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Abstract

Cytokines are pleiotropic mediators of intercellular signaling. They interact with one
other, their specific receptors and other mediators to form complex networks. This thesis
employs results from nonlinear dynamics, cell engineering, pharmacology and immunol-
ogy to develop a framework within which these networks can be understood. We begin by
modelling kinetic and trafficking processes between a cytokine and its receptor using ordi-
nary differential equations. Various forms of these equations under different assumptions

are considered, and put in the context of existing cell signalling models.

This theory is used to investigate two situations with experimental and clinical relevance.
The first is regulation by interleukin-1 (IL-1) of its receptor in fibroblasts. A model fitted
to experimental data shows that up-regulation by IL-1 of its receptor is mediated by an
intracellular eicosanoid which may not be prostaglandin Ey as previously assumed. The
second situation is the use of anti-tumour necrosis factor-a (TNF-a) drugs to combat
rheumatoid arthritis. Kinetic parameters for two such drugs are used to simulate a model

of their effect on TNF-a dynamics.

The single cytokine model is extended to relationships between several cytokines and
their receptors. The ways in which cytokines combine to affect response are formalised
using drug response theory. This is used to construct and compare models based on
hypotheses in the literature about the cytokine network involved in inflammation. It is
further generalised to examine the outcomes possible when a configuration of cytokines
interact in general ways. We explore through analysis and simulation what a network’s

dynamical behaviour says about its intrinsic structure.

Finally, we consider a stochastic model where cells in the same population produce cy-
tokines at different rates due to time-dependent variation. Results are compared to exper-
imental findings using flow cytometry to investigate IL-1 production in monocytes exposed

to a lipopolysaccharide stimulus.
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List of abbreviations

Units

Da Daltons

h hours

M molarity, a measure of concentration with units mol m~3
min minutes

S seconds

Others

AA arachidonic acid

ASGP asialoglycoprotein

ATP adenosine triphosphate
CARS compensatory anti-inflammatory response syndrome
Cox cyclooxygenase

DMARD disease modifying anti-rheumatic drug

DNA deoxyribonucleic acid
EGF epidermal growth factor
Exp(X) exponential distribution with parameter A

G-CSF granulocyte colony stimulating factor

GM-CSF granulocyte-macrophage colony stimulating factor
HACA human anti-chimeric antibody

IEN-o interferon-o

IFN-~ interferon-y

IL-1 interleukin-1

IL-la interleukin-1la

1L-13 interleukin-13

IL-1R interleukin-1 receptor

IL-1Ra interleukin-1 receptor antagonist
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IL-1RI
IL-1RII
IL-1sRII
IL-10
KGF
LDL
LN(a,b)
LPS
MAPK
mRNA
NF-xB
NSAID
ODE
PAMP
PBMC
PDF
PG
PPAR
PRR
RA
SDE
SIRS
sTNFR
TGF-g
TNF-a
TNFR1
TNFR2
TX
U(a,b)

type 1 interleukin-1 receptor

type 2 interleukin-1 receptor

type 2 soluble interleukin-1 receptor
interleukin-10

keratinocyte growth factor

low density lipoprotein

log-normal distribution on [a,b]
lipopolysaccharide

mitogen-activated protein kinase
messenger ribonucleic acid

nuclear factor kB

non-steroidal anti-inflammatory drug
ordinary differential equation
pathogen associated molecular pattern
peripheral blood mononuclear cell
probability density function
prostaglandin

peroxisome proliferator activated receptor
pattern recognition receptor
rheumatoid arthritis

stochastic differential equation
systemic inflammatory response syndrome
soluble TNF receptor

transforming growth factor beta
tumour necrosis factor alpha

55-60 kDa TNF receptor

70-80 kDa TNF receptor
thromboxane

uniform distribution on [a,b]
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Chapter 1

General introduction

1.1 Background to cytokines and cytokine networks

1.1.1 Cytokines

Cytokines are a group of small soluble proteins, glycoproteins and peptides which are
produced by cells in response to a wide range of stimuli. They act as local intercellular
messengers by binding to surface receptors on their target cells. This triggers a series of
metabolic changes in the cell including membrane modulation, activation of intracellular
effectors, gene transcription and protein synthesis. These changes can ultimately affect the
cell’s behaviour, including its survival, growth, differentiation, proliferation, metabolism,
direction of movement and effector function (Nicola, 1994, p. 1). In this way, cytokines
play key roles in many major physiological processes including haematopoeisis, cell dif-
ferentiation, immune response to infection and wound healing. It has been claimed that
almost every known disease involves some sort of cytokine imbalance (Aggarwal and Puri,

1995b).

1.1.2 Distinguishing properties of cytokines

Cytokines share many properties in common with endocrine hormones. However, they

have a number of characteristic properties which distinguish them from hormones:

a. On the whole, there is a one-to-one correspondence between hormones and the cells
that produce them. Each hormone is produced by a specialised cell type anatomically

organised into a single gland, such as the insulin-secreting 3 cells of the islets of
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Langerhans, which does not produce any other hormone. There are a few exceptions;
for instance, the thyroid gland produces both thyroxine and tri-iodothyronine. In
contrast, most cell types express multiple cytokines in response to stimuli, and each
cytokine is usually produced by many cell types, as well as being able to signal
several different target cell types. In fact, Aggarwal and Puri (1995a) suggest that
cytokines are the means by which cells of different types can communicate with one

another.

