

1 **A cell-based MAPK reporter assay reveals synergistic MAPK pathway activity**
2 **suppression by MAPK inhibitor combination in *BRAF*-driven pediatric low-grade**
3 **glioma cells**

4

5 Diren Usta¹⁻³, Romain Sigaud^{1,2}, Juliane L. Buhl^{1,2,4}, Florian Selt¹⁻³, Viktoria Marquardt⁵, David Pauck⁵,
6 Jennifer Jansen⁶ Stefan Pusch^{7,8}, Jonas Ecker¹⁻³, Thomas Hielscher⁹, Johanna Vollmer^{1,2}, Alexander
7 C. Sommerkamp^{1, 4, 10}, Tobias Rubner¹¹, Darren Hargrave¹², Cornelis M. van Tilburg¹⁻³, Stefan M.
8 Pfister^{1,3,13}, David T.W. Jones^{1,10}, Marc Remke⁵, Tilman Brummer⁶, Olaf Witt¹⁻³, Till Milde^{1-3*}

9 ¹ Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany

10 ² Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German
11 Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany

12 ³ KITZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology and Oncology, Heidelberg University
13 Hospital, Heidelberg, Germany

14 ⁴ Faculty of Biosciences, Heidelberg University, Heidelberg, Germany

15 ⁵ Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital
16 Düsseldorf, Germany, and Department of Pediatric Neuro-Oncogenomics, German Cancer Consortium (DKTK)
17 and German Cancer Research Center (DKFZ), Heidelberg, Germany

18 ⁶ Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, Freiburg,
19 Germany, Centre for Biological Signalling Studies BIOSS, University of Freiburg, Comprehensive Cancer Center
20 Freiburg (CCCF) and German Consortium for Translational Cancer Research (DKTK), Freiburg, and German
21 Cancer Research Center (DKFZ), Heidelberg, Germany

22 ⁷ Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany

23 ⁸ Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Consortium
24 for Translational Cancer Research (DKTK), Heidelberg, Germany

25 ⁹ Division of Biostatistics, German Cancer Research Center (DKFZ) and German Consortium for Translational
26 Cancer Research (DKTK), Heidelberg, Germany

27 ¹⁰ Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany

28 ¹¹ Flow Cytometry Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany

29 ¹² Neurooncology and Experimental Therapeutics, Great Ormond Street Hospital for Children, London, United
30 Kingdom

31 ¹³ Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Consortium for
32 Translational Cancer Research (DKTK), Heidelberg, German

33

34 Running title: MAPK reporter assay in pediatric low-grade glioma cells

35 Keywords: pediatric pilocytic astrocytoma, BRAF inhibitor, MEK inhibitor, ERK inhibitor, ELK-1 reporter
36 assay

37

38 Additional information:

39 Financial support, including the source and number of grants, for each author:

40 S.M. Pfister, D.T.W. Jones, and O. Witt received financial support from The Brain Tumour Charity
41 (TBTC, The Everest Centre for Low-Grade Paediatric Brain Tumours; GN-000382). D. Usta received a
42 scholarship from the Friedrich-Ebert-Foundation ("Friedrich-Ebert-Stiftung"). J. Vollmer received a
43 scholarship from The German National Academic Foundation ("Studienstiftung des deutschen
44 Volkes"). J. Ecker received a postdoc stipend from the Medical Faculty, Heidelberg University, through
45 the Physician Scientist Program. T. Brummer acknowledges support by the German Research
46 Foundation (DFG) by a Heisenberg-Professorship and BR3662/4-1. O. Witt is grateful to Christian
47 Scheu and his family for their financial support of this study. S.M. Pfister, D.T.W. Jones, and O. Witt
48 received financial support from A Kids' Brain Tumor Cure (PLGA Foundation). O. Witt, D.T.W. Jones
49 and S.M. Pfister received financial support from Children's Tumor Foundation Synodos low-grade
50 glioma initiative. O. Witt and T. Milde received donations from private charities (anonymous, "Verein
51 für krebskranke Kinder Odenwald e.V." and the "DLFH Verband Pfalz e.V."). D. Hargrave is supported
52 by funding from the NIHR Great Ormond Street Hospital Biomedical Research Centre. The views
53 expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the
54 Department of Health.

55

56 * Corresponding author:

57 Till Milde, Hopp Children's Cancer Center Heidelberg (KiTZ), Clinical Cooperation Unit Pediatric
58 Oncology (B310), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120
59 Heidelberg, Germany; phone: +49 6221 42 3574, fax: +49 6221 3579, email: t.milde@kitz-
60 heidelberg.de.

61

62 Disclosure of potential conflicts of interest:

63 C. van Tilburg participated at advisory boards of Novartis and Bayer. D. Hargrave has acted as a
64 paid/unpaid consultant and advisor for selumetinib (AstraZeneca), cobimetinib (Roche) and trametinib/
65 dabrafenib (Novartis) and received research funding from AstraZeneca. O. Witt is advisory board
66 member of Novartis, AstraZeneca, Janssen and Roche.

67

68 Word count: 6430

69 Total number of Figures: 6, Suppl. Figures: 5

70 Total number of Suppl. Tables: 5

71 **Abstract**

72 Pilocytic astrocytomas (PAs) as well as other pediatric low-grade gliomas (pLGGs) exhibit
73 genetic events leading to aberrant activation of the MAPK pathway. The most common
74 alterations are *KIAA1549:BRAF* fusions, $BRAF^{V600E}$ and *NF1* mutations. Novel drugs
75 targeting the MAPK pathway (MAPKi) are prime candidates for the treatment of these single-
76 pathway diseases. We aimed to develop an assay suitable for pre-clinical testing of MAPKi in
77 pLGGs with the goal to identify novel MAPK pathway suppressing synergistic drug
78 combinations.

79 A reporter plasmid (pDIPZ) with a MAPK-responsive ELK-1-binding element driving the
80 expression of destabilized firefly luciferase was generated and packaged using a lentiviral
81 vector system. Pediatric glioma cell lines with a BRAF fusion (DKFZ-BT66) and a $BRAF^{V600E}$
82 mutation (BT-40) background, respectively, were stably transfected. Modulation of the MAPK
83 pathway activity by MAPKi was measured using the luciferase reporter and validated by
84 detection of phosphorylated protein levels. A screen of a MAPKi library was performed and
85 synergy of selected combinations was calculated.

86 Screening of a MAPKi library revealed MEK inhibitors as the class inhibiting the pathway with
87 the lowest IC50s, followed by ERK and next-generation RAF inhibitors. Combination
88 treatments with different MAPKi classes showed synergistic effects in BRAF fusion as well as
89 $BRAF^{V600E}$ mutation backgrounds.

90 We here report a novel reporter assay for medium- to high-throughput pre-clinical drug
91 testing in pLGG cell lines. The assay confirmed MEK, ERK and next-generation RAF
92 inhibitors as potential treatment approaches for *KIAA1549:BRAF* and $BRAF^{V600E}$ mutated
93 pLGGs. In addition, the assay revealed that combination treatments synergistically
94 suppressed MAPK pathway activity.

95 Word count: 250/250

96

97

98

99 **Introduction**

100 Pediatric low-grade gliomas (pLGGs) are the most common brain tumors in children [1] and
101 comprise various WHO grade I-II entities, including pilocytic astrocytomas (PAs) [2].
102 Complete surgical resection is the therapy of choice, but in case of unresectable tumors,
103 chemo- or radiotherapy is applied (e.g. SIOP LGG 2004 trial, NCT00276640). The overall
104 survival is good, with a 10-year survival rate of more than 90% [3, 4]. However, recurrences
105 occur frequently, leading to a poor 10-year event free survival rate of only around 45% in this
106 population [5]. The clinical course can be variable, requiring repeated periods of treatment.
107 This often leads to chronic morbidity of the affected patients with significant neurological
108 sequelae [6, 7]. Therefore, in spite of a good overall survival, the management of pLGGs
109 requires novel therapeutic approaches to tackle disease- and therapy-related morbidity.

110 PA is a single-pathway disease with virtually all driving aberrations occurring in the RAS/ERK
111 MAPK pathway. Recent studies in PAs have shown that around 70% of the underlying MAPK
112 alterations are *KIAA1549:BRAF* fusions, followed by NF1 (7%), *BRAF^{V600E}* (5%) and *FGFR1*
113 (5%) mutations as the most frequent alterations [8]. Other mutations affecting MAPK
114 pathway members such as *NTRK2*, *RAS* and *RAF1* are usually rare [8-10]. The majority (>
115 80%) of pLGGs other than PA also exhibit MAPK pathway activation [9]. While the *BRAF*
116 fusion is typical for PAs, *BRAF^{V600E}* mutations are frequently observed in pleomorphic
117 xanthoastrocytomas (66%) and gangliogliomas (18%) [11]. Since most pLGGs and all PAs
118 are driven by activation of a single pathway, targeting this axis is a promising treatment
119 approach. Indeed, several small molecule MAPK inhibitors are currently under evaluation in
120 clinical trials for pLGGs. The MEK inhibitor (MEKi) selumetinib has shown promising efficacy
121 in pediatric patients with recurrent or refractory pLGG [12]. The MEKi trametinib is studied in
122 patients with NF1 and recurrent or refractory pLGG (and/or plexiform neurofibroma) [13-15]
123 or sporadic *BRAF* fusion positive pLGG in a phase I/II trial (NCT03363217). Treatment of
124 pediatric patients with a *BRAF^{V600E}* mutated pLGG with the combination of dabrafenib
125 (V600E-specific *BRAFi*) and trametinib (MEKi) is currently being investigated in a phase I/II
126 trial (NCT02684058). The novel RAF-inhibitor TAK-580 is in phase I clinical development in
127 children with LGG and other MAPK driven tumors (NCT03429803). The upcoming LOGGIC
128 Europe trial (EudraCT No. 2018-000636-10) will randomize patients with pLGG in a MEKi
129 (trametinib) treatment arm and compare to standard of care (SOC) carboplatin/vincristine
130 and to vinblastine monotherapy, respectively. Similarly, the upcoming COG trial ACNS1831
131 (NCT03871257) will randomize NF1 patients with pLGG to receive selumetinib or SOC
132 carboplatin/vincristine. Finally, new pan-RAF and ERK inhibitors in (pre-)clinical development
133 are potential candidates for treatment of *BRAF* fusion positive pLGGs [16-18].

134 Results of early clinical trials, however, emphasize the importance of fully understanding the
135 underlying biology of MAPK signaling in pLGGs. 82% (9/11) of patients with recurrent or
136 progressive pLGG treated with sorafenib, a multikinase inhibitor including BRAF in its
137 inhibitory spectrum, showed progressive disease under treatment in a phase I/II study
138 leading to early termination of the study [19]. Retrospectively it was shown that sorafenib
139 indeed induced paradoxical activation of the MAPK pathway [20, 21]. These studies highlight
140 the need for profound pre-clinical testing in suitable pLGG models and characterization of the
141 mechanism of action of novel inhibitors before entering clinical trials.

142 To date, the availability of *in vitro* and *in vivo* models of pLGGs for pre-clinical drug testing is
143 limited as pLGG cells typically undergo senescence *in vitro* and do not from tumors *in vivo*.
144 We have established the first patient-derived *KIAA1549:BRAF* fusion expressing PA cell line,
145 DKFZ-BT66 [22]. The model was shown to reflect the true biology of a PA including
146 activation of the MAPK pathway, slow growth behavior resulting from oncogene-induced
147 senescence (OIS) and positivity for the senescence-associated secretory phenotype (SASP),
148 as well as responsiveness to MAPKi [22, 23]. However, the SV40 large T antigen expressed
149 in DKFZ-BT66 cells, necessary to overcome OIS, limits the use of this cell line, as essential
150 pro-apoptotic pathways are blocked [22, 24]. Direct measurement of MAPK pathway activity
151 circumvents this problem when testing MAPKi in the DKFZ-BT66 model, in addition to
152 providing biological information by direct measurement of actual pathway activity rather than
153 a surrogate measure such as viability. In this study we have generated a novel ELK-1-driven
154 luciferase reporter construct (pDIPZ) and applied it using a MAPKi compound library in both
155 a BRAF fusion and a BRAF^{V600E} mutated pLGG background in a medium- to high-throughput
156 manner.

157

158 **MATERIALS AND METHODS**

159 **Cell culture and cell lines**

160 The patient-derived *KIAA1549:BRAF* fusion positive PA cell line DKFZ-BT66 is described in
161 [22], the patient-derived *BRAF*^{V600E} mutation positive pediatric glioma cell line BT-40 in [25].
162 The identity of all cell lines used was confirmed by Multiplex Cell Line Authentication (MCA)
163 service and proven to be free of contamination by Multiplex cell Contamination Test (McCT)
164 (<http://www.multiplexion.de>) [26, 27]. After testing for identity and contamination, cells were
165 aliquoted and frozen in liquid nitrogen until further use. To establish the readout conditions of
166 the assay, DKFZ-BT66 cells stably transduced with human telomere reverse transcriptase
167 (hTERT) were used (described in [22]), however, for the drug screen and following
168 combination treatments DKFZ-BT66 cells without overexpression of TERT were used. DKFZ-
169 BT66 (+/-hTERT) cells (passage 9-14 for the native cell line and passage 18-30 for the
170 hTERT cell line) were cultured in the presence of doxycycline (1µg/ml) to induce proliferation
171 and BT-40 cells (passage 12-20) were cultured as described in [22]. Cell lines were tested
172 for mycoplasma contamination with Venor®GeM Classic (cat. no. 11-1250, Minerva biolabs,
173 Berlin, Germany) every four weeks. HEK293T cells (Brummer laboratory stock) were
174 cultivated in DMEM (4.5 g/l glucose, 10% fetal calf serum (heat inactivated), 2 mM L-
175 glutamine, 10mM HEPES, 200U/ml penicillin, 200µg/ml streptomycin) and transiently
176 transfected as described previously in [28].

