
1

PULSE: Optical Circuit Switched Data Center
Architecture Operating at Nanosecond Timescales

Joshua L. Benjamin, Student Member, IEEE, Thomas Gerard, Student Member, IEEE,
Domaniç Lavery, Member, IEEE, Polina Bayvel, Fellow, IEEE and Georgios Zervas, Member, IEEE

Abstract—We introduce PULSE, a sub-µs optical circuit
switched data centre network architecture controlled by dis-
tributed hardware schedulers. PULSE is a flat architecture that
uses parallel passive coupler-based broadcast and select net-
works. We employ a novel transceiver architecture, for dynamic
wavelength-timeslot selection, to achieve a reconfiguration time
down to O(100ps), establishing timeslots of O(10ns). A novel
scheduling algorithm that has a clock period of 2.3ns performs
multiple iterations to maximize throughput, wavelength usage
and reduce latency, enhancing the overall performance. In order
to scale, the single-hop PULSE architecture uses sub-networks
that are disjoint by using multiple transceivers for each node
in 64 node racks. At the reconfiguration circuit duration (epoch
= 120 ns), the scheduling algorithm is shown to achieve up to
93% throughput and 100% wavelength usage of 64 wavelengths,
incurring an average latency that ranges from 0.7-1.2 µs with
best-case 0.4 µs median and 5 µs tail latency, limited by the
timeslot (20 ns) and epoch size (120 ns). We show how the 4096-
node PULSE architecture allows up to 260k optical channels to
be re-used across sub-networks achieving a capacity of 25.6 Pbps
with an energy consumption of 82 pJ/bit when using coherent
receiver.

Index Terms—Optical interconnections, Circuit switching
(communication systems), Scheduling, Star coupler network,
WDM, TDM, SDM, fast tunable transceivers, fast network
reconfiguration

I. INTRODUCTION

THE rapid increase in the rate of intra-data center traffic,
due to the growth of data services, requires the supportive

growth of resources within data center networks (DCNs).
Cisco’s Visual Networking Index (VNI) suggests that 73% of
DCN traffic is internal within the data center network [1].
According to Google, the demand for bandwidth in data cen-
ters doubles every 12-15 months [2]. Intel anticipates that 70-
80% of their computing and storage systems will be deployed
into data centers by 2025 [3]. While data center operators
are being forced to scale their computing resources they are
also required to maintain low costs and power consumption.
In 2015, total power consumption of DCNs worldwide was
416.2 terawatt hours, while the total power consumption in the
UK was approximately 300 terawatt hours [4]. In some cases,
energy use is a substantial cost relative to the IT hardware
itself [5]. Moreover, by 2021, about 95% of all data center
traffic will originate from the cloud [6]. In bursty, cloud based
applications, 90% of packets have a size of less than 576 bytes
[7]; smaller packets require faster switching. However, current
electronic packet switched networks have long tail latencies
of several hundred milliseconds; orders of magnitude higher
than median latency, degrading application performance [8].

The authors are with the Department of EEE, University College London,
United Kingdom (E-mail: g.zervas@ucl.ac.uk)

Hence, there is a need for networks, which reconfigure at
nanosecond timescales and ensure low and deterministic tail
latency and high network throughput. Hence, we propose the
use of optically switched networks which can be tailored to
showcase the aforementioned features.

Optical switch technologies, including Arrayed Waveguide
Grating Routers (AWGRs) and star-coupler based switches,
have been proven to scale to port counts as high as 512 or
1024 ports [9], [10]. With WDM, TDM and advanced optical
modulation techniques, optical transceivers are also able to
unlock and support higher data transmission rate (or bit rate)
per port [11]. However, a major challenge faced when scaling
an optical switch is the scalability of the central scheduler [12].
Hence, many optical switch technologies resolve to software-
based scheduling to simplify switch configuration [9], [10],
[13], [14]. Nevertheless, software based control systems take
milliseconds to compute switch configurations. To tackle
this, researchers have proposed optical switch solutions with
distributed scheduling for simplified control. However, these
proposals tend to elevate data plane complexity [15]–[17]. Re-
cent optical packet switching technologies with fast switching
control have also been shown to have scaling restrictions as
they require complex optical data plane architectures, multiple
optical components [18] and packet management techniques
to realize electronic packet switch functionalities [19].

Previously, we proposed a transceiver-based optical circuit
switched (OCS) network with a passive star-coupler core
[20], scalable to 1000 ports [21] that used a centralized
scheduler to reconfigure the network by defining wavelength
and timeslots at the transceivers [22]. However, the broad-
cast and select network suffered from resource wastage as
only W (=80) wavelengths were used for N (=1000) servers
(network efficiency = 8%) and had a long circuit duration
(epoch) of 2 µs, well above the aforementioned target of
nanosecond timescales. In this paper, we propose PULSE,
a novel scalable OCS architecture that supports nanosecond
speed reconfiguration time, while enabling network and ca-
pacity scalability with the help of independent distributed
hardware schedulers with high network efficiency (W = N).
We introduce novel transceiver architectures that enable faster
circuit reconfiguration time and evaluate the network energy
consumption of the proposed transceiver combination. We
introduce a novel scheduling algorithm that can effectively
compute a new wavelength configuration (per node) for each
timeslot within each epoch (circuit cycle duration) and limit
tail latency to a few microseconds.

The PULSE architecture does not require in-network rout-
ing/switching, buffering and addressing. However, it requires
ultra-fast (a) O(ns) scheduling, (b) tunable wavelength switch-

2

ing, (c) filtering, (d) distributed/scalable transport network, (e)
clock and data recovery [7] and (f) O(100 ps) synchronization.
Research is being carried out on several aspects of PULSE but
the primary focus of this paper is to:

• propose a novel modular and distributed architecture (d)
that eases control and data plane scalability (Section II).

• propose novel ultra-fast O(ps-ns) wavelength-timeslot se-
lective transceiver architectures (b-c) (Section III).

• propose a novel hardware scheduler design (a) and eval-
uate its scalability (Section IV).

• review schedule performance under various epoch sizes,
traffic distributions/loads to evaluate its effect on resource
utilization, throughput, latency and transmitter/scheduler
buffer size compared to previous work (Section V).

• study the implications of network and transceiver archi-
tecture on scalability, cost, power and latency overhead
(Section V).

Section VI presents related work in the optical circuit
switching field in order to identify the relevance and novelty
of PULSE and we conclude in section VII.

II. OCS NETWORK ARCHITECTURE

Figure 1: PULSE - Top: Parallel OCS network architecture
with distributed hardware schedulers, Bottom: Control-Data
handshake and dataflow.

The data plane of PULSE consists of parallel star-couplers
grouped per rack, shown in the top right side of Fig. 1. Each
passive star-coupler core forms a broadcast and select network
[20]. There are up to x racks, where each rack contains N
nodes. Each node houses up to x optical transceivers, where
each transceiver connects a node to a different star coupler
and thereby, a different sub-network or rack. For connec-
tion establishment and eventual data transmission across the

switch, the source transmitter and the destination receiver must
both tune to the same wavelength and timeslot. As shown
by the top left side of Fig. 1, for every star coupler network
in the data plane, the control plane has a corresponding N -
node scheduler co-hosted in the same rack, which processes
the requests for that particular source-destination rack pair.
The parallel OCS network proposed requires x2 N -node star
couplers and schedulers. The PULSE architecture scales to
support up to Nx nodes with a capacity of BNx2, where B
is the effective line-rate of each transceiver.

As shown by bottom part of Fig. 1, the communication
timeline groups timeslots to form epochs. The scheduler also
computes, for an epoch, wavelength-timeslot grants for a spe-
cific epoch. Figure 1 shows a source node sending requests to
the relevant scheduler that is associated with the destinations of
interest (D63, D2, D15) with the number of timeslots requested
(2,1,3 respectively) and timeslot number well over an epoch
in advance. The scheduler performs as many iterations as it
can in one epoch to compute the wavelength (λ64, λ8, λ27 in
Fig. 1) and timeslots for each request. Table I shows how the
network, requests, racks, cables, channels and capacity scale
while increasing the number of transceivers and racks (x ∈
4,8, 16, 32 and 64) at 64 nodes per rack (N = 64).

Table I: PULSE: Scalability, Capacity, Complexity at N = 64

Network Parameters Transceivers per node (x)
4 8 16 32 64

Total nodes 256 512 1024 2048 4096
Req/node/epoch (R) 24 48 96 192 384
Racks (x) 4 8 16 32 64
Sub-stars (x2) 16 64 256 1024 4096
Cables (N × x2 × 4) 4096 16384 65536 0.26M 1.04M
Channels (Wx2) 1024 4096 16384 65536 0.26M
Max capacity (Tbps) 100 400 1598 6394 25575

The spatial division multiplexing (SDM) created by the
parallel and distributed star-couplers enables the re-use of
wavelengths. In other words, the same wavelength can be
re-used in another star-coupler. The complete independent
nature of individual sub-networks means that local schedulers
have no dependency on the traffic or resource usage faced
by other stars. The synchronization problem is also reduced
to a local sub-network and not required at a global level.
Each 64-port sub-star uses 64 wavelengths and the SDM
enables 4096 parallel uses of wavelengths allowing a total of
0.26M channels and a network with an enhanced capacity of ∼

25.6 Pbps, accounting for tuning overhead. Each sub-network
creates shareable bandwidth resources between two racks. The
overall network bandwidth (between all racks) is indicated
by ‘Max capacity’ in Table II. However, at any instant, the
maximum node-to-node capacity is 100 Gbps.