. Unlike hormones, which usually act on distant sites, cytokines usually act locally,
typically on the same cell that produced them (autocrine action), on neighbouring
adherent cells (juxtacrine action) or on other cells in the same extracellular space
(paracrine action). However, there are exceptions. For instance, interleukin-1 (IL-
1) produced by cells at inflammatory sites may be carried in the bloodstream to

signal endothelial cells of the blood-brain barrier (Ek et al., 2001).

. Cytokines are usually distinguished from other regulatory proteins on the basis of
their biological pleiotropy (see for example, Viléek, 1994 and Nicola, 1994). However,
the term “pleiotropy” must be used with care. If it is used to mean having multiple
effects under different conditions, then virtually every biological signalling molecule is
pleiotropic in some sense. For example, insulin facilitates glucose entry into muscle
cells, stimulates liver cells to synthesise fatty acids, and inhibits adipocytes from
releasing fatty acids. The original use of the term “pleiotropy” was in the context
of genes rather than signalling molecules, but as Edelman and Gally (2001) noted,

every gene has the potential for pleiotropy.

We argue for a stronger definition of cytokine pleiotropy, placing it in the context
of a particular cytokine network. A signalling molecule is pleiotropic only if its
actions cannot be reduced to a single form of response within a particular physio-
logical or biochemical system. In the context of the glucose/glycogen/lipid home-
ostasis network, insulin can be ascribed a single role, which is to promote fatty acid
accumulation at the expense of oxidising carbohydrates. For cytokines, the most
appropriate context to consider is a cytokine network. In order to make this def-
inition rigorous, the concept of a cytokine network is defined in Section 1.1.3 and
the concept of a response is defined mathematically in Section 5.2. Even within the
same network, cytokines typically exhibit many apparently unrelated functions, or

even effects which are the opposite of each other. For example, some growth factors
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are either stimulatory or inhibitory towards cell growth depending on the state of

the cell (Sporn and Roberts, 1988).

1.1.3 Cytokine networks as the context of cytokine action

Cellular production of cytokines is tightly regulated (Vilcek, 1994). This is unsurprising,
since they mediate precisely orchestrated processes like growth, development, immune re-
sponsiveness and wound healing. For instance, the immune response is a careful balance
between eliminating pathogenic infectious agents and minimising harm to the host (Segel
and Bar-Or, 1999; Alberts et al., 2002, p. 1363). Cytokines are produced transiently
in response to specific stimuli; production normally stops soon after the stimulus is re-
moved, and constitutive production is low or non-existent. However, cells in the body
are usually exposed to a cocktail of cytokine and non-cytokine mediators that combine to
shape the cytokine production response. These include soluble receptors, receptor antago-
nists, eicosanoids, antibodies, endocrine hormones, bacterial and viral products, proteases,
macroglobulins, neuropeptides, neurotransmitters and immune complexes (Elias and Zit-

nik, 1992; Licinio, 1997).

Cytokine receptor expression is similarly modulated by various mediators, although cells
constitutively express receptors for many cytokines. This can affect a cell’s ability to
respond to a particular cytokine. Hence cytokine and receptor expression depend on the
state of the target cell, including its type, genetic variation, level of activation and state

of differentiation or maturation.

A cell’s cytokine response can also be shaped by signalling molecules received from the
extracellular matrix (Nathan and Sporn, 1991). In a sense, cells “interpret” the meaning
of signals they receive from cytokines based on their own state and on the transient
state of their microenvironment. Cytokines have been compared to words in a language
of intercellular communication in which the state of the microenvironment provides the

context (Sporn and Roberts, 1988; Nathan and Sporn, 1991; Elias and Zitnik, 1992).

The interactions between cytokines, their receptors and the microenvironment have given
rise to the concept of a cytokine network (see, for example, Balkwill and Burke, 1989).
We discuss the forms such interactions take in Section 5.1. A cytokine network consists
of a number of interacting cell types (consisting of both producer and target cells), the
cytokines they produce, cytokine receptors and other mediators. Cytokine interactions can

be usefully viewed in terms of semi-autonomous networks regulating different physiological
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events such as immunoregulation, angiogenesis, haematopoeisis, wound healing and bone
resorption, with many strong interactions between members of the same network. Cytokine
pleiotropy, for example, can be more sensibly understood in the context of a particular
network rather than the entire human body (see Section 1.1.2). However, it should also
be remembered that most cytokines are involved in a number of physiological processes,
SO eachl of the individual networks is part of one large network encompassing the whole

body.

1.1.4 Traditional approaches to investigating cytokine action

The traditional approach to understanding cytokine networks is fundamentally reduction-
ist. Experiments are typically carried out to isolate the effect of a single cytokine or group
of cytokines under specific conditions. Results from different experiments of the same kind
are collected and used to extrapolate or predict outcomes in clinically relevant situations.

These experiments can be broadly divided into two categories:

a. In vitro experiments

In wvitro experiments involve cells extracted from laboratory animals or humans.
These cells may consist of monoclonal cell lines (cells generated from a single clone,
and thus having identical genetic characteristics) or particular cell types extracted
from whole blood. Cells are stimulated with cytokines or molecules that inactivate
cytokines to investigate the effect of a cytokine or the lack of it. However, there
are a number of problems in generalising the results of such experiments to whole

organisms:

o Cells are usually stimulated with higher than physiological doses of cytokines.

