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ABSTRACT

This thesis describes the development of a numerical simulation based on the 

method of characteristics (MOC) for full bore rupture (FBR) of long pipelines 

containing high pressure hydrocarbons. The Peng-Robinson equation of state 

coupled with the assumption of thermal equilibrium and homogeneous flow are used 

to generate the appropriate vapour/liquid equilibrium data. A variety of solution 

techniques including the use of a second order MOC in conjunction with a nested 

grid system have been developed in order to investigate their effects on computation 

run times and accuracy.

The above, together with the use of a DEC Workstation, has allowed for the first 

time, the validation of a MOC model by comparison with intact end pressure data 

logged for 20,000s following FBR of the Piper-Alpha main riser. Excellent 

agreement is obtained. Comparison with field data obtained following FBR of LPG 

pipelines also gives good agreement.

The main part of the thesis describes the application of the simulation for the study 

of the dynamic response of ball valves and check valves following hypothetical FBR 

of a long pipeline containing either gas or a two-phase mixture. A variety of 

scenarios including the effects of valve proximity to the rupture plane and the delay 

in closure on the total amount of inventory released prior to pipeline isolation are 

analysed. The accompanying pressure oscillations and surges are also accounted for. 

The results are in turn used to recommend guidelines regarding the appropriate 

choice o f emergency shut-down valve depending on the failure scenario.
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Chapter 1 Introduction

CHAPTER 1 : INTRODUCTION

Long pipelines are frequently used for the transport of large quantities of 

hydrocarbons under high pressure. In the case of a typical offshore platform in the 

North Sea for example, the amount of gas present in a 150 km pipeline at 100 bar is 

637,000 kg. This represents an enormous source of energy release which in the event 

of full bore pipeline rupture (FBR) poses the risks of general and extreme fire 

exposure to all personnel in ‘open platform’ areas, and also undermines platform 

integrity. The Piper Alpha tragedy (Cullen, 1990) clearly demonstrated the 

catastrophic nature of this type of accident.

The risk of FBR is of course not confined to offshore installations. Table 4.1.1 lists 

some of the documented cases (Bond, 1996) of pipeline rupture in the past two 

decades which have resulted in numerous fatalities and damage to the environment.

In order to isolate and thereby limit the amount of inventory which may be released 

as a result of pipeline rupture, it is now a statutory requirement (HMSO, 1989) that 

for offshore marine pipelines, riser ESDV’s have to be provided. They are always 

driven thus excluding certain types of valve such as check valves which are non­

automatic. In addition to riser ESDV’s, protection can also be provided by subsea 

isolation valves (SSIV’s) although this is as yet, free of any statutory requirement. 

SSIV’s can be either automatic or non-automatic.

In offshore operations, the responsibility is then placed upon the operators of the 

platform to demonstrate, through the Safety Case (HMSO, 1992), that all hazards 

arising from pipeline rupture are addressed and satisfactorily accommodated. Central 

to this type of analysis is the evaluation of the release rate and its variation with time 

in the event of FBR during isolated (ESDV operating) and un-isolated (ESDV 

disabled) release. Such data have an important bearing on almost every safety aspect 

o f the platform including the survival time of the temporary safe refuge.
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Chapter 1 Introduction

DATE LOCATION NATURE OF 
ACCIDENT

DAMAGE CAUSED

9 December 
1970

Port Hudson; 
Missouri; USA

Rupture of 
20.32cm propane 
pipeline releasing 
60 tonnes of gas

Ignition of gas caused 
explosion and a firestorm. 10 
injured.

24 October 
1978

Brookside Village; 
Texas; USA

76.2cm natural 
gas pipeline 
ruptured and 
caused extensive 
damage

41 injured and 6 deaths

28 July 1988 San Juan De Los 
Reyes; Mexico

Oil pipeline 
explosion

10000 people had to be 
evacuated, 80 injured and 11 
deaths

28 August 
1988

Juan Diaz
Covarrubias;
Mexico

76.2 inch pipeline 
ruptured along 4 
km length.
Caused fire of 4.8 
km radius

Fire burned for 5 hours and 
20000 barrels of crude oil 
lost. 80 injured and 12 deaths

9 November 
1988

Mahul; Bombay; 
India

Naptha pipeline 
ruptured and spilt 
inventory caught 
fire

Structural damage. 40 injured 
and 12 deaths

30 January 
1992

Baku Area; 
Azerbaijan

Crude oil pipeline 
ruptured

Spilt crude oil entered water 
pumping system

March 1992 Penza Oblast; 
Russia

Druzhba oil 
pipeline ruptured 
leading to the loss 
of 6000m  ̂oil

Massive pollution of local 
river

29 September 
1993

Caracas; Miranda 
State; Venezuela

Rupture of natural 
gas pipeline

60 deaths as a result of the 
blast

October 1994 Usinsk Area; 
Russia

Major crude oil 
pipeline rupture

Leakage over 14400m  ̂
occurred. 120000 tonnes of 
oil spilt over Tundra river 
Pechora

Table 4.1.1: A listing of some of the major accidents relating to pipeline rupture 
(Bond, 1996).
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Chapter 1 Introduction

Basically, there are two types of valves which may be employed for emergency 

shutdown. These include ball valves which are self-activating on sensing a drop in 

pressure, or check valves which serve the function of emergency block valve when 

the rupture flow is the reverse of the normal direction o f flow. Associated with each 

valve, there are two characteristic time domains which govern their performance. The 

first, here defined as the activation time t„ is dictated by the time lapsed for fluid 

disturbances initiated as a result of FBR to be transmitted from the rupture plane to 

the location of the ESDV. The other, defined as the closure time, t,. is a design 

parameter and corresponds to the time it takes for the valve to close from the moment 

it is activated until its complete closure. The valve response time, t̂  is the summation 

of the two.

The choice of the appropriate valve presents design and safety engineers with a 

dilemma.

The advantage of a check valve is its low t̂ , thus minimising the amount of inventory 

loss following FBR. This may however be at a cost o f dangerously high pressure 

surges resulting from bringing the high velocity escaping fluid to rest (Wylie and 

Streeter, 1978); Thorley, 1989; Perko, 1986; Koetzier et. al., 1986). Although such 

problems are normally insignificant in the case of a ball valve due to its gradual 

closure, significant amounts of inventory may escape during this period. This effect 

becomes particularly important near the rupture plane where massive amounts of 

inventory are released in a very short space of time. In addition ball valves, 

particularly those suitable for offshore applications are very expensive and normally 

duplicated.

This thesis describes the development of a mathematical model based on the Method 

of Characteristics (MOC) for simulating fluid dynamic effects following FBR of long 

pipelines containing high pressure gas or two phase mixtures. A variety of solution 

techniques including the use of nested grid systems in conjunction with second order 

characteristics are employed. Their effects on CPU and accuracy are investigated. 

This is then followed by application of the model in predicting the dynamic response 

of ESDV’s subsequent to FBR.

12



Chapter 1 Introduction

The development process for a transient two-phase fluid flow model entails three 

main steps. Firstly, the basic equations governing the flow, the thermodynamics, and 

the initial and boundary conditions need to be formulated. Secondly, an efficient and 

accurate method of resolving these equations needs to be chosen and implemented. 

Finally validation of the model with experimental data or actual records is necessary.

Chapter 2 deals entirely with the first step. The basic partial differential equations of 

flow are derived for unsteady quasi-one-dimensional flow of fluids through a rigid 

constant cross-section area of pipe. The various assumptions made in their 

derivations are explained. The derived partial differential equations pertaining to 

conservation of mass, momentum and energy together with an equation of state 

(EOS) constitute a system of equations that are essentially Euler equations with stiff 

source terms due to the fliction term in the momentum equation and the heat transfer 

term in the energy equation. The thermodynamic relationships that are needed to deal 

effectively with the presence of a real fluid (single and two phase) are also presented.

The appropriate vapour liquid equilibrium data are obtained using the HTSFLASH 

programme developed by Michelsen (1982, 1987) incorporating Peng-Robinson 

equation o f state (Peng and Robinson, 1976).

In chapter 3, a mathematical description of the hyperbolic nature of the Euler 

equations is described. This is followed by a review of all available approaches to the 

numerical resolution of the Euler equations including the method of characteristics 

(MOC) which is the preferred method in this study. This is then followed by a 

description of the methods used by various authors to model fluid dynamic effects 

during FBR.

Chapter 4 describes the development of a methodology based on the MOC for the 

solution of the conservation equations in conjunction with an ideal gas. This 

involves:

transformation of the partial differential equations, derived in Chapter 2, to 

particular total differential equations called the compatibility equations,

solution of the compatibility equations based on a new modification to the 

classical method of specified time intervals (ST), and using the Euler predictor-

13



Chapter 1 Introduction

corrector technique (Zucrow and Hoffinan, 1976) to enhance accuracy of the 

numerical analysis. This technique utilises first order finite difference 

discretisation of the compatibility equations for the predictor step followed by a 

second order discretisation for the corrector step.

Various procedures with the primary objective of reducing the CPU run times 

without compromising accuracy in order to produce an optimised model are also 

discussed. These include the application of a nested grid system (CNGS) as well as 

the use o f curved characteristics.

Accuracy of the simulation is assessed by comparing output data with measurements 

taken during the Piper Alpha tragedy, and by making comparisons with results 

obtained by the models of Chen et. al (1992).

Some workers such as Flatt (1985), and Olorunmaiye and Imide (1993) respectively 

make the assumption of adiabatic and isothermal flow following FBR. The 

deficiencies of these approaches with respect to accurate prediction over long 

depressurisation times, and the influence of fire on the rate of heat transfer to the 

fluid are also highlighted.

The optimised model is then used to simulate the dynamic response of emergency 

shutdown of both ball and check valves subsequent to FBR. The principal aim is to 

demonstrate the importance of predicting the rapid variations in the fluid dynamics 

within the pipeline during FBR and their influence on the appropriate choice of 

ESDV. O f particular interest are the evaluations of lost inventory and resulting 

pressure surges as a function of valve proximity to the rupture plane and its response 

time. Pipelines containing gases whose behaviour may be approximated as ideal are 

considered here.

In chapter 5, the CNGS coupled with the Homogeneous Equilibrium Model, (CNGS- 

HEM) is used to derive the relevant characteristic and compatibility equations for 

simulating FBR of pipelines containing two-phase multi-component hydrocarbon 

mixtures.

In solving these equations, particular areas of attention, primarily due to the highly 

non-linear variation of the physical properties of such fluids are:

14
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^  use of a flash calculation procedure for accurate prediction of fluid properties such 

as p, a and P at each node, and at each interpolation point during the numerical 

discretisation

^  accurate prediction of the ‘wall’ friction factor as it is shown that this parameter 

has an important effect on fluid dynamics

^  the calculation for the initial conditions (t=0) at the broken end

direct use of the method o f characteristics to calculate fluid conditions at the 

boundaries between the coarse and fine grids. Linear interpolation is not deemed 

to be sufficiently accurate for this purpose

use of curved characteristics near the rupture plane

use o f smaller than maximum permissible At, according to the CFL condition, for 

accurate simulation of the choking condition, thus avoiding numerical instability.

The above is followed by optimisation and validation of the model by comparison 

with various field data. The modifications to the classical ST method and access to a 

DEC workstation has meant that the MOC, as used in CNGS-HEM, has been used 

for the first time to validate two-phase transient flow in long pipelines over a long 

duration (> 30 minutes). Validations of the CNGS-HEM model are performed in 

conjunction with measured data taken after the accidental rupture of Piper-Alpha, and 

also with data regarding the Isle of Grain pipeline depressurisation tests conducted by 

Shell and BP.

The validated model is then used to predict the dynamic response of ESDV’s or 

SSrV’s following FBR of a pipeline containing a condensable gas mixture and 

comparisons are made in terms of the general trends observed in chapter 4 for 

pipelines containing permanent gases.

Chapter 6 deals with general conclusions and suggestions for future work.
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CHAPTER 2: THEORETICAL MODELLING OF 

PIPELINE RUPTURE

2.1 INTRODUCTION

Full-bore rupture (FBR) of a high pressure pipeline can be described by a massive 

release at the rupture plane followed immediately by a large drop in pressure and 

highly transient flow within the pipeline. The development of a transient two-phase 

fluid model entails three main steps. Firstly, the basic equations governing the flow, 

the thermodynamics, and the initial and boundary conditions need to be formulated. 

Secondly, an efficient and accurate method of resolving these equations needs to be 

chosen and implemented. Finally validation of the model with experimental data is 

needed.

This chapter deals entirely with the first step. The numerical discretisation techniques 

available to solve these equations will then be reviewed in Chapter 3 followed by a 

review of methods used by past researchers to solve this problem.

Many models exist for the analysis of fluid transients in closed conduit circuits but 

only a few are applicable to FBR scenarios. A considerable difficulty has existed in 

modelling the fast transient behaviour of the fluid that occurs at the ruptured end, 

specifically the choking or critical flow condition that inevitably follows rupture of a 

high pressure pipeline. The physical choking condition for a gas states that the flow 

velocity equals the local speed of sound which imposes a stiff boundary condition 

(Picard & Bishnoi, 1989, Chen, J.R. 1993, Flatt, 1986). This condition is very rare 

for liquid flows since the speed of sound for liquids is usually more than 1500 m/s. 

For gas flows however, comparatively low local sound speeds (usually about 400 

m/s) mean that the choking condition is quickly reached.

The unsteady flow of compressible fluids in pipelines is described by a set of three 

partial differential equations derived from the principles of conservation of mass 

(continuity equation), conservation of momentum or Newton's second law of motion 

(equation of motion or momentum equation) and conservation of energy or first law

16
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of thermodynamics (energy equation). The fluid properties can be described by an 

appropriate equation of state. These together with appropriate auxiliary conditions, 

determine the mathematical state of the fluid. The most complete formulation to 

describe any fluid flow situation are the Navier-Stokes equations which allow for 

variation of fluid property in four dimensions, i.e. the three dimensions of space, x,y, 

and z, and also time, t. In order to resolve these equations numerically closure 

relations need to be provided to account for both the diffusive and source terms, thus 

yielding a system of equations that is extremely complicated.

Solving the full system is the ultimate goal of a numerical flow simulation but the 

numerical discretisation necessary to accomplish this for a whole range of fluid flows 

is extremely difficult and requires substantial computer resources. In fact, only very 

simplified flow systems are computed at present to such a high level of 

approximation. It is always necessary to ask the question if it is necessary to resolve 

every term in the Navier-Stokes equation. Depending on the type of flow scenario 

that needs resolving, certain terms in the equations will have a negligible outcome on 

the final solution anyway and can therefore effectively be ignored without any serious 

loss of accuracy.

The final form of these equations, ready for numerical discretisation, can be arrived 

at through many assumptions and simplifications. Based on the above, the equations 

may, in the more general classification, be linear, quasi-linear or non-linear, parabolic 

or hyperbolic, and first- or second-order.

Great simplifications to the governing equations can greatly reduce computer run 

times, but this might well be at a cost to accuracy of the final solution. For example. 

Bell (1978) used a simple exponential model that approximated the mass flowrate by 

the sum of two exponentials. This however took no account of either the highly non­

linear nature of the discharge, or the type of flow or the length of the pipeline which 

has important frictional effects on the flow. The nature of FBR modelling, especially 

for two-phase flows when thermodynamic computations such as vapour liquid 

equilibria are important, demands powerful computing resources.

17



Chapter 2 Theoretical Modelling o f  Pipeline Rupture

In most o f the studies reviewed, researchers have made various assumptions and 

simplifications, in order to suit a particular method of solution or application. Suwan 

and Anderson (1992) argued that alternative formulations, interpolations, friction 

force representation, or time integration, which may be appropriate for parabolic 

problems, will all violate the basic wave like characteristics of a hyperbolic problem. 

Most cases of unsteady one-dimensional flow where disturbance propagation 

velocities do not vary significantly, are characterised by quasi-linear hyperbolic 

partial differential equations for continuity and momentum. On the other hand, 

complex phenomena such as stratified and intermittent stratified-bubble (slug) flows 

require a two-dimensional transient analysis for a complete treatment of the problem.

Various analytical techniques have been used to reduce the number of equations 

before employing the relevant numerical procedure. Van Deen and Reintsema 

(1983), for example, introduced a technique which reduces the energy equation to a 

single parameter-in-mass equation without the assumption of isothermal or isentropic 

flow.

There has been much research activity in many publications in the field of theoretical 

modelling of fluid transients. Much of this literature is reviewed in this study. 

Following this review, a new methodology based on an approach first proposed by 

Picard and Bishnoi (1989) is implemented.

The basic partial differential equations of flow are derived for unsteady 

quasi-one-dimensional flow of fluids through a rigid constant cross-section area of 

pipe. The various assumptions made in their derivation is explained.

Any two-phase flow model needs accurate vapour liquid equilibrium predictions for 

the multi-component fluids and in this study, this is done using the HTSFLASH 

programme first developed by Michelsen (1982, 1987). The Peng-Robinson equation 

of state (Peng and Robinson, 1976) is used to perform the flash calculations.

Numerical solution of the basic equations is effected using the method of 

characteristics which is described in Chapter 3.

18
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2.2 REVIEW OF THE MATHEMATICAL APPROACHES AVAILABLE FOR 

THE DERIVATION OF THE CONSERVATION LAWS

A review of mathematical techniques used to date to derive fluid flow equations is 

presented in this section. There are three basic methods by which fluid flow problems 

are formulated namely, the control volume integral analysis, infinitesimal system 

differential analysis, and experimental or dimensional analysis. In all these cases, the 

equations of dynamics and thermodynamics must be satisfied.

In the control volume approach, a balance is made between the incoming and 

outgoing fluid, and the resultant changes within the control volume and details of the 

flow are normally ignored.

In the infinitesimal approach, the conservation laws are written for an infinitesimal 

system of fluid in motion and become the basic differential equations of fluid flow. 

To apply them to a specific problem it is necessary to integrate these equations 

mathematically over the volume, subject to the boundary conditions of the particular 

problem. Exact analytical solutions are often possible only for very simple 

geometries and boundary conditions, otherwise a numerical solution is needed.

The dimensional analysis approach can be applied to any problem but its inherent 

generality makes this type of approach undesirable.

The control-volume analysis is considered the most useful of all the three approaches 

as far as practical engineering applications are concerned. It gives results in a 

reasonable amount of time with accuracy depending on the assumptions made in 

setting up the model.

In fluid flow problems the dependent variables i.e. p, p, u etc. are functions of the 

independent variables i.e. t and x in the case of one-dimensional flow. In any given 

flow situation, the determination by experiment or theory of the fluid properties as a 

function of position and time is considered to be the solution to the problem. There 

are two distinct fundamental ways of specifying the flow field, namely the eulerian 

and the lagrangian descriptions.

19
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In the Eulerian form the independent space variables refer to a co-ordinate system 

assumed to be fixed or translating in space and through which the fluid is moving. 

The flow is characterised by a time-dependent velocity field which is to be found by 

solving the initial value problem.

In Lagrangian form, the independent space variables refer to a co-ordinate system 

fixed in the fluid and undergoing all the motion and distortion of the fluid, so that the 

particles of the fluid are permanently identified by their Lagrangian variables, while 

their actual positions in space are among the dependent variables that need to be 

solved.

Although the Eulerian and Lagrangian forms are essentially equivalent, the 

Lagrangian form gives more information i.e. it tells where each volume of fluid came 

firom initially and has the virtue that conservation of mass is automatic. This results 

in considerably greater accuracy in some problems.

Ritchmyer (1967) stated that for the above reasons, the Lagrangian form is generally 

preferred for some problems in a one space variable. For problems in two or more 

space variables and time, the Lagrangian method encounters serious difficulties. In 

particular, the accuracy usually decreases seriously as time goes on, due to 

distortions, unless a new Lagrangian point-net is defined firom time to time, which 

requires cumbersome and usually rather inaccurate interpolations. From this point of 

view, the Eulerian form is more attractive. However, the Eulerian form is less adept 

at handling interfaces between fluids having different thermodynamic properties 

because it provides no simple mechanism to distinguish which kind of fluid is 

existent at a given space-time grid point (for problems in one space variable, such a 

mechanism can easily be provided). Many schemes have been tried, some combining 

the features of the Lagrangian and Eulerian forms but there is no satisfactory 

universal method that has been found for general multi-dimensional problems.

Fashbaugh and Widawsky (1972) stated that the Eulerian formulation is usually used 

in steady-state fluid flow problems and the Lagrangian formulation is used more 

extensively in unsteady flow and is more desirable for the solution of shock 

propagation problems. Also the fact that the Lagrangian formulation yields more
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information, facilitates easy location of temperature contact surface propagation 

within the pipe. The study by Fashbaugh and Widawsky (1972) compared two 

methods, namely the pseudo-viscosity and the Lax-Wendroff numerical method in 

modelling the effects of duct area change on shock strength in one-dimensional 

viscous air flow. It was concluded that a one-dimensional variable area Lagrange 

analysis is adequate for predicting shock flow through a duct area increase ratio of at 

least 10 to 1.

Ames(1977) stated that until the early 1960’s, the only known stable difference 

approximations for the Eulerian form were less accurate than those for the 

Lagrangian form. Consequently, the Lagrangian forms are preferred. Both systems 

have approximately the same complexity. The major disadvantage of the Eulerian 

system arises when interfaces (shocks) occur separating fluids of different density. 

The Lagrangian form does not have the spatial co-ordinate mesh fixed in advance 

and may require refinement of the mesh as computation advances. This possibility of 

re-gridding arises since the Lagrange form is constructed so that mass between two 

successive mesh points is approximately conserved.

White (1988) stated that certain numerical analyses of sharply bounded fluid flow, 

such as the motion of isolated fluid droplets are very conveniently computed in 

Lagrangian co-ordinates.