As shown in table II, each node uses up to 6.4 Tbps.
PULSE is a network solution, where each node can be a
high-performance computational resource in a heterogeneous
cloud DCNs - CPU, GPU, TPU, HBM (>1 Tbps) or ToRs.
Resources like HBMs and GPUs [23] require more than 1 Tbps
bandwidth. Large multi-core chips are also being explored to
support fast AI calculations [24]. There has been considerable
growth in the performance of GPUs, nearly 1.5 times a year
[25] and reaching 1.5 Tbps by 2020 [23]. Although network

3

and computational processing are capable of handling high
throughput (100 Tbps), NIC or data ingest capacity constraints
(100 Gbps) create bottlenecks, leading to inefficient systems
that constraint applications to operate locally and degrade the
overall application performance. Hence, the FastNICs program
initiated by DARPA [26] aims to boost network NIC and stack
capacity by 100 times to accelerate distributed application per-
formance and close the gap between processing and network
capability. Hence, it is expected that in the future end-nodes
will support high bandwidths (6.4 Tbps). Today’s expensive
network switches are over-designed and under-utilized [27].
PULSE intends to maximize bandwidth utilization even if high
capacities are generated at the nodes.

III. OPTICAL CIRCUIT SWITCH ELEMENTS

A. Transceiver technology

In this work, we propose the use of fast wavelength and
timeslot selectable transceivers, as shown in Fig. 3. For the
purpose of evaluating latency, cost, power and throughput, we
assume a line-rate of 100 Gbps per wavelength. The line-
rate could be achieved by adopting PAM-4 (56 Gbaud) for
direct-detect and DP-QPSK (4×28Gbaud) for coherent sys-
tems; though the wavelength-timeslot switching is format/rate
flexible. At 100 Gbps, this system targets the transfer of
250 bytes per 20 ns time-slot, which corresponds to the overall
median packet size across various data center workflows [28].
As the globally synchronized optical switch only needs to
carry the bare payload of the packet, the effective packet length
is slightly more than an average Ethernet packet. In addition,
prior work has experimentally demonstrated fast time-slot
switching with a 1-bit guard band, minimizing any TDM
overhead [29]. At each transmitter, smaller packets (�250
bytes) to the same destination are aggregated for effective slot
usage.

1) Prior work: Dynamic wavelength assignment (using
software algorithms) with all processing and buffering at the
edge was proposed in [11], [30]. The work in [21], [29]
proposed each node to be equipped with a tunable DS-DBR

Figure 2: DS-DBR laser tuning time prediction versus the
number of available wavelength channels with 99.9% regres-
sion on [21].

Figure 3: Transceiver options for PULSE: TX1-Cascaded
WTL, TX2-Laser Diodes, TX3-Laser Comb, RX1-SOA/AWG,
RX2-Coherent Rx.

laser and a coherent receiver with an independently tunable
DS-DBR local oscillator laser. This enables fast wavelength
selectivity, O(10ns), at both the transmitter and receiver, and
the high sensitivity of the coherent receiver also enables
scalability in the data plane since it allows for a larger system
loss budget and thus a higher port count star-coupler [21], [29].
Although a 1000-port star coupler network can be created,
experiments have shown that only up to 89 wavelengths can
be supported by the laser hardware positioned on a 50 GHz
ITU grid within the optical C-band to ensure minimal crosstalk
between channels (W � N). Extending the same grid to the
L-band could allow the use of 160 wavelengths. However,
Fig. 2 shows the growth of this tuning time when using
an extrapolated regression model with greater than 99.9%
confidence interval; this predicts that a 160-wavelength system
takes more than 1µs to tune all transceiver pairs. The large
tuning time has a direct impact on switch latency and tail
latencies, which degrades network performance, setting a limit
on the wavelength channels allowed, assuming the tunable DS-
DBR lasers are used at the transceivers. This performance
degradation has an impact on the scalability of the OCS
network in terms of capacity, limiting W � N . Regardless
of the number of wavelength channels used, the large tuning
time would require a dedicated synchronized tuning time prior
to every epoch, which lasted in O(1µs) to minimize overhead.

2) Transmitter options: Following the previous argument,
we explore methods of approaching a larger number of
wavelength channels (W), while making sure that optical
transmitters do not impede switching times. With that aim,
we consider 3 WDM transmitter architectures that have the
potential to achieve sub-nanosecond switching. Electro-optical
amplifier switch based on chip-on-carrier SOA with tunable
lasers were experimentally demonstrated to achieve switching
times of up to 115 ps by [31]. Here, we use k such SOAs at
the transceiver, in order to enable reconfiguration at a faster
rate of the O(10ns), connected to one of three laser source
options that we propose as shown in Fig. 3. In our transceiver

4

proposal, the first transmitter laser source option (TX1) is to
employ k widely tunable lasers (WTLs). The WTL could be
the DS-DBR lasers described in the previous sub-section or
SG-DBR lasers in a cascaded fashion, connected to k SOA
gates, as shown in Fig. 3. However, the WTL is required to
tune to a new wavelength within 20 ns. Modulated grating Y-
branch (MG-Y) lasers [32] can be used as WTLs to achieve
fast wavelength selection within 20 ns. The work in [33] has
shown SG-DBRs to achieve wavelength tuning in 5 ns. Prior
experiments have also shown that 67% of transitions between
any DS-DBR equipped transceiver pair of the 89 available
wavelength channels (59 channels) complete tuning within
20 ns [21]; work is underway to improve this to support 64
channels. As shown in Fig. 3 (TX1), k = 2 cascaded WTLs
(and SOAs) are required at the transmitter and receiver to
create 20 ns timeslots. This will further reduce cost and power
consumption. The star-coupler core has a loss of −3log2N dB,
which corresponds to -18 dB for a 64-port network. The SOAs
used at the transmitter (and receiver option 1) compensate for
this loss by providing a +10 to +15 dB amplification [31]
(per SOA per path). Coherent receiver (receiver option 2) are
highly sensitive (-21 dB with BER of 1012) [21] and can
accommodate a larger split. In this paper, we aim to increase
the network transceiver efficiency to 100% by increasing the
number of channels to the number of nodes in the sub-network
(W = N). Hence, the paper will investigate the network
performance for (N=) 64-node racks and (x=)16 racks, scaling
to 1024 nodes. The second transmitter laser source option
(TX2) is the use of k(=W) VCSEL laser diodes [34], one
for each wavelength, at the source connected to k SOA gates
as shown in Fig 3. The third transmitter laser source option
(TX3) is to use a laser comb that generates k(=W) wavelength
sources connected k SOA gates [35].

3) Receiver options: We propose two options for the re-
ceivers, as shown at the bottom of Fig. 3. The first receiver
option (RX1) contains an array of W SOAs surrounded by
AWGRs, followed by a direct detection photodiode. The
selection of the SOA allows the fast wavelength selection
(O(100 ps)) at the receiver. The disadvantage of such a receiver
is the requirement of many SOA gates, which has an impact on
overall power consumption. The second receiver option (RX2)
contains k(=3) DS-DBR tunable transmitters with SOA gates,
as at the transmitter, which serve as local oscillators (LOs) for
a coherent receiver.

B. Control Plane

Each node sends requests to the scheduler a few epochs in
advance (depending on the dominant propagation delay) and
awaits response before reconfiguring transceiver wavelengths
for the subsequent epoch. A control sub-network requires all
N nodes to be connected to the local scheduler. Requests
sent from each of the nodes have the following structure:
requested destination (6 bits), slot size (up to 5 bits for 600 ns
epoch) and epoch stamps (8 bits) to identify the requests. Once
received, the central scheduler stores requests from all nodes
in a 1.2 kB buffer, which can store up to R(=6 requests) per
node per epoch. The control request communication needs to

communicate 19 bits within a timeslot (20 ns), and hence,
requiring a 1 Gbps link. While running up to I iterations
to process the requests, the scheduler stores the wavelength-
timeslot pair grant information in a second buffer of 1.2 kB.
Once the schedule is computed for an entire epoch, the
wavelength-timeslot pair grant information is communicated.
Each grant has the following structure: TX/RX wavelength (6
bits each), destination node (6 bits), valid bit (1 bit) 19 bits
for 64-port network. Hence, the grant communication also
requires a 1 Gbps transceiver link to send 19 bits in every
timeslot (20 ns). As shown in Fig. 1, the control plane of
each sub-network is co-hosted within every source rack to
keep the request-response handshake propagation delay to a
known minimal constant (≈ 30 ns). Regardless of where the
destination rack is hosted, the control plane propagation delay
is a constant, as will be discussed further in section V.

IV. HARDWARE SCHEDULER ALGORITHMS

In this section, we describe two hardware implementable
scheduling algorithms, which can use any of the fast tunable
transceiver options shown in Fig. 3. To meet the strict timing
requirements, we adopt a parallel design that considers at
least N requests, one from each of the N nodes. Although
parallelism speeds up the scheduling process, it also creates
contention for wavelength and timeslot resources. We use
round-robin arbiters in our hardware design to ensure the
fair selection of up to N contention free source-destination
requests, with unique source and destination ports, per clock
cycle. The selected contention-free node-pairs are assigned
wavelengths (WDM) and timeslots (TDM) in parallel. The
scheduler aims to perform I iterations within one epoch
to maximize throughput. The number of iterations that the
scheduling algorithm can perform is limited by the epoch size
(E ∈ 120, 360, 600ns) and the clock period of the hardware
(clk=2.3 ns for 64-port scheduler). Requiring b cycles to boot
up (b = 3 for epoch-level scheduling, b = 4 for slot-level
scheduling), the maximum number of scheduler iterations is
I = bE/clkc−b. After I iterations, failed requests are buffered
and are given a chance to retry in subsequent epochs.

We propose two distinct algorithms for resource (wave-
length and timeslot) allocation: epoch-level and slot-level
scheduling algorithms. As the name suggests, the epoch-level
scheduling algorithm aims to tune the transceiver wavelengths
once at the beginning of every epoch. However, in slot-level
scheduling algorithm, wavelength is tuned once between each
timeslot. The tuning overhead is higher for slot-level schedul-
ing and it is taken into account while discussing throughput
results in section V. From a scheduling perspective, the slot-
level scheduling algorithm unlocks a new level of flexibility by
reducing contradictions created by parallel wavelength assign-
ments. Although both the epoch-level and slot-level scheduling
algorithms use similar hardware elements, the major difference
between them lies in the strategy used to allocate resources,
which will be discussed in this section.

