Quantum sensing and cooling in three-dimensional levitated cavity optomechanics

M. Toroš and T. S. Monteiro

Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

(Received 9 December 2019; accepted 1 April 2020; published 26 May 2020)

Typical quantum cavity optomechanics allows cooling and detection of a single mechanical degree of freedom with its motion along the cavity axis. However, a recent breakthrough using cavities populated solely by coherent scattering (CS) allowing quantum ground-state cooling of levitated nanoparticles [U. Delić et al., Science 367, 892 (2020)], is uniquely three dimensional (3D) in character, with coupling along all three spatial axes. We present a reanalysis of current experiments and show that the underlying behavior is far from the addition of independent one dimensional spectral components and that cooling and sensing analysis must consider, to date neglected, nontrivial 3D hybridization effects arising from interferences between the x, y, z modes as well as the optical modes. These lead to new heating and sympathetic cooling channels and modify phonon occupancies. Unique to these systems, we find a close relation between cavity-mediated and direct hybridization terms that can completely suppress the 3D behavior.

DOI: 10.1103/PhysRevResearch.2.023228

I. INTRODUCTION

The coupling of mechanical motion to the optical mode of a cavity permits not only strong cooling, but also ultrasensitive displacement detection, and has led to advances ranging from quantum ground-state cooling of mechanical oscillators [1,2] to detection of gravitational waves by LIGO [3]. Optomechanics employing levitated dielectric particles has recently also experienced rapid development [4,5]. The unique potential of levitated cavity optomechanics in terms of decoupling from environmental heating and decoherence, coupled with the sensitivity of displacement sensing offered by optical cavities, was already recognized in 2010 [6–8]. Actual experimental realizations represent a formidable technical challenge: the levitated nanoparticle must be cooled from room temperatures, and is initially millions of quanta above the quantum ground state.

Most initial proposals were for self-trapping setups [7,9,10], with trapping and cooling both provided by the cavity modes [11], but this failed to allow stable trapping at high vacuum [10–12]. In order to overcome this roadblock, hybrid setups combining, for instance, a tweezer and cavity traps [6,13], or a hybrid electro-optical trap [14,15], or a tweezer and near field of a photonic crystal [16], allowed some progress toward the ultimate goal of quantum ground-state cooling.

This year, an important breakthrough was the realization that the tweezer trapping light coherently scattered (CS) into an undriven cavity offers major advantages [17–21]: the resulting optomechanical couplings along every axis can be comparatively large even for modest mean cavity photon numbers, minimizing the deleterious effects of photon scattering [22–24]. As a result, quantum cooling of the center of mass of a levitated nanoparticle to phonon occupancies $n_\phi < 1$ along the x axis (see Fig. 1 for definition of axes) was recently reported [25].

However, although current experiments probe the full three dimensional (3D) displacement PSD (power spectral density) $\mathcal{S}_{xx}^{3D}(\omega) = \langle |\hat{x}^{3D}(\omega)|^2 \rangle$, via heterodyne optical detection, the experimental analysis to date has not fully considered 3D dynamics. We show here the 3D spectra can differ from the one dimensional (1D) case both qualitatively and quantitatively. This has significant implications for thermometry and also for sensing, so here we reanalyze the quantum-cooling experiments in [25] with 3D spectra. We find we can correct the 1D displacement spectra as follows:

$$\hat{x}^{3D}(\omega) = \hat{x}^{1D}(\omega) + G_{xx}(\omega)\hat{x}^{3D}(\omega) + G_{zz}(\omega)\hat{z}^{3D}(\omega)$$

(1)

by introducing a hybridization function $G_{jk}(\omega)$ with a simple form. In particular, we obtain analytical PSDs in excellent agreement with experiment as well as with the stochastic numerics based on the full tweezer and cavity potentials. More generally for any mechanical mode \hat{q}_j (e.g., $\hat{q}_j \equiv \hat{x}, \hat{\dot{x}}, \hat{z}$), Eq. (1) becomes

$$\hat{q}_j^{3D}(\omega) = \hat{q}_j^{1D}(\omega) + \sum_{k \neq j} G_{jk}(\omega)\hat{q}_k^{3D}(\omega).$$

(2)

An interesting consequence of the multimode interference is that the measured PSDs are nonadditive: for instance, the weakly coupled y mode can experience strong sympathetic cooling that lowers the phonon occupancy n_x significantly, due to optomechanical intermode correlations. The $G_{jk}(\omega)$ combines interference between indirect, cavity-mediated coupling and direct intermode coupling terms that have been overlooked in previous studies. A key finding is that there is a close relation between the direct and indirect channels that can lead to exact cancellation, eliminating hybridization.
FIG. 1. (a) Setup for coherent scattering (CS) levitated optomechanics experiments [25]: a nanoparticle is held by a tweezer trap within a cavity. The cavity is undriven, but is populated by photons coherently scattered from the tweezer. The nanoparticle is placed at a point \(\phi \simeq k x_0^{(c)} \) from the antinode of the cavity field. In [25] \(\phi = \pi / 2 \), corresponding to a near “empty cavity” with near zero mean photon occupancy. The pattern of coherent photon scattering [23] (right panel) into the cavity depends on the tilt \(\theta \) of the tweezer polarization axis. (b) Analysis of the experiments: in [25], measured heterodyne PSDs showed a broad feature (attributed to the strongly coupled, quantum-cooled \(x \) mode) and a sharp narrow peak (attributed to the weakly coupled, weakly cooled \(y \) mode). Thus, the 1D thermometry considered only the broad sideband features to infer \(n_x = 0.8 \) at \(\Delta = -380 \) kHz. The left panel shows calculated heterodyne PSDs (red sideband). However, comparison with \(S_{xx}^{\text{int}}(\omega) \) at experimental detuning values −380 and −580 kHz [25] (both blue and red sidebands are shown in the right panels) indicates that in fact the narrow spike mostly corresponds to \(x \) motion, responding at the frequency of \(y \) mode. Thus, the spike must also be included in thermometric calculations approximately doubling \(n_x \) relative to the 1D analysis in [25]. We show that (due to the optical spring effect) at these detunings the \(x \) mode has been pushed into a degeneracy with the \(y \) mode, enhancing hybridization, even for the “empty cavity.” (c) Shows 1D vs 3D phonon occupancies for \(n_x \) and \(n_\text{3D} \) can be almost an order of magnitude lower than \(n_{10} \) as a result of the sympathetic cooling induced by 3D coupling. Dotted line plots results from the standard cooling formula of optomechanics that gives perfect agreement for 1D analytics, particularly for the weakly coupled \(y \) mode. (b), (c) There is pure cavity-mediated coupling \(\propto g_x g_y \) as \(g_x \simeq 0 \). We have set \(\omega_y / 2 \pi \approx 80 \) kHz \(\gg \omega_x / 2 \pi \approx 7.7 \) kHz for \(\theta = 0.47 \pi \). The nanoparticle radius is \(R_0 = 71.5 \) nm, the finesse is \(F = 73,000 \), and the pressure is \(P = 10^{-6} \) mbar.

II. TWEEZER-CAVITY SETUP

We consider the experimental CS setup in [22–25], shown in Fig. 1(a), which involves levitating a dielectric nanoparticle in a tweezer within a cavity. The tweezer and cavity symmetry axes are orthogonal and the tweezer polarization and the cavity axis are tilted at an angle \(\theta \). The cavity in these setups is undriven but is populated entirely by light coherently scattered from the tweezer field. The cavity decay rate is \(\kappa \) and the particle moves under the combined effect of the tweezer and cavity. The tweezer field and the coherently scattered light. The tweezer particle moves under the combined effect of the tweezer field. The cavity decay rate is undriven but is populated entirely by light coherently scattered from the tweezer. The nanoparticle is placed at a point \(\phi \simeq k x_0^{(c)} \) from the antinode of the cavity field. In [25] \(\phi = \pi / 2 \), corresponding to a near “empty cavity” with near zero mean photon occupancy. The pattern of coherent photon scattering [23] (right panel) into the cavity depends on the tilt \(\theta \) of the tweezer polarization axis. (b) Analysis of the experiments: in [25], measured heterodyne PSDs showed a broad feature (attributed to the strongly coupled, quantum-cooled \(x \) mode) and a sharp narrow peak (attributed to the weakly coupled, weakly cooled \(y \) mode). Thus, the 1D thermometry considered only the broad sideband features to infer \(n_x = 0.8 \) at \(\Delta = -380 \) kHz. The left panel shows calculated heterodyne PSDs (red sideband). However, comparison with \(S_{xx}^{\text{int}}(\omega) \) at experimental detuning values −380 and −580 kHz [25] (both blue and red sidebands are shown in the right panels) indicates that in fact the narrow spike mostly corresponds to \(x \) motion, responding at the frequency of \(y \) mode. Thus, the spike must also be included in thermometric calculations approximately doubling \(n_x \) relative to the 1D analysis in [25]. We show that (due to the optical spring effect) at these detunings the \(x \) mode has been pushed into a degeneracy with the \(y \) mode, enhancing hybridization, even for the “empty cavity.” (c) Shows 1D vs 3D phonon occupancies for \(n_x \) and \(n_\text{3D} \) can be almost an order of magnitude lower than \(n_{10} \) as a result of the sympathetic cooling induced by 3D coupling. Dotted line plots results from the standard cooling formula of optomechanics that gives perfect agreement for 1D analytics, particularly for the weakly coupled \(y \) mode. (b), (c) There is pure cavity-mediated coupling \(\propto g_x g_y \) as \(g_x \simeq 0 \). We have set \(\omega_y / 2 \pi \approx 80 \) kHz \(\gg \omega_x / 2 \pi \approx 7.7 \) kHz for \(\theta = 0.47 \pi \). The nanoparticle radius is \(R_0 = 71.5 \) nm, the finesse is \(F = 73,000 \), and the pressure is \(P = 10^{-6} \) mbar.

where \(\phi \sim k x_0^{(c)} \), \(x_0^{(c)} \) is the displacement between the tweezer focus and an antinode of the cavity \(\text{[see Fig. 1(a)]} \). \(\beta(z) = k z - \arctan(z/z_R) \), \(z_R \) is the Rayleigh range, \(k = \omega_\text{c} / c \), \(c \) is the speed of light, and \(E_{\text{d}} \) is the coupling rate determined by the particle polarizability and input power to the tweezer.

