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Abstract

In this thesis we explore various aspects of smooth modelling. We make contributions in two main areas. The

first is in generalized additive modelling, for which we propose an approach that allows for the estimation

of functions in a locally adaptive way that does not require the estimation of tuning parameters, and conse-

quently scales well with the number of predictors. This is achieved through the use of a particular sparsity

inducing prior on the coefficients of b-splines that are used to represent smooth functions. In addition, we

propose a method to determine the individual and relative importance of predictors in generalized additive

models, aiding in their interpretation and explanatory power.

The second topic we explore is a scenario in which multiple associated variables vary smoothly as a

function of some argument, and the objective is to estimate the associations between them. To tackle this

problem we propose a general framework that we name structural smooth modelling. Our approach allows

us to model multiple stochastic processes jointly, estimating associations between them, without assuming

that each process has been observed at the same set of argument values. The general model is flexible and

potentially applicable in a variety of disciplines. As a use case we apply the model to data obtained from

British Cycling, demonstrating strong potential for the framework to be used as a way to track athlete

performance and estimate associations between performance in different types of training efforts.
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Impact statement

The work in this thesis is mostly methodological in nature. As a result, potential impact lies in applications

that the methodologies we develop may find, and perhaps in the development and improvement of further

methodology as a result.

Generalized additive models have become a core part of the statistician’s toolkit due to the fact that

they are more flexible in the types of associations that they can model when compared to generalized linear

models, while remaining more interpretable than supervised learning techniques that are focused solely on

prediction. By developing scalable and adaptive methods to estimate generalized additive models, and

tools to aid in their interpretation, we hope to expand their applicability and potential for explanatory and

predictive power in any setting in which they may be used.

The development of the structural smooth modelling (SSM) framework that we present in this thesis was

motivated by the structure of the British Cycling data that we had access to, and so immediate impact lies

in the results of the applied analysis that we present, and the potential for further use within the context of

British Cycling. Because it is a very general approach though, it could find applications in a variety of areas.

As technology permeates everyday life to an ever increasing degree, the amount and types of data that are

being collected in a variety of contexts is growing rapidly. The types of data sets that we envision SSM

being applied to are large data sets in which many variables are being tracked over time, and there is interest

in understanding how they co-evolve. Crucially, because we allow for different variables to be observed at

different time points, SSM could be used in contexts where data from different sources are pooled together,

or in situations where multiple variables are being tracked but it is not feasible to collect measurements for

every variable simmultaneously. More specific use cases could include analysis of wearable sensor data that

are longitudinal in nature or data in which health or well-being is tracked over time and there is a desire

to test hypotheses regarding how variables influence eachother. Furthermore, there is much scope to extend

the framework we have presented, and therefore further potential impact lies in the possibility of SSM being

used as a starting point for further methodological development that can eventually become even more useful

in applied settings.

4



Acknowledgements

This thesis would be incomplete without acknowledging the people who were instrumental in supporting its

development.

I would like to start by thanking my parents, who instilled in me from a young age a sense of curiosity

about the world and always stressed the importance of education. Their careers and achievements will

always be an inspiration to me. Throughout my life and my studies they have supported me in every way

imaginable and words will never be enough to express my gratitude. I would also like to sincerely thank my

partner, Angeliki, for putting up with me during a writing up period that seemed as though it might never

end, and for reminding me of what really matters at the end of the day.

The date of completion of this thesis marks nine years since I enrolled as an undergraduate in the Sta-

tistical Science department of University College London. With the exceptions of one year in the Computer

Science department and one year as a study abroad student, these nine years have been spent in the Sta-

tistical Science department. During this time I have been lucky to have had some excellent lecturers and

great coursemates. I will always be grateful to the department as a whole for making me feel welcome and

supporting my studies. In particular, I would like to thank Yvo Pokern, who was one the best lecturers dur-

ing my undergraduate degree, and who supervised my undergraduate project. I would also like to sincerely

thank Deepti Jayawardena Wilkinson, who throughout my PhD sorted out any administrative issues I had

at lightning speed, despite her busy schedule.

This PhD project was partially funded by the English Institute of Sport, and occurred in collaboration

with British Cycling. Visits to the National Cycling Center were a great pleasure, and everyone from British

Cycling was extremely helpful in facilitating the work that we did using British Cycling data.

A lot of my time during my PhD was spent at the Alan Turing Institute, first as an intern, then as an

enrichment student, and finally as a visiting student. This gave me the opportunity to meet and interact

with many great people and significantly improved the quality of my time as a PhD student.

Finally, and most importantly, I feel deeply grateful toward my PhD supervisor, Ioannis Kosmidis. For

being an exceptional lecturer during my undergraduate degree. For supervising my MSc project. For allowing

this PhD project to take place. For his technical expertise that provided guidance and support throughout.

For the great generosity he has always shown with his time, and for genuinely caring about my progress as

well as my well-being. For constantly finding, suggesting, and supporting opportunities for my development.

For making my needs and interests a priority. For his patience and flexibility in working with me. And

above all for gracefully managing to simmultaneously be a great supervisor but also a friend.

5



Contents

1 Introduction 8

1.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Overview of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Generalized linear models and regularisation 10

2.1 Preample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Introduction to linear modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 `2 regularisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 `1 regularisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Modelling with splines 18

3.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 B-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Splines and `2 regularisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Splines and `1 regularisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6 Generalized additive models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 A new approach to estimating locally adaptive splines 27

4.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Adaptive sparseness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Properties of adaptive sparseness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Extensions to adaptive sparseness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 An efficient implementation of the ECM algorithm for adaptive sparseness . . . . . . . . . . . 34

4.6 Estimating locally adaptive splines using adaptive sparseness . . . . . . . . . . . . . . . . . . 38

4.7 Related methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.8 Additive models: empirical assessment of methods . . . . . . . . . . . . . . . . . . . . . . . . 42

4.9 Abalone data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.10 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Relative importance of terms in models with smooth components 60

5.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6



5.3 Proposed methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Abalone data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.5 Occupational prestige data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.6 Conclusion & discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Structural smooth modelling 68

6.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3 Structural smooth modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4 Estimation, inference and prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.5 Example applications and simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.6 British Cycling data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.7 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A Worked example of splines 91

Bibliography 94

7



Chapter 1

Introduction

1.1 Preamble

This thesis is devoted to studying various aspects of modelling with smooth components. Generally this refers

to models that involve functions whose shape is unknown, with the only assumption about the functions

being that they are smooth. The quintessential example of such a model is scatterplot smoothing, in which

one observes pairs of observations (y1, x1), . . . , (yn, xn). When plotted, with yi on the y-axis and xi on the x-

axis, one may observe an association; as x varies, y may on average vary as well. The purpose of scatterplot

smoothing is to estimate the functional form of this association without imposing constraints other than

assuming that y varies smoothly as a function of x. There is a wealth of scenarios when a statistical model

may include functions whose form is unknown. In this thesis we will focus on two such scenarios.

The first is in generalized additive modelling, which is an extension of scatterplot smoothing when there

are multiple predictors. Generalized additive models have been studied extensively in the literature. We

make two contributions to the existing literature. Firstly, we propose an approach that allows for the es-

timation of functions in a locally adaptive way that does not require the estimation of tuning parameters,

and consequently scales well with the number of predictors, in contrast to existing methods in the litera-

ture. Secondly, we propose a method to determine the individual and relative importance of predictors in

generalized additive models. To the best of our knowledge this problem has not previously been tackled.

The second scenario we consider is one in which multiple associated variables vary smoothly as a function

of some argument, and the objective is to estimate the associations between them. To tackle this problem

we propose a general framework that we name structural smooth modelling. Our approach allows us to

model multiple stochastic processes jointly, estimating associations between them, without assuming that

each process has been observed at the same set of argument values. The general model is flexible and

potentially applicable in a variety of disciplines.

1.2 Motivation

Smooth modelling is an established research area in statistical science with a large number of applications.

Methodological developments in this field can help applied researches in a variety of disciplines implement

models that can be useful in both explanatory and predictive contexts. In our case, the practical applications

that drove much of the methodology we developed stem from our partnership with British Cycling, and the
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English Institute of Sport (EIS), which allowed this project to take shape by providing partial funding and

data. EIS supports Olympic athletes by delivering services aimed at optimising training programmes and

improving performance. Working with British Cycling, we gained access to a unique data set consisting

of training efforts of the Great Britain Cycling Team. The data are longitudinal in nature, tracking the

training efforts of multiple athletes over time, but also contain many unique features such as asynchronicity,

in which different training efforts and physiological assessments occur at different points in time, without a

fixed schedule. Developing models that are flexible but also explanatory is a challenge in this context, and

some of the methods we develop aim to bridge this gap.

1.3 Overview of thesis

A popular approach to modelling with smooth components is to use basis functions to represent smooth

functions, and then optimise a regularised likelihood to estimate the coefficients of the basis functions.

Using basis functions, generalized additive models are reduced to regularised generalized linear models.

With this in mind, we begin in Chapter 2 with a brief overview of linear and generalized linear modelling,

followed by an overview of `2 and `1 regularisation techniques. In Chapter 3 we give an overview of modelling

with spline functions, how splines are used in generalized additive models, and how regularisation plays a

central role in using splines to model smooth functions. In Chapter 4 we introduce a method to achieve

locally adaptive smoothness in generalized additive models, which in contrast to existing methods requires

no tuning, is computationally efficient, and scales well with the number of predictors. In Chapter 5 we

introduce a method to estimate the individual and relative importance of predictors in generalized additive

models, creating a tool that can facilitate interpretation of generalized additive models. Finally, in Chapter

6 we present the structural smooth modelling framework along with examples of how it can be used using

both simulated and real data.
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Chapter 2

Generalized linear models and

regularisation

2.1 Preample

Regularisation, and corresponding Bayesian interpretations, form a central part of this thesis. This chapter

is devoted to introducing various regularisation techniques as well as associated optimisation algorithms

and tuning parameter selection methods. We will begin with a very brief introduction to linear modelling,

followed by an overview of the regularisation techniques that will feature in this thesis.

2.2 Introduction to linear modelling

The ordinary linear model

yi =

p∑
j=1

βjxij + εi (i = 1, . . . , n) ,

models a response variable y as a noisy observation of a linear combination of a set of predictor variables

x1, . . . , xp. The error terms εi are often assumed to be independently and identically distributed normal ran-

dom variables with finite variance and mean zero, implying that the responses are also normally distributed.

Under the normality assumption, the negative log-likelihood for the parameter vector β is

−`(β) =
1

2σ2
(y −Xβ)T (y −Xβ) + c ,

where σ2 is the variance of the errors, c is a constant that does not depend on β, X is the model matrix,

with (i, j)-th element xij , and y is the vector of responses with i-th element yi. The maximum likelihood

estimate (MLE) of β is the vector that minimises the negative log-likelihood. Differentiating and equating

the gradient to zero gives

β̂ = (XTX)−1XTy . (2.1)

10



The covariance matrix of the MLE is

cov(β̂) = cov
(

(XTX)−1XTy
)

= cov
(

(XTX)−1XT (Xβ + ε)
)

= σ2(XTX)−1 .

While maximum likelihood estimators, under the model assumptions, enjoy many nice theoretical properties

such as asymptotic normality and efficiency (Millar, 2011, Chapters 11, 12), there are scenarios in linear

modelling where maximum likelihood estimators run into trouble. To see this we can re-express the MLE in

terms of the eigendecomposition of XTX. The eigendecomposition is comprised of an orthogonal matrix V

and diagonal matrix D that satisfy the relation

XTX = V TDV , (2.2)

with the columns of V referred to as eigenvectors and the elements of D referred to as eigenvalues. Plugging

(2.2) into (2.1) we obtain

β̂ = V D−1V TXTy ,

and similarly for the variance

cov(β̂) = σ2V D−1V T .

Now it becomes evident that if XTX approaches rank-deficiency, implying that at least one eigenvalue will

approach zero, the MLE and its variance will explode as they depend on the inverse of the eigenvalues. In

the following sections we will introduce common techniques that can tackle this issue.

While the ordinary linear model is simple and its use widespread, it is inadequate when the response

variable is not normally distributed, with common cases being binary, count, or non-negative responses.

Generalized linear models (GLMs) (McCullagh and Nelder, 1989) extend the ordinary linear model by

modelling a function of the expected value of the responses as a linear combination of predictors. Specifically,

a GLM has

g
(
E(yi)

)
=

p∑
j=1

βjxij (i = 1, . . . , n) ,

where g(·) is a sufficiently smooth monotonic link function, and yi has an exponential family distribution.

Ordinary linear regression is a special case of a GLM in which the response is normally distributed and g(·)
is the identity function. Logistic regression is one of the most popular GLMs in which a binary response

variable is modelled and the logit link function is used. The binary responses y1, . . . , yn are interpreted as

Bernoulli random variables with probability of success p1, . . . , pn respectively, which are modelled as

log
( pi

1− pi

)
=

p∑
j=1

βjxij ,

or equivalently

pi =
exp

(∑p
j=1 βjxij

)
1 + exp

(∑p
j=1 βjxij

) .

The logit link function allows the linear combination
∑
j βjxij to take on values on the real line while ensuring

that pi is a valid probability between zero and one. Whereas the negative log-likelihood can be minimised
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analytically to obtain maximum likelihood estimates in the ordinary linear regression case, in the case of

GLMs, iterative methods are typically required, with Newton’s method or Fisher’s scoring (Agresti, 2015,

Chapter 4) being the most popular choices.

2.3 `2 regularisation

In Section 2.2 we saw that in cases when the model matrix approaches rank deficiency the MLE becomes

unstable. Ridge regression (Hoerl and Kennard, 1970) deals with this by adding a quadratic penalty term

to the negative log-likelihood. For a normal response variable the ridge estimator is

β̂ = arg min
β

{
(y −Xβ)T (y −Xβ) + λβTβ)

}
, (2.3)

where λ is a positive tuning parameter. Differentiating and solving for zero gives

β̂ = (XTX + λI)−1XTy

= V T (D + λI)−1V XTy ,
(2.4)

which has variance

cov(β̂) = σ2(XTX + λI)−1XTX(XTX + λI)−1

= V T (D + λI)−1D(D + λI)−1V .
(2.5)

From (2.4) and (2.5) it can be seen that even if XTX is rank-deficient, with at least one zero eigenvalue,

the ridge estimator exists and has finite variance, which tends to zero as λ → ∞. The intuition is that the

optimisation in (2.3) compromises between finding a coefficient vector for which the likelihood is high but

whose squared `2 norm is low. Seeking solutions with a low squared `2 norm may seem arbitrary, and indeed

introduces bias since

E(β̂) = (XTX + λI)−1XTXβ .

However, the reduction in variance can make up for the bias introduced, resulting in a smaller mean squared

error. In fact Hoerl and Kennard (1970) proved that there always exists a λ > 0 such that the ridge estimator

achieves a lower mean squared error than the MLE, even though in practice it is not known what this λ is.

In the context of GLMs the ridge estimator can be expressed as

β̂ = arg min
β

{
− `(β) +

λ

2φ
βTβ)

}
, (2.6)

where φ is the dispersion parameter of the exponential family distribution that is assumed for y1, . . . , yn, and

−`(β) is the negative log-likelihood for y1, . . . , yn. The solution of the minimisation problem in (2.6) cannot

be expressed in closed form. Nevertheless, for general exponential families the same optimisation algorithms

can be used as in ordinary GLMs, without much extra complication, because the squared `2 norm that is

added to the negative log likelihood is a smooth, convex function.

More generally, `2 regularisation can take the form

β̂ = arg min
β

{
− `(β) +

1

2φ

d∑
k=1

λkβ
TSkβ

}
, (2.7)

which generalises (2.6) in two ways. Firstly, the penalisation is now on a quadratic form of β, involving

a positive-definite matrix S =
∑
k λkSk, rather than on the squared `2 norm. Secondly, the matrix S is
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composed of parts Sk each of which is weighted by its own tuning parameter λk. Whereas ordinary ridge

regression seeks coefficients vectors with low squared `2 norm, generalised ridge regression seeks solutions

for which the quadratic forms (βTS1β, . . . ,β
TSdβ) are small. This can be a useful way to incorporate prior

information into the estimation procedure. As will be seen in Chapter 3, the quadratic form can represent

the roughness of a function, and adding it as a penalty term can result in function estimates that are smooth.

For an in-depth treatment of regularised GLMs in the form of (2.7), including details on optimisation using

Newton’s method, see Wood (2000).

The estimator in (2.7) can also be viewed from a Bayesian perspective. If we set up a Bayesian GLM

β ∼ N (0, φS−1)

g(µi) =

p∑
j=1

βjxij

yi|xi,β, φ ∼ π(µi, φ) ,

where µi = E(yi), and π is an exponential family distribution parametrised by its mean µ and dispersion

parameter φ, then (2.7) emerges as the maximum a posteriori estimator

β̂ = arg max
β

p(β|y)

= arg min
β

{
− log p(β|y

)}
= arg min

β

{
− log p(y|β)− log p(β)

}
= arg min

β

{
− `(β) +

1

2φ

d∑
k=1

λkβ
TSkβ

}
.

Intuitively the Bayesian view of regularisation reinforces the equivalence of regularisation and incorporation

of prior information into the estimation procedure. For further details on the Bayesian interpretation of

regularised GLMs see Wood (2011).

To compute the `2 regularised estimator one has to set the tuning parameters (λ1, . . . , λd). This selection

is crucial as if they are too small then regularisation is not strong enough and becomes ineffective. If,

on the other hand, (λ1, . . . , λd) are too large, then the contribution of the data to the model fit becomes

too small. There are various approaches to selecting tuning parameters. Cross validation methods can be

used to choose the tuning parameters that minimise an estimate of the out-of-sample prediction error. The

resampling based variant, K-fold cross validation, involves splitting the data into K parts of roughly equal

size, and estimating the model K times, each time with one part left out. Each time the model is estimated

with one part left out, predictions are made for the data in the part that was left out, and an estimate of

the out-of-sample prediction error is obtained. These estimates are then averaged over the K parts to obtain

a final estimate of the out-of-sample prediction error. This process is repeated for several settings of the

tuning parameters, and the tuning parameters with the lowest estimated out-of-sample prediction error are

chosen. See Arlot and Celisse (2010) for a review of K-fold cross validation techniques.

Generalized cross validation (GCV), (Golub et al., 1979), is an analytic variant of cross validation, which
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for a normal response variable, estimates the out-of-sample prediction error as

GCV(λ) =
n
(
y −Hy

)T(
y −Hy

)
(
n− tr(H)

)2 ,

where H = X(XTX + S)−1XT . See Wood (2006, Page 173) for approximations of the GCV criterion for

non-normal responses. The GCV approach has the advantage over K-fold cross validation that iterative

methods can be used to find the optimal λ vector, in contrast to performing a grid search that can become

prohibitively expensive for multiple tuning parameters in the case of K-fold cross validation. For details on

implementing and optimising the GCV criterion see Wood (2004).

In the Bayesian interpretation of `2 regularisation the λ vector is a vector a hyperparameters, and

standard Bayesian approaches are available for its estimation. One approach is empirical Bayes (Casella,

1985), which in this case corresponds to estimating tuning parameters by maximising the marginal log-

likelihood

`m(λ, φ) = log p(y;λ, φ) = log

∫
β

p(y|β;λ, φ)p(β;λ, φ)dβ , (2.8)

followed by estimation of β by

β̂ = arg max
β

p(β|y; λ̂, φ̂) .

In general (2.8) is analytically intractable, however it can be replaced by its Laplace approximation (Wood,

2011)

`m(λ, φ) ≈ `reg
c (β̂,λ, φ) +

1

2
log |S/φ|+ −

1

2
log |H|+ Mp

2
log(2π) ,

where

`reg
c (β,λ, φ) = `c(β, φ)− 1

2

d∑
k=1

λkβ
TSkβ/φ

is the regularised conditional log-likelihood,

β̂ = arg min
β

−`reg
c (β,λ, φ)

is the value of β that maximises it,

H = −∂
2`reg
c (β,λ, φ)

∂β∂βT

is the negative Hessian of the regularised conditional log-likelihood, and Mp is the number of zero eigenvalues

of S.