In fact, physiological concentrations of cytokines are often unknown.

e Stimulating a monoclonal cell line is a poor indicator of what happens in the
body where there are many cell types and other associated regulatory mediators.
These interact with the cytokine network in ways that can produce qualitatively

different results (Balkwill and Burke, 1989).

e Monoclonal cells are usually cultured in fetal calf serum under conditions of cell
adherence. As a result, they may be subject to effects that may not be present

in the human body (see Section 5.3.3).
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e Some experiments are performed on extractions of whole blood preparation
rather than monoclonal cell lines. This may give a better approximation to
what happens in human circulation. But no matter how good the extraction
process is, the proportions of cellular and serum components in the preparation

are highly variable and uncertain.

b. In vivo experiments

In vivo experiments involve administering doses of cytokines or molecules that inacti-
vate cytokines to live animals or humans. They often reveal results not predicted by
cell culture stimulation experiments. The problem lies in pinpointing the mechanism
of an observed effect when there are so many unknown cell types, signal mediators
and physiological processes present. Also, cytokines can modulate production of
other cytokines and thus have very far-reaching effects. Bailey (1999) asserts that it
is not possible to do an experiment in vivo that alters the expression of one protein

without affecting any others.

Another kind of in vivo experiment involves breeding cytokine “knock-in” or “knock-
out” mice, that is, mice which have had genes for particular cytokines introduced or
inactivated. However, introducing a novel cytokine (or removing one which would
otherwise normally be present) will, by definition, disrupt the existing network in
artificial ways, leading to results that may never be observed outside the laboratory
(Aggarwal and Puri, 1995a). Another problem is that deleting genes may activate
compensatory mechanisms which can take up the role of the missing factors, so that
the importance of the deleted genes is overlooked (Viléek, 1994). Hence there are
many genes whose deletion has no apparent effect, but this does not mean that they

have no function.

Despite their limitations, the last five decades of experimental work on cytokines and their
interactions has enabled a large catalogue of data to be compiled about individual receptor-
ligand pairs, associated cellular responses, mechanisms and interactions (see for example
Burke et al., 1993; The Cytokine Handbook, 3rd ed. (ed: A. Thompson), 1998, Academic
Press: San Diego). From this data and without the benefit of much theory, successful
cytokine-based therapies have been developed for several diseases, such as rheumatoid
arthritis (Feldmann and Maini, 2001) and multiple sclerosis (Jacobs et al., 1996). Unfor-
tunately, in other cases, oversimplified attempts to manipulate cytokine networks have led

to unsuccessful or even deleterious outcomes. For instance, some cytokine-based therapies
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for multiple sclerosis (Panitch et al., 1987) and sepsis (Quezado et al., 1995) have actually
worsened the conditions they were meant to ameliorate. Tizard (1996, p. 10) has pointed
out that many of the failed attempts at therapy show that the true complexity of the

immune system’s regulatory processes has been underestimated.

The very size of the cytokine data bank is indicative of the problems in trying to decipher
these networks. We have little idea about how to integrate the components of the cytokine
network in order to address questions about complex biological problems like autoimmune
disease. Even if all the individual relationships and mechanisms involved were known,
there are too many factors potentially involved to predict purely by intuition the way the
network as a whole performs (Weng et al., 1999). Consequently, as late as 1999 it could
still be said that “practically nothing is known about the behaviour of the (cytokine)
network as a whole” (Callard et al., 1999, p. 507).

Furthermore, several scientists believe that some of the higher-level phenomena of a com-
plex system are in principle not predictable from its individual components (the philosoph-
ical position of “anti-reductionism”; see Nagel, 1998). Emergent properties are features
of a complex system that only become apparent when the system is analysed as a whole,
but do not exist on the level of the individual parts. Since cytokines are capable of pro-
ducing order on a systemic level despite their staggering complexity (Viléek, 1994), there
is good evidence that cytokine networks have emergent properties. The abstracting and

quantitising power of mathematical modelling may hold the key to understand them.

1.1.5 Cytokine networks in the context of the genomics revolution

The present avalanche of information about cytokines and other intracellular and extra-
cellular signalling mediators is part of a wider revolution in molecular biology. A parallel
process is underway in DNA sequencing and mapping, which has revealed the complete
genome of several organisms including Homo sapiens (reviewed in the February 16, 2001
edition of Science). This effort is founded upon the doctrine of “genetic determinism”
which at its most extreme states that all the complex behaviour of an organism can be

understood from its genetic code (Strohman, 1997).

The methodology of the genomics revolution has been called discovery science. In con-
trast with traditional biology, which advances by formulating and confirming or refuting
hypotheses, discovery science simply gathers information about a system without hypoth-

esising about how the system actually works (Aebersold et al., 2000). Similarly, much
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cytokine research - even when driven by very specific hypotheses like the role of a particu-
lar cytokine in a certain situation - is conducted without any appeal to the way a cytokine
network functions as a whole. As mentioned earlier, the result is that we have a lot of
data about the effects of individual cytokines in isolation without much understanding of

the network as a whole.