Optomechanical coupling strengths were derived in [22–24] by the well-known procedure of linearizing Eq. (3) about small displacements from the tweezer origin and the mean cavity amplitude \(\hat{a} \). In particular, they have obtained the interaction \(\frac{\beta}{\hbar} \simeq \sum j \hat{h}_i^{(\text{int})} \), where \(\hat{h}_i^{(\text{int})} = g_j (\hat{a}^{\dagger} + \hat{a}) \hat{q}_j \). Specifically, the optomechanical coupling strengths \(g_j \) were obtained in terms of the experimental parameters, i.e., \(\frac{\beta}{\hbar} \simeq \sum j \hat{h}_i^{(\text{int})} = -E_{\text{d}} k \sin(\phi) \), where \(q_{j,\text{opt}} = \sqrt{R/2m_0} \), and \(q_j \) denotes the mechanical mode. An interesting finding there was that the \(z \) mechanical mode is coupled to the phase quadrature and the coupling is of the nonstandard form for optomechanics, i.e., \(g_z \hat{a} \hat{a}^{\dagger} \), where \(g_z = -E_{\text{d}} k \cos(\phi) z_{\text{zpf}}. \)
III. DIRECT COUPLING TERMS AND HYBRIDIZATION FUNCTION

In this work, we take the previous analysis of couplings a step further: a full linearization (quadratic in the Hamiltonian) of Eq. (3) should include additional terms directly coupling the motions \(\frac{\partial^2}{\partial \phi^2} = \sum_j \hat{H}_{ij}^{(1)} + \sum_{j,k} g_{jk} \hat{q}_j \hat{q}_k \).

We find \(\frac{\partial^2}{\partial \phi \partial \theta} = \frac{\partial^2}{\partial \phi \partial \theta} \) while \(g_{xy} = -\hat{a} \hat{E}_x k_x \cos(\phi) \cos(\theta)_{x y} \). Here, \(\hat{a} \) is the mean intracavity field \(\hat{a} \). Thus, these (previously overlooked) direct terms are light induced, but where the degrees of freedom of the electromagnetic field do not play an active role. They are thus quite distinct from nonlinear, position-squared coupling terms \(g_{ij}(\hat{a}^4 + \hat{a}) \Delta_2 \) that lead to observed sidebands at 2\(\omega_i \) in optically trapped systems at higher temperatures [15,23].

To obtain 3D spectra, we start from a generic quadratic Hamiltonian including both cavity-mediated and direct matter-matter couplings. By writing the equations of motion in Fourier space we solve for the mechanical motions and obtain the 3D couplings (see Appendix A)

\[
\mathcal{G}_{jk}(\omega) = \frac{\mu_j(\omega)}{M_j(\omega)} [i \eta_{jk}(\omega) g_{jk} + g_{jk}],
\]

which were introduced in Eq. (1). The prefactor, where \(M_j(\omega) = 1 + g_{j}^2 \mu_j(\omega) \eta_{jk}(\omega) \), is peaked around one of the mechanical frequencies, i.e., \(\omega \approx \pm \omega_j \). The \(\mu_j(\omega) \) are mechanical susceptibilities, while \(\eta_{jk}, \eta_{ik} \) are the optical susceptibilities. However, it is the terms in the square brackets that are of most physical interest. One can see they describe the interference between a direct, \(\propto g_{jk} \), and a cavity-mediated, indirect coupling, \(\propto g_j g_k \), between any two displacements. In other words, suppressing or conversely enhancing 3D dynamics will involve either suppressing or correspondingly enhancing the 3D coupling via destructive or correspondingly enhancing interference of direct and indirect pathways near \(\omega \approx \omega_j \).

We have the usual mechanical susceptibility \(\mu_j(\omega) = \chi(\omega, \omega_j, \Gamma) - \chi(-\omega, \omega_j, \Gamma) \) and optical susceptibility \(\eta_{jk}(\omega) = \chi(\omega, -\Delta, \kappa) - \chi(-\omega, -\Delta, \kappa) \), where \(\chi(\omega, \omega_j, \Gamma) = -i(\omega - \omega_j) + \gamma_j^2 \). We also define \(\eta_{xy} = \eta_0 \) to be symmetric under exchange of indices, i.e., \(\eta_{xx} = \eta_{yy} \). However, because of the unusual coupling of the \(\omega \) mode we have to introduce additional optical susceptibilities. Specifically, we define \(\eta_{yx}(\omega) = i \eta_{xy}(\omega) = \frac{1}{2} \left[i \chi(\omega, -\Delta, \kappa) + \chi(-\omega, -\Delta, \kappa) \right] \), as well as \(\eta_{yz} = -\eta_{yz} \), i.e., here the susceptibilities are antisymmetric under the exchange of indices. In other words, from (4) we find that the coupling of \(x \) and \(y \) to \(z \) is quite different than the coupling of \(z \) to \(x \) and \(y \).

With these susceptibilities, the \(\mathcal{G}_{jk} \) are fully specified and Eq. (1) can be solved self-consistently to yield 3D PSDs of all the mechanical and optical modes that can be used to investigate experimental regimes. As all our PSDs are given in terms of the \(\mathcal{G}_{jk} \), the PSD expressions do not depend on whether the coupling is direct (\(g_{jk} \gg g_j g_k \)), indirect (\(g_{jk} \ll g_j g_k \)), or intermediate. There is no advantage in numerical prediagonalizations to put the mechanical Hamiltonian in normal form; such a procedure is parameter dependent as \(g_{jk} \) depends on \(\Delta \), thus complicating experimental comparison. As we will see, Eqs. (1) and (4) give a full quantitative as well as intuitive explanation of the physical mechanisms involved in the quantum-cooled experiments [25].

IV. ANALYSIS OF GROUND-STATE COOLING EXPERIMENTS

Although all calculations presented in the figures employ the full 3D analysis, for physical understanding here we discuss thermometry of the \(x \)-y motion, most relevant to the experiments in [25]. The \(z \) motion is effectively decoupled as its frequency is not close to the ones of the \(x \) and \(y \) motions. Those experiments used \(\phi = \pi/2 \) so were in the regime of pure cavity-mediated coupling, i.e., “empty cavity,” where \(\theta \approx (0.47–0.49) \pi \), and hence \(g_x \gg g_y \). In Fig. 1(b) our expressions reproduce key experimental features. However, comparison between optical and \(x \)-motion PSDs shows that the 1D analysis decomposing heterodyne sidebands into (i) a broad “\(x \)-motion” plateau and (ii) a sharp “\(y \)-motion” peak, does not yield reliable thermometry if there is hybridization [Fig. 1(c)]. To establish how much of the heterodyne sideband area belongs to the strongly cooled \(x \) mode, we need to consider the full 3D spectra.

For understanding, we can simplify our 3D PSDs for both \(x \) and \(y \) motion:

\[
\begin{align*}
S_{xx}^{3D}(\omega) &\approx S_{xx}(\omega) + |\mathcal{G}_{xy}(\omega)|^2 S_{yy}^{3D}(\omega), \\
S_{yy}^{3D}(\omega) &\approx \frac{|\mathcal{G}_{xy}(\omega)|^2}{1 - \mathcal{G}_{xy}(\omega)^2}.
\end{align*}
\]

For the \(x \) motion, the important difference between the \(S_{xx}^{3D} \) and \(S_{xx} \) arises from the second term in Eq. (5). This latter term is not an interference term, but an additive term, which always results in additional heating, and it provides the sharply peaked feature around \(\omega \approx \omega_x \). For the \(y \) motion, on the other hand, the correction in Eq. (6) arises from back-action-induced correlations between the modes: it is an interference effect that can either heat or cool. In [25] it opens a new sympathetic cooling channel for the \(y \) motion as shown in Fig. 1(c). In Appendix E, we show these rescaled 1D sidebands in Eq. (5) [and (6)] accurately account for the differences between the full 3D and 1D PSDs.

