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Abstract

Pilocytic astrocytomas (PAs) as well as other pediatric low-grade gliomas (pLGGs) exhibit
genetic events leading to aberrant activation of the MAPK pathway. The most common
alterations are KIAA1549:BRAF fusions, BRAF'®* and NF1 mutations. Novel drugs
targeting the MAPK pathway (MAPKI) are prime candidates for the treatment of these single-
pathway diseases. We aimed to develop an assay suitable for pre-clinical testing of MAPKi in
pLGGs with the goal to identify novel MAPK pathway suppressing synergistic drug
combinations.

A reporter plasmid (pDIPZ) with a MAPK-responsive ELK-1-binding element driving the
expression of destabilized firefly luciferase was generated and packaged using a lentiviral
vector system. Pediatric glioma cell lines with a BRAF fusion (DKFZ-BT66) and a BRAF'®%F
mutation (BT-40) background, respectively, were stably transfected. Modulation of the MAPK
pathway activity by MAPKi was measured using the luciferase reporter and validated by
detection of phosphorylated protein levels. A screen of a MAPKi library was performed and

synergy of selected combinations was calculated.

Screening of a MAPKIi library revealed MEK inhibitors as the class inhibiting the pathway with
the lowest IC50s, followed by ERK and next-generation RAF inhibitors. Combination
treatments with different MAPKi classes showed synergistic effects in BRAF fusion as well as

BRAFY®°F mutation backgrounds.

We here report a novel reporter assay for medium- to high-throughput pre-clinical drug
testing in pLGG cell lines. The assay confirmed MEK, ERK and next-generation RAF
inhibitors as potential treatment approaches for KIAA1549:BRAF and BRAF'*%F mutated
pLGGs. In addition, the assay revealed that combination treatments synergistically

suppressed MAPK pathway activity.

Word count: 250/250
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Introduction

Pediatric low-grade gliomas (pLGGs) are the most common brain tumors in children [1] and
comprise various WHO grade I-1l entities, including pilocytic astrocytomas (PAs) [2].
Complete surgical resection is the therapy of choice, but in case of unresectable tumors,
chemo- or radiotherapy is applied (e.g. SIOP LGG 2004 trial, NCT00276640). The overall
survival is good, with a 10-year survival rate of more than 90% [3, 4]. However, recurrences
occur frequently, leading to a poor 10-year event free survival rate of only around 45% in this
population [5]. The clinical course can be variable, requiring repeated periods of treatment.
This often leads to chronic morbidity of the affected patients with significant neurological
sequelae [6, 7]. Therefore, in spite of a good overall survival, the management of pLGGs

requires novel therapeutic approaches to tackle disease- and therapy-related morbidity.

PA is a single-pathway disease with virtually all driving aberrations occurring in the RAS/ERK
MAPK pathway. Recent studies in PAs have shown that around 70% of the underlying MAPK
alterations are KIAA1549:BRAF fusions, followed by NF1 (7%), BRAF'*%F (5%) and FGFR1
(5%) mutations as the most frequent alterations [8]. Other mutations affecting MAPK
pathway members such as NTRK2, RAS and RAF1 are usually rare [8-10]. The majority (>
80%) of pLGGs other than PA also exhibit MAPK pathway activation [9]. While the BRAF
fusion is typical for PAs, BRAF'®F mutations are frequently observed in pleomorphic
xanthoastrocytomas (66%) and gangliogliomas (18%) [11]. Since most pLGGs and all PAs
are driven by activation of a single pathway, targeting this axis is a promising treatment
approach. Indeed, several small molecule MAPK inhibitors are currently under evaluation in
clinical trials for pLGGs. The MEK inhibitor (MEKI) selumetinib has shown promising efficacy
in pediatric patients with recurrent or refractory pLGG [12]. The MEKIi trametinib is studied in
patients with NF1 and recurrent or refractory pLGG (and/or plexiform neurofibroma) [13-15]
or sporadic BRAF fusion positive pLGG in a phase I/l trial (NCT03363217). Treatment of

pediatric patients with a BRAF'*%®

mutated pLGG with the combination of dabrafenib
(V600E-specific BRAFi) and trametinib (MEKI) is currently being investigated in a phase /Il
trial (NCT02684058). The novel RAF-inhibitor TAK-580 is in phase | clinical development in
children with LGG and other MAPK driven tumors (NCT03429803). The upcoming LOGGIC
Europe trial (EudraCT No. 2018-000636-10) will randomize patients with pLGG in a MEKi
(trametinib) treatment arm and compare to standard of care (SOC) carboplatin/vincristine
and to vinblastine monotherapy, respectively. Similarly, the upcoming COG trial ACNS1831
(NCT03871257) will randomize NF1 patients with pLGG to receive selumetinib or SOC
carboplatin/vincristine. Finally, new pan-RAF and ERK inhibitors in (pre-)clinical development

are potential candidates for treatment of BRAF fusion positive pLGGs [16-18].
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Results of early clinical trials, however, emphasize the importance of fully understanding the
underlying biology of MAPK signaling in pLGGs. 82% (9/11) of patients with recurrent or
progressive pLGG treated with sorafenib, a multikinase inhibitor including BRAF in its
inhibitory spectrum, showed progressive disease under treatment in a phase I/ll study
leading to early termination of the study [19]. Retrospectively it was shown that sorafenib
indeed induced paradoxical activation of the MAPK pathway [20, 21]. These studies highlight
the need for profound pre-clinical testing in suitable pLGG models and characterization of the

mechanism of action of novel inhibitors before entering clinical trials.

To date, the availability of in vitro and in vivo models of pLGGs for pre-clinical drug testing is
limited as pLGG cells typically undergo senescence in vitro and do not from tumors in vivo.
We have established the first patient-derived KIAA1549:BRAF fusion expressing PA cell line,
DKFZ-BT66 [22]. The model was shown to reflect the true biology of a PA including
activation of the MAPK pathway, slow growth behavior resulting from oncogene-induced
senescence (OIS) and positivity for the senescence-associated secretory phenotype (SASP),
as well as responsiveness to MAPKI [22, 23]. However, the SV40 large T antigen expressed
in DKFZ-BT66 cells, necessary to overcome OIS, limits the use of this cell line, as essential
pro-apoptotic pathways are blocked [22, 24]. Direct measurement of MAPK pathway activity
circumvents this problem when testing MAPKi in the DKFZ-BT66 model, in addition to
providing biological information by direct measurement of actual pathway activity rather than
a surrogate measure such as viability. In this study we have generated a novel ELK-1-driven
luciferase reporter construct (pDIPZ) and applied it using a MAPKi compound library in both
a BRAF fusion and a BRAF'*®® mutated pLGG background in a medium- to high-throughput

manner.
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MATERIALS AND METHODS
Cell culture and cell lines

