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Abstract

Literature reports of biotransformations using whole cell biocatalysts in two-liquid
(organic / aqueous) phase systems show the advantages of such systems in specific
circumstances. The primary problems to be resolved in the operation of these
systems are the reduction in stability of the biocatalyst, and the separation of the
product from the multiphase reaction.

The particular problem brought about by the contact of the two liquid phases in the
presence of biological material and subsequent need for their separation, was
investigated. The major problem was the formation of an emulsion, stabilised by
biological material.

This thesis describes the development of experimental tools used to examine the
relationship between stability of the biocatalyst, and the difficulty of phase
separation from a two-liquid phase stirred tank reactor.

The stability of the catalyst on exposure to discrete and dissolved solvent was measured
by changes in the capacitance of the cell suspension. The capacitance of a suspension
being proportional to the level of cells with an intact membrane. The time taken to
reduce the capacitance to half the original value was described as the C1/2 value.

The difficulty of phase separation was quantified using a variation of the settling test;
the time taken for the emulsion volume to reach that of half the original organic
phase volume was described as the E1/2 value. Thus a low E1/2 reflects a difficult
separation.

These tools were used to determine the affect of solvent on cells. Saccharomyces
cerevisiae (yeast), Arthrobacter simplex (Gram positive), Pseudomonas putida and
Pseudomonas aeruginosa (Gram negative) and the solvents toluene, nonanol,
tetradecane and hexane were used for illustrative purposes.

One of the uses of the tools was in the selection of a suitable cell and solvent
combination for a biotransformation; as an example S. cerevisiae was shown to have
a high E1/2 value and a relatively low C1/2 value; P. putida had a higher C1/2 value,
but a low E1/2 value. Thus a trade off in cell / solvent selection is required.

Finally this thesis reports on physical methods which can be used in the separation of
an emulsion. Centrifugal methods were shown to be not always effective in
emulsion separation. In these cases other methods may be used. The use of
hydrophilic and hydrophobic membrane systems operated at pressures below the
membrane breakthrough pressure allowed the separation of the liquid phases; the
same membrane systems operated at higher pressures acted as coalescing filters and
retained only biological material. An effective method for separation was found to
be the removal of the bulk of the aqueous phase from the emulsion using centrifugal
or membrane techniques, followed by subsequent coalescence of the organic phase
by application of shear.
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CHAPTER 1
1.1 INTRODUCTION

Biocatalysts have been used in the production of a wide variety of chemicals
including primary metabolites such as alcohols and acetate, as well as proteins and
enzymes. Increasingly, biocatalysts are being investigated for use in the production
of chemicals where the structural configuration is important. Although these
compounds can be made chemically, the regio and stereo specificity is poor, and
complex techniques are required to direct their manufacture. Biocatalysts make this
synthesis possible often in single step stages, whereas with traditional chemistry

multistep manufacture is required.

Increasingly, biocatalysts are also being investigated for possible replacement of
chemical catalysts, in the drive for more environmentally friendly processes (eg the
acrylamide process described by Nagasawa et al/, 1993) and as they allow the
production of a large range of compounds using mild reaction conditions (often near
at ambient temperatures and pressures).

The biocatalyst may be a whole cell, or an isolated enzyme. There will be
advantages in considering a whole cell biocatalyst where:-

i) cofactor regeneration is required,
ii) the biotransformation is a multienzyme process,
iii) enzyme isolation is difficult or expensive (Bucke and Wiseman, 1981),

iv) the enzyme required is a multicomponent complex requiring a specific three
dimensional configuration (eg Crutcher and Geary, 1979).

This thesis is concerned with the separation of insoluble biological material
downstream from a whole cell biotransformation and as such further discussion is
primarily concerned with the use of whole cell biocatalysts.

A common factor in many biocatalytic processes is the extremely dilute nature of the
product compound. This may be due to the toxicity of the compound, requiring that
it be produced in low concentrations, or due to the low solubility of the substrate and
/ or product in an aqueous environment. Alternatively, many biologically catalysed
reactions are controlled by concentration of product, with high product
concentrations inhibiting their synthesis. In all instances, the major problem facing
the engineer is the separation of the product compound from a dilute solution, which

may also contain a large amount of contaminating material.

The addition of a second liquid (organic) phase can be used to increase reactor
concentration of product. The organic phase has in some instances been described to
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act as a solvent to increase the reactor concentration of poorly water soluble
compounds, acting as a substrate reservoir and / or a product sink. In other cases the
organic phase has been reported to act as a reservoir for the toxic substrate,
controlling its aqueous phase concentration. The organic phase also has various
effects on the biocatalyst - affecting stability, activity and the reaction catalysed per
sé. In addition to necessitating different separation techniques, the solvent may also
effect separation by concentrating the product in the organic phase, simplifying
downstream processing, and facilitating integration with chemical syntheses.
Disadvantages of adding solvent to a reactor utilising whole cells as biocatalyst,
however, may include the degradation of the biocatalyst resulting in reduced activity
and formation of a stable dispersion with associated liquid phase and biocatalyst
separation difficulties.