Discovery science (including cytokine research) has been remarkably successful at system-
atically generating data at an astonishing rate. Unfortunately the data in its raw state is
fragmented, uninterpreted and error prone (see Brent, 2000, for a critique of the genomics
revolution). Thousands of genes have been uncovered for which the function of the pro-
tein they encode is unknown. In the same way, we may know what a cytokine does to
a cell under artificial laboratory conditions, but fail to appreciate its true role in human
physiology.

The problem is that the function of a gene or cytokine in an organism does not depend
solely on its individual characteristics, but also in the way it interacts with other genes
or cytokines, and with its environment. This interaction is nonlinear and two-way. A
cell’s cytokine repertoire, and hence its behaviour, is determined by information in its
DNA, but at the same time it can adapt to its environment by changing its pattern of
gene or cytokine expression. Strohman (1997) suggests we think of a second informational
system interposed between the level of genome and cellular behaviour, able to integrate
information from different genes, proteins and their environment. He suggests that if we
could develop a way to understand this informational system, it could herald a biological
revolution of Kuhnian proportions. The work to develop a general theory of cytokine

networks is part of this wider picture.

1.2 Review of approaches to modelling cytokines in the lit-

erature

1.2.1 Mathematical modelling

Modelling in biology is the process of constructing an abstract representation of a biological
system which is hopefully more amenable to analysis and manipulation than the actual
system (Endy and Brent, 2001). Mathematical modelling involves associating numerical

quantities to components of the model.
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The process of modelling involves three steps:

a. Data collection and analysis. Initially, empirical data is collected based on
observation of a real-life system. This data is analysed in order to determine the
kind of models that would be most suitable to represent the aspects of the real

system that need to be explored.

b. Hypothesis generation. This is the actual model building step. A model is
essentially a set of hypotheses (assumptions) about a real system. Although it needs
to accurately describe some observable aspect of the system (Casti, 1992, pp. 1-3), it
is not meant to be (and cannot be) a perfect representation. Instead, it is an analogy
that reproduces particular features of the real world under limited circumstances,
but is inaccurate in others (Griffiths and Byrne, 1999). Hence it is useful to have
different models of the same system which reproduce different features of the system.
Besides the perspectives that different approaches bring, this helps us know which
of the predictions are model-dependent (Noble et al., 1999).

¢. Validation. The model’s hypotheses are tested against empirical observations. Dis-
crepancies between model predictions and reality lead to an iterative model-refining
process. Hence, the failure of a model is useful because it points out its limitations
and how it can be subsequently refined. It also indicates inaccuracies in the biolog-
ical data used to build the model. As Heinrich and Schuster (1996, p. 3) put it, “if

we do not develop models, we do not learn why they are false”.

The purpose of a model must be stated from the start, and linked to the features of the
real-life situation that the model is meant to describe. This will not be the same in every
case because every model involves a different balance between realism (how accurately
and completely it represents reality) and tractability (how amenable it is to analysis,
simulation and interpretation). Its success can only be judged against the stated intent
of the modeller. Bailey (1998) has suggested that one reason mathematical modelling has
not been well received by the bioscience community is because modellers often fail to make
clear their reasons for making a model. In a similar fashion though, bioscientists can fail

to make clear their reasons for collecting data.
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1.2.2 Modelling cytokines

Cytokines play key roles in many physiological and pathological processes. From the early
1980s mathematical models of these processes began to incorporate cytokines. Today,
there are hundreds of published models of cytokine function and interactions, with the
majority having been published in the last five years. In this thesis, we employ techniques
developed in models based on very different facets of cytokine biology, including receptor-
ligand dynamics, pharmacokinetics, functional response, network structure and phenotypic

variation.

It is no longer possible to exhaustively discuss every published mathematical model involv-
ing cytokines, even in the most superficial way. Instead, we will interact with the relevant
literature as we develop our models by comparing our methods and results with those of
published models. In addition, some types of models that are especially relevant to our
work will be reviewed in later chapters. This allows our subsequent reviews to be inte-
grated with the theory developed in those chapters. The areas of cytokine modelling that
will be subsequently reviewed are receptor-ligand trafficking (Section 2.3), representation
of dose response (Section 5.2) and models of gene regulatory systems (Section 6.2). In this
section, the broad categories of cytokine models are reviewed, and a few representative

examples in each category are discussed.

One way to classify models of cytokines is according to the level of biological organisation
they focus on. This kind of classification is useful because, as we have argued, cytokine
networks are complex systems that have emergent properties at each level of organisation.
We propose three levels of biological detail by means of which cytokine models can be

classified:

a. Cellular. On a cellular level of detail, a cytokine is an intercellular signalling
ligand which travels to a cell, binds to a receptor on its surface, and triggers certain

biochemical changes within the cell.

b. Physiological. Instead of solely modelling the mechanics of cell signalling, we may
focus on the effects that a cytokine has on aspects of an organism’s physiology.
Hence, we model the average effect that cytokines have on cell populations, tissues,

organs or entire systems.

c. Pharmacological. The most macroscopic level is to consider the effect of cytokines

at the level of an entire organism. At this level, a cytokine is treated as a drug, which,
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when administered (endogenously or exogenously), is distributed to and cleared from

various parts of the body.