Other more recent writers, including Batchelor (1992) argued that the Lagrangian 

type of specification is useful in certain special contexts but it leads to rather 

cumbersome analysis and in general is at a disadvantage in not giving directly the 

spatial gradients of velocity in the fluid.

In fluid dynamics measurements, the Eulerian method is the most suitable. To 

simulate a Lagrangian measurement, the probe would have to move downstream at 

the fluid particle speeds. The Eulerian formulation has almost exclusively been used 

in all recent studies and literature, even in such cases where according to the above 

discussion, the Lagrangian description would seem more appropriate.

21



Chapter 2 Theoretical Modelling o f  Pipeline Rupture

In this study, both descriptions are used depending on circumstance, with the 

Eulerian concept being denoted by {daJd^ or (5a/ôx), and the Lagrangian concept 

being denoted by (Da/Dt). The relationship between the two is given by.

Da 5a 5a  ̂ ^

In the following section the mathematical model used to simulate the transient flow 

in a pipeline following FBR is developed. The equations will be derived from first 

principles and any assumptions or simplifications will be fully accounted for.

Conservation laws are time-dependent systems of partial differential equations 

(usually non-linear or quasi linear) and have a simple structure when in one space 

dimension (variation in the y and z directions are neglected). They take the form,

— v(x, t) + — f  ( v(x, t)) = Qs (2.2.2)

where v denotes the generic function that is being computed with some numerical 

method and is the source term. Here v(x, t) e R*" is an m-dimensional vector of 

conserved quantities, or state variables which will be the mass, momentum and 

energy terms. More properly, Vj is the density function for the j ’th state variable, with

X2

the interpretation that Jvj(x ,t)dxis the total quantity of this state variable in the 

interval [Xj, X2] at time t.

00

The fact that these state variables are conserved means that |v j(x ,t)dx  should be
—00

constant with respect to t. The functions Vj themselves, representing the spatial 

distribution of the state variables with time t, will generally change as time 

progresses. The main assumption underlying equation 2.2.2 is that knowing the value 

of v(x, t) at a given point and time allows determination of flow or flux of each state 

variable at (x, t). The flux of the j ’th component is given by some function ^(v(x, t)). 

The vector-valued function f(v) with j ’th component ^(v) is therefore the flux 

function for the system of conservation laws.
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To see how the conservation laws arise from physical principles, the equation for 

conservation of mass in a one-dimensional fluid flow problem is first derived. The 

equations derived henceforth will be the full system of Navier-Stokes equations 

which are applicable to any flow. The Euler equations which are a simplified version 

of the Navier-Stokes equations are then derived with the relevant justifications 

explained. The Euler equations of fluid dynamics are used in this study.
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2.3 DERIVATION OF THE CONSERVATION LAWS

This section deals with the mathematical derivation of the conservation laws of mass, 

momentum and energy. The assumptions or simplifications made in the following 

derivations of the Navier-Stokes equations are,

one-dimensional flow

homogeneous equilibrium fluid flow

negligible minor losses and constant cross section area of pipe 

horizontal pipeline with no vertical elevation 

^  negligible fluid structure interaction

2.3.1 One-Dimensional Flow Assumption

A flow can be assumed to be one-dimensional if the rate of change of fluid properties 

normal to the streamline direction is negligible compared with the rate of change 

along the streamline. This means that over any cross-section of the pipe all the gas 

properties may be assumed to be uniform. The assumption of one-dimensional flow 

gives satisfactory solutions to many problems where either the cross-section area 

changes slowly along the path of the stream of gas, the radius of curvature of the pipe 

is large compared with its diameter or the shape of the velocity and temperature 

profiles are approximately constant along the pipe. For one-dimensional flow of a 

fluid, p, p, u etc. are only functions of t and x. The one-dimensional model enables 

simpler derivation of the basic equations of pipeline flow.

In real fluid flow situations, especially in the case of high-pressure natural gas flow in 

pipelines, the flow cannot be truly one-dimensional because viscous effects will 

produce a velocity profile across the pipe with the local velocity zero at the pipe wall 

and reaching a maximum in the centre. Moreover, the flow is turbulent so that there 

are random motions superimposed upon the mean flow.
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Ansari (1972) investigated the influence of including radial flow on the solution of 

unsteady pipe flow equations. It was shown that neglecting the radial velocity can 

lead to substantial error in the determination of the axial velocity of flow. The effect 

of the assumption of negligible radial flow was also investigated in relation to 

another assumption which is commonly made, i.e. the gradient of the axial velocity in 

the axial direction, in viscous flow, is negligible compared to the gradient in the 

radial direction. It was found that for slow transients the latter assumption is valid 

while the former is not and vice versa for the case of rapid transients The departure 

from the one-dimensional flow assumption will be even more pronounced where 

there are bends and fittings in the pipeline. Nevertheless, despite the foregoing, the 

one-dimensional approximation in gas transmission systems has been shown to be 

very good for steady and slowly varying flows.

When the variations in flow are large and rapid, such as in high pressure gas pipeline 

ruptures, larger discrepancies are expected from the one-dimensional approximation. 

A more rigorous approach is to apply the integrated equation method used in the 

turbulent boundary layer theory.

There are many studies and computer models developed for multi-dimensional flow 

analysis. A few computer programmes based on multi-dimensional flow models such 

as FLOW-3D are commercially available. However, these models can only be 

applied to some special cases with confidence.

Shin (1978) discussed the extension of the one-dimensional method of characteristics 

to two space dimensions. The extended method uses the same simplifications and 

retains the similar simplicity and efficiency as in the conventional one. The 

two-dimensional method is applicable to both the Cartesian and axi-symmetric 

systems and includes the conventional method as a special case.

Wylie (1983) presented a similar numerical method for analysis of low-velocity 

two-dimensional transient fluid flow problems. The method contains similarities to 

the one-dimensional method of characteristics but does not follow the traditional 

characteristics theory for two-dimensional problems.
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The most up to date and comprehensive study is that by Bendiksen and Moe (1993) 

and Bendiksen et. al. (1991), which presented the physical basis of a new type of 

multi-dimensional two-fluid model, particularly suited for transient flow problems. A 

basic difference between this model and the other models is in the solution 

procedure, aiming in particular at improved predictions of transient problems. The 

numerical scheme is based on an extension of an earlier one-dimensional model and 

employs an implicit finite difference scheme.

It follows from the above discussion that the three dimensional solution is the natural 

method for the FBR problem being modelled if a two-fluid model is to be employed. 

As shown in the above mentioned studies, the extension of one dimensional models 

to two-and three-dimensional models could, in principle, be achieved especially if 

caution is made in representation of the other terms in the equations.

2.3.2 Homogeneous Equilibrium Flow Assumption

Transient flows encountered in pipeline rupture problems are frequently two-phase 

flow even if  the initial state of the fluid is single phase. The two phases occur either 

from liquid condensation due to low temperatures at the rupture plane which then 

propagates through the pipeline or for liquid flows, vapour flashing due to low 

pressure. A complicated multi-phase flow situation is therefore likely to be 

encountered, especially for a multi-component mixture. Convenient classification 

into two types of flow regimes would be dispersed (particles, bubbles and droplets), 

and separated (stratified, annular and elongated bubbles) flows. More complex flow 

regimes often occur as combinations of these, such as stratified and annular flows 

with entrainment and slug flow. Flow regimes commonly experienced are stratified 

(wavy or smooth), annular dispersed, intermittent (slug) and dispersed bubble flows. 

In relatively long pipelines, with possibly large pressure losses, several of these flow 

regimes may exist simultaneously as a result o f changing in situ flow rates and 

physical properties of the fluids.

Dispersed flow regimes have been quite extensively studied recently using two and 

three-dimensional models. For two-phase flow, however, at least four general
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purpose codes are available. They include FLUENT and RAMPANT, developed by 

Fluent Inc., FL0W-3D developed by Flow Science Inc., and PHOENICS developed 

by CHAM consultancy. For separated or stratified flow, there has been several 

studies, including those by Oliemans (1987); Stadtke and Holtbecker (1991), Philbin 

and Govan (1990), and Bendiksen and Moe (1993).

Oliemans (1987) investigated the accuracy of two-phase flow trunk line predictions 

by a one-dimensional steady model for stratified wavy flow in horizontal and 

inclined pipes.

Stadtke and Holtbecker (1991) proposed a two-fluid model, i.e. including slip 

velocity between the two phases, for transient fluid flow. The complexity associated 

with a two-fluid model is that the characteristic equations that define the flow do not 

have a simple analytical form. The characteristics in Stadtke and Holtbecker’s model 

is derived based on analytical trials rather than physical modelling.

The effect of concentration stratification in multi-component two-phase flow as a 

result o f slip, and mass transfer between the two phases is taken into account by the 

computer programmes, PLAC and OLGA developed by Philbin and Govan (1990) 

and Bendiksen and Moe(1993) respectively. However neither incorporte proper 

phase behavior during the transient flow process due to inherent limitations in the 

numerical methods employed.

In the multi-dimensional Moe-Bendiksen model (OLGA), the general two-fluid 

equations have been applied with the assumption of a single pressure field. The 

modelling of constitutive laws at the interface is not general but focused on separated 

or stratified flows. A volume equation is applied for the pressure, enabling a direct 

two-step solution procedure.

In analysing pressure transients in bubbly air-water mixtures Padmanabhan et. al. 

(1978) used a homogeneous model which consists of one-dimensional equations of 

conservation o f mass for each of the phases and conservation of momentum for the 

mixture.
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Bhallamudi and Chaudhry (1990) developed a third-order accurate explicit fmite- 

difference scheme for transient flows in one-dimensional homogeneous gas-liquid 

mixtures in pipes. The gas-liquid mixture was treated as a pseudo-liquid.

Chen et. al. (1995) used a two-fluid model (MSM), in which the local instantaneous 

conservation equations are formulated for each phase. The hyperbolicity of the 

equations is achieved by forcing the flow to be marginally stable. Under this 

condition, all information related to the structure of the flow that is not considered to 

be non-dissipative, inviscid flow is embedded in an inertial coupling constant. To 

obtain correct and real sonic characteristics an expression for the inertial coupling 

constant is obtained based on critical flow data. The thermodynamic equilibrium 

assumption is used as the closure criterion for interfacial mass and energy transfer.

A gas-liquid mixture may be treated as a pseudo-fluid, if the mixture and its motion 

may be treated as homogeneous. In the homogeneous equilibrium model (HEM), the 

two phases are assumed to move at the same velocity and are always in 

thermodynamic equilibrium. The major advantage of HEM is that it has a relatively 

simpler mathematical structure and clearly defined characteristic equations are 

assured for all flow situations.

Chen et al. (1993, 1995) showed that for long pipelines (length > 100m) the HEM 

gave very good agreement with data obtained for fiill-bore rupture from tests 

performed by British Gas on the Isle of Grain. The predicted release rate of HEM and 

the more detailed two-fluid model, MSM, were very close. It was concluded from 

this work that thermodynamic non-equilibrium is insignificant in long pipes except 

for the early stages of rarefaction wave propagation.

In the light of the above findings, it is decided to use the HEM assumption in this 

work. This means that the following derivations will not contain two separate 

momentum conservation equations for each phase of a two-phase mixture and 

therefore no special treatment is required to obtain clearly defined characteristics.
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2.3.3 Minor losses and constant cross-section area of pipe

Since the aim of this study is the rupture modelling of long, straight pipelines, minor 

losses due to bends and obstacles will be neglected in the derivation of the 

conservation equations of fluid flow. This assumption is reasonable since these losses 

are likely to be small compared with the distributed frictional losses in long 

pipelines. The effect of these minor losses on the fluid transients is investigated by 

Otwell et. al. (1985).

As regards the assumption of constant cross-section area of pipe, most workers have 

generally assumed that the cross-section area of the pipe is not a function of the axial 

distance or varies slowly (Flatt, 1985, 1986; Picard and Bishnoi, 1988,1989; Chen, 

1993). hi some special cases such as in cooling ducts etc. where the cross-section 

area varies appreciably with distance, this effect has been incorporated into the basic 

equations. However, in some studies on compressible flow, including those by Zielke 

(1968) and Flatt (1989), the equations are based on a variable change in cross-section 

area.

2.3.4 Horizontal pipeline with no elevation

The pipeline is assumed to be straight with no elevated sections, therefore the gravity 

term is neglected in the equations.

2.3.5 Negligible fluid structure interaction

The classical water-hammer theory only predicts the extreme loading on a system as 

long as it is rigidly anchored. When a piping system has certain degrees of freedom 

severe deviation from the classical theory may occur due to motion of the system. 

Pressure waves exert forces which cause a compliant system to move. As a result of 

the motion, pressure waves are formed, a phenomenon known as fluid structure 

interaction.

Fluid structure interaction is essentially a dynamic phenomenon, the interaction being 

caused by dynamic forces which act conversely on fluid and pipe. The forces in such
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a piping system are classified in two groups namely distributed forces and local 

forces. Typical examples of distributed forces are fluid pressure and friction. In the 

case of fluid pressure, rapid pressure fluctuations cause a pipe to expand or contract 

thereby creating axial stress waves in the pipe wall. The stress waves in return 

generate pressure fluctuations in the enclosed fluid, resulting in a coupling known as 

Poisson coupling.

Similarly, friction force is responsible for friction coupling. In most practical 

systems, frictional coupling is weak. Local forces act on specific points in a system, 

such as elbows, tees or valves and cause axial and lateral motions which generate 

pressure waves in the fluid resulting in an interaction called junction coupling. 

Junction coupling is generally dominant compared with Poisson and Friction 

couplings. Lawooij and Tijsselling (1990) conducted a study of fluid structure 

interaction in compliant piping systems. They concluded that the most significant 

coupling mechanisms are Poisson and Junction coupling. A simple guideline which 

states when interaction is important is formulated in terms of three time scales i.e., 

the time in which the pressure is built up, the eigen-periods of the structure and the 

time scale of the water-hammer waves. They also concluded that Poisson coupling is 

important for the fluid when significant modes of interaction are dominated by 

stiffness.

To consider the motion of the pipe, three main displacements are distinguished 

namely axial displacement, lateral displacement and rotation. Therefore in general, 

the dynamics of a pipe system are influenced by four wave families, i.e. axial, 

flexural and torsional waves in the pipe wall and pressure waves in the fluid. These 

co-exist during transience and have different degrees of influence on the transient 

behaviour. Fluid structure interaction in compliant piping systems is modelled by 

extended water-hammer theory for the fluid and by beam theory for the pipes. In 

buried pipelines, the lateral restraint is usually sufficient to ensure that the overall 

behaviour is dominated by axial effects. Hence most analyses of fluid structure 

interaction have focused on the propagation of axial waves i.e. pressure waves 

propagating along the walls of the pipe. In suspended pipelines however, few lateral 

restraints exist and account should be taken of flexural and torsional waves.
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In a study on fluid structure interaction in flexible curved pipes, Stittgen and Zielke 

(1990) concluded that the influence of structural motion on the internal pressure is 

smaller than the time dependent internal pressure but can still be of influence in 

particular cases. They also concluded that pressure waves in flexible pipes are quite 

dependent on visco-elastic wall properties.

Rachid and Stuchenbruck (1990) stated that the mechanical properties of the 

material, the temperature and the degree of stiffness of the supports, have a 

significant influence on the response of the system. Stiffer pipe materials i.e. those 

with mechanical damping will experience higher pressures than more compliant pipe 

systems. They also found that Poisson effects can induce significant piping motion 

especially in long pipe reaches and cause high frequency peaks for pressure and stress 

in visco-elastic pipes, e.g. up to 25% above the rigid pipe model. However, 

mechanical damping of the pipe material tends to degrade the solid wave front quite 

quickly. In most cases, high frequencies generated by the fluid structure interaction 

mechanism are virtually eliminated before the first fluid cycle.

In practice the value of the sonic velocity in the fluid in a pipe is influenced by the 

elasticity of the confining walls and the compressibility of the fluid. As the elasticity 

of the wall materials increases, the effective value of sonic velocity decreases. This 

effect is commonly neglected for typical high-pressure gas pipelines. However, some 

workers including Wood et. al. (1966), Zielke (1968), Hirose (1971) and Beauchemin 

and Marche (1992) have all taken into consideration the effect of pipe elasticity. This 

has resulted in an additional term in the continuity equation. In the 

Beauchemin-Marche model, no simplification was made on the basic equations and 

in addition the effect of variable cross-section area was included.

In the study by Tiley (1989), the effects of fluid structure interaction were not 

considered in an effort to maintain simplicity of the model. The same approach is 

adopted in this study. It is felt that for long straight pipes that are rigidly anchored as 

considered in this work, fluid structure interaction will not be as significant as 

frictional and two-phase equilibria effects. It is also assumed that the pipe is inelastic.
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i.e. elasticity of the pipe walls is negligible compared with the compressibility of the 

fluid.

2.3.6 Conservation of Mass

If pipeline rupture occurs at t = 0, then the flow variables can be summarised in 

Figure 2.3.1 below:

P = pressure 
u = fluid velocity 
Q = heat transfer from the 

surroundings 
Tw = friction force effects 
D = internal diameter
L = pipeline length7üD

A=

Uo

Ax

L

Figure 2.3.1: Control Volume

Let X represent the distance along the pipeline and let p (x , t) be the density of the 

fluid at point x  and time t. The total mass of fluid per unit cross-sectional area in any 

given section from Xi to x%, say, is given by the integral of the density,
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X2

mass in [x 1 , X2  ] at time t = ^ ( x ,  t)dx (2.3.1)

If we assume that the pipe is impermeable and that mass is neither created nor 

destroyed, then the mass in this one section can change only because of fluid flowing 

across the end points x, or X2.

Let u(x, t) be the velocity of the fluid at the point x at time t. Then the rate of flow, or 

flux of fluid past this point is given by,

mass flux at (x, t) = p(x,t)u(x,t) (2.3.2)

Therefore the rate of change of the mass state variable across the control volume 

given by the spatial domain [Xj, X2] is given by.

X2

^  Jp(x,t)dx = p(x,,t)u(x,,t)-p(x 2 ,t)u(x2 ,t) (2.3.3)

This is one integral form of the conservation law. Another form is obtained by 

integrating this in time from time tj to t2, giving an expression for the mass in [Xj, X2] 

at time t2 > t, in terms of the mass at time tj and the total (integrated) flux at each 

boundary during this time period.

%2 %2

Jp(x,t 2 )dx= Jp(x,ti)dx +

Xj Xi

(2.3.4)
Î2 *2

fp (x ,, t)u(x,, t)dt -  Jp(x2 , t)u(x2 , t)dt

To derive the differential form of the conservation law, we assume that p(x, t) and 

u(x,t) are differentiable functions. Then using.
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p(x,t2 )-p {x ,t ,)=  J^ p (x ,t)d t (2.3.5)

and.

X2

p(x2 ,t)u(x2 ,t)-p (x i,t)u (x ,,t)=  J^{p(x,t)u(x,t)}dx (2.3.6)

*1

Substituting equations 2.3.6 and 2.3.5 into equation 2.3.4 allows one to write, 

\ \ \

5 5 1
— p(x,t) + — (p{x,t)u(x,t))|dxdt = 0 (2.3.7)

t ,  Xi

Since this must hold for any section [Xj, Xj] and over any time interval [tj, tj], it can 

be concluded that in fact the integrand in equation 2.3.7 must be identically zero, i.e.,

| p  + -^ (p u ) = 0 (2.3.8)

This is the desired differential form of the conservation law for the conservation of 

mass.

For flows where two phases are present and the homogeneous equilibrium flow 

assumption is made, the two phases move at the same velocity and a mass balance 

for the overall mixture composition, y, in differential form can be written as,

^ ( y i )  + ̂ ( u y i )  = 0 i = l ,  N - l  (2.3.9)

where
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where the subscript i refers to the i’th component of an N component mixture, a  is 

the volume fraction of the vapour phase, and the subscripts 1 and g refer to the liquid 

and gas phase respectively.

Equation 2.3.9 shows that the mixture composition is purely convected by the flow 

and depends only on the initial fluid composition profile along the pipeline.

2.3.7 Conservation of Momentum

The derivation for the conservation of momentum is slightly different to that of mass. 

Momentum is a vector quantity and in order to determine all the terms in the 

momentum conservation equations it is necessary to define the sources influencing 

the variation of momentum. It is known from Newton’s laws, that the forces for the 

variation of momentum in a physical system are the forces acting on it (Welty et. al., 

1984). These forces consist of the external volume forces and the internal forces 

ZFj. The latter are dependent on the nature of the fluid considered, and result from 

the assumptions made about the properties of the internal deformations within the 

fluid and their relation to the internal stresses.

The internal forces acting on the fluid volume in the pipeline within the spatial 

domain [Xj, is given by,

^  V j = A P (x i,t)-A P (x 2 ,t) + AT(x2 ,t) -A x (x i,t)  (2.3.11)

where x denotes the viscous shear stresses within the fluid and is a tensor quantity. 

These stresses give rise to fluxes that depend on the spatial gradient of the state 

variable. In one dimension only, this can be expressed as.

^ 8 u 2  0 u 
5x 3 5x

(2.3.12)

where p is the dynamic viscosity of the fluid

The external volume forces are the forces that would render the flow non-isentropic. 

In the assumption of isentropic flow, this term can be expected to change only 

because of flow of fluid across the end points x, and X2 . However for non-isentropic
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flows which would be the real case scenario, this is not true. There is likely to be 

some destruction of momentum within this interval and this loss or sink is denoted as 

a source term. The source term in non-isentropic homogeneous equilibrium flows can 

be attributed to wall friction only. Other hydrodynamic effects such as interfacial 

drag force, mass transfer effect force are not relevant for the homogeneous flow 

assumption and are therefore ignored with respect to any additional terms in the 

momentum equation.