This thesis investigated the impact of the addition of a second organic phase in a
whole cell biocatalytic reactor, in the associated areas of catalyst stability and
separation requirements. Methods of separation of the whole cell biocatalyst were

also considered.

1.2 TWO LIQUID PHASE BIOCATALYSIS
1.2.1 Advantages of two-liquid phase biocatalysis

A number of advantages of biocatalysis in a two liquid phase environment have been
quoted. These advantages are summarised in Table 1.1.

Lilly and Woodley (1985) suggest that a particular advantage of two liquid phase
biotransformations is the possibility of operating the reactor such that the product is
concentrated in the organic phase, which can be easily separated, thus overcoming the
need to work with dilute aqueous solutions with the associated problems of product

recovery.

Apart from the benefit of concentrating the product in the organic phase, with
associated downstream processing benefits, examples abound which show a perceived
increase in biocatalyst activity (ie productivity) due to removal of end product
inhibition, by keeping aqueous concentrations of product below critical levels (eg

Bruce and Daugulis, 1991).

Similarly, the aqueous concentrations of toxic substrates can be kept below critical
levels by selection of an appropriate solvent and phase ratio such that only a sub-
critical concentration of substrate partitions to the aqueous phase (eg Hack, 1992).



Advantage Reference

high reactor concentrations of poorly water soluble Woodley and Lilly 1990,
organic compounds (reactants and / or products) Khmelnitsky et al 1988

ease of product recovery Lilly and Woodley 1985,
Klibanov 1986

ease of integration into chemical processes Woodley and Lilly 1990

control of concentration of xenobiotic reactants / Fukui and Tanaka 1985

products

increased activity / stability of biocatalysts Klibanov 1986

shift thermodynamic equilibrium in favour of Antonini et al 1981,

desired products Koike 1988

contamination control Klibanov 1986

ease of biocatalyst separation Klibanov 1986
Table 1.1 Advantages of two-liquid phase biotransformations

Though many papers refer to "ease of product recovery" and "ease of separation of
biocatalyst", little work would appear to have been performed in the investigation of
these statements, though a number of authors have recognised the need for
investigation (eg Lilly et al, 1987a) while others have suggested process integration
techniques to minimise difficulties associated with biocatalyst and product
separation, eg immobilisation of biocatalyst in gels (eg Frank and Sirkar, 1986), and
membranes (eg Catapano et al, 1988, Larrson et al, 1989).

1.2.2 Reaction classification

It is useful when considering processes involved with biocatalytic reactors to

consider the various reaction configurations available.

A number of classification systems can be made, depending on the nature of the
biocatalyst, the product and substrate distribution between aqueous and organic
phase, and the nature of the aqueous and organic phases.

The biocatalyst may be insoluble - as is the case with whole cells, immobilised whole
cells and immobilised enzymes. Alternatively, the biocatalyst may be soluble - as is
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the case when enzymes are dissolved in the aqueous phase. Lilly and Woodley (1985)
distinguish between three types of aqueous phase in two phase systems:

i) discrete continuous aqueous phase
ii) discrete discontinuous aqueous phase
iii) no discrete aqueous phase

A further possibility exists, and that is
iv) no discrete organic phase.

On this basis, Lilly and Woodley (1985) prepared the classification system presented
here as Figure 1.1, to which has been added the possibility of no discrete organic
phase present. Lilly et a/ (1987b) also distinguish between the possibility of the
organic phase as solvent or as a reaction component.

Lilly and Woodley (1985) also examined the distribution between aqueous and
organic phases of reactant and product. A reaction component (ie product or
reactant) may be predominantly soluble in either the aqueous or organic phase,
although the possibility of similar solubility in both phases cannot be ruled out, (eg O,
solubility). The distribution of reaction components is critical for downstream
processing / integrated bioreactor design. The further possibilities of gaseous and
solid substrates and reactants further complicates any attempt to produce general
design equations to describe biotransformation systems. In examining the possible
distributions of up to two reactants and two products, where reaction components are
predominantly soluble in either the aqueous or organic phase (ie components are not
solid, gaseous nor equally soluble in both phases), 25 distribution possibilities exist.
17 of these possibilities show a distribution between each phase, and 4 possibilities
each for a distribution of all reaction components into either the aqueous phase or the
organic phase. From a downstream processing angle, those systems in which product
and reactant are soluble in different phases may be preferable. In the situation
considered, 8 possibilities show such a distribution. This allows the possibility of
continuous product removal and complete substrate conversion. Those systems in
which all reactants partition into the aqueous phase can be performed in a traditional
aqueous phase reactor (unless any of the other benefits of using an organic phase are
applicable, eg enhanced oxygen transfer, removal of toxic by-products, partitioning
to an organic phase to allow protection from xenobiotic compounds, or product
inhibition). Those systems in which all reactants partition into the organic phase only,
require sufficient water to maintain the stability and activity of the catalyst.
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Figure 1.1