2.4 `1 regularisation

As previously mentioned, regularisation is a way of incorporating prior information into an estimation pro-

cedure. With `2 regularisation, it is possible to incorporate the information that some quadratic forms of

the coefficient vector should not be large. In `1 regularisation `1 norms of the coefficient vector are added

as penalties in order to enforce sparsity. For example, the LASSO (Tibshirani, 1996) solves

β̂ = arg min
β

{
− `(β) +

λ

φ
‖β‖1

}
, (2.9)
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which depending on the size of λ may result in elements of β̂ that are exactly zero. Hence, `1 regularisation

incorporates into the estimation procedure the information that some of the predictors do not influence the

response at all, and the estimation procedure reflects this by estimating some coefficients to be exactly zero,

essentially eliminating them from the model. Estimators that are capable of producing zero estimates are

referred to as ‘sparsity-inducing’. To see why the LASSO is sparsity-inducing, whereas ridge regression is

not, it is easiest initially to consider the LASSO estimate for a one dimensional regression problem. In the

case of one predictor and a normal response, the model is

yi = βxi + εi , (i = 1, . . . , n) ,

and the LASSO objective function is

L(β) =
1

2

n∑
i=1

(yi − βxi)2 + λ|β| .

Now given that L(β) is a sum of two convex functions, it is itself convex, and hence β̂ is a minimiser of L(β)

if

∂−L(β)|β=β̂ ≤ 0 ≤ ∂+L(β)|β=β̂ ,

where ∂−(·) and ∂+(·) denote the derivative from the left and right respectively. In the case of differentiable

functions this condition reduces to the ordinary requirement that at a minimum the derivative of a function

must be zero (excluding boundary cases). For a non-differentiable function the condition states that a move

towards the left will increase the objective function since the derivative from the left is negative, and similarly

a move toward the right will also increase the objective function since the derivative from the right is positive,

however the function need not be differentiable at the minimum. We have that

∂+L(β)|β=0 = −xTy + λ ,

and

∂−L(β)|β=0 = −xTy − λ .

This implies that zero will be a minimiser of L(β) if

−xTy − λ ≤ 0 ≤ −xTy + λ ,

which can be written more succinctly as

λ ≥ |xTy| .

For ridge regression on the other hand the penalty function with one predictor is simply λβ2, whose derivative

with respect to β at β = 0 is just zero, meaning that an infinitesimal move away from zero has no cost with

respect to the ridge penalty. Now we have a condition under which the solution to the LASSO is zero. For

λ < |xTy| we have

∂L(β) = −xTy + β + λsgn(β) ,

resulting in the estimating equation

β̂ = xTy − λsgn(β̂) .

Noticing that sgn(β̂) = sgn(xTy) since λ < |xTy|, we obtain

β̂ = xTy − λsgn(xTy) .
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Putting all this together we finally obtain

β̂ =


xTy + λ if xTy < −λ

0 if − λ < xTy < λ

xTy − λ if xTy > λ .

(2.10)

The right hand side of equation (2.10) can be denoted by Sλ(xTy), and is commonly known as the soft-

thresholding operator. In the case of many predictors, the solution cannot be found analytically, and iterative

methods need to be used. Because the LASSO objective is not smooth, ordinary gradient based optimisation

algorithms are not suitable. A popular method is coordinate descent, in which all the coefficients but one

are held constant, and the solution is found for the one free coefficient. The algorithm then repeatedly

cycles through coefficients like this until convergence. Because the solution can be found analytically in one

dimension, this algorithm is simple and fast, and can be extended to GLMs by iteratively solving the LASSO

with a quadratic approximation to the likelihood, in the spirit of Newton’s method. See Friedman et al.

(2010) for details.

`1 regularisation can also be interpreted from a Bayesian perspective, where instead of placing a normal

prior on the coefficient vector as in `2 regularisation, a Laplacian prior is used. The hirearchical model is

βj ∼ Laplace(0, φ/λ)

g(µi) =

p∑
j=1

βjxij

yi|β, φ ∼ π(µi, φ) .

The maximum a posterior estimator for β in the above modeel takes the form of (2.9). See Park and Casella

(2008) for a fully Bayesian treatment of the LASSO.

`1 regularisation can also be used to achieve sparsity in linear combinations of the coefficient vector by

modifying the LASSO objective to

β̂ = arg min
β

{
− `(β) +

λ

φ
‖Dβ‖1

}
,

where D is a penalty matrix. In this form the estimates β̂ will be such that some elements in Dβ̂ may be

exactly zero. This is often referred to as the generalised LASSO, and it is in this form that `1 regularisation

will appear in Chapter 3 with reference to smoothing problems. Tibshirani and Taylor (2011) provide a

path algorithm that computes the solution along a sequence of λ values, while the proximal gradient method

(Parikh and Boyd, 2013, Chapter 4) and the ADMM algorithm (Boyd et al., 2010, Chapter 3) can also be

used.

Tuning parameter selection is more challenging for `1 regularisation than `2. This is because GCV

optimisation and empirical Bayes which are the most popular choices for `2 regularisation are not easy to

implement in the case of `1 regularisation. Because the degrees of freedom of `1 regularised fits do not

vary smoothly as a function of the tuning parameters the GCV function is not smooth, and consequently

ordinary gradient based optimisation algorithms would not be appropriate. For empirical Bayes the marginal

likelihood would not exist in closed form and hence maximising it would be challenging. For these reasons

tuning parameter selection is usually based on K-fold cross validation. While this may be alright for up

to a couple of tuning parameters, with multiple tuning parameters performing a grid search with K-fold

16



cross validation becomes infeasible. These issues present a limitation in the flexibility of `1 regularisation

compared to `2, for which tuning parameter selection with multiple tuning parameters has proven to be

feasible.
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Chapter 3

Modelling with splines

3.1 Preamble

In this chapter we give an overview of spline functions, and their use in modelling with smooth components.

We begin by introducing a simple example of one dimensional smoothing to illustrate how spline functions

can be used, followed by an overview of b-splines, regularisation, and knot selection. We then introduce gen-

eralized additive models as an instance of a more sophisticated modelling technique that can be implemented

using b-splines.

3.2 Introduction

To illustrate the ideas in this chapter we begin with a simple example of scatterplot smoothing. Suppose we

observe data {(yi, xi)}ni=1, and we wish to model each response yi as noisy observations of some unknown

smooth function f(xi). The model can be written as

yi = f(xi) + εi ,

where ε1, . . . , εn are independently identically distributed normal random variables with mean zero. The

goal is to estimate the function f(·). For simplicity in what follows we will always assume that domain

of f(·) is [0, 1]. In principle, any technique that performs some kind of supervised learning (Hastie et al.,

2009) could be used to estimate f(·), however because we assume that it is smooth, ideally the method

should result in estimates f̂(·) that are smooth. Approaches that can be used to achieve this include

locally estimated scatterplot smoothing (Cleveland and Devlin, 1998), kernel regression (Watson, 1964), and

Gaussian process regression (Rasmussen, 2006). In this chapter we will focus on using splines to model f(·),
and in particular using b-splines (de Boor, 2001) for estimation. Splines are piecewise polynomial functions

that satisfy smoothness constraints. They are defined over a non-decreasing sequence of knots, which act as

breakpoints over which each piecewise polynomial is defined. A spline function is said to be of order m if the

degree of the piecewise polynomials is m−1. The piecewise polynomials are constrained such that the global

spline function is m − 2 times continuously differentiable. In other words, the values of adjacent piecewise

polynomials (and their derivatives up to the (m − 2)-th derivative must match at the breakpoints. Before

moving on to describe how b-splines can be used to estimate f(·), it is worth giving some justification for

why one may want to assume that f(·) is a spline at all. In estimating f(·), we seek a function that will fit
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the data well. One way to define how well the function fits the data is by the sum of squared errors (SSE)

between the response values and the function values, given by∑
i

(
yi − f(xi)

)2

.

We also assume that f(·) is smooth however, and so of all the functions f(·) that achieve a low SSE, we

would prefer the smoothest. One way of measuring smoothness is through the integral of the squared second

derivative of a function ∫
x

(
f ′′(x)

)2

dx ,

where f ′′(·) denotes the second derivative of f(·). Functions that are very ‘wiggly’ change rapidly, and

hence will have large in magnitude second derivatives. With this definition of smoothness, the search for the

smoothest function f̂(·) that fits the data well can be written as the variational optimisation problem

f̂(x) = arg min
f

{∑
i

(
yi − f(xi)

)2

+ λ

∫
x

(
f ′′(x)

)2

dx
}
, (3.1)

where λ is a positive tuning parameter that controls the trade-off between achieving a low SSE and a smooth

fit, assuming that f(·) belongs to the class of twice differentiable functions. It turns out that for any λ > 0

the solution to this optimisation problem is the natural cubic spline with a knot at every xi. Natural cubic

splines are cubic spline functions with additional constraints on their boundaries. Specifically, natural cubic

splines must be linear on the first and last interval in the knot sequence they are defined on. For a proof

of this result and an introduction to splines, see Green and Silverman (1994, Chapter 2). The integrated

squared second derivative is not the only measure of roughness that could be used. Another option is the

total variation of some derivative of the function. Intuitively, total variation measures the total distance

travelled along the y-axis as a point traverses the surface of a function along the x-axis. For a differentiable

function, the total variation is given by

TV
(
f(x)

)
=

∫
x

|f ′(x)|dx ,

where f ′(x) is the first derivative of f(·). For a step function, the total variation is the sum of the magnitude

of all the steps

TV
(
f(x)

)
=
∑
j

|f(xj+1)− f(xj)
∣∣∣ ,

where {xj} is a set of values containing at least one point in each individual flat region of the step function.

Measured this way, seeking the smoothest f(·) that fits the data well would amount to finding

f̂(x) = arg min
f

{∑
i

(
yi − f(xi)

)2

+ λTV(f [m−1](x))
}
, (3.2)

where f [m−1](·) denotes the (m − 1)-th derivative of f(·), and λ is a tuning parameter that controls the

trade-off between achieving a low total variation in the (m − 1)-th derivative and fitting the data well.

Eilers and Marx (1996) considered the problem in (3.2) and showed that once again the solution is a spline

function, of order m. Interestingly though, the knots of this spline function are data adaptive and depend

on the tuning parameter λ. As λ grows larger, the spline function that solves (3.2) has fewer knots, meaning

that the total variation penalty performs knot selection, in a similar fashion to which the LASSO performs

variable selection in linear regression. While the positions of the knots cannot be found analytically, Eilers

and Marx (1996) propose an algorithm to estimate them.
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3.3 B-splines

B-splines (short for basis splines) are a particular basis system for representing arbitrary spline functions.

They are themselves spline functions, but of compact support, meaning that each b-spline is positive over

at most m adjacent intervals in the knot sequence, where m is the order of the spline. This gives them

attractive computational qualities when used as a basis system for arbitrary spline functions. For a sequence

of knots (t1, . . . , tK), the j-th b-spline of order m can be computed recursively through the formula

Bmj (x) = ω1B
m−1
j (x) + ω2B

m−1
j+1 (x) (3.3)

with

B1
j (x) =

1 tj ≤ x < tj+1

0 otherwise
,

where

ω1 =


x−tj

tj+m−1−tj if tj+m−1 > tj

0 otherwise
and ω2 =


tj+m−x

tj+m−tj+1
if tj+m > tj+1

0 otherwise
.

For a knot sequence (t1, . . . , tK), K−m b-spline functions are defined, and an arbitrary spline function S(x)

can be defined on the interval (tm−1, tK−m+1) by

S(x) =

K−m∑
i=1

αjB
m
j (x) ,

for a coefficient vector α = (α1, . . . , αK−m)T . The reason S(x) is not defined over the full interval (t1, tK) is

that on the first and last intervals, (t1, t2) and (tK−1, tK), only one b-spline is non-zero, meaning that if the

spline function were evaluated over those intervals it would be restricted to take the specific (scaled) shape of

those individual b-splines. Similarly, on the second and second to last intervals only two b-splines would be

non-zero, meaning that the spline function would still be less flexible than than in the middle region, which

is not desirable. At any point within the interval (tm−1, tK−m+1) however, m splines will be non-zero, giving

the spline function the same flexibility (not taking into account position of knots) throughout. Hence, if one

wants to define a spline function over a sequence of knots, in order to construct this spline using b-splines, the

b-splines must be constructed with the same knot sequence, but appended by m− 1 knots on both sides. A

common strategy is to make these appended knots replicates of the boundary knots. In general, when knots

are duplicated (anywhere in the knot sequence), the effect is to lose a degree of continuous differentiability.

In other words, while at all break points over a knot sequence with no duplicates splines are m − 2 times

continuously differentiable, a spline will be only m− 3 times continuously differentiable at a knot value that

is duplicated. If a knot value is replicated m− 1 times, the spline is no longer continuous at that point. See

Appendix A for a worked-out example of this situation.

B-splines provide a practical and efficient way to estimate spline functions because they reduce a functional

estimation problem to a linear modelling problem. Returning to the one dimensional smoothing problem,

by assuming that f(x) is a spline function, which by definition can be written as some linear combination of

b-splines, we have

yi = f(xi) + εi

=

d∑
j=1

αjB
m
j (xi) + εi ,

(3.4)

20



where m is the order of the spline function we have chosen to model f(·), and d is the number of b-splines

used. Now note that (3.4) is just an ordinary linear regression model, with predictors
(
Bm1 (x), . . . , Bmd (x)

)
,

and coefficients α1, . . . , αd. To illustrate, we define the function

f(x) =


sin(5πx/4) if 0 ≤ x ≤ 0.4

1 if 0.4 < x ≤ 0.6

sin(5π(x− 0.2)/4) if 0.6 < x ≤ 1

. (3.5)

This function is used to simulate a data set {(yi, xi)}100
i=1, with xi ∼ Unif(0, 1), εi ∼ N (0, 0.1), and

yi = f(xi) + εi . (3.6)

We now set up b-splines of order m on an equidistant set of knots set up such that we end up with 8 piecewise

polynomials of degree m − 1 between 0 and 1. We do this for m ∈ {1, . . . , 4}. For each set of b-splines, we

estimate the coefficients using ordinary least squares and plot the resulting splines in red, along with f(x)

and the observed data in black in Figure 3.1. The dashed vertical lines are the cut-off points separating

the piecewise polynomials. In this example the individual piecewise polynomials can be observed with the

naked eye, especially in the case of m = 1 and m = 2, where the individual functions are constant and

linear respectively. Modelling with b-splines in this way immediately raises the question of how to choose

the number and positions of the knots. Using too many knots can result in overfitting, as the region that

each piecewise function will correspond to may not have many data points, and consequently the individual

functions may adapt to noise rather than signal. If too few knots are chosen on the other hand, the resulting

spline function may not have enough flexibility to model the true function accurately. Furthermore, if the

true function to be estimated has high curvature in some regions and low curvature in others, both of these

problems can be inherited simultaneously if the knot positioning is not chosen carefully; in some regions

there may be too many knots and in others too few. There is an extensive literature with a variety of

approaches to deal with this problem. Dung and Tjahjowidodo (2017) provide a recent overview that covers

both heuristic and optimisation based techniques. As will see in the following sections however regularisation

techniques can be used to approach this issue.

3.4 Splines and `2 regularisation

One way to deal with the problem of selecting the number of knots is to select a large number, that when

fitted using ordinary least squares would result in overfitting, however to add a penalty that penalises fits

that are not smooth. One of the convenient computational qualities of b-splines is that the roughness penalty∫
x

(
f ′′(x)

)2

dx ,

where f(x) =
∑
j αjB

4
j (x) is a cubic spline function represented as a linear combination of b-splines, can be

expressed as a quadratic form αTSα, where Slk =
∫
x
∂2

∂x2B
4
l (x) ∂2

∂x2B
4
k(x)dx. Cubic splines are often used

due to their theoretical justification as the solution to the variational problem in (3.1). The derivatives of

b-splines can be computed analytically and because b-splines are of compact support, the matrix S will be

banded, and consequently computationally efficient to deal with. Using a cubic spline, the solution to the

smoothing problem can be written as

f̂(x) =
∑
j

α̂jB
4
j (x) ,
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Figure 3.1: Fitted functions from model (3.6) using b-splines of order 1 (top left), 2 (top right), 3 (bottom

left), and 4 (bottom right). Fitted functions are in red, the true function, expressed in equation (3.5) is

in black, while the points are the simulated data used for estimation. The coefficients of the b-splines are

estimated using ordinary least squares.
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where

α̂ = arg min
α


n∑
i=1

(
yi −

∑
j

αjB
4
j (x)

)2

+ λαTSα

 ,

which is a standard `2 regularisation problem. This is the roughness penalty approach to smoothing (Green

and Silverman, 1994, Chapters 2,3). Eilers and Marx (1996) proposed a different penalty to achieve smooth-

ness in spline fits, penalising various order differences of successive coefficients of b-splines. If we let

Dp =



1 0 0 . . . 0

1 −1 0 . . . 0

0 1 −1 . . . 0
...

...
...

. . .
...

0 0 0 1 −1


be the p × p first order differencing matrix, where p is the number of b-splines used, then the last p − 1

elements of the vector Dpα are the first order differences of α. By extension, Dl
p is the l-th order differencing

matrix and the last p− l elements of Dl
pα represent the l-th order differences of α. Eilers and Marx (1996)

propose as an estimator

α̂ = arg min
α


n∑
i=1

(
yi −

∑
j

αjB
m
j (x)

)2

+ λ

p∑
k=l+1

(Dl
pα)2

k

 ,

where (Dl
pα)k is the k-th elements of Dl

pα, and the order m of the spline function and order l of differencing

can be chosen freely. Splines estimated in this way are often referred to as p-splines. To see the effect

of regularisation using both approaches we can return to our example of smoothing once again, this time

choosing 40 equidistant knots and cubic splines. We estimate the coefficients without regularisation, with the

integrated squared second derivative penalty, and with a second order differencing penalty. In the regularised

cases the tuning parameter is chosen by maximum likelihood under the Bayesian formulation discussed in

Section 2.3. The fits are plotted in Figure 3.2. The fit without any regularisation results in a very ‘wiggly’

function, as between each successive pair of knots the polynomial adapts to noise. In the regularised fits

however a balance is found between fitting the data while also retaining a smooth fit, resulting in better

estimates of the function. In this example the two regularised fits are indistinguishable to the naked eye.

3.5 Splines and `1 regularisation

`2 regularisation deals with the problem of selecting the number of knots by allowing one to choose a large

number of knots while controlling the overall level of smoothness in the fit. While this approach may often

perform well, the issue remains that the tuning parameter that is selected pertains to the entire function.

In cases where a function is more smooth in some regions than others, controlling the smoothness with one

parameter may not be adequate, as the resulting estimated function may be too smooth in some regions and

not smooth enough in others. Mammen and Van De Geer (1997) addressed this issue by considering a total

variation penalty on the (m − 1)-th derivative of the function to be estimated, rather than the integrated

squared second derivative. They showed that this penalty results in a spline with knots positioned in a way

such that they adapt to local levels of smoothness. While Mammen and Van De Geer (1997) went on to
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Figure 3.2: Fitted functions from model (3.6) using cubic b-splines with 40 knots. The fitted functions are

in red, the true function, expressed in equation (3.5) is in black, while the points are the simulated data

used for estimation. The left panel has no regularisation, the middle panel uses the integrated squared

second derivative roughness penalty, and the right panel penalises squared second order differences of b-

spline coefficients. Tuning parameters are selected by maximum marginal likelihood under the Bayesian

interpretation of `2 regularisation, discussed in Section 2.3.

propose an algorithm that adds and deletes knots in a step-wise manor, it turns out that when using b-

splines the total variation penalty can be expressed as an `1 regularisation problem. Because the derivatives

of splines are themselves splines of lower order, the (m− 1)th derivative of a spline of order m is just a step

function, whose total variation is the sum of the magnitude of the steps. When using b-splines, the total

variation of the mth derivative of a spline can be expressed in closed form. See Jhong et al. (2017) for the

closed form expressions for m = 0, 1, 3. In the case of equally spaced knots the expressions simplify, and the

total variation of the (m− 1)th derivative is just

c‖Dm
p α‖1 ,

where c is a constant and α are the coefficients of the b-splines used to represent the spline. Consequently

Jhong et al. (2017) consider estimating b-spline coefficients as

α̂ = arg min
α

∑
i

1

2

(
yi −

∑
j

αjB
m
j (x)

)2

+ λ‖Dm
p α‖1

 ,

where the constant c has been absorbed by the tuning parameter λ. This method resembles the approach of

Eilers and Marx (1996), where the squared `2 norm is replaced with an `1 norm, and the order of differencing

is the same as the order of the spline.