The heterodyne detection records the \(y \) motion with amplitude \(\propto g_{xy}^2 \eta_0(\omega)^2 S_{yy}^{3D}(\omega) \) (where frequencies are shifted by the appropriate reference oscillator). On the other hand, the \(y \) hybridization component, i.e., the \(x \) motion responding at the frequency of \(y \) motion in the second term in Eq. (5), scales as \(\propto g_{xy}^2 |\eta_0(\omega)|^2 |\mathcal{G}_{xy}(\omega)|^2 S_{yy}^{3D}(\omega) \). The \(y : x \) component ratios may be estimated \(1 : R \) where

\[
R = \frac{g_{xy}^2}{b_{xy}^2} |\mathcal{G}_{xy}(\omega \approx \omega_x)|^2.
\]

We have \(g_{xy}^2 / b_{xy}^2 \approx 100 \) and considering the hybridization region \(\Delta = -380–420 \text{kHz} \) we find \(R \approx 3–5 \); thus, \(\approx 80\%–90\% \) of the sharp peak is due to hybridization and hence contributes to \(n_x \) thermometry. However, for the strongest cooling data at \(\Delta = -300 \text{kHz} \), we find \(R = 1.1 \), and thus in the strongest \(x \)
cooling region only half the $\omega \simeq \omega_j$ peak is due to hybridization.

In [25], a spectrum at -380 kHz was analyzed in detail to yield $n_i \simeq 0.8$. Revisiting with the 3D analysis, we estimate a near doubling of the area, thus, $n_i \simeq 1.5$. A further experimental data point was reported (without spectral details) for -315 kHz that yielded $n_i = 0.4$ from 1D analysis. In the Supplemental Material of [25] the full sideband area including the peak was given at $n_i = 0.9$. This sideband is completely dominated by the “y” peak. However, for $R = 1.1$ only half the peak is x motion and one can thus estimate $n_i \approx 0.6–0.7$.

From the above analysis, we can see that the sharp peak to a good approximation carries the asymmetry of the y motion. If one eliminates the asymmetry introduced by the cavity susceptibility function $|\eta_0(\omega)|^2$, the underlying asymmetry of the sharp $\omega \simeq \omega_j$ peak is $n_j(3D) + 1 : n_j(3D)$. In contrast, the asymmetry of the broad feature is closer to $n_j(1D) + 1 : n_j(1D)$. This is in sharp contrast to the usual scenario in optomechanics where red and blue sidebands have exactly the same shape but are simply rescaled by a factor $n/(n+1)$ where n is the appropriate occupancy.

V. SUPPRESSION OF HYBRIDIZATION

The direct coupling g_{xy} has not previously been considered in the experimental analysis [22–24] but we find they can be of great importance. In particular, one can show that $g_{xy} \approx -g_{x}g_{y} e^{2Re(\phi)}$, and since $\phi \simeq -iE_2\cos(\phi) [\Delta + ik/2]^{-1}$, we then readily find

$$g_{xy} \approx g_xg_y \left[\frac{2\Delta \cot^2 \phi}{\Delta^2 + \kappa^2/4} \right]. \quad (8)$$

Thus depending on the positioning Δ or κ, the direct couplings’ contribution can be similar or exceed the cavity-mediated coupling.

In Fig. 2 we compare analytical, closed-form PSDs we obtained with 3D QLT and Eq. (1), with direct solutions of the nonlinear Langevin equations of motion, using the tweezer and cavity potential functions. In the latter, the g_{x} and g_{y} are not parameters but rather simply emergent properties in the limit of low-amplitude displacements. The symmetrized analytical quantum spectra show excellent agreement with numerics in both quantum regimes as well as thermal (higher-frequency) results from [15]. The figure also illustrates the transition from (i) 3D dynamics at low ϕ (top panel; direct coupling) to (ii) 1D uncoupled dynamics at $\phi \approx \pi/4$ (middle panel) back to (iii) 3D dynamics at $\phi \sim 0.4\pi$ (bottom panel; indirect cavity mediated coupling κg_{xy}). Regimes of 3D dynamics have a high degree of hybridization of x, y modes resulting in a prominent double-peaked structure. 1D dynamics results from suppression of hybridization as seen at $\phi \approx \pi/4$ (middle panel), where destructive interference between the direct and indirect pathways decouples the modes for $-\Delta > \kappa_0$. Parameters similar to the experiment in [23]: input power $P_\text{in} = 0.17$ W, $\Delta = -300$ kHz, however, nanoparticle radius $R_0 = 100$ nm and finesse $F = 150 000$ are slightly larger, with gas pressure $P = 10^{-4}$ mbar, and $\theta = 0.2\pi$.

Eqs. (4) and (8), we can readily show

$$G_{xy}(\omega) \simeq g_xg_y \left[\frac{-2\Delta}{\Delta^2 + (\kappa/2)^2} \right] \left[1 - \cot^2 \phi \right]. \quad (9)$$

and the x, y coupling $G_{xy}^{3D}(\omega)$ thus vanishes. The transition from 3D to a near decoupled 1D regime seen above is further illustrated in Fig. 2 (middle panel). The previously overlooked coupling g_{xy} can thus lead to nontrivial consequences. For example, a calculation in [24] [Fig. 6(a) there] at $\phi = \pi/4$, $-\Delta > \kappa$, but without direct coupling terms, shows a x, y hybridization feature in a regime where it should be strongly suppressed.

VI. CONCLUSIONS

We have shown that 3D optomechanical displacement sensing can be far from a trivial sum of PSDs associated

![FIG. 2. Comparison with full numerics and demonstration of 3D \rightarrow 1D transitions. Compares displacement PSDs using analytical expressions for the 3D theory (dashed lines) with stochastic numerics using the tweezer and cavity potentials (solid lines). The stochastic numerics do not assume any values for the optomechanical coupling strengths, mechanical frequencies, or equilibrium positions, and include nonlinearities. Agreement is excellent and validates the model for x (black), y (red), and z (blue). The figure also illustrates the transition from (i) 3D dynamics at low ϕ (top panel; direct coupling $\propto g_{xy}$) to (ii) 1D uncoupled dynamics at $\phi \approx \pi/4$ (middle panel) back to (iii) 3D dynamics at $\phi \sim 0.4\pi$ (bottom panel; indirect cavity mediated coupling $\propto g_{xy}g_{y}$). Regimes of 3D dynamics have a high degree of hybridization of x, y modes resulting in a prominent double-peaked structure. 1D dynamics results from suppression of hybridization as seen at $\phi \approx \pi/4$ (middle panel), where destructive interference between the direct and indirect pathways decouples the modes for $-\Delta > \kappa_0$. Parameters similar to the experiment in [23]: input power $P_\text{in} = 0.17$ W, $\Delta = -300$ kHz, however, nanoparticle radius $R_0 = 100$ nm and finesse $F = 150 000$ are slightly larger, with gas pressure $P = 10^{-4}$ mbar, and $\theta = 0.2\pi$.](image-url)
to the \hat{x}, \hat{y}, and \hat{z} degrees of freedom. CS systems have
provided the breakthrough that enabled ground-state cooling
in levitated nanoparticles: for reliable thermometry one should
either avoid or suppress hybridization regimes or do a full 3D
analysis. Although our work focuses specifically on recent
experiments on 3D cooling of levitated nanospheres, some of
the conclusions are generic. We show one may be able
to switch on or switch off some of the additional 3D effects
and that these can give advantages in terms of exceeding the
usual quantum back-action-limited occupations for a given
coordinate. 3D optomechanics opens the way to new forms
of force and displacement sensing, including sensing the
direction as well as magnitude.

ACKNOWLEDGMENTS

We are extremely grateful to U. Delić for advice and for
sharing with us details of the experimental data. We acknowl-
edge support from EPSRC Grant No. EP/N031105/1.

APPENDIX A: QUANTUM LINEAR THEORY (QLT)

In this Appendix we review 1D QLT and provide details
of the derivation of our 3D QLT (quantum linear theory) of
optomechanics expressions.

\begin{equation}
\begin{bmatrix}
\dot{\hat{a}}(t) \\
\dot{\hat{\alpha}}(t) \\
\dot{\hat{b}}(t) \\
\dot{\hat{\beta}}(t)
\end{bmatrix} =
\begin{bmatrix}
i\Delta - \frac{\omega}{2} & 0 & ig & i\gamma \\
0 & -i\Delta - \frac{\omega}{2} & -ig & -i\gamma \\
ig & ig & -i\omega - \frac{\gamma}{2} & 0 \\
i\omega - \frac{\gamma}{2} & 0 & -ig & i\Delta + \frac{\omega}{2}
\end{bmatrix}
\begin{bmatrix}
\hat{a}(t) \\
\hat{\alpha}(t) \\
\hat{b}(t) \\
\hat{\beta}(t)
\end{bmatrix} + \begin{bmatrix}
\sqrt{\kappa} \hat{a}_m(t) \\
\sqrt{\gamma} \hat{a}_m(t) \\
\sqrt{\Gamma} \hat{b}_m(t) \\
\sqrt{\Gamma} \hat{b}_m(t)
\end{bmatrix},
\end{equation}

where \hat{a}_m (\hat{b}_m) is the optical (mechanical) input noise. The
above equation even for arbitrary numbers of modes can be
cast in matrix form

\begin{equation}
\dot{\mathbf{c}}(t) = \mathbf{A} \mathbf{c}(t) + \mathbf{c}_m(t),
\end{equation}

where the vector $\mathbf{c} = (\hat{a}_0^\dagger \ldots \hat{a}_N^\dagger \hat{b}_1^\dagger \ldots \hat{b}_M^\dagger)^\dagger$, the
matrix \mathbf{A} contains the frequencies of the problem, and \mathbf{c}_m
are Gaussian input noises (incoming quantum shot noise in the
ideal case in the optical modes and thermal noise for the
mechanical modes).