Reaction classification

33 33 .
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(no discrete organic)
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B1,B2,C1,C2,D2 as Lilly and Woodley (1985)
D1 as Halling (1989) low water system
Al, A2 traditional enzyme technology

} free enzyme

HIGH AQUEOQOUS

PHASE INVERSION

HIGH ORGANIC

@ insoiuble biocatalyst (ie whole cell, immobilised cells and enzymes

] organic phase

aqueous phase
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1.2.3 Solvent selection criteria

It is possible to increase the solubility of poorly soluble organic compounds by the use
of water miscible solvents or surfactants. Solvents may also be used to alter reaction
equilibria by reducing water activity. However, the use of such solvents only
increases reactor capacity to a limited extent, and control of solvent concentration is
in many cases critical, with small variances from the optimal being catastrophic
(Butler, 1979).

A more broadly applicable approach is the use of water immiscible organic solvents.
The criteria on which a solvent may be chosen are listed in the Table 1.2.

distribution coefficient for prbduct
selectivity for substrate / product
emulsion forming tendency
aqueous solubility

chemical and thermal stability
properties for product recovery
non biodegradability

non hazardous

inexpensive

availability in bulk quantities
biocompatibility

Table 1.2 Solvent selection criteria (adapted from Bruce and Daugulis, 1991)

More broadly, these characteristics can be split into three areas:-
1) engineering
it) safety

iii) biocompatability
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1.2.4 Engineering aspects of solvent selection

Engineering aspects can be further grouped into those concerned with reaction
component distribution, reactor operation and downstream processing.

1.2.4.1 Reaction component distribution

To maximise the rate of a reaction it will usually be desirable to saturate the aqueous
phase with reactant (this is, of course, not the case with all reactions, eg in the
bioconversion described by Hack (1992) toluene is toxic at saturation concentrations,
and bioconversion of toluene requires close control of toluene concentration. Four
factors affect the levels of reactant in the organic phase; by understanding these, the
concentration of reactant in the reactor can be controlled. These factors are:

[reactantlpn.. Equation 1.1

aqueous

1) partition coefficient of reactant =

[reactant]
If maximum reaction rate occurs at maximum reactant concentration (non-zero order
kinetics), then a low partition coefficient is desirable. The partition coefficient for
product should be high to remove the product from the aqueous phase, thus creating
more favourable thermodynamics - "pulling" the reaction.

organic phase volume

; Equation 1.2
total reaction volume

ii) phase ratio =

By manipulating the phase ratio, the volume of reactant in the reactor can be varied.
At low phase ratios the aqueous phase is continuous, which allows control of this
environment, and concentrates an organic soluble product in the organic phase.
However at higher phase ratios, higher levels of reactant can be dissolved in the
reactor. At higher values again, the aqueous phase becomes discontinuous, with
associated reactor control and downstream processing implications.

reactant consumed

. Equation 1.3
[biocatalyst] * hour

iii) specific reaction rate =

The specific reaction rate of the biocatalyst affects the rate of consumption of
reactant. This rate must be known to be able to contol the level of reactant in the

reactor.
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iv) mass transfer coefficient : %—I: =Kia (C* - Cy) Equation 1.4

The mass transfer coefficient (K, ) influences the rate of transfer of the reactant
(dR/dt) from the organic phase to the biocatalyst, where Cy, is the bulk aqueous phase
concentration of the reactant and C* is the saturation concentration. By controlling
the agitation rate and phase ratio, interfacial area 'a' may be varied, to vary K a.

By knowledge and control of these variables, the concentration of reactant in the

aqueous phase can be controlled.

Bruce and Daugulis (1991) investigate solvent selection on the basis of extractive
capability, and argue that a reaction can be "pulled" forward by removing (extracting)
inhibitory products from the aqueous phase (with a suitably biocompatible etc
solvent), as opposed to "pushing" the reaction forward by saturating the aqueous
phase with substrate (Lilly, 1982). Bruce and Daugulis (1991) suggest the use of
solvent mixtures so that the extractive benefits of low molecular weight solvents with
appropriate downstream processing properties can be combined with biocompatible
solvents to yield a mixture of enhanced extractive properties while remaining
biocompatible.

1.2.4.2 Reactor operation

Factors which affect solvent selection, from a reactor operations perspective, include
density, viscosity and surface tension, which will affect power input requirements to
the reactor, to achieve a given interfacial surface area. Boiling points and freezing
points must also be suitable for reaction conditions.

1.2.4.3 Downstream processing

Solvent properties which will affect downstream processing include those factors
which affect biocatalyst degradation, as well as those factors important in selection for
reactor performance, ie density, viscosity, surface tension, boiling point and freezing

point.

