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Abstract

The transcription factor CREB, shown to activate the expression of
target genes in response to extracellular signals mediated by cyclic AMP, is
present in all cells examined for its expression. Despite the ubiquity of CREB,
different cell types vary greatly in their ability to respond to cyclic AMP.
Moreover, CREB has been implicated in the regulation of highly tissue-
restricted patterns of gene expresion. Although the mechanics of transcriptional
activation by CREB have been elucidated in some detail, the modulation of its
activity which can give rise to this specificity in its behaviour are poorly
understood. This thesis investigates a role for the interaction of cellular factors
with CREB in modifying its activity.

Data are presented which show that in cell lines not responsive to
cyclic AMP, CREB appears to interact through its leucine zipper with a factor
inhibitory to its activity. Attempts to investigate this phenomenon by use of
fusions of CREB with the DNA-binding domain of the yest GAL4 protein, and
problems encountered with this approach, are discussed. ATF-1 is shown to be
a good candidate for a negative regulator of CREB in the cell lines examined.
Experimental procedures are developed for observing CREB-interactions with
factors present in cell extracts, and the use of these techniques in cloning
CREB-interacting factors from an expression library is described. Among the
factors cloned are CREB, ATF-1 and a novel form of CREM. One of the clones is
found to encode a novel and unusual homeodomain protein, Homeodomain
protein Interacting with CREB (HIC), which is expressed in a tissue-restricted
pattern, most notably in the prostate. HIC interacts with CREB in Far Western
assays in a manner which appears to require the homeodomain of HIC and the
leucine zipper of CREB. Additional properties of HIC are examined, including its
ability to dimerize and its preferred sequence-specificity of DNA binding; and
the possible consequences of its interaction with CREB are explored.
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Note to readers: CREB is sometimes referred to as CREB1 in order to
distinguish it from the bZIP factor CREB2. However since it is more usually
referred to in the literature simply as CREB, and has been ever since it was
cloned as the first member of a family of CRE-binding factors, | shall also refer
to this factor as 'CREB'.
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Chapter 1 Introduction

Events controlling the transcription of target genes in response to
applied signals have proved the most informative aspect of their expression to
study. One such set of target genes are associated with a cis-acting cyclic AMP
Responsive Element (CRE, (Montminy et al., 1986)). These genes typically
show increased rates of transcription in response to extracellular signals which
bring about elevated intracellular levels of the second messenger cyclic AMP
(cAMP). The sequence of events which comprises this 'cAMP response’
involves the cAMP-regulated protein kinase (PKA) and trans-acting factor,
CREB (CRE Binding protein, (Montminy and Bilezikjian, 1987) ). CREB is the
most extensively characterized of a family of nuclear, DNA-binding, protein
factors which specifically recognize the CRE, and is a target for phosphorylation
by PKA. Binding of phosphorylated CREB to CRE motifs in target genes brings
about an activated level of transcription of those genes.

Despite the simple linear pathway described, the study of transcription
factor CREB - which appears to exist in all mammalian cells - has shown that its
behaviour varies widely between different cell types. Moreover, CREB has
repeatedly been identified as a factor involved in the regulation of genes whose
patterns of expression are restricted in a tissue-specific manner. CREB thus
provides not only a useful tool for the investigation of the mechanics of
transcriptional activation, but also gives access to the broader questions of how
tissue-specific gene expression is achieved and what the key events may be in
the differentiation process which generates such patterns of expression.

1.1 Components of transcription

Regulated transcription requires components of two different types:
The general transcription factors are required to support the activity of RNA
Polymerases (only Pol Il will be considered here, although Pol | and Pol Il
appear to work by similar mechanisms), and can give rise to low levels of (basal)
transcription even in the absence of regulatory components. Additional
regulatory factors are capable of either activating (the term 'transcription factor'
will be used to refer to these activators) or repressing transcription by this basal
apparatus. Whilst there are predetermined (‘permissive') effects of chromatin
organization on the range of gene transcription which can occur in the nucleus,
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most evidence suggests that the interaction of transcriptional regulatory factors,
either directly or via intermediary factors, with the basal machinery is the
essential mechanism giving rise to activated transcription in response to
extracellular signals.