Multimode theoretical PSDs are efficiently computed using
a the linear amplifier model (LAM) [28]. For the LAM, the
first step involves transforming the equations of motion into
frequency space. The coupled equations are then manipulated
analytically (or even numerically if unavoidable) to recast the
matrix equation of the equations of motion in the form

\begin{equation}
\mathbf{c}(\omega) = \mathbf{T} \mathbf{c}_m(\omega),
\end{equation}

where $\mathbf{T}(\omega) = (-i\omega \mathbf{I} - \mathbf{A})^{-1}$ and \mathbf{I} is the identity. \mathbf{T} is a
transformation matrix that characterizes the transduction of the
input noises into the mechanical and optical field fluctua-
tions, somewhat analogous to the effect of a linear amplifier.
The linear amplifier model is very powerful as one may in

1. Standard optomechanics QLT

In this Appendix we briefly review the framework of
quantum linear theory (QLT) of optomechanics. Optically
levitated systems [26,27] generally involve multiple optical
and mechanical modes. Such multimode systems (N optical
and M mechanical degrees of freedom) are typically described
by the well-studied linearized Hamiltonian [1]

\begin{equation}
\hat{H} = \sum_{l=1}^{l=N} -\Delta_l \hat{a}_l^\dagger \hat{a}_l + \sum_{k=1}^{k=M} \omega_k \hat{b}_k^\dagger \hat{b}_k - \sum_{k,l} g_k^{(l)}(\hat{a}_l^\dagger + \hat{a}_l)(\hat{b}_k^\dagger + \hat{b}_k),
\end{equation}

where \hat{a}_l (\hat{a}_l^\dagger) is the annihilation (creation) operator for optical
mode l, and \hat{b}_k (\hat{b}_k^\dagger) for mechanical mode k. Δ_l is the detuning
between the input laser and the cavity mode l, while ω_k
is the natural frequency of the mechanical oscillator, and $g_k^{(l)}$
is the light-enhanced coupling strength between an optical
mode and a mechanical mode. For simplicity, dissipation is char-
acterized by a single optical damping rate κ and a single
mechanical damping rate Γ (though more complex
scenarios, for example with multiple mirror losses, can be
easily incorporated).

A set of $2(N + M)$ quantum Langevin equations of motion are
obtained from Eq. (A1) by adding input noises. For exam-
ple, for the single-mode $N = M = 1$ case, where all $g_k^{(l)} \equiv g$
we have

\begin{equation}
\begin{bmatrix}
\dot{\hat{a}}(t) \\
\dot{\hat{\alpha}}(t) \\
\dot{\hat{b}}(t) \\
\dot{\hat{\beta}}(t)
\end{bmatrix} =
\begin{bmatrix}
i\Delta - \frac{\omega}{2} & 0 & ig & i\gamma \\
0 & -i\Delta - \frac{\omega}{2} & -ig & -i\gamma \\
ig & ig & -i\omega - \frac{\gamma}{2} & 0 \\
i\omega - \frac{\gamma}{2} & 0 & -ig & i\Delta + \frac{\omega}{2}
\end{bmatrix}
\begin{bmatrix}
\hat{a}(t) \\
\hat{\alpha}(t) \\
\hat{b}(t) \\
\hat{\beta}(t)
\end{bmatrix} + \begin{bmatrix}
\sqrt{\kappa} \hat{a}_m(t) \\
\sqrt{\gamma} \hat{a}_m(t) \\
\sqrt{\Gamma} \hat{b}_m(t) \\
\sqrt{\Gamma} \hat{b}_m(t)
\end{bmatrix},
\end{equation}

principle obtain the vector of all PSDs of all modes in one go:

\begin{equation}
S_{\text{ex}}(\omega) = \mathbf{T}(\omega) \mathbf{N} \mathbf{T}^\dagger(\omega),
\end{equation}

where

\begin{equation}
\langle \mathbf{c}_m(\omega) | \mathbf{c}_m(\omega) \rangle^\dagger = \mathbf{N},
\end{equation}

and \mathbf{N} is a diagonal matrix of elements:

\begin{equation}
\mathbf{N} = \text{diag}(\gamma_1(n_1 + 1) \ldots \gamma_n(n_n + 1)).
\end{equation}

The n_k represent the occupancy of the respective baths, thus
$n_k = 0$ for quantum shot noise in the optical modes but
$n_k \approx kT/\hbar \omega_k$ for thermally occupied phonon modes.
Typically, one can set $\gamma_k \equiv \kappa$ for optical modes and $\gamma_k \equiv \Gamma$ for the me-
chanical modes. For levitated systems, there is no cryogenic
cooling and $T = 300$ K.

The solutions $\hat{a}(\omega)$ of the optical field denote here the
intracavity field, while the actual detected cavity output field
is then obtained using the input-output relation $\hat{\alpha}_m(\omega) =
\hat{\alpha}_m^\dagger(\omega) - \sqrt{\kappa} \hat{a}(\omega)$ for the respective optical mode.

2. 1D QLT with amplitude or phase optical coupling

In this section we consider one mechanical mode \hat{b}_j and
one optical mode \hat{a} with two types of couplings: (i) $g_j(\hat{b}_j^\dagger +
\hat{b}_j)(\hat{\alpha}_j + \hat{a})$ and (ii) $g_j(\hat{b}_j^\dagger + \hat{b}_j)i(\hat{\alpha}_j - \hat{a})$. The former case (i)
is the usual optomechanical coupling between the mechanical mode and the amplitude quadrature of light which has been reviewed in Appendix A1. To obtain the PSD one can restrict the general multimode result in Eq. (A5) to the case of one optical and one mechanical degree of freedom by setting \(N = M = 1 \). Alternatively, an explicit calculation of the PSD can be performed by following the steps from Eqs. (A4)–(A7). Specifically, from Eq. (A2) one first moves to the frequency space and solves for the displacement operator \(\hat{q}_j(\omega) = b(\omega) + \hat{b}^\dagger(\omega) \), i.e., the displacement operator is expressed in terms of noises \(\hat{a}_m(\omega) \) and \(\hat{b}_m(\omega) \). The PSD can then be readily obtained by evaluating the expectation value using Eqs. (A6) and (A7). The latter case (ii), where the mechanical mode is now coupled to the phase quadrature of light, can be analyzed using analogous steps. Specifically, one first obtains the quantum Langevin equations with the modified coupling and then follows the steps in Eqs. (A4)–(A7).

For both cases (i) and (ii) we can write the 1D displacement operators using the standard notation of optomechanical QLT by expressing them as a sum of thermal and optical back-action noises:

\[
\hat{q}^{1D}_j(\omega) = M_j^{-1}\left[\sqrt{\kappa} \hat{g}_{j\mu} \hat{Q}^{\text{therm}}_j + i\sqrt{\kappa} \hat{g}_{j\mu} \hat{Q}^{\text{opt}}_j \right],
\]

where we have the normalization factor

\[
M_j(\omega) = 1 + 2g_j^2\mu_j(\omega)\eta^{(0)}(\omega),
\]

the mechanical susceptibilities

\[
\mu_j(\omega) = \chi(\omega, \omega_j, \Gamma) - \chi^*(\omega, \omega_j, \Gamma),
\]

the optical noise

\[
\hat{Q}^{\text{opt}}_j(\omega) = e^{-i\Phi} \chi(\omega, -\Delta, \kappa)\hat{a}_m(\omega) + e^{i\Phi} \chi^*(\omega, -\Delta, \kappa)\hat{a}_m^\dagger(\omega),
\]

and we have defined

\[
\chi(\omega, \omega_j, \Gamma) = \left[-i(\omega - \omega_j) + \frac{\Gamma}{\Delta} \right]^{-1}. \tag{A14}
\]

The above are (almost) the standard expressions for the 1D quantum linear theory (QLT) of optomechanics. The only difference is that we specify an angle \(\Phi \) for the optical noise, such that \(\Phi = 0 \) for standard optomechanical coupling, i.e., coordinates coupled to the amplitude quadrature of light, but \(\Phi = \pi/2 \) for the coordinates coupled to the phase quadrature of light (such as the \(z \) coordinate in the experiments in [23]).

For a cavity mode \(\hat{a} \), homodyne optomechanical displacement sensing in 1D would involve a measurement of some quadrature of the optical field \(\hat{Q}_A = e^{-i\Phi} \hat{a} + e^{i\Phi} \hat{a}^\dagger \), with coupling to a mechanical displacement \(\hat{q} \):

\[
\hat{Q}_A(\omega) = i\eta \hat{q}(\omega) + \sqrt{\kappa} \hat{Q}^{\text{therm}}_A, \tag{A15}
\]

where \(\hat{Q}^{\text{therm}}_A \) represent measurement imprecision, typically from incoming quantum photon shot-noise fluctuations, while \(\kappa \) is the cavity linewidth. Understanding the standard quantum limit of displacement sensing in 1D optomechanics requires analysis of errors in Eq. (A15).