These factors are important for a number of different reasons. Density, viscosity and

surface tension will affect the solvent's tendency to form an emulsion. Boiling points

and freezing points will determine the method of processing suitable for separation of
an organic product from a solvent. A low boiling point is desirable if distillation is to

be used for separation of higher molecular weight compounds.

Process economics require that the solvent be poorly soluble in water, for maximum .
recovery and recycle. Solvents should also be thermally and chemically stable, non-
biodegradable, inexpensive and freely available in large quantities at the required

purity.
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1.2.5 Safety

The choice of solvent, with respect to environmental and operator safety aspects, is of
particular concern (Kirshner, 1994) and the following factors must be considered,

1) carcinogenicity
ii) flammability

iii) toxicity

1.2.6 Solvent biocompatibility

The solvent choice will influence catalyst stability and degradation. The two affects

may be related with degradation leading to a decrease in stability. Innate toxicity of
the solvent to the catalyst may cause a decrease in the activity without leading to cell
degradation. If cell degradation does occur, it will lead to downstream processing

difficulties.

1.2.6.1 Solvent selection and stability / activity

Solvent affect on enzymes

Laane ez a/ (1987a and b) reported that biocatalyst activity in a solvent was related to
the solvent hydrophobicity, as measured by log P (ie the logarithm of the partition
coefficient of the solvent in a standard octanol-water two phase system where the
partition coefficient is given by P = [solvent] ctanol / [sOlvent]yacer) . They reported
that relatively hydrophilic solvents (log P < 2) supported low catalytic activity; that
solvents with log P between 2 and 4 supported moderate catalytic activity, and that
only in solvents with log P greater that 4 was catalytic activity likely to be high.

A distinction between 'activity' and 'stability' is necessary in examining productivity of
a catalyst, the former referring to an instantaneous reaction rate, and the later to

changing of activity with time.

A solvent may act non-specifically to dehydrate and distort a cell bound enzyme. In
addition the solvent may act as a specific inhibitor to an enzyme (Mattiason and
Adlercreutz, 1991), may bind specifically to the enzyme or compete with the
substrate. The solvent may dissociate multimers or shift equilibrium between two
enzyme conformations (Butler, 1979). In these instances, it is unlikely that log P will
give any indication of solvent toxicity.

Williams et al (1987) report on another aspect, that is, the effect on productivity in
the presence of a liquid / liquid interface. It is reported that pig liver esterase (PLE)
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acts as a surfactant at the liquid / liquid interface, and that productivity decreases
with increased interfacial area. The decrease in productivity was considered to be
due to a decrease in stability, as productivity decreased with time. This is an
example of phase toxicity on an enzyme. Cremonesi et al (1973) also reports that -
hydroxysteroid dehydrogenase activity in two phase systems was maintained over
long periods in the presence of some organic solvents, but not others. This suggests
that not only the interfacial area of the organic phase, but the nature of the phase
itself, is important in phase toxicity. Though Laane (1987b) reported that solvent
log P was also an indication of catalyst activity of whole cells, the mechanism of
solvent toxicity on whole cells is not completely understood.

Solvent affect on a whole cell biocatalyst

A further distinction is required when looking at productivity of whole cell
biocatalysts, ie cell viability. With some whole cell biocatalyst systems, the viability
of the cell may be required for the continuous regeneration of co-factors. For
example, Hocknull and Lilly (1988) differentiate between the A! dehydrogenation
ability of Arthrobacter simplex, which requires co-factor regeneration and its Al
dehydrogenase activity. Other enzyme systems may not require cell viability for
activity, and there is no effect of the solvent on catalyst productivity.

Having made this distinction, it is useful to consider the effect of solvents on whole
cell catalyst productivity (ie activity, stability, and viability).

Bar (1987) distinguishes between toxicity of the solvent on the whole cell catalyst at
the molecular (dissolved) level and at the phase level where a discrete organic phase
is present. The mode of toxicity may not only have an impact on reactor
productivity, but also on the separation downstream of the reactor, or concomitantly,
on the design of the reactor, to facilitate downstream processing.

Molecular toxicity, which may be apparent in aqueous solutions containing a solvent
up to saturation levels, is caused by dissolved solveht molecules. Toxicity will be
dependent on the nature of the solvent and its concentration in the aqueous phase,
and the nature of the catalyst itself. Eg toluene is toxic at approximately 50%
aqueous phase saturation (approximately 0.25g/L) to Pseudomonas putida UV4
(Brazier et al, 1990) whereas it is not toxic at 50% v/v to P. putida 1H2000 (Inoue
and Horikoshi, 1989, Inoue et al, 1991).