A. Hardware Scheduler Design
The hardware logical elements used to synthesise and

implement the scheduling algorithms are discussed in sub-

5

Figure 4: Epoch/Slot-level algorithm: 4-port central scheduler showcasing three hardware stages with a 4-port scheduling
example showing two iterations, first handling requests from buffer (top), then from the node (bottom) (when ibuf = 1).

section. The dominant element used in the realization of the
scheduling algorithm is the round-robin arbiter shown in Fig.
4, as they are scalable [22]. The critical path lies in the carry
chain of the arbiters, like in digital adders. Using optimal
length carry look-ahead generators can provide high-speed
arbitration by shortening the critical path. We also show how
the logical hardware components work together to efficiently
allocate resources by using an example showcased in Fig. 4.
Figure 4 shows the epoch-level and slot-level scheduling for
a 4-port scheduler and the iterations dealing with buffer (i=1
shown by the top half) and dealing with requests from node
(i=2 shown by the bottom half).

1) Node Contention Resolution (NCR): This module is
shown by the red block in Fig. 4. In epoch-level scheduling,
the NCR module has only one pipeline stage containing N
parallel N -bit request encoders (RE) and N parallel round-
robin arbiters (ARB D). The hardware elements in Fig. 4 that
have dotted outline do not exist in the epoch-level scheduling,
but only exist in the slot-level scheduling. In epoch level
scheduling, every clock cycle deals with one request per
source. Each RE converts the destination requested into a one-
hot binary vector to create a compatible input for the round-
robin arbiter that follows. The matrices labelled as epoch-level
in Fig. 4 and denoted by ‘A’ show the encoding of the first
requests from each source (R1), both in the buffer iteration
(epoch-level matrix at the top of figure, i = 1) and the node
requests (epoch-level matrix at the bottom of figure, i = 2), to
form N ×N -bit matrices. Each of the N round-robin arbiters
deals with resolving contention for one destination (ARB D).
All N sources for a particular destination are given as an input

to the destination round-robin arbiters and only one request is
successful per destination per iteration (labelled as epoch-level
in Fig. 4, denoted by ‘C’).

In contrast, the NCR module in the slot-level scheduling
algorithm has two pipeline stages. The first stage has N
parallel N -bit RE and N source round-robin arbiters (ARB R).
The second stage, containing the same hardware components
as the first stage, has N parallel N -bit RE and N destination
round-robin arbiters (ARB D). Notice that the matrices formed
after encoding in Fig. 4, denoted by A, contains all destination
requests (R1, R2 and R3). This is the case in both the requests
from the buffer (slot-level matrix at the top of figure, i=1)
and the new requests from the nodes (slot-level matrix at the
bottom of figure, i=2). Considering multiple requests from
the same source, the slot-level scheduler requires both source
arbiters, ARB R (source contentions are resolved in slot-level
matrix ‘B’), and destination arbiters, ARB D (destination con-
tentions are resolved in slot-level matrix ‘C’). The pipelining
of arbiters in slot-level scheduling, however, creates repeated
grants. This is dealt with using a feed-forward control; if
requests are repeated or have already been successful in
previous iteration they are cancelled in the second stage.

Although Fig. 4 does not show a decoder, each pipeline
stage in the NCR module contains a decoder in both schedul-
ing algorithms. The decoders help to minimize the register
size after each stage to log2N bits per source to store only
the winning destination, instead of N bits per source.

2) Wavelength Decision (WD): The wavelength decision
module (WD), shown by the blue block in Fig. 4, is a
pipeline stage that has the same hardware and functionality

6

in both epoch-level and slot-level scheduling algorithms. This
module/stage is composed of a parallel comparator logic (CL)
blocks and parallel multiplexers (MUX), one per source, and
the select signal of the MUX is tied to the resource registers at
the last stage. This stage works on contention-free node-pairs
and uses information from registers to perform a parallel check
on node-pairs, by reading previous resource allocations of both
the source and the destination of interest in a particular itera-
tion. This is shown by the red line feeding back from registers
to CL in Fig. 4. If contending wavelengths have already been
assigned to the node pair of interest, the request is invalidated
for the current epoch (shown by the red arrow going to the
shaded gray lines going to request collect registers to buffer
registers). If either only the transmitter or only the receiver has
been assigned a wavelength, then that particular wavelength
is selected (shown by the MUX in the diagram), subject to
time-slot availability. If there is no wavelength assignment
history for the transmitter and receiver and resources are
available, a random wavelength is assigned, subject to time-
slot availability. In the hardware, a ROM is implemented to
hold N arrays of T × log2W pseudo-random wavelengths (5-
25 bytes per source). The selection of wavelengths in this stage
does not guarantee a successful grant. The selection of same
wavelengths in parallel can create contention in the parallel
resource allocation process. Hence, the selected wavelength
assignments and the node-pairs are stored in registers and
forwarded to the next stage. Again, a decoder is used in both
epoch-level and slot-level scheduling algorithm to store the
wavelength decision in log2W bits per source-destination pair
(in addition to the log2N bits for destination).

3) Resource allocation or Wavelength Contention Resolu-
tion (WCR): The third module, wavelength contention reso-
lution (WCR), is shown by the green block shown in Fig. 4.
Both epoch-level and slot-level scheduling algorithms contain
this pipeline stage. Firstly, this stage contains request encoders
(not shown in figure), which make N parallel W -bit one-
hot binary vector that translate the wavelength decisions into
compatible inputs for N parallel round-robin arbiters. The
formation of this source(-destination pair) and wavelength
matrix is denoted as ‘D’ in Fig. 4 for both epoch-level and
slot-level scheduling algorithms. Secondly, this module uses
W parallel N -bit round robin arbiters (ARB W) to resolve
contention between wavelength assignments (‘E’ in Fig. 4). Up
to W winning grants are generated in parallel by the arbiters.
Thirdly, this module contains timeslot allocators for both the
source (TA-S) and destination (TA-D).

The encoders and arbiters have the same functionality
in both algorithms. However, the epoch-level and slot-level
scheduling work differently in the timeslot allocation blocks.
In epoch-level scheduling, the winning grants of the arbiters
are granted as many time-slots as they have requested, subject
to availability. If only fewer slots are available, then available
slots are granted and the request is updated with the new slot
size and buffered (shown by the red line to the buffer in Fig.
4) for processing in subsequent epochs. The final allocations
in epoch-level scheduling for both for buffer (i=1-top) and
node (i=2-bottom) requests and for both the source and the
destination, are shown by the matrices denoted by ‘F’ in Fig.

4. In epoch-level scheduling a wavelength allocation means
that the source must use the same wavelength for all timeslots
in the epoch. Hence, in the epoch-level matrices in ‘F’, the
timeslots that are greyed out show that the timeslot is unused,
but the wavelength for that particular source/destination is
locked for the entire epoch.

In slot-level scheduling, a wavelength allocation only means
that the wavelength is locked for that particular timeslot.
Hence, a different allocation strategy is required. The slot-
level scheduling algorithm deals with this by having two
iteration phases: coarse allocation and fine allocation. The
first few iterations, based on T/Savg (number of timeslots
in epoch/average slot size requested) are handled with coarse
allocation, where parallel requests are allocated as many slots
as requested, provided availability (same as epoch-level but
the wavelength for particular timeslots are checked in the
WD stage). The matrices in ‘F’ in Fig. 4 show the filling
of final wavelength-timeslot resource matrix by the slot-level
algorithm for the source and the destination both from the
buffer (i=1-top) and node (i=2-bottom) requests. After coarse
allocation is done, resources are fragmented as shown by the
matrices in ‘F’ in the bottom part of slot-level allocation.
Hence, after the coarse allocation phase, later iterations of
fine allocation aim to utilize these fragments. In the fine
allocation phase, each timeslot is re-visited and up to one
timeslot is granted per source per iteration. All requests with
winning grants are marked to avoid repeating requests in
future iterations (also shown by the red line to the buffer).
Due to pipelining, the WD module does not have knowledge
of the most recent wavelength updates and can still request
contradicting wavelengths. In such cases, the requests are
rejected and prevented from requesting in the current epoch
(shown by red line going to the Invalid Request block). The
wavelength-timeslot configuration is updated, registered and
sent to the transmitters and receivers of each node and the
timeslot information is sent to the sources.

4) Iteration/Buffer Management: As shown in Fig. 4, the
scheduler has a buffer where failed requests are stored in
order to retry in future epochs. Hence, in every epoch, a
decision has to be made whether an iteration is to be used
for processing requesting from the buffer or the nodes. The
scheduler iterations are managed to cater for the requests
from both the buffer and node every epoch. The size of
request residing in the buffer (buffer size) is constantly kept
in account. The iteration ratio (buffer:node) is controlled by
ibuf as shown in Fig. 4. Since up to W grants are generated
every iteration, the total buffer size is divided by W and
multiplied by a buffer coefficient (Rp - usually between 1.6-
2.5), which ensures minimal buffer accumulation. In epoch-
level scheduling, which is a pointer based scheduling, the
pointer stays fixed to a request number in the buffer until
a minimum percentage of requests are granted is met. After
this, the pointer shifts to the next set of requests. Once the
pointer scans through all requests in the buffer or a threshold
value is met, whichever happens first, the iterations are used
for requests from node. In slot-level scheduling, the initial
iterations deal with requests from the buffer. Once a minimum
percentage of buffer requests or a threshold value is reached,

7

the requests from the nodes are considered.

Figure 5: Critical path length of scheduler sub-modules: Node
Contention Resolution (NCR), Wavelength Decision (WD) and
Wavelength Contention Resolution (WCR) on 45nm CMOS
OpenCell library, highlighting N=64 system for this paper.