In the 3D case, the measured optical quadrature in general now couples to displacements \(\hat{q}_j \) along all directions \(j = x, y, z \):

\[
\hat{Q}_j(\omega) = i\sum_{\ell\neq j} \eta^{(}\ell \rangle \hat{q}_j(\omega) + \sqrt{\kappa} \hat{Q}^{\text{therm}}_j. \tag{A16}
\]

With a simple adjustment to relate the intracavity field to the cavity output field via input-output relations, the corresponding PSD of the measured signal is used to estimate a displacement spectrum \(S_{\hat{Q}_j\hat{Q}_j}/|\eta^{(}\ell \rangle|^2 \simeq g^{3D}_{\ell\ell} + \eta^{(}\ell \rangle |^2 \)

In 3D we find this is not the case. We find that the most significant differences are new 3D back-action terms that redistribute energy between mechanical modes and add additional optical back-action thus attaining the 3D SQL requiring suppressing these terms. Nevertheless, even if the \(\hat{q}_j \) were independent, the separate optical back-action contributions are correlated and interfere for the case of single-quadrature homodyne detection leading to differences in ponderomotive squeezing. For the experiments using heterodyne detection (rotating quadrature), ponderomotive squeezing is not relevant.

3. 3D QLT with amplitude and phase optical coupling

In this section we consider three mechanical degrees of freedom that are coupled to both the amplitude and phase quadratures of the optical degree of freedom. Specifically, we consider the interaction Hamiltonian given by

\[
\hat{V}_{\text{int}}(\hbar) = -\sum_j g_{j\mu} \hat{q}_j \hat{\tilde{Y}} - \sum_{j,k} g_{j\mu} \hat{q}_j \hat{\tilde{P}} - \sum_{j,k} g_{j\mu} \hat{q}_j \hat{\tilde{P}}, \tag{A17}
\]

where \(\hat{\tilde{Y}} = \hat{a}^\dagger + \hat{a} \) and \(\hat{\tilde{P}} = i(\hat{a}^\dagger - \hat{a}) \), and \(\hat{q}_j = \hat{b}_j^\dagger + \hat{b}_j \) denotes the mechanical degrees of freedom \(\hat{x}_j, \hat{\tilde{y}}_j, \hat{\tilde{z}}_j \). The starting points of the analysis are again the equations of motion written in frequency domain:

\[
\hat{q}_j(\omega) = J_{j\mu}(\omega) \hat{\tilde{Y}} + J_{j\mu}(\omega) \hat{\tilde{P}} + \sum_{k\neq j} J_{jk}(\omega) \hat{q}_k(\omega) + \sqrt{\kappa} \hat{Q}^{\text{therm}}_j, \tag{A18}
\]

\[
\hat{\tilde{Y}}(\omega) = \sum_j J_{j\mu}(\omega) \hat{q}_j(\omega) + \sqrt{\kappa} \hat{\tilde{Y}}_m(\omega), \tag{A19}
\]

\[
\hat{\tilde{P}}(\omega) = \sum_{j,k} J_{jk}(\omega) \hat{q}_j(\omega) + \sqrt{\kappa} \hat{\tilde{P}}_m(\omega), \tag{A20}
\]

where \(J_{jk}(\omega) = ig_{jk}\mu_j(\omega) \) (for \(j = x, y, z \) and \(k = x, y, z, Y, P \),

\[
J_{j\mu}(\omega) = i(g_j \chi(\omega, -\Delta, \kappa) - g_j^\ast \chi^*(\omega, -\Delta, \kappa),
\]

\[
J_{jk}(\omega) = (g_j^\ast \chi(\omega, -\Delta, \kappa) + g_j \chi^*(\omega, -\Delta, \kappa),
\]

and we have defined the complex-valued couplings \(g_j = g_{j\mu} + ig_{j\mu} \). Note that in the main text, where we discuss a special case, we use the more common notation of real-valued couplings: \(g_x \equiv g_{xY} \) and \(g_y \equiv g_{xY} \), and \(g_z \equiv g_{zp} \). The input noises are
given by
\[
\hat{Q}_j^\text{therm}(\omega) = \chi^\ast(-\omega, \omega_j, \Gamma) \hat{P}_{j}^\text{int}(\omega) + \chi(\omega, \omega_j, \Gamma) \hat{Q}_{j}^\text{int}(\omega),
\]
(A21)
\[
\hat{Y}_{\text{in}}(\omega) = \chi^\ast(-\omega, -\Delta, \kappa) a_{\text{in}}^\dagger(\omega) + \chi(\omega, -\Delta, \kappa) a_{\text{in}}(\omega),
\]
(A22)
\[
\hat{P}_{\text{in}}(\omega) = i\chi^\ast(-\omega, -\Delta, \kappa) a_{\text{in}}^\dagger(\omega) - \chi(\omega, -\Delta, \kappa) a_{\text{in}}(\omega).
\]
(A23)
where \(\hat{Q}_{j}^\text{therm}(\omega)\) denotes the mechanical noises \(\hat{X}_{j}^\text{therm}(\omega), \hat{Y}_{j}^\text{therm}(\omega), \)
\(\text{and} \hat{Z}_{j}^\text{therm}(\omega)\).

It is instructive to separate the contributions to the spectra of \(\hat{q}_j(\omega)\) into two categories: one that contains the terms of a 1D approximation and one that contains additional terms arising in a realistic 3D problem. Specifically, using Eqs. (A19) and (A20) we can rewrite Eq. (A18) as
\[
\hat{q}_j^{\text{1D}} = \hat{q}_j + \sum_{k \neq j} G_{jk}(\omega) \hat{q}_k^{\text{1D}},
\]
(A24)
where we made the low-order approximation \(\hat{q}_j^{\text{3D}} \rightarrow \hat{q}_j^{\text{1D}}\) to allow a simplified analysis.

For example, for the 3D coherent scattering discussed in the main text we find (see Appendix C for more details)
\[
G_{jk}(\omega) = \frac{i\mu_j(\omega)}{M_j(\omega)} [i\eta(0)g_j g_k + g_{jk}],
\]
(A25)
for \(j, k \neq z\), thus, for \(G_{zz}(\omega)\) and \(G_{xz}(\omega)\), while
\[
\mathcal{G}_{jk}(\omega) = \frac{i\mu_j(\omega)}{M_j(\omega)} [-i\eta^{(\pi/2)}(\omega)g_j g_z + g_{jk}],
\]
\[
\mathcal{G}_{zx}(\omega) = i\mu_z(\omega) \frac{\eta^{(\pi/2)}(\omega)g_z g_j + g_{jk}},
\]
(A26)
(A27)
where the indices \(j, k\) denote \(x\) or \(y\).

We now continue with the general analysis. For numerical accuracy, we here give the exact expressions for the displacements in terms of noises. Specifically, starting from Eqs. (A18)–(A20) we eventually find
\[
\hat{q}_j(\omega) = A_j(\omega) \hat{Y}_{\text{in}}(\omega) + B_j(\omega) \hat{P}_{\text{in}}(\omega) + C_j(\omega) \hat{X}_{j}^\text{therm}(\omega) + D_j(\omega) \hat{Y}_{j}^\text{therm}(\omega) + D_j(\omega) \hat{Z}_{j}^\text{therm}(\omega),
\]
(A28)
where \(j\) denotes one of the mechanical motions
\[
A_j = N(\xi_j \beta_{Yj} + \xi_j \beta_{Yj} + \xi_j \beta_{Yj}),
\]
(A29)
\[
B_j = N(\xi_j \beta_{Pj} + \xi_j \beta_{Pj} + \xi_j \beta_{Pj}),
\]
(A30)
\[
C_j = N\xi_j \beta_{xz},
\]
(A31)
\[
D_j = N\xi_j \beta_{yz},
\]
(A32)
\[
E_j = N\xi_j \beta_{zz},
\]
(A33)
where \(\beta_{Yj} = N_0 J_Y J_Y, \beta_{Pj} = N_0 J_Y J_P, \beta_{Yj} = N_0, N_j = (1 - J_Y J_Y - J_P J_P)^{-1}\).

4. Self-energy, optical spring, and damping

In this section we obtain the analytical expressions for the self-energy, relevant to the experiments of [25] that couple \(x\) and \(y\) (but not significantly \(z\)). We obtain also the resulting optical spring and damping formulas. We start from the coupled equations
\[
\hat{x} = J_{xy} \hat{Y} + \hat{Q}_{j}^\text{therm},
\]
\[
\hat{y} = J_{yx} \hat{Y} + \hat{Q}_{j}^\text{therm},
\]
\[
\hat{Y} = J_{yz} \hat{x} + J_{yx} \hat{y} + \hat{Y}_{\text{in}}.
\]
(A34)
(A35)
(A36)
We now focus on the \(x\) motion, while the formulas for the \(y\) motion can be obtained by formally exchanging \(x \leftrightarrow y\) in the formulas. Specifically, we solve for \(\hat{x}\) to find
\[
\hat{x} = J_{xY}[1 - J_{yY} J_{xY}]^{-1}(J_{yx} \hat{x} + J_{yy} \hat{Q}_{y}^\text{therm} + \hat{Y}_{\text{in}}) + \hat{Q}_{x}^\text{therm},
\]
(A37)
One can then extract the self-energy \(\Sigma_x\), which is given by
\[
\mu_x \Sigma_x = -\frac{J_{xY} J_{xY}}{1 - J_{yY} J_{xY}}.
\]
(A38)
We note that the numerator is the usual term \(\alpha_{x}^2\) which arises already in the 1D analysis, while the denominator term \(\alpha_{x}^2\) is a new effect which arises in the 3D analysis. In particular, considering the expressions for \(J_{xY}\) and \(J_{yY}\), we find from Eq. (A38)
\[
\Sigma_x = \frac{g_x^2 \eta(0)}{1 + g_x^2 \mu_x \eta(0)}.
\]
(A39)
Finally, we can find the change of the damping \(\delta \Gamma\) and the shift of frequency \(\delta \omega\) using the following expressions [29]:
\[
\delta \Gamma_j = \frac{\text{Im}[\Sigma_j(\omega_j)]}{\omega_j}, \quad \delta \omega_j = \frac{\text{Re}[\Sigma_j(\omega_j)]}{2 \omega_j},
\]
(A40)
where \(\omega_j\) denotes the mechanical frequency.