Factors influencing the affect of a solvent on a whole cell biocatalyst

The affect of the solvent on the catalyst may also be related to the growth conditions
of the catalyst. Cells grown at higher temperatures will have a higher membrane
fluidity, and be more tolerant to solvent when subsequently used as a catalyst at a
lower temperatures (Eglin, 1994). The DOT during fermentation may also effect
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membrane structure, and influence solvent tolerance (van Uden, 1985). Similarly
divalent magnesium and calcium ion concentration affect solvent tolerance, as they
bind with lipopolysaccharide (LPS) in the outer membrane of Gram negative cells,
enhancing membrane stability and increasing solvent tolerance. LPS concentration
and composition in the outer membrane would also appear to affect solvent tolerance,
with hydrophilic O-antigen acting as a hydrophilic 'picket fence' to prevent solvent
penetration, conferring some degree of solvent tolerance (Costerton et al, 1974).

Site of action of the solvent on a whole cell

Lilly et al (1987a) hypothesised that the lipid membranes of the cell absorb some of
the dissolved solvent, causing modifications to its permeability, which may result in
enzyme inhibition, protein deactivation or breakdown of transport mechanisms.
Osborne et al (1990) provide evidence to suggest that it is the solvent concentration
in the membrane which renders a solvent toxic. Further, they extend the concept of
anaesthetic potency on cells, to show that complete loss of bioactivity of Rhizopus
nigricans was at a membrane solvent concentration of 200mM, independent of the
solvent for most solvents tested. This concentration was termed the critical

concentration.

As the log P term for solvents is a measure of the partition of the solvent in an octanol
water system, an equivalent partition coefficient exists for partition of a solvent
between an aqueous phase and a cell membrane. Thus, as log P is a measure of the
tendency of a solvent to partition to an aqueous phase, so it is also a measure of the
tendency of the solvent to partition to the cell membrane (Laane, 1985).

Osborne ef al (1990) suggests that it is the increase in membrane fluidity due to
solvent which may be the primary cause of loss in cell activity, and suggests that, at
levels above critical concentrations, membrane fluidity prevents the maintenance of

protein complexes.

Phase toxicity

The above discussion deals primarily with the affect of the solvent on cell viability,
however, there is evidence to suggest that catalyst stability and activity is also affected
by solvents, as would be expected from the enzyme discussion earlier. Bar (1987)
describes another mode of toxicity for solvent onacellie phase toxicity. He suggests
three mechanisms for phase toxicity (Table 1.3).
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extraction of nutrients
disruption of cell wall - extraction of outer-cellular components
limited access to nutrients

- cell attraction to interface

- emulsion formation

- cell coating

Table 1.3 Phase toxicity

Various components required in a biotransformation may partition to some degree to
the organic phase, thus reducing their availablity to the cell. Cho and Schuler (1986)
have noted this affect in extractive fermentation systems, where nutrients partitioned
into the organic phase. The affect can be countered by increasing the initial aqueous
phase concentration.

Cho and Schuler (1986) reported discrete refractile tributyl phosphate (TBP) layers
around yeast when TBP was used as a solvent in extractive fermentation, limiting
access to the cells of the nutrients in the aqueous phase, due to shielding by coating or
emulsification in the organic phase. In a similar manner access to biotransformation
reaction components may be limited. Further, cells may aggregate in the presence of
a solvent thus leading to mass transfer problems for components. Similar mass
transfer affects may be observed when an emulsion is formed, bringing cells in close
contact with one another, or when cells are attracted to an interface.

Bar (1987) also suggests that solvents may extract cell wall components thus bringing
about cell wall / outer membrane disruption and possible disintegration and / or loss of
viability. He suggests that the problem is exacerbated by cells being attracted to the
liquid / liquid interface, and further enhanced by vigorous agitation. He therefore
suggests that cell immobilisation will protect from phase affects, as would the use of
membranes to separate organic solvent and biocatalyst.

Mass transfer affects

Mass transfer affects can sometimes be mistaken for phase effects, eg in the case of
organic phase substrates, where increased agitation, and therefore increased K; a, may
increase the rate of dissolution of the substrate to such an extent that rate of supply
exceeds rate of uptake by the cell, thus allowing toxic concentration to be reached.
Thus the decrease in reaction rate would be due to increased substrate concentrations

and not increased K, a.

31



Harbron et al (1986) in a study of the epoxidation of 1,7-octadiene by P. putida
showed that at a higher agitation rate, the initial reaction rate increased, followed by a
rapid early decline in activity - this would seem to be explained by mass transfer

affects.

Similarly, Brooks e al (1986), in a study of hydrolysis of d,]-menthyl acetate by
Bacillus subtilis, showed that the rate of reaction increased with agitation speed, until
a plateau value was reached.

In growing systems, where cell numbers are increasing, the solvent may also be
adsorbed by cells to sub-critical concentrations, with no effect. However, if increased
agitation leads to a higher rate of supply of solvent to the aqueous phase than is
absorbed by newly forming cells, again toxic levels may be exceeded.