The patient-derived KIAA1549:BRAF fusion positive PA cell line DKFZ-BT66 is described in
[22], the patient-derived BRAFY®"° mutation positive pediatric glioma cell line BT-40 in [25].
The identity of all cell lines used was confirmed by Multiplex Cell Line Authentication (MCA)

service and proven to be free of contamination by Multiplex cell Contamination Test (McCT)

(http://www.multiplexion.de) [26, 27]. After testing for identity and contamination, cells were
aliquoted and frozen in liquid nitrogen until further use. To establish the readout conditions of
the assay, DKFZ-BT66 cells stably transduced with human telomere reverse transcriptase
(hTERT) were used (described in [22]), however, for the drug screen and following
combination treatments DKFZ-BT66 cells without overexpression of TERT were used. DKFZ-
BT66 (+/-hTERT) cells (passage 9-14 for the native cell line and passage 18-30 for the
hTERT cell line) were cultured in the presence of doxycycline (1ug/ml) to induce proliferation
and BT-40 cells (passage 12-20) were cultured as described in [22]. Cell lines were tested
for mycoplasma contamination with Venor®GeM Classic (cat. no. 11-1250, Minerva biolabs,
Berlin, Germany) every four weeks. HEK293T cells (Brummer laboratory stock) were
cultivated in DMEM (4.5 g/l glucose, 10% fetal calf serum (heat inactivated), 2 mM L-
glutamine, 10mM HEPES, 200U/ml penicillin, 200pg/ml streptomycin) and transiently
transfected as described previously in [28].

Plasmids

The vectors pDIPZ-ELK-1 binding site (BS)-CMVmin-desGFP-desFLuc (pDIPZ-CMV),
pDIPZ-CMVmin-desGFP-desFLuc (pDIPZ-CMV w/o BS), pDIPZ-ELK-1 binding site-
pFOSmMIn -desGFP-desFLuc (pDIPZ-pFOS) and pDIPZ-pFOSmin-desGFP-desFLuc (pDIPZ-
pFOS w/o BS) were generated by modifying the pTRIPZ vector (cat. no. RHS4697,
Dharmacon, Lafayette, Colorado, USA). For enzymatic digestion and ligation, the Anza
Restriction Enzyme Cloning System (cat. no. IVGN3006, Thermo Fisher Scientific, Waltham,
MA, USA) was used according to manufacturer’s instructions. All primers were customized
and purchased from Sigma-Aldrich (St. Louis, Missouri, USA). Primer sequences are listed in
Suppl. Table S1. In summary, the gene cassette of the pTRIPZ vector, consisting of a
doxycycline inducible promoter, a turboRFP cDNA and the shRNAmir cassette, was
eliminated by digestion with Anza Notl (cat. no. IVGNO01-4, Thermo Fisher Scientific) and
Anza Xbal (cat. no. IVGNO012-6, Thermo Fisher Scientific) and replaced by a reporter gene
cassette. The reporter gene cassettes were kindly provided by Sebastian Herzog (BIOSS,
Freiburg, Germany) used in two variations: one vector containing an ELK-1 binding site

(serum response element [29]) linked to a CMVmin promoter (used for pDIPZ-CMV)
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controlling the expression of destabilized GFP (desGFP) and destabilized firefly luciferase
(desFLuc), and the other one harboring a pFOSmin promoter instead of CMVmin (used for
pDIPZ-pFOS). These sequences were extracted by PCR (Q5® High-Fidelity DNA
Polymerase, cat. no. M0491S, NEB, Ipswich, Massachusetts, USA) using primers with Notl
and Xbal overhangs (Suppl. Table S1). After digestion with the respective enzymes, the
sequence of interest was inserted into the pTRIPZ backbone. To allow selection in the
puromycin-resistant DKFZ-BT66 cells [22], the puromycin resistance gene was replaced by a
blasticidin resistance gene. The blasticidin resistance gene was extracted from the pDEST
vector by PCR and then ligated into the altered pTRIPZ vector using the NEBuilder® HiFi
DNA Assembly Cloning Kit (cat. no. E5520S, NEB) following manufacturer’s instructions
resulting in the generation of pDIPZ-CMV and pDIPZ-pFOS, respectively. Finally, to generate
pDIPZ-CMV w/o BS and pDIPZ-pFOS w/o BS, the ELK-1 binding site was eliminated by

PCR amplification of the whole plasmid while excluding the binding site.

The cDNA for HA-tagged BRAF"T was amplified from pBabe-puro/BRAF"T-HA [10] using the
oligonucleotides NotIBRAFfwd and BRAF C-term-HA (Suppl. Table S1). Both primers
introduce flanking Notl sites into the amplicon, which was subcloned into pSC-A (Stratagene)
for further propagation. The cDNA was then recovered by Notl digestion and subcloned into
Notl linearized pMIBerry-Notl unique [30] to yield pMIBerry Notl unique/BRAFWT-HA. This
retroviral vector allows for the expression of a bicistronic transcript encoding the protein-of-
interest and dsRed2. The V600E mutation was introduced into this plasmid using site-
directed mutagenesis standard procedures and the primers hBRAFV600Efwd and
hBRAFV600Erev (Suppl. Table S1). For the generation of pMiIBerry Notl
unique/KIAA1549:BRAF-HA, the cDNA for long-form KIAA1549:BRAF (KEx16BEX9) fusion
was amplified from pBABE-puro/KIAA1549-BRAF [10] using the primers MfelKIAA1549fwdl
and MfelKIAA1549rev (Suppl. Table S1). The amplicon was subcloned into pSC-A for
propagation, recovered by Mfel digestion and subcloned into pMIBerry-Notl unique. The

BRAF cDNAs of all pMIBerry-Notl unique constructs were confirmed by DNA sequencing.
Lentiviral transduction

Lentiviral packaging and transduction were performed as described in [22]. For antibiotic
selection of DKFZ-BT66 (hTERT) and BT-40 cells, blasticidin (cat. no. A1113903, Thermo
Fisher Scientific) was used in a final concentration of 6ug/ml (for the hTERT cell line

10ug/ml) and 2pg/ml, respectively, for ten days.
MAPK inhibitors and other drugs

A MAPK inhibitor library (cat. no. L3400) and chemotherapeutics (carboplatin: cat. no.