1.1.i Basal transcription

Biochemical studies have identified most if not all of the general
factors necessary for transcription since it is now possible to reconstitute
transcription in vitro using a mixture of purified and recombinant components.
These assemble together with Pol Il to form an initiation complex bound to the
TATA box of the gene to be transcribed (although initiation can be TATA box-
independent on TATA-less promoters) (reviewed in (Buratowski, 1994)). The
TATA box is recognized by TBP (TATA-Binding Protein), which together with
TAFs (TBP-Associated Factors) comprise the complex identified as TFIID. The
TFIIB factor can interact both with Pol Il and with the TFIID-TATA element
complex and thus may serve to recruit the polymerase to the pre-initiation
complex. TFIIF is also required for Pol Il recruitment, and TFIIA for stabilization
of the complex. The transition from pre-initiation complex formation to
transcriptional elongation requires two additional factors, TFIIE and TFIIH. TFIIH
is a multi-subunit complex which has a Pol Il CTD (C-Terminal Domain) kinase
activity and also possesses ATPase and helicase activities; all of these activities
may be important in the final steps of initiation, and in elongation, as well as in
replication and DNA repair.

1.1.ii Activated transcription

It has been recognized for some time that transcription can be
stimulated or induced by factors binding to DNA elements adjacent to (‘proximal’
or promoter elements) or at some distance from (‘distal' or enhancer elements)
the TATA box - even in some cases from positions downstream of the coding
sequence (Maniatis et al., 1987; Mitchell and Tjian, 1989). It was also observed
some time ago that the most powerful of the activating factors binding to these
elements shared a characteristic concentration of acidic residues within the
domain responsible for transactivation. Furthermore, this acidic region was also
found in several viral transactivators, notably the herpes virus VP16 protein
(although this does not itself bind DNA directly, but is recruited to promoters
through complex formation with the specific DNA-binding factor Oct-1 (Stern et
al.,, 1989)). The prediction that the acidic domains of these factors should be
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able to interact with the pre-initiation complex described above, in order to assist
its assembly or to stabilize a particular configuration on the DNA (Ptashne,
1988) has been borne out by the identification of a number of such interactions.
Further types of activation domain have also been identified and are believed to
function in a similar manner.

The earliest reported example of a direct interaction between acidic
activation domain and basal apparatus was that of VP16 with TFIID (Stringer et
al., 1990). A weak interaction with TBP has been demonstrated, and TBP has
indeed proved to be one of the common targets for such interactions, the other
being TFIIB (which also interacts with VP16 (Lin et al., 1991)). It is becoming
increasingly apparent that the other components of TFIID, the TAFs, are also
targetted for interaction by transcriptional activation domains. A recently
reported interaction of TAF40 with VP16, as well as with TFIIB (Goodrich et al.,
1993) provides some rationale for the frequent demonstration that transcriptional
activation by transacting factors depends on the presence of TAFs, purified TBP
being unable to support activated transcription (for example (Dynlacht et al.,
1991)).

Further recent examples of interactions between transcription factors
and TAFs are those of Sp1 and CREB with TAF110 (Ferreri et al., 1994; Gill et
al.,, 1994), and many more are suspected. The TAFs are thought to be bridging
factors for activated transcription (as discussed in (Pugh and Tjian, 1992)) and
the main function of the activation domains of regulatory transcription factors is
thought to be their interactions with components of the basal complex. Most
activation domains are currently grouped into classes based on their amino acid
composition: acidic, glutamine-, serine/threonine- or proline-rich, and it is
frequently hypothesized that the members of each group might target a different
TAF for interaction (since, for instance, Sp1 and CREB both possess glutamine-
rich activation domains), but as yet there is insufficient evidence to confirm this
idea. An alternative - or additional - model for functional differences between the
classes of activation domain proposes that glutamine-rich domains are effective
from proximal positions only whilst acidic and serine/threonine-rich domains can
act also at distal positions (Seipel et al., 1992).

The regulation of the initiation step in transcription is probably the
most significant control on gene expression. As might be predicted, this
regulation of initiation can be achieved through regulation of the interaction
between transcription factors and the basal apparatus. In practice, this seems to
occur either through regulated binding of an activator to its cognate site on the
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DNA, or by regulation of the availibility or potency of activation domains of pre-
bound factors for the required interactions. Both of these mechanisms are
mediated through post-translational modifications - either directly (such as
phosphorylation) or indirectly (such as changes in subcellular localization) - of
the factors involved.

However, initiation is not the only regulated step in activated
transcription. The efficiency of the elongation step in transcription has recently
been shown to be a target for regulation by certain mammalian activators
(Yankulov et al.,, 1994), although CREB itself does not appear to affect
transcriptional elongation (K. Yankulov, personal communication).