A closely related procedure to that of Jhong et al. (2017) is known as trend filtering (Kim et al., 2009;

Tibshirani, 2014), in which exclusively b-splines of order 1 are used (i.e. a grid basis), with various order

differences of the coefficients penalised. The procedure can be expressed as

α̂ = arg min
α

∑
i

1

2

(
yi −

∑
j

αjB
1
j (x)

)2

+ λ‖Dm
p α‖1

 .

In the case of m = 1, trend filtering is equivalent to the approach of Jhong et al. (2017). For m > 1 the

result is a piecewise constant function which can be thought of as a discrete approximation to a spline of

order m, with adaptively placed knots.
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3.6 Generalized additive models

Generalized additive models (GAMs) were introduced by Hastie and Tibshirani (1986) to extend one di-

mensional smoothing to multiple predictors. For an exponential family response variable the model can be

written as

g
(
E(yi)

)
=

p∑
j=1

fj(xij) (i = 1, . . . , n) , (3.7)

where f1, . . . , fp are arbitrary smooth functions, as in the one dimensional smoothing case. GLMs can be

seen as a special case of GAMs in which fj(xj) = βjxj , essentially restricting each function to be a straight

line with a free slope parameter. As introduced in Hastie and Tibshirani (1986), GAMs can be estimated

using any method that performs one dimensional smoothing due to the backfitting algorithm, which consists

of iteratively estimating one function at a time, while holding all the others constant. Nowadays, much

attention has focused on reducing GAMs to regularised GLMs by using splines to model each fj(·) and

penalisation to enforce smoothness. Using m-th order b-splines to model each fj(·), the model in (3.7) can

succinctly be written as

g
(
E(yi)

)
=

p∑
j=1

αTj b
m
ij , (3.8)

where bmij is a vector with k-th element Bmk (xij) and αj is a vector of coefficients that determines the shape

of the j-th spline function. Using an integrated squared second derivative roughness penalty on each function

fj(·), estimation can be reduced to

α̂ = arg min
α

−`(α) +

p∑
j=1

λjα
T
j Sjαj

 , (3.9)

where α collects all the vectors αj into one, Sj is a penalty matrix such that αTj Sjαj is the integrated

squared second derivative of fj(xj), and −`(α) is the negative log-likelihood for the observed data. For a

detailed overview of this approach to estimating GAMs see Wood (2006), which also covers efficient ways

to select the tuning parameters using GCV. For a description of how to select the tuning parameters using

marginal likelihood under the Bayesian interpretation of (3.9) see Wood (2011).

Other authors have considered using a grid basis (i.e. b-splines of order 1) along with an `1 norm penalty

on mth order differences of the b-spline coefficients to estimate GAMs. Petersen et al. (2014) introduce the

‘fused LASSO additive model’ which consists of a grid basis for each function and an `1 norm on the first order

differences of the coefficients of each grid basis. Sadhanala and Tibshirani (2018) introduce ‘additive models

with trend filtering’, which is similar to the fused LASSO additive model but with mth order differences of

the coefficients of each grid basis. In this case the b-spline coefficient estimates are given by

α̂ = arg min
α

−`(α) +

p∑
j=1

λj‖Dmαj‖

 , (3.10)

where Dm is the mth order differencing matrix. The rationale for these approaches is the same as in the

one dimensional case, however there is a significant limitation when extending these methods to multiple

predictors, and that is tuning parameter selection. While it has proven feasible to estimate multiple tun-

ing parameters in the case of `2 regularisation, to the best of our knowledge estimating multiple tuning

parameters with `1 regularisation remains a challenge without adequate solutions.
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As a final note on GAMs we mention that with regard to estimation each function is typically identifiable

only up to an additive constant. To see this, suppose we expressed a GAM as

g
(
E(yi)

)
=

p∑
j=1

(
fj(xij) + cj

)
,

for some constants c1, . . . , cp. For any configuration of constants that results in the same sum
∑p
j=1 cj = C,

the likelihood for the observed data would be the same, as the mean and variance of the responses would be

identical. Consequently, only the global constant C is estimable. A typical approach to deal with this issue

is to formulate GAMs with an intercept and ‘centering’ constraints on the functions. In this case, a GAM

can be written as

g
(
E(yi)

)
= β0 +

p∑
j=1

fj(xij)

n∑
i=1

fj(xij) = 0 ,

where β0 is the estimable global intercept, and the constraints
∑n
i=1 fj(xij) = 0 force each function to be

centred around zero. For details on how the constraints can be implemented in practice when using splines

to represent the functions, see Wood (2006, page 163).
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Chapter 4

A new approach to estimating locally

adaptive splines

4.1 Preamble

In this Chapter we discuss a sparsity inducing method called adaptive sparseness (Figueiredo, 2003), and

apply it to estimation of GAMs. Adaptive sparseness was inspired by the LASSO but unlike the LASSO

does not rely on tuning parameters. Our contributions are two-fold. Firstly, we provide some extensions for

adaptive sparseness, as well as an efficient implementation of the EM algorithm used to obtain its parameter

estimates. Secondly, we apply adaptive sparseness as an estimation procedure for GAMs, demonstrating its

potential to estimate smooth functions in a locally adaptive way, without the need for tuning parameters,

resulting in an efficient procedure that scales well with the number of predictors.

We begin by introducing adaptive sparseness in Section 4.2. In Section 4.3.1 we show that the adaptive

sparseness coefficient estimates can be expressed in closed form, providing some intuition regarding how the

method works. We then discuss some simple extensions to adaptive sparseness in Section 4.4. We provide

an efficient implementation of the EM algorithm for adaptive sparseness in Section 4.5, and show how it

can be used to estimated GAMs in Section 4.6. A related approach that was developed in parallel to ours

is discussed in Section 4.7. In Section 4.8 we carry out simulation studies to examine the performance of a

variety of estimation procedures for GAMs, comparing existing methods to our proposed method. Finally,

in Section 4.9 we apply the proposed methodology to a real data set in which the age of abalones is predicted

using various physical measurements of the abalones.

4.2 Adaptive sparseness

Figueiredo (2003) considers an alternative Bayesian formulation of the LASSO which in turn inspires a

different sparsity inducing estimation technique that remarkably does not rely on any tuning parameters.

The Laplace distribution can be written in a hierarchical fashion as an exponential mixture of normals. For
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a normal response the Bayesian LASSO (Park and Casella, 2008) can be written as

p(σ2) ∝ c

τj ∼ Exp
(

0,
γ

2

)
βj |τj ∼ N (0, τj)

yi|β,xi, σ2 ∼ N
( p∑
j=1

βjxij , σ
2
)
.

(4.1)

Before introducing adaptive sparseness, it is worth noting that the formulation in (4.1) demonstrates an

interesting conceptual link between ridge regression and the LASSO. The LASSO can be seen as a kind of

adaptive ridge regression, in which instead of placing the same normal prior on each coefficient βj , each

coefficient instead has a normal prior with its own variance parameter, and all the variance parameters

are drawn from an exponential distribution. The ‘adaptivity’ results from the fact that different coefficients

receive differential shrinkage. Figueiredo (2003) takes adaptivity one step further and achieves two important

goals simultaneously, considering the following formulation,

p(σ2) ∝ c

p(τj) ∝ 1/τj

βj |τj ∼ N (0, τj)

yi|β,xi, σ2 ∼ N
( p∑
j=1

βjxij , σ
2
)
,

(4.2)

where the common prior on all the variance parameters τi in (4.1) has been replaced by individual, non-

informative priors p(τj) ∝ 1/τj . Firstly, this introduces more adaptivity because the variance parameters are

no longer drawn from the same distribution, further decoupling the shrinkage that each coefficient receives

relative to the others. Secondly, the hyperparameter γ has now been removed from the model, and hence

does not have to be estimated. To estimate the coefficient vector β and noise variance σ2, Figueiredo (2003)

proposes the expectation conditional maximization (ECM) algorithm (Meng and Rubin, 1993) to obtain the

maximum a posterior (MAP) estimate p(β, σ2|y), treating the variance parameters τ1, . . . , τp as missing data.

The ECM algorithm is a generalisation of the expectation maximization (EM) algorithm (Dempster et al.,

1977), which is a popular algorithm to estimate parameters in the presence of missing data. Specifically, if

the variance parameters were known, then we would have

(β̂, σ̂2) = arg max
β,σ2

p(β, σ2|y, τ )

= arg max
β,σ2

{
p(y|β, σ2)p(β|τ )

}
= arg max

β,σ2

{
log p(y|β, σ2) + log p(β|τ )

}
= arg max

β,σ2

{
−n log σ2 − (y −Xβ)T (y −Xβ)

σ2
− βTWβ

}
.

(4.3)

where W is a diagonal matrix with Wjj = 1/τj . Defining

L(β, σ2) = −n log σ2 − (y −Xβ)T (y −Xβ)

σ2
− βTWβ ,
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which is the function to be optimised in the last line of equation (4.3), the EM algorithm iterates between

computing

1. Q(β, σ2|β̂) = Eτ |β̂

(
L(β, σ2)

)
= Eτ |β̂

(
− n log σ2 − (y −Xβ)T (y −Xβ)

σ2
− βTWβ

)
= −n log σ2 − (y −Xβ)T (y −Xβ)

σ2
−

p∑
j=1

E(τ−1
j |β̂j)β

2
j

2. (β̂, σ̂2) = arg maxβ,σ2 Q(β, σ2)

The conditional expectation E(τ−1
j |β̂j) can be found in close form since

E(τ−1
j |β̂j) =

∫ ∞
0

1

τj
p(τj |βj = β̂j)dτj

=

∫∞
0

1
τj
p(βj = β̂j |τj)p(τj)dτj∫∞

0
p(βj = β̂j |τj)p(τj)dτj

=

∫∞
0

1
τ2
j
p(βj = β̂j |τj)dτj∫∞

0
1
τj
p(βj = β̂j |τj)dτj

=
1

β̂2
j

.

The optimisation arg maxβ,σ2 Q(β, σ2) cannot be computed in closed form, however it can be modified to

consist of two conditional optimisation steps, resulting in the ECM algorithm, which alternates between

1. Q(β, σ2|β̂) = −n log σ2 − (y −Xβ)T (y −Xβ)

σ2
−

p∑
j=1

β2
j

β̂2
j

2. σ̂2 = arg max
σ2

Q(β̂, σ2|β̂)

=
(y −Xβ̂)T (y −Xβ̂)

n

3. β̂ = arg max
β

Q(β, σ̂2|β̂)

= (XTX +W )−1XTy ,

where W is a now a diagonal matrix with Wjj = σ̂2

β̂2
j

. As we show in Section 4.3.1, the adaptive sparseness

method is sparsity inducing. This implies that some of the weights Wjj may approach infinity, which in

practice will lead to numerical problems when implementing the ECM algorithm. This can be dealt with by

adding a very small regulariser ε to the denominator of the weights, resulting in weights Wjj = σ̂2

β̂2
j +ε

. This

results in a maximum value that the weights can take of σ̂2/ε.

4.3 Properties of adaptive sparseness

4.3.1 Expression for adaptive sparseness coefficient estimates

To gain some intuition regarding the behaviour of the adaptive sparseness method, and why in fact it is

sparsity inducing, it is illustrative to consider the simplified case in which the noise variance σ2 is known,
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and there is only one predictor. In this case, it turns out that the solution reached by the EM algorithm can

be found in closed form. Specifically, at convergence, the solution must satisfy

β̂ =
xTy

xTx+ τ̂−1σ2

τ̂−1 =
1

β̂2
,

which can be re-written as

β̂ =
xTy

xTx+ σ2/β̂2
. (4.4)

Assuming for now that β̂ 6= 0, equation (4.4) can be re-written as a quadratic equation with solutions

β̂ =
xTy ±

√
(xTy)2 − 4σ2xTx

2xTx
. (4.5)

It remains to be decided which of the two solutions should be kept, and under which conditions the solution

may be β̂ = 0. To answer these questions it is useful to shift focus to the solution found in terms of τ̂−1,

and examine the behavior of the EM algorithm. Let

f(τ̂−1) =
1

β̂2

=

(
xTx+ τ̂−1σ2

xTy

)2

.

The EM algorithm computes the sequence τ̂−1
k+1 = f(τ̂−1

k ), with τ̂−1
0 set to be the starting value. At

convergence, we must have f(τ̂−1) = τ̂−1. If the discriminant of f(τ̂−1)− τ̂−1 is negative,

f(τ̂−1) > τ̂−1 ∀ τ̂−1 > 0 ,

and the sequence {τ̂−1
k }∞k=1 diverges to infinity, giving final solution β̂ = 0. The discriminant is negative when

|xTy| < 2σ
√
xTx. When the discriminant of f(τ̂−1)− τ̂−1 is positive, the quadratic equation f(τ̂−1)− τ̂−1 =

0 has roots

τ−1
+ = (xTy)2 − 2σ2xTx+

√
(2σ2xTx− xTy)2 − 4σ4(xTx)2

τ−1
− = (xTy)2 − 2σ2xTx−

√
(2σ2xTx− xTy)2 − 4σ4(xTx)2 ,

and consequently it follows that

τ̂−1 < f(τ̂−1) < τ−1
− for 0 < τ̂−1 < τ−1

−

τ−1
− < f(τ̂−1) < τ̂−1 for τ−1

− < τ̂−1 < τ−1
+

τ̂−1 < f(τ̂−1) for τ−1
+ < τ̂−1 .

(4.6)

Because f(τ̂−1) is positive and monotonically increasing, setting τ̂−1 = τ̂−1
k in the inequalities in (4.6) gives

τ̂−1
k < τ̂−1

k+1 < τ−1
− for 0 < τ̂−1

k < τ−1
−

τ−1
− < τ̂−1

k+1 < τ̂−1
k for τ−1

− < τ̂−1
k < τ−1

+

τ̂−1
k < τ̂−1

k+1 for τ−1
+ < τ̂−1

k .

(4.7)
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The inequalities in (4.7) in turn imply that as long as τ̂−1
0 < τ−1

+ , the sequence {τ̂−1
k }∞k=1 will converge to

the solution τ−1
− , while if τ̂−1

0 > τ−1
+ , the sequence {τ̂−1

k }∞k=1 will diverge to infinity. To find which solution β̂

in equation (4.5) corresponds to τ−1
− , it is sufficient to observe that the solution corresponding to τ−1

− must

be larger in magnitude compared to the solution corresponding to τ−1
+ , and that the solution with larger

magnitude is

β̂ =
xTy + sgn(xTy)

√
(xTy)2 − 4σ2xTx

2xTx
, (4.8)

where sgn(xTy) is the sign of xTy. From a practical perspective setting τ̂−1
0 > τ−1

+ would not make sense as

it would effectively be pre-determining the outcome of the algorithm to be β̂ = 0 by setting the starting value

β̂0 so close to zero as to not allow it to escape. Consequently, we can conclude that when |xTy| > 2σ
√
xTx,

the solution of interest is the value in (4.8), while when |xTy| < 2σ
√
xTx, the only solution is β̂ = 0.

With multiple predictors, we can still express the solution for each coefficient in closed form as a function

of the solution reached for the other coefficients. Specifically, if the solution was known for all the coefficients

except the j-th, then for the j-th coefficient we would have

β̂j = arg min
β

{
n log σ2 +

(zj − xjβj)T (zj − xjβj)
σ2

+
σ2β2

j

β̂2
j

}

=
xTj zj

xTj xj + σ2/β̂2
j

,

(4.9)

where zj = y−X−jβ̂−j , xj is the j-th column of X, X−j is X with the j-th column removed, and β̂−j is β̂

with the j-th element removed. The last line of (4.9) is identical to the expression in (4.4) with y replaced

by zj , and so we can therefore write β̂j = 0 if |xTj zj | < 2σ
√
xTj xj , and

xTj zj + sgn(xTj zj)
√

(xTj zj)
2 − 4σ2xTj xj

2xTj xj
(4.10)

otherwise.

4.3.2 Scale invariance

Expression (4.8) uncovers an appealing property of the coefficient estimates produced by adaptive sparseness.

Suppose, in the case of one predictor x, that we were to change its units resulting in a new vector x̃ = cx.

A natural question that arises in regression problems in which regularisation is used is how the solution

responds to changes in scale of the predictors. Firstly, we examine whether the condition for setting a

coefficient to zero changes if its scale changes. From Section 4.3.1 we have that β̂ = 0 if |xTy| > 2σ
√
xTx.

Similarly, the coefficient estimate β̃, corresponding to the predictor x̃ will be set to zero if

|x̃Ty| > 2σ
√
x̃T x̃

⇐⇒ |cxTy| > 2σ
√
c2xTx

⇐⇒ |xTy| > 2σ
√
xTx ,
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from which we conclude that the scale of the predictor has no effect on the condition under which its

coefficient is estimated as zero. For the estimate β̃ when it is not equal to zero, we have

β̃ =
x̃Ty + sgn(x̃Ty)

√
(x̃Ty)2 − 4σ2x̃T x̃

2x̃T x̃

=
cxTy + sgn(cxTy)

√
c2(xTy)2 − 4c2σ2xTx

2c2xTx

=
cxTy + |c| × sgn(c)× sgn(xTy)

√
(xTy)2 − 4σ2xTx

2c2xTx

=
cxTy + c× sgn(xTy)

√
(xTy)2 − 4σ2xTx

2c2xTx

= β̂/c ,

implying that xβ̂ = x̃β̃. Consequently, standardising predictors is not necessary when using adaptive

sparseness to estimate regression coefficients.

4.3.3 Probability of estimating coefficients as zero

Finally, we consider from a frequentist perspective, in which we consider coefficients fixed, the probability

of estimating any coefficient as zero. Unfortunately, this cannot be found in closed form for general design

matrices, but in the special case of an orthogonal design this probability is very simple to compute and takes

an intuitive form. Specifically, as we saw in Section 4.3.1, with an orthogonal design matrix, a coefficient is

estimated as zero if

(xTj y)2 < 4σ2xTj xj

⇐⇒

(
xTj y

xTj xj

)2

<
4σ2

xTj xj

⇐⇒

∣∣∣∣∣ xTj yxTj xj

∣∣∣∣∣ < 2σ√
xTj xj

⇐⇒

∣∣∣∣∣ β̂ols
j

sd(β̂ols
j )

∣∣∣∣∣ < 2 ,

where β̂ols
j denotes the ordinary least squares estimate of βj , which is normally distributed with mean βj ,

and for orthogonal designs has standard deviation σ/
√
xTj xj . If βj = 0, we have

p(β̂j = 0) = p(|φ| < 2) ≈ 96% ,

for all n, where φ is a standard normal random variable. If βj 6= 0, β̂ols
j → βj as n→∞, while sd(β̂ols

j )→ 0,

and so p(β̂j = 0)→ 0 as n→∞.

4.4 Extensions to adaptive sparseness

4.4.1 Mixed sparsity

We now consider a few extensions to adaptive sparseness that will enable its use in estimation of locally

adaptive splines. Firstly, suppose that we do not want to place the sparsity inducing prior on the entire
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coefficient vector β. If, for example, we know that some coefficients are non-zero, we can set the variance

parameters in their priors to infinity, resulting in an improper flat prior for those coefficients. The model

can then be written as

p(σ2) ∝ c

p(τj) ∝ 1/τj ∀j ∈ P

τj =∞ ∀j /∈ P

βj |τj ∼ N (0, τj)

yi|β,xi, σ2 ∼ N
( p∑
j=1

βjxij , σ
2
)
,

(4.11)

where P denotes the set of coefficients that are penalised. The ECM algorithm remains the same as before,

simply with Wjj = 0 for every j /∈ P.

4.4.2 Sparsity on linear combinations

Next, assume we want sparsity in Dβ, as opposed to β, where D is some penalty matrix. Assume at first

that D is a p × p matrix of full rank. A way to achieve sparsity in Dβ is by reparametrising to a new

coefficient vector β̃ = Dβ. The model

y = Xβ + ε

can then be re-written as

y = Xβ + ε

= XD−1Dβ + ε

= X̃β̃ + ε ,

where X̃ = XD−1. This is now an ordinary linear regression model, and equipping it with the adaptive

sparseness prior on β̃ will result in sparsity in Dβ. Now suppose D is a (p − q) × p matrix of rank p − q,
where 0 < q < p. D is no longer invertible since it is not square. However we can define a new matrix

D̃ =

(
U

D

)
,

where U is any q× p matrix such that D̃ is of rank p. We can now apply the same trick by defining β̃ = D̃β

and X̃ = XD̃−1. We no longer seek sparsity in the entire vector β̃, but instead only its last p− q elements.