The external force term is therefore.

I F e = ^ ^ d x A  (2.3.13)

where f^ is the fanning friction coefficient. The modulus of velocity is introduced to 

account for change of direction of flows.

The total momentum of fluid in any given volume of fluid as in that from Xj to Xj can 

be given by the following relation for a constant cross-sectional area conduit,

momentum at time t = A j"p(x,t)u(x,t)dx (2.3.14)

where A is the cross-sectional area of the pipeline (assumed to be constant).

The rate o f flow of momentum or momentum flux at a point x at time t can be written 

as,

momentum flux at (x,t) = p(x,t)u^(x,t)A (2.3.15)

The rate of change of momentum within a control volume bounded by the spatial 

domain [Xj, X;] will be the sum of the net momentum fluxes through the volume plus 

any internal and external forces acting on the volume. This can therefore be written 

as.
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at
A Jp (x ,t)u (x ,t)d x  = p (x i,t)u ^ (x i,t)A -p (x 2 ,t)u^(x 2 ,t)A

Xl

+ AP(xi, t) -  AP(x2 , t) + A t(x 2 , t)

-  A t(x i , t) + dxA
2 D

(2.3.16)

Dividing all sides by A, another form of this equation is obtained by integrating 

equation 2.3.16 in time from t, to tj in order to get an expression for the momentum 

in [XjjXj] at time tj > t̂ .

X2 X2

p(x, 1 2  )u(x, 1 2  )dx = J  p(x, 1 1 )u(x, 1 1 )dx +

Xi Xi

t2

j*{p(x 1 , t)u^ (x 1 , t) -  p(x2 , t)u^ (x2 , t)|d t +

){p(xi,t)-p(x2 ,t)}dt +

] '

h 2̂

Jf^pu|u| 4f,  ̂
I  2  D ;

dxdt

t]  Xi

(2.3.17)
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The following correlations can also be written for momenttmi,

t2

p(x, t 2 )u(x, 1 2 ) -  p(x, ti)u(x, ti) = | ^ p ( x ,  t)u(x, t)dt (2.3.18)

%2

p(x2 , t)u^(x2 , t) -  p(xi, t)u^(x,, t) = j ^ [ p U ^ ( x ,  t) |dx (2.3.19)

]i(p(x 2 , t) -  p (x i, t)) = |- ^ p ( x ,  t)dx (2.3.20)

%2

f(x(x2 ,t) -  t(x i ,t)) = j — x(x,t)dx (2.3.21)

Substituting the relations 2.3.18 - 2.3.21 into equation 2.3.17 and simplifying, we 

obtain.

j j l ô t - - - —  ̂ 5x

t i  X,

p(x, t)u(x, t) + ̂  [pu^(x, t) + P -  x] + p idxdt = 0 (2.3.22)

where p can be written as, 

f
P = -2 -^ p u lu | (2.3.23)

As in the case for the conservation of mass, it can be concluded that in fact the 

integrand in equation 2.3.22 must be identically zero since it must hold for any 

section [Xj, X2] and over any time [t„ tj].
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^(pu) + '^ (pu^+P-'t^) = -P  (2.3.24)

Equation 2.3.24 is the differential Navier-Stokes form of the momentum equation 

and is applicable for all flows in all situations.

2.3.8 Conservation of energy

From thermodynamic analysis of fluid continua it is known that the energy content of 

a system is measured by its internal energy per unit mass, e. This internal energy is a 

state variable of a system and hence its variation during a thermodynamic 

transformation depends only on the final and initial states.

The total energy to be considered in a fluid when deriving the conservation equation 

is the sum of its internal and kinetic energy per unit mass. Therefore the total energy 

per unit mass can be given by,

u^
E = e + - ^  (2.3.25)

A third term, gz, that takes account of the potential energy gained by different pipe 

elevations is ignored because the pipe is assumed to run on the same horizontal axis.

The total energy of the fluid contained in the volume bounded by [xi, Xz] can be 

given by.

X2

energy in [x^, X2 ] at time t = ^  p(x, t)E(x, t)Adx (2.3.26)

The first law of thermodynamics states that the sources for the variation of the total 

energy are the work of the forces acting on the system plus the heat transmitted to 

this system.

Considering the general form of the conservation law for the quantity E, then the rate 

of flow of energy or energy flux at the point x and time t is given by.

39



Chapter 2 Theoretical Modelling o f  Pipeline Rupture

convective energy flux at (x, t) = p(x, t)E(x, t)u(x, t)A (2.3.27)

If we consider the general form of the conservation law, then apart from the 

convective flux of energy there will also be a diffusive flux associated with the 

internal energy of the fluid,

diffusive energy flux at (x, t) = - k ^ ( x ,  t)A (2.3.28)

where k is the thermal conductivity of the fluid and T is the absolute temperature.

With regard to the sources of energy variations in a fluid system, a distinction has to 

be made between the surface and the volume sources. The surface sources are the 

result o f the work done on the fluid by the internal shear stresses acting on the 

surface of the volume considering that there are no surface heat sources and can be 

written at a point as,

surface sources of energy at (x, t) = - P(x, t)u(x, t)A + x(x, t)u(x, t)A (2.3.29)

The volume sources are the sum of the work of the volume forces and any other heat 

sources other than conduction. This heat source would include any transfer of 

convective heat from the surroundings. In terms of the volume of fluid in [Xj, Xj] the 

rate of heat transfer to the fluid from the surroundings can be given by,

Q h = ^ U h ( T , - X ) A d x  (2.3.30)

where is the overall heat transfer coefficient and the subscript oo denotes the 

conditions external to the pipeline.

The rate of change of total energy in [Xj, Xj] can be given by equating the rate form of 

equation 2.3.26 to the difference in fluxes at Xj and Xj and any source terms as 

explained above.
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X2

(pE)(x,t)Adx = A {(pEu)(x,,t)-(pEuX x 2 ,t)}

Xl

(2.3.31)

+  a {(P u )(xi , t) - ^ X 2 . t)} +

+  a {(tu)(x 2, t) -  (tu)(xi , t)}

+ Q h + W h

As in the conservation of momentum equation, another form of the above expression 

can be obtained by integrating in time from ti to ti, where t2 > ti,

X2 X2 t2

a J *  (pE)(x,t2 )dx = A j*  (pE)(x,ti)dx + j*  A {(pEu)(xi,t)-(pEu)(x 2 ,t)}dt

Xl X]

. | a |

+

t2J a {(P u )(x , , t) -  Pu(x2 , t)}dt

^2 ^2+ J a{(tu )(x 2  , t) -  (tu)(xi , t)}dt + J (Qh + Wh )dt

ti ti

(2.3.32)
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Expressing the arguments of the integrals on the right hand side using the following 

generic manipulation,

M (x2 , t ) - M ( x i , t ) =  I —  M(x,t)dx (2.3.33)

Xl

we obtain from equation 2.3.32 after some mathematical manipulation,

Î2 %2

^ ( p B ) ( x , t )  +  ^  f  7^T\................................ - Q v , - W f t o d t  =  0
d t d X

t i  Xl

(2.3.34)

where Wf is the work per unit volume of the external volume forces (shaft work and 

viscous drag effects), and qn is the heat transfer per unit volume.

The differential form of the above equation yields the Navier-Stokes form of the 

conservation of energy,

3T
pEu + Pu -  k — -  Tu 

dx
= 9h+Wf

where the heat transfer per unit volume can be written.

(2.3.35)

q h = p U h ( T ^ - T ) (2.3.36)

The equations that have been derived up to now are the complete set of conservation 

laws. Expressed together they can be written as.

a
at

P
pu
pE

+
ax

pu

pU.U + P - T
aT

puE + P u - T . u - k —
ax

0

p
Qh + Wf

(2.3.37)
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These are the Navier-Stokes equations of motion. These include the dissipative flux 

terms that depend on the second derivative of velocity (in the case of internal viscous 

stress in the momentum and energy equations) and the second derivative of the 

temperature (for heat conduction in the energy equation). Numerically the presence 

of these dissipative fluxes causes problems because the equations become parabolic 

rather than hyperbolic. This typically causes severe time step restrictions.

2.3.9 Euler Equations

The system of Navier-Stokes equations, supplemented by empirical laws for the 

dependence of viscosity and thermal conductivity with other flow variables and by a 

constitutive law defining the nature of the fluid, completely describes all flow 

phenomena. For laminar flows no additional information is required and we can 

consider that any experiment in the laminar flow regime can be accurately modelled 

by computation. However the flow situation that arises in a pipeline as a result of 

FBR is highly turbulent and this leads to a form of numerical instability characterised 

by the presence of statistical fluctuations to all flow quantities. These fluctuations 

can be considered as superimposed on mean or averaged values and can attain, in 

many situations the order of 10% (Hirsch, 1995) o f the mean values, although certain 

flow regions such as separated zones, can attain much higher levels of turbulent 

fluctuations.

Clearly, the numerical description of the turbulent fluctuations is a formidable task 

which puts very high demands on computer resources (Chapman, 1979; Kutler, 

1983). Since this level is currently extremely computationally expensive, the highest 

level of approximation which could be considered is the Reynolds averaged Navier- 

Stokes equations supplemented by some models for the Reynolds stresses or 

fluctuation momentum flux. These models can range from the simple eddy viscosity 

or mixing length models to transport equations for the turbulent kinetic energy and 

dissipation rates, the so-called k-e model, or to still more complicated models 

directly computing the Reynolds stresses.

The next level of approximation can be introduced for flows with a small amount of 

separation or back-flow and with a predominant mainstream direction at high
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Reynolds numbers. This allows the viscous and turbulent diffusion terms in the 

mainstream direction to have a negligible effect on flow behaviour. This is the thin 

shear layer approximation (Pulliam and Steger, 1978; Steger, 1978).

Another level of approximation that is frequently considered is the boundary layer 

approximation. Prandtl recognised that at high Reynolds numbers the viscous regions 

remain of limited extension along the surfaces of solid bodies immersed in or 

limiting the flow. Hence when the viscous regions remain close to the body surfaces 

(that is, in the absence of separation) the calculation of the pressure field may be 

separated from that of the viscous velocity field. A detailed discussion of the 

boundary layer equations can be found in Batchelor (1970), Schlichting (1971), and 

Cebeci and Bradshaw (1984).

For flows with no separation and thin viscous layers, that is at high Reynolds 

numbers, a separation of the viscous and inviscid parts of the flow can be introduced, 

whereby the pressure field is de-coupled from the viscous effects, showing that the 

influence of the viscous and turbulent shear stresses is confined to small regions 

close to the walls and that outside these layers the flow behaves as inviscid. This 

analysis showed that many of the flow properties can accurately be described by the 

inviscid flow approximation (for example, determination of the pressure 

distributions), and that a simplified boundary layer approximation allows for the 

determination of the viscous effects. The calculation of the inviscid and the boundary 

layer parts of the flow can be performed interactively, taking into account the 

influence of the boundary layers on the inviscid flow.

Recently a series of approaches in this direction have been developed, i.e. the viscid- 

inviscid interaction methods, whereby attempts are made to model separated regions 

in an approximate way while keeping the advantages with regard to the reduced 

computational effort of the boundary layer approximations (Le Balleur, 1983). When 

this influence or interaction is neglected we enter the field of the inviscid 

approximations, which allows generally a good approximation of the pressure field 

and hence of lift coefficient for non-separated flows.

For very high Reynold’s number flows, the inviscid-viscid flow assumption would 

be relevant. The viscous terms in the Navier-Stokes equations can be described by
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momentum interactions or exchanges at the fluid-fluid and fluid-wall interface. The 

momentum interactions are expressed in terms of drag forces. The generalised drag 

force at the fluid-fluid interface is usually modelled as a hnear combination of three 

forces: steady viscous drag, transient viscous drag or the Basset force and transient 

non-viscous drag such as the virtual mass force. At the fluid-wall interface, the 

viscous drag force can also be modelled as a linear combination of unsteady and 

steady wall drag or friction.

Chen (1993) in his marginal stability model (MSM) used essentially an inviscid flow 

model where the viscous effects mentioned previously are considered as constitutive 

relations and show as source terms in the conservation equations. However the 

unsteady components of each of the viscous drag effects are ignored except for the 

effect of transient non-viscous drag force.

The unsteady viscous drag is ignored on the basis that its effect decreases rapidly for 

bubbles of size larger than 10^ m and for large Reynolds number flows. It is shown 

that for low Reynolds numbers, which will exist at the closed end of a ruptured pipe, 

the unsteady viscous drag appears as a time integral in both Stokes or creeping flow 

(Basset, 1961) and is very difficult to incorporate and solve as all the history of the 

flow must be stored.

The unsteady wall friction is also usually modelled as a time integral in single phase 

flow (Zielke, 1968). It is ignored by Chen on the basis that its effect is negligible 

with the progression of time and with the onset of turbulent flow. The transient non- 

viscous drag force is incorporated in the MSM model by deriving an inertial coupling 

constant.

The steady state components of the constitutive hydrodynamic relations are 

predominantly dependent on the phase slip or relative velocity (Ug - u j, where Ug is 

the velocity of the gas phase and u, is the velocity of the liquid phase. The only 

exception is the wall friction relation which is a function of fluid velocity. Due to the 

implicit dependence of many of the hydrodynamic relations on the relative velocity, 

the MSM model solves two momentum conservation equations, one for each phase.

Chen also developed a META-HEM model which can ignore all the fluid-fluid 

interface relations because the relative velocity is zero. The only viscous effect terms
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which remain are the wall jfriction terms. In spite of this, as mentioned before, 

META-HEM gives good agreement for transient flow through long pipes (length > 

1 0 0 m).

Subsequent to FBR of a pipeline, a highly turbulent flow situation will arise and it 

will essentially be dominated by convective effects. This means that in the bulk 

regions of flow, the inviscid flow assumption is close to reality with the viscous 

effects only occurring at the wall so that an inviscid-viscid model is appropriate. This 

approach is adopted in this study. Therefore, the dissipative fluxes relating to the 

viscous and heat conducting terms are ignored in the momentum and energy 

equations respectively and as a result, the Navier-Stokes equations can now be 

written as.

d
at

p Q pu 0

pu pu.u + P = P
pE puE + Pu qh

(2.3.38)

or in terms o f an absolute frame of reference, for the conservative variables V, 

defined by,

— V + — F(V) + G = 0 (2.3.39)
at ax

The above system of equations are essentially the Euler equations of conservation 

with the viscous effects at the fluid-wall interface appearing as source terms of wall 

friction and heat transfer. Although heat conduction effects are neglected, the heat 

sources term % cannot be neglected as there is bound to be heat transfer from the 

surroundings. Neglecting the heat transfer term would render the model adiabatic.

This approximation introduces a drastic change in the mathematical formulation with 

respect to all the previous models containing viscous terms, since the system of 

partial differential equations describing the inviscid flow model reduces from second 

order to first order. This is of significance, since it determines the numerical and 

physical approach to the computation of these flows. Also, the number of allowable 

boundary conditions is modified by passing from second-order viscous equations to 

the first-order inviscid system.
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The vectors of variables formed by density, momentum and total energy, obeying the 

conservation form of the equations, are the conservative variables. The conservation 

form of the equations is essential in order to compute correctly the propagation speed 

and the intensity of discontinuities such as shock waves and contact surfaces that can 

occur in inviscid flows (LeVeque, 1990).

When FBR occurs, the high pressure fluid within the pipeline is suddenly exposed to 

a low pressure fluid existing externally. The sudden discontinuity in fluid properties 

at the point of rupture leads to the creation of centred compression and expansion 

waves. A centred compression wave is a shock wave and propagates into the low 

pressure external region whereas a centred expansion wave propagates into the high 

pressure region, internally through the pipeline creating an ‘expansion fan’ (Hirsch, 

1990; Zucrow and Hoffinan, 1976).

The expansion fan region does not give rise to shock wave like discontinuities in the 

conservative variables and the Euler equations for this scenario can therefore be 

expressed in terms of more ‘direct’ variables, i.e. in non-conservative mode. It is 

important to realise that the mathematical modelling of any flows with shock waves 

or contact surface discontinuities has to be done in conservative variable form.

The direct variables are density, velocity and pressure. In the expansion fan, they 

sustain a continuous variation with time. These variables will generally be imposed 

by the physical boundary conditions and are called the primitive variables. In 

addition, as the system of Euler equations are hyperbolic in time, quantities that 

propagate along characteristics can be defined and the system of equations can be 

transformed to the characteristic form. This procedure is described in Chapter 3, but 

first the Euler equations have to be expressed in primitive variable form.
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2.4 THE IDEAL GAS MODEL

It has been shown that for regions of flow where expansion waves propagate, no 

special shock wave treatment of the Euler equations according to the Rankine- 

Hugoniot jump relations are needed (Hirsch, 1995). Shocks are solutions of the 

Rankine-Hugoniot relations with non-zero mass flow through the discontinuity. 

Consequently, pressure and normal velocity undergo discontinuous variations, while 

the tangential velocity remains continuous.

The absence of shock wave propagation within the pipeline after rupture permits the 

manipulation of the conservative form of the Euler equations, i.e. equation 2.3.38, 

into primitive variable form.

The mass conservation equation can be written as, 

dp 0u dp

The momentum conservation equation can be written as,

Multiplying the mass conservation equation by u, and subtracting it from equation

2.4.2 gives the following form of the Euler momentum conservation equation,

8 u

Expanding the energy conservation component o f equation 2.3.38,

dp  ̂ / A dE dE d? d\i

Multiplying the mass conservation equation by E, and subtracting from equation

2.4.4 yields.
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dB dE 3P au
(2.4.5)

Replacing the total energy, E by its component parts, we obtain another version of 

the energy conservation equation.

at
u

e + + pu
ax

.2 ^
e +

ap ^au
(2.4.6)

where e is the internal energy per unit mass. 

For an ideal gas,

e = C^T

Substitution of equation 2.4.7 into 2.4.6 gives.

(2.4.7)

a/^, a / \ du  2 au ap _ au
P3:(^vT )+pu37(c„T)+pu— +pu 3j  + U3r  + P3j  = qh9 ,V“ v- /

Since for an ideal gas.

dx dx dx
(2.4.8)

(2.4.9)

where y is the ratio of specific heats (Cp / Q ) and is always a constant for an ideal 

gas. Substituting equation 2.4.9 into equation 2.4.8, the resulting equation is.

1 ap p ap u ap Pu ap au
(y -  l) dt (y -  l)p at (y -  l) dx (y -  l)p dx

2 au ap ^ au
(2.4.10)

Multiplying the momentum conservation equation (equation 2.4.3) by u and 

subtracting from equation 2.4.10 gives ,

1 ( d B  ap"i p ( d p  ap' 
( y - 1 ) U + “ 9xJ (y - i )pU t^ “3x,

From the equation of continuity.

au
+ P -  + uP = q , (2.4.11)
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du I f
V

Bp ^  
at ~ “ axdx p

Substituting equation 2.4.12 into 2.4.11, 

1 p P  PfBp Bp")
— r “T—+ U'r~ —— -%—+ UT—

(y - l )V B t  dx)  p l B t  BxJI ( y - l )
1

+ 1 + up = qh

Rearranging and then multiplying through by (y-1) we obtain,

+ u l ^ l  -  = (qh -  uPXy - 1)
V Bt dx

For an ideal gas the acoustic velocity is given by.

(2.4.12)

(2.4.13)

(2.4.14)

a = yRT = y — 
P

Therefore the energy equation for an ideal gas is given by.

BP BP"i 2 ^
+ u _ — a

Bt d x j  V
| ^  +  u | ^ ]  =  ( y - l ) ( q h - u p )

Therefore the equations solved in the ideal gas model are,

P t+ P “ x + u P x = 0  

pUt +pUUx+Px  = P

P, + uPx -  a^(p, + up J  ) = (y  -  l) (q h  -  up) = \(f 

P = pRT

(2.4.15)

(2.4.16)

(2.4.17)
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2.5 THERMODYNAMICS OF VAPOUR/LIQUID MIXTURE AND THE 2- 

PHASE FLOW MODEL

FBR results in both a drop in pressure and temperature at the ruptured end. This 

invariably leads to the formation of two-phase flows. In order to establish the number 

of phases at each x-t co-ordinate and perform the necessary mass balances, a two 

phase pressure/temperature flash calculation needs to be performed. This necessitates 

the need for accurate vapour-liquid equilibria predictions. The Peng-Robinson 

equation of state (EOS) is deemed suitable for such a task.

Phase equilibrium calculations based on the Peng-Robinson EOS are performed 

using a procedure proposed by Michelsen (1982, 1987). This equation is used 

primarily because of its suitabihty in handhng multi-component hydrocarbon 

mixtures, but also because of the need to make a meaningful comparison between 

models. The Peng-Robinson EOS is used widely in other models such as those 

developed by Chen (1993) and Philbin and Govan (1993).

For a given fluid composition at a certain pressure and temperature, the Michelsen 

procedure performs a stability test to ascertain the number of phases present. The 

initial guess is of single phase flow only. If the stability test fails for this, then two 

phases are present, and the phase compositions along with phase compressibility 

factors and phase mole fractions are calculated. The stability tests require no user- 

provided initial estimates of number of phases present at equilibrium or of the 

equilibrium factors. The tests are all based on the tangent plane criterion of Gibbs, 

and for unstable systems they also provide the composition of a new phase which can 

be split off to decrease the Gibbs energy of the mixture (Michelsen, 1982,1987). The 

above procedure is followed regardless of type of flash calculation performed, i.e 

isothermal, isentropic or isenthalpic.

