to compare static and dynamic
typing within the same language.

The community migration from an untyped language
to a typed language will make an excellent opportunity
for more in-depth study. Perhaps this might be an avenue
for further research, since project communities that mi-
grate, while retaining the same ecosystem and developer
teams will present an opportunity to study what happens
when projects become typed. Also, there may be fewer
confounding factors, when such ecosystems remain in place
throughout the migration.

Overall our results point to the following finding:

Finding for RQ2: Strongly/statically typed pro-
grams in our corpus have bug resolutions that tend
to occupy more lines and files. Dynamically typed
programs tend to consume longer bug-resolution
time.

In particular, if we use the median bug-resolution size/-
time of the projects in each language category to conduct
quantitative comparison, we have the following findings for
the programs in our corpus: 1) dynamically typed language
bug-resolutions occupy 37.5% fewer lines, yet consumes
60.6% more bug-resolution time than statically typed lan-
guages; 2) weakly typed language bug-resolutions occupy
20% fewer lines, yet consume 47.2% more bug-resolution
time than strongly typed languages.

We calculate time and size of a bug resolution in different
ways and one different (but overlapping) set of projects,
so these observations are not directly pairwise comparable.
Nevertheless, the observation of these differences over the
corpora studied does seem intriguing and, therefore, per-
haps a worthy priority for follow-on study.

Connection between RQ2 and Great Debates

As with RQ1, we observe that statically and strongly typed
projects have more line/file modifications yet exhibit lower
bug-resolution time, which again leads to the conclusion
that projects occupying more line/file modifications do not
necessarily consume more bug-resolution time.

This observation may partially explain the great debates
regarding the perceived impact of types on bug-resolution
characteristics. In particular, programmers or researchers
may have used different measurement criteria, e.g., the
amount of line modification or the amount of time spent
in bug resolution, and consequently, might have drawn
apparently contradictory conclusions.

We see some evidence for this in the narratives found
in the literature hitherto. For example, Kleinschmager et
al. [3] and Hanenberg et al. [4] presented results that suggest
that statically typed languages have lower bug-resolution
time. However, their empirical studies used bug-resolution
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time as the sole measurement criterion. By contrast, Tratt
et al. [50] called statically typed languages “the enemy
of change” because, they claim, statically typed languages
require more complex code modifications. Our results in-
dicate that both claims may be correct, yet not necessarily
inconsistent.

At the same time, we observe that statically and dynam-
ically typed commits have similar median bug-resolution
time in our commit-level analysis. This may provide another
explanation for the existence of the great debates over types
in languages.

4.3 RQ3: Correlation between bug resolution charac-
teristics and other Project Features

To answer RQ3, we calculate the Pearson/Kendall’s
7/Spearman correlation between the four project features
and bug-resolution size/time. Table [5| presents the correl-
ation results. For each feature, the first row shows the
correlation coefficient values, the second row shows the
corresponding p-values. From the table, most correlation
coefficients are below 0.15, indicating that the project fea-
tures we studied have very weak or no correlation with
bug-resolution size and time.

Table 5: RQ3: Correlation (Pearson/Kendall’s
T/Spearman)between project features and bug-resolution
characteristics. The second row for each feature shows
p-values for each correlation analysis.

Feature Size (Sloc changed)  Size (files touched) Time (hours)
sloc -0.01/0.16/0.24 0.00/0.09/0.12 -0.07/-0.06/-0.09
0.85/2e-07/3e-07 0.96/0.01/0.46 0.18/0.10/0.08

commit -0.03/0.05/0.08 -0.03/0.03/0.04 -0.11/ -0.05/-0.07
0.54/0.08/0.09 0.46/0.44/0.43 0.04/0.14/0.16

age -0.11/-0.09/-0.14 -0.12/-0.04/-0.05 0.12/0.18/0.26

0.02/0.00/0.00
-0.06/-0.02/ -0.03
0.03/0.56/0.58

0.01/0.33/0.33
-0.07/ -0.01/ -0.01
0.12/0.80/0.77

0.02/7e-07/6e-07
-0.11/0.00/0.01
0.05/0.99/0.89

contributor

In addition, we investigate the impact of project features
on bug-resolution characteristics by including them in the
multiple regression model. We then compare the coefficients
of the project features with different languages, to see
whether the regression is dominated by any project features.