As already described this can be achieved by applying a sparsity inducing prior on the last p − q elements

of β̃, and a flat prior on the first q elements of β̃.

4.4.3 Extending to generalized linear models

The treatment of adaptive sparseness thus far has assumed a normal response variable, however it can be

extended to responses from the exponential family of distributions in a straightforward manner, as suggested
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by Kiiveri (2003). The model can be adapted as

p(φ) ∝ c

p(τj) ∝ 1/τj ∀j ∈ P

τj =∞ ∀j /∈ P

βj |τj ∼ N (0, τj)

g(µi) =

p∑
j=1

βjxij

yi|β, φ,xi ∼ π(µi, φ) ,

(4.12)

where g(·) is a link function, π is an exponential family distribution, and φ is the dispersion parameter of the

exponential family distribution that yi follows, conditionally on β. The E-step of the EM algorithm remains

the same, since the terms involving τj are unchanged, however the updates for β are no longer available in

closed form, with iterative methods required to compute them. Specifically, we now have

1. Q(β, σ2|β̂) = `(β, φ)− 1

2

p∑
j=1

β2
j

β̂2
j

2. φ̂ = arg max
φ

Q(β̂, φ|β̂)

3. β̂ = arg max
β

Q(β, φ̂|β̂)

where `(β, φ) is the log-likelihood of the observed data implied by the last line of (4.12).

4.5 An efficient implementation of the ECM algorithm for adap-

tive sparseness

In this section we provide an efficient implementation of the ECM agorithm for adaptive sparseness intro-

duced in Section 4.2, which provides significant time savings compared to a naive implementation. The

algorithm is based on updating the QR decomposition of the design matrix X, as proposed by Gentleman

(1974) and Miller (1992), and implemented in the R package biglm (Lumley, 2013). The QR decomposition

of a square n× n matrix A is given by

A = QR

where Q is an n × n orthogonal matrix and R is an n × n upper triangular matrix with positive elements

on the diagonal. The QR decomposition of A can be used to efficiently solve linear systems of the form

Ax = c in two steps. Firstly, because Q is orthogonal, QRx = c implies Rx = QT c. Now, because R is

upper triangular, the system of equations Rx = QT c can be efficiently solved using the back substitution

algorithm. For a rectangular n× p matrix X the QR decomposition can be written as

X =
(
Q1 Q2

)(R
0

)
= Q1R ,

where Q = (Q1 Q2) is an n × n orthogonal matrix, R is a p × p upper triangular matrix, and 0 is an

(n− p)× (n− p) matrix of zeros. A neat feature of the QR decomposition is that the same approach when
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solving a linear system returns the least squares solution when applied to an over-determined system of

equations

Xβ = y .

Specifically, the least squares solution is given by the system of equations

XTXβ = XTy , (4.13)

and substituting X = Q1R into (4.13) gives

RTQT1 Q1Rβ = RTQT1 y

RTRβ = RTQT1 y

RTβ = QT1 y ,

implying that given the QR decomposition of the model matrix X, the least squares solution in an ordinary

linear regression problem can be found by solving the linear system of p equations in p unknowns RTβ = QT1 y.

Consequently, using the QR decomposition of X is one of the most popular approaches to obtaining least

squares solutions since the computations are efficient and XTX never has to be formed. Working with X

as opposed to XTX is preferable for conditioning reasons (Golub and Van Loan, 2012, Chapter 5). The QR

decomposition can also be used to solve weighted ridge regression problems of the sort necessary in the ECM

algorithm for adaptive sparseness. Specifically, we require repeated evaluations of

β̂ = (XTX +W )−1XTy ,

where W is a diagonal matrix. If we let U be a diagonal matrix with Ujj =
√
Wjj , and

ỹ =

(
y

0

)
and X̃ =

(
X

U

)
, (4.14)

then

β̂ = (X̃T X̃)−1X̃T ỹ ,

which is the ordinary least squares solution to a regression model with model matrix X̃ and response vector

ỹ, and can be found using the QR decomposition of X̃. The idea behind our algorithm is that in each

iteration, the QR decomposition of X̃ need not be found from scratch. Instead, if we pre-compute the QR

decomposition of X, then much of the work towards find the new QR decomposition of X̃ has already been

done. To see this, suppose we have already computed an orthogonal matrix Q and upper triangular matrix

R such that X = QR. Now we seek an orthogonal matrix Q̃ and upper triangular matrix R̃ such that

X̃ = Q̃R̃. To start, one can write

X̃ =

(
Q 0

0 I

)(
R

U

)
.

Now note that the matrix

(
Q 0

0 I

)
is already orthogonal, while

(
R

U

)
is upper triangular, except for the

p diagonal elements of U which are non-zero. The general strategy to find Q̃R̃ is to find an orthogonal

transformation matrix G such that G

(
R

U

)
is upper triangular. Then, setting

Q̃ =

(
Q 0

0 I

)
GT and R̃ = G

(
R

U

)
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will be a QR decomposition for X̃ because Q̃ is an orthogonal matrix (as it is the product of two orthogonal

matrices), R̃ is upper triangular due to the choice of G, and

Q̃R̃ =

(
Q 0

0 I

)
GTG

(
R

U

)
(4.15)

=

(
Q 0

0 I

)(
R

U

)
(4.16)

= X̃ , (4.17)

as required. The trick is now to find the orthogonal matrix G; this can be accomplished using a product

of Givens rotation matrices (Golub and Van Loan, 2012, Chapter 5). A Givens matrix G(i,j;θ) is a matrix

with zeros on all off-diagonal elements, except for the i, j-th and j, i-th elements which are given by sin(θ)

and − sin(θ) respectively, and ones on all the diagonal elements, except for the i, i-th and j, j-th elements,

which are both equal to cos(θ). The effect of multiplying a vector v by a Given’s rotation matrix G(i,j;θ) is

that the i and j-th elements of the vector will be modified; specifically, G(i,j;θ)v will be a new vector whose

i-th element is vj sin(θ) + vi cos(θ) and j-th element is vj cos(θ)− vi sin(θ). Consequently, i, j, and θ can be

chosen such that an arbitrary element of G(i,j;θ)v is zero. For QR updating case we seek a matrix G such

that G

(
R

U

)
is upper triangular. This can be achieved by considering a series of transformations such that

each row of U is transformed into a vector of zeros, one row at a time. If we denote by uTi the i-th row of

U , then uTi is a vector with zeros everywhere except for the i-th element, which is equal to
√
Wjj . The first

product of Given’s matrices is that which would make

(
R

uT1

)
upper triangular. uT1 has a one in the first

element, and zeros everywhere. The first Given’s matrix, G(1,n+1,θ1), can be used to make the first element

in the vector uT1 a zero, however this introduces non-zero elements in the rest of uT1 . Then a second Given’s

rotation matrix G(2,n+1,θ2) can be chosen to make the second element in uT1 a zero. Note that for the second

rotation, the indices (2, n+ 1) are chosen, because the second row of R has a zero in the first position, and

so the zero in the first position of uT2 is maintained. This process is repeated for the entire row, resulting in

a final matrix

R̃(1) = G(n,n+1,θ1) . . . G(2,n+1,θ1)G(1,n+1,θ1)R ,

which is upper triangular. Then an additional row can be added in exactly the same way, giving

R̃(2) = G(n,n+2,θ1) . . . G(2,n+2,θ1)G(1,n+2,θ1)R̃(1) ,

and so on. The full QR decomposition of X̃ can be found by updating the QR decomposition of X with one

row of U at a time. Note that the matrix Q need not at any point be formed explicitly. Recall that to solve

for β we need to solve the rectangular system R̃β = Q̃T ỹ. Hence, only R̃ and Q̃T ỹ need to be formed. Since

Q̃T simply encodes a series of orthogonal transformations, these can just directly be applied to ỹ, storing

only Q̃T ỹ, and not Q̃.

At each iteration, some coefficients βj may be smaller in absolute value than a tolerance δ that we define

to be an effective zero. Then, these coefficients will be estimated to be zero at every subsequent iteration,

and hence the weights Wjj will not change for those coefficients. Consequently, for every coefficient that is

estimated to be zero, we can update the QR decomposition with the respective weight of that coefficient,

and need not update it again for that coefficient. Our approach to implementing the ECM algorithm for

adaptive sparseness is given in Algorithm 1.
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Data: y, X, W init,ε,γ,δ

Result: β

{R,QTy} ← qr(X,y)

W ←W init

X̃T ← (XT ,W )T

ỹT ← (yT ,0Tp )

{R̃, Q̃T ỹ} ← qr(X̃, ỹ|R,QTy)

β ← argsolve
β

{R̃β = Q̃T ỹ}

Z ← ∅
∆← 1

while ∆ > γ do

Zold ← Z
βold ← β

σ2 ← 1
n (y −Xβ)T (y −Xβ)

for j ∈ Z{ do
Wjj ← σ2/(βj + ε)2

end

X̃T ← (XT ,WZ{)T

ỹT ← (yT ,0T|Z{|)

{R̃, Q̃T ỹ} ← qr(X̃, ỹ|R,QTy)

β ← argsolve
β

{R̃β = Q̃T ỹ}

Z ← {j : |βj | < δ}
if Z 6= Zold then

XT ← (XT ,WZ)T

yT ← (yT ,0T|Z|)

{R,QTy} ← qr(X,y|R,QTy)

end

∆← (βold − β)T (βold − β)/p

end
Algorithm 1: QR updating implementation of the ECM algorithm for adaptive sparseness. In this

algorithm, ∅ denotes the empty set, Z{ is the complement of Z, 0p is a vector of zeros of length p, |βj | is

the absolute value of βj , |Z| is the size of Z, and qr(X̃, ỹ|R,QTy) denotes an algorithm that updates the

QR decomposition {R,QTy} for the augmented data set {X̃, ỹ}. Implementations of the functions ‘qr’

and ‘solve’ exist in the biglm package in R.
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4.6 Estimating locally adaptive splines using adaptive sparseness

In this section we describe how we can apply adaptive sparseness to knot selection when using B-splines.

Consider a spline S(m)(x), of order m, with equally spaced knots, represented as a linear combination of

b-splines. We have

S(m)(x) =

k∑
j=1

αjB
(m)
j (x) .

We begin by showing that sparsity in m-th order differences of the coefficients (α1, . . . , αk) implies that

S(m)(x) is equivalent to a spline with some knots removed, i.e. it is equivalent to a spline with fewer

and unevenly spaced knots. Recall from Section 3.2 that a spline consists of piecewise polynomials, defined

between the knots, with smoothness constraints at the knots. Hence, a somewhat cumbersome but illustrative

way to express a spline is

S(m)(x) =



α1,mx
m + α1,m−1x

m−1 + · · ·+ α1,1x+ α1,0 for t0 ≤ x < t1

α2,mx
m + α2,m−1x

m−1 + · · ·+ α2,1x+ α2,0 for t1 ≤ x < t2
...

...

αk,mx
m + αk,m−1x

m−1 + · · ·+ αk,1x+ α1,0 for tk ≤ x < t1 ,

(4.18)

where the coefficients αj,l are subject to the smoothness constraints

lim
x→t+j

S(m)(x) = lim
x→t−j

S(m)(x)

lim
x→t+j

∂S(m)(x)

∂x
= lim
x→t−j

∂S(m)(x)

∂x

lim
x→t+j

∂2S(m)(x)

∂x2
= lim
x→t−j

∂2S(m)(x)

∂x2

...

lim
x→t+j

∂(m−2)S(m)(x)

∂x(m−2)
= lim
x→t−j

∂(m−2)S(m)(x)

∂x(m−2)
.

Hence, the only parameter that is allowed to vary between adjacent polynomials is the coefficient of the

leading power, αj,m. Consequently if, for a particular knot, we add in the constraint

lim
x→t+j

∂(m−1)S(m)(x)

∂x(m−1)
= lim
x→t−j

∂(m−1)S(m)(x)

∂x(m−1)
,

the adjacent polynomials on either side of this knot will be constrained to be identical. If the two polynomials

on either side of the knot are identical, then the spline is equivalent to a spline with that knot removed.

Hence, to show that sparsity in m-th order differences of the coefficients of b-splines results in knot removal,

it is sufficient to show that the m − 1-th derivatives of some adjacent polynomials will be equal. Defining

α = (α1, . . . , αk)T and b(m) =
(
B

(m)
1 (x), . . . , B

(m)
k (x)

)T
, we can re-express S(m)(x) as

S(m)(x) = αT b(m) .
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With equal spacing between knots the derivative of a b-spline function (de Boor, 2001, page 115) is

∂Bmj (x)

∂x
=


1
∆

(
B

(m−1)
j (x)−B(m−1)

j+1 (x)
)

if j < k

1
∆B

(m−1)
j (x)) if j = k ,

(4.19)

where ∆ is the distance between knots. Assuming for simplicity of notation that the distance between knots

is one, we can write the derivative of a spline function as

∂S(m)

∂x
= αkB

(m−1)
k +

k−1∑
j=1

αj

(
B

(m−1)
j −B(m−1)

j+1

)
= αTDT b(m−1) ,

(4.20)

where D is the differencing matrix defined in Chapter 3. Note that D is such that for some vector v,

(Dv)j =

vj for j = 1

vj − vj−1 for j > 1 ,

whereas

(DTv)j =

vj − vj+1 for j < d

vj for j = d ,

where d is the length of v. Applying (4.19) and (4.20) recursively, higher order derivatives of splines can

conveniently be expressed as
∂lS(m)

∂xl
= αT (Dl)T b(m−l) . (4.21)

Equation (4.21) implies that derivatives of splines are also splines, but of lower order. This fact is illustrated

in Figure 4.1, in which we display an arbitrary spline of order 4, along with its derivatives, and the b-splines

that form a basis for them. In particular, for the (m− 1)-th derivative of a spline of order m, we obtain

∂m−1S(m)

∂xm−1
= αT (Dm−1)T b(1)

= (D(m−1)α)T b(1)

(4.22)

Recall from the definition of b-splines that b-splines of order 1 form a basis for a step function, and so (4.22) is

a step function whose value in each individual region is the (m−1)-th derivative of each piecewise polynomial

that makes up the spline function S(m)(x), and is given by the coefficient of the corresponding b-spline. All

we needed to show is that if Dmα is sparse, then some adjacent polynomials in the spline function S(m)(x)

will have the same (m − 1)-th derivative, implying that S(m)(x) = αT b(m) would be equivalent to a spline

with some knots removed. Looking at (4.21) we observe that for some j > 1,

(Dmα)j = (DDm−1α)j = 0

implies that

(Dm−1α)j = (Dm−1α)j−1 ,

which consequently means that the (j − 1)-th and j-th polynomials in the spline S(m)(x) are identical.

When using splines to model unknown functions, the idea arises to use a sparsity inducing method that

enforces sparsity on the vector D(m)α. This provides the estimation procedure with the flexibility to choose

which knots are necessary and which are not. While in theory any sparsity inducing could be used, we

propose the adaptive sparseness method due its adaptive qualities and lack of tuning parameters.
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Figure 4.1: Derivatives, from the top to the bottom panel, ranging from order 0 to 3 of an arbitrary spline

of order 4. The vertical dotted lines are the knot locations and the coloured dotted lines are b-splines that

form a basis for each function.
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4.7 Related methods

In work that occurred in parallel to ours, Goepp et al. (2018) consider a similar approach to estimation of

locally adaptive splines. Their method depends on a sparsity inducing procedure termed ‘adaptive ridge’

regression, which was introduced by Frommlet and Nuel (2016). Adaptive ridge regression computationally

ends up being very similar to the adaptive sparseness method of Figueiredo (2003), however it is arrived at

from a different perspective. Frommlet and Nuel (2016) begin by considering best subset variable selection,

which consists of running regression models with all possible combinations of variables included, and using

a model selection method to choose which performs best. For linear regression with a normal response, the

best subset estimator can be written as the following penalised likelihood estimator,

β̂ = arg min
β

{
(y −Xβ)T (y −Xβ)

σ2
+ λ‖β‖0

}
, (4.23)

where ‖β‖0 denotes the number of non-zero elements in β, and λ is a tuning parameter to be selected using

a model selection technique. Because the penalty ‖ ·‖ is not continuous, the optimisation in (4.23) is difficult

to perform, with the only guaranteed way of achieving a global minimum being running the regression model

for every combination of variables, and checking which combination achieves a minimum. Running so many

regression models can be prohibitively expensive even for a small number of predictors however, rendering

best subset selection infeasible in most practical scenarios. As an alternative, Frommlet and Nuel (2016)

consider solving (4.23) by local quadratic approximation, in which given a current estimate β̂(k) of β, ‖β‖0
is approximated by

∑p
j=1 β

2
j /(β̂

(k)
j + ε)2, where ε is some very small number. An updated estimator is then

obtained by solving an approximation to (4.23), given by

β̂(k+1) = arg min
β

 (y −Xβ)T (y −Xβ)

σ2
+ λ

p∑
j=1

β2
j /(β̂

(k)
j + ε)2

 , (4.24)

which is just a ridge regression problem. Equation (4.24) is then iterated until convergence. Note that

equation (4.24) would be identical to the M-step of the EM algorithm for adaptive sparseness discussed in

Section 4.2 if the tuning parameter λ was set to one, and the noise variance σ2 was estimated iteratively at

each step by

σ̂2(k+1) = (y −Xβ(k))T (y −Xβ(k))/n .

Goepp et al. (2018) consider estimating locally adaptive splines by using the adaptive ridge procedure to

enforce sparsity on the m-th order differences of the coefficients of b-splines that form a basis for an m-th

order spline. In their implementation, they do not estimate the noise variance σ2, and use model selection

techniques to set the tuning parameter λ. Note by allowing a free of choice of λ, it can be argued that the

noise variance becomes irrelevant, since (4.24) can be reparametrised as

β̂(k+1) = arg min
β

(y −Xβ)T (y −Xβ) + λ̃

p∑
j=1

β2
j /(β̂

(k)
j + ε)2

 ,

where λ̃ = σ2λ, with selection of λ̃ amounting to simultaneous selection of λ and σ2, without the need for

individual estimates for each. In practice however there are still reasons why estimating the noise variance

is useful. When selecting λ̃ by model selection techniques, a range of values to try must be selected. Given

that λ̃ depends on σ2, there is more uncertainty regarding the range of values that the optimal λ̃ would lie

in. Secondly, as shown in Section 4.2, the Bayesian formulation of adaptive sparseness provides a motivation

to simply set λ to one, and forgo tuning parameter selection altogether.
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4.8 Additive models: empirical assessment of methods

In this section we carry out simulation studies to compare the performance of the various methods we have

discussed in terms of estimation of components of generalized additive models. Below we give a list of the

methods we compare along with the name we use to refer to them, and the implementation of the method

that we use. In all cases we use b-splines of order 4 (in order to obtain cubic spline fits) with evenly spaced

knots to represent the unknown functions, and the only thing that changes between methods is the approach

to regularisation, or in the Bayesian contexts considered the form of the prior used for the coefficients of the

b-splines.

1. Our proposed method, which consists of using the adaptive sparseness prior on 4-th order differences

of the coefficients of 4-th order b-splines. We refer to this with the acronym AS, which stands for

adaptive sparseness. We use our own implementation.

2. The LASSO penalty on fourth order differences of the coefficients as proposed by Jhong et al. (2017).

We refer to this as LASSO. We use the R package glmnet to fit the LASSO regularisation path, and

our own implementation of the GCV criterion to choose the tuning parameter.

3. The method of Goepp et al. (2018), which consists of using the adaptive ridge penalty on fourth order

differences of the coefficients, with tuning parameters selected either by AIC, BIC, or EBIC. We refer

to this as AR / AIC, AR / BIC, and AR / EBIC respectively, where the AR stands for adaptive ridge.

We use the implementation available at Goepp (2018).

4. The integrated squared second derivative roughness penalty with tuning parameter selection either by

GCV or maximum likelihood (ML) as described in Section 2.3 . We refer to this as CR / GCV and CR

/ ML, where the CR stands for cubic regression spline. This approach, with both tuning parameter

selection methods, is implemented in the R package mgcv (Wood, 2006).