It is experimentally observed that many enhancer elements can act
independently of position or orientation in synthetic promoters, but there is
increasing evidence that in fact combinatorial regulation by factors binding to
multiple elements in the promoter occurs through the formation of three-
dimensional and stereo-specific complexes (reviewed in (Tjian and Maniatis,
1994)).

1.1.iii Repressed transcription

Basal transcription can also be down-regulated, by a number of
mechanisms. Competition with activating factors for common binding sites, such
as occurs between CREB and the repressor of CREs, CREM (Foulkes et al.,
1991), is one common mechanism. Steric occlusion of transcription components
from the DNA by repressor binding represents another possible mechanism.
The formation of inactive complexes between a repressor and an activator is
also a means by which activated transcription can be checked. The inactive
complex may be deficient in DNA binding - as exemplified by the dimerization of
the Liver-enriched Activating factor (LAP) with an alternative splice product
unable to bind DNA (Ron and Habener, 1992) - or may involve masking of
activation domains, as seen in the repression of yeast GAL4 by GAL80 (Ma and
Ptashne, 1987).
Repression may be mediated by specific domains, analogous to activation
domains, which can be similarly classified according to their sequence. Proline-
rich sequences, for example, mediate the repressive effects of Drosophila Even-
skipped (Eve, (Han and Manley, 1993)), and alanine-rich and glutamine-rich
sequences have also been implicated in repression. The KRAB domain
(Kruppel-associated box, (Margolin et al., 1994)) has recently been identified as
a repression domain common to many zinc-finger proteins. However, a
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functional analogy to the activation domains is harder to make and the types of
interaction, if any, made by these domains have not been elucidated.

1.1.iv Permissive components

Transcription in vivo is also influenced by components of chromatin
(reviewed in (Wolffe, 1994)). The packaging of DNA into nucleosomes has been
identified as a mechanism for repression and transcription factors can enhance
the ability of the basal machinery to compete with nucleosomes for promoter
occupancy (Workman et al., 1991). Modification of individual histones to impair
nucleosome formation (Tazi and Bird, 1990), or displacement of nucleosomes in
Drosophila chromatin at promoters bound by the GAGA factor (Tsukiyama et al.,
1994) or by the product of the brahma gene (Tamkun et al., 1992), may be
examples of 'permissive events' for transcription. By contrast, the Drosophila
polycomb group gene products, originally identified as repressors of many of the
homeotic genes, are a component of chromatin and appear to be involved in the
maintenance of heterochromatin (Franke et al., 1992). Where the nucleosomes
are packaged into compact higher-order structures, giving rise to
heterochromatin, there is no, or limited, access of transcriptional components to
the DNA and genes packaged in this way are not expressed. Thus transcription
from any promoter in the nucleus of higher eukaryotes relies on permissive
chromatin components in addition to the transcription factors discussed above.

1.2 Modular dissection of a transcription factor

A feature of transcription factors which has greatly aided the
dissection of their various functions, and the assignment of functions to
structures, is their highly modular organization into discrete domains. These
domains retain their function independently of their origin - that is - in a
heterologous context (reviewed in (Mitchell and Tjian, 1989)) or as chimeras
with domains from other family members (Ransone et al., 1990). These domains
can be loosely categorized into either DNA-binding or transactivation domains.
Transcription factors are classified according to the type of their DNA-binding
domain, where the dimerization motif required for binding of a factor to
palindromic sites is included as part of the DNA-binding domain. The largest of
these classes are: bZIP (basic DNA recognition domain juxtaposed with a
leucine zipper dimerization motif), bHLH (basic domain in combination with
helix-loop-helix dimerization domain, sometimes also a leucine zipper), HTH
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(helix-turn-helix DNA binding motif, such as is found in the homeodomain) and
ZnF (Zinc-Finger).

1.2.i The 'bZIP' class of transcription factors

The bZIP class of factors can be further subdivided according to
preferred DNA-binding sites. CREB was the first member to be cloned
(Gonzalez et al., 1989; Hoeffler et al., 1988) of the CREB/ATF family of factors
(reviewed in (Habener, 1990)). Members of this factor ‘family' are characterized
by their ability to bind as dimers to the CRE motif (minimal sequence CGTCA),
which itself has variously been characterized as the ATF site (mediating
adenovirus transcriptional activation), the TRE (LTR 21bp repeat/ element
involved in transcriptional responses to the Tax activator of HTLV-1; see section
1.5.iii) or the CaRE (mediating c-fos activation in response to raised levels of
CaZ2+).