177 **Plasmids**

178 The vectors pDIPZ-ELK-1 binding site (BS)-CMVmin-desGFP-desFLuc (pDIPZ-CMV),
179 pDIPZ-CMVmin-desGFP-desFLuc (pDIPZ-CMV w/o BS), pDIPZ-ELK-1 binding site-
180 pFOSmin -desGFP-desFLuc (pDIPZ-pFOS) and pDIPZ-pFOSmin-desGFP-desFLuc (pDIPZ-
181 pFOS w/o BS) were generated by modifying the pTRIPZ vector (cat. no. RHS4697,
182 Dharmacon, Lafayette, Colorado, USA). For enzymatic digestion and ligation, the Anza
183 Restriction Enzyme Cloning System (cat. no. IVGN3006, Thermo Fisher Scientific, Waltham,
184 MA, USA) was used according to manufacturer's instructions. All primers were customized
185 and purchased from Sigma-Aldrich (St. Louis, Missouri, USA). Primer sequences are listed in
186 Suppl. Table S1. In summary, the gene cassette of the pTRIPZ vector, consisting of a
187 doxycycline inducible promoter, a turboRFP cDNA and the shRNAmir cassette, was
188 eliminated by digestion with Anza NotI (cat. no. IVGN001-4, Thermo Fisher Scientific) and
189 Anza XbaI (cat. no. IVGN012-6, Thermo Fisher Scientific) and replaced by a reporter gene
190 cassette. The reporter gene cassettes were kindly provided by Sebastian Herzog (BIOSS,
191 Freiburg, Germany) used in two variations: one vector containing an ELK-1 binding site
192 (serum response element [29]) linked to a CMVmin promoter (used for pDIPZ-CMV)

193 controlling the expression of destabilized GFP (desGFP) and destabilized firefly luciferase
194 (desFLuc), and the other one harboring a pFOSmin promoter instead of CMVmin (used for
195 pDIPZ-pFOS). These sequences were extracted by PCR (Q5® High-Fidelity DNA
196 Polymerase, cat. no. M0491S, NEB, Ipswich, Massachusetts, USA) using primers with *NotI*
197 and *XbaI* overhangs (Suppl. Table S1). After digestion with the respective enzymes, the
198 sequence of interest was inserted into the pTRIPZ backbone. To allow selection in the
199 puromycin-resistant DKFZ-BT66 cells [22], the puromycin resistance gene was replaced by a
200 blasticidin resistance gene. The blasticidin resistance gene was extracted from the pDEST
201 vector by PCR and then ligated into the altered pTRIPZ vector using the NEBuilder® HiFi
202 DNA Assembly Cloning Kit (cat. no. E5520S, NEB) following manufacturer's instructions
203 resulting in the generation of pDIPZ-CMV and pDIPZ-pFOS, respectively. Finally, to generate
204 pDIPZ-CMV w/o BS and pDIPZ-pFOS w/o BS, the ELK-1 binding site was eliminated by
205 PCR amplification of the whole plasmid while excluding the binding site.

206 The cDNA for HA-tagged BRAF^{WT} was amplified from pBabe-puro/BRAF^{WT}-HA [10] using the
207 oligonucleotides NotIBRAFfwd and BRAF C-term-HA (Suppl. Table S1). Both primers
208 introduce flanking NotI sites into the amplicon, which was subcloned into pSC-A (Stratagene)
209 for further propagation. The cDNA was then recovered by NotI digestion and subcloned into
210 NotI linearized pMIBerry-NotI unique [30] to yield pMIBerry NotI unique/BRAF^{WT}-HA. This
211 retroviral vector allows for the expression of a bicistronic transcript encoding the protein-of-
212 interest and dsRed2. The V600E mutation was introduced into this plasmid using site-
213 directed mutagenesis standard procedures and the primers hBRAFV600Efwd and
214 hBRAFV600Erev (Suppl. Table S1). For the generation of pMIBerry NotI
215 unique/KIAA1549:BRAF-HA, the cDNA for long-form KIAA1549:BRAF (KEx16BEx9) fusion
216 was amplified from pBABE-puro/KIAA1549-BRAF [10] using the primers MfeIKIAA1549fwdI
217 and MfeIKIAA1549rev (Suppl. Table S1). The amplicon was subcloned into pSC-A for
218 propagation, recovered by MfeI digestion and subcloned into pMIBerry-NotI unique. The
219 BRAF cDNAs of all pMIBerry-NotI unique constructs were confirmed by DNA sequencing.

220 **Lentiviral transduction**

221 Lentiviral packaging and transduction were performed as described in [22]. For antibiotic
222 selection of DKFZ-BT66 (hTERT) and BT-40 cells, blasticidin (cat. no. A1113903, Thermo
223 Fisher Scientific) was used in a final concentration of 6µg/ml (for the hTERT cell line
224 10µg/ml) and 2µg/ml, respectively, for ten days.

225 **MAPK inhibitors and other drugs**

226 A MAPK inhibitor library (cat. no. L3400) and chemotherapeutics (carboplatin: cat. no.
227 S1215, vinblastine: cat. no. S1248 and vincristine: cat. no. S1241) were purchased from

228 Selleckchem (Houston, Texas, USA). This pre-dissolved set of drugs was stored at -80°C
229 until usage. Additionally, the following investigational MAPK inhibitors were added to the
230 library: LXH254 (structure available here: [31]) and LTT462 (both generously provided by
231 Novartis, Cambridge MA, USA), RAF709 (cat. no. 23820, Cayman Chemical, Ann Arbor,
232 Michigan, USA), PLX7904 (cat. no. S7964, Selleckchem), PLX8394 (cat. no. HY-18972,
233 MedChemExpress, Monmouth Junction, New Jersey, USA), LY3009120 (cat. no. S7842,
234 Selleckchem), LY3214996 (structure available here: [32]) (generously provided by Eli Lilly
235 and Company, Indianapolis, Indiana, USA), (5Z)-7-oxo zeaenol (cat. no. 17459, Cayman
236 Chemical), SCH772984 (cat. no. 19166, Cayman Chemical) and BI-882370 (cat. no. 24273,
237 Cayman Chemical). These drugs were dissolved in DMSO, aliquoted and stored at -80°C
238 until usage. Inhibitors were diluted in cell culture medium and added to the cell culture at the
239 indicated concentrations for the indicated time.

240 **Metabolic activity**

241 Measurement of metabolic activity was conducted in white flat bottom 384-well plates (cat.
242 no. 3570, Corning, New York, USA) 72 hours after drug treatment, using a CellTiter-Glo®
243 One Solution assay (cat. no. G8461, Promega, Madison, WI, USA) following manufacturer's
244 instructions. Cells were seeded one day before treatment with $n=3 \times 10^3$ DKFZ-BT66 cells
245 per well and $n=6 \times 10^3$ BT-40 cells per well in 384-well plates. After drug treatment for 72
246 hours with concentrations ranging from 0.0043 to 25000 nM, metabolic activity was
247 measured by Multimode Microplate Reader (Tecan). The metabolic activity screen was done
248 in a single run with single measurements of each drug concentration step.

249 **Luciferase reporter assay**

250 Measurement of luciferase activity was conducted in white flat bottom 96- or 384-well plates
251 (cat. no. 781094, 781096, Greiner Bio-One, Kremsmünster, Austria) after 24 hours of
252 treatment using a Luciferase Assay System (cat. no. E1500, Promega, Madison, Wisconsin,
253 USA). For experiments conducted in 96-well plates, 25 μ l of luciferase substrate were added
254 to each well. Steady-Glo® Luciferase Assay System (cat. no. E2510, Promega) was used for
255 experiments conducted in 384-well plates following manufacturer's instructions. DKFZ-BT66
256 pDIPZ cells were seeded 24 hours prior to treatment in the presence of 1 μ g/ml doxycycline
257 with $n=5 \times 10^4$ cells per well in 96-well plates and $n=1 \times 10^4$ cells per well in 384-well plates.
258 BT-40 pDIPZ cells were seeded 24 hours before treatment with $n=1 \times 10^5$ cells per well in
259 96-well plates and $n=2 \times 10^4$ cells per well in 384-well plates. After drug treatment for 24
260 hours, luciferase activity was measured using the FLUOstar OPTIMA automated plate reader
261 (BMG Labtech). For the MAPKi screen, cells were treated in nine concentration steps
262 ranging from 0.001 nM to 10000 nM. IC50 values obtained from the screen (IC50_{screen}) were

263 validated ($IC_{50, validated}$) in three independent replicates (Suppl. Table S5). In the combination
264 experiments, cells were treated with nine concentration steps in a serial dilution with each
265 individual $IC_{50, validated}$ as the middle concentration. All experiments (except the MAPKi
266 reporter screen) were conducted in three biological replicates. The reporter screen was done
267 in a single run with three technical replicates for each drug concentration step.

268 **Western blot**

269 Western blots were performed as described previously [33]. The following antibodies were
270 used: Monoclonal rabbit pERK (1/2) (Thr202/Tyr204) (1:500, cat. no. 4377, Cell Signaling
271 Technology, Danvers, Massachusetts, USA), monoclonal rabbit total ERK (1/2) (1:1000, cat.
272 no. 4695, Cell Signaling Technology), monoclonal rabbit anti-RSK1 p90 phospho T359 and
273 S363 (1:1000, cat. no. ab32413, Abcam, Cambridge, United Kingdom), monoclonal rabbit
274 RSK1 p90 (1:500, cat. no. 9333S, Cell Signaling Technology), monoclonal rabbit phospho-
275 MEK1/2 (1:1000, cat. no. 9121S, Cell Signaling Technology), monoclonal rabbit MEK1/2
276 (1:1000, cat. no. 9122S, Cell Signaling Technology), monoclonal mouse HA-Tag (1:2000,
277 cat. no. 9110, Abcam), monoclonal rabbit BRAF C-19 (1:750, cat. no. sc-166, Santa Cruz
278 Biotechnology, Santa Cruz, California, USA) and monoclonal mouse GAPDH (1:10000, cat.
279 no. MAB374, Merck, Darmstadt, Germany). Cells were treated with the indicated drugs in the
280 indicated concentrations for 24 hours. Depicted blots are representative of at least three
281 biological replicates. Quantification of Western blot bands was conducted using ImageJ on
282 Windows.

283 **Flow cytometry**

284 Measurement of GFP was conducted using a Merck Guava EasyCyte HT flow cytometer.
285 GFP and RFP were measured using a 488 nm laser (500 long pass filter, 512/18 band pass
286 filter) and a 561 nm laser (593 long pass filter, 620/52 band pass filter), respectively. Data
287 was analyzed using FlowJo-V10 software and GuavaSoft version 3.1.1 (Merck Millipore).

288 For the assessment of GFP positive cells (Fig. 1) DKFZ-BT66 or BT-40 cells +/- pDIPZ
289 constructs were seeded in 6-well plates ($n=1.5 \times 10^5$ /well) 24 hours prior to measurement.
290 After 24 hours, cells were prepared for flow cytometry by short enzymatic digestion with
291 0.05% trypsin-EDTA (cat. no. 25300054, Thermo Fisher Scientific) and subsequent addition
292 of cold PBS plus 2% FBS (cat. no. F7524, Sigma-Aldrich). Depicted blots are representative
293 of three technical replicates (Fig. 1). For evaluation of fluorescence under MAPKi treatment
294 (Fig. 2A) DKFZ-BT66 pDIPZ cells ($n=5 \times 10^4$ /well) or BT-40 pDIPZ cells ($n=1 \times 10^5$ /well) were
295 seeded in clear flat bottom 96-well plates (cat. no. 3072, Corning) 24 hours prior to treatment.
296 After 24 hours of treatment, cells were prepared for flow cytometry as stated above. Depicted
297 blots are representative of three biological replicates (Fig. 2A).

298 **Drug combination analysis**

299 Determination of the combination index (CI) and generation of isobolograms were conducted
300 using the Chou-Talalay method and CompuSyn software on Windows for experiments using
301 concentration ranges [34].

302 Synergism was further validated for selected RAFi/MEKi and RAFi/ERKi combinations using
303 pERK or pRSK detection by Western blot as a readout. Concentrations were chosen
304 according to the corresponding isobologram generated for the 0.9 fraction affected (Fa), i.e.
305 Drug1_{IC90}, Drug2_{IC90}, Drug1_{Combi}+Drug2_{Combi} leading to 90% inhibition of the pathway,
306 Drug1_{Combi}, Drug2_{Combi}. Western blot signal was quantified and the effect of the combination
307 of both drugs was compared to the effect of each individual components allowing the
308 calculation of a CI value using the Bliss independence model as described in [35].

309 **Statistics**

310 All experiments were conducted in at least three biological triplicates, except the flow
311 cytometry validation (Fig. 1) and the reporter screening of MAPK inhibitors (Fig. 3, Suppl.
312 Table S3) which was conducted in a single run with three technical replicates and the
313 metabolic activity screen, which was conducted in a single run without replicates.
314 Significance was calculated using the Tukey's 'Honest Significant Difference' method in R on
315 Windows [36, 37] and p-values <0.05 were considered significant. IC₅₀ values were
316 calculated using GraphPad Prism version 5.01 (GraphPad Software, La Jolla, California,
317 USA) on Windows. Graphs and CI tables were generated using GraphPad Prism version
318 5.01, FlowJo-V10 software, Microsoft PowerPoint 2010, Microsoft Excel 2010 on Windows.

319 **RESULTS**

320 **Metabolic activity readout is unsuitable to assess MAPKi treatment in SV40 large T**
321 **expressing DKFZ-BT66 cells**

322 To identify novel treatment options for pLGG an initial screen with different classes of MAPKi
323 was performed. Metabolic activity was measured using an ATP-based assay in the
324 *KIAA1549:BRAF* fusion positive pilocytic astrocytoma cell line DKFZ-BT66 and the
325 *BRAF*^{V600E} mutation positive pediatric glioma cell line BT-40 after treatment with various
326 MAPKi for 72h (Suppl. Fig. S1). However, most MAPKi and other drugs including
327 chemotherapy failed to reduce metabolic activity at clinically relevant concentrations in
328 DKFZ-BT66 cells. This is most likely due to the fact that pro-apoptotic pathways are blocked
329 by the SV40 large T antigen (present in DKFZ-BT66 but not in BT-40), as described in [22].
330 Only compounds not dependent on e.g. p53 for induction of cell growth arrest, such as
331 vincristine and vinblastine, showed an effect at clinically relevant concentrations in DKFZ-
332 BT66 (Suppl. Fig. S1). In contrast, BT-40, which does not express SV40 large T antigen,
333 showed reduced metabolic activity after MAPKi treatment (Suppl. Fig. S1). We thus
334 concluded that metabolic activity is not suitable as a readout for a drug screen in the
335 *KIAA1549:BRAF* fusion positive model DKFZ-BT66.

336

337 **Generation of the novel ELK-1 reporter construct pDIPZ and transduction into two**
338 **patient-derived pediatric glioma models**

339 In order to enable medium- to high-throughput screening of MAPKi in a *KIAA1549:BRAF*
340 fusion (in addition to a *BRAF*^{V600E} mutant) background we aimed at direct assessment of
341 MAPK pathway activity instead of metabolic activity. We generated an ELK-1 responsive
342 lentiviral reporter plasmid to directly measure MAPK pathway activity [29] and introduced it
343 into both cell models. Destabilized GFP (desGFP) and destabilized firefly luciferase
344 (desFLuc), separated by a T2A site and controlled by either a CMVmin or a pFOSmin
345 promoter region (pDIPZ-CMV or -pFOS), were used as reporter genes (Fig. 1A; I and III).
346 The promoter region was linked to an ELK-1 binding element, modulating the expression of
347 the reporter genes depending on MAPK pathway activity [29]. In addition, we generated both
348 plasmids without the ELK-1 responsive element (pDIPZ-CMV/pFOS w/o binding site) as
349 controls (Fig. 1A; II and IV). Lentiviral transduction efficiency was assessed by flow
350 cytometry: ~56% and ~49% of DKFZ-BT66 hTERT cells (Fig. 1B), and ~37% and ~40% of
351 BT-40 cells (Fig. 1C) transduced with pDIPZ-CMV and pDIPZ-pFOS, respectively, were
352 assessed as GFP positive.