5. A ridge penalty on fourth order differences of the coefficients with tuning parameter selection both

by GCV and ML. We refer to this as PS / GCV and PS / ML respectively, where the PS stands

for p-spline. This approach is also implemented in the R package mgcv, with both tuning parameter

selection methods.

6. The integrated squared second derivative roughness penalty with multiple tuning parameters for a

single function in order to achieve adaptivity. Tuning parameter selection is carried out either with

GCV or ML. We refer to this as AD / GCV and AD / ML, where the AD stands for adaptive. This

approach, with both tuning parameter selection methods, is implemented in the R package mgcv.

To compare the methods, we define five functions f1(·), . . . , f5(·) defined on the domain [0, 1]. The first

simulation scenario is one of an additive model with only one predictor, which is equivalent to one-dimensional

smoothing. For each function, we define the model

yi = f(xi) + εi , (4.25)

where εi ∼ N (0, 0.22). To create the values of the predictor {xi}ni=1, we draw n values from the uniform

distribution between 0 and 1. To evaluate the performance of the different methods in estimating f(·), we

simulate M = 10, 000 response vectors {yi}ni=1 conditionally on the predictors, and for each vector obtain an

estimate f̂(·) of f(·). We then use the M estimates of f(·) to estimate the following performance criteria:
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1. Integrated squared error (ISE):
∫ 1

0
E

{(
f̂(x)− f(x)

)2
}
dx

2. Integrated absolute error (IAE):
∫ 1

0
E
{
|f̂(x)− f(x)|

}
dx

3. Integrated squared bias (ISB):
∫ 1

0

[
E
{
f̂(x)− f(x)

}]2
dx

4. Integrated absolute bias (IAB):
∫ 1

0

∣∣∣E {f̂(x)− f(x)
}∣∣∣ dx

5. Integrated variance (IV):
∫ 1

0
E

{[
f̂(x)− E

(
f̂(x)

)]2}
dx

6. Average time (AT): 1
M

∑M
m=1 tm, where tm is the time taken to obtain an estimate f̂(·).

To estimate the performance criteria, we use the samples {f̂ (m)}Mm=1 to estimate the expectations, and

numerical integration using the trapezoid rule to approximate the integrals. For instance, the estimate of

the ISE is

∆

M

G−1∑
g=1

M∑
m=1

(
f̂ (m)

(
g∆
)
− f

(
g∆
))2

+
∆

2M

1∑
g=0

M∑
m=1

(
f̂ (m)

(
g
)
− f

(
g
))2

,

where G is the number of points used in the numerical integration, and ∆ = 1/G.

In the second simulation scenario we include various combinations of functions in the additive model and

evaluate all the performance criteria for each individual function as well as for the sum of the functions. For

instance, in the model

yi = f1(x1i) + f2(x2i) + εi ,

we evaluate the performance criteria for f1(x1) and f2(x2) separately, but also for f(x1, x2) = f1(x1)+f2(x2).

The only difference in how the criteria are defined in the multidimensional case is in how we approximate

the integral, which is now multidimensional. The ISE for example is given by∫ 1

0

∫ 1

0

E

{(
f̂(x1, x2)− f(x1, x2)

)2
}
dx1dx2 .

We approximate the integrals by averaging over the observed data points, giving an estimator for the ISE

1

NM

N∑
i=1

M∑
m=1

(
f̂ (m)

(
x1i, x2i)− f

(
x1i, x2i)

)2

.

4.8.1 Individual functions

Sine with increasing period

The first function we consider is given by

f1(x) = sin
(
17.5x4

)
. (4.26)

We set up b-splines of order 4, with 40 equally spaced knots to model f1(·). In Figure 4.2 we display the

function (4.26) with an example data set generated from (4.25), along with fitted functions using some of

the methods we compare in the simulation study. Table 4.1 displays estimates of the various performance

criteria we consider for each of the methods compared. The function f1(x) is an example of a function that
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could benefit from locally adaptive estimation due to the fact that it has almost constant curvature in the

region x ∈ [0, 0.5], however in the region x ∈ [0.5, 1] the curvature varies a lot. This appears in the results of

the simulation studies as the best performing methods are the ones that explicitly aim to provide adaptive

fits, with AD / ML, AD / GCV, and AS performing best both in terms of ISE and IAE. This also appears

visually in Figure 4.2 in which the fit provided by CR / ML displays ‘wiggliness’ around the true function

in the region x ∈ [0, 0.5], which is alleviated in the adaptive fits. Interestingly, AS performs better than AR

in all three tuning parameter selection cases, and is also faster given that it does not need to perform tuning

parameter selection. Table 4.1 also illustrates that while remaining competitive with AD / ML and AD /

GCV, AS requires much less time to run.

Method IAB ISB IV ISE IAE AT

AS 14.70 0.85 4.63 5.48 55.26 39.48

LASSO 53.86 6.56 3.70 10.27 72.44 149.11

AR / AIC 6.62 0.46 10.62 11.08 78.02 180.99

AR / BIC 9.25 0.57 6.34 6.90 61.02 180.99

AR / EBIC 10.30 0.60 6.24 6.84 60.86 180.99

CR / GCV 13.62 0.99 7.45 8.44 71.69 16.60

PS / GCV 12.44 1.03 7.72 8.75 72.39 18.82

CR / ML 12.00 0.80 7.65 8.45 71.92 29.97

PS / ML 13.00 1.14 7.29 8.43 71.20 34.50

AD / GCV 14.63 0.36 4.74 5.10 53.00 168.70

AD / ML 11.44 0.36 4.21 4.58 50.33 198.92

Table 4.1: Performance of methods in estimation of f1(x), defined in equation (4.26). All values are multiplied

by 1000 to enhance readability. n = 150

Broken sine

The next function we consider is given by

f2(x) =

2 sin
(
πx
1.5

)
if 0 ≤ x < 0.75

2 if 0.75 ≤ x ≤ 1
, (4.27)

and we set up an identical simulation as we did for f1(x), using b-splines of order 4, with 40 knots. Figure

4.3 displays the function, along with example data sets and fitted functions, and Table 4.2 displays the

performance of the various methods. Unlike f1(x), f2(x) is almost polynomial and we would not expect

to see a benefit in performance due to locally adaptive estimation. Indeed the best performing methods in

terms of ISE are now CR / ML and PS / ML. Interestingly, in this example, when comparing CR and PS it

appears that the tuning parameter selection matters more than the penalty, as CR / ML and PS / ML are

very close in performance, as are CR / GCV and PS / GCV. In this example, AS, CR / GCV, PS / GCV,

and AD / ML all perform similarly, with AS performing slightly better relatively. Once again, AS performs

better than AR across tuning parameter selection methods.
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Figure 4.2: Estimates of f1(x), defined in equation (4.26), using a variety of methods, for an example data

set. The points are the simulated data, the red curves are the fitted curves, the black curve is f1(x), and

the vertical dotted lines are the final knot locations.
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Figure 4.3: Estimates of f2(x), defined in equation (4.27), using a variety of methods, for an example data

set. The points are the simulated data, the red curves are the fitted curves, the black curve is f2(x), and

the vertical dotted lines are the final knot locations.
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IAB ISB IV ISE IAE AT

AS 9.65 0.13 1.49 1.61 30.89 34.31

LASSO 22.84 0.74 1.24 1.99 34.83 10.27

AR / AIC 3.20 0.01 9.67 9.69 69.83 175.62

AR / BIC 8.21 0.09 2.15 2.24 34.43 175.62

AR / EBIC 13.54 0.24 1.45 1.69 31.71 175.62

CR / GCV 8.62 0.10 1.52 1.62 30.49 18.24

PS / GCV 8.64 0.10 1.53 1.63 30.56 18.97

CR / ML 3.93 0.02 1.32 1.34 28.63 38.73

PS / ML 3.95 0.03 1.31 1.34 28.56 40.42

AD / GCV 8.94 0.11 2.23 2.34 35.24 74.98

AD / ML 7.88 0.08 1.60 1.68 31.92 566.86

Table 4.2: Performance of methods in estimation of f2(x), defined in equation (4.27). All values are multiplied

by 1000 to enhance readability. n = 150

Linear combinations of Gaussian densities

For the third and fourth functions we use a linear combination of Gaussian densities centred at a uniformly

distributed sequence of points between 0 and 1. We then standardise the functions to have a range of 2, so

that they have the same range as f1 and f2. Specifically, we set

f̃3(x) =

10∑
j=1

α
(1)
j N (x; tj , 0.07)

f̃4(x) =

10∑
j=1

α
(2)
j N (x; tj , 0.07)

f3(x) = 2f̃3(x)/(sup
x
f̃3(x)− inf

x
f̃3(x))

f4(x) = 2f̃4(x)/(sup
x
f̃4(x)− inf

x
f̃4(x)) ,

(4.28)

where supx denotes the supremum and infx denotes the infimum. We draw the coefficients α
(1)
1 , . . . , α

(1)
10

and α
(2)
1 , . . . , α

(2)
10 independently from a standard normal distribution, and the locations t

(1)
1 , . . . , t

(1)
10 and

t
(2)
1 , . . . , t

(2)
10 from the uniform distribution. The performance of the various methods are summarised in

Table 4.3 for f3 and Table 4.4 for f4, while example fits and data are given in Figures 4.4 and 4.5. For both

functions both CR and PS perform well with both tuning parameter selection methods. AS falls a little bit

behind however still performs better than AR with all tuning parameter selection methods and considerably

better than LASSO.
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Figure 4.4: Estimates of f3(x), defined in equations (4.28), using a variety of methods, for an example data

set. The points are the simulated data, the red curves are the fitted curves, the black curve is f3(x), and

the vertical dotted lines are the final knot locations.
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Figure 4.5: Estimates of f4(x), defined in equations (4.28), using a variety of methods, for an example data

set. The points are the simulated data, the red curves are the fitted curves, the black curve is f4(x), and

the vertical dotted lines are the final knot locations.
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Method IAB ISB IV ISE IAE AT

AS 15.79 0.37 3.99 4.35 51.21 40.81

LASSO 57.52 5.02 2.10 7.12 66.87 39.91

AR / AIC 5.98 0.12 21.38 21.50 79.00 161.05

AR / BIC 13.22 0.31 6.55 6.86 57.33 161.05

AR / EBIC 16.39 0.45 5.32 5.78 57.66 161.05

CR / GCV 15.44 0.44 3.33 3.77 47.49 16.36

PS / GCV 14.87 0.41 3.30 3.71 47.13 16.97

CR / ML 9.28 0.18 3.59 3.76 47.85 34.52

PS / ML 9.42 0.18 3.48 3.66 47.18 36.27

AD / GCV 15.31 0.40 3.83 4.23 49.70 78.63

AD / ML 10.39 0.21 3.55 3.76 47.46 161.14

Table 4.3: Performance of methods in estimation of f3(x), defined in equations (4.28). All values are

multiplied by 1000 to enhance readability. n = 150

Step function

For the fifth function, we consider a step-function whose jump points are unevenly spaced, given by

f5(x) =


0.2 if 0 ≤ x < 0.15

−1 if 0.15 ≤ x < 0.60

−0.2 if 0.60 ≤ x < 0.80

1 if 0.80 ≤ x ≤ 1

. (4.29)

We use a spline of order 1 to model f5(x), and only consider sparsity inducing estimation methods for this

function, with a penalty on first order differences of the coefficients. The performance of the methods we

consider is given in Table 4.5 while an example data set and fits are given in Figure 4.6. For this function,

AS and LASSO perform similarly, and both do considerably better than AR.

4.8.2 Multiple functions

We now evaluate the performance of AS and CR / ML in the estimation of additive models with multiple

functions. We leave out AR and LASSO because these methods require tuning parameter selection which

becomes impractical in the presence of multiple tuning parameters. We also leave out AD which requires

multiple tuning parameters per function to be estimated as this also becomes quite computationally costly

in the presence of multiple functions. Furthermore, we compare AS only to CR / ML for simplicity as CR

/ ML was the method that generally appeared to perform best in the simulation studies with individual

functions. In the example data sets and fits we show the data plotted are partial residuals. For an additive

model

yi =

p∑
j=1

fj(xji) + εi ,

the i-th partial residual for predictor xj is given by f̂j(xij) + ei, where ei = yi −
∑p
j=1 f̂j(xij).
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Figure 4.6: Estimates of f5(x), defined in equation (4.29), using a variety of methods, for an example data

set. The points are the simulated data, the red curves are the fitted curves, the black curve is f5(x), and

the vertical dotted lines are the final knot locations.
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Method IAB ISB IV ISE IAE AT

AS 30.78 1.34 4.38 5.72 58.71 44.61

LASSO 111.36 22.09 1.88 23.98 117.93 17.13

AR / AIC 13.05 0.43 14.26 14.69 81.88 171.66

AR / BIC 20.36 0.70 6.90 7.61 62.43 171.66

AR / EBIC 25.71 1.01 6.54 7.55 62.70 171.66

CR / GCV 20.64 0.73 3.41 4.13 50.85 16.23

PS / GCV 20.03 0.68 3.35 4.04 50.33 16.14

CR / ML 18.65 0.61 3.29 3.90 49.47 34.18

PS / ML 18.96 0.63 3.22 3.84 49.12 33.96

AD / GCV 19.18 0.61 4.10 4.72 53.44 75.36

AD / ML 18.18 0.56 3.34 3.91 49.42 152.82

Table 4.4: Performance of methods in estimation of f4(x), defined in equations (4.28). All values are

multiplied by 1000 to enhance readability. n = 150

Method IAB ISB IV ISE IAE AT

AS 26.44 12.57 3.03 15.60 51.47 55.40

LASSO 52.59 13.94 3.02 16.96 66.44 11.89

AR / AIC 43.61 17.79 8.79 26.58 84.70 238.26

AR / BIC 45.08 18.03 6.40 24.43 66.00 238.26

AR / EBIC 46.36 18.35 6.63 24.98 62.86 238.26

Table 4.5: Performance of methods in estimation of f5(x), defined in equation (4.29). All values are multiplied

by 1000 to enhance readability. n = 150

Sine functions together

We now consider an additive model with two predictors, and use f1 and f2 as the functions to be estimated.

The performance metrics are given in Table 4.6, and example data and fits in Figure 4.7. Similarly as when

estimated individually, AS performs better than CR / ML for f1 in terms of ISE. The performance is more

comparable for f2, however AS still performs slightly better.

Linear combinations of Gaussian densities together

We now consider an additive model with two predictors using f3 and f4. The performance metrics are given

in Table 4.7 and example data and fits in Figure 4.8. CR / ML performs better than AS in terms of ISE for

f3, while for f4 the ISE of the two methods is very close.

Sine functions and linear combinations of Gaussian densities together

Finally, we consider an additive model with four predictors, and use functions f1, . . . , f4, to examine how

well the methods perform in the presence of more predictors. In addition, we run the simulation experiment

with n = 150, n = 250, and n = 350, to see how the methods respond to an increasing sample size. The

performance metrics are given in Tables 4.8, 4.9, and 4.10. For n = 250 and n = 350, AS continues to
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Figure 4.7: Estimates of f1(x) and f2, defined in equations (4.27) and (4.27), using the adaptive sparseness

method and penalisation on the integrated squared second derivative with ML tuning. The points are the

partial residuals for each predictor, the red curves are the fitted curves, the black curves are f1(x) (left) and

f2(x) (right), and the vertical dotted lines are the final knot locations.
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Figure 4.8: Estimates of f3(x) and f4, defined in equation (4.28), using the adaptive sparseness method

and penalisation on the integrated squared second derivative with ML tuning. The points are the partial

residuals for each predictor, the red curves are the fitted curves, the black curves are f1(x) (left) and f2(x)

(right), and the vertical dotted lines are the final knot locations.
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Method IAB ISB IV ISE IAE AT

AS

f1 16.55 0.99 4.44 5.43 54.62 64.59

f2 8.40 0.10 1.33 1.43 28.90 64.59

f1 + f2 21.05 1.07 5.68 6.75 63.27 64.59

CR / ML

f1 14.28 1.02 7.35 8.37 71.40 85.95

f2 6.75 0.08 1.46 1.54 28.48 85.95

f1 + f2 17.38 1.05 7.71 8.76 73.49 85.95

Table 4.6: Performance of methods in estimation of f1(x) and f2(x) together. All values are multiplied by

1000 to enhance readability. n = 150

Method IAB ISB IV ISE IAE AT

AS

f3 13.82 0.29 3.01 3.30 44.82 71.87

f4 9.10 0.13 3.10 3.22 43.97 71.87

f3 + f4 14.94 0.35 5.53 5.88 60.41 71.87

CR / ML

f3 14.30 0.36 2.51 2.87 41.83 81.27

f4 14.33 0.41 2.78 3.20 44.01 81.27

f3 + f4 19.15 0.65 4.87 5.52 58.59 81.27

Table 4.7: Performance of methods in estimation of f3(x) and f4(x) together. All values are multiplied by

1000 to enhance readability. n = 150

perform well, achieving comparable performance for f2, f3, f4 in terms of ISE, better performance for f1,

and better performance for the estimation of
∑4
j=1 fj . For n = 150, CR / ML performs marginally better.
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Method IAB ISB IV ISE IAE AT

AS

f1 40.82 8.54 6.65 15.20 77.09 129.38

f2 15.08 0.33 1.85 2.18 35.23 129.38

f3 24.16 0.93 4.90 5.83 60.30 129.38

f4 22.80 0.83 6.13 6.97 61.22 129.38∑
j fj 42.52 4.06 13.31 17.37 101.15 129.38

CR / ML

f1 32.38 4.84 9.16 14.01 86.65 613.41

f2 19.90 0.57 2.32 2.89 39.54 613.41

f3 17.65 0.43 4.63 5.06 55.01 613.41

f4 22.22 1.11 5.11 6.22 58.86 613.41∑
j fj 27.82 1.66 13.93 15.58 98.51 613.41

Table 4.8: Performance of methods in estimation of f1(x), f2(x), f3(x), and f4(x) together. All values are

multiplied by 1000 to enhance readability. n = 150

Method IAB ISB IV ISE IAE AT

AS

f1 12.73 0.76 3.81 4.58 47.65 164.22

f2 9.73 0.12 0.97 1.09 25.34 164.22

f3 13.25 0.23 2.58 2.81 41.14 164.22

f4 10.95 0.20 2.83 3.03 42.65 164.22∑
j fj 21.20 0.78 8.29 9.07 74.78 164.22

CR / ML

f1 18.97 1.61 5.00 6.61 62.15 810.31

f2 9.10 0.12 1.00 1.12 25.01 810.31

f3 13.80 0.39 2.30 2.68 40.17 810.31

f4 16.55 0.55 2.58 3.12 43.65 810.31∑
j fj 26.00 1.34 8.87 10.20 79.95 810.31

Table 4.9: Performance of methods in estimation of f1(x), f2(x), f3(x), and f4(x) together. All values are

multiplied by 1000 to enhance readability. n = 250

Method IAB ISB IV ISE IAE AT

AS

f1 11.07 0.59 2.54 3.13 39.82 161.03

f2 6.19 0.05 0.74 0.79 21.12 161.03

f3 12.51 0.24 1.93 2.17 36.32 161.03

f4 6.95 0.07 1.93 2.00 34.19 161.03∑
j fj 17.79 0.62 6.15 6.77 64.50 161.03

CR / ML

f1 15.56 0.85 3.56 4.40 51.23 836.97

f2 5.02 0.04 0.72 0.75 20.46 836.97

f3 12.29 0.24 1.60 1.84 33.64 836.97

f4 15.22 0.44 1.73 2.17 35.89 836.97∑
j fj 21.33 0.86 6.59 7.45 68.44 836.97

Table 4.10: Performance of methods in estimation of f1(x), f2(x), f3(x), and f4(x) together. All values are

multiplied by 1000 to enhance readability. n = 350

56



4.8.3 Conclusions from simulation studies

The results of the simulation studies presented in this section show promise for our proposed method of using

adaptive sparseness to estimate spline functions in a locally adaptive way. No single method performed

best across all simulation settings but adaptive sparseness remained competitive with the other methods

in all the simulation studies we considered. In particular, adaptive sparseness almost always performed

better in terms of integrated squared error than the LASSO and the adaptive ridge method of Goepp et al.

(2018). It was also shown that when estimating functions that could benefit from locally adaptive estimation,

adaptive sparseness performed very well, while also taking less time to run than competing methods. In

addition, adaptive sparseness was shown to perform well when estimating multiple functions, comparing

favourably to cubic regression splines with an integrated squared second derivative roughness penalty and

tuning parameters selected by maximum likelihood.