In terms of the fluid dynamics of a real fluid system, the mass and momentum 

conservation equations that have already been derived are just as valid as for an ideal 

gas due to the fact that no assumptions are made in their respective derivation 

processes regarding the nature of the fluid.
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The energy equation however needs to be re-derived for a two-phase fluid.

2.5.1 Deriving the energy equation for a non-ideal homogeneous fluid

The Euler conservation equation for energy is given by,

(2.5.1)

The total energy, B can be expressed as.

u^ u^ P 
E = e + — = h + — - - (2.5.2)

where h is the specific enthalpy.

Substituting equation 2.5.2 into equation 2.5.1 we obtain.

a
at

- p +
ax

pu (2.5.3)

Introducing the total enthalpy, H,

u
H = h-i-—-  

2
(2.5.4)

and substituting into equation 2.5.3,

| [ ( H p - P ) ]  + ̂ [ p » H ]  = qh3x

„ 3 p  3H 9P 3H „  3u „  3p
(2.5.5)

DH „ D p  3P au
dx

Subtracting the continuity equation from equation 2.5.5,
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DH ap

Expanding equation 2.5.6, 

9H 9H 9P

(2.5.6)

a r u ^ i a r u ^ i
h + Y h + Y

ap
- ^ - q h = 0

ah au ah ? ^p
9 l - 9 T - 9 h = 0

Re-expressing equation 2.5.7 we have,

au auDh 9P
- g ^ - q h = 0

Substituting for the momentum equation into equation 2.5.8, 

Dh 9P „ 3P
p ' 5 r “ " â r + " p “ 9 r “ ‘i ‘' = °

Dh DP / ^
p D r “ D r “ (‘̂ »“ “ W = o

For any fluid the following thermodynamic relationship holds, 

dh = Tds + 0)dP

where, s is the specific entropy and u is the specific volume. 

Expressing equation 2.5.10 in substantial derivative form.

Dh Ds 1 DP
Dt Dt p Dt

Substituting equation 2.5.11 into equation 2.5.9,

(2.5.7)

(2.5.8)

(2.5.9)

(2.5.10)

(2.5.11)
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_D s 1 DP 
T—-  + —

Dt p Dt

Ds

DP
Dt - ( q h - « P ) = o

(2.5.12)

p T ^ - ( q h - “P ) = o

The fluid pressure, P, can be expressed as a function of density and entropy, i.e. P 

f(p,s). Expressed in partial differential form.

dP = dp +
\ d s j

ds (2.5.13)

where.

= 9 (2.5.14)

and

y^Pj
= a (speed of sound) (2.5.15)

Equation 2.5.13 can be expressed in substantial derivative form.

DP Ds
(2.5.16)

Substituting for Ds/Dt from equation 2.5.16 into equation 2.5.12 and re-arranging, 

the following expression is derived.

DP 2 Dp
d T - "

q - u p
pT

=  0 (2.5.17)

If

(p
q - u P

pT
(2.5.18)

then equation 2.5.17 can be expressed as.
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DP , Dp
= 0 (2.5.19)

Thus an energy equation for any fluid is obtained with a form similar to that for the 

ideal gas model.

The above energy equation together with the continuity and momentum equations are 

just as valid for a non-ideal multi-phase, multi-component fluid as it is for a perfect 

gas, providing the following assumptions are always upheld:

^  homogeneous flow where the multi-phase mixture moves at the same velocity

^  thermodynamic and phase equilibrium is maintained at each x-t increment.

The speed of sound, a and the term, (p in the above equations can be calculated from 

closure relations derived from the equation of state. This is discussed in the following 

sections.

2.5.2 The Peng-Robinson Equation of State

The Peng-Robinson equation of state can be written as,

p = v r ^ - v ( v + b ) U ( v - b )

where,

RT
b = 0 .0 7 7 8 0 -^  (2.5.21)

a(T) = a(Te )a(T r, co) (2.5.22)

a(x<. ) = 0 . 4 5 7 2 4 ^ ^  (2.5.23)

a(T,,co) = [l + m(l-T°-^)]^ (2.5.24)

m = 0.377464 +154226© -  026992®^ (2.5.25)
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The subscript c denotes properties at critical conditions, r denotes reduced properties, 

CO is the acentric factor, v is the specific molar volume (m^/mol).

Mixing Rules

b = ^ y j b i  i = l,n<
i

(2.5.26)

a =  yiYjaii i J  = l,Hc (2.5.27)

i j

a y = ( l - 5 i j ) a f ^ a f  (2.5.28)

Ô is the binary interaction parameter and y denotes mole firaction.

2.5.3 Closure relations for the HEM model

The cubic equations of state such as Peng-Robinson (Peng and Robinson, 1976) or 

SRK (Soave, 1972) lend themselves to relatively easy manipulation. The advantages 

and disadvantages of using a cubic equation of state are well known (Reid et. al., 

1986). From a computation point of view, they are more efficient to use than other 

equations of state such as the corresponding states (Chen, 1993).

In the homogeneous equilibrium model a pseudo-fluid density based on liquid and 

gas densities needs to be calculated. The equation of state is solved for the 

compressibility factors fi-om which the density of a two phase mixture can be 

calculated according to the equation,

P = — -------  (2.5.29)
P g l l - z )  + PlX

where the subscripts g and 1 denote gas and liquid phase respectively. The term % 

refers to the fluid quality and is the mass of vapour per unit mass o f bulk fluid. The
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values of the respective phase densities can be calculated according to the following 

equations,

PMg
p . e.5.30)

The values of a and 9  are determined either analytically or numerically depending on 

whether a single or two-phase mixture is present.

2.5.3.1 Calculation for a single phase

If the fluid consists of a single phase, as determined by Michelsen’s flash calculation, 

then the values of a and 9  are determined analytically using the following equations 

(Picard and Bishnoi, 1988),

a^ = (2.5.32)
kp

and

<P = (2.5.33)

where y is the ratio of specific heats, k is the isothermal coefficient of volumetric 

expansion, p is the isobaric coefficient of volumetric expansion and Cp is the specific 

heat capacity at constant pressure.

y is the ratio of specific heats given by,

y = ^  (2.5.34)
'̂ V

The heat capacity at constant volume for any fluid is defined as.
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S ( e - e “)

ST
(2.5.35)

where e is the specific internal energy and e° is the ideal mixture specific internal 

energy given by,

e« = y jef i = 1, n (no. of components) (2.5.36)

where ŷ  is the mole firaction of component i.

To determine the real fluid internal energy, we first write the fimdamental property 

relation for a fluid of any composition (Smith and Van Ness, 1991),

de = T d s-P d v  (2.5.37)

where e, s and v are either molar or mass specific internal energy, entropy and 

volume respectively.

Dividing through by dv at constant T,

(2.5.38)f - 1  = T
rds^

Vdv/y vdv/
- P

From the Maxwell’s equations,

ap^d£\
dv/, efiJ

Rewriting equation 2.5.38,

e V

^jde = e -  e® = dv

(2.5.39)

(2.5.40)
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where for an ideal gas mixture the compressibility factor Z approaches unity, the 

pressure approaches zero and the specific volume will be infinity.

Rewriting equation 2.5.35 in terms of equation 2.5.40,

C y - C ;  =
k

ra p )
T — - p dv

V V >

I:
dv + T

'^5(dv)^
V ax y

dv

a(dv)
I  a r

(2.5.41)

For constant v the differentials involving dv will equal zero and so equation 2.5.41 

can be written as.

00

1
dv (2.5.42)

Performing the necessary differentiation firom the Peng-Robinson equation of state,

R a’(T )_____
> - b )

(2.5.43)
ax> v - b  v(v + b) + b(v -  b) 

a” (T)
v(v + b) + b(v -  b)

where the terms a'(T) and a"(T) refer respectively to single and double differentials 

of a(T) with respect to temperature, T.

Therefore equation 2.5.42 can be written as.
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C v -C ?  =a"(T)TÎ dv
v(v + b) + b (v -b )

(2.5.44)

Dividing the integral term into partial fractions we obtain,

C ^ - C ;  =a"(T)T

Vsb
f

V -
[ # - ]

b ■Jïh

f

v  +
rvs  1 
— +1

\

b
J J J

dv

Performing the integration we obtain,

(2.5.45)

a"(T)T
VSb

In V -
Vs -In v +

a"(T)
V sb

Tin

V -
Vs

V +
Vs

(2.5.46)

The term a"(T) can be calculated from equation 2.5.22,
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a(T) = a(x ,) 1 + m 1 -

v ' ^ c  J

a'(T) = a(T<.)2 1 + m 1 -

TV y
-0.5m

V
1—05

a"(T) = 2a(T<.>

1 + m 1 —
J

r

0.25m
f  J  \05

V T J

.-15

f
r n

T

05 ^
+ -0 5 m rj.—05

\ J (2.5.47)

The ideal gas specific heat capacity at constant volume is temperature dependant 

only, and is given by,

c ; = ^ y i C ^ = ^ y i ( c ; i - R ) .  i = i,n. (2.5.48)

Therefore using equations 2.5.46 to 2.5.48, the real fluid specific heat capacity at 

constant volume can be calculated.

The heat capacity at constant pressure is defined as, 

a(h -h® )'
C p - q  = 9T

(2.5.49)

where h is the specific enthalpy of the real fluid and h° is the specific enthalpy of an 

ideal mixture, and is given by.

h® = ^ ^ y j h f  i = 1 , n (no. of components) (2.5.50)

In order to derive an expression for the specific enthalpy term in equation 2.5.49, the 

following fundamental property relation needs to be manipulated.
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dh = de + d(Pv) (2.5.51)

For the residual enthalpy term, equation 2.5.51 can be written as.

h e Pv

J d h = J

h° Pvideai

d(Pv) (2.5.52)

I.e.

h -h®  = e - e ^ + P v - R T (2.5.53)

Substituting for the residual internal energy term from equation 2.5.40,

h - h ^  = P v - R T -  TÎI - P dv (2.5.54)

Solving the integral part of equation 2.5.54 separately.

Jl - P  dv = Î1 RT a’(T)T
( v -b )  v(v + b) + b (v -b )

- P dv (2.5.55)

Substituting for RT/(v-b) - P from the equation of state (equation 2.5.20),

ll a(T) a'(T)T
v(v + b) + b (v -b )  v(v + b) + b(v -  b)

dv =

a (T ) -a ’(T)TJ
(2.5.56)

dv
v(v + b) + b(v -  b)

Breaking the integral up into partial fractions and solving the resulting integrals, the 

following expression is derived.
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a(T )-a '(T )T
VSb /

, 1 , 1V - b v + b
V 1 2 J J I I ^ J )

dv =

a(T )-a '(T )T
VSb

In

V -
Vs

v + + 1
Vs

(2.5.57)

Therefore, the specific enthalpy term can be expressed from equation 2.5.54 in 

residual property form as.

h - h ” = P v -R T  +
a(T)-a '(T )T

In

V - (#-]b

VSb rv s  1
v + b

I

(2.5.58)

Substituting for h - h° from equation 2.5.58 into the equation for the specific heat 

capacity at constant pressure, equation 2.5.49,

C p - C ^  = P
a(T )-a '(T )T

Vsb
In

V - (#-]b

v + b
JP

Expanding the large differential term separately, we obtain.

(2.5.59)

63



Chapter 2 Theoretical Modelling o f  Pipeline Rupture

d
dT

a(T )-a '(T )T
■JSb

In

V - - 1

v +
V s

+ 1

a(T )-a '(T )T /'av"l
VSb

v + b -  v + f .
r f

V -

vv

Vs
\ r

v +
J \

Vs
b

J J

(a '(T )-a '(T )-a"(T )T )
^ Vsb

V - , 1 b

V-H b

a(T )-a '(T )T
r

r ^ _
\ r \

V - o 1 b v + b

V I 2 V I ^ ) y

dvA a"(T)T
\3 T /p Vsb

In

V -
Vs

- 1

v +
Vs

(2.5.60)

Substituting equation 2.5.60 into equation 2.5.59 we obtain,

C p -C ÿ  =
9v

iBT /p
P +

a(T) a'(T)T
v( V + b) + b( V -  b) v(v + b) + b(v -  b)

- R

(2.5.61)

i"(T)T
VSb

In

V -
Vs

- 1

v +
Vs

+1

Substituting from the Peng-Robinson equation of state, equation 2.5.20, we obtain.
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C p - C ^  = T
rav)
U t Jp

R a'(T)
(v -b )  v(v + b) + b (v -b )

- R

a"(T)T
VSb

In

V -
V8

v +
Vs

(2.5.62)

Substituting equation 2.5.43 for (5P/ôT)v into the above,

C p - C Ï  = T
(ap'j

U t JpU t J
_ a"(T)T

V -
r v s  1

l ^ “ 'J
b

r v s  1
v + — + 1 b

(2.5.63)

Using the chain rule for PVT relations,

= - l (2.5.64)

Rewriting,

v3Typ
- 1

\d y  j j \ a r  Jap

v3t X

av Jy

(2.5.65)

Substituting equation 2.5.65 into equation 2.5.63,

C p - q  = — R  —  ■

\d v  y j

a"(T)T
Vsb

In

V -
Vs
T - '

v +
Vs

(2.5.66)

Calculating the differential terms on the right hand side of equation 2.5.66 separately.
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(v -b )^  [v(v + b) + b (v -b )] '

-R T  ^  (2v + 2b)a(T)
(2.5.67)

r a p ) 2 R a'(T)
U tJ V V — b  v( V + b)  +  b(  V -  b)

2R a’(T)
+

(v -  b)^ (v -  b) (v(V + b) + b(v -  b)) [v(v + b) + b(v -  b)]^

R^ [v(v + b) + b(v — b)] — 2Ra'(T)(v — b)[v(v + b) + b(v— b)] + a'(T)^(v — b)'

( V -  b)^ [v( V + b) + b( V -  b)]'
(2.5.68)

Substituting equations 2.5.68 and 2.5.67 into equation 2.5.66 and performing some 

algebraic manipulations lead to the following expression for the isobaric specific heat 

capacity,

i | r (v  ̂+bv)-(R b-a '(T )X v-b)]'
C — = —R ——

^ 2a(T)(v + b )(v -b )^ -R T (v (v  + b) + b ( v - b ) f

a"(T)T
■Jïh

In

V -

v +

The ideal gas isobaric specific heat capacity can be written as.

c ; = ^ y i C “i i = l,n .

(2.5.69)

(2.5.70)

Referring back to the equation for the speed of sound, equation 2.5.32, k is the 

isothermal coefficient of volumetric expansion and can be defined as.
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where v is the specific volume of the fluid.

The term p in equation 2.5.33 refers to the isobaric coefficient of volumetric

expansion and can be written as,

(2.5.72)

The above terms k and p, can also be obtained from the Peng-Robinson equation of 

state.

For k, substituting the inverse of equation 2.5.67 into equation 2.5.71,

— ̂  v( V + b)( V — b) + b( V — b) ̂  j

2av(v + b)(v -  b)^ -  RTv[v(v + b) + b(v -  b)]"
(2.5.73)

For p, equation 2.5.65 can be substituted into equation 2.5.72 to give the following 

expression.

P =
1 vaTV
v |  a?

d v

(2.5.74)

Substituting for the differentials (dP/dlX  and (aP/av)^ from equations 2.5.43 and 

2.5.67 respectively, into equation 2.5.74, we obtain an expression for p ,

(V -  b)(v(v + b) + b(V -  b))[R(v(V + b) + b(v -  b)) -  a' (T)(v -  b)] 2  5  7 5

2va(T)(v + b)(v -  b)^ -  RTv[v(v + b) + b(v -  b)]^

67



Chapter 2  Theoretical Modelling o f Pipeline Rupture

2.S.3.2 Two Phase Flow

For two-phase flows, the analytical determination of y and Cp becomes complex. It is 

more convenient to evaluate the parameters, a and (p numerically. This is done at a 

given temperature and pressure. The sound velocity can be expressed as,

9 AP
= — r 7—,----------T (2.5.76)

p (t ,p ) - p (t *,p - a p )

Since, by definition the sound velocity is given by the change in pressure per unit 

change in density at constant entropy, the superscript * indicates that the temperature, 

T is the parameter that is changed until the isentropic condition is satisfied. Therefore 

the following condition must apply,

s(T, P) = s(t * , P -  a p ) (2.5.77)

To solve for T*, a Newton-Raphson iteration can be done where the objective 

function is written as,

= s( T ,P ) - s(t *<">,P-Ap ) (2.5.78)

The superscript (n) denotes the iteration level.

For the entropy term, an expression for the residual entropy is needed. A starting 

point for this is the Maxwell relation,

(2.5.79)
\dw y J

Rearranging,

ds = (2.5.80)

Introducing the ideal gas specific volume at the system temperature and pressure.
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RT
(2.5.81)

Now integrating equation 2.5.80 for an ideal gas over an ideal gas specific volume 

range,

= dv=  f ^ d vJ v3Tĵ ig J V
(2.5.82)

where ŝ “  ̂ is the ideal gas entropy at P=0 and s° is the ideal gas entropy at a given 

temperature and pressure.

Integrating equation 2.5.80 over a whole range of volumes.

V

J dv (2.5.83)

The residual entropy can therefore be given by the sununation of equations 2.5.82 

and 2.5.83 together with the following.

V V

0 = 1  —d v — I —dv J V J V

so that.

(2.5.84)
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dv+ I —dv

r»g

R
dv

(2.5.85)

Re-arranging the above,

s -  s° = —R In
v̂ g R

V V U t J V_
dv

= —Rln
RT
Pv j R

V
dv = R ln Z - I v3T>

R
V

dv

(2.5.86)

Often ideal gas entropy values are given at a reference temperature and pressure, so 

to calculate the ideal gas entropy at the system temperature and pressure (Smith et. 

al., 1996),

s° = sï + I

T] :.dT_ 
T

P
=s^ + C ^ln

T P
Rln — Rln

P* T* P*
(2.5.87)

T.

where the subscript * refers to conditions at the reference point.

Expanding equation 2.5.86 by substituting from equation 2.5.43 for {dP/dT\
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s — — R In Z —i
V

I
R a’(T) R

v - b  v(v + b) + b(v -  b) v
dv

1 1
( v - b )  V

dv + a'(T) J
dv

(2.5.88)

v(v + b) + b(v -  b)

Separating the above into partial fractions and performing the integration,

s — — R In Z + R In
v - b a'(T)

Vsb
In

V -

/  /T \
V +

Vs
(2.5.89)

The ideal gas mixture entropy can be calculated from the equation.

i = l,n, (2.5.90)

The above procedure for calculation of entropy from the equation of state can be 

followed for either gas or liquid phase. The bulk entropy of the two-phase mixture is 

then obtained by.

s = (l-x)si+ZSg (2.5.91)

where % is the mass fraction of vapour in the mixture as is also used in the 

calculation of bulk density (equation 2.5.29).

The only parameter left that needs accounting for is (p. The numerical expression for 

the parameter can be obtained from equation 2.5.14,
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9 =
^AP"'
\ A s j

AP

s( T ,P ) - s(t * ,P -A P )

However, considering the fundamental property relation, 

d(p = T d s-P d
p

= Tds + — dp

From this the following partial differential relation can be written, 

d
\ /  V J

ds

Therefore another expression for cp can be.

9 =
AP'l 2 a t "̂

I as j =  p
p IapJ

(2.5.92)

(2.5.93)

(2.5.94)

(2.5.95)

Hence by performing an isentropic flash calculation as given by equation 2.5.76, the 

above can be solved numerically.
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2.6 CONCLUDING REMARKS

In this chapter, various assumptions regarding flow in a pipeline following FBR are 

made in the derivation of the Euler equations. Using ideal gas thermodynamic 

relations, a simple model based on four equations of mass, momentum and energy 

conservation together with the ideal gas equation o f state is derived.

With regards to real fluid flow, the use of the homogeneous equilibrium assumption 

has been shown to be valid for flow in long pipelines (Chen, 1993) and is also 

adopted in the present model. By making this assumption, a single momentum 

equation is sufficient for both phases and likewise with respect to the energy equation 

for the assumption of thermodynamic equilibrium between the two phases. As a 

result, the equations obtained for a real fluid are similar to those obtained for an ideal 

gas, but the use of real fluid thermodynamic relations in the derivation of the energy 

equation means that the present mathematical model is able to deal with any type of 

fluid regardless of its state.

The use of the derived thermodynamic relations require prior knowledge of the state 

of the mixture. This is provided by the Michelsen stabihty criterion.
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CHAPTER 3: NUMERICAL METHODS FOR THE

SOLUTION OF HYPERBOLIC SYSTEMS 

OF EQUATIONS

3.1 INTRODUCTION

As shown in the previous chapter, full-bore rupture (FBR) of high pressure gas 

pipeline is inherently an unsteady flow phenomenon leading to rapid de- 

pressurisation at the broken end. Even though this may lead to formation of 

condensate as both pressure and temperature drop dramatically, comparison with 

field data (Chen et. al., 1993; Picard and Bishnoi, 1989) for long pipelines indicates 

that the homogeneous equilibrium model where the two phases are assumed to move 

at the same velocity at thermal equilibrium is applicable.

The partial differential equations pertaining to conservation of mass, momentum and 

energy together with an equation of state (EOS) constitute a system of equations that 

are essentially Euler equations with stiff source terms due to the friction term in the 

momentum equation and the heat transfer term in the energy equation.

The Euler equations constitute the most complete description of inviscid, non-heat 

conducting flows and hence, is the highest level of approximation for non-viscous 

fluids. Obviously the inviscid flow models are not applicable on a universal basis, but 

the importance of their accurate numerical simulation resides in the dominating 

convective character of the Navier-Stokes equations at high Reynolds numbers. 

Therefore most numerical methods developed for the Euler equations are also valid 

for the Navier-Stokes equations. It is only at very low Reynolds numbers, when the 

flow is diffusion dominated, that specific methods for the Navier-Stokes equations 

have to be defined.