353 **Characterization of reporter signal and promoter response**

354 In order to evaluate the signal range of the different reporter genes and promoters, the highly
355 selective MEK inhibitor (MEKi) trametinib and the BRAF^{V600E} inhibitor (BRAFV600Ei)
356 vemurafenib were tested in both genetic backgrounds, *KIAA1549:BRAF* fusion (DKFZ-BT66
357 hTERT pDIPZ) and BRAF^{V600E} mutation (BT-40 pDIPZ). A strong and significant decrease of
358 the luminescence signal under MEKi treatment was detected in both the *KIAA1549:BRAF*
359 fusion as well as the BRAF^{V600E} mutation background (Fig. 2A). The luminescence signal
360 decreased after trametinib (MEKi) treatment by 65-67% in the *KIAA1549:BRAF* fusion
361 background (CMV: 67.1% +/- 3.6%; pFOS: 64.6% +/- 9.4%; % reduction in luminescence of
362 untreated control) and by 72-74% in the BRAF^{V600E} mutation background (CMV: 71.7% +/-
363 7.2%; pFOS: 74.4% +/- 1.7%; % reduction in luminescence of untreated control) (Fig. 2A).
364 The luminescence signal after vemurafenib (BRAFV600Ei) treatment decreased in a
365 differential manner, as expected. The luminescence signal decreased by 59-63% in the
366 BRAF^{V600E} mutation background (CMV: 58.6% +/- 5.9%; pFOS: 63.0% +/- 7%; % reduction
367 compared with untreated control), while no decrease in signal was observed in the
368 *KIAA1549:BRAF* fusion background (Fig. 2A). In contrast, the decrease in fluorescence
369 signal determined by flow cytometry was not significant in the *KIAA1549:BRAF* fusion
370 background, and only limited in the BRAF^{V600E} mutation background (Fig. 2A) with a
371 reduction of only e.g. 16-32% as determined by flow cytometry (after trametinib treatment:
372 CMV: 32.1% +/- 5.8%; pFOS: 22.6% +/- 6.1%; after vemurafenib treatment: CMV: 27.2% +/-
373 4.0%; pFOS: 16.3% +/- 2.8%; % reduction compared with untreated control) (Fig. 2A). In
374 conclusion, a significant reduction in luminescence, but not in fluorescence, in a mutational
375 background specific manner, was detectable in both cell lines. This is possibly due to
376 prolonged protein stability of desGFP leading to slow response dynamics. We therefore
377 chose luminescence as the reporter signal in the following experiments.

378 The two reporter plasmids with different promoters, pDIPZ-CMV and pDIPZ-pFOS, were
379 compared by measurement of luminescence after treatment with trametinib (MEKi) for 24h in
380 the *KIAA1549:BRAF* fusion and the BRAF^{V600E} mutation background. No significant
381 difference between the two promoters was observed (Fig. 2B). Calculated relative IC50
382 values as well as dose-response curve shapes were similar, indicating that both promoters
383 perform equally well in the setting of this assay. Since no difference in signal output was
384 detectable between both promoters, we arbitrarily chose the pDIPZ-CMV reporter plasmid for
385 all subsequent measurements.

386 In order to control for unspecific changes in desFLuc expression upon MAPKi treatment we
387 measured luminescence using a pDIPZ-CMV reporter plasmid without the ELK-1 binding site
388 (pDIPZ-CMV w/o ELK-1 binding site) and compared it to the pDIPZ-CMV reporter plasmid

389 with the ELK-1 binding site (pDIPZ-CMV w/ ELK-1 binding site). Importantly, modulation of
390 MAPK pathway activity by trametinib treatment in both *KIAA1549:BRAF* fusion and
391 *BRAF*^{V600E} mutation background did not result in signal suppression when using the pDIPZ-
392 CMV w/o ELK-1 binding site (Fig. 2C). Therefore, we conclude that the ELK-1 binding site is
393 specific for mediating MAPK pathway activity to the reporter plasmid.

394 Finally, the results of the reporter assay were validated by Western blot analysis. As
395 expected, a concentration dependent decrease in phosphorylation of ERK was seen in
396 accordance with the loss of MAPK dependent signal measured by the luminescence reporter
397 pDIPZ-CMV (Fig. 2D). Further measurements using the luminescence assay were
398 normalized to treatment with trametinib (1 μ M), since the MAPK pathway was maximally
399 suppressed under this condition (Fig. 2B and 2D). In summary, the changes in reporter
400 signal upon MAPKi treatment are indeed reflective of changes in MAPK pathway activity, and
401 therefore the pDIPZ-CMV reporter is suitable for a MAPKi drug screen.

402

403 **Screening of a MAPKi drug library reveals ERK inhibitors as a novel potent class 404 beyond MEK and RAF inhibitors inhibiting the MAPK pathway in low-grade gliomas**

405 In order to evaluate the effects of different inhibitors on MAPK pathway activity, we used our
406 reporter assay to screen a commercially available MAPKi library customized to contain
407 additional RAF, MEK and ERK inhibitors (see Suppl. Table S2). MEKi was the dominant drug
408 class inhibiting the pathway at very low IC₅₀ levels as determined in the screen (IC₅₀_{screen}) in
409 both the *KIAA1549:BRAF* fusion as well as the *BRAF*^{V600E} mutation background. Trametinib,
410 a dual mechanism MEK inhibitor [38], was the top hit in both backgrounds (Fig. 3A, B and C).
411 Of note, MEKi, e.g. trametinib, pimasertib or selumetinib, also paradoxically activated the
412 MAPK pathway at lower concentrations in the *BRAF*^{V600E} mutation background (BT-40 cells)
413 (Fig. 3B). All ERKi included in the library (SCH772984, ulixertinib, GDC-0994, LY3214996,
414 LTT462, (5Z)-7-oxo zeaenol) also showed potent inhibition of the MAPK pathway in both cell
415 lines, with IC₅₀_{screen} values below 130nM.

416 As expected, strong differences in pathway inhibition were observed for RAFi between the
417 *KIAA1549:BRAF* fusion and the *BRAF*^{V600E} mutation background (Fig. 3C). Most RAFi,
418 especially first and second generation RAFi, such as vemurafenib [17] paradoxically
419 activated the pathway in the *KIAA1549:BRAF* fusion background (DKFZ-BT66) (Fig. 3A), as
420 has been described previously [20, 21, 39]. Of note, the so-called paradox breakers [40]
421 PLX7904 (PLX PB-4) [41] and its optimized analogue PLX8394 (PLX PB-3) [21] did not show
422 reduction of pathway activity in the *KIAA1549:BRAF* fusion background (Fig. 3A). This is in
423 contrast to reports on PLX7904 impairing ERK phosphorylation in *NRAS* mutant

424 vemurafenib-resistant melanoma cells [41], and PLX8394, which was described to fully
425 abrogate the MAPK pathway in *KIAA1549:BRAF* fusion expressing cell lines [21]. There
426 were, however, some newly developed third generation pan-RAFi, e.g. LY3009120 or
427 LXH254 [17, 42, 43], which successfully inhibited the pathway - with IC₅₀_{screen} values ranging
428 from 270nM to 830nM in the *KIAA1549:BRAF* fusion background (Fig. 3A). Furthermore both
429 AZ628, a pan-RAF inhibitor which has a high potency against CRAF [44], and RAF709, a
430 selective inhibitor of dimeric RAF and monomeric mutant BRAF [45], were able to inhibit the
431 MAPK pathway in the *KIAA1549:BRAF* fusion background (DKFZ-BT66) at higher
432 concentration ranges. In the BRAF^{V600E} mutation background (BT-40) almost all RAFi were
433 effective, with BRAF^{V600E}-specific inhibitors like dabrafenib or encorafenib scoring as top hits
434 (Fig. 3B).

435 Overall, IC₅₀_{screen} estimated for RAF and ERK inhibitors were significantly lower in the
436 BRAF^{V600E} expressing cell line than the BRAF fusion model (Fig. 3C). Other drugs such as
437 JNK-, p38 α -inhibitors or chemotherapeutics showed no inhibitory effect on measured MAPK
438 pathway activity in either the *KIAA1549:BRAF* fusion or the BRAF^{V600E} mutation background,
439 and thus IC₅₀_{screen} values could not be estimated.

440 To ensure that the decrease in luminesce signal under treatment resulted from MAPK
441 pathway inhibition and is thus ELK-1 dependent [29], cells transduced with the control vector
442 pDIPZ w/o ELK-1 binding site were treated with the IC₅₀_{screen} concentrations of each drug
443 and luminescence was subsequently measured. Only TAK-632, carboplatin, sorafenib and
444 sorafenib tosylate, or sorafenib tosylate and PLX-4720, showed a signal reduction below
445 80% in DKFZ-BT66 or BT-40, respectively, indicating that these could be false positive hits in
446 the screen (Suppl. Table S3).

447 To validate key findings in the screen, pERK protein levels after treatment with selected
448 inhibitors were determined by Western blot. The difference in response to vemurafenib
449 treatment is shown in Fig. 4A. Paradoxical activation was observed for DKFZ-BT66, whereas
450 pERK signal was reduced in BT-40, similar to the results obtained from the screen (Fig. 3A
451 and B). In contrast to vemurafenib, the second generation RAFi AZ628 was able to reduce
452 pERK levels in the *KIAA1549:BRAF* fusion background as seen in Fig 4B further validating
453 the reporter assay being suitable to distinguish between positive and negative hits.

454 Finally, the differential response to the so-called paradox breakers in both backgrounds was
455 validated by assessment of pERK levels (Fig 4C). Treatment with the 3rd generation RAFi
456 PLX8394, the optimized analogue of PLX7904 [40], significantly reduced pERK levels in the
457 BRAF^{V600E} background in low concentrations (1nM) (Fig. 4C), as expected from the reporter
458 assay data. In contrast, pERK levels were significantly reduced only at very high

459 concentrations in the BRAF fusion background, in accordance with the signal observed in the
460 reporter assay (Fig. 3A). Importantly, paradoxical activation on pERK level was not observed
461 in the BRAF fusion background.

462 To validate our findings in additional genetic models and to evaluate if this observation is
463 independent of the genetic backgrounds of the cells, HEK293T cells overexpressing different
464 MAPK pathway alterations were treated with PLX8394 (Fig. 4D and E). The overexpression
465 of BRAF^{V600E} protein was validated by detection of the HA-tag and of the *KIAA1549:BRAF*
466 protein by detection of the fusion-length BRAF protein (Suppl. Fig. 2). Reduction of pMEK
467 (as direct readout of RAF inhibition) and pERK (as direct readout of MEK inhibition) levels
468 were achieved under lower concentrations of PLX8394 for BRAF^{V600E} mutation compared to
469 *KIAA1549:BRAF* fusion expressing HEK293T cells (Fig. 4D and E). In conclusion, the
470 BRAF^{V600E} mutated background is more susceptible to the treatment with the paradox
471 breaker PLX8394, as predicted by the reporter assay (Fig. 3A and B).

472 In summary, MEKi and ERKi effectively inhibited MAPK pathway activity in both the
473 *KIAA1549:BRAF* fusion as well as the BRAF^{V600E} mutation background, as measured by the
474 reduction in luminescence signal. In case of RAFi, pathway inhibition depended on the type
475 of MAPK aberration and RAFi class, as expected. Other drugs tested, apart from MEKi,
476 ERKi, and RAFi, were not able to reduce the MAPK pathway signal output.

477

478 **Combination of different classes of MAPKi show synergistic effects on pathway
479 inhibition in the *KIAA1549:BRAF* fusion as well as the BRAF^{V600E} mutation background**

480 To further assess novel potential treatment regimens for pLGG we tested combinations of
481 different classes of MAPKi for synergistic inhibition of the MAPK pathway. Combinations of
482 different MAPKi were chosen on the basis of lowest IC₅₀_{screen} values for each respective
483 background, as well as matching compounds from a single pharmaceutical company in a
484 pragmatic approach to model possible future clinical trials (Suppl. Table S4). IC₅₀_{screen}
485 values generated in the screen of the drugs chosen for combination testing were validated
486 (IC₅₀_{validated}) (Suppl. Table S5). IC₅₀_{validated} were used for the combination experiments.
487 Synergistic effects were observed in all tested RAFi and MEKi combinations in both
488 *KIAA1549:BRAF* fusion (LXH254 plus trametinib and AZ628 plus selumetinib) as well as the
489 BRAF^{V600E} mutation background (AZ628 plus selumetinib, vemurafenib plus cobimetinib and
490 dabrafenib plus trametinib) (Fig. 5A; Suppl. Fig. S3-S5). All synergies measured by
491 combination index (CI) plotting were corroborated by isobogram analysis (Suppl. Fig. S5).

492 Synergy of the combination of RAFi and ERKi was detected only for one of the ERKis tested.
493 Only the ERKi LTT462 showed synergy in combination with the RAFi LXH254 in the
494 *KIAA1549:BRAF* fusion and with dabrafenib in the $BRAF^{V600E}$ mutation background,
495 respectively (Fig. 5A; Suppl. Fig. S3-S5). All other RAFi plus ERKi combinations (LY3009120
496 plus LY3214996, dabrafenib plus ulixertinib, encorafenib plus ulixertinib, encorafenib plus
497 GDC-0994), as well as MEKi plus ERKi combinations (trametinib plus LTT462, pimasertib
498 plus SCH772984) revealed only additive or even antagonistic effects, however mostly in the
499 form of buffering-antagonism [46] (Fig. 5A).

500 To validate the synergistic effects observed for the combination of RAFi and MEKi, and RAFi
501 and ERKi, respectively, Western blots were conducted and synergistic effects were
502 calculated using the Bliss independence model [35] (Fig. 6). For the RAFi AZ628 in
503 combination with the MEKi selumetinib synergistic effects were observed in both cell lines
504 using pERK as readout (Fig. 6A and B) with CI values below 0.9. For the combination of the
505 RAFis (LXH254 and dabrafenib, respectively) with the ERKi (LTT462) pRSK levels as a
506 downstream target of pERK were determined to evaluate synergism, since pERK cannot be
507 used as readout due to accumulation of pERK upon inhibition with the ERKi (as described
508 previously [47]), especially in the *KIAA1549:BRAF* fusion background (Fig. 6A). For both
509 backgrounds CI values around 1.0 were calculated from the protein quantification by
510 Western blot, indicating additive effects (Fig. 6A and B).