S1215, vinblastine: cat. no. S1248 and vincristine: cat. no. S1241) were purchased from
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Selleckchem (Houston, Texas, USA). This pre-dissolved set of drugs was stored at -80°C
until usage. Additionally, the following investigational MAPK inhibitors were added to the
library: LXH254 (structure available here: [31]) and LTT462 (both generously provided by
Novartis, Cambridge MA, USA), RAF709 (cat. no. 23820, Cayman Chemical, Ann Arbor,
Michigan, USA), PLX7904 (cat. no. S7964, Selleckchem), PLX8394 (cat. no. HY-18972,
MedChemExpress, Monmouth Junction, New Jersey, USA), LY3009120 (cat. no. S7842,
Selleckchem), LY3214996 (structure available here: [32]) (generously provided by Eli Lilly
and Company, Indianapolis, Indiana, USA), (52)-7-oxo zeaenol (cat. no. 17459, Cayman
Chemical), SCH772984 (cat. no. 19166, Cayman Chemical) and BI-882370 (cat. no. 24273,
Cayman Chemical). These drugs were dissolved in DMSO, aliquoted and stored at -80°C
until usage. Inhibitors were diluted in cell culture medium and added to the cell culture at the

indicated concentrations for the indicated time.
Metabolic activity

Measurement of metabolic activity was conducted in white flat bottom 384-well plates (cat.
no. 3570, Corning, New York, USA) 72 hours after drug treatment, using a CellTiter-Glo®
One Solution assay (cat. no. G8461, Promega, Madison, WI, USA) following manufacturer’s
instructions. Cells were seeded one day before treatment with n=3 x 10° DKFZ-BT66 cells
per well and n=6 x 10° BT-40 cells per well in 384-well plates. After drug treatment for 72
hours with concentrations ranging from 0.0043 to 25000 nM, metabolic activity was
measured by Multimode Microplate Reader (Tecan). The metabolic activity screen was done

in a single run with single measurements of each drug concentration step.
Luciferase reporter assay

Measurement of luciferase activity was conducted in white flat bottom 96- or 384-well plates
(cat. no. 781094, 781096, Greiner Bio-One, Kremsmunster, Austria) after 24 hours of
treatment using a Luciferase Assay System (cat. no. E1500, Promega, Madison, Wisconsin,
USA). For experiments conducted in 96-well plates, 25 pl of luciferase substrate were added
to each well. Steady-Glo® Luciferase Assay System (cat. no. E2510, Promega) was used for
experiments conducted in 384-well plates following manufacturer’s instructions. DKFZ-BT66
pDIPZ cells were seeded 24 hours prior to treatment in the presence of 1ug/ml doxycycline
with n=5 x 10* cells per well in 96-well plates and n=1 x 10* cells per well in 384-well plates.
BT-40 pDIPZ cells were seeded 24 hours before treatment with n=1 x 10° cells per well in
96-well plates and n=2 x 10* cells per well in 384-well plates. After drug treatment for 24
hours, luciferase activity was measured using the FLUOstar OPTIMA automated plate reader
(BMG Labtech). For the MAPKIi screen, cells were treated in nine concentration steps

ranging from 0.001 nM to 10000 nM. IC50 values obtained from the screen (IC50s¢reen) Were
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validated (IC50yajdated) in three independent replicates (Suppl. Table S5). In the combination
experiments, cells were treated with nine concentration steps in a serial dilution with each
individual 1C5040ated @S the middle concentration. All experiments (except the MAPKI
reporter screen) were conducted in three biological replicates. The reporter screen was done

in a single run with three technical replicates for each drug concentration step.
Western blot

Western blots were performed as described previously [33]. The following antibodies were
used: Monoclonal rabbit pERK (1/2) (Thr202/Tyr204) (1.500, cat. no. 4377, Cell Signaling
Technology, Danvers, Massachusetts, USA), monoclonal rabbit total ERK (1/2) (1:1000, cat.
no. 4695, Cell Signaling Technology), monoclonal rabbit anti-RSK1 p90 phospho T359 and
S363 (1:1000, cat. no. ab32413, Abcam, Cambridge, United Kingdom), monoclonal rabbit
RSK1 p90 (1:500, cat. no. 9333S, Cell Signaling Technology), monoclonal rabbit phospho-
MEKZ1/2 (1:1000, cat. no. 9121S, Cell Signaling Technology), monoclonal rabbit MEK1/2
(1:1000, cat. no. 9122S, Cell Signaling Technology), monoclonal mouse HA-Tag (1:2000,
cat. no. 9110, Abcam), monoclonal rabbit BRAF C-19 (1:750, cat. no. sc-166, Santa Cruz
Biotechnology, Santa Cruz, California, USA) and monoclonal mouse GAPDH (1:10000, cat.
no. MAB374, Merck, Darmstadt, Germany). Cells were treated with the indicated drugs in the
indicated concentrations for 24 hours. Depicted blots are representative of at least three
biological replicates. Quantification of Western blot bands was conducted using ImageJ on

Windows.
Flow cytometry

Measurement of GFP was conducted using a Merck Guava EasyCyte HT flow cytometer.
GFP and RFP were measured using a 488 nm laser (500 long pass filter, 512/18 band pass
filter) and a 561 nm laser (593 long pass filter, 620/52 band pass filter), respectively. Data

was analyzed using FlowJo-V10 software and GuavaSoft version 3.1.1 (Merck Millipore).

For the assessment of GFP positive cells (Fig. 1) DKFZ-BT66 or BT-40 cells +/- pDIPZ
constructs were seeded in 6-well plates (n=1.5 x 10°/well) 24 hours prior to measurement.
After 24 hours, cells were prepared for flow cytometry by short enzymatic digestion with
0.05% trypsin-EDTA (cat. no. 25300054, Thermo Fisher Scientific) and subsequent addition
of cold PBS plus 2% FBS (cat. no. F7524, Sigma-Aldrich). Depicted blots are representative
of three technical replicates (Fig. 1). For evaluation of fluorescence under MAPKIi treatment
(Fig. 2A) DKFZ-BT66 pDIPZ cells (n=5 x10*well) or BT-40 pDIPZ cells (n=1 x10°/well) were
seeded in clear flat bottom 96-well plates (cat. no. 3072, Corning) 24 hours prior to treatment.
After 24 hours of treatment, cells were prepared for flow cytometry as stated above. Depicted

blots are representative of three biological replicates (Fig. 2A).
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Drug combination analysis

Determination of the combination index (CI) and generation of isobolograms were conducted
using the Chou-Talalay method and CompuSyn software on Windows for experiments using

concentration ranges [34].

Synergism was further validated for selected RAFI/MEKi and RAFI/ERKi combinations using
pERK or pRSK detection by Western blot as a readout. Concentrations were chosen
according to the corresponding isobologram generated for the 0.9 fraction affected (Fa), i.e.
Drugliceo, Drug2icen, DruglcompitDrug2comni leading to 90% inhibition of the pathway,
Druglcomni, Drug2comni. Western blot signal was quantified and the effect of the combination
of both drugs was compared to the effect of each individual components allowing the

calculation of a Cl value using the Bliss independence model as described in [35].
Statistics

All experiments were conducted in at least three biological triplicates, except the flow
cytometry validation (Fig. 1) and the reporter screening of MAPK inhibitors (Fig. 3, Suppl.
Table S3) which was conducted in a single run with three technical replicates and the
metabolic activity screen, which was conducted in a single run without replicates.
Significance was calculated using the Tukey's ‘Honest Significant Difference’ method in R on
Windows [36, 37] and p-values <0.05 were considered significant. IC50 values were
calculated using GraphPad Prism version 5.01 (GraphPad Software, La Jolla, California,
USA) on Windows. Graphs and CI tables were generated using GraphPad Prism version
5.01, FlowJo-V10 software, Microsoft PowerPoint 2010, Microsoft Excel 2010 on Windows.