B. Implementation

To demonstrate the functionality of our equivalent software
models and hardware design, we simulated the RTL code for
the hardware scheduler on Mentor Graphics Modelsim with
variable scheduler request traffic inputs from MATLAB. We
verified that the outputs were consistent with our software
models. Once verified, the scheduler algorithm sub-modules
were synthesized on ASIC, using the Synopsys tools and
the 45 nm CMOS Nangate Opencell library. We used this
technology as it is an open-source, standard-cell library. Figure
5 demonstrates the scalability of the sub-modules on ASIC
as they are scaled to support 1000 ports on 45 nm CMOS
technology. The scalability of one N :1 round robin arbiter is
shown in Fig. 5. As parallelism does not significantly affect the
critical path delay, N×N -port and W×N -port parallel round
robin arbiters are used in the NCR and WCR sub-modules
respectively. The two arbiter sets in the slot-level allocator are
logically identical to the NCR module and are pipelined to
have the same size (N×N -bit arbiters). Hence, the scalability
of these sub-modules are determined by the scalability of
the arbiters. The wavelength decision (WD) stage, however,
depends on the scalability of the checker, which uses simple
scalable N :1 multiplexers to perform the checking (with a
critical path of 60 ps per 2:1 multiplexer estimated by the
45nm CMOS OpenCell library).

The NCR module has the longest of the critical paths,
requiring a minimum clock period of 2.3 ns for a N = 64 node
scheduler. The area consumed by the 1000-node scheduler
ASIC is 52.7 mm2 without including the buffers or SERDES
in the control plane. The scalability results show that the
hardware implementation of these modules is feasible.

V. PERFORMANCE ANALYSIS

In this section, we evaluate the performance of the two
hardware implementable scheduling algorithms: slot-level and
epoch-level allocation. Generating demand traffic with diverse
distributions, we study the effect of varying epoch sizes and
request loads on throughput, latency, tail latency, transmit-
ter/scheduler buffer size, wavelength usage and energy con-
sumption. Firstly, software models equivalent in functionality
to the hardware algorithms were modelled in MATLAB. A re-
quest traffic generator is used to feed the scheduling algorithm
models with demands and the evaluation of performance is
detailed in this section. The parameters and settings that were
used to evaluate performance are shown in table II. As each
timeslot can carry up to 250 bytes, a minimum of 120 ns is
investigated, in this paper, to carry the biggest Ethernet packet.

Table II: Simulation settings

1. Algorithm 2. Epoch size (ns) 3. R 4. TD
Slot Epoch 120 360 600 2 3 6 1 2 3

All possible permutations of 1. Algorithm, 2. Epoch size,
3. Requests per node per epoch (R) and 4. Traffic Distribution
(TD) were used to evaluate the scheduling performance for
various input network loads, while each sub-network size
supports 64 nodes/rack (with 64 port schedulers and 64
wavelength channels). However, it is important to note that
at 120 ns epoch, there are only 6 timeslots/epoch and hence,
some permutations are not possible at high values of TD.

A. Traffic Pattern

At every epoch, the requests generated by the source are
sent to the relevant local scheduler. Each request consists of
the destination node, the number of time-slots required and
the origin epoch number. Firstly, to model the demand matrix
generation, a uniform random distribution was used to select
the destination node with a probability of 1/N . Secondly, the
average size of each request corresponds to the number of
slots available in an epoch divided by the requests per node
per epoch (Savg = T/R). Up to R requests are generated by
each source per epoch and a Poisson distribution is used to
model the inter-arrival rate of requests. All the requests that
arrive within the start of epoch are computed, else they are
buffered for the next epoch. A uniform distribution of time-slot
sizes of requests is used to create the slot traffic distribution
(TD) with an average slot size of Savg . TD1 corresponds to a
single size request, where all requests are of one specific size.
In TD2, a total of three size values are allowed (for example,
requested timeslots per node, S ∈ 1, 2, 3); in TD3, a total of
five size values are allowed (for example: S ∈ 1, 2, 3, 4, 5).
To get a grasp of this double interpolation of uniform random
distributions, Fig. 6 shows the number of slots requested by
source-destination pair for a unique TD and R. Focusing one
sub-plot, the y-axis shows the source node number of the
source rack and the x-axis shows the destination node number
of the destination rack. The color of the heat-map indicates
how many slots are requested over a span of 2000 epochs.
The generated traffic is for a 360 ns epoch at 100% input

8

Figure 6: Active nodes: source-destination demand size for 2000 epochs for 360 ns epoch at 100% input load.

load. 100% input load corresponds to all nodes requesting up
to R destinations with Savg timeslots to utilize all resources
(W and T) available in the sub-network.

As shown in Fig. 6, the uniform random request (on both
the slot and destination) traffic generation has created a non-
uniform pattern. At R = 6 and TD1, there is the least amount
of variation in slot size between source-destination pairs. This
is because as the number of request increases, the average
timeslot requested is low and all requests are of the same size
(TD1). As R reduces to 2, the size of each request increases
creating a higher range of variance. As TD changes from
1 to 3, we can see that certain source nodes become hot
in the network, which demand more resources (wavelengths-
timeslots) than others. The variations are emphatic as we
approach TD3 with low R. This is the type of traffic used
to evaluate the performance of the scheduling algorithms.

B. Throughput Performance

The throughput of a N = 64 node sub-network was
evaluated under varying traffic patterns and epoch sizes. The
throughput of both the scheduling algorithms (slot-level and
epoch-level) were evaluated for increasing input load. In
Fig. 7, the effect of changing TD (column) and epoch size
(row) on the throughput of both the slot-level and epoch-
level scheduling algorithms is shown. Within each sub-plot,
the effect of varying R is shown. The values shown take into
account the relevant tuning times: 500ps for 20ns timeslot for
the slot-level algorithm and 500ps for the entire epoch length
for the epoch-level algorithm.

The epoch-level scheduling algorithm in all sub-plots of Fig.
7 reaches a saturation point at approximate input loads of 60,
50 and 40% for 2, 3 and 6 requests per node. In contrast, the
slot-level achieves maximum throughput at 100% input load.
The saturation point for the slot-level algorithm is between

85-95% while the epoch-level saturates between 35-62%. As
evident, the slot-level scheduling algorithm offers an average
gain in the matching performance by 32-48%, compared to
epoch-level scheduling for all values of TD and epoch size.

In the epoch-level scheduling algorithm, each wavelength
allocation locks the transmitter and receiver pair to that wave-
length for the entire epoch. This increases blocking probability,
as future iterations have to work around this locking. In
contrast, the slot-level allocation has the flexibility of changing
the wavelength every timeslot. This flexibility is permitted
by the architecture of PULSE’s transceiver and network. The
variance in throughput in the epoch-level scheduling between
R = 2 and R = 6 also ranges from 18-30%. However, this
variation is contained in the slot-level scheduling to less than
5%, showing the algorithm to be more tolerant to variation in
request volume. As the number of requests per node increases,
the throughput in both the slot-level and epoch-level algorithm
decreases.

C. Wavelength usage

Fig. 8 shows the average percentage of wavelength channels
(W = N = 64 channels) used to achieve the matching for
epoch-level and slot-level scheduling algorithms for increasing
input loads in a 360 ns epoch. For all values of TD, the
maximum wavelength usage in the epoch-level scheduling
algorithm is 49-62%. In contrast, the slot-level scheduling
algorithm achieves a maximum wavelength usage of 97-100%.
In both scheduling algorithms, the input load at which the sat-
uration point is reached in the epoch-level algorithm matches
the input load at which usage of resources also saturates. At
100% input load and low requests/node (R = 2), that is low
congestion, the saturation point is at 50-60% load. At the best
performance, the epoch-level algorithm is able to use 32-38
wavelength channels every epoch out of 64. However, at 100%

9

Figure 7: Scheduler throughput vs input load for varying values of R, epoch sizes, TD.

input load, the slot-level scheduling algorithm saturates very
close to 100%, showcasing a network that utilizes up to 64
wavelength channels.

D. Average Latency and Transmit Buffer
To measure the latency, each request was marked with a

time-stamp when generated. The scheduler has a buffer that
stores failed requests in the current epoch to retry the same
requests in future epochs. Once successfully and completely

Figure 8: Wavelength usage (out of 64 wavelengths per star coupler) vs Input load for varying R, traffic distributions: (a) TD1,
(b) TD2, (c) TD3 in a 360 ns epoch.

10

Figure 9: Average end-to-end latency and TX buffer size vs Input load for varying values of R, epoch sizes, TD.

(all requested slots) granted, another time-stamp is created to
mark when the request will translate into communication in
the data plane and reach the destination. The difference in the
time-stamps is taken for each request to get the scheduling
latency distribution over multiple (2000) epochs.

Figure 9 shows the end-to-end overall average latency taken
for packets over 2000 epochs when the network is scheduled
using epoch-level and slot-level algorithms for increasing input
load, while varying values of requests per node (R within plot),
epoch sizes (row) and traffic distributions TD (column). Each
sub-plot also shows the load where maximum throughput is
achieved (saturation point).

The propagation delay and tuning overhead are not con-
sidered in these measurements; they are discussed at the
end of this section. The high throughput achieved by the
slot-level algorithm means that many requests are granted
without buffering. Hence, the slot-level scheduling algorithm
is expected to have a significantly lower latency compared
to the epoch-level scheduling, with the minimum latency
corresponding to the epoch size.

The epoch size and R have a greater impact on the latency
compared to the TD value. As expected, Fig. 9(a-c) shows that,
at 120ns epochs, slot-level scheduling has an average latency
of 500-600ns at around 90-94% saturation load, dependent on

R, while the epoch-level scheduling algorithm consumes 1-7µs
at 35-55% saturation load. In the epoch-level scheduling algo-
rithm, higher requests/node (R) have a higher latency, whilst
in the slot-level algorithm this variation is quite low. At 100%
load for a 600 ns epoch (worst-case), the significant impact of
epoch size on the latency of the scheduling algorithm is clear;
the epoch-level scheduling algorithm incurs an average latency
as high as 200 µs, while the slot-level scheduling algorithm
incurs an average latency of 4µs. Hence, the smaller the epoch
size, the lower the latency. At 100% input load, the latency
reduction offered by the slot-level compared to epoch-level
scheduling is 40-80 times, when using a 120ns epoch.