The results are shown by Table 6} For ease of com-
parison between project feature coefficients and language
coefficients, we present the the smallest coefficient for lan-
guages in the last row. From this table, we observe that the
coefficients of project features are all smaller than language
coefficients.

Table 6: RQ3: Coefficients of project features in multiple
regression.

Feature Size (Sloc changed)  Size (files touched)  Time (hours)
sloc 0.15 0.73 0.05
commit -0.07 -1.55 -0.36
age -0.21 -1.81 0.82
contributor -0.00 0.61 0.24
language (smallest) 1.54 4.56 4.05

These observations tend to suggest that the differences
we observed among different languages and categories are
less likely to be associated with project LOC, age, the num-
ber of commits, or the number of contributors.



Table 7: Projects of different domains inside each language.

Language App. Database CA MW Lib. Frame. Others
C 14 3 4 4 12 5 4
C# 10 3 0 16 13 4 0
C++ 9 3 5 6 18 2 3
Go 14 2 9 9 5 5 2
Java 7 2 2 8 23 1 3
JavaScript 3 2 0 17 20 1 3
Objective-C 3 4 3 11 24 1 0
PHP 5 5 0 18 12 2 3
Python 11 3 1 11 7 6 7
Ruby 8 6 0 13 16 1 2

Finding for RQ3: We found little evidence that
project SLOC, commit number, project age, and con-
tributor number have a strong correlation with bug-
resolution size or time.

4.4 RQ4: Correlation between bug resolution charac-
teristics and application domain

We have shown that bug-resolution characteristics are dif-
ferent among different categories of programs. However,
since programming languages may be designed with a
specific application domain in mind, we would like to
know whether the above findings are domain dependent.
In this section, we address this question by examining the
correlation between domain and bug-resolution size/time.

As a start, we count the number of projects belonging
to each domain for each language (details in Section
for the 460 projects adopted in bug-resolution size analysis.
We then check whether there is a strong connection between
languages and domains. Table[7]shows the results. The num-
bers in the table represent the number of projects written
primarily in the given language and domain. For example,
there are 14 projects in C that belong to the Application
domain. From the rows of the table, we observe that all
languages have a diverse domain distribution, with each
containing at least five domains. From the columns of the
table, we can see that the number of projects is similar
across different languages, with the Library domain (shown
by Column ‘Lib.”) having more projects for most languages.

We also calculated the Cramer’s V value between do-
mains and languages, which is another correlation-based
measure of association between two nominal (categorical
in our case) variables [51]. The value of this statistic is
merely 0.20, indicating a weak association betweenthe two
variables.

These observations indicate that, for our subjects, there is
no strong correlation between languages and domains. We
thus have the following conclusion:

Finding for RQ4: We found little evidence to sug-
gest that any application domain we explored was
strongly correlated to bug resolution size/time.

5 EXTENDED ANALYSIS

In this section, we extend the analysis by looking at a
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5.1 Aggregated and Normalised Bug-resolution Size

The previous sections evaluate bug-resolution size from two
aspects: the number of modified lines and files. These two
aspects are studied separately. Developers and researchers
may be also interested in the aggregated measurement cri-
teria line*file (i.e., the product effect of modified lines and
files), or the normalised measurement criteria line/file (i.e.,
how many lines are modified per file on average in bug res-
olution). We present the results for these two measurement
criteria in this section.

Figures [3| and [4] show the results. Compared with Fig-
ures [1|and |2, we see similar results for both languages and
categories, except that the differences revealed by aggreg-
ated bug-resolution size are more obvious. This provides
some evidence of robustness under different re-analyses,
but more work is needed to provide greater certainty in our
scientific conclusions from these observations.
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Figure 3: Extended Analysis: Aggregated/Normalised bug-
resolution size for different languages.

5.2 Results on Commits Not Related to Bug-Resolution

This paper is about bug-resolution characteristics, and thus
for data analysis we collected and focused on commits that
are identified as bug-fixing. Nevertheless, the differences
we have observed among the projects written in different
languages/categories might have arisen from the language
characteristics themselves. In other words, some language
characteristics, e.g., the observed verbosity of Java projects,
may also be observed for other commits that are not related
to bug-resolution.