511 In summary (Fig. 5B), synergistic effects were observed for treatment with RAFi and MEKi
512 and some of the RAFi and ERKi combinations in both the *KIAA1549:BRAF* fusion as well as
513 the $BRAF^{V600E}$ mutation background. The combination of MEKi and ERKi did not reveal
514 unequivocal synergism but rather additive and/or antagonistic (if buffered) effects.

515 **Discussion**

516 pLGGs are a chronic condition often associated with multiple recurrences and therapeutic
517 interventions in the course of a patient's lifetime, and new effective drug treatments are
518 urgently needed. Despite several ongoing early clinical trials testing MAPKi (alone and in
519 combination) in pLGGs (e.g. NCT02285439; NCT01089101; NCT03363217; NCT02684058),
520 extensive pre-clinical studies analyzing the efficacy of MAPKi in pLGGs are still missing. The
521 most important reason for this is the lack of suitable pLGG models that faithfully reflect the
522 biological features of these tumors, including genetic background, slow growth, and induction
523 of senescence. The strength of our study is the use of patient-derived pLGG models and a
524 fast and cost-effective reporter system suitable for high-throughput analysis.

525 Previous studies have established several *in vitro* and *in vivo* pLGG models (e.g. [10, 21, 48-
526 50]), most of them genetically engineered to overexpress the most common BRAF
527 aberrations. However, the underlying MAPK driver mutation, specifically the *KIAA1549:BRAF*
528 fusion, is not expressed endogenously in these models. The expression levels and relative
529 stoichiometry of BRAF, CRAF and the BRAF fusion are altered, and therefore interactions
530 and feedback mechanisms within the MAPK pathway are likely to be artificially changed. In
531 our study we have used two well-characterized patient-derived pediatric glioma cell lines
532 endogenously expressing the *KIAA1549:BRAF* fusion or the $BRAF^{V600E}$ mutation without
533 genetic overexpression [22, 25].

534 Widely used methods to determine MAPK pathway activity are e.g. Western blot for pERK,
535 qPCR for MAPK pathway genes, and serum response element (SRE) luciferase reporter
536 assays based on transient transfection [51, 52]. These methods are not well suited for high-
537 throughput analysis of the MAPK pathway due to workload, time, and scalability reasons.
538 Here we use a reporter assay which comes with several advantages: stable lentiviral
539 transduction, no individual sample processing after treatment, fast measurement, scalability
540 and automatability of the cost-effective readout. In addition, the ELK-1-responsive design of
541 the reporter assay provides information on the transcriptional sum output of the MAPK
542 pathway instead of measurement of phosphorylation status of single components of the
543 pathway, such as pERK, alone. The importance of this information is emphasized by past
544 studies, e.g. showing that in tumors with mutations in BRAF or receptor tyrosine kinase
545 (RTK), although having similar levels of pERK, elevated transcriptional output of the MAPK
546 pathway was detected only in BRAF mutated tumors [53]. Consequently, only BRAF mutated
547 tumors were dependent on ERK signaling for proliferation and MEKi sensitive [53]. The
548 reporter assay described here can not only measure the actual transcriptional output of the
549 MAPK pathway, but also compare relative changes upon treatment with MAPKi. This allows
550 for comparison of relative potencies of MAPKi in pLGG.

551 The pattern of effectiveness in MAPK inhibition both on the single compound as well as the
552 MAPKi class level warrants a closer look at the molecular effectors of MAPK inhibition. Most
553 of the early generation RAF inhibitors led to paradoxical activation as expected, and not all
554 pan-RAFi could inhibit the MAPK pathway. Conversely, novel third generation pan-RAFi
555 showed inhibitory activity with minimal paradoxical activation in the BRAF^{V600E} background as
556 well as in the *KIAA1549:BRAF* fusion positive cell line. Strikingly, all of the RAF inhibitors
557 capable of inhibiting the pathway in the BRAF fusion expressing cell line belong to type II
558 inhibitors, which stabilize the α C-helix in the IN and the DFG motif in the OUT conformation
559 [17, 54]. This mechanism prevents negative allosteric movements of the second protomer of
560 the RAF dimer, which keeps its α C-helix IN conformation. As a result, the inhibitor is able to
561 bind to the second RAF protomer in similar concentrations, to completely abolish kinase
562 activity. Interestingly, the paradox breakers PLX7904 and PLX8394 were less effective in
563 BRAF fusion containing cells compared to their BRAF^{V600E} positive counterparts. Similarly,
564 Weinberg *et al.* [30] observed that the paradox breakers PLX7904 and PLX8394 were more
565 effective in suppressing MEK/ERK phosphorylation triggered by BRAF^{V600E} than by the
566 *TTYH3:BRAF* fusion protein. This might be explained by the fact that PLX7904 and PLX8394
567 were developed with vemurafenib as starting point [55]. Vemurafenib was optimized for the
568 conformation of V600E that is stabilized by the mutation specific salt-bridge created by E600
569 [56]. The kinase domain of BRAF fusions, however, is not mutated and is therefore probably
570 much more flexible, leading to less sensitivity to the paradox breakers. Alternatively, but not
571 excluding this possibility, other mechanisms might contribute to the insensitivity of
572 *KIAA1549:BRAF* to PLX8394. Recently, Botton *et al* also reported the insensitivity of various
573 BRAF fusion driven melanoma lines towards PLX8394. They suggest that this paradox
574 breaker, which was originally selected to impair the activity of RAS-induced BRAF/RAF1
575 heterodimers, fails to disrupt RAS-independent kinase homo-dimers of the BRAF kinase
576 domains whose stability might be additionally influenced by their fusion partner [57]. In that
577 regard, it should be noted that, despite its frequency as BRAF fusion partner, very little is
578 known about the tertiary and quaternary structures of KIAA1549.

579 MEKi were the most effective class of MAPKi in both genetic backgrounds based on
580 IC₅₀_{screen} reporter values. Specifically trametinib, a potent inhibitor of MEK1/2 which also
581 reduces the activation of MEK by RAF by disrupting the conformation of the MEK1/2
582 activation loop sites (a so-called 'feedback buster') [38, 58], showed the lowest IC₅₀s in both
583 backgrounds. Furthermore, our data indicate that MEK inhibitors are acting in clinically
584 achievable concentrations (Suppl. Fig. S3 and S4), suggesting a high potential of sufficient
585 MAPK pathway suppression also in patients. ERKi were also an effective class of MAPKi in
586 both backgrounds. Current clinical phase I studies (e.g. NCT02857270, NCT02711345,

587 NCT01875705) will show if these promising MAPKi will qualify as potential candidates for
588 future pLGG trials [18].

589 The rationale behind combination treatments is based on the inhibition of potential escape
590 mechanisms from therapy via feedback activation as well as the possibility to reduce
591 individual drug concentrations, and thus drug toxicities, in combination settings.
592 Reconstitution of ERK signaling as a resistance mechanism, e.g. via RAF dimer formation,
593 has been observed in malignant transformation of pLGGs (although this is a rare event) [59].
594 Other resistance mechanisms described in e.g. melanoma [60] are BRAF amplification or
595 MEK mutation, leading to resistance to MAPKi single treatment by reconstitution of MAPK
596 pathway signaling. Combination treatments targeting several components of the pathway
597 could effectively prevent tumor progression under such circumstances [61]. Synergistic
598 effects of a pan-RAF/MEK inhibitor combination were confirmed for BRAF^{V600E} inhibitor
599 resistant melanoma and colorectal carcinoma cell lines [62]. In addition, the phase I clinical
600 trial of vemurafenib in melanoma patients revealed that a complete shutdown of the MAPK
601 pathway is necessary for significant tumor response [56] which could be more easily
602 achieved using synergistic combination treatments. Our results suggest that strong synergy
603 depends on the combination of certain classes of MAPKi. Synergistic effects were observed
604 when RAFi were combined with either MEKi or ERKi, possibly due to directly targeting the
605 BRAF alteration in both mutational backgrounds. In case of the combination of MEKi with
606 ERKi, synergistic effects were virtually absent. This is consistent with a recently published
607 study describing that MEKi and ERKi combinations act synergistically only in *RAS* mutant
608 models but not in BRAF mutant models as a consequence of distinct feedback productivity
609 [63].

610 Finally, the results obtained from the reporter assay could be validated by Western blot:
611 synergistic effects were confirmed for RAFi combined with a MEKi. The combinations of
612 RAFis and ERKi revealed rather additive effects instead of the synergism indicated by the
613 reporter assay. The downstream target pRSK was chosen as a suitable readout for ERK
614 inhibition since pERK is accumulating upon ERKi treatment. Indeed, a reduction of pRSK,
615 indicative of ERK inhibition, was readily detectable. Considering the measurement of
616 synergism by Western blot however, detection of rather small effects (such as phospho-
617 protein changes) by Western blot can be challenging. Measuring the phosphorylation of a
618 single protein such as RSK downstream of pERK as a readout could disregard its own
619 feedback mechanisms interfering with a strong dynamic reaction. Our assay using a
620 sensitive luminescence signal as a surrogate marker of transcriptional activity at the
621 downstream end of the MAPK pathway might be more suitable to evaluate synergistic effects
622 on the global signaling output.

623 In summary we have generated a novel MAPK-specific reporter assay in a pLGG-specific
624 background. This reporter assay enables direct assessment of transcriptional activation
625 status of the MAPK pathway and response to MAPKi treatment. Our results indicate that, in
626 addition to MEKi, ERKi and next-generation pan-RAFi are novel potential candidates for the
627 treatment of pLGGs. The synergy of the combination of RAFi with either MEKi or ERKi
628 detected in both genetic backgrounds (*KIAA1549:BRAF* fusion and *BRAF*^{V600E} mutation)
629 indicates strong clinical potential of those MAPKi combinations. Clinical trials are urgently
630 needed to test the efficacy of MAPKi combination therapies, especially RAFi and MEKi, in
631 pLGGs.

632

633 **Acknowledgments**

634 We thank Daniela Kuhn, Isabel Büdenbender and Sandra Braun for excellent technical
635 assistance.

636 **References**

637 1. Ostrom, Q.T., H. Gittleman, P. Liao, T. Vecchione-Koval, Y. Wolinsky, C. Kruchko et al.,
638 *CBTRUS Statistical Report: Primary brain and other central nervous system tumors*
639 *diagnosed in the United States in 2010-2014*. *Neuro Oncol*, 2017. **19**(suppl_5): p. v1-v88.

640 2. Louis, D.N., A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W.K. Cavenee
641 et al., *The 2016 World Health Organization Classification of Tumors of the Central Nervous*
642 *System: a summary*. 2016. **131**(6): p. 803-820.

643 3. Burkhardt, C., P.L. Di Patre, D. Schuler, G. Schuler, M.G. Yasargil, Y. Yonekawa et al., *A*
644 *population-based study of the incidence and survival rates in patients with pilocytic*
645 *astrocytoma*. *J Neurosurg*, 2003. **98**(6): p. 1170-4.

646 4. Colin, C., L. Padovani, C. Chappe, S. Mercurio, D. Scavarda, A. Loundou et al., *Outcome*
647 *analysis of childhood pilocytic astrocytomas: a retrospective study of 148 cases at a single*
648 *institution*. *Neuropathol Appl Neurobiol*, 2013. **39**(6): p. 693-705.

649 5. Gnekow, A.K., F. Falkenstein, S. von Hornstein, I. Zwiener, S. Berkefeld, B. Bison et al., *Long-*
650 *term follow-up of the multicenter, multidisciplinary treatment study HIT-LGG-1996 for low-*
651 *grade glioma in children and adolescents of the German Speaking Society of Pediatric*
652 *Oncology and Hematology*. *Neuro-oncology*, 2012. **14**(10): p. 1265-1284.

653 6. Zuzak, T.J., A. Poretti, B. Drexel, D. Zehnder, E. Boltshauser, and M.A.J.C.s.N.S. Grotzer,
654 *Outcome of children with low-grade cerebellar astrocytoma: long-term complications and*
655 *quality of life*. 2008. **24**(12): p. 1447.

656 7. Laroussinie, F., S. Puget, C. Sainte- Rose, and G. Dellatolas, *Long-term functional outcome of*
657 *patients with cerebellar pilocytic astrocytoma surgically treated in childhood AU - Ait Khelifa-*
658 *Gallois, N*. *Brain Injury*, 2015. **29**(3): p. 366-373.

659 8. Jones, D.T.W., B. Hutter, N. Jäger, A. Korshunov, M. Kool, H.-J. Warnatz et al., *Recurrent*
660 *somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma*. *Nature genetics*, 2013.
661 **45**(8): p. 927-932.

662 9. Zhang, J., G. Wu, C.P. Miller, R.G. Tatevossian, J.D. Dalton, B. Tang et al., *Whole-genome*
663 *sequencing identifies genetic alterations in pediatric low-grade gliomas*. *Nature genetics*,
664 2013. **45**(6): p. 602-612.

665 10. Jones, D.T.W., S. Kocialkowski, L. Liu, D.M. Pearson, L.M. Bäcklund, K. Ichimura et al.,
666 *Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of*
667 *pilocytic astrocytomas*. *Cancer research*, 2008. **68**(21): p. 8673-8677.

668 11. Schindler, G., D. Capper, J. Meyer, W. Janzarik, H. Omran, C. Herold-Mende et al., *Analysis*
669 *of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies*
670 *in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma*.
671 *Acta Neuropathologica*, 2011. **121**(3): p. 397-405.

672 12. Banerjee, A., R.I. Jakacki, A. Onar-Thomas, S. Wu, T. Nicolaides, T. Young Poussaint et al.,
673 *A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent*
674 *or refractory low-grade glioma: a Pediatric Brain Tumor Consortium (PBTC) study*. *Neuro-*
675 *Oncology*, 2017. **19**(8): p. 1135-1144.

676 13. McCowage, G.B., S. Mueller, C.A. Pratilas, D.R. Hargrave, C.L. Moertel, J. Whitlock et al.,
677 *Trametinib in pediatric patients with neurofibromatosis type 1 (NF-1)-associated plexiform*
678 *neurofibroma: A phase I/IIa study*. 2018. **36**(15_suppl): p. 10504-10504.

679 14. Knight, T., M. Shatara, L. Carvalho, D. Altinok, J. Poulik, and Z.J. Wang, *Dramatic response to*
680 *trametinib in a male child with neurofibromatosis type 1 and refractory astrocytoma*. *Pediatr*
681 *Blood Cancer*, 2019. **66**(1): p. e27474.

682 15. Bouffet, E., M. Kieran, D. Hargrave, S. Roberts, I. Aerts, A. Broniscer et al., *LGG-46. TRAMETINIB THERAPY IN PEDIATRIC PATIENTS WITH LOW-GRADE GLIOMAS (LGG) WITH BRAF GENE FUSION; A DISEASE-SPECIFIC COHORT IN THE FIRST PEDIATRIC TESTING OF TRAMETINIB*. Neuro-Oncology, 2018. **20**(Suppl 2): p. i114-i114.