Solution of the Euler equations can be traced as far back as the first order schemes of 

Courant et. al. (1952) and Lax and Friedrichs (Lax, 1954). Many techniques used 

today for the time-dependent Euler equations are based on pioneering work by Lax
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and Wendroff (Lax, 1957; Lax and Wendroff, 1960, 1964). The second order 

accurate Lax-Wendroff method has led to a whole family of variants for application 

to non-linear systems, characterised by their common property of being space 

centred, reducing to the three-point central schemes in one dimension, explicit in 

time and derived from a combined space and time discretisation.

A variety of high-resolution numerical methods have been developed over the past 

several decades that resolve discontinuities and rapidly changing flows sharply and 

yet produce at least second-order accuracy in smooth flows. Understanding of the 

different numerical methods available and appropriate implementation of a scheme 

for the resolution of a particular problem requires not only a thorough grasp of the 

physical nature of the flow being considered, but also a good foundation in the 

mathematical theory of hyperbolic conservation laws.

In the following sections, a brief introduction to the nature of hyperbolic equations is 

put forward. It is shown how the Euler equations, derived on the basis of the inviscid 

bulk fluid flow assumption in chapter 2 , can be classified as hyperbolic. 

Subsequently, all available approaches to the numerical resolution of the Euler 

equations are presented. This is then followed by a review of the methods used by 

various authors to model the problem of FBR.
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3.2 HYPERBOLIC EQUATIONS

Partial differential equations are said to be hyperbolic if they admit sharp 

discontinuities such as shock waves in their solution, discontinuities that can form 

even from smooth initial data. These are mathematical idealisations of the steep 

gradients that can occur in smooth solutions to the full Navier-Stokes equations, 

where rapid changes are present over very thin zones (relative to the spatial grid that 

must be modelled). Often the width of these viscous shock layers are much smaller 

than the distance between grid points on a reasonable computational grid, in which 

case modelling the structure within these layers is impossible and hence a good 

approximation to the macroscopic behaviour has to be used.

Computationally the solution of these hyperbolic equations has many advantages. 

Explicit methods rather than implicit methods can typically be used, resulting in a 

substantial reduction in computation time required, although this does depend on the 

nature of the transient that is being modelled. This is explored further later in the 

chapter.

In Chapter 2, the Euler equations of flow for a compressible fluid were derived. The 

equation is repeated here for reference,

v V  + ̂ F ( V )  + G = 0 (2.3.39)
dt dx

Since in the case of high pressure pipeline rupture problems, the disturbance within 

the pipeline is an expansion wave as opposed to a shock wave, equation 2.3.39 was 

expressed in primitive variable form to yield a set of quasi-linear, first order one­

dimensional equations of the form,

AVt + BV ^ +G  = 0 (3.2.1)

where

76



Chapter 3 Numerical Methods fo r  the Solution o f Hyperbolic Systems o f Equations

v  = (3.2.2)

A =
1 0 0 
0  p 0

- a ^  0  1

(3.2.3)

B =
P 0 
pu 1

- a  u 0  u

(3.2.4)

G =
^ 0   ̂

- P
-Mf)

(3.2.5)

A system of quasi-linear partial differential equations of the first order can be called 

hyperbolic if its homogeneous part admits wave-like solutions. In order to 

demonstrate this, equation 2.3.39 needs to be expressed in the following form.

% + G j = 0 (3.2.6)

Dividing the momentum equation (see equation 2.4.3) by density, p, we have.

1 P
U. + U U ^  + ~ P x  = “

p p
(3.2.7)

and by substituting for the mass conservation equation into the present form of the 

energy conservation equation (equation 2.5.19), we have.

P t+ u P ^ + a  pu^ = v

Therefore the matrices Bi and Gi can be written as.

(3.2.8)

77



Chapter 3 Numerical Methods fo r the Solution o f Hyperbolic Systems o f Equations

B, =

p 0^

0  u —
P

pa^ U/

(3.2.9)

and,

Gi =

^ 0   ̂

_ P
P

I "  vy

(3.2.10)

The condition for hyperbolicity is expressed by the existence of simple wave-like 

solutions of the form,

(3.2.11)

The function.

S(x,t) = k ,x -(o t (3.2.12)

represents the phase of the wave propagating in the direction k , with a pulsation © 

(for an observer moving with the group velocity of the wave packet).

Wave-like solutions will exist if the eigenvalues of the matrix,

K = B i.k (3.2.13)

for arbitrary k, are real with linear independence of the corresponding left 

eigenvectors L.

If X(j) denotes a non-trivial solution eigenvalue of the matrix K , then this eigenvalue 

is obtained (by definition) from.

det B^.k — A,.k =  0 (3.2.14)

The vector k is one dimensional and hence.
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k = kl. (3.2.15)

Since the magnitude of this vector is arbitrary, one can take k = 1, and the eigenvalue 

equation (3.2.9) becomes,

det|Ëi -  = 0

and,

det|Bi -  A,| = det

(3.2.16)

u - X  p 

0 

0

u — A, —
P

pa^ u-X ,

(3.2.17)

(u -X ){(u -X )^  - a ^ }  = 0

Equation 3.2.17 has three real solutions or eigenvalues,

Xj = u 
%2 = u + a 
X3 = u —a

(3.2.18)

Associated with these three eigenvalues will be a set of independent left and right 

eigenvectors so that.

Bi =RAR 

where.

- 1 (3.2.19)

A =
'1 0 0

V

0 X2 0 
0  0  Xgy

(3.2.20)

is a diagonal matrix of eigenvalues and R is the matrix of right eigenvectors.

R = [r:l rzl Tj I]

The eigenvectors can obtained by considering that.

(3.2.21)
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P ~  (3.2.22)

The phase velocity, a of the propagating wave is defined by the usual wave relations,

CO

(3.2.23)

in the direction of k , that is normal to the constant wave phase surface S(x,t) = 

constant.

Therefore the three equations of mass, momentum and energy conservation that make 

up the Euler equations have been shown to have three real eigenvalues. It is this 

property that makes these equations hyperbolic. This implies that a hyperbolic set of 

equations will be associated with propagating waves and that the behaviour and 

properties of the physical system described by these equations will be dominated by 

wave-like phenomena. In fact the speed of propagation of these waves, known as 

Mach lines, is given by the eigenvalues (u4-a) and (u-a) corresponding to right 

running and left running characteristics respectively. The pathline characteristic is 

given by X\. These characteristics can handle any type of discontinuity in fluid flow 

such as a shock wave, contact surface or expansion fan.
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3.3 FINITE DIFFERENCE THEORY

This section contains a brief overview of the fundamental theory necessary for the 

proper discretisation of partial differential equations (PDE’s) and ordinary 

differential equations (ODE’s). Many elementary texts are available on this subject, 

e.g. (Iserles, 1996, Morton and Mayers, 1994, Richtmyer and Morton, 1967).

In essence, there are two numerical techniques for the solution of partial differential 

equations; implicit and explicit methods. The explicit method is one that yields an 

explicit expression for each value at time tn+i in terms of nearby values at time tn. An 

implicit method couples together values at different grid points at time t„+i and hence 

an algebraic system of equations must be solved in each time step in order to advance 

the solution.

3.3.1 Explicit Methods

Explicit finite difference methods integrate the basic partial difference equations by 

considering the changes in the dependent variables (P, u and p in our case) along the 

directions of the independent variables (x and t).

Considering finite difference grids with mesh spacing h = Ax = Ay = Az in all spatial 

directions and k = At in the time step, subscript indices can be taken to indicate the 

spatial grid point while the superscript indicates the temporal step, therefore Vi" = 

V(Xi,tn), i.e. the quantity V at space step Xi and time step t„.

With a finite difference method, the derivatives appearing in the differential equation 

are discretised so that a system of algebraic relations between (approximate) values at 

all the grid points are obtained. The solution of this finite set of differential equations 

for discrete grid point values can then be performed on a computer.

As a means of illustration of different finite difference methods, equation 3.2.6 is 

used without the source terms for discretisation, i.e.,

V t + A V x = 0  (3.3.1)
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There are many different ways to discretise the derivatives, leading to different finite 

difference methods. As one example, using one-sided approximations to both Vt and 

Vx gives.

V
=  0 (3.3.2)

or.

V
=  0 (3.3.3)

Choosing which scheme is more suitable to describe the flow under consideration 

depends on the velocity u. If u>0 then the fluid flows from left to right and equation

3.3.2 should be used since it updates V" based on the value Vi.i" to the left (in the 

upstream or upwind direction). Likewise, if u<0 then equation 3.3.3 is better. These 

methods are called the first order upwind methods. Rewriting them, an explicit 

formula for in terms of data at the previous time step can be obtained.

(3.3.4)

To achieve second order accuracy, centred approximations to the derivatives can be 

used.

2 k
4-A

2 h
=  0 (3.3.5)

which then gives the leapfrog method (Heath and Blunt, 1969),

(3.3.6)

Another approach is based on the Taylor series expansion.

V(x, t + k) = V(x, t) -H kVj (x, t) -h ̂  k^ V„ (x, t)+. (3.3.7)
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From equation 3.3.1, we can say that = -AV^ and so,

v„ = -A V „ = -A V „ = (3.3.8)

Substituting the above into equation 3.3.7,

V(x, t + k) = V(x,t) -  AkV^(x,t) + ̂ k ^A ^V ^(x ,t)+ .....  (3.3.9)

The Lax-Wendroff method then results from retaining only the first three terms of 

equation 3.3.9 and using centred difference approximations for the derivatives so 

that,

v r '  = Vi” -  V ” i) + ̂ A ^ ( V ” , -2V i” + V;” ,) (3.3.10)

Also possible is a scheme known as predictor-corrector whereby the solution point 

variables are calculated using standard explicit finite difference theory, but the results 

are then averaged with the initial conditions to recalculate the solution variables. The 

MacCormack method (MacCormack, 1969) is an example of one such scheme;

Predictor Step,

V i= V i" - |A ( v i , - V i" )  (3.3.11)

Corrector Step,

v r '  =}[V i + v r ] - |^ A ( V i  -  Vi.,) (3.3.12)

For systems in which shock waves form, an explicit finite difference method can be

used provided that a smoothing parameter or artificial dissipation may be employed 

to control the considerable overshoot and oscillation that shock waves introduce to a 

higher than first order solution (Hirsch, 1995; Wylie and Streeter, 1993). This can be 

empirical and therefore does not lend itself to a universal predictive model.

Another disadvantage of these methods is that boundary conditions, especially the 

choking condition found in pipeline rupture problems are not solved intrinsically. In
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the case of two-phase flow modelling, the flow calculations become coupled with the 

flash calculations at the ruptured end and an iteration loop is necessary to find the 

new time-step flow variables as well as the sonic velocity or sonic characteristics 

(Chen, 1993). The method then becomes rather like an implicit method.

Some finite difference methods such as the Leap-firog method have an additional 

problem in that they become unstable if the source terms are non-zero (Heath and 

Blunt, 1969). This is a major drawback for the non-isentropic transient fluid flow 

model in this study.

For conservation laws arising from physical principles, it is often important to ensure 

that the numerical methods also convey the appropriate quantities, such as mass, 

momentum and energy. This is particularly the case when the solution involves 

shock waves where there is a discontinuity across the shock wave. Resolution of this 

discontinuity is not a trivial task and even second order methods such as the Lax- 

Wendroff method (Lax, 1957; Lax and Wendroff, 1960, 1964) resolves this 

phenomenon with a certain amount of numerical oscillation depending on the size of 

the discontinuity.

For conservation laws it is thus often preferable to use finite volume methods rather 

than a finite difference method. In the former, the discrete value V “ is viewed as an 

approximation to the average value of V over a grid cell rather than as an 

approximation to a point-wise value of V. The cell average is simply the integral of 

V over the cell divided by its area, so that conservation can be maintained by 

updating this value based on fluxes through the cell edges. This procedure is 

discussed in further detail in section 3.4. Although the derivation of such methods 

can be quite different firom finite difference methods, the end formulas may well be 

identical.

The main issues that should be addressed when developing finite difference methods 

are outlined below.

3.3.2 Convergence and global order of accuracy

Greater accuracy and hence better approximation to the true solution should be 

expected if greater refinement of the numerical grid is implemented. The difference
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between the true and computed solution is called the global error and the method is 

convergent if this goes to zero as the mesh is refined. The method has global order r 

if the global error is 0(h"̂  + as h, k ->0. In analysing a method it is generally 

impossible to get an expression for the global error directly since the system of 

equations to be solved grows without bound in size as the grid is refined.

3.3.3 Consistency and the local truncation error

The local truncation error is a measure of how well the differential equations model 

the difference equation locally. This is defined by inserting the true solution into the 

difference equations at a single arbitrary point in space-time. The true solution is 

generally not known, but if it is a smooth function then the Taylor series can be 

expanded and the differential equation can be used to determine an expansion for the 

local truncation error, which shows the local order of the method. If the local 

truncation error vanishes like 0 (h"̂  + kO then the method is locally r’th order accurate. 

If the method is at all reasonable then we expect the local truncation error to at least 

go to zero as the mesh is refined, in which case the method is called consistent.

3.3.4 Stability

It is hoped that a method which is locally r’th order accurate will also give a global 

error that is r’th order, and in particular will be convergent. But this is far from 

obvious and may not hold. The problem lies in the fact that as refinement of the grid 

progresses, an increasing number of values need to be computed to solve the discrete 

system, and unless the discretisation is stable in some way then this process may not 

be convergent even though the method may be consistent. For convergence both 

consistency and stability are therefore required.

For partial differential equations such as the Euler equations of flow through a 

pipeline, there is typically some restriction on the relation between the time step k 

and the spatial grid size, h. Both the Lax-Wendroff method (equation 3.3.10) and the 

leapfrog method (equation 3.3.6) are stable only if I Xk/hl < 1 for all eigenvalues X of 

the matrix A. This is motivated by the discussion of the CFL condition in section
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3.3.5 below. The upwind method is stable only if 0 < A,k/h < 1 and, in particular, can 

only be used if A, > 0 for all eigenvalues of A. By contrast, the method with one-sided 

differences in the other direction is stable only if -1 < Xk/h < 0 for all X (LeVeque, 

1990).

3.3.5 The CFL Condition

The CFL condition is named after Courant, Friedrichs and Lewy who wrote a 

fundamental paper in 1928 that was essentially the first paper on the stability and 

convergence of finite difference methods for partial differential equations.

To understand this general condition it is necessary to discuss the domain of 

dependence of a time-dependant partial differential equation. For the equation 3.3.1, 

the solution V(X|, t j  at some fixed point (x̂ , t j  depends on the initial data V°(x) = 

V(x,0) at only a single point. Therefore,

V ( x i , t j  = v ( x i - X t j  (3.3.13)

The domain of dependence of the point (xj, t j  is the point X; - ut  ̂so that,

D (x j,t„ ) = {xi-> .t„} (3.3.14)

where D is the domain of dependence. If the data V® at this point is modified then the 

solution V(Xj, t j  will change, however alteration to data at any other point will have 

no bearing on the solution at this point.

For non-linear systems of equations as with linear systems, the wave propagation 

speeds are given by the eigenvalues of A (linear) or f  (V) (non-linear), i.e. A-j, X2, 

through to Xm for m eigenvalues). If  these eigenvalues are distinct then it can be 

shown that the solution V(Xj, t j  depends on the data at the m distinct points Xj - X^t ,̂ 

through to Xj -

A finite difference method also has a domain of dependence. On a particular fixed 

grid, the domain of dependence of a grid point (Xj, t j  will be the set of grid points Xj 

at the initial time t = 0 with the property that the data V ° at Xj has an effect on the
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solution Vj”. For example, with the Lax-Wendroff method (equation 3.3.10) or with 

any other three point method, the value of V" depends on the values , V" * and

. These values depend in turn on Vj" 2  ̂ through to • Tracing back to the 

initial time domain we obtain a triangular array o f grid points as seen in figure 3.3.4 

and it can be seen that V " depends on the initial data at the points x̂ .̂ , through to Xj+„.

If the grid is refined further by a factor of 2, (both k and h are reduced by this factor), 

focusing on the same time interval (L - ^ = = 1 3  - W but keeping the ratio k/h constant, 

then the value of (x̂  , t j  now corresponds to on the finer grid. This value 

depends on twice as many values of the initial data, but these values all lie within the 

same interval and are merely twice as dense.

If the grid is further refined with k/h = r fixed, then clearly the numerical domain of 

dependence of the point (Xj, t j  will fall in the interval [x̂  - \Ji, x̂  + t/r]. As the grid 

is further refined, it is hoped that the computed solution (x^, t j  will converge to the 

true solution V(Xj, t j  = V®(x, - XtJ. This can only be possible if

X j < Xj — A.tjj ^  X j + - ^  (3.3.15)

Otherwise, the true solution will depend only on a value V°(Xj - I t J  that is never seen 

by the numerical method regardless of the fineness of the grid. The data at this point 

could be changed in order to change the true solution without having any effect on 

the numerical solution. This however cannot be convergent for general initial data.

The condition given by equation 3.3.15 can be translated into the more well known 

form of the CFL stability criterion for any explicit finite difference scheme.
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Figure 3.3.4: (a) Numerical domain of dependence of a grid point when using a 

three point explicit method, (b) On a finer grid



Chapter 3 Numerical Methods fo r  the Solution o f  Hyperbolic Systems o f  Equations

|;i|r < 1

or (3.3.16)

<1

It is essential that the maximum wave speed at each time domain is chosen when 

calculating the time step to ensure complete stability over the whole time domain.

It is important to appreciate that in general the CFL condition is only a necessary 

criterion. If it is violated then certainly the method cannot be convergent. If it is 

satisfied, then the method might be convergent, but a proper consistency and stability 

analysis is required to prove this, and to determine the proper stability restriction on k 

and h.

For an ideal gas, the stability criterion has been shown to give good results, but in 

cases of two-phase flow when large discontinuities in speed of sound as a result of 

condensation may occur, satisfaction of the CFL stability criterion as given by 

equation 3.3.16 might not lead to accurate results (see chapter 5). Care needs to be 

exercised in choosing a correct time step that gives accurate and stable results.

Implicit methods satisfy the CFL condition for any time step k. In this case, the 

numerical domain of dependence is the entire real line because the tri-diagonal linear 

system couples together all points in such a manner that the solution at each point 

depends on the data at all points. Implicit methods will be further discussed in 

section 3.3.8.

3.3.6 One-step and multi-step methods

For time-dependent problems, typically time-marching procedures are used in which 

the solution at all points x e Q at one time t„ are used to compute the solution at the 

next time t„+i = t„ + k. Such a method is called a one-step or a two-level method. A 

multi-step method can also be tried for greater accuracy because the solution at time 

tn+i can be based on several previous time steps. However this method requires high
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Storage requirements from a computer and for cases such as two-phase flow 

modelling when the complicated flash calculations are being performed continuously, 

this method becomes too inefficient. Besides standard high-resolution methods are all 

one-step and hence this method is chosen for this work.

3.3.7 Stiffness

For time dependent problems the idea of stiffness is fundamental as it often dictates 

the type of numerical method used. Roughly speaking, a problem is said to be stiff if 

there are a variety of different time scales in the solution and some phenomenon on a 

relatively slow time scale is being modelled in a situation where the faster processes 

simply maintain local equilibrium but all visible variations are on a slower scale. It 

would then be preferable to take a time step that is reasonable relative to the active 

time scales, and much smaller time steps necessary for modelling activity on the 

faster time scale would not need to be used. Since these time scales may easily vary 

by a factor of a million or more for practical problems, this is a major consideration 

in the efficiency of the method. Unless a method designed for stiff problems is 

implemented, it would be necessary to take very small time steps appropriate for the 

fastest time scales in order to maintain stability. Methods for stiff problems are 

necessarily implicit in time.

Stiffness causes numerical difficulties because any finite difference method is 

constantly introducing errors. The local truncation error acts as a perturbation to the 

system that moves the computed solution away from the true solution. The true 

solution is very robust and the solution is almost completely insensitive to errors 

made in the past. The stability of the true solution is of help as long as the numerical 

method is also stable.

The difficulty arises from the fact that many numerical methods, including all 

explicit methods, are unstable (in the sense of absolute stability) unless the time step 

is small relative to the time scale of the rapid transient. The time step for a stiff 

problem is much smaller than that of the smooth solution that is being computed. 

Although the true solution is smooth and it seems that a reasonably large time step
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would be appropriate, the numerical method must always deal with the rapid 

transients introduced in every time step and may need a very small time step to do so 

in a stable manner.

Hyperbolic equations are usually not stiff. The time step, k for an explicit method is 

typically limited by the CFL condition as discussed before in section 3.3.5. For a 

non-linear system of equations the maximum wave speed should be chosen in 

determining the stable time step. Provided some disturbance of interest is 

propagating at this maximum speed, then this is generally the right size time step to 

use in order that the temporal resolution is consistent with the spatial resolution. In 

this case, there is no need to use an implicit method.

Stiffness can also occur when the equations of gas dynamics such as the Euler 

equations are coupled together with source terms that model radiative transfer or 

chemical reactions that may have much faster time scales than the fluid dynamics.

In our case however, the source terms present in the Euler equations are those 

representing frictional force effects and heat transfer. The heat transfer term is based 

on the temperature gradient between the fluid temperature and the external ambient 

temperature which is assumed to be constant over the length of the pipe.

The frictional force term is flow dependent and therefore the time scale for this 

phenomenon is the same as that for the flow and hence does not lead to any stiffness. 

In fact its magnitude is directly linked to the nature of turbulence of flow at each 

node where it is calculated (see chapter 5).