APPENDIX B: SUPPRESSION OF \(z\) HYBRIDIZATION

In this Appendix we discuss suppression of hybridization with the \(z\) motion. In the main text we found that a remarkable transition from 3D to a near decoupled 1D regime occurs for \(-\Delta \gg \omega_{xz, yz}\) and \(\phi = \pi/4\), in-between the 3D (direct coupled, \(\phi \approx 0\)) and 3D (indirect, cavity-mediated \(\phi \approx \pi/2\)) regimes. This results from the cancellation between the direct \(g_{xy}\), coupling and the cavity-mediated \(g_{y} g_{y} \eta(0)\) terms; an underlying reason for this surprising near exact cancellation is that \(g_{xy} \propto \text{Re}(\tilde{a})\) where \(\tilde{a}\) is the mean cavity field, which follows the cavity resonance, that in turn determines the form of \(\eta(0)\).

However, the situation for the \(G_{jz}(\omega)\) couplings is similar but more involved \((j \neq z)\) so the destructive cancellation is less complete. A peculiarity of the system is that the \(z\) coupling is of the form \(g_{y} (\tilde{a}^\dagger - \tilde{a}) \tilde{z}\), i.e., the displacement couples to the \(momentum\) quadrature of the cavity. In this case, \(G_{jz}(\omega) = \frac{i\mu_j(\omega)}{M_j(\omega)} [i\eta^{(\pi/2)}(\omega)g_z g_z + g_{jk}],\) but...

023228-7
are of the form discussed below, some of the optomechanical coupling terms
rect couplings between the mechanical modes, i.e., have the latter one.

Thus, even where there is destructive interference, only the real part of \(G_{jk}(\omega) \) is fully canceled. Nevertheless, all 3D couplings are attenuated for \(-\Delta \gg \omega_j, \kappa\). Further, since fortunately since \(\omega_x \ll \omega_y, \gamma \), hybridization between \(z \) and the other two modes is generally weaker than between \(x \) and \(y \) which are close in frequency. Thus, it is possible to tune quite strongly into the decoupled 1D regime.

APPENDIX C: 3D LEVITATED OPTOMECHANICS IN A CAVITY DRIVEN BY COHERENTLY SCATTERED TWEEZER LIGHT

We consider the 3D optomechanical system such as the coherent scattering cavity levitation introduced in [22–24]. As discussed below, some of the optomechanical coupling terms are of the form \(g_k(\hat{a}^\dagger - \hat{a})(\hat{b}^\dagger_k + \hat{b}_k) \), i.e., the mechanical motion can couple to the phase quadrature of the light, in addition to the more typical coupling to the amplitude quadrature, i.e., \(g_k(\hat{a}^\dagger + \hat{a})(\hat{b}^\dagger_k + \hat{b}_k) \). Specifically, we will consider the case when the \(z \) motion has the former type, while \(x \) and \(y \) motions have the latter one.

In addition, for a truly 3D system, one allows also direct couplings between the mechanical modes, i.e., \(g_{jk} \hat{k} \hat{q}^{\dagger} \), where \(k, k' \equiv x, y, z \). Direct couplings are not usually considered in optomechanics: although multimode systems are commonly studied (such as multiple vibration modes of mem-

branes), coupling between mechanical modes is not usually of interest. However, for the considered 3D optical levitation this is not only important, but the \(g_{jk} \) are closely correlated with the couplings \(g_k \). Specifically, we will find \(g_{jk} \propto g_k^{\dagger} g_k \), which has important consequences for sensing.

In particular, in a cavity populated only by scattered light as in the recent 3D setups in levitated optomechanics, we need consider only a single light mode, but three mechanical modes including direct coupling terms:

\[
\hat{H} = \hat{H}_0 - (\hat{a}^\dagger + \hat{a}) [g_x(\hat{b}_x^\dagger + \hat{b}_x) + g_y(\hat{b}_y^\dagger + \hat{b}_y)]
- i [g_x(\hat{a}^\dagger - \hat{a})(\hat{b}_x^\dagger + \hat{b}_x) + g_y(\hat{a}^\dagger - \hat{a})(\hat{b}_y^\dagger + \hat{b}_y)]
- \sum_j g_{jk} (\hat{b}_k^\dagger + \hat{b}_k)(\hat{b}_j^\dagger + \hat{b}_j),
\]

where \(\hat{H}_0 = -\Delta \hat{a}^\dagger \hat{a} + \sum_{k=x,y,z} \omega_k \hat{b}_k^\dagger \hat{b}_k \) (see Appendix A3 where we have developed a generic framework to solve such Hamiltonians within QLT). In order to extract the dynamical parameters, i.e., the frequencies \(\omega_k \), the optomechanical couplings \(g_k \), and the direct couplings \(\hat{g}_{jk} \), we must first consider the physical tweezer and cavity potentials (Appendix D), and then expand to quadratic order around an equilibrium position (Appendix D).

APPENDIX D: 3D COHERENT SCATTERING HAMILTONIAN

In this Appendix we review details of the potentials in the coherent scattering setup and derive the optomechanical couplings \(g_j \) as well as direct couplings \(\hat{g}_{jk} \) for \(j, k = x, y, z \). We consider the hybrid tweezer-cavity experiments introduced in [23], which employed setups very similar to those in [22,24]. A nanoparticle is trapped at the focus of a tweezer field and interacts with light coherently scattered from the tweezer field into the (undriven) cavity.

The Hamiltonian describing the interaction between the nanoparticle and the combined fields of the tweezer and cavity is given by

\[
\hat{H} = -\frac{\alpha}{2} (\hat{\mathbf{E}}_{\text{cav}} + \hat{\mathbf{E}}_{\text{tw}})^2, \tag{D1}
\]

where \(\hat{\mathbf{E}}_{\text{cav}} \) (\(\hat{\mathbf{E}}_{\text{tw}} \)) denotes the cavity (tweezer) field, \(\alpha = 3\epsilon_0 V \frac{e_0}{\epsilon_{tw}} \) is the polarizability of the nanosphere, \(V \) is the volume of the nanosphere, \(e_0 \) is the permittivity of free space, and \(e_R \) is the relative dielectric permittivity.

We assume a coherent Gaussian tweezer field and replace the modes with \(c \) numbers to find

\[
\hat{\mathbf{E}}_{\text{tw}} = \epsilon_{tw} \frac{1}{2 \sqrt{1 + (\frac{z_R}{\Delta z})^2}} e^{-\frac{z_R^2}{2\Delta z^2}} e^{-\frac{x^2}{\Delta x^2}} e^{-\frac{y^2}{\Delta y^2}} e^{i\Phi(z)} e^{-i\omega_tw} \mathbf{e}_c + \text{c.c.}, \tag{D2}
\]

where \(\Phi(z) = -\arctan \frac{z}{\Delta z} \) is the Gouy phase, \(z_R = \frac{\pi \omega_{tw}}{k} \) is the Rayleigh range, \(w_x, w_y \) are the beam waist along the \(x \) (\(y \)) axis, \(\epsilon_{tw} = \sqrt{\frac{\epsilon_{sR}}{\epsilon_{tw}} \frac{\pi \omega_{tw}}{k}} \) is the amplitude of the electric field, \(c \) is the speed of the light, \(P_{tw} \) is the laser power, \(\omega_{tw} \) is the tweezer angular frequency, \(t \) is the time, and \(\mathbf{r} = (\hat{x}, \hat{y}, \hat{z}) \) is the position of the nanoparticle. \(\mathbf{e}_c \) is the unit vectors: \(\mathbf{e}_c \) is aligned with the symmetry axis of the tweezer field and \(\mathbf{e}_i \) is aligned with the polarization of the tweezer field.