10
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RESULTS

Metabolic activity readout is unsuitable to assess MAPKi treatment in SV40 large T

expressing DKFZ-BT66 cells

To identify novel treatment options for pLGG an initial screen with different classes of MAPKi
was performed. Metabolic activity was measured using an ATP-based assay in the
KIAA1549:BRAF fusion positive pilocytic astrocytoma cell line DKFZ-BT66 and the
BRAFY®E mutation positive pediatric glioma cell line BT-40 after treatment with various
MAPKi for 72h (Suppl. Fig. S1). However, most MAPKi and other drugs including
chemotherapy failed to reduce metabolic activity at clinically relevant concentrations in
DKFZ-BT66 cells. This is most likely due to the fact that pro-apoptotic pathways are blocked
by the SV40 large T antigen (present in DKFZ-BT66 but not in BT-40), as described in [22].
Only compounds not dependent on e.g. p53 for induction of cell growth arrest, such as
vincristine and vinblastine, showed an effect at clinically relevant concentrations in DKFZ-
BT66 (Suppl. Fig. S1). In contrast, BT-40, which does not express SV40 large T antigen,
showed reduced metabolic activity after MAPKi treatment (Suppl. Fig. S1). We thus
concluded that metabolic activity is not suitable as a readout for a drug screen in the
KIAA1549:BRAF fusion positive model DKFZ-BT66.

Generation of the novel ELK-1 reporter construct pDIPZ and transduction into two

patient-derived pediatric glioma models

In order to enable medium- to high-throughput screening of MAPKi in a KIAA1549:BRAF
fusion (in addition to a BRAF'®®® mutant) background we aimed at direct assessment of
MAPK pathway activity instead of metabolic activity. We generated an ELK-1 responsive
lentiviral reporter plasmid to directly measure MAPK pathway activity [29] and introduced it
into both cell models. Destabilized GFP (desGFP) and destabilized firefly luciferase
(desFLuc), separated by a T2A site and controlled by either a CMVmin or a pFOSmin
promoter region (pDIPZ-CMV or -pFOS), were used as reporter genes (Fig. 1A; | and III).
The promoter region was linked to an ELK-1 binding element, modulating the expression of
the reporter genes depending on MAPK pathway activity [29]. In addition, we generated both
plasmids without the ELK-1 responsive element (pDIPZ-CMV/pFOS w/o binding site) as
controls (Fig. 1A; 1l and IV). Lentiviral transduction efficiency was assessed by flow
cytometry: ~56% and ~49% of DKFZ-BT66 hTERT cells (Fig. 1B), and ~37% and ~40% of
BT-40 cells (Fig. 1C) transduced with pDIPZ-CMV and pDIPZ-pFOS, respectively, were

assessed as GFP positive.
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Characterization of reporter signal and promoter response

In order to evaluate the signal range of the different reporter genes and promoters, the highly
selective MEK inhibitor (MEKi) trametinib and the BRAF'®®F inhibitor (BRAFV600Ei)
vemurafenib were tested in both genetic backgrounds, KIAA1549:BRAF fusion (DKFZ-BT66
hTERT pDIPZ) and BRAFY®F mutation (BT-40 pDIPZ). A strong and significant decrease of
the luminescence signal under MEKi treatment was detected in both the KIAA1549:BRAF
fusion as well as the BRAF'*®® mutation background (Fig. 2A). The luminescence signal
decreased after trametinib (MEKIi) treatment by 65-67% in the KIAA1549:BRAF fusion
background (CMV: 67.1% +/- 3.6%; pFOS: 64.6% +/- 9.4%; % reduction in luminescence of
untreated control) and by 72-74% in the BRAF'*°* mutation background (CMV: 71.7% +/-
7.2%; pFOS: 74.4% +/- 1.7%; % reduction in luminescence of untreated control) (Fig. 2A).
The luminescence signal after vemurafenib (BRAFV600Ei) treatment decreased in a
differential manner, as expected. The luminescence signal decreased by 59-63% in the
BRAF"%%F mutation background (CMV: 58.6% +/- 5.9%; pFOS: 63.0% +/- 7%; % reduction
compared with untreated control), while no decrease in signal was observed in the
KIAA1549:BRAF fusion background (Fig. 2A). In contrast, the decrease in fluorescence
signal determined by flow cytometry was not significant in the KIAA1549:BRAF fusion

background, and only limited in the BRAFY®%F

mutation background (Fig. 2A) with a
reduction of only e.g. 16-32% as determined by flow cytometry (after trametinib treatment:
CMV: 32.1% +/- 5.8%; pFOS: 22.6% +/-6.1%; after vemurafenib treatment. CMV: 27.2% +/-
4.0%; pFOS: 16.3% +/- 2.8%; % reduction compared with untreated control) (Fig. 2A). In
conclusion, a significant reduction in luminescence, but not in fluorescence, in a mutational
background specific manner, was detectable in both cell lines. This is possibly due to
prolonged protein stability of desGFP leading to slow response dynamics. We therefore

chose luminescence as the reporter signal in the following experiments.

The two reporter plasmids with different promoters, pDIPZ-CMV and pDIPZ-pFOS, were
compared by measurement of luminescence after treatment with trametinib (MEKI) for 24h in
the KIAA1549:BRAF fusion and the BRAF'®®F mutation background. No significant
difference between the two promoters was observed (Fig. 2B). Calculated relative IC50
values as well as dose-response curve shapes were similar, indicating that both promoters
perform equally well in the setting of this assay. Since no difference in signal output was
detectable between both promoters, we arbitrarily chose the pDIPZ-CMV reporter plasmid for

all subsequent measurements.

In order to control for unspecific changes in desFLuc expression upon MAPKIi treatment we
measured luminescence using a pDIPZ-CMV reporter plasmid without the ELK-1 binding site
(pDIPZ-CMV w/o ELK-1 binding site) and compared it to the pDIPZ-CMV reporter plasmid
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with the ELK-1 binding site (pDIPZ-CMV w/ ELK-1 binding site). Importantly, modulation of
MAPK pathway activity by trametinib treatment in both KIAA1549:BRAF fusion and
BRAF "% mutation background did not result in signal suppression when using the pDIPZ-
CMV w/o ELK-1 binding site (Fig. 2C). Therefore, we conclude that the ELK-1 binding site is

specific for mediating MAPK pathway activity to the reporter plasmid.