The heat transfer term is quasi steady state and since the parameter that controls its 

nodal variation is temperature, has no spatial or temporal derivative terms in the flow 

equations. This therefore has no effect in terms of stiffness with respect to the 

solution procedure.
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3.3.8 Implicit Methods

Implicit finite difference methods have the advantage over explicit methods in being 

unconditionally stable. This implies that the maximum practical time step is limited 

by the rate of change of the variables imposed at the boundary conditions rather than 

by a limitation required by a stability criterion. However, Wylie and Streeter (1993) 

say that in order to achieve reasonable accuracy for most transient pipeline problems, 

the time step-distance interval relationship specified by the Courant condition is, in 

fact, a requirement.

Considering again equation 3.3.1 a fully implicit method can be written as,

+ A = 0 (3.3.17)
k 2 h

This method is a backward difference method as opposed to a forward difference 

scheme (explicit finite difference methods).

A variation of this scheme is the Crank-Nicolson method (Forsythe and Wasow, 

1960) which is a central difference scheme of high order accuracy. The Crank- 

Nicolson approximation to equation 3.3.1 would be.

-  Vi”  ̂ (V ilf  -  Vi^t' ) + (Vi” , -  Vi"_i )
+ A -----------------------------  - = 0 (3.3.18)

K 4h

This solution is however prone to oscillate about the true solution for sudden changes 

in forcing function. Guy (1967), and Heath and Blunt (1969) used the Crank- 

Nicolson method to solve the conservation of mass and the conservation of 

momentum equations for slow transients in isothermal gas flow. Both sets of 

researchers neglected the elevation term (pgsinG), and the differential of the kinetic 

energy with distance ( 5(pu^)/5x ) in the momentum equation.

Wylie et al. (1971) used a centred difference method to solve for isothermal gas 

transients in a network. In this method the partial derivatives are calculated for 

sections of the pipeline rather than node points. This method can be written as.
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(v/vv-Vi"+i)+(vr‘-Vj”)
+

(3.3.19)

A { ( v y /  - v r ' )  +  ( v ^ i  -  Vj")}

Although this method requires a large amount of computer storage to handle the 

coefficient matrix and leads to lengthy execution times, these major disadvantages 

can be overcome in one dimension by using Gaussian elimination techniques.

A further development of this method incorporating upstream weighting was used by 

Taylor (1978) and is given by,

9(vm - Vi"i)+(i-e)(vr^-Vj”) 
k

(3.3.20)

4.A(Vi"V -  Vi"+l)+(l-<f)A(Vi” i -V i")
+    =  0

where 0  and ^  are the weighting factors,

0 < e < l ,  0<<1)<1 (3.3.21)

The implicit finite difference methods described above are the most commonly used 

for fluid transient analysis, although there are others such as the explicit-implicit 

methods (Padmanabhan et. al., 1978) employed to solve for pressure transients in 

bubbly two-phase mixtures or the three time level implicit scheme discussed by 

Osiadacz (1983). Chen (1993) also developed an implicit-explicit scheme based on 

Hamilton’s variation principle (Rund, 1966; Bedford, 1985; Salmon, 1988) to model 

blowdown of pipes.

The major disadvantage of using an implicit finite difference method is that they 

require the solution of a set of non-linear simultaneous equations at each time step. 

For a complex system of pipe network the matrix becomes quite large. Other 

disadvantages of these methods of solution are that they can yield unsatisfactory
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results for sharp transients, in fact implicit methods have always been used to model 

slow transients when they are much more efficient than explicit methods.

Explicit methods are generally preferable if they can be used with the time step that 

seems reasonable for the problem, which depends on how fine the spatial grid and 

how smooth the solution are. For many problems however, an explicit method turns 

out to be unstable unless the time step is orders of magnitude smaller than what 

seems reasonable based on accuracy considerations. If the solution is varying 

smoothly then we expect variations in time to be on roughly the same scale as 

variations in space and so we would typically like to take a time step k » h. This is 

possible with an implicit method whereas the explicit method would require taking a 

time step, k smaller than this by a factor of h.
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3.4 FINITE VOLUME METHODS

In the previous section the basic theory for finite difference methods for linear 

hyperbolic problems was reviewed. These methods will now be re-interpreted as 

finite volume methods, a viewpoint that is important in properly extending these 

methods to non-linear conservation laws.

For flows that have shock wave propagation this method is fundamental for 

achieving high resolution across the shock wave. For the specific problem of FBR of 

high pressure gas pipelines there is no actual shock wave propagation within the 

pipeline (the shock waves will actually propagate away from the rupture plane into 

the surrounding atmosphere). Instead, using the terminology of the shock tube or 

Riemann problem (Liepmann and Roshko, 1957; Zucrow and Hoffrnan, 1976) there 

is an expansion fan region that propagates into the high pressure gas within the 

pipeline.

Hence there is no severe discontinuity of flow variables to worry about and the finite 

volume method is not essential for high accuracy. However the finite volume method 

has the advantage of being all encompassing in that it can intrinsically handle all 

types of transient flow situations. Upto now finite volume methods have only been 

used for transient isothermal fluid flow (Zhou and Adewumi, 1996; Adewumi et. al., 

1996). A brief introduction is given here.

In finite difference method the value of the conservation variable V ” is used as an 

approximation to the single value V at point (x̂ , t j .  In the finite volume method the 

variable V " is viewed as approximating the average value of V over an interval of 

length h = Ax, where over the physical spatial domain [a,b] with N intervals, h = (b- 

a)/N. Therefore x̂  = a + (i-l)h. The value V" will approximate the average value over 

the i’th interval at time t,,.

%i+l%i+l

V" j"v(xi,tn)dx= Jv(x,tn)dx (3.4.1)

C i
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where = [x̂ , Xj+J.

If v(x, t) is a smooth function then the integral in equation 3.4.1 agrees with the value 

of V at the midpoint of the interval to 0(h^). By working with cell averages, however, 

it is easier to use important properties of the conservation laws in deriving numerical 

methods. In particular, we can ensure that the numerical method is conservative in a 

way that mimics the true solution, and this is extremely important in accurately

Z N
V" approximates the integral of v

i=I

over the entire interval [a, b], and if  a method that is in conservation form is used for 

its calculation, then this discrete sum will change only due to fluxes at the boundaries 

X = a and x = b. The total mass within the computational domain will be preserved, 

or at least will vary correctly provided the boundary conditions are properly imposed.

Taking equation 3.3.1 and introducing the concept of a flux function.

(3.4.2)
V t+ A V x = 0

V t+ F ^ = 0

where,

F , = A V , = f ( v J  (3.4.3)

In finite difference form, equation 3.4.2 can be expressed as,

v r '= V ^ - | ( F ^ i , - F i “) (3.4.4)

where F “ is some approximation to the average flux along x = x̂ .

in+l

(3.4.5)

A fully discrete method is possible if this average flux can be approximated based on 

values of V ’.
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Since information propagates with finite speed, it is reasonable to first suppose that 

we can obtain F ° based only on the values Vi.i" and V ”, the cell averages on either 

side of this interface. This allows us to define the numerical flux function by a 

formula of the type,

Fi" =p(Vi"_„V/') (3.4.6)

Therefore equation 3.4.4 becomes,

vr'=V? -^[F(vrvr)-F(vr ,v/>)] 0.4.7)

The specific method obtained depends on how the formula for F is chosen, but in 

general any method of this type is an explicit method with a three point stencil. 

Given that a method in conservation form is sought, a first attempt at a definition of 

the average flux at a point based on data to the left and right of this point, would be 

the simple average,

F(vr,Vi"*,) =  | ( f ( v f ) +  f ( v r  )) (3-4.8)

Substituting this into 3.4.7 would give,

v r '  = Vi" - | ^ [ f ( v r ) - f(Vi"-,)] (3.4.9)

In general, however, this method turns out to be unconditionally unstable for any 

value of k/h. In these situations it is better to use the modified flux,

F ( v r v ? i )  =  l ( f (V i" )+  f ( V i : i i ) ) - ^ ( v r  -V i" ) (3.4.10)

From this definition of flux function, the Lax-Friedrichs method is obtained,

v r '  = | [ v r + v r ] - ^ [ f ( v r ) - f ( v r ) ]  (3 4 .11)
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It is interesting to note that the additional term in equation 3.4.10 is a diffusive flux

h"
based on an approximation to —  and hence this modification amounts to adding

some artificial viscosity to the centred flux formula. This makes a finite volume 

approach particularly attractive to treatment of shock wave flow since no additional 

smoothing parameter is needed to control overshoot and oscillation as is the case 

with higher order exphcit finite difference schemes. Implementation of an effective 

finite volume approach requires an appropriate method to define the numerical flux 

function. Many techniques exist to do this and come under the general heading of 

flux-difference splitting schemes.

3.4.1 Flux Difference Splitting Schemes

The basic principle of flux splitting is that the numerical flux function can be split 

and discretised directionally according to the sign of the associated propagation 

speeds. Hence the eigenvalue solutions to the hyperbolic equations are important 

since the flux functions are split along them and hence different types of flow are 

naturally accounted for. For example if  there is a transonic region, the negative 

characteristic (X = u-a) eigenvalue will change sign from being negative when 

subsonic since u is less than, a, to being positive when supersonic since u is greater 

than, a.

The flux-vector splitting methods were pioneered by Steger and Warming (1981). 

Van Leer (1977) developed a flux vector splitting with an implicit relaxation 

algorithm, which is efficient, simple and capable of capturing the sharp shock waves.

The simplicity of this method, however, came at a price of reduced accuracy for 

viscous flows due to the large dissipation. Higher-Order Polynomial Expansion 

(HOPE) scheme of Liou and Steffen (1993) and the Low-Diffusion Flux-Vector 

Splitting Scheme of Van Leer were aimed at building up a pure flux-vector splitting 

scheme with vanishing mass diffusion. They did achieve the required spht mass but 

instability and non-monotonicity of the schemes are not acceptable for practical 

calculations.
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Efforts have also been made to improve the original Van Leer scheme by using some 

techniques borrowed from the flux-difrerence splitting schemes first suggested by 

Hanel and then extended by Van Leer. The Van Leer-Hanel ( 1990) Scheme uses the 

net mass flux and the one side velocity, and the total enthalpy for the transverse 

momentum and energy equations. A successful and more promising scheme was 

suggested by Liou and Steffen, the Advection Upstream Splitting Method (AUSM). 

They introduced an advective Mach number by combining split Mach number 

contributions from the original Van Leer's mass splitting. In a variety of calculations, 

this scheme was reported to be as accurate and convergent as the Roe flux-difference 

splitting scheme (Roe, 1981), which was considered to be the most accurate.

One o f the more recent works in this area is that of Zha and Bilgen (1993, 1996). A 

new flux vector splitting scheme, using the velocity component normal to the volume 

interface as the characteristic speed, and yielding a vanishing individual mass flux at 

the stagnation point has been developed. Flux-difference schemes can correctly 

capture shock waves and provide criteria to discriminate the correct information 

carried by propagating waves. The difference in flux between two adjacent node 

points is split into terms that will affect the flow evolution at points either side of the 

section under investigation. It is assumed that uniform flow occurs at each node point 

and over the cell extending one and a half grid intervals each side of the node point.

A discontinuity generally separates two neighbouring cells in the middle of the 

interval, and the evolution in time of this discontinuity provides the criteria for 

splitting the flux difference over an interval into terms associated with waves that 

propagate up and down the pipe. The above procedure is known as the Roe method 

(Roe, 1981). This method was extended by Pandolfr (1985, 1989) to hyperbolic 

equations. The Roe method was used frequently since it can take care of both steady 

shocks and contact discontinuities.

In an attempt to extend the upwind idea to global methods such as spectral or 

pseudo-spectral methods, Huang and Sloan ( 1993) developed a new upwind pseudo- 

spectral method for solution of linear singular perturbation problems without turning 

points. Glaister (1994) presented a flux difference splitting; numerical scheme for the 

solution o f the Euler equations of compressible flow of a gas in a single spatial co­
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ordinate. The scheme uses the Riemann solver for the Euler equations for a duct of 

variable cross-section and using the arithmetic mean (in contrast to the usual square 

root averaging of Roe's Riemann solver) for computational efficiency.

Flux-difference splitting methods can correctly capture shock waves and provide 

criteria to discriminate the correct information carried by propagating waves. Good 

results have been obtained for flux-difference splitting methods, but required 

numerical experimentation. Flux-difference splitting methods are unconditionally 

stable and solution at boundaries create no difficulties.
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3.5 FINITE ELEMENT METHOD

Solving an engineering problem by the hnite-element approach involves the 

following steps:

(a) Formulation of governing equations and boundary conditions

(b) Division of the analysis region into finite elements

(c) Selection of interpolation functions

(d) Determination of element properties

(e) Assembling of global equations

(f) Solution of global equations

(g) Verification and validation of solution

The finite-element method consists primarily of replacing a set of differential 

equations in terms of unknown variables with an equivalent but approximate set of 

algebraic equations where each of the unknown variables is evaluated at a nodal 

point. Several different approaches may be used in the evaluation of these algebraic 

equations, and finite-element methods are often classified according to the method 

used. In order to arrive at a proper method for a particular problem, it may be 

necessary to examine several methods. The three most common methods of 

formulation of the equations in finite difference form are direct, variational and 

residual.

Division of the solution region into elements can take the form of either one-, two or 

three-dimensional elements of varying shapes. There is usually not a single correct 

way of dividing a particular region to obtain a solution. Decisions on how to divide 

up the solution region into elements is based on engineering judgement and there are 

no definitive guidelines available. Depending on the positioning of nodes in the 

element and whether the sides of the element are straight or curved, finite elements 

are generally classified as simplex or higher order elements. Regardless of the 

geometrical shape, finite elements are categorised as either Lagrangian or Hermite 

elements.
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In contrast to the Lagrange family of elements, the Hermite category includes 

derivatives of the variables as well as values defined at the nodes. The theoretical 

basis of the finite-element methods has been covered extensively by Allaire (1985). 

Finite-element methods have not been extensively used for gas transients.

Until recent years, only two methods namely the Galerkin Method, employed by 

Rachford and Dupont (1974), and more recently by Osiadacz and Yedroudj (1989) 

and Kiuchi ( 1987), and the moving finite-element method, have been used for 

transient fluid flow analysis. Bisgaard et. al. (1987) developed a weighted residual 

finite-element method which uses the Galerkin finite-element method to discretise 

the equation.

Finite-element methods have some advantages over finite-difference methods. The 

former can be used to solve virtually any engineering problem for which a 

differential equation can be written. They have a higher accuracy because cubic 

hermite splines which should give errors of 0 (h'̂ ) could be used.

However, this accuracy cannot always be usefully realised due to the geographical 

nature of networks. Finite element methods are most useful for two and 

three-dimensional problems. Variational methods are easy to extend to two and 

three-dimensional problems. Residual methods can be applied to any problem for 

which a governing boundary value problem can be applied. For the case of residual 

methods, once techniques are learnt, the details are relatively straightforward.

The major disadvantage of finite-element methods is that they are somewhat 

complex, with complexity being proportional to the complexity of the differential 

equations for that particular problem. Direct methods are difficult to apply to two and 

three-dimensional problems. Variational methods lack a functional form for certain 

classes of problems, for example those dealing with the flow of viscous fluids. In 

addition, it is difficult to define variational methods for some problems. The 

procedure for finite element solution is rather lengthy and not widely used in gas 

network simulation. When the solution possesses discontinuities, higher-order 

methods may not always give more accurate solutions.
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The Galerkin method requires a lengthy execution time. It is formulated to treat slow 

transients. Computer resources required are small and it has some significant 

theoretical advantages. In using the moving finite-element method, care is needed in 

treatment of boundary conditions.
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3.6 METHOD OF LINES

In this method, a system of partial differential equations is transformed into a system 

of ordinary differential equations by discretising the equations in the spatial domain 

and leaving the time domain continuous. The number of ordinary differential 

equations is equal to the number of partial differential equations multiplied by the 

number of grid points used. The resulting set of ordinary differential equations can 

then be integrated with an appropriate ordinary differential equation solver.

The spatial derivatives are replaced by difference quotients. Since for the numerical 

solution of the generated system of ordinary differential equations the time variable is 

in fact discretised too, we finally obtain a full fmite-difference system.

Many of the known finite-difference methods can be thought of as being generated in 

this way. The boundary within which the method is applied is taken to be a 

rectangular grid. Boundaries of more general shapes can be reduced to this form by 

suitable co-ordinate transformations. Boundary conditions are prescribed on all or 

some sides of the grid rectangle. For applications in transient gas flow analysis, a 

parabolic form of the partial differential equations is used, for which the boundary 

conditions are only needed on three sides.

Ames (1977), Holt (1984) and Osiadacz (1987) gave a theoretical analysis of this 

method. In Holt's description, the method is based on a second-order partial 

differential equation of elliptic or mixed type whereas Osiadacz uses a parabolic 

partial differential equation. Osiadacz further discusses the application of this method 

to solve a system of partial differential equations describing the unsteady flow of gas 

in pipes and problems associated with its use, when dealing with rapidly varying 

signals and means of avoiding and overcoming them. It has been found that the 

procedure is satisfactory only where transients are gradual and continuous. There has 

been some recent studies where this method has been used practically to analyse 

unsteady flow of gas in pipelines.

Sophisticated packages based on the method of lines exist for numerical solution of 

ordinary differential equations. The method of lines is empirical and extremely
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simple. Higher-order methods can be used (Hirsch, 1995) for the integration of time, 

for example fourth-order Runge-Kutta or multi-step predictor-corrector methods, 

which is approximate for parabolic problems. Numerical time-domain solutions 

using the method of lines can be compared directly with corresponding method of 

characteristics solutions. The main advantage of the method of lines is that it offers 

the possibility of utilising highly developed software for ordinary differential 

equations. The method of lines is only suitable for numerical solution of partial 

differential equations of elliptic, mixed-elliptic and parabolic type. It is usually but 

not exclusively applied to parabolic problems.
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3.7 METHOD OF CHARACTERISTICS

The method of characteristics is the natural numerical method for quasi-linear 

hyperbolic systems with two independent variables. It is essentially an explicit finite 

difference scheme with a sufficiently different approach to warrant separate 

treatment. It is based on the principle of the propagation of characteristic waves and 

is therefore well suited to handling fast transient flow where each disturbance is 

captured along the propagating Mach hnes which are used in the formulation of the 

final form of the finite difference equations. The choking condition is handled easily 

by the fact that the left-running sonic characteristic, denoted by the eigenvalue (u-a) 

is equal to or greater than zero.

By an appropriate choice of co-ordinates, the characteristic lines as discussed in 

section 3.2.1 can be defined such that the system of partial differential equations is 

converted into a system of ordinary differential equations (compatibility equations) 

that may be solved by standard, single step finite-difference methods for ordinary 

differential equations. The basic rationale underlying the use of characteristics is that 

by an appropriate choice of co-ordinates, the original system of hyperbolic equations 

can be replaced by a system whose co-ordinates are the characteristics. The use of 

this method becomes particularly simple when applied to two equations in two 

dependent variables as is often the case when the isothermal flow assumption is made 

(see for example Wylie and Streeter, 1993).

When the characteristic co-ordinates are used in this way, the method is known as the 

natural method of characteristics or the characteristic grid method (CG) (Wylie and 

Streeter, 1993). This method has been extended to the three characteristic model 

necessary to describe non-isothermal transient fluid flow by Chen et. al (1993) and is 

referred to as the Wave Tracing method.

In all these characteristic grid methods, the position of the new solution point is not 

specified a priori, but is determined from the intersection of left and right running 

characteristics with origins located at known solution points or initial data. Hence a 

free floating grid is developed in the xt plane as shown in Fig. 3.3.1. This method of
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characteristics is particularly accurate since the solution progresses naturally along 

the characteristic lines. However, when more than two characteristic lines are 

present, i.e. when an energy equation is solved in addition to the mass and 

momentum conservation equations, a pathline {X = u) is present in addition to the 

two Mach lines {X = u+a; X = u-a) and this introduces some interpolation to locate 

the pathline intersection between known initial points.

t

X = 0 X = L

Fig. 3.3.1 Characteristic Grid

Another method that can be used for numerical discretisation of the Euler equations 

is the inverse marching method or the mesh method of characteristics called the 

method of specified time intervals (ST) (see Figure 4.4.1 in Chapter 4). In this
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method, the location of the solution points in the space-time grid is specified a priori 

and the characteristic curves are extended backwards in time to intersect a time line 

on which initial-data points are known fi-om a previous solution. This necessitates 

interpolation to locate the intersection of all three characteristic curves and as a result 

can lead to a greater loss of accuracy than the CG method.

The advantages and disadvantages of the ST and CG methods are summarised below:

^  Although accurate results are obtained at grid intersection points in the 

characteristic grid method, results are not directly available at a particular instant 

along the pipe nor at a particular section as a function of time. Some interpolation 

scheme is needed to extract this information. The method of specified time 

intervals is capable of providing results where needed; however it can suffer fi*om 

inaccuracy introduced by interpolations at each time step, and the greater the 

interpolation the larger the error. (Wiggert and Sundquist, 1977; Vardy, 1977)

No control is possible in maintaining the position of grid intersection points in the 

xt plane in the characteristic grid method. Intersection points may move outside 

the region of the pipeline and thus lose physical significance. To overcome the 

problem of distortion of the grid under extreme conditions in the CG method, a 

procedure can be used to straighten the grid by an adjustment to it after a certain 

number of time steps (Tullis et. al. 1976; Wylie and Streeter, 1976). It involves a 

double interpolation scheme in the region of the xt plane in which data are already 

computed. Once regular spacing is re-established, the CG method can be 

continued over another time span. The number of times this type of interpolation 

is needed is dependent on the severity of the variation in wavespeed. The 

numerical damping introduced with this interpolation is not nearly as significant 

as that introduced in the ST method of characteristics.