The cavity field is given by

\[
\hat{\mathbf{E}}_{\text{cav}} = \epsilon_c \cos[k(x_c^c + \hat{x}^c)] \mathbf{e}_c^\dagger (\hat{a} + \hat{a}^\dagger). \tag{D3}
\]

where \(\epsilon_c = \sqrt{\frac{h_n}{2\Delta z \epsilon_0 \epsilon_{tw}}} \) is the amplitude at the center of the cavity, \(V_c \) is the cavity volume, \(\omega_c \) is the cavity frequency, \(\hat{a} (\hat{a}^\dagger) \) is the annihilation (creation) operator, \(x_c^c \) is an offset of the cavity coordinate system (centered at a cavity antinode) with respect to the tweezer coordinate system. The cavity \(x, y \) plane is rotated by an angle \(\theta \) with respect to the tweezer \(x, y \) plane:

\[
\begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.
\tag{D4}
\]

Note that for \(\theta = 0 \) the tweezer polarization (\(y \) axis) becomes aligned with the cavity symmetry axis (\(x_c \) axis). In particular, we have \(x_c^c = \sin(\theta) \hat{x} + \cos(\theta) \hat{y} \). Furthermore, we then have the following relation between the cavity and tweezer unit vectors

\[
\mathbf{e}_c^\dagger = [-\mathbf{e}_C \cos(\theta) + \mathbf{e}_s \sin(\theta)]. \tag{D5}
\]
We expand the Hamiltonian in Eq. (D1) exploiting Eqs. (D2), (D3), and (D5) to obtain three terms

\[
\hat{H} = -\frac{\alpha}{2} \left[\hat{E}_{\text{tw}} \right]^2 - \frac{\alpha}{2} \left[\hat{E}_{\text{cav}} \right]^2 - \frac{\alpha \sin(\theta)}{2} \left(\hat{E}_{\text{cav}} \hat{E}_{\text{tw}} + \hat{E}_{\text{cav}}^\dagger \hat{E}_{\text{tw}}^\dagger \right),
\]

(D6)

where the terms on the right-hand side are the tweezer term, the cavity term, and the tweezer-cavity interaction term (from left to right). The first (tweezer field) term dominates the trapping and primarily sets the three mechanical frequencies \(\omega_x, \omega_y,\) and \(\omega_z\). The second term provides a (typically) small correction to the frequencies and is included only for numerical precision. The third term, which we will denote as \(\hat{V}_{\text{int}}\), is the most interesting and novel form of optomechanical interaction. As discussed in [23,24], time dependencies in this term are eliminated through rotating frame approximations leaving an effective optomechanical Hamiltonian

\[
\frac{\hat{V}_{\text{int}}}{\hbar} = -E_d \cos(\phi + k(\hat{x} \sin \theta + \hat{y} \cos \theta)) \times \left[a e^{-i[(\hat{z} + \Phi)z]} + a^\dagger e^{i[(\hat{z} + \Phi)z]} \right],
\]

(D7)

where \(E_d = \alpha \omega_{cav} \sin^2 \alpha\), \(\phi = k x_0^{(c)}\) represents the effect of the shift between the origin of the cavity and tweezer. The experiments allow positioning of \(x_0^{(c)}\) with an accuracy of \(\sim 8\) nm for \(\lambda = 1064\) nm. In first approximation one can neglect the Gouy phase \(\Phi\). Linearization of the above Hamiltonian to quadratic order yields the 3D optomechanical couplings.

Quadratic Hamiltonian: Unified form

We expand the Hamiltonian in Eq. (D7) around an equilibrium point \((x_0, y_0, z_0, \hat{a})^T\) by making the substitution \((x, y, z, a)^T \rightarrow (x_0, y_0, z_0, \hat{a})^T + (x, y, z, a)^T\), where \((x, y, z, a)^T\) on the right-hand side denotes small fluctuations. To a first approximation, \(x_0, y_0, z_0\) represent the origin of the strong tweezer trap. However, there are nontrivial corrections when we further small offsets \(\delta x_0, \delta y_0, \delta z_0\), for example, when the cavity is strongly populated [24]. These emerge naturally from numerical simulations and can also be well estimated through the linearization analysis. Similarly, the mean cavity photon occupancy number \(n = \langle \hat{a} \rangle^2\) may also need to be corrected from the approximate form [23] \(\langle \hat{a} \rangle = (Y_0 + iP_0)/2 = -iE_d \cos(\phi)/\left(1 + \cos \theta \right)\) to allow for the fact that \(\phi \sim k x_0^{(c)} + \delta x_0 \cos \theta + \delta y_0 \sin \theta\). We further note that also \(\delta z_0\) displacements give rise to nontrivial changes for the couplings and the mean values, yet the results for the \(x,y\) motions in the main text and in Appendix E remain unaltered as \(\delta z_0 \ll \Delta z\).

A unique feature of these new levitated setups is that the optomechanical coupling can be via the momentum quadrature. In the calculation in [22–24], this affected only the \(z\) coordinate. However, we note that if there are significant offsets in the fields or misalignment of the cavity and tweezer axes, in general, one might wish to consider both amplitude and momentum couplings to all mechanical modes, so here we introduce a unified notation.

It is convenient to introduce the notation \(\hat{Y} = \hat{a}^\dagger + \hat{a}\), and \(\hat{P} = i(\hat{a}^\dagger - \hat{a})\) for the optical field. We also similarly use \(\hat{x} = x_{\text{zpf}}(\hat{b}_x^\dagger + \hat{b}_x), \hat{y} = y_{\text{zpf}}(\hat{b}_y^\dagger + \hat{b}_y), \hat{z} = z_{\text{zpf}}(\hat{b}_z^\dagger + \hat{b}_z),\) where zero-point fluctuation lengths are given by \(x_{\text{zpf}} = \sqrt{\frac{\hbar}{2m \omega_x}}, y_{\text{zpf}} = \sqrt{\frac{\hbar}{2m \omega_y}},\) and \(z_{\text{zpf}} = \sqrt{\frac{\hbar}{2m \omega_z}},\) and \(m\) is the mass of the levitated nanoparticle. Redefining \(\hat{x}/x_{\text{zpf}} \rightarrow \hat{x}, \hat{y}/y_{\text{zpf}} \rightarrow \hat{y},\) and \(\hat{z}/z_{\text{zpf}} \rightarrow \hat{z}\) we write

\[
\frac{\hat{H}}{\hbar} = -[g_{xy}\hat{y} + g_{xz}\hat{x} + g_{yz}\hat{z} + (g_{xT}\hat{x} + g_{yT}\hat{y} + g_{zT}\hat{z})],
\]

(D8)

where we have omitted the harmonic oscillator terms. We can also rewrite the optical quadratures in terms of the mode operator \(\hat{a}\):

\[
\frac{\hat{H}}{\hbar} = -[g_{xy} \hat{y} + g_{xz} \hat{z} + (g_x \hat{x} + g_y \hat{y} + g_z \hat{z})a^\dagger + (g_{xT} \hat{x} + g_{yT} \hat{y} + g_{zT} \hat{z})a],
\]

(D9)

where we have introduced the complex-valued couplings \(g_{ij} = g_{iJ} + ig_{iP}\) (see Appendix A 3 for the resolution of this general Hamiltonian within 3D QLT). However in the following we opt to use the more conventional notation introduced for the special case in Eq. (C1) where all the coupling constants are defined as real valued. Specifically, from Eq. (D7) we find the following nonzero light-matter couplings:

\[
g_x \equiv g_{xy} = -E_d k \sin(\theta) \sin(\phi) x_{\text{zpf}}, \quad g_y \equiv g_{xy} = -E_d k \cos(\theta) \sin(\phi) y_{\text{zpf}}, \quad g_z \equiv g_{xy} = E_d k \cos(\phi) z_{\text{zpf}},
\]

(D10) \quad (D11) \quad (D12)

In addition, we also have matter-matter couplings

\[
g_{xy} = -E_d k^2 \cos(\theta) \cos(\phi) x_{\text{zpf}} y_{\text{zpf}}, \quad g_{xz} = -E_d k^2 P_0 \sin(\phi) x_{\text{zpf}} z_{\text{zpf}}, \quad g_{yz} = -E_d k^2 P_0 \cos(\phi) y_{\text{zpf}} z_{\text{zpf}}.
\]

(D13) \quad (D14) \quad (D15)

The harmonic frequencies are given by

\[
\omega_j = \sqrt{\frac{1}{m}(T_j + C_j + T'_j)},
\]

(D16)

where \(T_j = \frac{\omega_{cav}^2}{\omega_{x,y}^2}, \quad T_j = \frac{\omega_{cav}^2}{\omega_{x,y}^2},\) and \(T_j = \frac{\omega_{cav}^2}{\omega_{x,y}^2}\) are the typically dominant contributions arising from the tweezer trap. The corrections from the cavity are \(C_j = 2\alpha e_j^2 k^2 n \sin^2(\theta) \cos(2\phi)\) and \(C_j = 2\alpha e_j^2 k^2 n \sin^2(\theta) \cos(2\phi)\), and \(C_j = 0\). The contributions arising from the coupling between the cavity and tweezer are \(T'_j = \frac{h_x}{\omega_x^2}(2 + k^2 w_0^2 \sin^2(\theta))Y_0 \cos(\phi),\)

\(T'_j = \frac{h_x}{\omega_x^2}(2 + k^2 w_0^2 \sin^2(\theta))Y_0 \cos(\phi),\) and \(T'_j = \frac{h_x}{\omega_x^2}(2 + k^2 w_0^2 \sin^2(\theta))Y_0 \cos(\phi).\) We remark that corrections from \(C_j\) and \(T'_j\) can in certain cases become important, e.g., when the cavity has a high photon occupancy, potentially even leading to nanoparticle loss. The cavity-tweezer interaction also changes the cavity detuning from \(\Delta\) to \(\Delta_0\), where \(\Delta_0 = \frac{\omega_{cav}^2}{\omega_{x,y}^2} \sin^2(\phi).\)
APPENDIX E: ANALYSIS OF GROUND-STATE COOLING EXPERIMENTS

In this Appendix we give further details of our analysis (based on the 3D QLT presented in Appendix A) of the recent experiments reporting ground-state cooling of levitated nanoparticles.