Finally, the results of the reporter assay were validated by Western blot analysis. As
expected, a concentration dependent decrease in phosphorylation of ERK was seen in
accordance with the loss of MAPK dependent signal measured by the luminescence reporter
pDIPZ-CMV (Fig. 2D). Further measurements using the luminescence assay were
normalized to treatment with trametinib (1uM), since the MAPK pathway was maximally
suppressed under this condition (Fig. 2B and 2D). In summary, the changes in reporter
signal upon MAPKIi treatment are indeed reflective of changes in MAPK pathway activity, and

therefore the pDIPZ-CMV reporter is suitable for a MAPKIi drug screen.

Screening of a MAPKIi drug library reveals ERK inhibitors as a novel potent class
beyond MEK and RAF inhibitors inhibiting the MAPK pathway in low-grade gliomas

In order to evaluate the effects of different inhibitors on MAPK pathway activity, we used our
reporter assay to screen a commercially available MAPKi library customized to contain
additional RAF, MEK and ERK inhibitors (see Suppl. Table S2). MEKi was the dominant drug
class inhibiting the pathway at very low IC50 levels as determined in the screen (IC50s¢een) iN
both the KIAA1549:BRAF fusion as well as the BRAFY®°® mutation background. Trametinib,
a dual mechanism MEK inhibitor [38], was the top hit in both backgrounds (Fig. 3A, B and C).
Of note, MEKI, e.g. trametinib, pimasertib or selumetinib, also paradoxically activated the
MAPK pathway at lower concentrations in the BRAF'°%F
(Fig. 3B). All ERKi included in the library (SCH772984, ulixertinib, GDC-0994, LY3214996,

LTT462, (5Z)-7-oxo zeaenol) also showed potent inhibition of the MAPK pathway in both cell

mutation background (BT-40 cells)

lines, with IC50.cen Values below 130nM.

As expected, strong differences in pathway inhibition were observed for RAFi between the
KIAA1549:BRAF fusion and the BRAFY®*“F mutation background (Fig. 3C). Most RAFi,
especially first and second generation RAFi, such as vemurafenib [17] paradoxically
activated the pathway in the KIAA1549:BRAF fusion background (DKFZ-BT66) (Fig. 3A), as
has been described previously [20, 21, 39]. Of note, the so-called paradox breakers [40]
PLX7904 (PLX PB-4) [41] and its optimized analogue PLX8394 (PLX PB-3) [21] did not show
reduction of pathway activity in the KIAA1549:BRAF fusion background (Fig. 3A). This is in
contrast to reports on PLX7904 impairing ERK phosphorylation in NRAS mutant
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vemurafenib-resistant melanoma cells [41], and PLX8394, which was described to fully
abrogate the MAPK pathway in KIAA1549:BRAF fusion expressing cell lines [21]. There
were, however, some newly developed third generation pan-RAFi, e.g. LY3009120 or
LXH254 [17, 42, 43], which successfully inhibited the pathway - with IC50¢een Values ranging
from 270nM to 830nM in the KIAA1549:BRAF fusion background (Fig. 3A). Furthermore both
AZ628, a pan-RAF inhibitor which has a high potency against CRAF [44], and RAF709, a
selective inhibitor of dimeric RAF and monomeric mutant BRAF [45], were able to inhibit the
MAPK pathway in the KIAA1549:BRAF fusion background (DKFZ-BT66) at higher
concentration ranges. In the BRAF'* mutation background (BT-40) almost all RAFi were
effective, with BRAF*** -specific inhibitors like dabrafenib or encorafenib scoring as top hits
(Fig. 3B).

Overall, 1IC505een estimated for RAF and ERK inhibitors were significantly lower in the
BRAFY®E expressing cell line than the BRAF fusion model (Fig. 3C). Other drugs such as
JNK-, p38a-inhibitors or chemotherapeutics showed no inhibitory effect on measured MAPK
pathway activity in either the KIAA1549:BRAF fusion or the BRAFY®°F mutation background,

and thus IC50¢cen Values could not be estimated.

To ensure that the decrease in luminesce signal under treatment resulted from MAPK
pathway inhibition and is thus ELK-1 dependent [29], cells transduced with the control vector
pDIPZ w/o ELK-1 binding site were treated with the IC504.cen CONcentrations of each drug
and luminescence was subsequently measured. Only TAK-632, carboplatin, sorafenib and
sorafenib tosylate, or sorafenib tosylate and PLX-4720, showed a signal reduction below
80% in DKFZ-BT66 or BT-40, respectively, indicating that these could be false positive hits in
the screen (Suppl. Table S3).

To validate key findings in the screen, pERK protein levels after treatment with selected
inhibitors were determined by Western blot. The difference in response to vemurafenib
treatment is shown in Fig. 4A. Paradoxical activation was observed for DKFZ-BT66, whereas
pPERK signal was reduced in BT-40, similar to the results obtained from the screen (Fig. 3A
and B). In contrast to vemurafenib, the second generation RAFi AZ628 was able to reduce
PERK levels in the KIAA1549:BRAF fusion background as seen in Fig 4B further validating

the reporter assay being suitable to distinguish between positive and negative hits.

Finally, the differential response to the so-called paradox breakers in both backgrounds was
validated by assessment of pERK levels (Fig 4C). Treatment with the 3rd generation RAFi
PLX8394, the optimized analogue of PLX7904 [40], significantly reduced pERK levels in the
BRAF"%%F packground in low concentrations (1nM) (Fig. 4C), as expected from the reporter

assay data. In contrast, pERK levels were significantly reduced only at very high
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concentrations in the BRAF fusion background, in accordance with the signal observed in the
reporter assay (Fig. 3A). Importantly, paradoxical activation on pERK level was not observed

in the BRAF fusion background.

To validate our findings in additional genetic models and to evaluate if this observation is
independent of the genetic backgrounds of the cells, HEK293T cells overexpressing different
MAPK pathway alterations were treated with PLX8394 (Fig. 4D and E). The overexpression
of BRAFY® protein was validated by detection of the HA-tag and of the KIAA1549:BRAF
protein by detection of the fusion-length BRAF protein (Suppl. Fig. 2). Reduction of pMEK
(as direct readout of RAF inhibition) and pERK (as direct readout of MEK inhibition) levels
were achieved under lower concentrations of PLX8394 for BRAF %%
KIAA1549:BRAF fusion expressing HEK293T cells (Fig. 4D and E). In conclusion, the

BRAF® mutated background is more susceptible to the treatment with the paradox

mutation compared to

breaker PLX8394, as predicted by the reporter assay (Fig. 3A and B).