^  The ST method is subject to the constraints of the CFL condition which lengthens 

computation time. The CG method is firee of any such restriction.

^  The user has no direct control on the time of input variables at boundaries, 

whereas boundary conditions may be introduced at predefined times in the ST 

approach. This feature makes the ST method very attractive when modelling more 

complex systems such as valves in line, compressors or pipeline networks.
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^  Equal length reaches may be selected and maintained along the pipeline in the ST 

method.

The method of characteristics has many advantages compared with other numerical 

methods of solution. Discontinuities in the initial value may propagate along the 

characteristics, making it easy to handle. Large time steps are possible in the natural 

method, since they are not restricted by a stability criterion. The boundary conditions 

are also properly posed. The method of characteristics is relatively accurate, but 

requires understanding of how it operates, particularly in choosing a suitable time 

step. The method can be readily adapted to solve for three dependent variables 

required for the analysis of non-isothermal transient fluid flow. Discontinuous initial 

data do not lead to solution with overshoot and details are not smeared in the CG 

method. Exact solution is possible in the constant coefficient case with two 

dependent variables, regardless of eventual discontinuities in the initial data, in the 

case of the natural method.

In choosing a numerical scheme for the resolution of the Euler equations governing 

flow following FBR, the first decision that needs to be taken is whether to choose an 

implicit or explicit scheme. The need to solve a set of time dependent partial 

differential equations where time step limitations have to be introduced for reasons of 

accuracy, even for implicit schemes, means that an explicit scheme had to be chosen.

From the variety the explicit schemes that have been discussed, the MOC is chosen 

as the numerical scheme for the solution of the Euler equations on the basis that it 

has been proven to be an accurate tool in the solution of hyperbolic equations and is 

relatively simple to program. Since the CG method does not permit modelling of 

valves in line at different locations and with different closure times, the ST method is 

chosen.

A detailed description of the MOC as used in this work in given in Chapter 4.
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3.8 REVIEW  OF LITERATURE ON PIPELINE RUPTURE

The majority of the techniques for modelling pipeline rupture and blowdown are 

based on the MOC. The rest are either based on various finite-element or 

finite-difference schemes. The following is a review of these methods.

Sens et al (1970) used an explicit finite-difference method for the numerical solution 

of partial differential equations to simulate transient flow in a gas pipeline a few 

seconds after rupture.

Lyczkowski et al (1978) investigated several explicit finite-difference numerical 

schemes for solution of homogeneous equations of change for one-dimensional fluid 

flow and heat transfer. The Alternating Gradient Method (AGM), which is based on 

the two-step Lax-Wendroff procedure, was found to be the most successful.

Numerical tests performed using AGM for the blowdown of an ideal gas in an ideal 

shock tube gave good predictions when compared to analytical results. Also good 

agreement was obtained between numerical predictions and experimental data for the 

blowdown of a steam-water mixture.

Comparison of the AGM with the two-step Lax-Wendroff method for the shock tube 

indicated that the AGM is more accurate than the Lax-Wendroff scheme, probably 

due to greater numerical damping in the AGM.

Although the AGM is restricted by a time-step limitation which is slightly smaller 

than the standard Courant condition for a given time-step and mesh size, it is at least 

as accurate as Implicit schemes. Since only two cycles per time step are needed, the 

AGM is faster than a fully implicit scheme. In addition, the AGM is simple to 

programme.

In the study by the Alberta Petroleum Industry, Government Environmental 

Committee (1978) to evaluate and improve hydrogen sulphide isopleth predictions, 

the following techniques were reviewed: two dispersion models, the IN'IBRA 

Environmental Consultants Ltd. (INTERA) model and the Energy Resource 

Conservation Board (ERCB) model; and two blowdown models, the INTERCOM? 

Resource Development and Engineering (INTERCOM?) model and a simplified

110



Chapter 3 Numerical Methods fo r  the Solution o f  Hyperbolic Systems o f  Equations

blowdown model. Common blowdown curves generated by the INTERCOM? 

"TRANSFLOW" blowdown model were used in both the ERCB and INTERA 

atmospheric dispersion calculations. The INTERCOM? "TRANSFLOW" model uses 

the basic mass, momentum, and energy balances in a numerical simulator to calculate 

the time curve defining the rate of gas blowdown fi*om the pipeline. Among other 

things, the model has the capability of including valve closure time, fiictional effects 

and gas flow rate in the line before rupture in the calculations. No further details of 

the models are given in the report.

Knox et. al. (1980), reported on a project to assess the basic source characteristic 

assumptions relevant to modelling of sour gas pipeline ruptures and well blowouts. A 

3.2 kilometres long, 168 millimetre diameter pipeline was ruptured 32 times under 

varied conditions. A 7.1 kilometres long, 323 millimetre diameter pipeline was also 

ruptured and results were photographically recorded. The experimental rupturing 

technique, transient release rate and sensitivity to source configuration were 

evaluated. Farameters investigated included overburden, wind speed, release angle, 

firacture length, rupture mode and line pressure. Computer input parameters which 

needed verification are plume rise, volume dilution and rate of release. The study was 

based on three computer release rate models which existed [Alberta Fetroleum 

Industry, Government Environmental Committee (1978)] and which have been 

described in the previous paragraph. It was confirmed that all the three computer 

release rate models adequately predict the transient release o f gas from a ruptured 

pipeline.

Cronje et. al. (1980) described a procedure to solve the equations for single-phase, 

one-dimensional, unsteady, compressible, fiictional flow with heat transfer. The 

procedure is based on Hartree's hybrid method for solving the governing hyperbolic 

partial differential equations. In this numerical method, a rectangular grid is 

superimposed on the characteristic mesh in the time-distance plane. The values of the 

variables at points lying on the characteristics at time t are calculated by linear 

interpolation fi-om their known values prevailing at the rectangular grid points at the 

same time, t. The governing equations are integrated along their characteristics over a 

time step Ôt in time, to obtain the new values of these variables at the grid points at
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time t + ôt, and the process is repeated until the required time interval is covered. The 

method was applied to shock tube data that simulate a gas pipeline rupture. It was 

shown that the effect of friction is considerably more important than the effect of 

heat transfer. For large elapse times, the effect of friction is significant and the 

numerical model predicted well the available experimental values at these times. 

However, the numerical model agreed with experimental data at higher pressure 

ratios, at short elapse times and near the rupture plane.

Jones and Gough (1981) reported on a theoretical model for analysing high-pressure 

natural gas decompression behaviour. The method was incorporated in a computer 

programme called DECAY and was tested with a series of experimental data. Jones 

and Gough (1981) also reported that other organisations such as Exxon Production 

Research and the University of Calgary, were involved in studies on high-pressure 

gas decompression behaviour and that they had developed similar models to that of 

British Gas.

Fannelop and Ryhming (1982) studied the sudden release of gas from long pipelines. 

A straight forward solution based on the time-honoured concept of integral methods 

in boundary-layer theory was used. Spatial profiles of pressure and flow rate were 

assumed which satisfy the boundary conditions. They define different time regimes, 

each requiring a different method of solution. The inviscid regime is often of very 

short duration, probably much shorter than the time required for a full break to occur. 

It is followed by a viscous expansion process in which wave and dissipation 

processes are both important and in which the pressure at the break approaches the 

ambient value. The combined inviscid and viscous expansion phase were categorised 

as the early time regime. The time regime when the pressure decreases monotonically 

towards the open end, such as in the case of a break at the low-pressure end was 

referred to as the late time regime. The intermediate time regime is defined as the 

time which lasts from t = 25 seconds to the time when the pressure peak has moved 

to the other (closed) end. Simple solutions were developed for flow cases of prime 

interest. Validity and accuracy of the methods were checked using two procedures, 

namely variations of profile families and mathematical analysis of the partial
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differential equations based on an iterative approach carried out to second order. The 

integral method is shown to have adequate accuracy for engineering studies.

Van Deen and Reintsema (1983), developed a computer model for high-pressure gas 

transmission lines based on the method of characteristics and compared it with 

experimental data Ifrom the Gasunie transmission system. A leak was simulated by 

the fast opening of a valve connecting the pipeline to a nearby parallel pipeline at a 

lower pressure. Pressure responses at a point 10km downstream of the leak were 

investigated. Lack of agreement in the magnitude of the reflected pressure waves was 

observed and attributed to imperfect modelling of the boundary conditions. It was 

also observed that changes in the numerical values of the resistance factor of the 

pipeline have only a slight influence on the value of the result.

Flatt (1985-1989), studied the use of the method of characteristics for analysis of 

unsteady compressible flow in long pipelines following a rupture. In his model the 

simplifying assumptions of isothermal and low Mach number, often applied in the 

case of unsteady compressible flow in pipelines, were not used. To achieve higher 

accuracy, higher-order polynomials and an assumption of correspondingly curved 

characteristic lines were also used. The algorithms used were limited to shock free 

flows. An accuracy criterion showed that higher numerical accuracy may be obtained 

if the number of grid points was sufficiently large and if a special modified form of 

the boundary conditions at the broken section was used. The major difficulty 

encountered was due to the singularity which resulted from the combined effects of 

friction and choking (Ma =1),  occurring at the broken end. The results confirmed 

conclusions established earlier that viscous flows with large values of 4fL/d (order of 

magnitude of 1000) behave very differently from flows without friction. In particular, 

the mass flow escaping through the broken section, and the pressure there, fall to 

much smaller values. On the other hand, at some distance from the broken section the 

pressure stays at high values much longer than in the case without friction. The study 

concluded that the method of characteristics is more suited to problems with 

relatively low values of the parameter fL/d. Cases with important frictional effects
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are advised to be carefully checked regarding the accuracy of the results, and require 

many more grid points than cases without friction.

Bisgaard et. al. (1987), reported on a finite-element method developed for transient 

compressible flow in pipelines. A weighted residual method with a one-dimensional 

straight line element with two nodes was combined with an implicit Euler method 

and applied to the basic equations without making any simplifications. Higher-order 

polynomials were used as interpolating functions, since derivatives must be specified 

at the nodes in addition to the variable itself. The Galerkin finite-element method was 

used to discretise the equations. Gauss quadrature was used for the integration, where 

the order of the Gauss quadrature was adjusted to the order of the polynomial. A fully 

implicit Euler integration method was used for time integration after a third-order 

Runga-Kutta method had failed the stability criterion. The method was used to 

describe blowout and to determine the performance of a leak detection system. The 

first derivative of density and the first and second derivatives of velocity were 

included since small leaks are more easily recognised from derivatives of specified 

variables than from the variables themselves. A comparison was made between 

full-scale measurements carried out on a 77.33 kilometres gas transmission line from 

Neustadt through Sorzen to Unterfohring, in Germany, and corresponding finite 

element calculations. In the rupture simulation, the fluid was assumed to behave like 

an ideal gas with constant specific heat flowing through a convergent nozzle and 

calculations were carried out with 21 elements and a time step length of 0.5 seconds. 

It is claimed that results from the computer model had successfully been compared 

with process data from a full-scale pipeline. However, this was not shown in the 

paper for the case of a pipe rupture. It therefore remains doubtful as to whether the 

method could accurately and efficiently be used for the analysis of pipe rupture 

problems.

Lang and Fannelop ( 1987) reported on a method for efficient computation of the 

pipeline break problem. This involved the reduction of the partial differential 

equations to a set of ordinary differential equations by means of procedures in the 

family of the method of weighted residuals. The reduced equations were integrated 

by standard numerical techniques. The finite-element method, the spectral Galerkin
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method and the spectral collocation method were all used and results compared. It 

was demonstrated that stable, accurate and efficient solutions to the pipeline break 

problem could be obtained by the method of weighted residuals. Although the 

approximate functions used with the spectral collocation method would appear to be 

suited primarily for elliptic problems, it was possible to apply them to the hyperbolic 

equations by modifying one of the coefficients. Good results were obtained, and it 

was recommended that the computer time required by this method could be further 

reduced without loss of accuracy when the number of polynomials in the 

approximate solutions is reduced successively during the course of the calculation, as 

the gradients of pressure and velocity become smaller. It was concluded that the best 

results in terms of stability, accuracy and computing time were obtained with the 

collocation method.

Cheng and Bowyer (1987) presented a general quasi-one-dimensional unsteady 

compressible fluid flow code, which adopted the Eulerian approach and used the 

artificial viscosity method for finite-difference numerical integration of the governing 

equations. The numerical method a generahsed two-step explicit Lax-Wendroff 

finite-difference scheme that includes an adjustable implicit artificial viscosity term. 

Two sample computations were used to demonstrate the code capability. In the first 

case, the fluid transient imposed on a system undergoing a pipe rupture was studied 

for different combinations of the effects of elbows and restrictors. A steam vessel 

was considered to be the reservoir with a pressure of 1000 psi (69bar) and a 

temperature of 550°F (288°C). A flow restrictor (with a throat whose cross-sectional 

area is 36% of the duct flow area) was located aft (2.5m) downstream o f the second 

elbow. In the second case, transients caused by a sudden pipe rupture at the left side 

of a three-duct system were predicted.

Picard and Bishnoi (1988 and 1989) used their three models namely the Perfect-gas 

Isentropic Decompression (PID) model Real-fluid Isentropic Decompression (RID) 

model and Real-fluid Non-isentropic Decompression (AND) model to investigate the 

importance of real-fluid behaviour in the modelling o f high pressure gas pipeline 

ruptures. All these models are based on the method of characteristics.
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Botros et. al. ( 1989) discussed some computational models and solution methods for 

gas pipeline blowdown and assessed the significance of the various assumptions 

involved. Two physical models namely a volume model where a pipe is considered 

as a volume with stagnation conditions inside; and a pipe model where a pipeline 

section is considered as a pipe with velocity increasing towards the exit were 

considered. The pertinent equations for each model were solved analytically and 

numerically. The volume model was represented by a set of quasi-linear ordinary 

differential equations which were solved by a variable order backward differentiation 

formula method (Gear's method). The pipe model is governed by a set of non-linear 

first-order parabolic partial differential equations which were solved by a first-order 

Euler implicit finite-difference scheme. It was concluded that the accuracy of results 

obtained from the various models and solution methods depends greatly on the ratio 

fL/d of the pipe section under blowdown and the stack relative size with respect to 

the main pipe size. Generally as fL/d increases predictions using all models tend to 

become inaccurate. For relatively low fL/d values all models provide reasonable 

predictions and therefore the simple analytical volume calculations can be used 

effectively.

Thorley and Tiley (1987) used the method of characteristics for pressure transients in 

a ruptured gas pipeline with friction and thermal effects included. A real gas equation 

of state (Berthelot equation) was used and the "small terms" in the basic equations 

were neglected. A reducing grid size was used in the vicinity of the break to enable 

rarefaction waves to be modelled following a rupture. The friction term was 

represented by a second-order approximation. The values at an initial condition at the 

base of the characteristic were found by interpolating between known grid points. 

Hence by solving these equations, a first-order approximation was obtained for the 

predicted pressure, temperature and flow velocity. Since the required stability and 

accuracy was not achieved using the first-order approximation, this solution was used 

as an initial estimate in a second-order procedure. Although the exact procedure of 

this second order model is dependent on the type of grid point being examined, in 

principle, new values for the variable at the initial condition were found using 

quadratic interpolation. The coefficients in the characteristic equations were then
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calculated using these values. The coefficients were averaged with the previous 

initial condition coefficients, and the results were substituted back into the 

characteristic equations. By this method, new values for the predicted pressure, 

temperature and flow velocity were obtained. Results were obtained by performing a 

number of computer simulations for a set of data and comparing the results with 

shock tube and full-size pipeline experimental data. Problems were encountered with 

numerical stability and accuracy of results. For certain grid size and initial 

conditions, the solution became unstable at random points along the pipeline. It was 

concluded that although this type of instability could be controlled to an extent by 

varying the grid size and break boundary conditions, the problem may be totally 

alleviated by using an alternative numerical method for solving the theoretical 

equations.

Lang (1991) reported on the computation of gas flow in pipelines following a rupture 

using a spectral method. The governing partial differential equations were converted 

into a scheme suitable for solution by a computer by a two step procedure. In the first 

step, the collocation version of the spectral method was used to calculate the space 

derivatives. The remaining ordinary differential equations were then integrated by 

standard numerical techniques in the second step. Accurate results were obtained for 

short computing times with only a few collocation points.

Kunsch et. al. (1991) reported on a study of the flow characteristics close to a 

shut-down valve for an offshore gas pipeline, and over the length of the segment 

between the valve and a rupture. Integration of the partial differential equations was 

performed with the two-step MacCormack method. A fine mesh size was imposed at 

the boundaries where the gradients can be large. Treatment of boundary conditions, 

especially those relative to the valve, based on concepts from the method of 

characteristics, proved to be adequate. The calculations showed a better accuracy 

than previously used models.

In another publication, Kunsch et. al.( 1995) concluded that a precise knowledge of 

the coefficient of friction and other losses coefficients is not necessary. They 

demonstrated that the mass flow rates are insensitive to the exact geometric shape 

and contraction ratio of the break, resulting from an accidental rupture. They also
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compared their model results with those obtained by Flatt (1985b). They admitted 

that the results from Platt's model (which was based on the method of characteristics) 

were probably more accurate than their's, for the inertia dominated early time regime. 

They observed that the ideal gas assumption overestimated [Flatt (1993-94)] the 

mass flow rate. Flatt (1985b) observed the opposite effect, when the perfect gas 

assumption was used.

Chen et. al. (1992) presented a model for simulation of blowdown or rapid 

depressurisation following a full-bore rupture of pipelines containing perfect gases. 

The equations of gas dynamics were solved by the method of characteristics using 

four different algorithms namely the hybrid method, the hybrid method with 

multi-grid system, wave-tracing and multiple wave-tracing methods. The multiple 

wave-tracing method was found to be the most efficient and accurate method among 

the other methods for simulating long gas line rupture problems. This method was 

used to simulate the blowdown of the sub-sea pipeline between the Piper Alpha and 

MCP-01 offshore platforms and the result was compared with measurements made 

during the night of the tragedy on the Piper Alpha platform. The results were found 

to be in moderate agreement, the discrepancy being due to real fluid behaviour. It 

was concluded that although the perfect gas blowdown model is not capable of 

modelling real fluid behaviour, its simplicity and speed combined with the multiple 

wave-tracing method should provide a quick yet reasonably accurate evaluation of 

gas dynamics for risk assessment to a gas transmission line.

Chen et. al. (1993) also developed a simplified finite-difference method to solve 

transient two-phase pipe flow problems. In this method, the flow channel is 

discretised using staggered meshes where the flow velocity is defined at the cell edge 

and all other variables defined at cell centre. Following the guidelines of the Fourier 

stability analysis, the scheme treats the momentum convection term explicitly and the 

flow velocity is expressed in terms of pressure. The density in the mass conservation 

equation is further eliminated using a locally linearised equation of state so that the 

discretised conservation laws can be reduced to two difference equations in terms of 

mixture enthalpy and pressure only. The only assumption made is that there is 

thermodynamic equilibrium between the two phases. The method has several
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advantages. Since the velocities in the momentum calculations are de-coupled from 

other state variables, the extension of this method to other two-phase flow models is 

very straight forward The size of time step for the integration is not limited by a 

Courant number restriction The choice of mixture enthalpy and pressure permits the 

method to make the transition between single-phase and two-phase without 

difficulty. Extension to a multi-component system with concentration stratification 

effects is possible, but is shown to be insignificant for long pipelines. Results of the 

model were presented by way of example for the blowdown o f a 1 0 0 m long 

pressurised LPG pipeline using a homogeneous two-phase flow model.

Olorunmaiye and Imide (1993) presented a mathematical model based on unsteady 

isothermal flow theory and solved by the method of characteristics. It was reported 

that the model predicted results for natural gas pipeline rupture problems consistent 

with predictions of other workers. The accuracy of the numerical scheme when using 

linear characteristics with quadratic interpolation was found to be adequate. It was 

found that the curvature of the characteristics is not as pronounced in isothermal flow 

as it is in adiabatic flow and therefore it is not necessary to include the effect of 

curvature o f the characteristics in the computation of unsteady isothermal flows. It 

was concluded that the model is useful in analysing other unsteady flows associated 

with pipeline operation, such as controlled venting to the atmosphere prior to 

shutdown or repair, and sudden changes in pressure at either end of the pipeline. The 

waves generated in these operations caimot be as strong as waves associated with 

pipeline rupture.

Gasunie of the Netherlands have developed a PC-model for gas out flow for complex 

pipeline networks with different elements and different out flow scenarios all in one 

model. It can model line-break, venting and leakage. It can handle elements like 

valves, vessels, restrictions and elements defining different boundary conditions, 

which can represent e.g. the behaviour of a compressor. The basic relations are 

solved using an implicit finite-difference scheme. A graphical user interface makes 

inputting of the network very easy. In developing the model, emphasis was put on 

user-friendliness, robustness and the ability to model complex networks. The 

accuracy o f the model is estimated at 5 to 20%, which is considered by Gasunie to be 

sufficient for hazard analysis purposes.
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The Southwest Research Institute (SwRI) [Morrow (1996)] has conducted a study, to 

simulate venting of natural gas pipelines, for the Gas Research Institute. The 

computer model which was reported by Olorunmaiye and Imide (1993) was used. 

One of the aspects which were considered was whether a leak detection system could 

distinguish between a signal caused by a pipeline leak and other transient signals 

caused by normal operation, such as compressor start-up and shutdown and 

deliveries of gas through branched lines. Initially, the computed transient results 

overestimated the gas outflow and pressure drop. In order to match the computed 

results to experimental data, the throat area of the relief valve was reduced below its 

physical size. This empirical adjustment, which is called "exit loss factor", resulted in 

a fairly well agreement between computed and measured pressures.
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3.9 CONCLUDING REMARKS

In this chapter, a variety of numerical methods available to solve the Euler equations 

for one-dimensional homogeneous flow in thermodynamic equilibrium are presented. 