A particular model may incorporate mechanisms from more than one level but the actual
question it seeks to answer usually resides on a single level. For instance, Wearing and
Sherratt (2000) construct a model of interaction between dermal and epidermal cells which
considers the cellular mechanisms of cytokine interactions. However, the fundamental

problem they tried to solve concerns wound healing, which is a physiological process.

1.2.3 Cellular models

After being secreted by a cell, cytokines travel via diffusion to a target cell. They then
signal the target cell by binding to membrane-bound receptors, triggering a set of biochem-
ical changes to the cell. The models with the highest level of detail look at the physical
and chemical processes that affect these molecular events without directly modelling their
implications on a larger scale in the body. There are three aspects of the cytokine-cell

interaction which have been modelled:

a. Mechanisms of intercellular signalling

The first mechanism to consider is the process by which a cytokine molecule reaches
its target receptor. This will be by either diffusion (in the case of autocrine and
paracrine signalling) or contact (in the case of juxtacrine signalling). For instance,
Francis and Palsson (1997) have used a diffusion equation to estimate the effective
distance over which a secreted cytokine can propagate a signal. On a larger scale,
Monk, Sherratt and their co-workers have published a series of papers showing how
juxtacrine signalling may give rise to spatial patterns by propagating local signals
across a closely packed cell population, such as in the epithelium (reviewed in Monk

et al., 2000).

b. Receptor-ligand trafficking

Once a cytokine binds to its receptor, both the cytokine and the receptor may
be trafficked to various locations within the cell, or undergo various biochemical
changes. These trafficking processes are discussed in depth in Chapter 2, and the

relevant models are reviewed in Section 2.3.
c. Intracellular signal transduction and gene regulation
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Receptor binding triggers a set of biochemical changes involving cellular mediators
that are distinct from the cytokine and its receptor. The purpose of these changes is
to transduce a signal to the nucleus and cause protein synthesis. Our understanding
of the biology of these events has advanced tremendously in the past five years. There
are a number of theoretical models which deal with gene regulation (see Section 6.2).
However, there is a pressing need for mathematical models of the signalling pathways
that mediate the processes between receptor binding and gene transcription. The
job should be made easier by the recent development of a number of databases which

catalogue known protein interactions (Xenarios and Eisenberg, 2001).

Some of the issues involved were highlighted in a review by Asthagiri and Lauffen-
burger (2000). Bhalla and Iyengar (1999) built a library of models for 15 intracellular
pathways involved in signalling by a variety of cytokine and non-cytokine ligands.
Interestingly, they found that combining several pathways caused features to emerge
that were not present in the individual pathways. They proposed that intracellular
signalling pathways should be modelled by functional modules that capture their

essential behaviour on a systems level (Bhalla and Iyengar, 2001).

1.2.4 Physiological models

Models of physiological effects mediated by cytokines are very varied. Many of them centre
around the cells of the immune system. This is not surprising since immunoregulation is
the most well-researched aspect of cytokine biology. The literature concerning models of
the immune system itself has been reviewed several times, most recently in Perelson and
Weisbuch (1997) and Morel (1998). Many models focus on activation, proliferation, cross-
regulation and the immune responses mediated by the two helper T-cell subsets, all of
which are processes that are mediated by cytokines. Models have also explored the role of
cytokines in pathological situations. These are often an extension of immunological models,
as they explore the dynamics of immune response to both infectious and autoimmune
disease. There have also been models of other physiological processes, such as wound

healing, which involve cytokines.

These models can be subdivided into three categories, based on the level of detail with

which they represent cytokine dynamics:

a. Models which do not represent cytokine dynamics explicitly.
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In many models, cytokines are not modelled dynamically. Instead, their effects
are represented by constants or functions of the other variables. This can relegate
cytokines to the position of mediators or messengers rather than players in their
own right, despite the fact that they often play integral roles in the physiological

processes modelled.

Insulin-dependent diabetes is caused by cytokine-mediated interactions between ac-
tivated macrophages, T-helper cells and S-cells in the islets of Langerhans. De Blasio
et al.(1999) constructed a model to describe the genetic and environmental factors
which trigger the onset of this disease. The dynamic variables represented numbers
of macrophages, activated macrophages and (-cell antigenic proteins. The cytokine-
mediated interactions between them were represented by first-order or pseudo-first-
order processes. In effect, this assumed that (i) the responses to cytokines were
linearly dependent on the cells producing the cytokines, and (ii) cytokine dynamics
were on a much faster time scale than those of the cells and antigenic proteins, and
hence could be considered to be at equilibrium. Since the parameters themselves
could slowly alter over a lifetime (representing, for instance, gradual changes in the
normal pattern of cytokines produced), the onset of insulin-dependent diabetes could
be triggered by a bifurcation in the parameter space causing dynamical instability

in the system.

A similar approach is taken in immune network theory. A parallel distributed pro-
cessing network of the immune system consists of lymphocyte clones as their funda-
mental units (Vertosick and Kelly, 1991). The connection weights between individual
clones depends on clonal size. However, cytokines can alter these weights as they
can expand clonal populations. Another possible role of cytokines is in network an-
nealing. Altering the cytokine millieu has the effect of changing the shape of the
activation curve of individual units. Nevertheless, both these approaches to the role
of cytokines essentially consist of altering the parameters of the network by static

effects of cytokines.