To evaluate whether the observed differences exist in all
commits, we repeat our project-level median-value analysis
on the commits of each projects that are not identified as
related to bug-resolution''| Figure|5|shows the results. Com-
pared with Figure |1} we have the following observations
for the projects in our corpus: 1) the ranking of languages
based on the sizes of patches (i.e., SLOC and number of files)

wider set of characteristics of different languages and their 1 We extract 1% of the non-bug-resolution commits for each project due

connections to bug-resolution.

the large numbers.
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Figure 4: Extended Analysis: Aggregated bug-resolution
size for different language categories.

among non-bug-resolution commits is similar to that among
bug-resolution commits; 2) however the same is not true for
the issue resolution time ranking. For non-bug-resolution
commits in different languages, the issue resolution time are
similar to each other, in contrast to the larger disparity we
observed for bug-resolution issues.

These observations indicate that, for bug-resolution size,
the characteristics do carry over from the general case of
all commits to the specific case of bug-fixing commits; yet
Simpsons’s paradox [52] alerts us to the fact that we cannot
automatically assume such a ‘carry over’ from general to
specific without such analysis.
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Figure 5: Extended analysis: Median-value comparison for
non-buggy commits (project-level).

6 IMPLICATIONS

We have presented evidence that bug-resolution character-
istics are different among projects written in different pro-
gramming languages and language categories in our corpus.
In this section, we look at how the results, if replicated, may
be useful in other areas of software engineering research.
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6.1 Improving Predictive Models for Planning

One potential application of our results is in the predic-
tion of bug-resolution size/time, a problem that has been
recognised as difficult, but has broad practical benefits in
software development [53]], [54]. There are two categories
of predictions. One is to estimate the resolution size/time
of a specific bug in a project [53], [55]. For multi-language
projects, bugs belonging to different languages may have
different bug-resolution size/time. The other is to predict
the general level of bug-resolution cost of a project, rather
than a specific bug [56], [57].

As far as we are aware, no work in this area has con-
sidered programming paradigm. If these results are replic-
ated, future work might develop bug-resolution predictive
models with the consideration of programming languages
and paradigm, for better tuning and awareness of differ-
ences, should these prove more general, longstanding and
widespread.

6.2

Scheduling of tasks, including the task of bug resolution, is
a major part of the software engineering process. Our results
suggest that the bugs of different language ecosystems have
different handling characteristics, which could be factored
into the effort-estimation process. This is particularly true
for multi-language projects, where one may need to consider
the language attribute of each bug when assigning them.

Implications for Managers

6.3

Our results suggest the possibility of including program-
ming language as a feature in automatic bug-resolution
prediction. Our results indicate that such language-aware
models may be more accurate for automatic prediction. For
the area of automatic bug repair, our findings provide evid-
ence that different languages may need patches of different
sizes. Judged by the amount of line and file modification
required, our results suggest that larger patches may be
considered for automatically fixing for C#, Java, and Go.
These languages may also benefit from techniques tuned to
search a larger space (across more lines and files) for finding
suitable patches.

Moreover, program sets that exhibit higher than aver-
age bug-resolution time may require different approaches
to those that exhibit lower resolution time. For the area
of mutation testing, our results also suggest that projects
in different languages may need different-size mutants to
simulate real faults.

Implications for Researchers

7 THREATS TO INTERNAL/EXTERNAL VALIDITY

The primary threat to internal validity lies in the imple-
mentation of the study. To reduce this threat, the authors
independently reviewed the experimental scripts to check
their correctness.

The threats to external validity lie primarily with the
subjects. We decided to pick the most popular projects for
each language which, by definition, is not representative of
all programs. However, we believe that it is more useful
to study the most widely engaged and supported efforts
of the communities, compared to, for example, randomly



selecting projects. Random selection may risk ‘polluting’ the
data with non-serious projects.

We took several steps to address the threats to construct
validity.

Large dataset and multiple measurement metrics. Our exper-
iment is relatively large scale, and we employed a variety of
metrics to access the bug-resolution characteristics.

Data validation. To increase confidence and check for the
threats to construct validity, we sampled a random selection
of the data we collected, involving 520 commits from all
selected projects, and manually checked them. We found
that 85.4% of them are ‘clean’ (i.e., involving only the fixing
of a single bug, and all the code modification is related to
the bug-resolution).