Latency has a direct impact on the average transmitter buffer
size that is required at the transmitter, as shown by the second
y-axis on Fig. 9. While requests are buffered in the scheduler,
the data packets are buffered at the source where they await the
grant from the scheduler. An average packet size of 250 bytes
is assumed for every time-slot (20ns) delay. Just as latency is
reduced by an order of magnitude by the slot-level algorithm
relative to the epoch-level scheduling algorithm, the buffer size
is also reduced by an order of magnitude. Assuming a 100%
input load, the average buffer size required for a 120ns slot-
level scheduling algorithm is 15.36kB, relative to the 1.09MB
buffer size demanded by the epoch-level scheduling algorithm.

11

Figure 10: Scheduler latency CDF distribution (inset: tail) for varying values of R, epoch sizes, TD.

E. Latency Distribution

All requests with a successful grant (contain both times-
tamps from the time it was generated to the time it
was granted) are considered for these latency measure-
ments. For 2000 epochs, considering all N -ports and R
requests/node/epoch, a range of successful requests came out
with grants. In Fig. 10(a-i), we show the distribution of
latency using a cumulative distributed function (CDF) for
different epoch lengths (∈ 120, 360, 600ns) and input loads
(∈ 50, 70, 90%). Each row in Fig. 10 shows the scheduling
behaviour under different epoch sizes. The curves clearly show
a shift to the right and hence, an increase in both the median
latency and tail latency. The proportion of this shift in average,
median and tail latency is directly proportional to that of the
epoch size. When epoch sizes are increased 3 times (360 ns)
or 5 times (600 ns), the latency also increases by the same
factor. Within each figure, we show the best and worst case
for varying values of R and TD to showcase how it affects
the latency for both the slot-level and epoch-level algorithm.
The inset in each Fig. 10(a-i) shows the behaviour of the
tail end of the CDF showing the packets that are buffered
for several epochs. This is important to consider because the

performance of applications in current data center networks
are limited by the tail latency; applications have to wait for
hundreds of milliseconds and hang at very high workloads [8].

The slot-level algorithm can achieve unsaturated through-
put above 90%, while epoch-level algorithms can have their
saturation point between 35-62%. This means that the red
curves represented in Fig. 10 can only show the best case
with many requests still remaining in the buffer beyond the
saturation point. The slot-level algorithm shows a two orders of
magnitude lower worst-case median and tail latency compared
to epoch-level algorithm for all values of input load. In a
120 ns epoch in Fig. 10(a-c), the slot-level algorithm achieves
a best-case median and tail latency of 0.4 µs and a tail latency
of 5 µs respectively, compared to 35 µs median and 99 µs
achieved by epoch-level algorithm. The worst-case tail in the
slot-level algorithm at 90% input load is at around 120 µs.
This corresponds to latency of almost 1000 epochs and it is
mainly caused by few small packets (<0.05%) at high load.

F. Summary
In this sub-section, we summarize the results showcased in

the previous sections at the saturation input loads; the load
at which maximum throughput is reached. In Fig. 11(a-c),

12

Figure 11: Radar plot - overall performance of epoch-level and slot-level scheduling algorithms at maximum operable load.

we show a radar plot showing six different axes: throughput,
median latency, tail latency, average scheduler buffer size, av-
erage transmitter buffer size and wavelength usage, for 120 ns,
360 ns and 600 ns epoch sizes. For all values of TD and R,
the best and worst values for identified to make this plot. A
curve with a large radius or opening shows that the algorithm
has increased efficiency with high throughput and maximal
wavelength usage, low latency and buffer size. The best and
the worst values are shown in all axes to show the variance
or the range of change. Fig. 11 clearly shows how the slot-
level algorithm performs better than the epoch-level scheduling
algorithm. The throughput and wavelength usage of slot-level
algorithm is above 90% and tolerant to changes in epoch size
compared to epoch-level algorithm 35-62%. The variance in
median latency of slot-level scheduling is lowest for a 120ns
epoch, compared to epoch-level scheduling. Maintaining a
tolerant buffer size for the scheduler and transmitter, the slot-
level scheduling has a better buffer management system.

G. Scalability, Power and Latency overhead

The previous sub-sections focused purely on scheduling
latency. The modulation, serialization, transceiver latency and
the propagation latency were not accounted for. Hence, in
this sub-section, we highlight the latency overheads that exist
within the network. Fig. 12(a) shows the latency overhead for
intra-rack, inter-rack or end-of-rack communication in PULSE,
assuming lengths (L) of 3m, 20m and 100m respectively. Each
of these links in the data plane corresponds to fiber runs of

Table III: Component count, power assumptions per TX/RX

Device TX1 TX2 TX3 RX1 RX2 Power per
Unit (mW)

SOA(on) [31] 1 1 1 1 1 405
Comb LD [35] 0 0 1 - - 1000
Comb-Amp [36] 0 0 1 - - 1300
LD [34] 0 64 0 - - 80
AWG 1 1 2 2 - -
MOD [37] 1 1 1 - - 1460
DS-DBR [38] 2 - - - 2 1000
SOA(off) [31] 1 63 63 63 1 8
CO-RX [39] - - - 0 1 2000
PD [40] - - - 1 0 630

L meters to the coupler and L meters to the destination. The
architecture has the control plane scheduler co-located with
the source node racks within a 3m reach, regardless of where
the destination rack resides. The co-location of the scheduler
means that the latency overhead of the control plane is a
known constant and, since the data plane overhead dominates,
the configuration of the network is done long before the data
arrives. As shown in Fig. 12(a), a total latency overhead of
0.15µs, 0.33µs and 1.12µs are incurred when communicating
intra-rack, inter-rack and end-rack. Integration of large chan-
nel bandwidth-dense transceivers as integrated SiP midboard
optics (MBOs) has been shown in [41], proving the feasibility
of supporting densities of 64 Gbps/mm2 (as of 2014). In
2018, an ASIC switch with in-package optical transceiver
ports was demonstrated [42]. A similar co-packaging with
FPGA was reported in [43] and demonstrated at [44]. Dense

Figure 12: (a) Latency overhead: propagation delay (b) Scaling capacity with x transceivers (c) Network energy consumption.

13

SiP integration of transceivers can enable the accommodation
of 64 transceivers on a PULSE node. Fig. 12(b) shows how
PULSE can scale with (a)the number of transceivers or racks
(x ∈ 4, 8, 16, 32, 64). We show that at x = 64, we can reuse
0.26M channels and reach a capacity of 23 Pbps. PULSE is a
small-scale high bandwidth data center network that scales to
support up to 4096 nodes. Novel architectures that can scale
to more nodes are being explored.

With an assumption that each node is equipped with a
100 Gbps transceiver, the cost and the power are normalized
against end-to-end 100 Gbps link. In Fig. 12(c), we show
the network energy consumption of PULSE. The electronic
architecture version of PULSE replaces the star coupler of
each sub-star with an EPS switch and two transceivers. In
this architecture, the power consumed when employing MMF
transceivers is 85 pJ/bit; however, when using SMF transceiver
systems, 105 pJ/bit is consumed per link. State-of-the-art
electronic transceivers consume 3.5 W [45] per 100 GbE port
while switch ASICs assume 225 W per 6.4 Tpbs [46], their
overall contribution to the network is 10.5 W/path in the EPS
architecture. The details of the optical components used in
PULSE, the power values assumed to estimate the network
energy and their references are shown in table III. As shown
in table III, an SOA consumes 405 mW (90 mA) if driven
to offer an amplification of 10 dB and 8 mW (12.5 mA) if
driven in the absorption mode (-20 dB) [31] As shown in Fig.
12(c), the cascaded fast tunable DS-DBR lasers (TX1) requires
the least number of devices and consumes lowest power (38
pJ/bit) out of all the proposed transmitter options. The power
consumption of the laser diode transmitter (TX2) is as high
as 75 pJ/bit because it requires W active laser diodes, one
SOA in ON state and W − 1 in OFF state per transceiver
per network. Micro-ring resonator-based laser comb generators
(TX3) require laser diode (1W power consumption) [35] and
low-noise, high gain amplifiers (1.3 W power consumption)
[36] to compensate for the coupling, insertion and filtering
losses demonstrated in [47] as well as one SOA in ON state
and W −1 in OFF state for gating (as per TX2); a total power
of 47 pJ/bit. Selecting the DS-DBR transmitter option, (1) fast
wavelength tunable filters consumes a power of 54 pJ/bit (5.4
W/port) or (2) coherent receiver technology consumes a power
of 82 pJ/bit (8.2 W/port). The range on the bar indicates the
power consumed if both the transmitter and receiver SOAs are
driven at a different gain level. Coherent receiver is the choice
of receiver elected for cost analysis, as the fast wavelength
tunable filters (1) require large number of components when
integrating on a photonic receiver and (2) scalability increases
integration complexity (more wavelengths means more SOAs
to be added).