In summary, MEKi and ERKi effectively inhibited MAPK pathway activity in both the
KIAA1549:BRAF fusion as well as the BRAFY®°°F mutation background, as measured by the
reduction in luminescence signal. In case of RAFi, pathway inhibition depended on the type
of MAPK aberration and RAFi class, as expected. Other drugs tested, apart from MEKI,
ERKIi, and RAFi, were not able to reduce the MAPK pathway signal output.

Combination of different classes of MAPKi show synergistic effects on pathway
inhibition in the KIAA1549:BRAF fusion as well as the BRAF'*®F mutation background

To further assess novel potential treatment regimens for pLGG we tested combinations of
different classes of MAPKIi for synergistic inhibition of the MAPK pathway. Combinations of
different MAPKi were chosen on the basis of lowest IC50syeen Values for each respective
background, as well as matching compounds from a single pharmaceutical company in a
pragmatic approach to model possible future clinical trials (Suppl. Table S4). 1C50sceen
values generated in the screen of the drugs chosen for combination testing were validated
(IC50vaiigated) (Suppl. Table S5). IC50y4atea Were used for the combination experiments.
Synergistic effects were observed in all tested RAFi and MEKi combinations in both
KIAA1549:BRAF fusion (LXH254 plus trametinib and AZ628 plus selumetinib) as well as the
BRAFY®%F mutation background (AZ628 plus selumetinib, vemurafenib plus cobimetinib and
dabrafenib plus trametinib) (Fig. 5A; Suppl. Fig. S3-S5). All synergies measured by

combination index (CI) plotting were corroborated by isobologram analysis (Suppl. Fig. S5).
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Synergy of the combination of RAFi and ERKi was detected only for one of the ERK:is tested.
Only the ERKi LTT462 showed synergy in combination with the RAFi LXH254 in the
KIAA1549:BRAF fusion and with dabrafenib in the BRAF'®®F mutation background,
respectively (Fig. 5A; Suppl. Fig. S3-S5). All other RAFi plus ERKi combinations (LY3009120
plus LY3214996, dabrafenib plus ulixertinib, encorafenib plus ulixertinib, encorafenib plus
GDC-0994), as well as MEKi plus ERKi combinations (trametinib plus LTT462, pimasertib
plus SCH772984) revealed only additive or even antagonistic effects, however mostly in the

form of buffering-antagonism [46] (Fig. 5A).

To validate the synergistic effects observed for the combination of RAFi and MEKI, and RAFi
and ERKIi, respectively, Western blots were conducted and synergistic effects were
calculated using the Bliss independence model [35] (Fig. 6). For the RAFi AZ628 in
combination with the MEKi selumetinib synergistic effects were observed in both cell lines
using pERK as readout (Fig. 6A and B) with CI values below 0.9. For the combination of the
RAFis (LXH254 and dabrafenib, respectively) with the ERKi (LTT462) pRSK levels as a
downstream target of pERK were determined to evaluate synergism, since pERK cannot be
used as readout due to accumulation of pERK upon inhibition with the ERKi (as described
previously [47]), especially in the KIAA1549:BRAF fusion background (Fig. 6A). For both
backgrounds CI values around 1.0 were calculated from the protein quantification by

Western blot, indicating additive effects (Fig. 6A and B).

In summary (Fig. 5B), synergistic effects were observed for treatment with RAFi and MEKi
and some of the RAFi and ERKi combinations in both the KIAA1549:BRAF fusion as well as
the BRAF'®®F mutation background. The combination of MEKi and ERKi did not reveal

unequivocal synergism but rather additive and/or antagonistic (if buffered) effects.
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Discussion

pLGGs are a chronic condition often associated with multiple recurrences and therapeutic
interventions in the course of a patient’s lifetime, and new effective drug treatments are
urgently needed. Despite several ongoing early clinical trials testing MAPKi (alone and in
combination) in pLGGs (e.g. NCT02285439; NCT01089101; NCT03363217; NCT02684058),
extensive pre-clinical studies analyzing the efficacy of MAPKi in pLGGs are still missing. The
most important reason for this is the lack of suitable pLGG models that faithfully reflect the
biological features of these tumors, including genetic background, slow growth, and induction
of senescence. The strength of our study is the use of patient-derived pLGG models and a
fast and cost-effective reporter system suitable for high-throughput analysis.

Previous studies have established several in vitro and in vivo pLGG models (e.g. [10, 21, 48-
50]), most of them genetically engineered to overexpress the most common BRAF
aberrations. However, the underlying MAPK driver mutation, specifically the KIAA1549:BRAF
fusion, is not expressed endogenously in these models. The expression levels and relative
stoichiometry of BRAF, CRAF and the BRAF fusion are altered, and therefore interactions
and feedback mechanisms within the MAPK pathway are likely to be artificially changed. In
our study we have used two well-characterized patient-derived pediatric glioma cell lines
endogenously expressing the KIAA1549:BRAF fusion or the BRAFY®® mutation without
genetic overexpression [22, 25].

Widely used methods to determine MAPK pathway activity are e.g. Western blot for pERK,
gPCR for MAPK pathway genes, and serum response element (SRE) luciferase reporter
assays based on transient transfection [51, 52]. These methods are not well suited for high-
throughput analysis of the MAPK pathway due to workload, time, and scalability reasons.
Here we use a reporter assay which comes with several advantages: stable lentiviral
transduction, no individual sample processing after treatment, fast measurement, scalability
and automatability of the cost-effective readout. In addition, the ELK-1-responsive design of
the reporter assay provides information on the transcriptional sum output of the MAPK
pathway instead of measurement of phosphorylation status of single components of the
pathway, such as pERK, alone. The importance of this information is emphasized by past
studies, e.g. showing that in tumors with mutations in BRAF or receptor tyrosine kinase
(RTK), although having similar levels of pERK, elevated transcriptional output of the MAPK
pathway was detected only in BRAF mutated tumors [53]. Consequently, only BRAF mutated
tumors were dependent on ERK signaling for proliferation and MEKI sensitive [53]. The
reporter assay described here can not only measure the actual transcriptional output of the
MAPK pathway, but also compare relative changes upon treatment with MAPKIi. This allows