. Models which represent cytokine signalling phenomenologically.

Most models represent the dynamic effects of cytokines directly without explicitly
modelling receptor binding and internalisation. The form of the dose response func-
tion may give some idea of the underlying molecular basis for the response. For

instance, Chan et al.(1999) constructed a dose response model of TNF-o concen-
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tration subject to an external stimulus, an autocrine stimulus and an autocrine
inhibitor. Only the concentrations of TNF-a and its inhibitor were dynamically
modelled. The response took the form of saturable mathematical functions called
median effect functions, with the rationale being that these functions could be de-
rived from mass action kinetics. A more complex example also involving median
effect functions is a model of immune response to tuberculosis by Wigginton and
Kirschner (2001). This involved a nine-dimensional system of ordinary differential
equations integrating the T lymphocyte, macrophage, cytokine and bacterial dy-
namics. However, here (and in many other models), the authors do not state what
considerations prompt their choice of response function, aside from the fact that it
represents a process with a limiting rate. In Section 5.2, we discuss the biological

basis for different kinds of response functions.

. Models which represent cytokine signalling mechanistically.

A small number of models integrate the cellular mechanism of cytokine signalling
with its wider physiological effect. For instance, models of epidermal wound healing
(Wearing and Sherratt, 2000), T lymphocyte proliferation (Fallon and Lauffenburger,
2000), helper T lymphocyte cross-regulation (Morel et al., 1996; Burke et al., 1997)
and monocyte inflammatory response (Henderson et al., 1998; Seymour and Hender-
son, 2001) have been published that include receptor-ligand dynamics. Owen and
Sherratt (1998) have considered receptor-ligand binding in a spatial model in which
cells propagate cytokine signals by juxtacrine action. These models are discussed

when we develop our own receptor-ligand models in Chapter 2.

1.2.5 Pharmacological models

The effect of administering a cytokine or cytokine antibody to a live patient is very different

from using it to stimulate an in vitro cell population. Pharmacokinetic and pharmacody-

namic models of cytokines have been developed to describe these effects.

Pharmacokinetics studies the kinetics of drug absorption, distribution and elimination

(Shargel and Yu, 1999, p. 41). Pharmacokinetic models fit time course data on the

serum concentration of a cytokine to a set of differential equations representing cytokine

levels in general regions of the body (such as the systemic and lymphatic circulation).

Since cytokines are becoming important drugs in their own right, several of them have

been subjected to this kind of analysis, including TNF-q, IL-6, IL-10, IFN-« and G-CSF.
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For instance, Radwanski et al.(1998) developed two- and three-compartmental models
to describe the pharmacokinetics of intravenously and subcutaneously delivered IL-10 in
humans. They used zero and first order processes to model drug delivery from the site of

administration to the lymphatic and systemic circulation.

Pharmacodynamics studies the relationship between drug dose and response (Shargel and
Yu, 1999, p. 41). Pharmacodynamic models relate cytokine levels to various physiological
measures such as cell counts and production of other cytokines. For instance, Chakraborty
et al.(1999) mathematically related IL-10 and prednisone serum levels in subjects after
drug administration to LPS-stimulated cytokine production, lymphocyte proliferation and
leukocyte counts. Time courses of these measures were fitted to (uncoupled) differential
equations containing dose response functions. The response function parameters were
evaluated for single and joint drug administration, and compared statistically to determine

the type of interaction between the two drugs.

1.3 Aims and approach of the thesis

1.3.1 Rationale for mathematical modelling

We have argued that meaning in cytokine networks lies not in the individual interactions
themselves, but in the overall context in which these interactions take place, and to which
the interactions contribute. To use the metaphor of Sporn and Roberts (1988), individual
cytokines are symbols in a language. The meaning of a single word cannot be considered
apart from the context in which it is spoken. The way to do this is not to exhaustively
consider every possible combination of words, but to develop the rules of grammar and
syntax for the language. Similarly, it appears that ultimately the most fruitful way to
understand the impact of a single cytokine on a cell is to develop a set of conceptual
“rules” by means of which we can understand the impact of the mediators and other
factors that provide its context. In fact, if cytokine networks have emergent properties,
then these rules are not just useful summaries, but are underlying principles which cannot

be predicted by examining separate interactions in isolation.

Mathematical models, and especially dynamical systems, seem ideally suited for devel-
oping such rules. In fact, several researchers believe that a shift in biology towards the
quantitative is already taking place (see, for example, Weng et al., 1999; Bailey, 1999;

Lauffenburger, 2000). There are several reasons for the use of quantitative models in
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cytokine research:

a. Much of the data involved (such as kinetic rates) is already in a quantitative form.
Certainly, key features of the network would be lost if the quantitative aspect of the

data were removed.

b. The language of mathematics forces the inherent assumptions of a theoretical frame-
work to be made explicit. As this thesis shows, fundamental terms in cytokine biol-

ogy, like pleiotropy and dose response, could benefit from being used more precisely.

c. Mathematics already has a rich set of concepts and metaphors that can be tapped in
order to describe the behaviour of a complex system (of which the cytokine network
certainly is one), such as attractors, bifurcations, scale invariance, phase transitions

and chaotic behaviour.

d. A non-quantitative model is only useful when the range of factors that are involved
is small enough to be conceptualised without recourse to mathematical analysis or
computer simulation. In most cytokine networks, there are a large number of factors
(such as levels of cytokines, their receptors, and other fluctuating environmental

factors) that need to be taken into account.