Other explainations of the phase affect

Hocknull and Lilly (1988) provide evidence to suggest that the phase affect is toxic to
cells in a similar way as dissolved organic solvent. Solvent dissolved in the aqueous
phase is in equilibrium with solvent dissolved in the cell membrane, as described by a
partition coefficient. Similarly, the solvent concentration in the membrane, in contact
with that solvent phase, will be at an equilibrium concentration as described by a new
partition coefficient. Due to the nature of the membrane and solvent phase (both
more hydrophobic than water), the solvent concentration in the membrane will be
higher than the concentration in equilibrium with an aqueous phase saturation with
that solvent. Thus, when the organic solvent is present as a discrete liquid phase,
solvent is transferred to the cell more rapidly. The rate of uptake by the cell will be
dependent on the frequency of impact with the organic interface, and the length of
time of that interaction (Woodley, 1992)

This argument, however, would seem to be in conflict with evidence given by Hack
(1992) in which toluene droplets were not toxic to cells, as long as the bulk aqueous
concentration was less than 50% saturation. Collins (1994), however, describes
experiments where toluene is dissolved in tetradecane at 10% and 20% vol / vol, and
this organic phase is toxic to P. putida, with toxicity greater at 20% toluene. These
discrepancies may be explained by the average time cells are exposed to the organic
interface. On this basis, hydrophobic cells may be expected to exhibit greater phase
damage; these cells however, are also likely to have adapted to contact with the
organic phase which would reverse this observation.

The evidence provided suggests that protection of the catalyst from the liquid / liquid
interface would bring about an increased stability in the biocatalyst. Ample evidence
of such a result is available for both whole cells (Hocknull and Lilly, 1990) and
enzymes (Tanaka and Sonomoto, 1990). The catalyst may be immobilised in a gel,
within a membrane or between membranes.
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By immobilising 4. simplex in a calcium alginate bed, Hocknull and Lilly (1990)
were able to increase the tolerance of the catalyst to solvents of lower log P. Free
cells showed decreased activity in the range 3 < log P < 10, whereas immobilised
cells showed full activity at log P > 4.

The logP concept is a valuable tool in examining solvent interactions with the
catalyst. However LogP cannot describe all factors involved; for example inate
toxicity of a solvent, unexpected toxicity of structural isomers, toxicity due to
functional groups and differing toxicity to cells and enzymes. Other factors may be
involved which are not related to LogP, including shielding by envelopment and
physical damage.

1.2.6.2 Solvent selection and downstream processing

As seen in the above discussion, exposure to solvent may lead to degradation of the
cell. Apart from the problems with stability, these degradation products will also
lead to problems with downstream processing. These problems will be either
associated with separation of these components per sé, or with the components
having surface active properties, and stabilising the aqueous / organic interface.
Solvents which best solubilise organic compounds, will also best solubilise lipid
containing compounds within the cell. Osborne (1990) showed lipid release from R.
nigrans increased with a decrease in logP of 9 solvents tested. Niklova and Ward
(1992) determined for Saccharomyces cerevisiae that exposure to various solvents
caused physical damage to the cells, and that where damage occurred, phospholipids
were detected in the reactor medium. Scanning electron microscopy showed no
damage on exposure to discrete hexane, decane or toluene, but damage on exposure
to chloroform, butylacetate and ethylacetate.

1.2.7 Catalyst selection

1.2.7.1 Bases for selection

As previously indicated the catalyst of interest is the whole cell. The most important
basis for catalyst selection is its ability to perform the required biotransformation.
This will not be further considered, except that the desired activity may be transferred
to the whole cell of choice, using recombinant DNA techniques (Fukui and

Tanaka, 1985)

Keshavarz et al (1987) report that Gram positive cells are more resistant than Gram
negative cells to disruptive forces, such as liquid freezing, freeze pressing, agitation
and sonication. This is reflected in the rate constant for protein release in a high

pressure homogeniser being also significantly higher for Gram negative as opposed to
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Gram positive cells (eg the rate constants for Gram negative P. putida and Escherichia
coli are 0.41 and 0.39, whereas that for Gram positive Bacillus brevis is 0.28).

The effect of these Keshavarz observationss on cell processing downstream from a

two liquid phase bioreactor have not been considered.

From a solvent tolerance viewpoint the catalyst must be selected to maintain its
activity on exposure to solvent. This has been discussed in the previous section.
Immobilisation of a whole cell biocatalyst may protect the catalyst from contact with
an organic interface (Woodley et al 1990), and immobilisation in a hydrophilic
support may offer some protection from dissolved solvent (Steinert et al, 1987).
Immobilisation will benefit downstream separation, by obviating the need for a solid
/ liquid separation stage. It may also limit loss of cell compounds to the liquid

environment, which cause problems discussed earlier.

The other major factor in catalyst selection is catalyst degradation. This will be
reflected in catalyst stability, and in the downstream processing requirement from the
reactor. Degradation product removal is itself an issue, but more significantly
degradation products may act as surfactants to stabilise the liquid / liquid interface,
with emulsion formation implications.