for comparison of relative potencies of MAPKi in pLGG.
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The pattern of effectiveness in MAPK inhibition both on the single compound as well as the
MAPK:i class level warrants a closer look at the molecular effectors of MAPK inhibition. Most
of the early generation RAF inhibitors led to paradoxical activation as expected, and not all
pan-RAFi could inhibit the MAPK pathway. Conversely, novel third generation pan-RAFi
showed inhibitory activity with minimal paradoxical activation in the BRAF*°°® background as
well as in the KIAA1549:BRAF fusion positive cell line. Strikingly, all of the RAF inhibitors
capable of inhibiting the pathway in the BRAF fusion expressing cell line belong to type I
inhibitors, which stabilize the aC-helix in the IN and the DFG motif in the OUT conformation
[17, 54]. This mechanism prevents negative allosteric movements of the second protomer of
the RAF dimer, which keeps its aC-helix IN conformation. As a result, the inhibitor is able to
bind to the second RAF protomer in similar concentrations, to completely abolish kinase
activity. Interestingly, the paradox breakers PLX7904 and PLX8394 were less effective in
BRAF fusion containing cells compared to their BRAFY®°F positive counterparts. Similarly,
Weinberg et al. [30] observed that the paradox breakers PLX7904 and PLX8394 were more
effective in suppressing MEK/ERK phosphorylation triggered by BRAFY®®F than by the
TTYH3:BRAF fusion protein. This might be explained by the fact that PLX7904 and PLX8394
were developed with vemurafenib as starting point [55]. Vemurafenib was optimized for the
conformation of V60OE that is stabilized by the mutation specific salt-bridge created by E600
[56]. The kinase domain of BRAF fusions, however, is not mutated and is therefore probably
much more flexible, leading to less sensitivity to the paradox breakers. Alternatively, but not
excluding this possibility, other mechanisms might contribute to the insensitivity of
KIAA1549:BRAF to PLX8394. Recently, Botton et al also reported the insensitivity of various
BRAF fusion driven melanoma lines towards PLX8394. They suggest that this paradox
breaker, which was originally selected to impair the activity of RAS-induced BRAF/RAF1
heterodimers, fails to disrupt RAS-independent kinase homo-dimers of the BRAF kinase
domains whose stability might be additionally influenced by their fusion partner [57]. In that
regard, it should be noted that, despite its frequency as BRAF fusion partner, very little is

known about the tertiary and quaternary structures of KIAA1549.

MEKi were the most effective class of MAPKi in both genetic backgrounds based on
IC50screen reporter values. Specifically trametinib, a potent inhibitor of MEK1/2 which also
reduces the activation of MEK by RAF by disrupting the conformation of the MEK1/2
activation loop sites (a so-called ‘feedback buster’) [38, 58], showed the lowest IC50s in both
backgrounds. Furthermore, our data indicate that MEK inhibitors are acting in clinically
achievable concentrations (Suppl. Fig. S3 and S4), suggesting a high potential of sufficient
MAPK pathway suppression also in patients. ERKi were also an effective class of MAPKI in
both backgrounds. Current clinical phase | studies (e.g. NCT02857270, NCT02711345,
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NCT01875705) will show if these promising MAPKi will qualify as potential candidates for
future pLGG trials [18].

The rationale behind combination treatments is based on the inhibition of potential escape
mechanisms from therapy via feedback activation as well as the possibility to reduce
individual drug concentrations, and thus drug toxicities, in combination settings.
Reconstitution of ERK signaling as a resistance mechanism, e.g. via RAF dimer formation,
has been observed in malignant transformation of pLGGs (although this is a rare event) [59].
Other resistance mechanisms described in e.g. melanoma [60] are BRAF amplification or
MEK mutation, leading to resistance to MAPKi single treatment by reconstitution of MAPK
pathway signaling. Combination treatments targeting several components of the pathway
could effectively prevent tumor progression under such circumstances [61]. Synergistic
effects of a pan-RAF/MEK inhibitor combination were confirmed for BRAF*°°% inhibitor
resistant melanoma and colorectal carcinoma cell lines [62]. In addition, the phase | clinical
trial of vemurafenib in melanoma patients revealed that a complete shutdown of the MAPK
pathway is necessary for significant tumor response [56] which could be more easily
achieved using synergistic combination treatments. Our results suggest that strong synergy
depends on the combination of certain classes of MAPKI. Synergistic effects were observed
when RAFi were combined with either MEKi or ERKIi, possibly due to directly targeting the
BRAF alteration in both mutational backgrounds. In case of the combination of MEKi with
ERKI, synergistic effects were virtually absent. This is consistent with a recently published
study describing that MEKi and ERKi combinations act synergistically only in RAS mutant
models but not in BRAF mutant models as a consequence of distinct feedback productivity
[63].

Finally, the results obtained from the reporter assay could be validated by Western blot:
synergistic effects were confirmed for RAFi combined with a MEKI. The combinations of
RAFis and ERKIi revealed rather additive effects instead of the synergism indicated by the
reporter assay. The downstream target pRSK was chosen as a suitable readout for ERK
inhibition since pERK is accumulating upon ERKIi treatment. Indeed, a reduction of pRSK,
indicative of ERK inhibition, was readily detectable. Considering the measurement of
synergism by Western blot however, detection of rather small effects (such as phospho-
protein changes) by Western blot can be challenging. Measuring the phosphorylation of a
single protein such as RSK downstream of pERK as a readout could disregard its own
feedback mechanisms interfering with a strong dynamic reaction. Our assay using a
sensitive luminescence signal as a surrogate marker of transcriptional activity at the
downstream end of the MAPK pathway might be more suitable to evaluate synergistic effects

on the global signhaling output.
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In summary we have generated a novel MAPK-specific reporter assay in a pLGG-specific
background. This reporter assay enables direct assessment of transcriptional activation
status of the MAPK pathway and response to MAPKi treatment. Our results indicate that, in
addition to MEKi, ERKi and next-generation pan-RAFi are novel potential candidates for the
treatment of pLGGs. The synergy of the combination of RAFi with either MEKi or ERKi
detected in both genetic backgrounds (KIAA1549:BRAF fusion and BRAFY®%°F mutation)
indicates strong clinical potential of those MAPKi combinations. Clinical trials are urgently
needed to test the efficacy of MAPKi combination therapies, especially RAFi and MEKi, in
pLGGs.
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Figure legends:

Figure 1. Generation of ELK-1 responsive reporter pediatric glioma cell lines: A)
Schematic diagram of the plasmid pDIPZ (overview). ORI: Origin of replication; AmpR:
Ampicillin resistance gene; LTR: Long terminal repeat; BlaR: Blasticidin resistance gene.
Schematic diagram of the reporter gene cassette of the plasmids |) pDIPZ-CMV (ELK-1
binding site-CMV-desGFP-T2A-desFLuc) and Ill) pDIPZ-pFOS (ELK-1 binding site- pFOS-
desGFP-T2A-desFLuc) and the plasmids without ELK-1 binding site II) pDIPZ-CMV w/o BS
(CMV-desGFP-T2A-desFLuc) and IV) pDIPZ-pFOS w/o BS (pFOS-desGFP-T2A-desFLuc).
desGFP: destablized GFP; desFLuc: destabilized firefly luciferase; w/o: without; BS: binding
site. B) and C) Assessment of GFP positive cells after stable transduction of the reporter
plasmids CMV (black) or pFOS (orange) pDIPZ in DKFZ-BT66 hTERT and BT-40 cells
compared to cells without transduced plasmid. Fluorescence was determined by flow
cytometry (Merck Guava EasyCyte HT). Depicted are mean +/- SD of three technical
replicates.

