UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Genome-wide association study reveals a novel association between MYBPC3 gene polymorphism, endurance athlete status, aerobic capacity and steroid metabolism

Al-Khelaifi, F; Abraham, D; Hingorani, A; Elrayess, M; (2020) Genome-wide association study reveals a novel association between MYBPC3 gene polymorphism, endurance athlete status, aerobic capacity and steroid metabolism. Frontiers in Genetics , 11 , Article 595. 10.3389/fgene.2020.00595. Green open access

[thumbnail of Abraham_fgene-11-00595.pdf]
Preview
Text
Abraham_fgene-11-00595.pdf - Published Version

Download (835kB) | Preview

Abstract

Background: The genetic predisposition to elite athletic performance has been a controversial subject due to the underpowered studies and the small effect size of identified genetic variants. The aims of this study were to investigate the association of common single-nucleotide polymorphisms (SNPs) with endurance athlete status in a large cohort of elite European athletes using GWAS approach, followed by replication studies in Russian and Japanese elite athletes and functional validation using metabolomics analysis. Results: The association of 476,728 SNPs of Illumina DrugCore Gene chip and endurance athlete status was investigated in 796 European international-level athletes (645 males, 151 females) by comparing allelic frequencies between athletes specialized in sports with high (n = 662) and low/moderate (n = 134) aerobic component. Replication of results was performed by comparing the frequencies of the most significant SNPs between 242 and 168 elite Russian high and low/moderate aerobic athletes, respectively, and between 60 elite Japanese endurance athletes and 406 controls. A meta-analysis has identified rs1052373 (GG homozygotes) in Myosin Binding Protein (MYBPC3; implicated in cardiac hypertrophic myopathy) gene to be associated with endurance athlete status (P = 1.43 × 10−8, odd ratio 2.2). Homozygotes carriers of rs1052373 G allele in Russian athletes had significantly greater VO2max than carriers of the AA + AG (P = 0.005). Subsequent metabolomics analysis revealed several amino acids and lipids associated with rs1052373 G allele (1.82 × 10–05) including the testosterone precursor androstenediol (3beta,17beta) disulfate. Conclusions: This is the first report of genome-wide significant SNP and related metabolites associated with elite athlete status. Further investigations of the functional relevance of the identified SNPs and metabolites in relation to enhanced athletic performance are warranted.

Type: Article
Title: Genome-wide association study reveals a novel association between MYBPC3 gene polymorphism, endurance athlete status, aerobic capacity and steroid metabolism
Open access status: An open access version is available from UCL Discovery
DOI: 10.3389/fgene.2020.00595
Publisher version: http://dx.doi.org/10.3389/fgene.2020.00595
Language: English
Additional information: © 2020 Al-Khelaifi, Yousri, Diboun, Semenova, Kostryukova, Kulemin, Borisov, Andryushchenko, Larin, Generozov, Miyamoto-Mikami, Murakami, Zempo, Miyachi, Takaragawa, Kumagai, Naito, Fuku, Abraham, Hingorani, Donati, Botrè, Georgakopoulos, Suhre, Ahmetov, Albagha and Elrayess. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine > Inflammation
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Cardiovascular Science
URI: https://discovery.ucl.ac.uk/id/eprint/10098924
Downloads since deposit
124Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item