H. Cost estimation and comparison

In order to fairly compare PULSE with state-of-the-art elec-
tronic networks, the cost of deployments with equivalent band-
width performance (6.4 Tbps), end-nodes and full bisection
bandwidth is evaluated. Cost estimates are normalized to the
capacity that each component supports ($/Gbps); for example,
the cost of a 100 GbE transceiver cost is $3/Gbps [48] or

$1/Gbps for a 100 GbE multi-mode transceiver [52]. From
our analysis, the cost of the PULSE electronic network costs
$8-16/Gbps. In PULSE, a flat transceiver-based architecture,
the normalized cost per path is determined by the transceiver
architecture while the transport layer cost is kept to a minimum
of 0.04$/Gbps, assuming a 64-port coupler cost of $240 based
on double the cost of a 64-port splitter in [51]. The price of
the 100 G coherent receiver transceiver is dependent on the
complexity of the receiver architecture and DSP required. We
have assumed that the simple to complex coherent receivers
are 1.5, 2 and 2.5 times the 100 GbE direct detect receiver
RUC (relative unit cost) based on the report by ASTRON
[53] (as coherent transceivers offer the best energy efficiency
- Fig 12(c)). Using [53], we estimated the RUC for adapting
the PULSE transceiver architecture has a worst case RUC is
2.01 (2x) compared to 100 GbE transceivers. This shows while
employing coherent transceivers, the cost of PULSE is $4.54-
7.54/Gbps, achieving 1.1-3.5 × cost efficiency compared to
equivalent electronic network. PULSE only requires end-
node transceiver upgrading during a network upgrade cycle
whereas electronic architectures would require both 2× end-
node transceiver plus switch upgrades. Hence, the upgrade
cost efficiency over time is low for PULSE OCS relative to
the equivelent EPS architecture. The analysis in [48] shows
that price of transceivers is significantly dropping every year,
which would benefit a transceiver-switched architecture like
PULSE. Moreover, the report in [54] predicts an annual cost
reduction of coherent solutions by 15% and that beyond 16
WDM channels, they will be more cost effective. The report
in [55] predicts that 800G coherent modules employed in data
center networks could approach the cost of $1/Gbps by 2024.

VI. RELATED WORK

In this section, the relevance of PULSE with respect to
previously proposed optical switch, network and scheduling
solutions for data centers is identified. Although the demand
for data is ever growing, the pin and ASIC bandwidth of
current electronic switches are approaching a limit. Hence,
extensive research and development have been invested on
expensive high capacity switches. As mentioned in section I,
scalable optically switched networks with low deterministic
median and tail latencies can be a relative game-changer for
data centers in terms of power, cost and latency. However,
optical packet switches (OPSs) require optical buffer/queue
management, congestion control, casting and complex data
exchange protocols. OPSs cannot easily replicate the range
of complex methods and functionalities that current electronic

Table IV: Cost estimate of PULSE network compared with
equivalent electronic DCN as of 2019

PULSE Component $/Gbps #/path
EPS OCS

100 GE Transceiver (20m) [48] 1-3 2 -
Arista (6.4 Tbps) [49], [50] 6-10 1 -
100 GE Transceiver (Co-Rx low) 4.5 -
100 GE Transceiver (Co-Rx med) 6 - 1
100 GE Transceiver (Co-Rx high) 7.5 -
Star-Coupler [51] 0.04 - 1
Total ($/Gbps) 8-16 4.54-7.54

14

Table V: The relevance of PULSE with respect to current leading OCS Network Research

Topology Switching
Scheme TDMA Switch

time
TDM Slot
Resolution

Min. Circuit
Duration

Compute
time

Architecture
Goal Device(s)

Helios [56] Hybrid
EPS\OCS No 12ms - O(s) 15ms Reduce cost, power,

switch ports MEMS

OSA [57] Circuit No 14ms - O(s) 290ms Achieve high
bisection bandwidth WSS, OSM

Rotornet [58] Circuit,
EPS ToRs Yes 20µs O(100µs) O(1ms) - Arbiter less,

throughput maximization Rotor switch

Firefly [59] Circuit,
EPS ToRs No 20ms - O(s) 60ms Maximal matching

for high throughput
LC, Galvo

mirrors

REACToR [60] Hybrid
EPS/OCS Yes 30µs 185µs 1.5ms O(10µs) OCS to provide

EPS performance
100G OCS,
10G EPS

Mordia [61] Circuit Yes 15µs 95µs O(100µs) O(10µs) Maximal throughput,
faster reconfiguration WSS

PULSE Circuit Yes 500ps 20ns 40ns 40ns ns-speed scheduling
for ultra-low latency

SOA-based
transceivers

switch ASICs perform. As optical buffers do not exist, optical
packet switching schemes either use power hungry optical-
to-electronic/electronic-to-optical converters and use electronic
buffers or fiber delay lines to support queues. In addition to
this, the scalability of the control plane also has an impact on
latency of the network, as identified by [12], emphasizing the
need for efficient congestion management.

Nanosecond speed optical circuit switched (OCS) networks
are a perfect solution to this problem as they can keep the
latency low and deterministic, while keeping the complexity
minimal. OCS networks eliminate queues within the switch,
the associative issue of packet loss and the need for addressing.
OCS offers flexible adjustment to traffic patterns as circuit
establishment can last from a few nanoseconds to several
hours. However, the key challenge in designing a fast OCS
network is the scalability and speed of the hardware scheduler.

A. Optical Circuit Switch Solutions
Recent OCS solutions, switching schemes/techniques, their

reconfiguration, computation time and circuit duration, ar-
chitecture goal and the components they use are shown in
table V. Micro-electro-mechanical system (MEMS) based high
capacity optical switches can perform high bandwidth work-
load off-loading (Glimmer-glass in HELIOS architecture [56])
and reduce overall electronic switch count, cost and power
consumption. However, the slow configuration time of the
MEMS-based optical circuit switching, about 27ms (table V)
limits their application to long-lived stable traffic; they need
to work in co-ordination with electronic packet switches to
cater for diverse types of bursty traffic. A faster single comb
driven 2048-port MEMS switch has been proposed that can
achieve a switching speed of 20µs [17]. However, a MEMS
OCS still incurs substantial latency when switching small size
data (e.g. 20ns data packets), making them suitable only for
long-lived data flows. The OSA optical switch architecture
also incurs latency in the order of milliseconds due to the
high computation time it requires [57]. Although the switching
time in Rotornet is reduced to tens of microseconds and
computation time to zero (cyclic switching), the cycle wide
reconfiguration time reduces the quality of service under
realistic data center traffic patterns [58]. Firefly also suffer
from high reconfiguration time requiring mirror switching or
guiding [59]. REACToR [60] and Mordia [61] have a fast

switching time and support TDMA; however, the long circuit
duration of the order of (sub-)milliseconds would result in
longer tail latencies. In PULSE, we propose a fast tunable
transceiver that coordinates with SOAs to perform switching
at 500ps, establishing 20ns timeslots. The circuit is computed
for multiple timeslots, 120-600ns in this paper, and a hardware
scheduler capable of performing 2.3× IE iterations is shown.

B. Optical Scheduler Solutions
The total switch configuration time is defined by both the

data and control plane scalability. A software-defined FPGA
based approach to configure small port-count optical switches
was demonstrated to take 53 ms [13]. Distributed and central-
ized MAC protocol based heuristics have also been proposed
to control optical switches. In the 64-port POTORI (coupler
based) switch, a centralized and tailored MAC protocol uses
Largest First (LF) and iSLIP scheduling heuristics, which were
shown to incur a latency of 10 ms above 80% workload
[14]. The c-MAC control scheme in the AWG-based petabit
switch architecture has an estimated latency of 5 µs (also
for 64-port AWG) for offered network loads above 70% [62].
Software based scheduling solutions are orders of magnitude
slower than the reconfiguration times of PULSE; hence, the
need for hardware based schedulers is clear. The Data center
Optical Switch (DOS) architecture uses label extractors in
front of AWGRs to identify destinations, resolve contentions
and configure tunable wavelength converters (TWCs) [63].
DOS assumes an unrealistic hardware clock speed of 2 GHz
for its N input port, N output port arbiter elements.

In contrast to the above OCS switching technology, PULSE
identifies the need for a specially designed hardware architec-
ture that enables fast scheduling. The novel transceiver archi-
tecture in PULSE gives greater than 3 orders of magnitude
faster switching time at 20ns with minimum circuit duration
lasting at 120ns. PULSE scheduler algorithm exploits spatial
and temporal parallelism and each iteration can grant up to 64
(×Savg) timeslots in fine (coarse) allocation at 435 MHz. The
timeslot level allocation enables PULSE to achieve a highly
tolerant throughput at 88-93%.

C. Synchronization and CDR locking
PULSE requires nanosecond resolution time-slot synchro-

nization (each time-slot is 20 ns). Although practical realisa-

15

tion of this synchronisation is beyond the scope of this paper,
it is still a crucial requirement for error-free communication.
Prior research has shown optical fiber clock distribution to
1000-ports with jitter less than 12 ps, using mode-locked
semiconductor lasers [64]. Reliant on the use of a dedicated
1 Gbps synchronization plane, the White Rabbit project can
achieve a clock accuracy better than 1ns and precision better
than 50 ps spanning distances over 10km [65].

Recent practical demonstrations by [7] have shown clock
data recovery (CDR) locking to be achieved in < 625 ps
using phase caching. The phase information is required to
be updated only once every minute, which makes the CDR
settling time a negligible overhead and hence, they are not
considered in latency and throughput measurements. This
removes preamble needs, although phase has to be updated
once per several million epochs. This technique has been
demonstrated for a 25 Gbps OOK modulation in real-time and
is practical for a 100 Gbps transceiver.

VII. CONCLUSION

In this paper, a fast and novel transceiver-based OCS
network architecture that enables switching at nanosecond
timescales has been proposed. Novel fast hardware sched-
ulers that assign resources (dynamic wavelength and time-
slots) in nanoseconds for fast network reconfiguration were
designed, implemented and their performance evaluated. The
parallel design uses arbiters for selection of requests to grant
resources. The implementation of the scheduling algorithm on
45nm CMOS ASIC has a clock period of 2.3ns, equivalent
to 435MHz, for a 64-port OCS network. The high clock
speed allows the scheduler to perform multiple iterations
(I = bE/clkc− b) within an epoch (OCS switching rate). We
have shown that the scheduler can configure the switch either
every epoch (epoch-level) or every time-slot (slot-level). We
have also shown that the timeslot level switching scheduling
algorithm achieves a high throughput of 88-95% with a
gain of 33-45% over its epoch-configured counterpart. A low
average latency of less than 1.2µs is achieved by the slot-
level scheduling algorithm compared to the 60-80µs latency
incurred by epoch-level scheduling; this is proportional to the
average transmitter buffer size (less than 12.8kB at operable
load). The median and tail latency are also reduced by 2 orders
of magnitude compared to epoch-level scheduling. Tuning
at time-slot, rather than at epoch-level, increases wavelength
usage to 100% from almost 60%. The size of the scheduler
buffer is also as low as 1 MB for 2000 epochs, which is almost
an order of magnitude lower in slot-level scheduling. The use
of cascaded fast tunable DS-DBR lasers at the transmitter
and fast coherent receivers for reception help to achieve a
low network energy consumption of 82 pJ/bit and with 1.1-
3.5 times cost reduction compared to an electronic network
equivalent. The PULSE architecture scales to support up to
25.6 Pbps 4096-node network with 64 racks hosting 64 nodes
each. A latency overhead of 0.15µs, 0.33µs and 1.12µs are
shown for intra-rack, inter-rack and end-rack distances due to
propagation delay.