4.9 Abalone data

To demonstrate our methodology on a real data set we consider a data set that was first presented by

Warwick J and Marine Research Laboratories (1994) and subsequently studied by Waugh (1995). The data

contain over 4,000 observations on the age and various physical measurements of abalones. The age of an

abalone can be determined through a time consuming process that involves cutting the shell and counting

the number of rings under a microscope. The problem considered by Waugh (1995) was that of predicting

the age of abalones based on other physical measurements that are easier to obtain. The data are freely

available in the UCI Machine Learning Repository Lichman (2013), and contain information on the following

variables:

1. Length (longest shell measurement, millimeters)

2. Diameter (perpendicular to length, millimeters)

3. Height (with meat in shell, millimeters)

4. Whole weight (grams)

5. Shucked weight (weight of meat, grams)

6. Viscera weight (gut weight after bleeding, grams)

7. Shell weight (after being dried, grams)

8. Sex (male, female, or infant)

9. Rings (+1.5 gives the age in years of the abalone)

In this section we consider an additive model for the rings given by

yi = β0 + β1z1i + β2z2i +

7∑
j=1

fj(xji) + εi (i = 1, . . . , 4177) , (4.30)

where z11, . . . , z1n are indicator variables taking the value 1 if the corresponding abalone is male and 0

otherwise, and z21, . . . , z2n are indicator variables taking the value 1 if the corresponding abalone is an
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infant and 0 otherwise. The variables x1, . . . , x7 represent all the continuous predictors available, with xji

denoting the i-th case of the j-th predictor. We represent the functions f1, . . . , f7 using cubic splines with

40 equally spaced knots. We fit the model using the adaptive sparseness prior on fourth order differences of

the coefficients of the b-splines as well as with an integrated squared second derivative penalty on the spline

with tuning parameter selection by GCV. The estimated functions are shown in Figure 4.9 along with partial

residuals for each variable. Table 4.11 displays the estimates of the coefficients β0, β1, β2 using each method

along with the time taken to compute the fits. The parameter estimates and fitted functions are similar

using both approaches, however adaptive sparseness take a fraction of the time to run. We will return to the

abalone data in Chapter 5, where we will explore the importance of each continuous predictor in explaining

variability in the age of abalones.

CR / GCV AS

coefs

intercept 10.109 10.111

male 0.021 0.013

infant -0.571 -0.566

time 5.893 0.753

Table 4.11: Estimates of the coefficients in model (4.30) along with time taken to obtain the estimates.

4.10 Conclusions and discussion

In this chapter we proposed the use of adaptive sparseness for the estimation of locally adaptive splines,

and showed how it can be used to estimate additive models. Enforcing sparsity in m-th order differences

of b-spline coefficients appears to be an effective way to achieve local adaptivity when estimating smooth

functions, and of all the sparsity inducing methods we tested, adaptive sparseness was the best performing

across all the simulation studies we ran. Remarkably, adaptive sparseness is tuning parameter free, and yet

in the simulation studies we considered it performed better than the LASSO and the method of Goepp et al.

(2018), both of which used tuning parameter selection techniques. The proposed method also performed

competitively with some of the methods implemented in the R package mgcv. While not as general in its

approach as some of the `2 regularisation based methods available in mgcv, the lack of tuning parameters in

adaptive sparseness means that it can easily be applied to additive models with a relatively large number

of predictors, which other estimation methods might struggle to handle. Paired with good performance in

terms of integrated squared error, and the ability to provide locally adaptive fits, there are cases where

adaptive sparseness could be a very useful alternative to existing methods.
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Figure 4.9: Estimates of the functions in model (4.30) along with the partial residuals for each variable.
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Chapter 5

Relative importance of terms in

models with smooth components

5.1 Preamble

In Chapters 3 and 4 we explored the use of b-splines in estimating smooth functions, focusing on various

approaches to the estimation of the b-spline coefficients. In this chapter we shift focus and address a different

problem. Given a model with smooth components that we have estimated, it may be of interest to either

rank the importance of the functional terms or compare the relative importance of two functional terms. To

approach this problem, we build on previous work examining the relative importance of groups of predictors

in GLMs, expanding on it to apply in the context of GAMs estimated using the methods introduced in

Chapters 3 and 4. We begin by introducing the problem in Section 5.2, and introduce our proposed method

in Section 5.3. In Section 5.4 we return to the abalone data that we introduced in Chapter 4, and use

our methodology to estimate the individual importance of each explanatory variable in predicting the age

of abalones. Finally, in Section 5.5 we introduce a data set in which perceived prestige in a variety of

occupations is recorded along with average education and income levels in each occupation, and we use our

methodology to estimate the relative importance of education over income in explaining perceived prestige of

occupations. For both data sets, we also carry out a simulation study in which we examine the performance,

in a frequentist context, of the Bayesian inferential procedures we propose.

5.2 Introduction

Consider a GLM

g
(
E(yi)

)
= xT1iβ1 + xT2iβ2 (i = 1, . . . , n) ,

where x1i and x2i are centered (i.e.
∑
i x1i and

∑
i x2i are both vectors of zeros) p1- and p2-dimensional

vectors of predictors respectively, yi is a scalar response that follows an exponential family distribution with

dispersion parameter φ, β1 and β2 are p1- and p2-dimensional vectors of parameters to be estimated, and g

is a sufficiently smooth monotonic link function. Now suppose a researcher is interested in quantifying which

group of predictors, {x1i}ni=1 or {x2i}ni=1, is more important in terms of explaining the variability present in
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E(y) = E
(

(y1, . . . , yn)T
)

. Towards this end, Silber et al. (1995) propose the relative importance statistic

ω =
βT1 X

T
1 X1β1

βT2 X
T
2 X2β2

, where Xj =


xTj1

...

xTjn

 , j = 1, 2 ,

which is the ratio of the variances of the linear predictors X1β1 and X2β2 respectively. An ω value of 1

indicates equal importance, ω > 1 indicates that X1 is more important than X2, and ω < 1 indicates that

X2 is more important than X1. Given estimates β̂1 and β̂2 of the parameter vectors, the estimated relative

importance is

ω̂ =
β̂T1 X

T
1 X1β̂1

β̂T2 X
T
2 X2β̂2

.

Because ω̂ is strictly positive, Silber et al. (1995) approximate the distribution of log ω̂ under the model as a

Gaussian whose mean and variance can be approximated using the delta method (Cramer, 1999, page 353)

as

log ω̂ ∼̇ N (logω,wTΣβ̂w) , (5.1)

where ∼̇ denotes asymptotic distribution,

w = 2

 XT
1 X1β1

βT
1 X

T
1 X1β1

−XT
2 X2β2

βT
2 X

T
2 X2β2

 , (5.2)

and Σβ̂ is the covariance matrix of

β̂ =

(
β̂1

β̂2

)
.

Given an estimate Σ̂β̂ of Σβ̂, the quantity wTΣβ̂w can be estimated as ŵT Σ̂β̂ŵ, where ŵ consists of replacing

the unknown quantities in (5.2) by their respective estimates. Using the distribution in (5.1), approximate

hypothesis tests and confidence intervals can be conducted for ω which are only asymptotically exact.

We propose to extend the work of Silber et al. (1995) to the context of GAMs. When the functional

components of GAMs are assumed to be linear combinations of b-splines, the GAM reduces to a GLM with

a particular grouping of coefficients. Using the same formulation as in Section 3.6, a GAM can be written

as

g
(
E(yi)

)
=

p∑
j=1

αTj bij , (5.3)

where bij is the vector of b-splines corresponding to the i-th case of the j-th predictor, and αj is the vector

of b-spline coefficients for the j-th function. With a GAM expressed as (5.3) the individual importance of

predictor j can be defined to be

ψj = αTj B
T
j Bjαj ,

where Bj is a matrix with i-th row bij . Similarly, the relative importance of predictor j over predictor l can

be defined to be ωjl = ψj/ψl. In this chapter we discuss inference for ψj and ωjl when the GAM in (5.3) is

estimated either using Bayesian `2 regularisation, or adaptive sparseness.
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5.3 Proposed methodology

In contrast to the approach in Silber et al. (1995), in which the maximum likelihood estimator was used

for the coefficients of a GLM, the estimation procedures we consider for GAMs are Bayesian. To carry out

inference for the individual and relative importance of predictors in GAMs, we consider approximations to

the posterior distributions ψj |y and ωjl|y respectively. More specifically, consider the estimator

α̂ = arg max
α

log p(α|y) ,

where αT = (α1, . . . ,αp), and p(α|y) arises from the specific Bayesian formulation used (in our case either

`2 regularisation or adaptive sparsity). Assume that asymptotically we have

α|y ∼̇ N
(
α̂,Σ

)
.

Then, using the delta method, for the individual importances we obtain

log
(
ψj |y

)
∼̇ N

(
log(ψ̂j),w

T
j Σjwj

)
, (5.4)

where

log(ψ̂j) = log
(
α̂Tj B

T
j Bjα̂j

)
,

and we define

wj =
2BTj Bjαj

αTj B
T
j Bjαj

.

and

Σj = cov(αj |y) .

Similarly, for the relative importance of predictor j over predictor l, we obtain

log
(
ωjl|y

)
∼̇ N (log(ω̂jl),w

T
jlΣjlwjl), (5.5)

where

log
(
ω̂jl
)

= log(ψ̂j)− log(ψ̂l) ,

and we have now defined

wjl =

(
wj

−wl

)
.

and

Σjl = cov(αj ,αl|y) .

The idea now is to use the distributions in (5.4) and (5.5) to carry out approximate inference for ψj and ωjl.

For example, approximate 95% credible intervals for logψj can be computed as[
log ψ̂j − 1.96

√
wT
j Σjwj , log ψ̂j + 1.96

√
wT
j Σjwj

]
.

To estimate the asymptotic covariance Σ of α|y, Wood et al. (2016) provides an approximation based on

a Taylor expansion for the distribution p(α|y) in the context of Bayesian `2 regularisation. The expressions

are somewhat cumbersome and we therefore do not report them here, however the reader may refer to Wood

et al. (2016, Section 4) for further details.
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In the context of adaptive sparseness, we propose the inverse Hessian matrix of − log p(α|y). We do not

directly have access to the log posterior log p(α|y), however given that the EM algorithm is used to maximise

it, we can use methods that have been developed to compute the Hessian using only quantities necessary for

the EM algorithm. Specifically, Oakes (1999) gives the equation

∂ log p(α|y)

∂α∂αT
=

{
∂Q(α|α̂)

∂α∂αT
+
∂Q(α|α̂)

∂α∂α̂T

}
α=α̂

.

With the Q function used in the EM algorithm for adaptive sparseness, with a normally distributed response

and model matrix X, we have

∂Q(α|α̂)

∂α∂αT

∣∣∣
α=α̂

= −XTX/σ̂2 −W

∂Q(α|α̂)

∂α∂α̂T
|α=α̂ = 2W

from which we obtain
∂ log p(α|y)

∂α∂αT
= −XTX/σ̂2 +W ,

where W is a diagonal matrix with j-th diagonal element 1/α̂2
j .

5.4 Abalone data

We now return to the abalone data introduced in Chapter 4. Recall the model we considered was given by

yi = β0 + β1z1i + β2z2i +

7∑
j=1

fj(xji) + εi (i = 1, . . . , 4177) , (5.6)

where yi is the number of rings in the shell of the i-th abalone, z11, . . . , z1n is an indicator variable taking

the value 1 if the corresponding abalone is male and 0 otherwise, z21, . . . , z2n is an indicator variable taking

the value 1 if the corresponding abalone is an infant and 0 otherwise. The variables x1, . . . , x7 represent all

the continuous predictors available, given by

1. Length (longest shell measurement, millimeters)

2. Diameter (perpendicular to length, millimeters)

3. Height (with meat in shell, millimeters)

4. Whole weight (grams)

5. Shucked weight (weight of meat, grams)

6. Viscera weight (gut weight after bleeding, grams)

7. Shell weight (after being dried, grams)

Once the model has been fitted, we can rank the importance of each continuous predictor. Table 5.1

displays the log-importance, along with approximate 95% credible intervals for each continuous predictor,

when the model is estimated using Bayesian `2 regularisation with an integrated squared second derivative

roughness penalty on each function. Similarly, Table 5.2 displays the individual importance, along with
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approximate 95% credible intervals, when the model is estimated using adaptive sparseness. With both

methods, height, diameter, and length are deemed the least important predictors, with all the weight related

variables appearing to be more important. The whole weight is estimated to be the most important of the

continuous predictors.

CR / ML log importance lower 95% upper 95%

Whole 12.05 11.79 12.32

Shucked 11.63 11.46 11.79

Shell 9.22 8.65 9.79

Viscera 8.83 8.30 9.36

Length 8.07 6.91 9.22

Diameter 7.52 5.79 9.25

Height 6.88 6.07 7.69

Table 5.1: Ranking the importance of each continuous predictor, along with approximate 95% credible inter-

vals, in model (5.6), when using `2 regularisation with tuning parameters selected by maximum likelihood.

AS log importance lower 95% upper 95%

Whole 12.03 11.76 12.30

Shucked 11.61 11.44 11.77

Shell 9.33 8.79 9.87

Viscera 8.95 8.43 9.47

Length 7.94 6.83 9.04

Diameter 7.27 5.60 8.93

Height 7.07 6.36 7.79

Table 5.2: Ranking the importance of each continuous predictor, along with approximate 95% credible

intervals, in model (5.6), when using adaptive sparseness as the estimation procedure.

We now carry out a simulation study in which we examine the frequentist performance of the Bayesian

credible intervals we consider. For both methods, we assume that the estimated values are the true values

of the model, and we simulate 10, 000 new response vectors from the conditional model

p(y|γ, z1, z2,x1, . . . ,x7) ,

where γ is the entire vector of parameters estimated. For each response vector we compute approximate

95% credible intervals for the log-importance of each continuous predictor. We then compute the coverage

probability of the intervals produced. The results for both methods are given in Table 5.3. We observe that

for both methods and for all the continuous predictors the approximate 95% credible intervals achieve close

to 95% coverage.

5.5 Occupational prestige data

We now consider a data set in which the perceived prestige (Pineo-Porter score) of 102 occupations is

recorded, along with average education (years) and income levels (Canadian dollars) of sampled employees
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Length Diam Height Whole Shucked Viscera Shell

CR / ML 0.937 0.935 0.964 0.944 0.948 0.956 0.944

AS 0.957 0.930 0.956 0.953 0.951 0.960 0.932

Table 5.3: Frequentist coverage of approximate 95% credible intervals for the log importance of each contin-

uous predictor in the model (5.6).

in each occupation, in Canada, 1971. The data are available in the R package car (Fox and Weisberg, 2011).

We fit the additive model

yi = β0 + f1(x1i) + f2(x2i) + εi , (5.7)

where yi represents perceived prestige, x1i the average income, and x2i the average education, associated

with the ith occupation respectively. f1 and f2 are unknown smooth functions to be estimated, i uniquely

enumerates the recorded occupations, and εi ∼ N (0, σ2). As for the abalone data, we estimate the model

using both Bayesian `2 regularisation and adaptive sparseness. The fitted functions plus and minus 2 standard

deviations, are given in Figure 5.1. The estimated functions appear to be similar using both methods.

The estimated relative importance of education over income in explaining variability in perceived prestige

of occupations, along with approximate 95% confidence intervals, for both estimation methods, is given in

Table 5.4. According to both methods, average education levels are nearly three times more important than

average income levels in explaining variability in perceived prestige of occupations, with similar approximate

95% credible intervals as well.

relimp education/income lower 95% upper 95%

CR / ML 2.96 1.34 6.53

AS 2.82 1.31 6.06

Table 5.4: Estimates, along with approximate 95% credible intervals, of the relative importance of education

over income in explaining variability in perceived prestige of occupations.

We now carry out a similar simulation study as the one we carried out for the abalone data in Section

5.4, simulating, for each method, 10, 000 response vectors from the conditional model

p(y|γ,x1,x2) ,

where γ denotes the full estimated parameter vector. Instead of computing approximate credible intervals

for the relative importance of education over income though, we compute p-values for the null hypothesis

ω = ωtrue, where ωtrue is the estimated relative importance that we take to be the true value for the purpose

of the simulation. The p-values are computed as

2
[
1− Φ

(∣∣(log ω̂ − logωtrue)/σ)
∣∣)] ,

where σ =
√
wT

12Σ12w12 as discussed in Section 5.3, and Φ(·) denotes the cumulative distribution function

of the standard normal distribution. Histograms of the 10, 000 p-values produced in this way are given in

in Figure 5.2. For both methods, the histograms indicate adequate similarity to the uniform distribution,

implying that the test for the null hypothesis ωtrue has approximately the correct size at every significance

level.
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Figure 5.1: Estimated functions (solid lines) from model (5.7) ± 2 standard deviations (dotted lines), along

with partial residuals (points).
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Figure 5.2: Empirical distribution of p-values corresponding to the hypothesis test ω = ωtrue.
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5.6 Conclusion & discussion

In this chapter we explored estimation and inference for the individual and relative importance of terms in

GAMs that are estimated either using Bayesian `2 regularisation or adaptive sparseness. We demonstrated

the use of the method using two data sets, in which the method was able to aid interpretation of the models

estimated. For the abalone data, we were able to conclude that weight related variables are more important

than size related variables in explaining variability in age between abalones. For the occupational prestige

data we were able to conclude that average education levels are more important than average income levels

in explaining variability in perceived prestige between occupations.

Although the method we proposed to estimate and perform inference for the individual and relative

importance of predictors is Bayesian, in the simulation studies we considered based on the abalone data and

occupational prestige data frequentist inferential procedures based on the Bayesian estimators were shown

to perform well. Estimating the individual and relative importance of predictors can be a simple way to gain

further insight into the results produced by GAMs, aiding their interpretability and usefulness.
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Chapter 6

Structural smooth modelling

6.1 Preamble

In the previous chapters of this thesis we explored techniques for estimation and inference in models with

smooth components, focusing on generalized additive models. GAMs are a type of regression model, in

which there is a dependent variable whose mean is a function of some predictor variables. The predictors

are usually assumed to be fixed, and the process that generated them is not of interest. In this chapter we

propose a different kind of model that is more flexible than ordinary regression in that i) all the observed

variables are jointly modelled, ii) the variables are assumed to vary smoothly as a function of some argument,

and iii) each variable may be observed at a distinct set of argument values. We name the new approach

structural smooth modelling (SSM). We begin in Section 6.2 by introducing structural equation modelling

and Gaussian processes, which are key ideas for our development. In Section 6.2.3 we discuss asynchronous

data, which are the type of data that motivate our model. We introduce SSM in 6.3, and discuss learning

and inference for it in Section 6.4. We then show some example uses of SSM and present simulation studies

that examine its performance in Section 6.5, followed by an analysis of data obtained from British Cycling

in Section 6.6.

6.2 Background

6.2.1 Structural equation modelling

Structural equation modelling refers to a broad class of models that developed with contributions from various

fields over the years. Broadly speaking, structural equation models emerge as the synthesis of path analysis,

latent variable, and measurement models. Path analysis was pioneered by Wright (1918, 1934, 1960) and

consists of models in which multiple variables depend on each other through a set of regression equations,

departing from ordinary regression in which there is a clear distinction between a single dependent variable

and one or more independent variables. The other essential building block of structural equation models

is factor analysis, which examines the relationships between observed variables and latent variables. One

of the most common uses of factor analysis is in measurement models, where one wants to infer properties

of variables that cannot be measured directly (latent variables), but instead through a set of indicators

(observed variables). Structural equation models combine path and factor analysis by allowing a set of
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latent variables to be linked through a set of multiple regression equations, with the latent variables linked

to a set of observable variables through a measurement model. Today, the model that many practitioners

refer to as a structural equation model stems from the work of Jöreskog (1970), Wiley (1973), and Keesling

(1972), who contributed to a general formulation that is implemented in the LISREL program (Jöreskog,

2001). The general model can be written as

η = Bη + Γξ + ζ (6.1)

y = Λyη + ε (6.2)

x = Λxξ + δ . (6.3)

Equation (6.1) describes the relationships between the vector of latent variables η, which are usually the

variables of interest in the model. These variables can be thought of as dependent variables, as in ordinary

regression, with the difference being that there now multiple dependent variables that depend on eachother.

The matrix B contains coefficients that describe how each latent dependent variable depends on the others.