1.2.7.2 Surface active agents produced by cells

Fiechter (1992) makes the distinction between surfactant and emulsifier. The former
having a defined structure - with a hydrophobic and a hydrophilic portion in the same
molecule, whereas the term emulsifier is an application oriented term used to
describe those surface active compounds which, in the case of a cell, are excreted to
facilitate uptake of insoluble substrate or may be extracted in a two-liquid phase
process. He classifies biosurfactants into four main groups. In each instance the
hydrophobic portion consists of the hydrocarbon chain of a fatty acid. The
hydrophilic portion consists of:-

i) the ester of alcohol function of neutral lipids

i) the carboxylate group of a fatty acid or amino acid
iii) the phosphate-containing portion of phospholipids
" iv) the carbohydrate moiety of glycolipids.

Glycolipids include the rhamnolipids of P. aeruginosa, some of which are produced
only by resting cells (Syldatk et al, 1985). Rhamnolipid production is genetically
controlled, and mutants that are unable to produce rhamnolipids have been isolated
(Ochsner et al 1994). Production may be induced by the presence of hexadecane, but
not by glucose, overproduction can be caused by nitrogen -limitation (Syldatk et al,

34



1985). Small amounts of crude Rhamnolipid 1 and 2 (15 - 80mg/L) were reported to
be sufficient to reduce the surface tension between n-hexadecane and aqueous
solutions from 42 to 1mN/m (Syldatk et al, 1985). Arthrobacter species have also
been reported to produce glycolipid surfactants.

Fiechter (1992) reports that B. subtilis produces surfactin, a seven amino acid ring,
which is highly active surfactant.

Lipopolysaccharide (LPS) is primarily located in the outer cell membrane of Gram
negative bacteria, and has a high surfactant activity due to the lipophilic lipid and
hydrophilic saccharide. LPS has also been isolated in the yeast Candida tropicalis
(Fiechter, 1992).

Protein acting as surfactant have also been isolated in many organisms, such as
Pseudomonas aeruginosa and Pseudomonas fluorescens.

1.2.7.3 Factors influencing surfactant production

In studies on the production of biosurfactants for commercial purposes, the
parameters influencing the production of surfactants have been examined. Factors
include:-

1) nature of carbon source
ii) nutritional limitations
iil) aeration, temperature and pH.

Changing the substrate often alters the structure of the surfactant, changing its
properties. For example supplementation of defined media with desired fatty acid led
to its uptake and expression in the phospholipid fraction in the fermentation of
Clostridium acetobutylicum. These factors will also influence the solvent tolerance
of the organism (Linden, 1987). Divalent magnesium ions are responsible for the
configuration of LPS in the outer membrane of Gram negative cells, and its presence
in the growth medium is a strict requirement. Not only do growth conditions directly
influence the surfactants produced, but by altering solvent tolerance, the level of cell
lysis and hence level of surfactant in the bulk media (Costerton et al, 1974).

The selection of organisms exhibiting high levels of solvent tolerance, for example
P. putida capable of growing in the presence of discrete toluene, is not necessarily a
good basis for selection for use in a two-liquid phase bioreactor, as, in this instance,
solvent tolerance is associated with shedding of outer membrane into the media,
which will act as surfactant (Cruden et al, 1992).

In the selection of a catalyst the surface binding properties of the organism per sé
must also be considered. Rosenburg et al (1980) reported on the hydrophobic nature
of the external surface of Gram negative bacteria, which leads to its adhesion to an
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organic interface. This not necessarily related to growth on an insoluble
hydrocarbon, but potentially influenced by time of harvest. P. aeruginosa grown to
late exponential phase did not adhere to test hydrocarbons, whereas Acinetobacter
calcoaceticus adhered strongly. Conversely cells harvested during early exponential
growth behaved in the reverse manner. Crabbe et al (1986) reported on S. cerevisiae
binding to the organic interface during solvent extraction of alcohol, in this instance
leading to a decrease in mass transfer of ethanol to the solvent.

1.1.6 Reactor design

As can be ascertained from the previous discussion, direct contact with an organic
interface, or with dissolved organic phase, may cause a loss in activity of the catalyst,
whether due to cell disruption or innate toxicity, and a cell disruption leading to
separation problems.

In some instances careful selection of catalyst and solvent may be sufficient to
maintain high activity and not lead to separation difficulties. In other instances
control of contact between the catalyst and solvent may reduce problems, such as by
immobilisation in calcium alginate (Woodley et al 1990), or at least obviate the need
for separation of the liquid phases by using membrane systems (eg Jeong et al 1991).

In other instances process requirements may require the separation downstream from
a two-liquid phase whole cell catalysed stirred tank reactor.
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1.3 SEPARATION METHODS
1.3.1 Separation requirements from a two-liquid phase biotransformation

The major components in the reactor are the aqueous phase, organic phase, the
catalyst, including catalyst debris, the reactant and the product. The primary
downstream requirement is the separation of the product, however recycle of
unreacted substrate may also be required. Under ideal conditions the catalyst,
aqueous and organic phases would be recycled to the reactor. In practical instances it
is more likely that the catalyst and aqueous phases will be discarded, and only the
organic phase recycled.