686 16. Cheng, Y. and H. Tian, *Current Development Status of MEK Inhibitors*. Molecules (Basel, Switzerland), 2017. **22**(10): p. 1551.

688 17. Agianian, B. and E. Gavathiotis, *Current Insights of BRAF Inhibitors in Cancer*. J Med Chem, 2018. **61**(14): p. 5775-5793.

690 18. Kidger, A.M., J. Sipthorp, and S.J. Cook, *ERK1/2 inhibitors: New weapons to inhibit the RAS-regulated RAF-MEK1/2-ERK1/2 pathway*. Pharmacol Ther, 2018. **187**: p. 45-60.

692 19. Keating, G.M. and A. Santoro, *Sorafenib*. Drugs, 2009. **69**(2): p. 223-240.

693 20. Karajannis, M.A., G. Legault, M.J. Fisher, S.S. Milla, K.J. Cohen, J.H. Wisoff et al., *Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas*. Neuro Oncol, 2014. **16**(10): p. 1408-16.

696 21. Sievert, A.J., S.-S. Lang, K.L. Boucher, P.J. Madsen, E. Slaunwhite, N. Choudhari et al., *Paradoxical activation and RAF inhibitor resistance of BRAF protein kinase fusions characterizing pediatric astrocytomas*. Proceedings of the National Academy of Sciences of the United States of America, 2013. **110**(15): p. 5957-5962.

700 22. Selt, F., J. Hohloch, T. Hielscher, F. Sahm, D. Capper, A. Korshunov et al., *Establishment and application of a novel patient-derived KIAA1549:BRAF-driven pediatric pilocytic astrocytoma model for preclinical drug testing*. Oncotarget, 2017. **8**(7): p. 11460-11479.

703 23. Buhl, J.L., F. Selt, T. Hielscher, R. Guiho, J. Ecker, F. Sahm et al., *The senescence-associated secretory phenotype mediates oncogene-induced senescence in pediatric pilocytic astrocytoma*. Clinical Cancer Research, 2018: p. clincanres.1965.2018.

706 24. Stiles, C.D., G.T. Capone, C.D. Scher, H.N. Antoniades, J.J. Van Wyk, and W.J. Pledger, *Dual control of cell growth by somatomedins and platelet-derived growth factor*. Proceedings of the National Academy of Sciences of the United States of America, 1979. **76**(3): p. 1279-1283.

710 25. Kolb, E.A., R. Gorlick, P.J. Houghton, C.L. Morton, G. Neale, S.T. Keir et al., *Initial testing (stage 1) of AZD6244 (ARRY-142886) by the Pediatric Preclinical Testing Program*. Pediatr Blood Cancer, 2010. **55**(4): p. 668-77.

713 26. Schmitt, M. and M. Pawlita, *High-throughput detection and multiplex identification of cell contaminations*. Nucleic acids research, 2009. **37**(18): p. e119-e119.

715 27. Castro, F., W.G. Dirks, S. Fahnrich, A. Hotz-Wagenblatt, M. Pawlita, and M. Schmitt, *High-throughput SNP-based authentication of human cell lines*. Int J Cancer, 2013. **132**(2): p. 308-14.

718 28. Röring, M., R. Herr, G.J. Fiala, K. Heilmann, S. Braun, A.E. Eisenhardt et al., *Distinct requirement for an intact dimer interface in wild-type, V600E and kinase-dead B-Raf signalling*. The EMBO journal, 2012. **31**(11): p. 2629-2647.

721 29. Janknecht, R., W.H. Ernst, V. Pingoud, and A. Nordheim, *Activation of ternary complex factor Elk-1 by MAP kinases*. The EMBO journal, 1993. **12**(13): p. 5097-5104.

723 30. Weinberg, F., R. Griffin, M. Fröhlich, C. Heining, S. Braun, C. Spohr et al., *Identification and characterization of a BRAF fusion oncoprotein with retained autoinhibitory domains*. Oncogene, 2020. **39**(4): p. 814-832.

726 31. Ramurthy, S., B.R. Taft, R.J. Aversa, P.A. Barsanti, M.T. Burger, Y. Lou et al., *Design and*
727 *Discovery of N-(3-(2-(2-Hydroxyethoxy)-6-morpholinopyridin-4-yl)-4-methylphenyl)-2-*
728 *(trifluoromethyl)isonicotinamide, a Selective, Efficacious, and Well-Tolerated RAF Inhibitor*
729 *Targeting RAS Mutant Cancers: The Path to the Clinic.* J Med Chem, 2020. **63**(5): p. 2013-
730 2027.

731 32. Bhagwat, S.V., W.T. McMillen, S. Cai, B. Zhao, M. Whitesell, W. Shen et al., *ERK Inhibitor*
732 *LY3214996 Targets ERK Pathway-Driven Cancers: A Therapeutic Approach Toward*
733 *Precision Medicine.* Mol Cancer Ther, 2020. **19**(2): p. 325-336.

734 33. Ecker, J., I. Oehme, R. Mazitschek, A. Korshunov, M. Kool, T. Hielscher et al., *Targeting class*
735 *I histone deacetylase 2 in MYC amplified group 3 medulloblastoma.* Acta Neuropathol
736 Commun, 2015. **3**: p. 22.

737 34. Chou, T.-C., *Drug Combination Studies and Their Synergy Quantification Using the Chou-*
738 *Talalay Method.* Cancer Research, 2010: p. 0008-5472.CAN-09-1947.

739 35. Foucquier, J. and M. Guedj, *Analysis of drug combinations: current methodological landscape.* Pharmacology research & perspectives, 2015. **3**(3): p. e00149-e00149.

741 36. Miller, R.G., *Normal Univariate Techniques*, in *Simultaneous Statistical Inference*, R.G. Miller,
742 Editor. 1981, Springer New York: New York, NY. p. 37-108.

743 37. Yandell, B., *Practical data analysis for designed experiments.* 2017: Routledge.

744 38. Caunt, C.J., M.J. Sale, P.D. Smith, and S.J. Cook, *MEK1 and MEK2 inhibitors and cancer*
745 *therapy: the long and winding road.* Nature Reviews Cancer, 2015. **15**: p. 577.

746 39. Holderfield, M., T.E. Nagel, and D.D. Stuart, *Mechanism and consequences of RAF kinase*
747 *activation by small-molecule inhibitors.* British Journal Of Cancer, 2014. **111**: p. 640.

748 40. Zhang, C., W. Spevak, Y. Zhang, E.A. Burton, Y. Ma, G. Habets et al., *RAF inhibitors that*
749 *evade paradoxical MAPK pathway activation.* Nature, 2015. **526**: p. 583.

750 41. Le, K., E.S. Blomain, U. Rodeck, and A.E. Aplin, *Selective RAF inhibitor impairs ERK1/2*
751 *phosphorylation and growth in mutant NRAS, vemurafenib-resistant melanoma cells.* Pigment
752 Cell Melanoma Res, 2013. **26**(4): p. 509-17.

753 42. *Phase I Study of LXH254 in Patients With Advanced Solid Tumors Harboring MAPK Pathway*
754 *Alterations.* Available from: <https://ClinicalTrials.gov/show/NCT02607813>.

755 43. Peng, S.B., J.R. Henry, M.D. Kaufman, W.P. Lu, B.D. Smith, S. Vogeti et al., *Inhibition of RAF*
756 *Isoforms and Active Dimers by LY3009120 Leads to Anti-tumor Activities in RAS or BRAF*
757 *Mutant Cancers.* Cancer Cell, 2015. **28**(3): p. 384-98.

758 44. Hatzivassiliou, G., K. Song, I. Yen, B.J. Brandhuber, D.J. Anderson, R. Alvarado et al., *RAF*
759 *inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth.* Nature,
760 2010. **464**: p. 431.

761 45. Shao, W., Y.M. Mishina, Y. Feng, G. Caponigro, V.G. Cooke, S. Rivera et al., *Antitumor*
762 *Properties of RAF709, a Highly Selective and Potent Inhibitor of RAF Kinase Dimers, in*
763 *Tumors Driven by Mutant RAS or BRAF.* Cancer Research, 2018. **78**(6): p. 1537.

764 46. Yin, N., W. Ma, J. Pei, Q. Ouyang, C. Tang, and L. Lai, *Synergistic and Antagonistic Drug*
765 *Combinations Depend on Network Topology.* PLOS ONE, 2014. **9**(4): p. e93960.

766 47. Germann, U.A., B.F. Furey, W. Markland, R.R. Hoover, A.M. Aronov, J.J. Roix et al.,
767 *Targeting the MAPK Signaling Pathway in Cancer: Promising Preclinical Activity with the*
768 *Novel Selective ERK1/2 Inhibitor BVD-523 (Ulixertinib).* Mol Cancer Ther, 2017. **16**(11): p.
769 2351-2363.

770 48. Gronych, J., A. Korshunov, J. Bageritz, T. Milde, M. Jugold, D. Hambardzumyan et al., *An activated mutant BRAF kinase domain is sufficient to induce pilocytic astrocytoma in mice*. J Clin Invest, 2011. **121**(4): p. 1344-8.

773 49. Raabe, E.H., K.S. Lim, J.M. Kim, A. Meeker, X.G. Mao, G. Nikkhah et al., *BRAF activation induces transformation and then senescence in human neural stem cells: a pilocytic astrocytoma model*. Clin Cancer Res, 2011. **17**(11): p. 3590-9.

776 50. Sun, Y., J.A. Alberta, C. Pilarz, D. Calligaris, E.J. Chadwick, S.H. Ramkissoon et al., *A brain-penetrant RAF dimer antagonist for the noncanonical BRAF oncoprotein of pediatric low-grade astrocytomas*. Neuro Oncol, 2017. **19**(6): p. 774-785.

779 51. Cheng, Z., D. Garvin, A. Paguio, P. Stecha, K. Wood, and F. Fan, *Luciferase Reporter Assay System for Deciphering GPCR Pathways*. Current chemical genomics, 2010. **4**: p. 84-91.

781 52. Zhang, R. and X. Xie, *Tools for GPCR drug discovery*. Acta Pharmacologica Sinica, 2012. **33**: p. 372.

783 53. Pratillas, C.A., B.S. Taylor, Q. Ye, A. Viale, C. Sander, D.B. Solit et al., *(V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway*. Proc Natl Acad Sci U S A, 2009. **106**(11): p. 4519-24.

786 54. Karoulia, Z., E. Gavathiotis, and P.I. Poulikakos, *New perspectives for targeting RAF kinase in human cancer*. Nat Rev Cancer, 2017. **17**(11): p. 676-691.

788 55. Zhang, C., W. Spevak, Y. Zhang, E.A. Burton, Y. Ma, G. Habets et al., *RAF inhibitors that evade paradoxical MAPK pathway activation*. Nature, 2015. **526**(7574): p. 583-586.

790 56. Bollag, G., P. Hirth, J. Tsai, J. Zhang, P.N. Ibrahim, H. Cho et al., *Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma*. Nature, 2010. **467**(7315): p. 596-599.

793 57. Botton, T., E. Talevich, V.K. Mishra, T. Zhang, A.H. Shain, C. Berquet et al., *Genetic Heterogeneity of BRAF Fusion Kinases in Melanoma Affects Drug Responses*. Cell Rep, 2019. **29**(3): p. 573-588.e7.

796 58. Lito, P., A. Saborowski, J. Yue, M. Solomon, E. Joseph, S. Gadal et al., *Disruption of CRAF-mediated MEK activation is required for effective MEK inhibition in KRAS mutant tumors*. Cancer cell, 2014. **25**(5): p. 697-710.

799 59. Wang, J., Z. Yao, P. Jonsson, A.N. Allen, A.C.R. Qin, S. Uddin et al., *A secondary mutation in BRAF confers resistance to RAF inhibition in a BRAF V600E-mutant brain tumor*. Cancer Discovery, 2018: p. CD-17-1263.

802 60. Villanueva, J., J.R. Infante, C. Krepler, P. Reyes-Uribe, M. Samanta, H.-Y. Chen et al., *Concurrent MEK2 mutation and BRAF amplification confer resistance to BRAF and MEK inhibitors in melanoma*. Cell reports, 2013. **4**(6): p. 1090-1099.

805 61. Flaherty, K.T., J.R. Infante, A. Daud, R. Gonzalez, R.F. Kefford, J. Sosman et al., *Combined BRAF and MEK Inhibition in Melanoma with BRAF V600 Mutations*. New England Journal of Medicine, 2012. **367**(18): p. 1694-1703.

808 62. Whittaker, S.R., G.S. Cowley, S. Wagner, F. Luo, D.E. Root, and L.A. Garraway, *Combined Pan-RAF and MEK Inhibition Overcomes Multiple Resistance Mechanisms to Selective RAF Inhibitors*. Molecular Cancer Therapeutics, 2015. **14**(12): p. 2700-2711.

811 63. Merchant, M., J. Moffat, G. Schaefer, J. Chan, X. Wang, C. Orr et al., *Combined MEK and ERK inhibition overcomes therapy-mediated pathway reactivation in RAS mutant tumors*. PloS one, 2017. **12**(10): p. e0185862-e0185862.

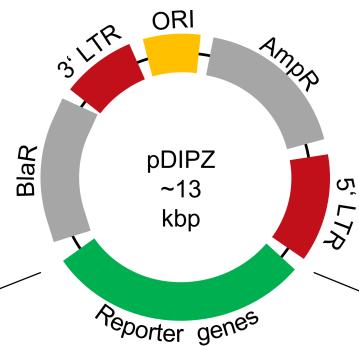
816 **Figure legends:**

817 **Figure 1: Generation of ELK-1 responsive reporter pediatric glioma cell lines:** A)
818 Schematic diagram of the plasmid pDIPZ (overview). ORI: Origin of replication; AmpR:
819 Ampicillin resistance gene; LTR: Long terminal repeat; BlaR: Blasticidin resistance gene.
820 Schematic diagram of the reporter gene cassette of the plasmids I) pDIPZ-CMV (ELK-1
821 binding site-CMV-desGFP-T2A-desFLuc) and III) pDIPZ-pFOS (ELK-1 binding site- pFOS-
822 desGFP-T2A-desFLuc) and the plasmids without ELK-1 binding site II) pDIPZ-CMV w/o BS
823 (CMV-desGFP-T2A-desFLuc) and IV) pDIPZ-pFOS w/o BS (pFOS-desGFP-T2A-desFLuc).
824 desGFP: destabilized GFP; desFLuc: destabilized firefly luciferase; w/o: without; BS: binding
825 site. B) and C) Assessment of GFP positive cells after stable transduction of the reporter
826 plasmids CMV (black) or pFOS (orange) pDIPZ in DKFZ-BT66 hTERT and BT-40 cells
827 compared to cells without transduced plasmid. Fluorescence was determined by flow
828 cytometry (Merck Guava EasyCyte HT). Depicted are mean +/- SD of three technical
829 replicates.