1.3.2 Objectives of the models

The aim of this thesis is to show that mathematical models can be used to make unique
and significant contributions to our understanding of cytokine networks. This is done
by constructing models of cytokine networks involved in specific physiological processes,
testing them against experimental observations and employing them to make contributions

towards current problems in biomedical research.

The work in this thesis makes contributions along two parallel tracks:

a. Making specific applications.

The first track is to prove that modelling is a useful technique by applying it to
specific areas of research. Having real applications in mind enables us to employ

actual experimental data in simulations and to confirm our predictions.

The specific application of the models centre around networks involved in the inflam-

matory response of the innate immune system. The innate immune system is one of
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the two arms of the immune system (see Table 1.1) which is activated immediately
upon microbial invasion (reviewed in Janeway et al., 2001, pp. 35-91). Awareness
of its importance has recently increased (Brown, 2001) but it has yet to receive the

same degree of attention in mathematical modelling as the adaptive immune system.

The innate immune system is triggered when pattern recognition receptors (PRRs)
on immune cells recognise microbial features called pathogen associated molecular
patterns (PAMPs). PAMPs are molecular patterns that are essential for microbial
survival (and hence are highly conserved in micro-organisms), but are absent in host
cells. Hence the number of different PRRs can be kept small. One example of a
PAMP is lipopolysaccharide (LPS), the principal outer membrane component of all
Gram-negative bacteria (Westphal et al., 1983). In contrast, the adaptive immune
system relies on recognising specific antigens using a huge number of receptors that
are clonally distributed in lymphocytes. When a clone recognises its specific antigen,
it proliferates and matures. However, this process takes time to develop into an
effective response, so the adaptive immune system does not respond as swiftly as the

innate immune system. Hence it is the body’s “second-line” of defence.

Ligation of PRRs on macrophages triggers a number of responses, one of which is the
secretion of cytokines like IL-1 and tumour necrosis factor alpha (TNF-a). These
cytokines play a number of crucial roles that are collectively called the inflammatory
response. These include recruiting other cells (such as neutrophils, monocytes and
lymphocytes) to the site of infection and activating them, inducing blood clotting,
stimulating the production of acute phase proteins that bind pathogens, and causing
signs like fever, erythema, pain and swelling. These cytokines also trigger production
of anti-inflammatory cytokines such as IL-10 which resolve the inflammation once

the threat to the host has been dealt with.

The cytokines produced by macrophages and other cells of the innate immune system
are vital in initiating and shaping the adaptive immune response. This is because
they cue naive lymphocytes to differentiate into effector cells that can respond to
antigen. The exact form of immune response that is induced depends on the network
formed by cytokines produced by macrophages, monocytes, lymphocytes, fibroblasts
and other cells (reviewed in Stenger and Rollinghoff, 2001). This enables the selection
of the most appropriate mechanism to deal with the particular kind of pathogen that

the body faces.
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b. Drawing out general principles.

The second track is to construct a framework that can be readily extrapolated to ar-
eas of cytokine biology not directly covered by this thesis. Returning to the language
metaphor, the second aim is to start developing grammatical rules for cytokine net-
works, rather than to ask what particular combinations of words mean. The methods
used to construct specific models are applicable to modelling cytokine networks in
general, so their underlying principles and assumptions are explicitly drawn out.
This is a unique contribution, since almost all existing models involving cytokines
are attempts to understand specific physiological situations (such as the immune

system or tumour growth) rather than cytokine networks per se.

Innate immune system Adaptive immune system

Involves macrophages, monocytes, | Involves B and T lymphocytes
dendritic cells, natural killer cells,
inflammatory cytokines and anti-

microbial peptides

Immediate response Delayed response

Earliest barrier to infection Deals with antigens which breach in-

nate immunity

Recognises PAMPs using a small num- | Recognises specific antigens using a
ber of non-clonal PRRs large number of receptors distributed

across different clones

Table 1.1: Differences between the innate and adaptive immune systems.

The purpose of each model will be stated from the outset, as we recommended earlier.
Casti (1992, p. 2) suggests that the purpose of modelling is to organise our observations of
the world, and to make specific predictions about particular aspects of the world. Hence,

we propose two broad categories of goals for modelling cytokine networks:

a. Description. As mentioned before, there is a vast bank of disparate information on
cytokines and their interactions. Our models create structures that identify a subset
of this data and organise it into a form that accurately describes cytokine network

dynamics. This takes place on two levels:

e Our fundamental building block is the interaction between a cytokine and its re-

ceptor. In Chapter 2, we propose several models that describe this interaction.
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These models specify a limited set of kinetic parameters and response functions
that are sufficient to provide a reasonable description of receptor-cytokine dy-
namics. The accuracy of such a description is verified by comparing the results
of simulating these models with experimental evidence of IL-1 auto-induction in
monocytes (Section 2.6), IL-1 up-regulation of its receptor in fibroblasts (Chap-
ter 3) and the effect of TNF-a inhibitors in the rheumatoid arthritic synovium