Other bZIP families of factors contain the immediate early response

factors c-Jun, c-Fos and related factors which recognize the AP1 motif
(TGACTCA), and the CCAAT/Enhancer Binding Protein family (C/EBP) involved
in hepatocyte differentiation. A complete review of all known bZIP factors can be
found in (Hurst, 1994). The members of each family show a propensity for
forming assorted dimers amongst themselves (reviewed in (Lee, 1992)]) and
cross-dimerization between these families is also possible (Hai and Curran,
1991).
The DNA-binding domain of CREB is indicated in figure 1.1a. In addition to the
residues marked as defining the consensus sequence for the bZIP family, there
is a preponderance of basic residues. The lysines at positions 303 and 305 have
been shown to be critical for the methylation interference pattern of CREB on
the CRE (Andrisani and Dixon, 1991). Immediately C-terminal to the basic
region are sequences defining the leucine zipper domain, described below. The
bZIP of CREB has been shown to contain all of the necessary information for
correct binding to the CRE (Dwarki et al., 1990; Yun et al., 1990).

The bZIP domain is the most strongly conserved structure within the
CREB/ATF factor family, but all of the members share a similar modular
organization. The domain structure of CREB as it is currently understood is
ilustrated in figure 1.1b. The apparent correlation between functional domains
and the exon structure of the gene is striking; it is confirmed by deletion
mutagenesis studies in which the exon boundaries are observed showing
functional co-dependence of sequences within the same exon but not outside it
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(Quinn, 1993). This modular stucture enables the generation of mixtures of
domains (by alternative splicing), consequently increasing the functional
diversity of the gene. Alternative splicing is at present best exemplified by the
gene coding for CREM (Foulkes et al., 1991; Laoide et al., 1993), but generation
of multiple products from single genes seems to be the rule for bZIP factors.

1.2.ii The leucine zipper dimerization domain

The leucine zipper structure was first postulated for C/EBPa
(Landschulz et al., 1988) as that which might arise from a heptad leucine repeat,
four to six copies of which are found in bZIP factors. The repeats form an
amphipathic helix (that of CREB is illustrated in figure 1.2a) whereby the leucine
residues are arrayed along the same side (adopting position d) with bulky,
usually B-branched (valine, threonine, isoleucine) residues alongside (position
a), thus creating a hydrophobic surface at which interactions with the
corresponding surface of other such helices can occur. The bulky residues are
the 'teeth' of the zipper, which fit into the indentations left by the smaller leucine
residues in the other zipper. The dimerizing helices wrap around each other

slightly giving rise to a coiled-coil (O'Shea et al., 1989) which forms the base of
a Y-shaped structure whose two arms represent the associated a-helical basic

domains. The basic domains then grip the DNA in a 'Scissors Grip' (Vinson et
al., 1989).

The comparison of many variants on the leucine zipper plan has led to
the conclusion that the selectivity of observed dimerizations is coded by specific
residues within a zipper. Residues at positions e and g of the helix are closely
involved in the dimerization interaction. For instance, it is acidic residues in this
position which destabilize the Fos homodimer and drive preferential heterodimer
formation of Fos with Jun (O'Shea et al., 1992). It has been possible both to
predict the selection of dimerization partners, and to design such partners,
based on the e/g composition of the helix (Vinson et al., 1993).

1.2.iii Transcriptional activation domains of CREB

The activation domains of CREB, as defined in studies by three
different groups (Gonzalez et al., 1991; Lee et al.,, 1989; Quinn, 1993), are
illustrated in figure 1.2b. An early nomenclature of the CREB activation domains
in terms of clusters of potential phosphorylation sites (PDE1-3) has since been
replaced by more functional definitions, since no effects of phosphorylation at
either PDE1 or PDE3 (mainly Casein Kinase |l sites) have been shown in the
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Figure 1.2a The leucine zipper of CREB
represented as a helical wheel:

The residues found at positions a-g in the four turns of the

a-helix are shown. The first residue at position a is
considered the first of the leucine zipper and successive
turns of the helix are counted 1-4 from this position, each
successive turn being marked further from the centre of
the wheel.