830 **Figure 2: Characterization of the ELK-1 responsive reporter assay signal:** A)
831 Comparison of bioluminescence (top row) (determined by Luciferase Assay System,
832 Promega) versus fluorescence (bottom row) (determined by flow cytometry, Merck Guava
833 EasyCyte HT) in DKFZ-BT66 hTERT and BT-40 cells both transduced with pDIPZ CMV
834 (black) or pFOS (orange), after 24 hours of treatment with 1 μ M trametinib or 1 μ M
835 vemurafenib, respectively. Depicted are mean +/- SD of three biological replicates.
836 Significant differences are indicated as * p<0.05 and ** p<0.01. ns: not significant, p>0.05
837 (Student's t-test). B) Assessment of luminescence intensity measured by luciferase assay
838 (Luciferase Assay System, Promega). DKFZ-BT66 hTERT and BT-40 cells, both transduced
839 with either pDIPZ CMV or pFOS, were treated for 24 hours with trametinib in the indicated
840 concentrations. Depicted are mean +/- SD of three biological replicates. p-values were
841 calculated for the last values of each curve (treatment with highest concentration). ns: not
842 significant, p>0.05 (Student's t-test). C) Assessment of absolute luminescence intensity
843 using the luciferase assay (Steady-Glo® Luciferase Assay System) after treatment of DKFZ-
844 BT66 hTERT or BT-40 cells both transduced with either pDIPZ CMV or pFOS with and
845 without ELK-1 binding site with solvent or 1 μ M trametinib for 24 hours. Depicted are mean
846 +/- SD of three biological replicates. Significant differences are indicated as * p<0.05, **
847 p<0.01 and *** p<0.001. ns: not significant p>0.05 (Student's t-test). w/: with, w/o: without,
848 native: cells without transduced plasmid. D) MAPK pathway activity in DKFZ-BT66 hTERT
849 pDIPZ and BT-40 pDIPZ cells was determined by protein levels of pERK and ERK detected
850 by Western blot after treatment with the indicated drugs for 24 hours with the same
851 concentrations used in the luminescence assay in B) (every second concentration step).

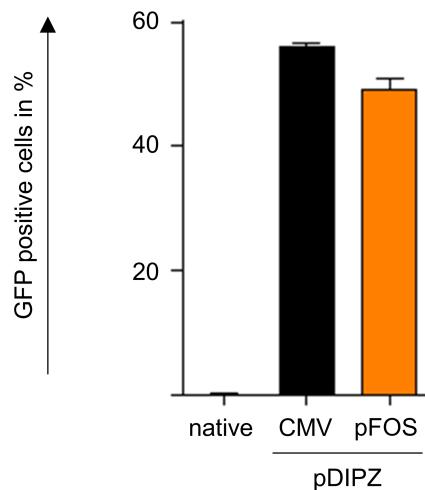
852 **Figure 3: Screening of a MAPK inhibitor library using the ELK-1 responsive reporter**
853 **assay confirms ERK inhibitors followed by pan-RAF inhibitors as potential novel**
854 **therapeutic approach for pLGGs:** Heatmaps of tested MAPKi compounds ranked
855 according to luminescence intensity (measured by Steady-Glo® Luciferase Assay System)
856 after treatment for 24 hours in either DKFZ-BT66 pDIPZ-CMV A) or BT-40 pDIPZ-CMV cells
857 B). Drug concentrations were used as indicated above the heatmap. Drugs were sorted by
858 relative IC50 values with the lowest IC50 values at the top. n/a indicates that the IC50 value
859 could not be estimated. In this case drugs were sorted by their ability to increase
860 luminescence, thus paradoxically activating the MAPK pathway, from weak inducers at the
861 top to strong inducers at the bottom. Pathway activity is depicted as follows: Green shades
862 indicate pathway inhibition; blue shades no effect and red shades paradoxical activation. 1st,
863 2nd and 3rd describes the generation of each RAF inhibitor and I, I ½ and II their respective
864 binding mode (adapted from [17, 32]). Depicted is the mean of three technical replicates. C)
865 Boxplot of IC50 values assessed in DKFZ-BT66 and BT-40 cells drug screen combined for
866 RAF, MEK and ERK inhibitors. Depicted are median (black bar), percentiles (25th to 75th)
867 (box) and median +/- 1.5 IQR (interquartile range) (whiskers), and outliers (dots). Significant
868 differences are indicated as * p<0.05. ns: not significant p>0.05 (Student's t-test, paired by
869 drug).

870 **Figure 4: Western blot validation of selected hits of the reporter screen:** MAPK pathway
871 activity in DKFZ-BT66 (+/-hTERT pDIPZ), BT-40 (+/-pDIPZ) and in MAPK pathway altered
872 HEK293T cells was determined by protein levels of pERK and ERK detected by Western blot
873 after treatment with the indicated drugs in the indicated concentrations for 24 hours. A)
874 Comparison of MAPK pathway response after vemurafenib treatment. B) Treatment of
875 DKFZ-BT66 cells with AZ628. C) Differential sensitivity to the treatment of PLX8394 in
876 DKFZ-BT66 and BT-40 cells including quantification of pERK protein levels. D) Comparison
877 of MAPK pathway response after PLX8294 treatment of MAPK pathway alteration
878 expressing HEK293T cells and E) quantification of pMEK and pERK protein levels.
879 Significant differences are indicated as * p<0.05, ** p<0.01 and *** p<0.001 (Tukey's 'Honest
880 Significant Difference' test).


881 **Figure 5: Analysis of MAPKi combination treatment in DKFZ-BT66 pDIPZ-CMV and BT-**
882 **40 pDIPZ-CMV cells:** A) Combination index (CI) tables for DKFZ-BT66 pDIPZ-CMV and BT-
883 40 pDIPZ-CMV. Assessment of luminescence intensity measured by luciferase assay
884 (Steady-Glo® Luciferase Assay System). CI values were calculated using CompuSyn.
885 DKFZ-BT66 and BT-40 cells transduced with pDIPZ-CMV were treated for 24 hours with the
886 indicated drugs and concentrations. Depicted are mean CI values of three biological
887 replicates. Grey areas indicate experimental points which could not be included in the

888 CompuSyn analysis (fraction affected >1.0 or <0.0). B) Summary of combination index (CI)
889 tables and isobolograms of MAPKi combination treatment in the *KIAA1549:BRAF* (DKFZ-
890 BT66 pDIPZ-CMV) and *BRAF*^{V600E} mutation (BT-40 pDIPZ-CMV) background. Heatmap
891 includes median CI values obtained from the CI tables and CI values calculated for
892 0.5/0.75/0.9 fraction affected under MAPKi combination treatment. Fa: fraction affected.

893 **Figure 6: Western blot validation of synergistic effects of selected combinations:**
894 MAPK pathway activity in A) DKFZ-BT66 and B) BT-40 cells was determined by protein
895 levels of pERK, ERK, pRSK and RSK detected by Western blot after treatment with the
896 indicated drugs in the indicated concentrations for 24 hours. Concentrations were chosen
897 based on the isobogram of the respective combination (lanes of the Western blots: solvent,
898 Drug1_{IC90}, Drug2_{IC90}, Drug1_{Combi}+Drug2_{Combi} leading to 90% inhibition of the pathway,
899 Drug1_{Combi}, Drug2_{Combi}). Combination index (CI) values were calculated using the Bliss
900 independence model. Significant differences are indicated as * p<0.05, ** p<0.01 and ***
901 p<0.001 (Tukey's 'Honest Significant Difference' test). Fa: Fraction affected, selu:
902 selumetinib, dabra: dabrafenib.


Figure 1

A

B

DKFZ-BT66 hTERT

C

BT-40

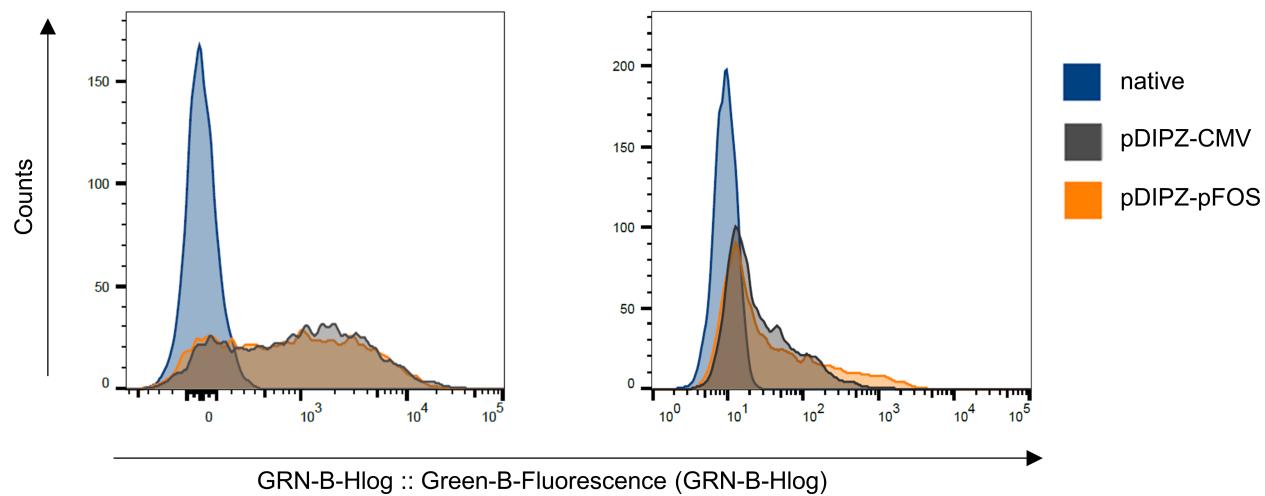
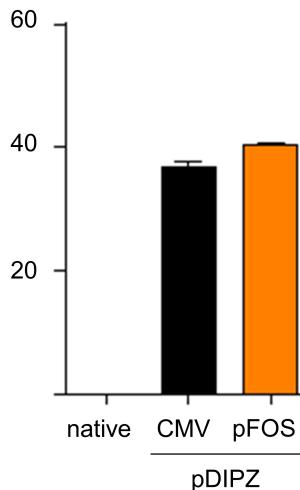
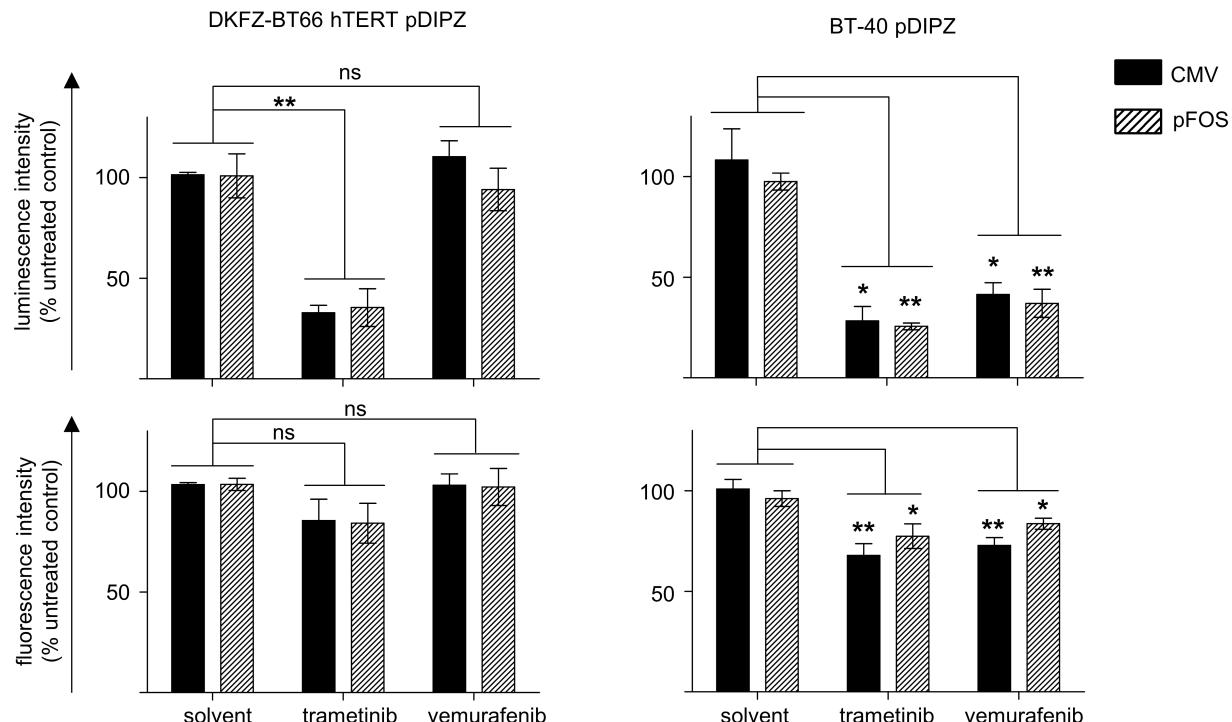
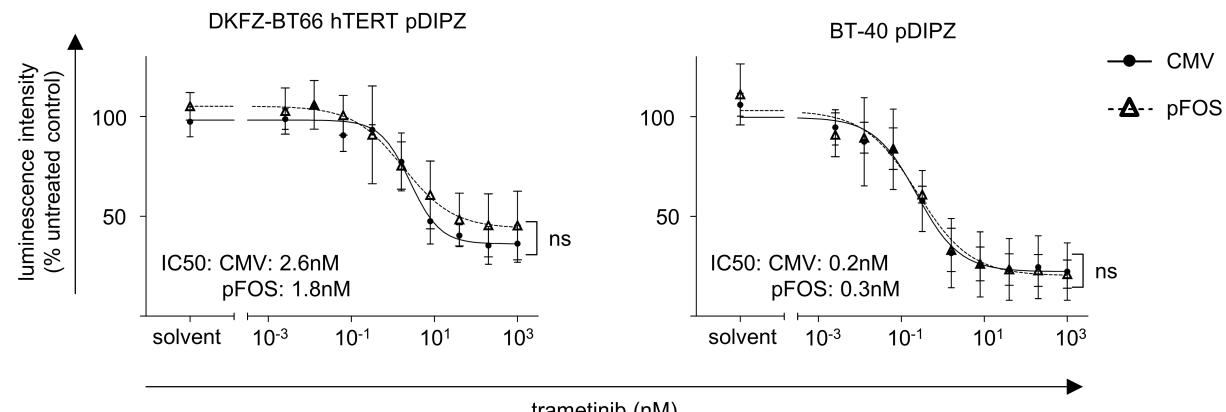
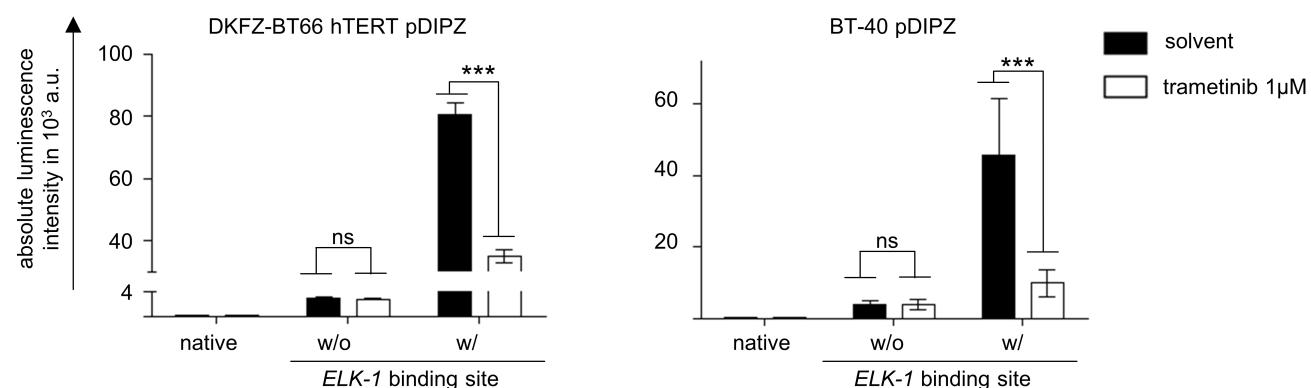
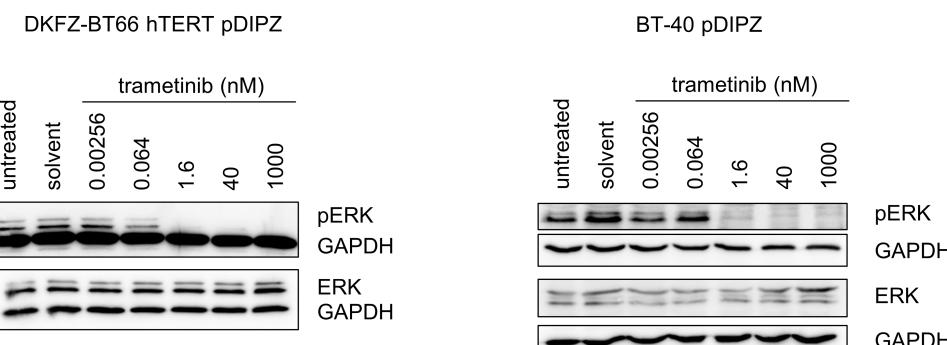
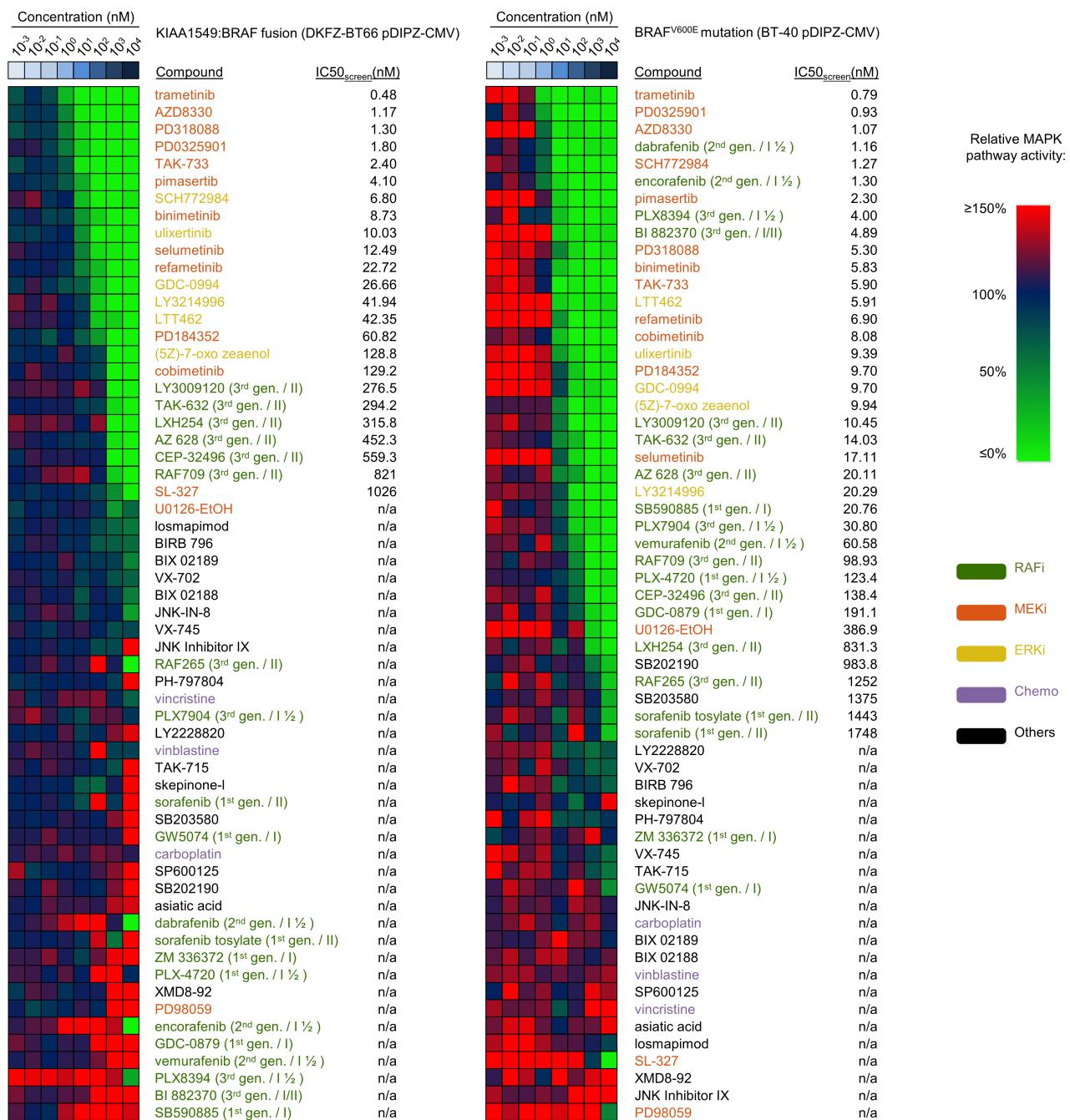