ACKNOWLEDGMENT

This work is supported by EPSRC TRANSNET program
(EP/R035342/1), by Microsoft Research through its PhD
scholarship programme (T. Gerard) and the UCL-Cambridge
CDT program in Integrated Photonic and Electronic Systems.

REFERENCES

[1] Cisco. (2018) VNI: Forecast and Trends, 2017-2022. [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white-paper-c11-741490.html

[2] A. Singh et al., “Jupiter Rising: A Decade of Clos Topologies and Cen-
tralized Control in Google’s Datacenter Network,” SIGCOMM Comput.
Commun. Rev., vol. 45, no. 4, pp. 183–197, Aug. 2015.

[3] Y. Sverdlik. (2016) Intel: World Will Switch to
“Scale” Data Centers by 2025. [Online]. Avail-
able: http://www.datacenterknowledge.com/archives/2016/04/22/intel-
world-will-switch-to-scale-data-centers-by-2025

[4] T. Bawden. (2016) Global warming: Data centres to consume three
times as much energy in next decade, experts warn. [Online].
Available: http://www.independent.co.uk/environment/global-warming-
data-centres-to-consume-three-times-as-much-energy-in-next-decade-
experts-warn-a6830086.html

[5] N. Rasmussen. (2009) Allocating Data Center Energy Costs and Carbon
to IT Users. [Online]. Available: https://uat-s.insight.com/uk01/en-gb/
content/media/apc-allocating-costs.pdf

[6] Cisco. (2018) 95% of Data Centre Traffic will come from Cloud by
2021. [Online]. Available: https://www.cloudpro.co.uk/leadership/7304/
cisco-95-of-data-centre-traffic-will-come-from-cloud-by-2021

[7] K. Clark et al., “Sub-Nanosecond Clock and Data Recovery in an
Optically-Switched Data Centre Network,” in ECOC Post-deadline,
September 2018.

[8] Y. Xu et al., “Bobtail - Avoiding Long Tails in the Cloud,” in 10th
USENIX Symposium on NSDI 13, Lombard, IL, 2013, pp. 329–341.

[9] E. Agrell et al., “Roadmap of optical communications,” Journal of
Optics, vol. 18, no. 6, p. 063002, 2016.

[10] H. J. Chao et al., “Petastar: a petabit photonic packet switch,” IEEE
J-SAC, vol. 21, no. 7, pp. 1096–1112, Sept 2003.

[11] M. Duser and P. Bayvel, “Analysis of wavelength-routed optical burst-
switched network performance,” in ECOC, vol. 1, Sep. 2001, pp. 46–47.

[12] S. Di Lucente et al., “Scaling low-latency optical packet switches to a
thousand ports,” JOCN, vol. 4, no. 9, pp. A17–A28, Sept 2012.

[13] B. R. Rofoee et al., “Griffin: Programmable Optical DataCenter With
SDN Enabled Function Planning and Virtualisation,” JLT, vol. 33,
no. 24, pp. 5164–5177, Dec 2015.

[14] Y. Cheng et al., “POTORI: a passive optical ToR interconnect architec-
ture for Data Centers,” JOCN, vol. 9, no. 5, pp. 401–411, May 2017.

[15] R. Proietti et al., “Scalable Optical Interconnect Architecture Using
AWGR-Based TONAK LION Switch With Limited Number of Wave-
lengths,” JLT, vol. 31, no. 24, pp. 4087–4097, Dec 2013.

[16] J. Gripp et al., “IRIS optical packet router,” J. Opt. Netw., vol. 5, no. 8,
pp. 589–597, Aug 2006.

[17] W. M. Mellette et al., “A Scalable, Partially Configurable Optical Switch
for Data Center Networks,” JLT, vol. 35, no. 2, pp. 136–144, Jan 2017.

[18] N. Terzenidis et al., “High-Port and Low-Latency Optical Switches
for Disaggregated Data Centers: The Hipoλaos Switch Architecture,”
JOCN, vol. 10, no. 7, pp. 102–116, July 2018.

[19] F. Yan et al., “Opsquare: A flat dcn architecture based on flow-controlled
optical packet switches,” JOCN, vol. 9, no. 4, pp. 291–303, April 2017.

[20] D. Alistarh et al., “A High-Radix, Low-Latency Optical Switch for Data
Centers,” SIGCOMM, vol. 45, no. 4, pp. 367–368, Aug. 2015.

[21] A. Funnell et al., “Hybrid Wavelength Switched-TDMA High Port Count
All-Optical DC Switch,” JLT, vol. 35, no. 20, pp. 4438–4444, Oct 2017.

[22] J. Benjamin et al., “A High Speed Hardware Scheduler for 1000-Port
OPSs to Enable Scalable Data Centers,” in HOTI, Aug 2017, pp. 41–48.

[23] V. Natoli et al., “A Decade of Accelerated Computing Augurs Well For
GPUs,” Jul 2019. [Online]. Available: https://www.nextplatform.com/
2019/07/10/a-decade-of-accelerated-computing-augurs-well-for-gpus/

[24] T. Ray, “Seeking Big A.I. Advances, a Startup Turns
to a Huge Computer Chip,” Aug 2019. [Online]. Avail-
able: https://fortune-com.cdn.ampproject.org/c/s/fortune.com/2019/08/
19/ai-artificial-intelligence-cerebras-wafer-scale-chip/amp/

[25] T. Baji, “Evolution of the GPU Device widely used in AI and Massive
Parallel Processing,” in EDTM, March 2018, pp. 7–9.

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
http://www.datacenterknowledge.com/archives/2016/04/22/intel-world-will-switch-to-scale-data-centers-by-2025
http://www.datacenterknowledge.com/archives/2016/04/22/intel-world-will-switch-to-scale-data-centers-by-2025
http://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
http://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
http://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
https://uat-s.insight.com/uk01/en-gb/content/media/apc-allocating-costs.pdf
https://uat-s.insight.com/uk01/en-gb/content/media/apc-allocating-costs.pdf
https://www.cloudpro.co.uk/leadership/7304/cisco-95-of-data-centre-traffic-will-come-from-cloud-by-2021
https://www.cloudpro.co.uk/leadership/7304/cisco-95-of-data-centre-traffic-will-come-from-cloud-by-2021
https://www.nextplatform.com/2019/07/10/a-decade-of-accelerated-computing-augurs-well-for-gpus/
https://www.nextplatform.com/2019/07/10/a-decade-of-accelerated-computing-augurs-well-for-gpus/
https://fortune-com.cdn.ampproject.org/c/s/fortune.com/2019/08/19/ai-artificial-intelligence-cerebras-wafer-scale-chip/amp/
https://fortune-com.cdn.ampproject.org/c/s/fortune.com/2019/08/19/ai-artificial-intelligence-cerebras-wafer-scale-chip/amp/

16

[26] “DARPA FastNICs Program Looks to Accelerate Applica-
tion Performance by 100x,” Sep 2019. [Online]. Avail-
able: https://insidehpc.com/2019/09/darpa-fastnics-program-looks-to-
accelerate-application-performance-by-100x/

[27] N. Zilberman et al., “Stardust: Divide and Conquer in the DCN,” in
USENIX Symposium NSDI, Boston, MA, 2019, pp. 141–160.

[28] A. Roy et al., “Inside the Social Network’s (Datacenter) Network,”
SIGCOMM, vol. 45, no. 4, pp. 123–137, Aug. 2015.

[29] A. Funnell et al., “High port count hybrid wavelength switched TDMA
optical switch for Data Centers,” in 2016 OFC, March 2016, pp. 1–3.

[30] P. Bayvel and M. Dueser, “Optical burst switching: research and
applications,” in OFC, vol. 2, Feb 2004, pp. 4 pp. vol.2–.

[31] R. Figueiredo et al., “Hundred-Picoseconds Electro-Optical Switching
With Semiconductor Optical Amplifiers Using Multi-Impulse Step In-
jection Current,” JLT, vol. 33, no. 1, pp. 69–77, Jan 2015.

[32] “AN-2095 Controlling the S7500 CW Tunable
Laser-RevA Updated,” Sep 2019. [Online]. Avail-
able: https://www.finisar.com/sites/default/files/downloads/an-2095-
controlling the s7500 cw tunable laser-reva updated.pdf

[33] J. E. Simsarian, M. C. Larson, H. E. Garrett, Hong Xu, and T. A. Strand,
“Less than 5-ns wavelength switching with an SG-DBR laser,” IEEE
Photonics Technology Letters, vol. 18, no. 4, pp. 565–567, Feb 2006.

[34] K. Szczerba et al., “Energy Efficiency of VCSELs in the Context
of Short-Range Optical Links,” IEEE Photonics Technology Letters,
vol. 27, no. 16, pp. 1749–1752, Aug 2015.

[35] A. Gaeta et al., “Photonic-chip-based frequency combs,” Nature Pho-
tonics, vol. 13, pp. 158–169, 03 2019.

[36] K. Morito, S. Tanaka, S. Tomabechi, and A. Kuramata, “A broad-band
MQW semiconductor optical amplifier with high saturation output power
and low noise figure,” IEEE Photonics Technology Letters, vol. 17, no. 5,
pp. 974–976, May 2005.