ξ is a vector of latent covariates, or independent variables, as any dependencies that they have on other

variables are not part of the model. The matrix Γ contains coefficients that describe how the dependent

variables depend on the independent ones, and ζ is a vector of mean zero normally distributed errors. Setting

aside for a moment that η and ξ are latent (i.e. not directly measurable) variables, equation (6.1) can be

thought of as a system of regression equations, in which each dependeent variable is a noisy observation of

a linear combination of some of the other dependent variables and some of the independent variables.

Equations (6.2) and (6.3) are factor analysis models that describe how the latent variables η and ξ are

measured respectively, where y and x are the variables that are observed. The factor models posit that each

observed variable is a noisy observation of a linear combination of the latent variables, with the coefficients

of the linear combinations given in the matrices Λy and Λx. ε and δ are vectors of mean zero normally

distributed errors.

The unknown parameters to be estimated are the elements of the matrices B,Γ,Λy, and Λx, as well as

the variances of the error vectors ζ, ε, and δ. The data that are actually observed are matched realisations

of the vectors y and x, i.e. a set {(y1,x1), . . . , (yn,xn)}. With regard to estimation the central quantity of

interest is the sample covariance matrix, which is compared to the population covariance matrix as a function

of the parameters. Parameter estimates can be chosen to minimise some measure of distance between the

observed covariance and implied covariance matrices. For an introduction to structural equation and latent

variable models, see Bollen (1989).

6.2.2 Gaussian processes

A Gaussian process is a stochastic process, any finite collection of realisations from which are jointly normally

distributed. Gaussian processes are often used as a distributional assumption regarding an unknown function.

For example, a function f(x) is a Gaussian process if the collection of random variables {f(x1), . . . , f(xn)}
are jointly normally distributed, for any {x1, . . . ,xn}.

Gaussian processes are usually parametrised by a covariance function (or kernel) k(xi,xj) which specifies

the covariance between any two points in the process, and a mean function. Assuming for now that the mean

function is zero, the covariance function fully specifies the distribution of any collection of observations of

the Gaussian process. A commonly used covariance function is the squared exponential, given by

k(xi,xj) = σ2
f exp

{
− 1

2l2
‖xi − xj‖22

}
,
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where σ2
f and l are parameters of the kernel. A Gaussian process can be denoted by

f(x) ∼ GP
(

0, k(·, ·)
)
. (6.4)

Expression (6.4) encodes the information that(
f(x1), . . . , f(xn)

)T
∼ N (0,K) ,

where K is an n × n matrix with i, j-th element k(xi,xj), for any set of argument values {x1, . . . ,xn}.
K is referred to as the Gram matrix of the kernel k(·, ·) with respect to the inputs {x1, . . . ,xn}. Kernel

functions used for Gaussian processes must be such that the resulting Gram matrix is symmetric and positive

semi-definite, as otherwise it would not be a valid covariance matrix. Gaussian processes are often used for

regression by assuming that the function f(x) in a regression model

yi = f(xi) + εi

is a Gaussian process. With a covariance function such as the squared exponential, Gaussian process re-

gression encodes the intuitive idea that the responses corresponding to predictor vectors that are close in l2

norm should be highly correlated (i.e. relatively close in value) compared to predictor vectors that are far

in l2 norm. Inference for the function f(x) consists of finding the posterior distribution

p
(
f(x)|y

)
,

which can be found analytically using properties of the normal distribution, assuming that the parameters

σ2
f and l2 are known. In practice, these need to be selected. One popular approach is to estimate σ2

f and l2

by maximising the marginal log-likelihood

`(σ2
f , l

2) = log p(y;σ2
f , l

2) = logN (y;0,K + σ2
ε I) ,

where K is the Gram matrix, σ2
ε is the variance of the errors, and I is the identity matrix.

6.2.3 Asynchronous data

A standard format for multivariate data is a matrix in which multiple observed cases (rows) of a set of

variables (columns) are recorded. The rows usually represent observations of the variables matched in some

way, for example by individual, or by time. Many multivariate statistical techniques depend directly on the

observation of such a matrix. Not many techniques have been developed however for the case when a set of

variables is recorded but cannot be matched in an obvious way. For example, as is the focus of this paper,

a set of variables may be recorded longitudinally, however not at the same time points. More generally,

variables may be recorded at mismatched values of some vector, such as space. We refer to such data as

asynchronous. In these settings, standard methods such as linear regression or factor analysis cannot be

directly applied, and extensions need to be devised that can take into account the asynchronous nature of

the data. In what follows we assume that asynchronicity is with respect to time.

Rehfeld et al. (2011) compare various approaches to estimating the correlation between two asyn-

chronously observed vectors. These include binning techniques, in which data are artificially aligned, in-

terpolation techniques, and kernel weighting schemes. Cao et al. (2015, 2016); Chen and Cao (2017) propose

various approaches to longitudinal regression with asynchronous data. The main idea in these approaches
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is to consider generalized estimating equations for longitudinal regression in which various combinations of

responses and predictors are weighted by a kernel that takes into account the time asynchronicity between

them. Crucially however, in these works the predictors are all assumed to be observed at the same time

points. Duncker and Sahani (2018) consider a factor analysis for asynchronous longitudinal data in which

the factors are Gaussian processes, while also modelling the observed time points using point processes.

In this chapter we aim to combine Gaussian process factor analysis with path models to form a struc-

tural model for asynchronous data that can flexibly handle a variety of modelling scenarios, while handling

asynchronicity naturally.

6.3 Structural smooth modelling

We aim to construct a joint model for a set of stochastic processes {y1(t), . . . , yp(t)}, each of which has been

observed at a different vector of time points {t1, . . . , tp}. We begin by assuming that each process yj(t) is a

shifted, noisy observation of a mean zero latent Gaussian process ηj(t), and that the Gaussian processes are

structurally related according to the set of equations

η(t) = Bη(t) + v(t) , (6.5)

where η(t) =
(
η1(t), . . . , ηp(t)

)T
, v(t) =

(
v1(t), . . . , vp(t)

)T
is a vector of independent Gaussian processes

with kernels that depend respectively on a set of parameter vectors {λ1, . . . ,λp}, and B is a strictly lower

triangular matrix that depends on a vector of unknown parameters β. This structure is depicted graphically

in Figure 6.1. In the graph, dashed lines pointing at a node indicate that the pointing nodes are parameters

of the distribution of the process being pointed at; solid lines pointing at a node indicate linear dependence

of the process represented by that node on the processes from which the arrows are pointing; finally, bold

lines indicate linear dependence with a coefficient of one. Circular nodes represent latent processes, while

square nodes represent processes that have been observed at sets of distinct time points. Intuitively, equation

(6.5) posits that for each j, the stochastic process ηj(t) is a linear combination of other stochastic processes

{η1, . . . , ηj−1}, plus an independent Gaussian process vj(t).

Equation (6.5) can be re-written as

η(t) = Bη(t) + v(t)

⇒η(t)−Bη(t) = v(t)

⇒(I −B)η(t) = v(t)

⇒η(t) = (I −B)−1v(t) ,

(6.6)

where (I−B) is guaranteed to be invertible because B is strictly lower triangular, implying that I−B is lower

triangular with invertible entries on the diagonal. The equation in (6.6) implies that each stochastic process

ηj(t) is a linear combination of the independent Gaussian processes {v1(t), . . . , vp(t)}, and consequently is

also a Gaussian process. The full generative model can be written as

εj(t) ∼ N (0, φj)

vj(t) ∼ GP (0, kλj ) ,

η(t) = Bη(t) + v(t)⇔ η(t) = (I −B)−1v(t) ,

yj(t) = µj + ηj(t) + εj(t) ,

(6.7)
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v1(t) v2(t) v3(t) . . . vp(t)

λ1 λ2 λ3 λp

η1(t) η2(t) η3(t) . . . ηp(t)

y1(t) y2(t) y3(t) . . . yp(t)

(µ1, φ1)T (µ2, φ2)T (µ3, φ3)T (µp, φp)
T

Figure 6.1: A graphical representation of the general structural model.

for j = 1, . . . , p, and t ∈ T , where T denotes some time interval. The formulation in (6.7) allows us to model

multiple stochastic processes jointly without assuming that they have been observed synchronously.

6.4 Estimation, inference and prediction

6.4.1 Parameter estimation and inference

When working with a hierarchical model such as (6.7), there are three tasks, relevant to learning and

inference, that one might consider. The first is that of parameter estimation, or learning. The second task

is that of constructing confidence intervals and carrying out hypothesis tests for the estimated parameters,

which we refer to as inference, in the traditional frequentist sense. Finally, one may wish to compute the

posterior distribution of latent variables given the observed data. We refer to this as prediction.

The parameters to be estimated in model (6.7) consist of the means µ1, . . . , µp of the observed processes,

which we denote by µ; the coefficients β that make up the matrix B, which determines the relationships

between the latent processes {η1(t), . . . , ηp(t)}; the collection of kernel parameters {λ1, . . . ,λp}, which we

concatenate into a vector λ; and the noise variance parameters {φ1, . . . , φp}, which we denote by the vector

φ. Finally, we denote the covariance parameters by γT = (βT ,λT ,φT ), and the entire coefficient vector by

δT = (µT ,γT ). We consider maximum likelihood estimation for δ, and consequently the majority of this

section is devoted to expressing the likelihood for observed data, as well as the gradient of the likelihood, for

optimisation purposes. We assume that the observed data consist of vectors {y1(t1), . . . , yp(tp)}, where yj(tj)

denotes the vector
(
yj(tj1), . . . , yj(tjqj )

)T
, and {t1, . . . , tp} are distinct, length {q1, . . . , qp} respectively,

vectors of time points at which each process is observed. Because the observed stochastic processes are

linear combinations of jointly normally distributed quantities, the observations of the processes are also

jointly normally distributed. Consequently, to express the likelihood function for the observed data, it is

sufficient to find the mean and covariance matrix of the observations. We denote by αij the i, j-th element
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of (I −B)−1. Then, for any two arbitrary time points t∗1 and t∗2, we have

ηi(t
∗
1) =

p∑
k=1

αikvk(t∗1) ,

ηj(t
∗
2) =

p∑
l=1

αjlvl(t
∗
2) .

Firstly, it is easy to see that

E
(
ηi(t
∗
1)
)

= E
(
ηj(t

∗
2)
)

= 0 ,

since E
(
v1(t)

)
= · · · = E

(
vp(t)

)
= 0. We therefore have

cov
(
ηi(t
∗
1), ηj(t

∗
2)
)

= E

[(
p∑
k=1

αikvk(t∗1)

)(
p∑
l=1

αjlvl(t
∗
2)

)]

=

p∑
k=1

E

[
αikvk(t∗1)

p∑
l=1

αjlvl(t
∗
2)

]

=

p∑
k=1

E
[
αikvk(t∗1)αjkvk(t∗2)

]
=

p∑
k=1

αikαjkcov
(
vk(t∗1), vk(t∗2)

)
=

p∑
k=1

αikαjkkλk
(t∗1, t

∗
2) .

(6.8)

Similarly, E
(
yi(t
∗
1)
)

= µi, and therefore

yi(t
∗
1)− E

(
yi(t
∗
1)
)

=

p∑
k=1

αikvk(t∗1) + εi(t
∗
1) ,

yj(t
∗
2)− E

(
yj(t

∗
2)
)

=

p∑
l=1

αjlvl(t
∗
2) + εj(t

∗
2) ,

(6.9)

from which we conclude

cov
(
yi(t
∗
1), yj(t

∗
2)
)

=

p∑
k=1

αikαjkkλk
(t∗1, t

∗
2) + 1{i=j,t∗1=t∗2}φi ,

where 1{i=j,t∗1=t∗2} takes the value 1 if i = j and t∗1 = t∗2, and 0 otherwise.

For ease of notation, we define ηj = ηj(tj), η
T = (ηT1 , . . . ,η

T
p ), yj = yj(tj), and yT = (yT1 , . . . ,y

T
p ). Let

K be the Q×Q covariance matrix of y, where Q =
∑
j qj . K can be described in a block-wise fashion, with

the i, j-th block denoting the cross-covariance cov(yi,yj). We then have

K(i,j) =
∑
k

αikαjkkλk
(ti, tj) + φiI[i=j] ,

where I[i=j] is the qi × qi identity matrix if i = j, and 0 otherwise, and kλk
(ti, tj) denotes the Gram matrix

of the kernel kλk
with respect to the inputs ti and tj . Consequently we can write the log-likelihood for the
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observed data as

`(δ) = log p(y; δ)

= −1

2
log |K| − 1

2
(y − µrep)TK−1(y − µrep) + c ,

where c is a constant that does not depend on the parameters to be estimated, |K| denotes the determinant

of K, and

µrep =
(
µ11

T
q1 , . . . , µp1

T
qp

)T
,

where 1qj is a vector or ones of length qj . To optimise the log-likelihood, we propose the BFGS algorithm

(Fletcher, 1987, Chapter 3).

As a quasi-Newton method, the BFGS algorithm requires only evaluations of the function to be optimised,

along with its gradient, and builds up an approximation to the Hessian as it progresses iteratively. This

makes it convenient for our case as we need not compute the Hessian analytically, but we still obtain an

approximation to it at convergence.

We now give expressions for the derivative of the log-likelihood with respect to each parameter. For the

mean parameters, we have

∂`(δ)

∂µk
= (y − µrep)TK−1 ∂µ

rep

∂µk
,

where

∂µrep

∂µk
=
(
0Tq1 , . . . ,1

T
qk
, . . . ,0Tqp

)T
,

with 0qj denoting a vector of zeros of length qj . For the variance parameters we have

∂`(δ)

∂γk
= −1

2
tr

[
K−1 ∂K

∂γk

]
+

1

2
(y − µrep)TK−1 ∂K

∂γk
K−1(y − µrep) ,

and so all that remains to fully express the gradient of the log-likelihood is the derivative of K with respect

to each parameter. Firstly, it is useful to obtain

∂αis
∂βkl

=
∂[(I −B)−1]is

∂βkl

=
(
− (I −B)−1 ∂(I −B)

∂βkl
(I −B)−1

)
is

= [(I −B)−1]ik[(I −B)−1]ls = αikαls ,

where βkl is the coefficient in the k, l-th position of B. Similarly, we denote by λkl the l-th element of the
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vector λk. We can then write

∂K(i,j)

∂βkl
=
∂
∑p
s=1 αisαjskλs

(ti, tj)

∂βkl

=

p∑
s=1

(∂αis
∂βkl

αjs + αis
∂αjs
∂βkl

)
kλs

(ti, tj)

=

p∑
s=1

(αikαlsαjs + αisαjkαls)kλs
(ti, tj)

∂K(i,j)

∂λkl
=
∂
∑p
s=1 αisαjskλs

(ti, tj)

∂λkl

= αikαjk
∂kλk

(ti, tj)

∂λkl

∂K(i,j)

∂φk
= I[i=j=k] ,

where I[i=j=k] is the appropriately sized identity matrix if i = j = k, and a matrix of zeros otherwise. Once

parameter estimates δ̂ are obtained by finding δ̂ = arg maxδ `(δ), using the BFGS algorithm, an approximate

covariance matrix for δ̂ can be computed as

Σ̂ = Ĥ−1 ,

where Ĥ is the approximate Hessian of the log-likelihood, returned at convergence of the BFGS algorithm.

Approximate inference for δ can then be carried out, for example by constructing approximate 95% confidence

intervals

δ̂k ± 1.96

√
Σ̂kk .

6.4.2 Prediction

Once maximum likelihood estimates δ̂ have been obtained, it may be of interest to compute the posterior

distribution of the latent variables

p
(
η(t∗)|y; δ̂

)
,

and point predictions of the form

η̂(t∗) = E
(
η(t∗)|y; δ̂

)
,

for some arbitrary time point t∗. To compute the conditional distribution of η(t∗)|y, we first need to compute

the joint distribution, from which the conditional distribution will follow given the properties of the normal

distribution. The joint distribution can be written as[
y

η(t∗)

]
∼ N

([
µrep

0

]
,

[
K K∗

K∗T K∗∗

])
,

where K∗ denotes the cross-covariance cov
(
y,η(t∗)

)
and K∗∗ denotes the covariance of η(t∗). We then have

η(t∗)|y ∼ N
(
K∗K−1(y − µrep),K∗∗ −K∗K−1K∗

)
and therefore,

η̂(t∗) = K∗K−1(y − µrep) .

K∗ and K∗∗ can be computed in a similar manner to the way K was computed in Section 6.4.1, using

equations (6.8) and (6.9)
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6.5 Example applications and simulation studies

In this section we examine the performance of SSM using simulated data. We begin with an example of a

regression type scenario, followed by factor analysis.

6.5.1 Regression

For the regression scenario, we consider a case of three observed processes y1(t), y2(t), y3(t). The generative

model we consider can be written as

η1(t) = v1(t)

η2(t) = v2(t)

η3(t) = β31η1(t) + β32η2(t) + v3(t)

y1(t) = µ1 + η1(t) + ε1(t)

y2(t) = µ2 + η2(t) + ε2(t)

y3(t) = µ3 + η3(t) + ε3(t) ,

(6.10)

where v1(t), v2(t), v3(t) are independent Gaussian processes and ε1(t), ε2(t), ε3(t) are independent noise pro-

cesses (i.e. εj(t) ∼ N (0, φj)). We use the squared exponential kernel for each Gaussian process. We set all

the parameter values arbitrarily and simulate from the model in the following way. We first generate three

uniformly distributed vectors of time points, t1, t2, t3, between zero and one. We then generate realisations of

the Gaussian processes v1(t), v2(t), v3(t), followed by realisations of the noise processes ε1(t1), ε2(t2), ε3(t3).

We then compute the compete vector of observed data yT =
(
yT1 (t1), yT2 (t2), yT3 (t3)

)
. To examine the per-

formance of maximum likelihood estimation we repeat the data generation procedure N = 1, 000 times, and

compute the maximum likelihood estimate for each data set. We then compute, for the parameters of inter-

est, the expected value of each parameter, its variance, and the expected value of the estimator of its variance.

Figure 6.2 is a graphical representation of the model, while Figure 6.3 displays one example data set, with

the top panel showing the realisations of
(
µ1 + η1(t), µ2 + η2(t), µ3 + η3(t)

)
that were used to generate the

observed data, and the bottom panel displaying the the fitted values
(
µ̂1 + η̂1(t), µ̂2 + η̂2(t), µ̂3 + η̂3(t)

)
, with

η̂j(t) = E(ηj(t)|y). We repeat this entire simulation study two times, changing the number of observations

obtained from each observed stochastic process. The first time, we obtain 40 observations from each process,

while the second time we obtain 80. Tables 6.1 and 6.2 display the respective results. In both simulation

cases the expected value of the estimators are close to the true values, with the difference decreasing for

larger n. The variance estimator is shown to perform well, especially in the larger n case. Furthermore, the

variance of the estimators decreases with n.

µ1 µ2 µ3 β31 β32

expected value of MLE 0.00 -0.17 -1.28 -2.00 1.97

true value 0.02 -0.18 -1.37 -2.00 2.00

expected value of variance estimator 0.26 0.26 2.04 0.22 0.22

simulation based variance 0.27 0.29 3.27 0.24 0.26

Table 6.1: Results of the simulation study using model (6.10) as the data generating process, with n = 40.
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µ1 µ2 µ3 β31 β32

expected value of MLE 0.01 -0.19 -1.35 -1.98 2.00

true value 0.02 -0.18 -1.37 -2.00 2.00

expected value of variance estimator 0.26 0.25 2.00 0.11 0.10

simulation based variance 0.30 0.26 3.15 0.11 0.10

Table 6.2: Results of the simulation study using model (6.10) as the data generating process, with n = 80.

v1(t) v2(t) v3(t)

λ1 λ2 λ3

η1(t) η2(t) η3(t)

y1(t) y2(t) y3(t)

(µ1, φ1) (µ2, φ2) (µ3, φ3)

Figure 6.2: Graphical representation of the model formulated in (6.10).
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Figure 6.3: Example data set generated from (6.10), with the top panel showing the realisations of
(
µ1 +

η1(t), µ2 + η2(t), µ3 + η3(t)
)

that were used to generate the observed data, and the bottom panel displaying

the fitted values
(
µ̂1 + η̂1(t), µ̂2 + η̂2(t), µ̂3 + η̂3(t)

)
(solid line), plus and minus 2 standard deviations of

η̂j(t) (dashed line). The true coefficients are β31 = −2 and β32 = 2 while the estimates are β̂31 = −1.60 and

β̂32 = 1.60.
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6.5.2 Factor analysis

Now we show how the general SSM formulation can also be used to perform a kind of factor analysis. The

generative model we consider is given by

η1(t) = v1(t)

η2(t) = β21η1(t) + v2(t)

η3(t) = β31η1(t) + v3(t)

y2(t) = µ2 + η2(t) + ε2(t)

y3(t) = µ3 + η3(t) + ε3(t) .