Figure 2


A


B

C



D

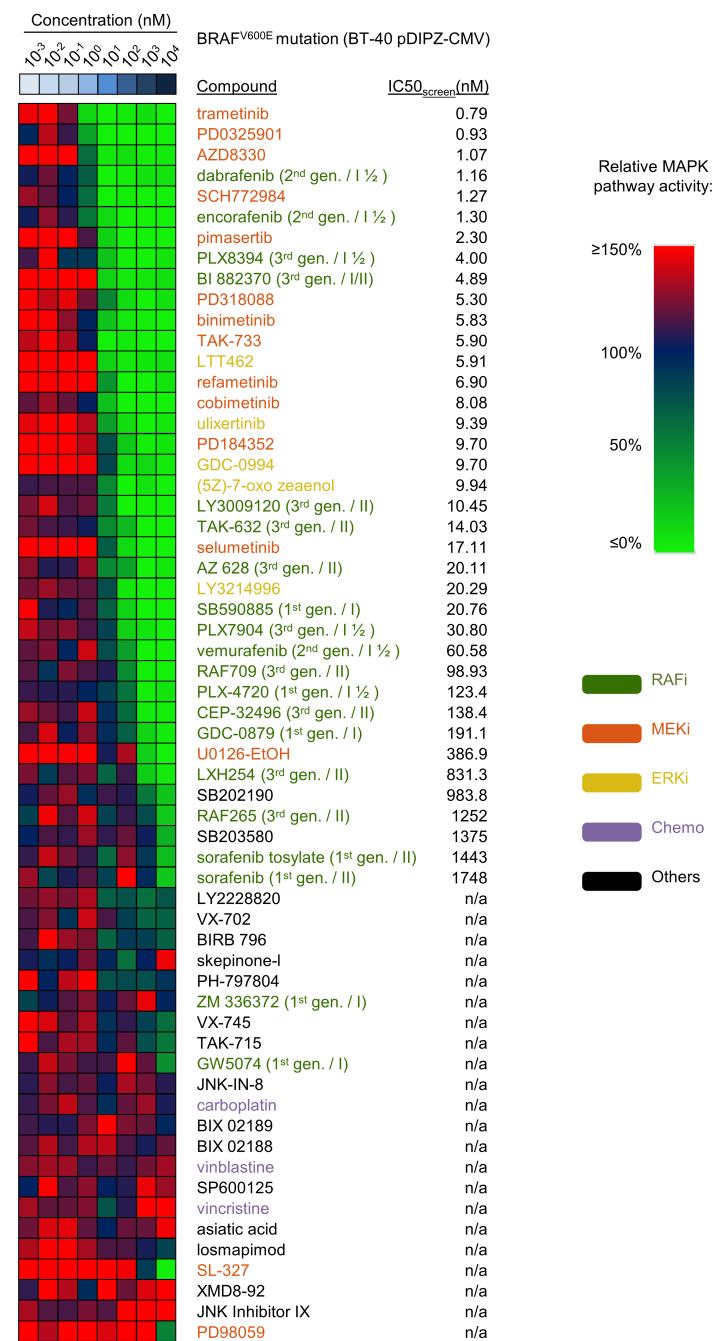
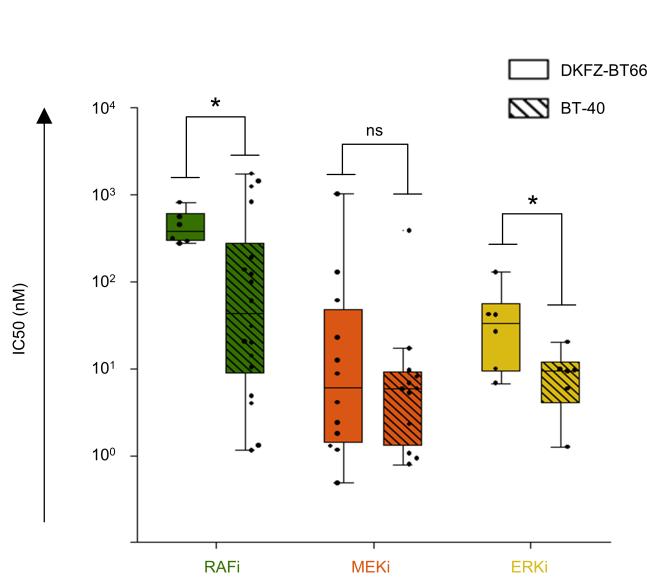
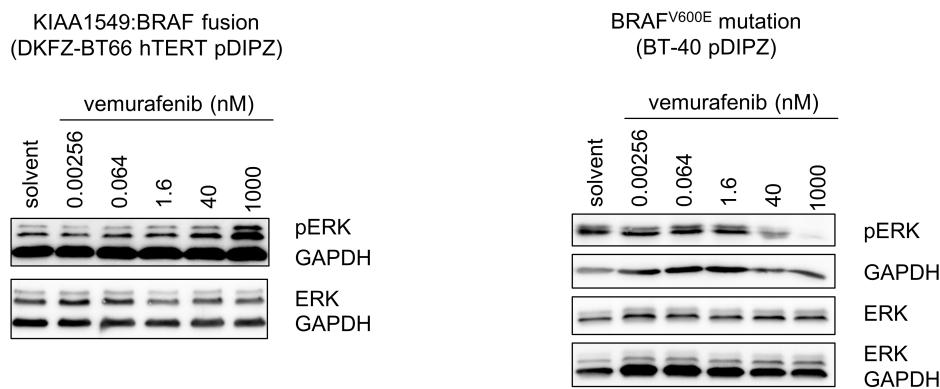


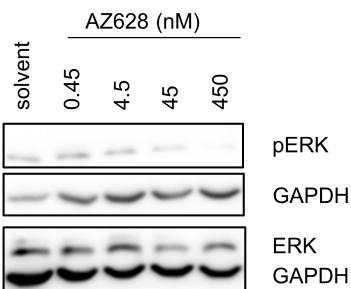
Figure 3

A

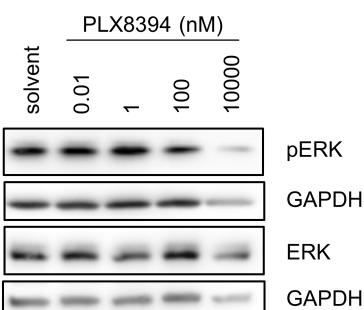
B

C

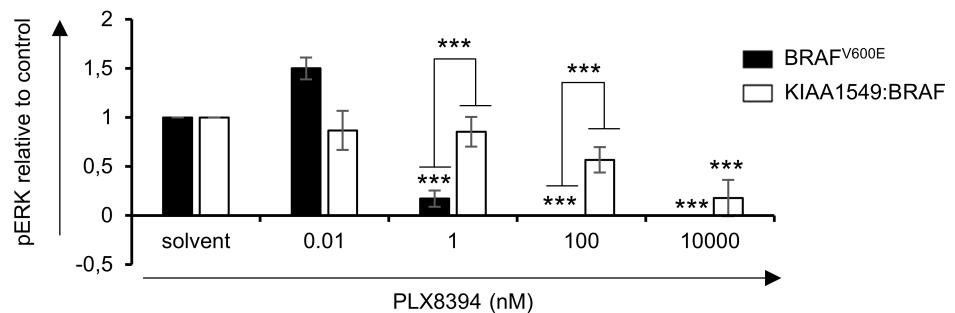
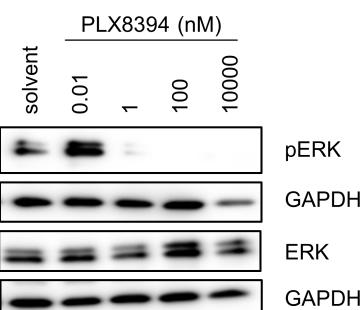