[37] M. Nagatani et al., “A 3-Vppd 730-mW Linear Driver IC Using InP
HBTs for Advanced Optical Modulations,” CSICS, pp. 1–4, 2013.

[38] K. Grobe et al., Wavelength Division Multiplexing: A Practical Engi-
neering Guide, 1st ed. Wiley Publishing, 2013.

[39] P. Minzioni et al., “Roadmap on all-optical processing,” Journal of
Optics, vol. 21, no. 6, 5 2019.

[40] T. Yoshimatsu et al., “Compact and high-sensitivity 100-Gb/s (4×
25 Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer,” Opt.
Express, vol. 20, no. 26, pp. B393–B398, Dec 2012.

[41] G. Zervas et al., “Optically Disaggregated Data Centers with minimal
remote memory latency: Technologies, architectures, and resource allo-
cation [Invited],” JOCN, vol. 10, no. 2, pp. A270–A285, Feb 2018.

[42] “Photonic ASIC directly integrates 100G optical ports,” Jan 2019.
[Online]. Available: https://www.eenewsanalog.com/news/photonic-
asic-directly-integrates-100g-optical-ports

[43] R. Meade et al., “TeraPHY: A High-Density Electronic-Photonic Chiplet
for Optical I/O from a Multi-Chip Module,” in OFC, 2019, pp. 1–3.

[44] T. Trader, “Ayar Labs to Demo Photonics Chiplet in
FPGA Package at Hot Chips,” Aug 2019. [Online].
Available: https://www.hpcwire.com/2019/08/19/ayar-labs-to-demo-
photonics-chiplet-in-fpga-package-at-hot-chips/

[45] Finisar, “100GBASE-LR4 10 km Gen2 QSFP28 Optical Transceiver,”
Feb 2020. [Online]. Available: https://www.finisar.com/optical-
transceivers/ftlc1154rdpl

[46] B. Lee, Platforms for Integrated Photonic Switching Modules, OFC
Workshop, 2019.

[47] S. Lange, A. Raja, K. Shi, M. Karpov, R. Behrendt, D. Cletheroe,
I. Haller, F. Karinou, X. Fu, J. Liu, A. . Lukashchuk,
B. Thomsen, K. Jozwik, P. Costa, T. J. Kippenberg, and
H. Ballani, “Sub-nanosecond optical switching using chip-based
soliton microcombs,” in Optical Fiber Communication Conference
(OFC’20). The Optical Society (OSA), March 2020. [Online].
Available: https://www.microsoft.com/en-us/research/publication/sub-
nanosecond-optical-switching-using-chip-based-soliton-microcombs/

[48] High Speed Ethernet Optics Report, 2018. [Online]. Available:
https://www.lightcounting.com/DataCenter.cfm

[49] “Arista Networks 7260CX3-64 Layer 3 Switch,” Sep 2019.
[Online]. Available: https://www.pcnation.com/web/details/4AP124/
arista-networks-7260cx3-64-layer-3-switch-dcs-7260cx3-64-r

[50] “Arista Networks 7170-64C Layer 3 Switch,” Sep 2019. [Online].
Available: https://www.neophotonics.com/800g-coherent-versus-pam4-
optical-transceivers-data-centers/

[51] G. Arevalo et al., “Optimization of multiple PON deployment costs and
comparison between GPON, XGPON, NGPON2 and UDWDM PON,”
OSN, vol. 25, 03 2017.

[52] “Generic Compatible 100GBASE-SR4 QSFP28 850nm 100m
DOM Transceiver Module,” Sep 2019. [Online]. Available:
https://www.fs.com/products/75308.html

[53] T. Theocharidis, “Public executive summary of the final
Project Periodic Report,” Mar 2016. [Online]. Available:
https://cordis.europa.eu/docs/projects/cnect/4/318714/080/reports/001-
ASTRONPublicexecutivesummaryofthefinalProjectPeriodicReport.pdf

[54] Z. Jia et al., Digital Coherent Transmission for Next Generation
Cable Operators’ Optical Access Networks, 2017. [Online].
Available: https://www.nctatechnicalpapers.com/Paper/2017/2017-
digital-coherent-transmission-for-nextgeneration-cable-operators-
optical-access-networks

[55] “800G: Coherent versus PAM4 Optical Transceivers Inside Data
Centers,” Sep 2019. [Online]. Available: https://www.neophotonics.com/
800g-coherent-versus-pam4-optical-transceivers-data-centers/

[56] N. Farrington et al., “HELIOS: A Hybrid Electrical/Optical Switch
Architecture for Modular DCNs,” SIGCOMM, vol. 41, no. 4, Aug. 2010.

[57] K. Chen et al., “OSA: An Optical Switching Architecture for Data
Center Networks With Unprecedented Flexibility,” IEEE/ACM TON,
vol. 22, no. 2, pp. 498–511, April 2014.

[58] W. Mellette et al., “RotorNet: A Scalable, Low-complexity, Optical
Datacenter Network,” SIGCOMM, pp. 267–280, 2017.

[59] N. Hamedazimi et al., “FireFly: A Reconfigurable Wireless Data Center
Fabric Using Free-space Optics,” SIGCOMM, vol. 44, no. 4, pp. 319–
330, Aug. 2014.

[60] H. Liu et al., “Circuit Switching Under the Radar with REACToR,” in
NSDI. Berkeley, CA, USA: USENIX Association, 2014, pp. 1–15.

[61] N. Farrington et al., “A Multiport Microsecond Optical Circuit Switch
for Data Center Networking,” IEEE Photonics Technology Letters,
vol. 25, no. 16, pp. 1589–1592, Aug 2013.

[62] H. Chao, K. Deng, and Z. Jing, “A petabit photonic packet switch (p3s),”
in Proceedings - IEEE INFOCOM, vol. 1, 2003, pp. 775–785.

[63] X. Ye et al., “DOS - A Scalable Optical Switch for Data Centers,” in
ACM/IEEE ANCS, Oct 2010, pp. 1–12.

[64] D. Hartman et al., “Optical clock distribution using a mode-locked
semiconductor laser diode system,” 1991, p. FC3.

[65] M. Inggs et al., “Investigation of white rabbit for synchronization and
timing of netted radar,” in Radar Conference, Oct 2015, pp. 214–217.

https://insidehpc.com/2019/09/darpa-fastnics-program-looks-to-accelerate-application-performance-by-100x/
https://insidehpc.com/2019/09/darpa-fastnics-program-looks-to-accelerate-application-performance-by-100x/
https://www.finisar.com/sites/default/files/downloads/an-2095-controlling_the_s7500_cw_tunable_laser-reva_updated.pdf
https://www.finisar.com/sites/default/files/downloads/an-2095-controlling_the_s7500_cw_tunable_laser-reva_updated.pdf
https://www.eenewsanalog.com/news/photonic-asic-directly-integrates-100g-optical-ports
https://www.eenewsanalog.com/news/photonic-asic-directly-integrates-100g-optical-ports
https://www.hpcwire.com/2019/08/19/ayar-labs-to-demo-photonics-chiplet-in-fpga-package-at-hot-chips/
https://www.hpcwire.com/2019/08/19/ayar-labs-to-demo-photonics-chiplet-in-fpga-package-at-hot-chips/
https://www.finisar.com/optical-transceivers/ftlc1154rdpl
https://www.finisar.com/optical-transceivers/ftlc1154rdpl
https://www.microsoft.com/en-us/research/publication/sub-nanosecond-optical-switching-using-chip-based-soliton-microcombs/
https://www.microsoft.com/en-us/research/publication/sub-nanosecond-optical-switching-using-chip-based-soliton-microcombs/
https://www.lightcounting.com/DataCenter.cfm
https://www.pcnation.com/web/details/4AP124/arista-networks-7260cx3-64-layer-3-switch-dcs-7260cx3-64-r
https://www.pcnation.com/web/details/4AP124/arista-networks-7260cx3-64-layer-3-switch-dcs-7260cx3-64-r
https://www.neophotonics.com/800g-coherent-versus-pam4-optical-transceivers-data-centers/
https://www.neophotonics.com/800g-coherent-versus-pam4-optical-transceivers-data-centers/
https://www.fs.com/products/75308.html
https://cordis.europa.eu/docs/projects/cnect/4/318714/080/reports/001-ASTRONPublicexecutivesummaryofthefinalProjectPeriodicReport.pdf
https://cordis.europa.eu/docs/projects/cnect/4/318714/080/reports/001-ASTRONPublicexecutivesummaryofthefinalProjectPeriodicReport.pdf
https://www.nctatechnicalpapers.com/Paper/2017/2017-digital-coherent-transmission-for-nextgeneration-cable-operators-optical-access-networks
https://www.nctatechnicalpapers.com/Paper/2017/2017-digital-coherent-transmission-for-nextgeneration-cable-operators-optical-access-networks
https://www.nctatechnicalpapers.com/Paper/2017/2017-digital-coherent-transmission-for-nextgeneration-cable-operators-optical-access-networks
https://www.neophotonics.com/800g-coherent-versus-pam4-optical-transceivers-data-centers/
https://www.neophotonics.com/800g-coherent-versus-pam4-optical-transceivers-data-centers/

	Introduction
	OCS Network Architecture
	Optical Circuit Switch Elements
	Transceiver technology
	Prior work
	Transmitter options
	Receiver options

	Control Plane

	Hardware Scheduler Algorithms
	Hardware Scheduler Design
	Node Contention Resolution (NCR)
	Wavelength Decision (WD)
	Resource allocation or Wavelength Contention Resolution (WCR)
	Iteration/Buffer Management

	Implementation

	Performance Analysis
	Traffic Pattern
	Throughput Performance
	Wavelength usage
	Average Latency and Transmit Buffer
	Latency Distribution
	Summary
	Scalability, Power and Latency overhead
	Cost estimation and comparison

	Related Work
	Optical Circuit Switch Solutions
	Optical Scheduler Solutions
	Synchronization and CDR locking

	Conclusion
	References