To reduce the threat of language identification for a
source code file, we use Github’s own file extension library,
the Linguist library, to identify relevant changed files. As far
as we know, the file extensions in the Linguist library for the
10 languages we studied do not have coincidences that may
bias language file identification.

Other threats to construct validity might emerge from
the assessment of elapsed time in resolving a bug. We
used the interval between the opening time and the time
of the last comment before closing to approximate bug-
resolution time. This has been shown to be a more accurate
measurement of bug-resolution time than the (seemingly)
more intuitive choice of the interval between the opening
and closing time [18].

Multiple analysis approaches. To reduce the risk of bias
caused by a single analysis approach, we refined and aug-
mented the approach of Ray et al. [1] and adopted three
different analysis approaches: multiple-regression analysis,
median-value analysis, and the ScottKnott analysis. The
consistency in the results of our different analyses tends to
increase confidence.

An inherent threat to validity in large-scale empirical
studies such as ours derives from the potential for con-
founding factors. To reduce the number of potential in-
dependent variables that might otherwise confound our
results, we investigated several non-language factors.

8 RELATED WORK

Comparison of Languages on bug-resolution. Several pre-
vious authors have focused on the empirical comparison
of either maintainability or bug-resolution characteristics
among two or three types of programming languages. Bhat-
tacharya et al. [2] statistically analysed four open-source
projects developed in C and C++. They measured main-
tainability by the number of lines modified during bug-
resolution, reporting that a move from C to C++ results in
reduced maintenance effort. The paper concluded that C++
code requires less maintenance effort than C.

Kleinschmager and Hanenberg et al. [3]], [4] compared
the bug-resolution time for Java and Groovy on one pro-
gramming task. Their results indicate that programs written
in Groovy (a dynamic languages) require more time in bug
resolution, and attributed the difference to the benefit of
static typing. Steinberg [58] provided some evidence that
static typing exhibits some correlation with lower debug-
ging time if only non-type errors are considered.
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Some researchers have written polemics against the

usage of static languages. Nierstrasz et al. [7] described
static languages as “the enemy of change”, claiming that
dynamic languages are easier to maintain. Tratt et al. [50]
also claimed that, compared to dynamic languages, static
languages have higher development cost and require more
complex changes. Sanner et al. [59] described Python as a
“smaller, simpler, easy to maintain, and platform independ-
ent” language due to its dynamic typing features. Oliphant
et al. [60] gave a similar verdict.
Comparison of Languages on Other Aspects. There is
work comparing programming languages from other as-
pects, particularly software “quality” (i.e., the number of
bugs generated rather than the effort required to handle
them).

Phipps [61] conducted an experiment to compare pro-
grammer productivity and defect rate for Java and C++,
and reported that Java is “superior”. Daly et al. [62] empir-
ically compared programmer behaviours under the stand-
ard Ruby interpreter, and DRuby which adds static type
checking to Ruby. They found “DRuby’s warnings rarely
provided information about potential errors”. Hanenberg
et al. [63] conducted an empirical study on a static type
system for the development of a parser. They reported that
“the static type system has neither a positive nor a negative
impact on an application’s development time”.

9 CONCLUSION

We presented a large-scale study to investigate the con-
nections between programs categorised by programming
language and bug-resolution characteristics. We found evid-
ence that for projects written in Java, bug resolution con-
sumes less time than other languages, while for those writ-
ten in Ruby, bug resolution consumes more time; we also
found that statically typed projects have fixes that occupy
more lines and touch more files than dynamically typed
ones. We found no evidence for correlation between bug-
resolution time and size, nor any evidence for correlation
with size, age, commit number, nor with target domain.

Inherent in this kind of large scale empirical study,
concerning multiple projects and languages, there are many
confounding factors, data sanitisation issues, and other
threats to the validity of any scientific conclusions and
claims. While we have been careful to capture and high-
light as many potential threats as we can, undoubtedly
others remain. Nevertheless, we believe that such large-
scale empirical studies are worthwhile. In particular, where
observations reveal large median differences in the cor-
pora studied, this may suggest worthwhile avenues for re-
analysis, replication and follow-on research.
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