Figure 4

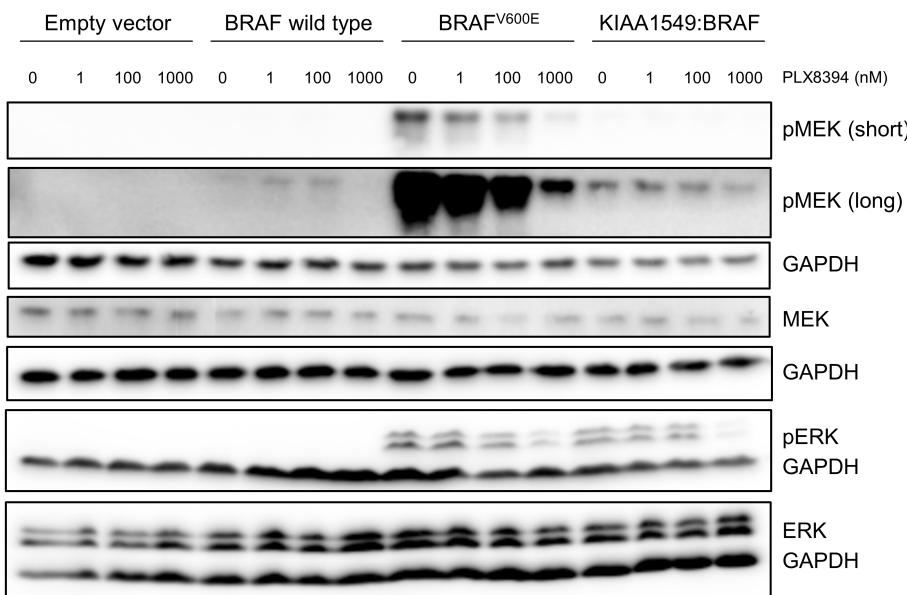
A

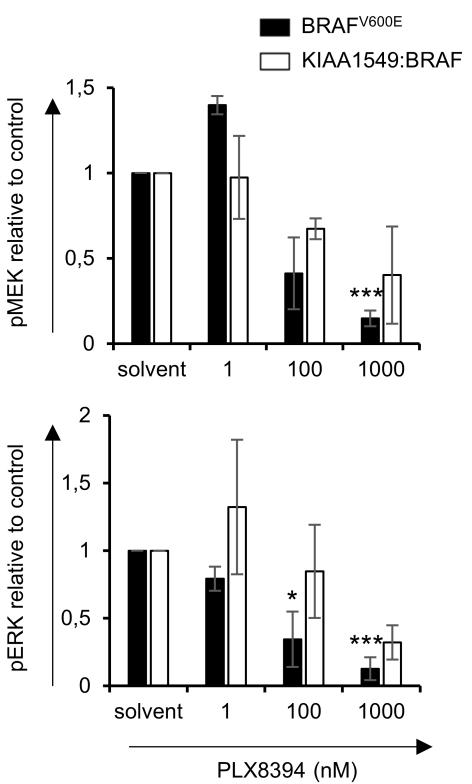

B

KIAA1549:BRAF fusion (DKFZ-BT66)

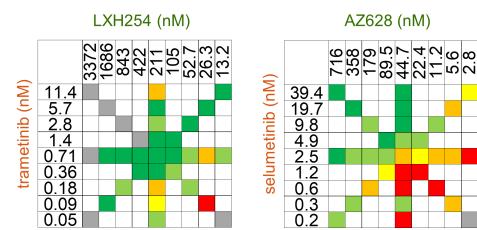
C


KIAA1549:BRAF fusion (DKFZ-BT66)

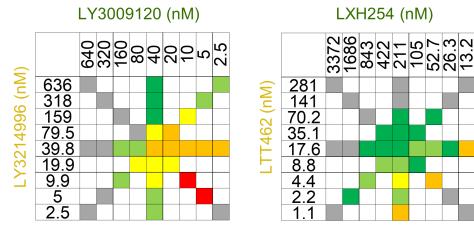

$\text{BRAF}^{\text{V600E}}$ mutation (BT-40)

D

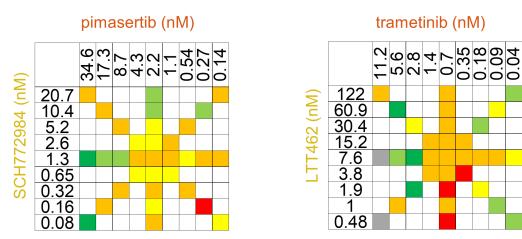
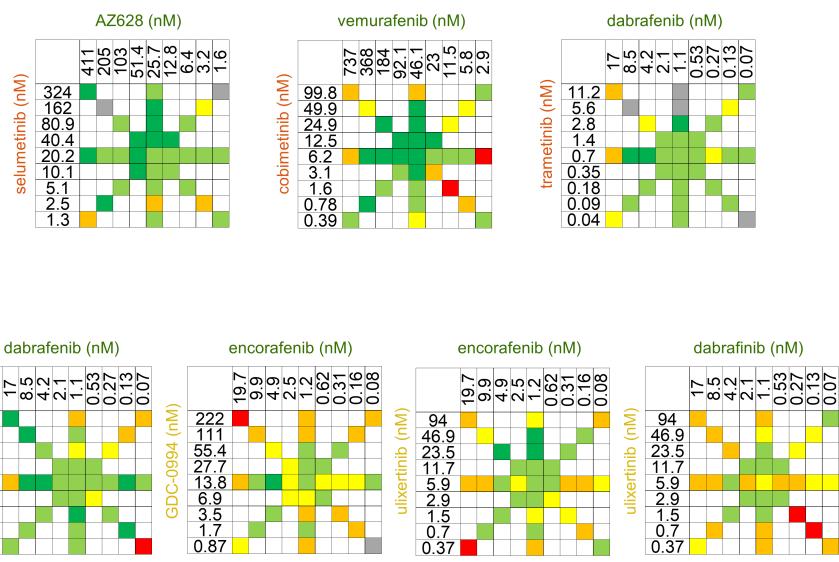
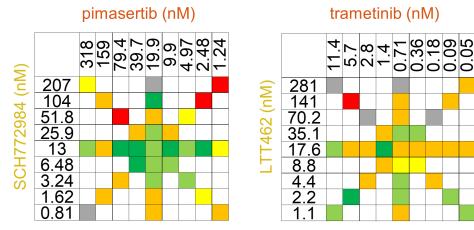
E


Figure 5

A


KIAA1549:BRAF fusion (DKFZ-BT66 pDIPZ-CMV)

BRAF^{V600E} mutation (BT-40 pDIPZ-CMV)




RAFi + MEKi

RAFi + ERKi

MEKi + ERKi

B

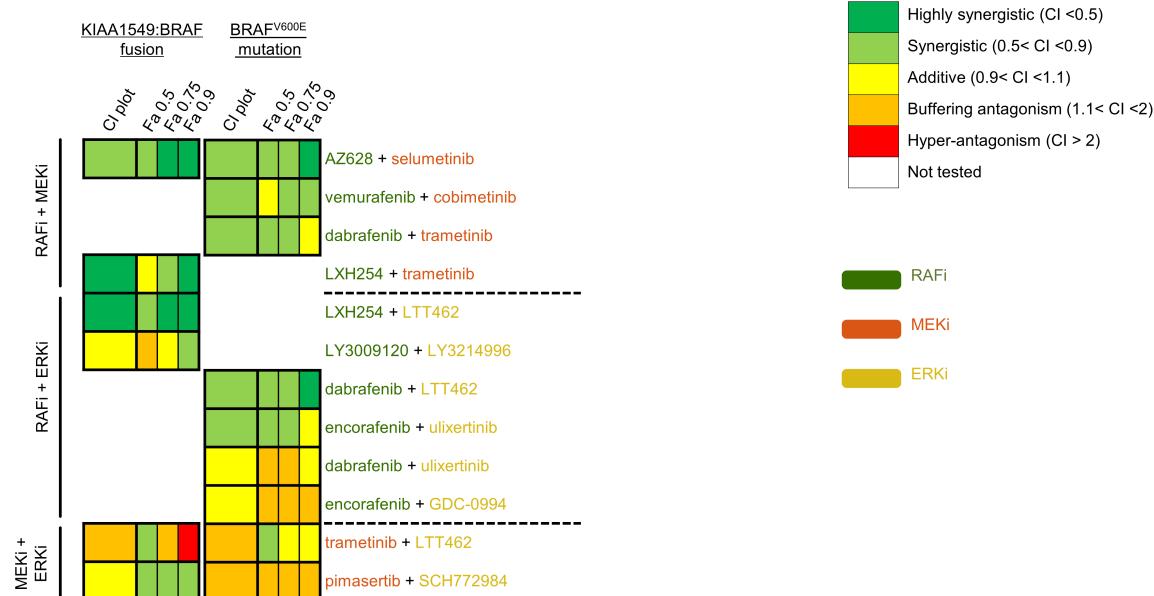
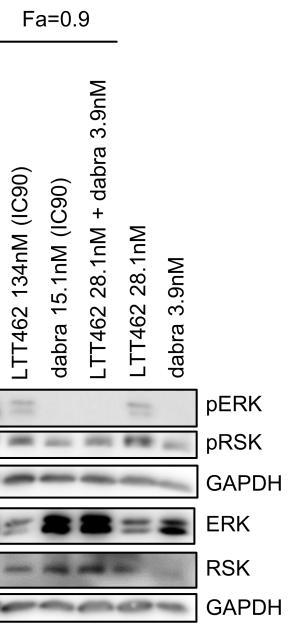
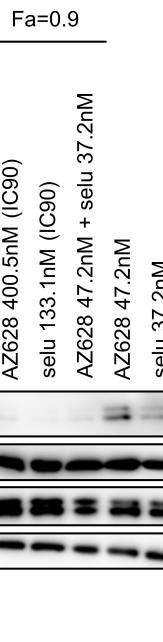
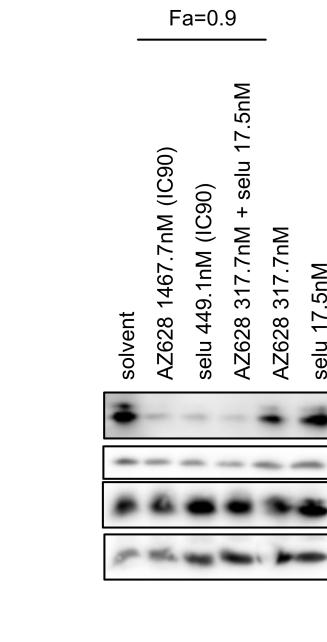
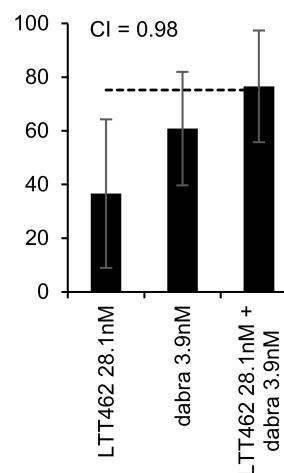
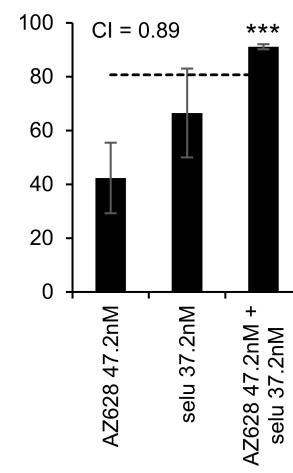
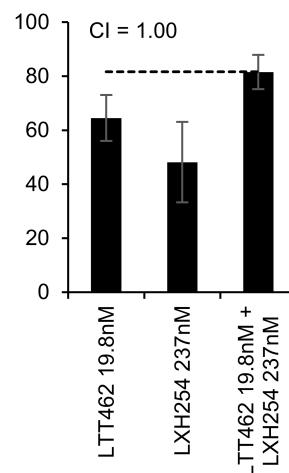
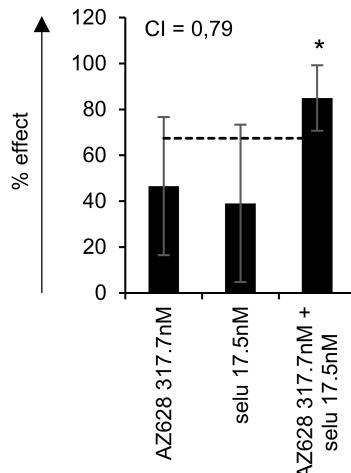
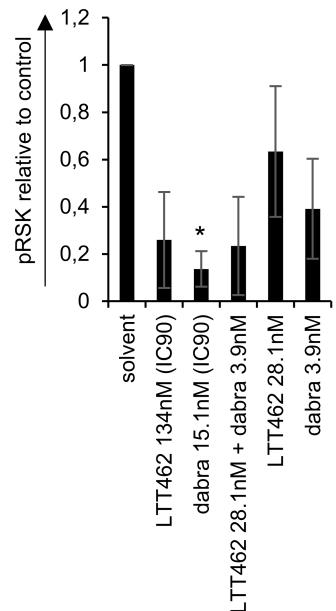
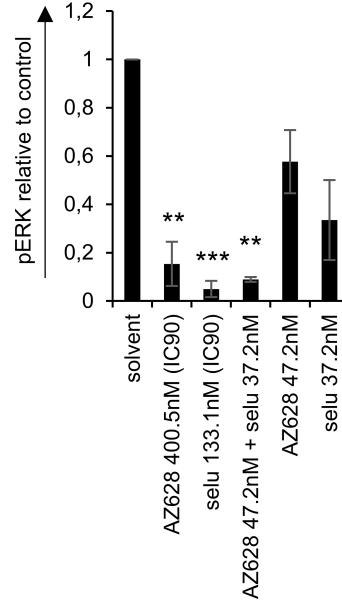
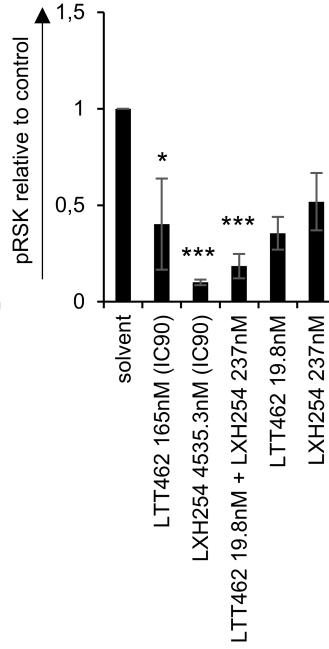
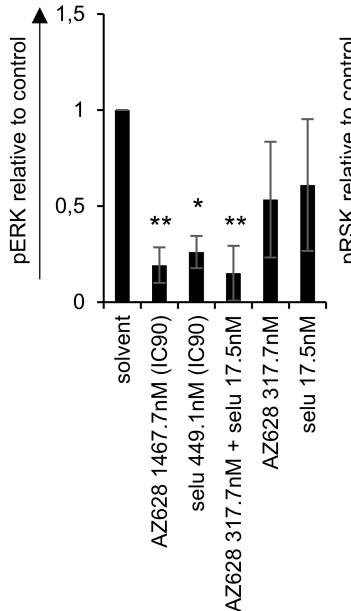





Figure 6









A

KIAA1549:BRAF fusion (DKFZ-BT66)

B

BRAFV600E mutation (BT-40)