Figure 2: Characterization of the ELK-1 responsive reporter assay signal: A)
Comparison of bioluminescence (top row) (determined by Luciferase Assay System,
Promega) versus fluorescence (bottom row) (determined by flow cytometry, Merck Guava
EasyCyte HT) in DKFZ-BT66 hTERT and BT-40 cells both transduced with pDIPZ CMV
(black) or pFOS (orange), after 24 hours of treatment with 1 pM trametinib or 1 uM
vemurafenib, respectively. Depicted are mean +/- SD of three biological replicates.
Significant differences are indicated as * p<0.05 and ** p<0.01. ns: not significant, p>0.05
(Student’s t-test). B) Assessment of luminescence intensity measured by luciferase assay
(Luciferase Assay System, Promega). DKFZ-BT66 hTERT and BT-40 cells, both transduced
with either pDIPZ CMV or pFOS, were treated for 24 hours with trametinib in the indicated
concentrations. Depicted are mean +/- SD of three biological replicates. p-values were
calculated for the last values of each curve (treatment with highest concentration). ns: not
significant, p>0.05 (Student’s t-test). C) Assessment of absolute luminescence intensity
using the luciferase assay (Steady-Glo® Luciferase Assay System) after treatment of DKFZ-
BT66 hTERT or BT-40 cells both transduced with either pDIPZ CMV or pFOS with and
without ELK-1 binding site with solvent or 1 puM trametinib for 24 hours. Depicted are mean
+/- SD of three biological replicates. Significant differences are indicated as * p<0.05, **
p<0.01 and *** p<0.001. ns: not significant p>0.05 (Student’s t-test). w/: with, w/o: without,
native: cells without transduced plasmid. D) MAPK pathway activity in DKFZ-BT66 hTERT
pDIPZ and BT-40 pDIPZ cells was determined by protein levels of pERK and ERK detected
by Western blot after treatment with the indicated drugs for 24 hours with the same

concentrations used in the luminescence assay in B) (every second concentration step).
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Figure 3: Screening of a MAPK inhibitor library using the ELK-1 responsive reporter
assay confirms ERK inhibitors followed by pan-RAF inhibitors as potential novel
therapeutic approach for pLGGs: Heatmaps of tested MAPKi compounds ranked
according to luminescence intensity (measured by Steady-Glo® Luciferase Assay System)
after treatment for 24 hours in either DKFZ-BT66 pDIPZ-CMV A) or BT-40 pDIPZ-CMV cells
B). Drug concentrations were used as indicated above the heatmap. Drugs were sorted by
relative 1C50 values with the lowest IC50 values at the top. n/a indicates that the IC50 value
could not be estimated. In this case drugs were sorted by their ability to increase
luminescence, thus paradoxically activating the MAPK pathway, from weak inducers at the
top to strong inducers at the bottom. Pathway activity is depicted as follows: Green shades
indicate pathway inhibition; blue shades no effect and red shades paradoxical activation. 1st,
2nd and 3rd describes the generation of each RAF inhibitor and I, 1 %2 and Il their respective
binding mode (adapted from [17, 32]). Depicted is the mean of three technical replicates. C)
Boxplot of IC50 values assessed in DKFZ-BT66 and BT-40 cells drug screen combined for
RAF, MEK and ERK inhibitors. Depicted are median (black bar), percentiles (25th to 75th)
(box) and median +/- 1.5 IQR (interquartile range) (whiskers), and outliers (dots). Significant
differences are indicated as * p<0.05. ns: not significant p>0.05 (Student’s t-test, paired by

drug).

Figure 4: Western blot validation of selected hits of the reporter screen: MAPK pathway
activity in DKFZ-BT66 (+/-hTERT pDIPZ), BT-40 (+/-pDIPZ) and in MAPK pathway altered
HEK293T cells was determined by protein levels of pERK and ERK detected by Western blot
after treatment with the indicated drugs in the indicated concentrations for 24 hours. A)
Comparison of MAPK pathway response after vemurafenib treatment. B) Treatment of
DKFZ-BT66 cells with AZ628. C) Differential sensitivity to the treatment of PLX8394 in
DKFZzZ-BT66 and BT-40 cells including quantification of pERK protein levels. D) Comparison
of MAPK pathway response after PLX8294 treatment of MAPK pathway alteration
expressing HEK293T cells and E) quantification of pMEK and pERK protein levels.
Significant differences are indicated as * p<0.05, ** p<0.01 and *** p<0.001 (Tukey's ‘Honest

Significant Difference’ test).

Figure 5: Analysis of MAPKi combination treatment in DKFZ-BT66 pDIPZ-CMV and BT-
40 pDIPZ-CMV cells: A) Combination index (Cl) tables for DKFZ-BT66 pDIPZ-CMV and BT-
40 pDIPZ-CMV. Assessment of luminescence intensity measured by luciferase assay
(Steady-Glo® Luciferase Assay System). Cl values were calculated using CompuSyn.
DKFZ-BT66 and BT-40 cells transduced with pDIPZ-CMV were treated for 24 hours with the
indicated drugs and concentrations. Depicted are mean CIl values of three biological

replicates. Grey areas indicate experimental points which could not be included in the
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CompuSyn analysis (fraction affected >1.0 or <0.0). B) Summary of combination index (ClI)
tables and isobolograms of MAPKi combination treatment in the KIAA1549:BRAF (DKFZ-
BT66 pDIPZ-CMV) and BRAF®® mutation (BT-40 pDIPZ-CMV) background. Heatmap
includes median CI values obtained from the CI tables and Cl values calculated for

0.5/0.75/0.9 fraction affected under MAPKi combination treatment. Fa: fraction affected.

Figure 6: Western blot validation of synergistic effects of selected combinations:
MAPK pathway activity in A) DKFZ-BT66 and B) BT-40 cells was determined by protein
levels of pERK, ERK, pRSK and RSK detected by Western blot after treatment with the
indicated drugs in the indicated concentrations for 24 hours. Concentrations were chosen
based on the isobologram of the respective combination (lanes of the Western blots: solvent,
Drugliceo, Drug2ices, DruglcompitDrug2comsi leading to 90% inhibition of the pathway,
Druglcompi, Drug2cemni). Combination index (CI) values were calculated using the Bliss
independence model. Significant differences are indicated as * p<0.05, ** p<0.01 and ***
p<0.001 (Tukey's ‘Honest Significant Difference’ test). Fa: Fraction affected, selu:

selumetinib, dabra: dabrafenib.
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Figure 4

KIAA1549:BRAF fusion
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Figure 5
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Figure 6

BRAFV600E mytation (BT-40)

KIAA1549:BRAF fusion (DKFZ-BT66)
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