(Chapter 4).

e Each receptor-cytokine system is a module that can be linked with others to
form a cytokine network. The links are made with joint response functions
using quantitative information about the joint action of cytokines. This creates
an annotated directed graph which represents a cytokine network (Chapter 5).
However, our knowledge of the relevant kinetic parameters and response func-
tions is often incomplete. The degree of information available can be stratified
into several levels. Combined with the structure of the directed graph and re-
sponse functions, this classification enables us to determine a range of possible

types of behaviour that a network can show (Chapter 6).

b. Prediction. Ideally, models not only provide frameworks with which to view cy-
tokine biology but also generate novel predictions. Our models are used to simulate
hypotheses that can be subsequently confirmed by experiment. These predictions
are interpreted in situations of particular biomedical interest, such as experimen-
tal, physiological and pathological conditions. For instance, we make predictions
about IL-1 receptor expression in activated fibroblasts (Chapter 3), anti-TNF-«
drugs (Chapter 4) and bacterial stimulation in monocytes (Chapter 5). We suggest
how systems being modelled can be perturbed into a more propitious state, such
as from a pathological to a healthy equilibrium. Since our models focus on inflam-
matory response, this primarily concerns how dangerous levels of inflammation can
be permanently reduced in pathological situations such as rheumatoid arthritis and
sepsis. These show that our models can be used by researchers to suggest avenues

for further exploration, and by clinicians to suggest potential therapies.

1.3.3 Types of models used

Several paradigms have emerged from theoretical work in cell and molecular biology. In

this section, we discuss some of these overlapping but non-equivalent approaches, and their
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relevance to our work.

a. Tactical and strategic models

A crucial issue faced when modelling cytokines, in common with modelling other
complex biological systems, is that the function of an individual cytokine or receptor
is affected by an enormous number of variables. Theoretical population ecologists
faced this dilemma in the 1960s and 1970s, leading to the classic distinction between

tactical and strategic models proposed by Holling (1968) and May (1973, pp. 10-11):

e Tactical models are based on empirical data for a particular biological system.
They aim to provide realistic numerical predictions for that system, and may

not be more generally applicable.

e Strategic models are more abstract. They aim to provide more qualitative
insight into the principles governing broad classes of observed phenomena. As

a result, they may not actually correspond to any single case in reality.

In fact, both Holling (1968) and May (1973) saw serious limitations in a purely
tactical or strategic approach to modelling in population ecology. Similarly, we use

features of both approaches in our models, which we point out as we construct them.

b. Mechanistic and phenomenological models

A similar distinction can be made between mechanistic/physiological and phenomeno-
logical/empirical models (Lauffenburger and Linderman, 1993, p. 37, 236-237; Shargel
and Yu, 1999, p. 36). However, unlike the tactical/strategic distinction, these de-
scribe the way a model is constructed rather than the limits of its ultimate applica-

bility (although the two are closely related).

e Mechanistic or physiological models represent a process based on its actual
mechanisms, such as quantities of molecules and rates of processes governed by
physical laws.

¢ Phenomenological or empirical models recreate essential features of a process
without reference to an underlying mechanism. They may simply specify a

form of response function to interpolate empirical data without reference to a

mechanistic interpretation of the function.
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Our models represent processes downstream of receptor-ligand binding (such as
intracellular messenger production and gene transcription; see Section 2.4.3) phe-
nomenologically. Other processes (such as production of cytokines, receptors and

extracellular inhibitors) are represented mechanistically.

. Modular approaches

A modular approach to modelling divides a complex system (such as a cell) into
modules, each of which has an identifiable function that is not immediately obvi-
ous from the molecular mechanisms that underlie its function (Hartwell et al., 1999;
Lauffenburger, 2000; Bhalla and Iyengar, 2001). This is based on the principle that
biological systems are selected for a particular function or purpose (ultimately to
maximise the survival and reproduction of an individual organism). This is analo-
gous to circuit components in electronic engineering. An engineer treats each com-
ponent as a “black box” with a particular input/output relationship, regardless of
its internal circuitry. Similarly, a biological module can be modelled phenomenolog-
ically, characterised by its input/output relationship that determines its function in
the system. The modules could be further divided into sub-modules where neces-
sary, and can be integrated with one another by either logical (Boolean or fuzzy) or

numerical functions, into a network (Asthagiri and Lauffenburger, 2000).

Many molecular mechanisms, especially those downstream of receptor-ligand bind-
ing, are treated as modules in this thesis. One example is the mitogen-activated
protein kinase (MAPK) cascade, an example of an elaborate set of protein relation-
ships that can be captured in the simple mathematical form of a threshold function
(see Section 5.2). On a higher level, once models of a single cytokine are constructed,

they are regarded as modules that can be integrated with models of other cytokines.

We will revisit these categories of models, as well as the two aims of modelling, in the

general discussion (Chapter 8).

1.3.4 Techniques employed

The mathematical forms used in this thesis are continuous-time dynamical systems. Ini-

tially, ordinary differential equations (ODEs) are employed; this assumes that concen-

trations of interacting proteins do not show stochastic variation. Later in Chapter 7, the

models of a single cytokine are extended to allow for such variation by the use of stochastic
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