We employ a simplified analysis to aid understanding of the recent experiment reported in [25] which employs the 3D coherent scattering setup discussed in the main text. The experiment places the particle at the node ($\phi = \pi/2$) and is thus in regime of pure indirect, cavity-mediated coupling, which differs significantly from the regimes where direct/indirect pathways compete and cancel. Nonetheless, there are other novel and important features. The analysis confirms that the \hat{x} motion is close to the ground state and identifies new effects in the \hat{x} and \hat{y} displacement spectra stemming from hybridization between the \hat{x} to the \hat{y} motions. In particular, we find non-negligible corrections to phonon occupancies in both modes.

We have the following x-y hybridization coupling strengths (see also Appendix A here)

$$
G_{xy}(\omega) = \frac{i\mu_j(\omega)\pi/\phi}{M_s(\omega)} [i\eta_0(\omega)g_xg_y + g_{xy}]
$$

and

$$
G_{yx}(\omega) = \frac{i\mu_j(\omega)\pi/\phi}{M_s(\omega)} [i\eta_0(\omega)g_yg_x + g_{yx}].
$$

(1E1)

However, as the nanoparticle is located at a cavity node $\phi = \pi/2$, they involve only the indirect cavity-field-mediated coupling terms $\propto \eta_0(\omega)g_xg_y$, since the direct coupling coefficients vanish, i.e., $g_{xy} = 0$. Hence, the x-y hybridization couplings in the case of pure cavity-mediated interactions reduce to

$$
G_{jk} = -\frac{\mu_j(\omega)\pi/\phi}{g_j^2} g_k/\eta_0.
$$

(1E2)

where j, k denote the indices x and y. Interestingly, although in this configuration the cavity contains very few photons (the so-called “empty cavity” with only components at the Stokes/anti-Stokes frequencies), the indirect couplings still play a very important role.

In addition, the tweezer tilt angle is set to values $\theta \approx \pi/2$, so $g_x \ll g_y$, one expects strong cooling exclusively along the x direction. However, the heterodyne detected PSDs showed prominent peaks at $\omega \approx \omega_r$ (shifted by the reference oscillator), thus, one infers that $g_y \neq 0$ so $\theta \neq \pi/2$. Allowing for an uncertainty in the tweezer tilt of a few degrees, we have thus assumed $\theta = (0.47-0.49)\pi$ to be consistent with the observations. For $\theta = 0.47 \times \pi$, we obtain $g_x \approx 2\pi \times 80 \text{ kHz}$ and $g_y \approx 2\pi \times 8 \text{ kHz}$, thus $g_x \approx 10g_y$.

A further detail of the observed data motivates a very small (10%) adjustment of the tweezer waist dimensions. Figure 3 shows an optical-spring-induced frequency degeneracy between the x and y modes at $\Delta \approx -400 \text{ kHz}$, which is a feature of the experiments. In order to get agreement in the x, y frequencies as well as the frequency degeneracy, the tweezer waist values $w_x = 0.66 \mu m$ and $w_y = 0.77 \mu m$ in [25] were reduced slightly to $w_x = 0.600 \mu m$ and $w_y = 0.705 \mu m$, which is consistent with inherent experimental uncertainties in the tweezer geometry.

Figure 3 illustrates key features of the experimental regime in [25], including the optical-spring-induced degeneracy, the cooling dynamics, and the hybridization. This is the scenario we now analyze. The z motion has a frequency $\omega_z \ll \omega_x, \omega_y$, and can thus be neglected in the simplified analysis below (but is included in the numerics). In this regime the x and y mechanical motions form a system of coupled equations, which in frequency space take the form

$$
\hat{x}^{3D}(\omega) = \hat{x}^{1D}(\omega) + G_{xy}(\omega)\hat{y}^{3D}(\omega),
$$

(1E3)

$$
\hat{y}^{3D}(\omega) = \hat{y}^{1D}(\omega) + G_{yx}(\omega)\hat{x}^{3D}(\omega).
$$

(1E4)

The terms $\hat{x}^{1D}(\omega)$ and $\hat{y}^{1D}(\omega)$ denote the optical and mechanical noises which would be present already in a one dimensional analysis, and the hybridization couplings G_{jk} are given in Eq. (1E2).

1. Simplified analysis of the y motion

Substituting Eq. (1E3) into Eq. (1E4) we approximate

$$
\hat{y}^{3D} \approx \hat{y}^{1D} + G_{xy}\hat{x}^{3D} + G_{yx}\hat{y}^{1D}
$$

(1E5)

where we have for brevity omitted the frequency dependence ω. In other words, we directly used the 1D forms on the right-hand side for the simplified thermometry analysis (although we emphasize all calculations for the main text figures used
the full self-consistent 3D solutions without approximation as discussed in Appendix A 3).

The above show that the optomechanics introduces correlations between the x and y motions although the corresponding thermal noise fields are uncorrelated. As we are operating relatively far from the back-action limit, we neglect in the first instance the optical noises and hence the optically induced correlations between \(\hat{x}^{1D} \) and \(\hat{y}^{1D} \). We note, however, that the above optomechanically induced correlations between the x and y modes are somewhat analogous to the well-studied correlations between optical and mechanical modes induced by optomechanical back-action.

As x is strongly cooled, we can in this case neglect the \(\chi^{1D} \) term. Hence,

\[
\hat{y}^{3D} \simeq (1 - G_{xy}G_{yx})^{-1}\hat{y}^{1D} = \mathcal{N}^{-1}(\omega)\hat{y}^{3D},
\]

and thus we arrive at an approximation expression for the PSD of \(\hat{y} \):

\[
S_{yy}^{3D} \simeq \frac{S_{yy}^{1D}}{|\mathcal{N}(\omega)|^2}.
\]

Figure 4 compares the above \(\mathcal{N} \)-rescaled PSD with the full analytical expressions, showing that the rescaling of the 1D sideband accurately accounts for the differences between the 3D and 1D PSDs including the relative heating and cooling.

In summary, around the frequency degeneracy, there is strong (about factor 7) cooling of the y motion due to the x-y correlations and the back-action of y on x, i.e. the y mode is, via the cavity, coupled to x, and in turn the x mode, because of this cavity-mediated coupling, acquires a component correlated with the y thermal noises. We identify this as a new mechanism for “sympathetic cooling” of the y mode, due entirely to the strongly coupled (and strongly cooled) x mode.

2. Simplified analysis of the x motion

The x motion can be analyzed in similar manner, by substituting Eq. (E4) into Eq. (E3) which readily gives

\[
\chi^{3D} = \mathcal{N}^{-1}(\omega)[\chi^{1D} + G_{xy}\hat{y}^{1D}],
\]

where we have for brevity omitted the frequency dependence \(\omega \). Analogously, we find the PSD

\[
S_{xx}^{3D} \simeq S_{xx}^{1D} + \frac{|G_{xy}|^2}{|\mathcal{N}(\omega)|^2} S_{yy}^{1D} \simeq S_{xx}^{1D} + |G_{xy}|^2 S_{yy}^{3D},
\]

where we have made the further approximation, based on inspection of the form of \(\mathcal{N}(\omega) \), that \(S_{xx}^{3D} \simeq |\mathcal{N}(\omega)|^{-2} \); in other words, the back-action of highly cooled x motion on the PSD of x, arising from its coupling to y, is relatively unimportant. The important difference between the \(S_{xx}^{3D} \) and \(S_{xx}^{1D} \) arises from the second term in Eq. (E9). This latter term is not an interference term, but an additive term, which always results in additional heating, and it provides the sharply peaked feature around \(\omega \approx \omega_n \). This feature has previously been neglected, but its contribution to the sideband area should be included for accurate thermometry.

We note that the x sideband is strongly affected by the optomechanical spring effect. It is straightforward to adapt the usual analysis for this x-y coupled case. One obtains the usual self-energy [29] (see Sec. S3 for more details)

\[
\Sigma_x = \frac{g_x^2\eta^{(0)}}{1 + g_x^2\mu_x^0\eta^{(0)}},
\]

where we find the change of the damping \(\delta \Gamma_x \), in the shift of frequency that represents the optical spring effect \(\delta \omega \). Specifically, we find [29]

\[
\delta \Gamma_x = \frac{\text{Im}[\Sigma_x(\omega)]}{\omega_j}, \quad \delta \omega_j = \frac{\text{Re}[\Sigma_x(\omega_j)]}{2\omega_j},
\]

where \(\omega_j \) denotes the mechanical frequency. Note the \(g_x^2 \) correction in the denominator of the self-energy; setting this to zero yields the standard 1D optomechanical cooling formula.

In Fig. 3 we compared phonon occupancies (black dashed lines, right panel) obtained in this way \(n_x \approx n_0\gamma_j/\Gamma_x \), where the thermal bath occupancy \(n_0 = kT/(\hbar\omega_j) \) for \(T = 300 \, \text{K} \). We note that the effect of this \(g_x^2 \) correction is small and the significant effects in heating of x arise rather from the hybridization correction [the last term in Eq. (E9)].