(6.11)

The crucial point to make in this case is that we do not observe a stochastic process y1(t) that depends

on η1(t) only, instead observing y2(t) and y3(t), which in turn depend on η1(t). η1(t) can be thought of as

representing shared variability between η2(t) and η3(t), and hence is a way to introduce association between

η2(t) and η3(t). The structure in (6.11) is shown graphically in Figure 6.4. Note that if, for example, a

squared exponential kernel is used to model v1(t), an identifiability issue is created. To see this, we denote

the observed data by (yT2 ,y
T
3 ) =

(
y2(tT2 ), y3(tT3 )

)
and obtain

cov

[
y2

y3

]
=

[
β2

21kλ1
(t2, t2) + kλ2

(t2, t2) β21β31kλ1
(t2, t3)

β21β31kλ1
(t3, t2) β2

31kλ1
(t3, t3) + kλ3

(t3, t3)

]
.

With the squared exponential kernel, we have

kλ1
(t∗1, t

∗
2) = λ11 exp

{
− (t∗1 − t∗2)2

2λ12

}
,

where t∗1 and t∗2 are arbitrary time points, and λ11 and λ21 are positive. It now becomes clear that for any

positive constant c, setting β∗21 =
√
cβ21, β∗31 =

√
cβ31, λ∗11 = λ11/c would yield exactly the same covariance

matrix as β21, β31, and λ11. In addition, interchanging the signs of β21 and β31 also results in the same

covariance matrix. Both of these issues can be dealt with by setting the value of either β21 or β31. In this

example we set β21 = 1. We now carry out the same simulation as in Section 6.5.1, generating N = 1, 000

data sets from the generative model, once with 40 observations per observed process and once with 80. The

results are given in Tables 6.3 and 6.4. In both cases the maximum likelihood estimator performs well, with

negligible bias and good variance estimates. With larger n the variance of the estimators decreases and the

variance estimators improve.

µ1 µ2 β21 β31

expected value of MLE 2.00 2.98 1.00 -2.01

true value 2.00 3.00 1.00 -2.00

expected value of variance estimator 0.54 1.30 - 0.21

simulation based variance 0.63 1.32 - 0.25

Table 6.3: Results of the simulation study using model (6.11) as the data generating process, with n = 40.
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µ1 µ2 β21 β31

expected value of MLE 1.97 3.01 1.00 -1.99

true value 2.00 3.00 1.00 -2.00

expected value of variance estimator 0.56 1.13 0.00 0.10

simulation based variance 0.60 1.08 0.00 0.09

Table 6.4: Results of the simulation study using model (6.11) as the data generating process, with n = 80.

v1(t) v2(t) v3(t)

λ1 λ2 λ3

η1(t) η2(t) η3(t)

y2(t) y3(t)

(µ2, φ2) (µ3, φ3)

Figure 6.4: Graphical representation of the model formulated in (6.11).
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Figure 6.5: Example data set generated from (6.11), with the top panel showing the realisations of
(
η1(t), µ2+

η2(t), µ3 + η3(t)
)

that were used to generate the observed data, and the bottom panel displaying the fitted

values
(
η̂1(t), µ̂2 + η̂2(t), µ̂3 + η̂3(t)

)
(solid line), plus and minus 2 standard deviations of η̂j(t) (dashed line).

The true coefficients are β21 = 1 and β31 = −2. β̂21 is set to 1 for identifiability, while β̂31 = −1.60.
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6.6 British Cycling data

We now present the data that motivated the SSM framework introduced in this chapter, which comes from

British Cycling, the organisation that supports Olympic cyclists in the UK. The data are comprised of

measurements taken from various types of training efforts undertaken by the athletes over a period of a

few years. In the analyses we present, we will focus on three types of training efforts. The first occurs in

the gym, on a bicycle ergometer. A bicycle ergometer is a stationary bicycle that allows cyclists to train

in the gym while also recording their performance. The ergometer measurement that we have access to is

the peak torque produced by the athlete during each effort. The second type of training effort is cycling

on the road, from which we have access to the highest average power produced over one, two, five, and ten

minutes. Finally we consider training efforts that occur in the velodrome, which consist of efforts over various

distance (in laps) with different starting speeds. While there are many measurements taken for efforts in

the velodrome, we will focus on the peak power produced during each training effort. While there are many

challenges in working with a data set like this one, the most challenging aspect is that different training

efforts occur at different time points. Consequently, it is not obvious how one may attempt to associate

measurements taken from different training efforts, as they are not matched in time. This is what motivated

the development of a model that can jointly model various processes without assuming that they have been

measured at the same time points. Other challenges include lack of information regarding the circumstances

under which a training effort took place, e.g. whether an athlete was returning from injury, or whether

training efforts took place with a particular intention that might vary the results produced. Finally, the

frequency with which efforts occur is variable, and it is not clear whether this is because not all efforts were

recorded, or because of injury, or because the focus of training changed and consequently the types of efforts

varied. This is particularly challenging because for many athletes there is not much overlap between the

timings of different types of efforts, making the task of associating these measurements particularly difficult.

For this reason we focus on only the three athletes who have the most recorded efforts in the data.

6.6.1 Data pre-processing

To analyse the BC data using the SSM approach, we had to make a small ad-hoc modification to the data

to make them more amenable to analysis by SSM. For all the models we consider with the BC data, we use

squared exponential kernels for the Gaussian processes. Because the squared exponential kernel is designed

for use with continuous inputs, problems can be created if some inputs are identical or very close together.

In the BC data dates are measured in days, and for some athletes and types of training, efforts occur on

the same day with large spaces between days with training efforts. To deal with this, for each athlete, and

for each type of training effort, we add small perturbations to the dates at which efforts are recorded. The

perturbations are all drawn independently from a normal distribution with mean zero and variance ten.

6.6.2 Tracking velodrome performance over time

In this section we examine whether performance in different training efforts in the velodrome over time are

associated, and whether these changes over time can be explained by a single factor. The velodrome training

efforts are flying lap, standing lap, and standing half. Flying lap refers to a lap of the velodrome starting

from high speed. Standing lap refers to a lap in the velodrome starting from rest. Similarly standing half

is the same as standing lap but for only half a lap. The measurement we consider for each training effort is
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Figure 6.6: Plot of training efforts for top eight athletes with most recorded efforts.
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the peak power produced by the athlete. We use the same type of single factor model that we used for the

simulation study in Section 6.5.2. The model can be written as

η1(t) = v1(t)

η2(t) = β21η1(t) + v2(t)

η3(t) = β31η1(t) + v3(t)

η4(t) = β41η1(t) + v4(t)

y2(t) = µ2 + η2(t) + ε2(t)

y3(t) = µ3 + η3(t) + ε3(t)

y4(t) = µ4 + η4(t) + ε4(t) ,

(6.12)

where η1(t) is the factor that explains shared variability between η2(t), η3(t), and η4(t). y2(t), y3(t), and

y4(t) denote the peak power achieved in flying lap, standing lap, and standing half lap training efforts at time

t. We estimate the model for each athlete individually, using a squared exponential kernel for all Gaussian

processes. The data, along with the shifted posterior curves µ̂j+ηj(t)|y, are shown for each athlete in Figure

6.7. The plots indicate that a single factor fits the data well for all three athletes, implying that a global

indicator of changes in peak power performance in the velodrome can be measured by finding the shared

variability between different types of velodrome training efforts. The parameter estimates of the means of

each observed process along with the coefficients of the factor for each athlete are given in Table 6.5. The

parameter β21 was set to one for identifiability.

µ2 µ3 µ4 β21 β31 β41

Ath1
estimate 531.69 793.35 774.97 1.00 0.57 0.49

standard error 23.79 13.82 11.64 - 0.15 0.09

Ath2
estimate 742.34 859.21 855.82 1.00 0.69 0.59

standard error 30.80 18.80 16.40 - 0.10 0.09

Ath3
estimate 700.89 1047.77 1057.37 1.00 1.38 0.95

standard error 15.06 19.52 13.54 - 0.26 0.08

Table 6.5: Parameter estimates, along with standard errors, from model (6.12).

6.6.3 Associating standing half lap with ergometer and road measurements

The next type of model we consider is a regression model similar to the one used in the simulation study in

Section 6.5.1. We aim to examine whether changes in ergometer peak torque and road average power are

associated with changes in standing half lap performance. We choose standing half among flying lap and

standing lap because there are more measurements for standing half. The model can be written as

η1(t) = v1(t)

η2(t) = v2(t)

η3(t) = β31η1(t) + β32η2(t) + v3(t)

y1(t) = µ1 + η1(t) + ε1(t)

y2(t) = µ2 + η2(t) + ε2(t)

y3(t) = µ3 + η3(t) + ε3(t) ,

(6.13)
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Figure 6.7: Fits obtained from the factor model formulated in (6.12). As shown in the plots a single factor

does a good job of explaining over time changes in the peak power produced in flying lap, standing lap, and

standing half lap efforts for Ath1, Ath2, and Ath3. 85



where y1(t), y2(t) and y3(t) are ergometer peak torque, road average power, and standing half peak power,

respectively, at time t. The data, along with fitted curves, are shown for each athlete in Figure 6.8, while the

parameter estimates, along with standard errors, are shown in Table 6.6. For all three athletes, β32 is small

relative to its standard error, and hence no evidence is provided for a link between average power on the

road and peak power in standing half laps. On the contrary, for all three athletes β31 is positive and larger

than twice its standard error, and so evidence is provided for a positive association between peak torque

produced on the ergometer and peak power produced in standing half laps.

µ1 µ2 µ3 β31 β32

Ath1
estimate 236.33 257.78 767.73 1.09 0.32

standard error 8.58 9.16 9.27 0.35 0.30

Ath2
estimate 270.46 265.45 863.26 0.51 0.01

standard error 37.62 8.11 18.82 0.12 0.22

Ath3
estimate 311.93 314.16 773.12 2.05 0.34

standard error 7.28 11.24 285.86 0.46 0.67

Table 6.6: Parameter estimates, along with standard errors, from model (6.13).

6.6.4 Associating velodrome performance with ergometer and road measure-

ments

The last model we consider with the BC data is a a combination of regression and factor analysis. The factor

analysis model in Section 6.6.2 indicated that over time variability in peak power produced in flying laps,

standing laps, and standing half laps could effectively be explained by a single factor. The regression model

in Section 6.6.3 indicated that over time variability in peak torque produced on the ergometer could explain

over time variability in peak power produced in standing half laps. In this section we assume that peak

power produced in flying laps, standing laps, and standing half laps are fully determined by a single factor,

which we assume represents overall velodrome performance, and allow this factor to depend on ergometer

and road measurements. The model can be written as

η1(t) = v1(t)

η2(t) = v2(t)

η3(t) = β31η1(t) + β32η2(t) + v3(t)

η4(t) = β43η3(t)

η5(t) = β53η3(t)

η6(t) = β63η3(t)

y1(t) = µ1 + η1(t) + ε1(t)

y2(t) = µ2 + η2(t) + ε2(t)

y4(t) = µ4 + η4(t) + ε4(t)

y5(t) = µ5 + η5(t) + ε5(t)

y6(t) = µ6 + η6(t) + ε6(t) ,

(6.14)
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Figure 6.8: Fits obtained from the regression model formulated in (6.13). For all three athletes, the shape

of the fitted curve for standing half peak power is almost completely determined by the shape of the fitted

curve for ergometer peak torque.
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where y1(t) represents peak torque on the ergometer, y2(t) is average power on the road, y4(t) is peak power

in flying laps, y5(t) is peak power in standing laps, and y6(t) is peak power in standing half laps. η3(t)

is the factor that we take to represent overall velodrome performance. The data, along with fitted curves,

are plotted in Figure 6.9 while the parameter estimates along with standard errors are shown in Table 6.7.

Unfortunately, because the Hessian of the log-likelihood produced at convergence by the BFGS algorithm is

only an approximation, it is not guaranteed to be positive-definite and so occasionally it may happen that

negative variance estimates are produced. This was the case for some of the parameters for Ath3, and so the

standard errors for those parameters are left blank. Similarly to the regression of Section 6.6.3, the results

from the combined regression and factor analysis indicate that over time changes in ergometer peak torque

can explain over time changes in velodrome performance as a whole.

µ1 µ2 µ3 µ4 µ5 β31 β32 β43 β53 β63

Ath1
estimate 238.19 258.18 522.98 791.45 771.77 1.26 0.31 1.00 0.89 0.77

standard error 8.91 9.39 13.13 10.18 8.89 0.20 0.23 - 0.20 0.14

Ath2
estimate 276.03 265.58 603.62 776.01 786.39 1.37 -0.12 1.00 0.61 0.51

standard error 25.58 8.16 138.98 89.39 75.11 0.45 0.36 - 0.19 0.16

Ath3
estimate 316.40 254.14 618.21 931.86 980.79 3.36 1.33 1.00 1.36 0.91

standard error 3.58 - 0.30 0.19

Table 6.7: Parameter estimates, along with standard errors, from the combined factor analysis and regression

model formulated in (6.14).

6.7 Conclusions and future work

In this chapter we introduced the structural smooth modelling (SSM) framework , and demonstrated its

applicability through simulation studies and the BC data. The strength of SSM is that it jointly models a

set of stochastic processes that have been observed at mis-matched argument values. In the simulations we

conducted the model and associated estimation procedures appear to work as expected, and its application

to the BC data shows great potential as a way to track changes in athlete’s performance and examine

associations between different types of training.

Further work with SSM could focus on three areas. Firstly, as presented, SSM is only applicable when

the observed data are continuous, and hence can at least be approximated as noisy observations of Gaussian

processes. In other applications researchers may wish to use the SSM framework with observed processes

that are not continuous, for example with binary or count data. SSM could be extended to accommodate

this scenario by allowing responses to be drawn from an exponential family distribution. The model could

then be formulated as

εj(t) ∼ N (0, φj)

vj(t) ∼ GP (0, kλj
) ,

η(t) = Bη(t) + v(t)⇔ η(t) = (I −B)−1v(t) ,

gj

(
yj(t)

)
= µj + ηj(t) ,

(6.15)

where gj(·) is a monotonic link function and yj(t) is assumed to have an exponential family distribution

with dispersion parameter φj . The main complication that arises is that the likelihood of the observed data,
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Figure 6.9: Fits obtained from the combined factor analysis and regression model formulated in (6.14).

The fits show that a single factor seems to explain over time variability in flying lap, standing lap, and

standing half peak power measurements, and the shape of this factor is mostly determined by the shape of

the ergometer peak torque curve.
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given by

`(δ) = log p
(
y1(t1), . . . , yp(tp); δ

)
= log

∫
p
(
η1(t1), . . . , ηp(tp);β,λ

) p∏
j=1

πj

(
yj(tj)|ηj(tj);µj , φj

)
dη1(t1) · · · ηp(tp) ,

where πj(·) is the exponential family density of yj(t)|ηj(t), is analytically intractable. Consequently, ap-

proximate inference techniques would have to be used. One option is to use a Laplace approximation to the

integral, as is often done with Gaussian process classification (Rasmussen, 2006, Chapter 3).

The second area in which SSM could be expanded is in scalability. The likelihood function requires the

inversion of the covariance matrix of the entire vector of observed data. This causes scaling issues when

the number of data points grows, and is especially challenging for SSM in the presence of many observed

processes. One of the approaches used to deal with this issue in Gaussian process regression is with the

use of so called inducing points, through which a low rank approximation to the entire covariance matrix is

obtained. This was the approach used in (Duncker and Sahani, 2018), and a similar approach could be used

for SSM.

Lastly, it would be interesting to examine the properties of SSM from a theoretical perspective, establish-

ing the precise conditions under which the parameters are identifiable and the maximum likelihood estimator

is consistent. The study of the maximum likelihood estimator is complicated by the fact that the joint dis-

tribution of the entire data vector is modelled, and hence the log-likelihood is not a sum of independently

identically distributed terms.
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Appendix A

Worked example of splines

Suppose we compute b-spline functions of order 3 (i.e. piecewise quadratic polynomials) over the following

two knot sequences:

1. t(1) = (0,1,2,3,4,5)

2. t(2) = (0,1,2,2,2,3,4,5)

In the first case, there are no repeating knots and hence all the b-splines will be m−1 = 1 times continuously

differentiable. In the second scenario, the first spline will be continuous, but will not be differentiable at

x = 2. The second and third splines will be not be continuous at 2. The fourth will be continuous but not

differentiable at 2, while the fifth will be continuous and differentiable everywhere. We can use equation

(3.3) to actually compute these b-splines and verify this. For the first case, dropping the argument x for

ease of notation, we have:

B1
1 = 1(0≤x<1), B1

2 = 1(1≤x<2), B1
3 = 1(2≤x<3), B1

4 = 1(3≤x<4), B1
5 = 1(4≤x<5) .

B2
1 = x1(0≤x<1) + (2− x)1(1≤x<2)

B2
2 = (x− 1)1(1≤x<2) + (3− x)1(2≤x<3)

B2
3 = (x− 2)1(2≤x<3) + (4− x)1(3≤x<4)

B2
4 = (x− 3)1(3≤x<4) + (5− x)1(4≤x<5) .

B3
1 =

x2

2
1(0≤x<1) + (−x2 + 3x− 3/2)1(1≤x<2) +

(3− x)2

2
1(2≤x<3)

B3
2 =

(x− 1)2

2
1(1≤x<2) + (−x2 + 5x− 11/2)1(2≤x<3) +

(4− x)2

2
1(3≤x<4)

B3
3 =

(x− 2)2

2
1(2≤x<3) + (−x2 + 7x− 23/2)1(3≤x<4) +

(5− x)2

2
1(4≤x<5) .

We can now check, for example, that B3
1 is continuous and differentiable at x = 2. We have:

lim
x→2+

B3
1(x) = −22 + 3 ∗ 2− 3/2 = 1/2

lim
x→2−

B3
1(x) = (3− 2)2/2 = 1/2 .
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Similarly,

lim
x→2−

dB3
1(x)/dx = −2 ∗ 2 + 3 = −1

lim
x→2+

dB3
1(x)/dx = −(3− 2) = −1 .

Now for the second knot sequence, we have:

B1
1 = 1(0≤x<1), B1

2 = 1(1≤x<2), B1
3 = 0 B1

4 = 0 B1
5 = 1(2≤x<3), B1

6 = 1(3≤x<4), B1
7 = 1(4≤x<5) .

B2
1 = x1(0≤x<1) + (2− x)1(1≤x<2)

B2
2 = (x− 1)1(1≤x<2)

B2
3 = 0

B2
4 = (3− x)1(2≤x<3)

B2
5 = (x− 2)1(2≤x<3) + (4− x)1(3≤x<4)

B2
6 = (x− 3)1(3≤x<4) + (5− x)1(4≤x<5) .

B3
1 =

x2

2
1(0≤x<1) + (−3x2/2 + 4x− 2)1(1≤x<2)

B3
2 =

(x− 1)2

2
1(1≤x<2)

B3
3 =

(3− x)2

2
1(2≤x<3)

B3
4 = (−3x2/2 + 8x− 10)1(2≤x<3) +

(4− x)2

2
1(3≤x<4)

B3
5 =

(x− 2)2

2
1(2≤x<3) + (−x2 + 7x− 23/2)1(3≤x<4) +

(5− x)2

2
1(4≤x<5) .

It is now easy to verify that the second are third b-splines are not continuous at x = 2, since (2−1)2 = 1 6= 0

and (3 − 2)2 = 1 6= 0. Similarly, we can see that the first and fourth b-splines are not differentiable at 2,

since −3 ∗ 2 + 4 6= 0 and −3 ∗ 2 + 8 6= 0. We can also visually verify these facts and see what these functions

look like by plotting all the b-splines in both cases, shown in Figure A.1.
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Figure A.1: plots of b-spline functions of order 3. The plot on top uses knot sequence t(1) while the plot on

the bottom uses sequence t(2).
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