Reaction component separation may be directly from the biocatalytic reactor liquor
eg by solid sorption techniques or membrane techniques, either before or after
catalyst separation (Nigam et al, 1988). However it is likely that reaction component
separation will be from either the aqueous or organic phase, after removal of the
catalyst. In this case removal of catalyst must be done so as to minimise further
liquid phase contamination. Even in those cases where liquid / liquid / solid
separation is not required for reaction component separation, it is required for re-use
of the catalyst, organic or aqueous phase, or for cleanup of organic and / or aqueous
phase before disposal. Again removal of the catalyst must be done to minimise
liquid phase contamination. It is liquid / liquid / solid phase separation which is
considered further.

1.3.2 Phase separation from a two-liquid phase biocatalytic reactor.

As previously discussed biological material may act to stabilise an organic / aqueous
phase dispersion, to produce an emulsion. Here an emulsion refers to a relatively
stable dispersion. Thus phase separation from a two-liquid phase biocatalytic reactor

can be broken into a number of areas:-

i) liquid/ liquid separation

ii) solid / liquid separation

iii) emulsion breakage.

Emulsion separation can be further split into two cases

i) liquid / liquid separation where the emulsion is stabilised by soluble material
ii) liquid / liquid / solid separation where the emulsion is stabilised by or contains

insoluble material.
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There are a number of chemical, electrical, and physical phenomena on which
separation may be based or which will influence separation obtained. These are listed
in Table 1.4. Separation processes based on these phenomena are listed in Table 1.5.

Phenomena enabling  influencing
separation  separation

1 Density Ls* LS
2 Size LS LS
3 Viscosity LS
4 Behaviour in an electrical field LS LS
(surface charge / chargability / polarity)
5 Hydrophobicity / hydrophilicity LS LS
6 Magnetic moment S S
7 Response to ultrasound S S
8 Surface tension of liquid phases L
9 Temperature L LS
10  Surface activity of biological material LS
11 Freezing / boiling point L LS
12 Time of storage / processing LS

* S- solid / liquid separation; L -liquid / liquid separation

Table 1.4 Phenomena enabling and influencing separation

Centrifugation and filtration techniques are most widely used and best studied for
biological solid / liquid separation.

Centrifugation, gravitational separation and filtration are widely used and best studied
for liquid / liquid separation.

Menon and Wasan (1983) review the literature on various methods for emulsion
separation. The effectiveness of various physical methods are compared in Table 1.6.

Electrical and chemical methods are not investigated further.

Before continuing with a description of separation methods, the various modes of
emulsion breakdown are considered.
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Phenomena (Table 1.4)
Ch Processes separation{ 1 |23 [4(5(6|7|8|9(10
1.2 *
4 |gravitational and LS|x{xfo )
enhanced settling
5 |membrane filtration
- membrane hydrophobicity (L S olo|x x|ojo 0
- size exclusion S x|o olo 0
3 |droplet flocculation L 0|0 0]x 0
emulsion creaming L x|o|x X|o 0 0
6 |droplet coalescence L x|olo olofolo 0
7 |two aqueous phase separation | S o|lo|x ofo|o )
and solvent extraction S
8 |electrokinetic processes LS|o|lo]ojx]o 0 0
9 |high gradient magnetic Lloj|oj|o X
separation processes
10 |interface aggregationreliant |LS{x|o|o0 olo]|o
properties - foaming
freezing L 0
11 |auto-aggregation Sjoflo|o|x]|x ofo 0
precipitation Plolo]o|x|x olojo]o
12 |distillation / crystallisation P
/ RO
Table 1.5 Separation processes and phenomena on which they are based
X separation reliant upon, o separation influenced by.

* §-solid / liquid separation; L -liquid / liquid separation.
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Effectiveness with phase dispersion as:
Separation technique free primary secondary
emulsion emulsion
gravity separation
settlers A C NA
tilted plate type A B NA
filter coalescence A A A
centrifugal separation A A C /NA
granular filtration A A B
ultrafiltration A A A
dissolved air flotation A A B
freezing A A C/NA
Table 1.6 A comparison of the effectiveness of various physical methods of

emulsion separation (Based on Menon and Wasan, 1983)

A - excellent separation B - average separation C - poor separation
NA not applicable

Free - dispersed phase that has separated from the continuous phase.

Primary emulsion - consists of coarse droplets of the dispersed phase.

Secondary emulsion - made up of droplets of less than 10ptm.

1.3.3 Emulsion breakdown processes

Tadros and Vincent (1983) describe five ways in which the characteristics of an
emulsion may change. These are:-

1) droplet sedimentation

it) droplet flocculation

iii) droplet coalescence

iv) droplet ripening

v) phase inversion.

In practical systems i) to iv) may occur simultaneously or sequentially, depending on

the relative rate constants for the processes with the exception of coalescence, which
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