Figure 1.2b The activation domains of CREB
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absence of phosphorylation in PDE2. The principal domains involved in
transactivation are now considered to be the Kinase Inducible Domain (KID, P-
box, PDE2) which encodes the consensus sequence (RRPS) for
phosphorylation by PKA, and an N-terminal glutamine-rich (Q) domain. The PKA
site at Ser133 is also phosphorylated in vivo by Calmodulin-dependent Kinase
(Sheng et al., 1991) and a Ras-dependent kinase (Ginty et al., 1994).

Whilst the full complement of CREB phosphorylations remains
unresolved, it has been shown beyond doubt that Ser133 phosphorylation of
CREB is critical for the cAMP response. Induction of a reporter gene by
transfected CREB in response to forskolin is lost by mutation of Ser133
(Gonzalez and Montminy, 1989) or by injection of anti-CREB antibodies
(Meinkoth et al., 1991). The inability of acidic residues to substitute for the serine
at 133 suggests that the phosphorylation event is required to trigger a
conformational change (Gonzalez and Montminy, 1989). Deletion analysis of
CREB in F9 cells (which have low endogenous CREB activity; see section 1.6.v)
implicated two domains in the conformational changes/activation induced by
Ser133 phosphorylation (Gonzalez et al.,, 1991). One was an acidic peptide
(DLSSD) located immediately downstream of the basic PKA site and predicted
to stabilize it in the new conformation, the other an 87 residue N-terminal
glutamine-rich domain. Glutamine-rich activation domains are recognized as a
common theme in transcriptional activation and - as already mentioned in
section 1.1.ii - have recently been shown to mediate direct protein-protein
interactions with the TBP-associated factor dTAF110 (Ferreri et al., 1994).

The most thorough analysis of the activation domains of CREB has
been undertaken by (Quinn, 1993) who maps both constitutive and inducible
domains (fig1.2b) by deletion analysis of fusion proteins where the CREB bZIP
is replaced completely by the dimerization and DNA-binding domains of the
yeast GAL4 factor. This method is in contrast to the usual system of N-terminal
fusion which, by placing the N-terminal sequences of CREB closest to the DNA-
binding domain, effectively inverts the position of CREB relative to the DNA.

The function of the serine/threonine-rich 14 residue a-peptide shown
in figure 1.2b, which characterizes the a isoform of CREB, remains unresolved.
Early identification of this sequence as an additional activation domain
(Yamamoto et al., 1990) has since been contradicted (Berkowitz and Gilman,
1990; Sun et al., 1992).
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1.3 Signal transduction mediated by CREB

CREB was first identified as a potential nuclear target for the classic
linear signal transduction pathway which employs cAMP as its second
messenger (Montminy and Bilezikjian, 1987). The traditional linear depiction of
such signalling pathways is probably deceptive, and perpetuates an image of
intracellular signalling which is vastly oversimplified. As a growing number of
interactions between parallel pathways are identified, the overall picture
increasingly resembles a network of interdependent pathways such that the
sending of a signal in one pathway has widespread effects throughout the
network.

1.3.i The cAMP Pathway

Stimulation of cells by signals giving rise to raised intracellular levels
of cAMP, through activation of a G-protein-coupled adenylate cyclase, switches
on the signal transduction pathway which is illustrated in its most simple form in
figure 1.3. cAMP binds to the two regulatory (R) subunits of the tetrameric
cAMP-dependent protein kinase PKA, causing the release - and hence
activation - of the two catalytic subunits of the enzyme (cPKA). Phosphorylation
of target substrates by cPKA mediates many of the known subsequent effects of
cAMP. These effects where they occur in the cytoplasm (such as initiation of the
glycogenolytic cascade) are rapid and amplified. Effects within the nucleus are
slower and possibly stoichiometric, since translocation of cPKA to the nucleus
(Nigg et al., 1985) is the rate-limiting step in activation of transcription via CREB
(Hagiwara et al., 1993).

A large number of potential substrates for cPKA are present in the
cell. Specificity of responses to CAMP is achieved to some extent through the R
subunit of PKA, for which several isoforms have been characterized. Several R-
specific ‘anchor proteins' have been identified, whose function is to tether R in
varied subcellular localities; these may ensure responses localized to specific
organelles. Nuclear substrates appear to be predominantly acted upon by cPKA
released from the holoenzyme tethered to the outside surface of the nuclear
envelope. The regulatory subunit involved is probably Rlla, since
overexpression of this subunit, but not of Rla, is sufficient to restore cCAMP-
inducibility of the somatostatin promoter to a cAMP-unresponsive mutant cell
line (Tortura and Cho-Chung, 1990).
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