As a result of the present review, the method of characteristics based on the specified 

time (ST) interval grid is chosen for the following reasons:

discontinuities in the initial value may propagate along the characteristics, making 

it easy to handle

no additional smoothing parameter is needed to control overshoot and oscillation 

as is the case with second or higher order explicit finite difference schemes

^  the boundary conditions are properly posed

^  boundary conditions may be introduced at predefined times in the ST grid 

approach. This feature makes the ST method useful in modelling the dynamic 

effects of ESDV closure at various locations within the pipeline by choosing an 

appropriate grid spacing.

In the following chapter, the MOC based on the ST grid scheme is applied with a 

modification to the calculation procedure that considerably quickens CPU times and 

renders it considerably more efficient when compared to the classical method for an 

ideal gas mixture. This gain in computer run time allows its further development with 

regards to modelling two-phase flows as presented in Chapter 5.
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CHAPTER 4: APPLICATION OF THE MOC FOR FBR

SIMULATION AND MODELLING OF ESDV 

OR SSrV RESPONSE: IDEAL GAS

4.1 INTRODUCTION

This chapter describes the development of a methodology based on the MOC for the 

solution of the conservation equations derived in chapter 2  in conjunction with an 

ideal gas. This includes:

transformation of the partial differential equations, derived in Chapter 2 , to 

particular total differential equations called the compatibility equations,

solution of the compatibility equations based on a modification to the classical ST 

method and using the Euler predictor-corrector technique (Zucrow and Hoffman, 

1976) to enhance accuracy of the numerical analysis. This technique utilises first 

order finite difference discretisation of the compatibility equations for the 

predictor step followed by a second order discretisation for the corrector step.

Various procedures with the primary objective of reducing the CPU run times 

without compromising accuracy in order to produce an optimised model are also 

discussed. These include the application of a nested grid system as well as the use of 

curved characteristics.

Accuracy of the simulation is assessed by comparing output data with measurements 

taken during the Piper Alpha tragedy, and by making comparisons with results 

obtained by the models of Chen et. al (1992).

Some workers such as Flatt (1985), as well as Olorunmaiye and Imide (1993) 

respectively make the assumptions of adiabatic and isothermal flow following FBR. 

The deficiencies of these approaches with respect to accurate prediction over long 

depressurisation times, and the influence of fire on the rate of heat transfer to the 

fluid are also highlighted.

The optimised model is then used to simulate the dynamic response of emergency 

shutdown of both ball and check valves subsequent to FBR. The principal aim is to

122



Chapter 4 App. o f  the M OC fo r  FBR Simulation and Modelling o f  ESD V/SSIV Response: Ideal Gas

demonstrate the importance of predicting the rapid variations in the fluid dynamics 

within the pipeline during FBR and their influence on the appropriate choice of 

ESDV or SSIV. Of particular interest are the evaluations of lost inventory and 

resulting pressure surges as a function of valve proximity to the rupture plane and its 

response time. Pipelines containing gases whose behaviour may be approximated as 

ideal are considered here.

The appropriate valve dynamic simulations for high pressure pipelines containing 

two-phase mixtures are presented in Chapter 5.
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4.2 CHARACTERISTIC AND COMPATIBILITY EQUATIONS

In Chapter 2, the Euler equations for unsteady ideal gas fluid flow were derived in 

the following final form,

P t + p U x + u p x = 0

p u t+ p u U x + P x = P

+u?x - a ^ ( p t  +upx)  = (y - l ) (qh  ~up)  = V (2.4.16)

P = pRT

p = - 2 -^ p u |u | where f is the fanning friction factor at the wall

The first step in any method of characteristics solution is to convert the basic partial 

differential equations of flow into ordinary differential equations. The two most 

common methods of achieving this are the matrix transformation method, such as the 

one used by Tiley (1989), and that of multiplying the basic equations by an unknown 

parameter and subsequent summation. The latter method is used by Lister (1960), 

Wylie and Streeter (1978) for isothermal flow and by Zucrow and Hoffman (1977) 

for non-isothermal flow. The method used by Zucrow and Hoffman (1977) is adapted 

in this study because of its simplicity and mathematical rigour.

Multiplying the mass, momentum and energy conservation equations by cii, G2 and 

as respectively, and then summing,

OiPt +cJiupx +cJipUx +02put +a2puux +G2PX-G2P +
(4.2.1)

GgPt +  GguPx - Gga^pt  - Oga^upx -  03X1/ =  0

Factorising equation 4.2.1,
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(a ,p  + a 2 p u ) k J  + (o 2 +ua3) P x +  ^  p /
I  a 2 +uG 3

+  | o j u  —

/  2  \  Gi — Gga
P x + —  ^ P t

C l U - G g a  u
- G 2 p - G 3 l)f = 0

(4.2.2)

If u(x,t), P(x,t) and p(x,t) are assumed to be continuous functions, then

du 9u 9u dt .
—  = — + -T—— = Ux + AU*
dx 3x 9t dx

dP 9P 9 P d t  _
~T~ -  T “ + ~^~r~ = P% + dx 9x 3t dx

(4.2.3)

dp dp dp dt

where X =
^dt^
vdxy

(4.2.4)

Comparing equations 4.2.2 and 4.2.3 we see that the slopes of the characteristic 

curves, dt/dx = A, are the coefficients of the derivatives Ut, Pt, and Pf Hence,

X — G2 G3 Gj — G3 a‘‘
G1 +G 2 U G2 +UG3  G iU -G 3 a u

(4.2.5)

Rearranging equation 4.2.3 and expressing in terms of P%, u% and p%.

du .U x = ^ - X U t (4.2.6)

dp ,
P x = ^ - ^ P t

Substituting into equation 4.2.2, we obtain.
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(ajp + G2 pu)du + (g 2  + UGsjdP 

+ (gjU -  Gga^ujdp -  ( c 2 p + 0 3 X1/ )dx = 0

(4.2.7)

The above equation is the compatibility equation which is valid along the 

characteristic curves that can be determined from equation 4.2.5

Qi, Q2 and CJ3 can be determined from equation 4.2.5 by multiplying out all sides and 

equating, whereby,

G j +  G2  (A,U — 1) + G 3 (0 ) — 0

CTi(0 )+ 0 2 (&)+ 0 3 ( ^ 0  -  1)= 0  

G1 (A<u — 1) +  G2  (0 ) + G 3a^ (1 — X-u) =  0

(4.2.8)

(4.2.9)

(4.2.10)

For equations 4.2.8 to 4.2.10 to have a solution other than the trivial solution, i.e.

= G2 = G3 = 0 , the determinant of the coefficient matrix for these equations must 

vanish, i.e.

X ( X u - 1) 0  

0  X (Xu — 1)

(Xu — 1) 0  — a^ (Xu — 1)

=  0 (4.2.11)

Expanding the above determinant along the first colunm.

X (Xu — 1) (Xu — 1) 0
X .

0  — a (Xu — 1)
+ (Xu — 1)

X (Xu — 1)

(4.2.12)

x |— a^X(Xu — 1) j + (Xu — l)^(Xu — 1)^ j — 0  

Further simplifying equation 4.2.12, we obtain,

(Xu -  l)[̂ (Xu - 1)^ -a^X^ j = 0 (4.2.13)
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Equation 4.2.13 has three roots, the first being,

X,u — 1 = 0

(4.2.14)

^dt^

U x J o  u

This is the equation of the pathline of the fluid particles, and the subscript 0 is 

employed to denote the pathline. The other two roots can be given by,

( ^ u - 1)^ = 2} } ?

X a - l  = ±aX (4.2.15)

^ dt ^
= dxy+ u ± a

The three roots obtained are the same three real and distinct eigenvalues which prove 

the hyperbolicity of the equations as discussed in section 3.2.

The solutions for cti, 0 2  and 0 3  can now be obtained for each root. Substituting the 

pathline root, X = 1/u, into equations 4.2.8 to 4.2.10,

GjA, = 0  Gi = 0

G2 A = 0 => G2  = 0 (4.2.16)

-  Gga^ (Au - 1) = 0  => G3 = arbitrary 

Substituting the above result into equation 4.2.7,

uGgdP -  a^uGgdp -  G3 \i/dx = 0 (4.2.17)

Dividing both sides by uog we obtain.

dP — a^dp = — dx = wdt (4.2.18)
u
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This is the pathline compatibility equation along the characteristic curve.

Along the other two characteristics Xu-l=±Xa, equations 4.2.8 to 4.2.10 become, 

A.U — 1
Gi — —C' (4.2.19)

G2 -  -Gg
X.U — 1

(4.2.20)

Substituting for G2 from equation 4.2.20 into equation 4.2.19,

(^u - 1)^ d}}}  2
Gi -  -  - G g — —    Gg -  ■ - G g a

A, A

(4.2.21)

(4.2.22)

Therefore there are only two independent relationships between ai, G2 and G3 and so 

one of them (say 0 3 ) has an arbitrary value. Substituting the results of equations 

4.2.21 and 4.2.22 into the general compatibility equation 4.2.7,

pGg
2  u(Xu - 1) 

A,
du + Gg

uGg(a^ -  a^ )dp -  Gg —^ ^ P d x  -  Ggi|/dx = 0 

Dividing through by G3 and substituting for Au-l=±Aa, 

p(a^ ± aujdu + (u ± a)dP ± apdx + (k -  l)updx = 0

=> ±ap(u ± a)du + (u ± a)dP ± apdx -  V|/dx = 0 

Dividing through by (u±a),

^ dx dx
d P , ± p a d u , = ± a P ^  + V ^

A.U — 1
u - dP +

(4.2.23)

(4.2.24)

(4.2.25)
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From equation 4.2.15,

dt = ^  (4.2.26)

Substituting this into equation 4.2.25 we obtain the set of compatibility equations for 

information propagated along C+ and C. characteristic lines,

dP+ ± padu+ = (\j/ ± ap)dt+ (4.2.27)

The upper subscript + attached to the differentials dP, du, and dt and the upper sign 

+ in the coefficient pa correspond to the C+ characteristic, whereas the lower 

subscript - and the lower sign - correspond to the C. characteristic.

The compatibility equations are,

9 dnt 1
d g P - a  dop = \|/dot a l o n g = —

d . P + pad . u = f\i/ + aBlpd . t a long-7 ^  = 7-^—r (4.2.28)LT r j r  T o (u + a)

d _ P - p a d _ u  = [\i /-ap]pd_t along ~ (u -  a)

Equation 4.2.13 are the Mach lines of unsteady flow, being analogous to the Mach 

lines in a steady flow. These lines together with the path lines define the 

characteristic curves of solution to the Euler conservation equations.

The C+ and C. characteristics, corresponding to the + and - signs respectively in 

equation 4.2.13, lie on either side of the pathline, but are asymmetrical with respect 

to Co- The negative or left-running characteristic provides a sure indication of the 

type of flow present as shown in Figure 4.2.1 below:
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Right-running 
Mach line

Left-running 
Mach line

u> 0

u<a

pathline

X(a)

t

u> 0

u>a

X

t

u< 0

luka

(c) X

t

u< 0

|u|>a

(d) X

Figure 4.2.1 : Characteristics for unsteady one-dimensional flow.

a) Subsonic flow from left to right

b) Supersonic flow from left to right

c) Subsonic flow from right to left

d) Supersonic flow from right to left
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4.3 FINITE DIFFERENCE APPROXIMATIONS FOR A METHOD OF 

CHARACTERISTICS SOLUTION

The common practice in the method of characteristics solution is to use first-order 

and linear approximations to calculate values at the next time level.

The first order or linear finite difference approximation is expressed by the formula:

I:f (x )dx»f(xoXxi-X o) (4.3.1)

The characteristic equations shown by equations 4.2.14 and 4.2.15 can be represented 

in the space time domain as in Figure 4.3.1

t

Figure 4,3J: Characteristic curves in x-t space
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From Figure 4.3.1 the linear approximation to the set of equations given by equation 

4.2.28 can be given for,

Pathline characteristic;

X j -X „  = ( X o ) o ( t j - t o )  (4.3.2)

Pathline compatibility;

Pj “ Pq ~(^^)o(pj “ Po) = Vo(tj “ to) (4.3.3)

Positive Mach line or right running characteristic;

Xj -  Xp = (^+)p(tj ~ tp) (4.3.4)

Positive Mach line compatibility,

Pj -P p  +(pa)p(uj -U p)  = (M/ +ap)p(tj - t p )  (4.3.5)

Negative Mach line or left running characteristic;

X j - x „ = ( x . ) ^ ( t j - t „ )  (4.3.6)

Negative Mach line compatibility,

Pj -  Pn -  (p^)n(^j “ ^n) = ( v “  ^P)n(t j “  ^n) (4.3.7)

The subscripts to the various properties in equations 4.3.2 to 4.3.7 denote the location 

for calculation of their magnitude.

The second order approximation to equation 4.2.28 can be given for,

Pathline characteristic;

X j-X p  = x ( ( ^ o ) o + ( ^ o ) p ) ( t j - t o )  (4-3.8)
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Pathline compatibility;

Pj - P o  +(a^)j)(pj - P o )  = ^ ( v o  +Vj)( tj  - t o )  (4.3.9)

Positive Mach line or right running characteristic;

Xj -  Xp = ■^((^+)p+(^+)j)(tj  -  tp j (4.3.10)

Positive Mach line compatibility,

P j - P p +  }((pa)p  + (pa)j)(uj -  tip)

(4.3.11)

= + ap)p +(Y + ap)j)(tj -  tp)

Negative Mach line or left running characteristic;

X j - x „ = | ( ( x . ) ^ + ( x . ) J ( t j - t „ )  (4.3.12)

Negative Mach line compatibility,

P j - P n - | ( ( p a ) „ + ( p a ) j ) ( u j - u „ )

= -  aP)^ + ( v - a P ) j ) ( t j - t . )

(4.3.13)

The common practice in the method of characteristics solution is to use first-order 

and linear approximations to calculate values at the next time level based on 

convergence of some iteration criteria. The second order scheme is initiated after the 

first-order solution has been reached. This can however be expensive 

computationally and rather cumbersome (Tiley, 1989). Some workers have done just 

one calculation using the first order approximation to obtain an initial guess of flow 

variables at the solution point followed by a second order approximation (Kimambo, 

1996). Adopting this procedure makes the solution more like the Euler Predictor- 

Corrector method (Zucrow and Hoffinan, 1976).
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The Euler predictor-corrector technique employs as a first predictor step the same 

equation as an explicit first order sequence as given by equations 4.3.2 to 4.3.7. This 

first estimate is then enhanced by the corrector step where equations of the same 

form as in the second order approximation are used, i.e. equations 4.3.8 to 4.3.13.

There are several ways of using either the set of equations 4.3.2 to 4.3.7 or the set 

4.3.8 to 4.3.13 to obtain an approximate numerical solution to the original set of 

partial differential equations. The two most common that have been implemented 

have already been discussed in Chapter 3, namely the characteristic grid (CG) 

method and the method of specified time intervals (ST). It was decided to use the ST 

method so that valves-in line could be modelled.
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4.4 THE METHOD OF SPECIFIED TIME INTERVALS

In the method of specified time intervals, the solution is sought at pre-determined 

points in the space-time domain (Wyhe and Streeter, Lister, Zucrow and Hoffinan 

al.). This method of solution has many names including the inverse marching 

method, the mesh method, and the hybrid method of characteristics.

4.4.1 The First Order Solution

In the first order approximation, the characteristic curves are assumed to be straight 

lines. The flow field is discretised by using a rectangular grid in space and time 

according to the inverse marching method. Figure 4.4.1 shows the grid scheme.

The Courant-Friedrich-Lewy criterion (Zucrow and Hoffinan, 1976) that has to be 

satisfied in order to ensure numerical stabihty is:

Ax
A t < j ------— V (4.4.1)

(l“  + aln«x)

There are two open end scenarios that need to be considered. One is the case of 

choked flow at the ruptured end which will be sustained until the pressure at this 

point drops down to the external pressure. Choking is characterised by a Mach 

number of 1. The second case occurs when the external pressure is reached and the 

choking condition no longer holds (i.e. the outflow is subsonic at this point). The 

calculation procedure for the end point will therefore differ according to the pressure 

at the ruptured end. The interior point and the intact end boundary point calculations 

are not affected by this condition.
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Intact End 
Boundary Point

Open End 
Boundary PointInterior Point

Ax

Figure 4.4.1: The Method of Specified Time Intervals
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4.4.1.1 The Interior Point Calculation

ti+At

Ax

Figure 4.4.2: Grid Scheme for an interior point

In order to work out the conditions at the solution point j-1, the initial conditions at 

points p,o and n need to be calculated. Recalling the slopes of the characteristic lines,

dot 1 d+t 1 d_t 1
doX u d+x u + a d_x u - a

(4.4.2)

The usual method to solve for the interior point is to first compute the positions of 

the initial points p,o and n. This is done by making the initial approximation that.
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Uo=Ui_i, Up=Ui-2 , Un=Ui SO that the characteristic slopes as given by equation 4.4.2 can 

be written as:

U q Ui Xi-Xo
Xo -AtUj (4.4.3)

=
At

Up+3p “ i - i+ a i - i  Xj-X|
=*■ Xp = Xj -  At{ui_i + aj_i ) (4.4.4)

At

^i+1 ^i+1
X. = Xj -At(uj+1 - a j+ i )  (4.4.5)

Once the positions of the points p,o and n are known, the variables at these points can 

be calculated by linear interpolation along the spatial axis, between points i-1 , i, and 

i+1. Therefore,

Xi-Xi_i
(4.4.6)

Zn = Zi + (4.4.7)

Z i - l + “  ~ ^ ( ^ o “ ^ i - l )Xi -X i_ i

Z + ^ 1 ± L _ 5 l (x _Xj) ifXo<0

(4.4.8)

where: Z = u, P, p, and a.

The above yields tentative values for the location and flow properties at points p,o 

and n. These values can be improved by repeating the above steps iteratively, each 

time using the most recent values as calculated from the interpolation equations. 

Once a specified tolerance for the values at Xp, Xn, and Xq have been satisfied, the 

solution point (j) flow variables can be calculated from the compatibility equations 

4.3.3, 4.3.5 and 4.3.7 for the predictor step followed by equations 4.3.9, 4.311, and 

4.3.13 for the corrector step.
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Thus the solution point flow variables are evaluated, first using the initial estimate to 

get tentative solutions and then repeated using the average values of u, p, p, and a 

along each characteristic. This procedure is repeated until another convergence 

tolerance is satisfied for the solution point, j.

This is the established procedure for the method of specified time intervals.

A new modification to this method is hereby proposed whereby the location of the 

initial points is immediately found without the need for any iteration.

For the predictor step, 

dot 1 At
=> Xq = Xj -  AtUo (4.4.9)

d o X  Uo X j - X ,

d+t 1 At
d+x Up+ap X j - x ,  

d_t 1 At
d_x U o - a ^  Xj-Xo

=>Xp =Xj -At(up +ap)  (4.4.10)

Xn = X j - A t ( u n - a n )  (4.4.11)

In equations 4.4.9 to 4.4.11, expressions for the velocity and speed of sound can be 

obtained firom the first order interpolation formulas. These expressions can then be 

substituted back into the above characteristic equations, 4.4.9 to 4.4.11 to give.

For Up,

" . I
(4.4.12)

Rearranging the above, we can write.

1 + ^'  At
V Xj-Xj_i V

Carrying out the same manipulation for ap, we obtain.
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1 +
ai -a i_ i
Xj - X

At
i - 1  J

+  ̂ AtUp =a i
Xj - X

(4.4.14)
i -1

Equations 4.4.13 and 4.4.14 can be solved simultaneously for Up and ap.

Similarly a 2x2 system of equations can be set up for u„ and a„ based on the same 

mathematical manipulation to yield,

1 +
Ui+i-u

^At
i+1 " - ^ i  J

^i+1

Xi+l-Xi
-Ata„ =Ui (4.4.15)

1 + -
^i+i
X; . 1 — X

^At ^i+i
i+1 ^ i  y Xi+1 - X

-AtUn =&i (4.4.16)

For Uo, the solution depends on whether the slope of the pathline characteristic is 

positive or negative. The nature of the sign determines which way the fluid is 

flowing, if it is positive the flow is travelling towards the ruptured end, if negative it 

is travelling towards the intact end.

If lo > 0 then.

Uo =U i- i  +
Uj ~Uj- i
Xi -X j_ i

(xj -  AtUo -X i_ i)

Ui ~Uj_i
Uj_i +Uj — Uj_i — Atu,

Xi-Xi_i
(4.4.17)

= u; -  Atu,
Xi - X i _ i

Rearranging we can write.

Uo = 7
1 + ^'  ̂ At

Xi-Xi_i J

(4.4.18)

If Ào < 0, a similar equation for Uo can be derived.
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Uq= 7    \  (4.4.19)

V J

The locations of Xp, x„, and Xq can now be calculated directly from equations 4.4.9 to 

4.4.11 by substituting the calculated values for Up, ap, Un, a„, and Uq from the above 

equations.

The values of P at the three initial points are then calculated using the interpolation 

equations, 4.4.6 to 4.4.8. The density, p, and temperature T can then be calculated 

from the following relations for an ideal gas,

T = ^  (4.4.20)

P = ̂  (4.4.21)

All the initial point flow variables are now available to compute the flow conditions 

at the solution point j.

From equations 4.3.5 and 4.3.7, we obtain

P j = K , - ( p a ) p ( u j - U p) + P p  (4.4.22)

Pj=K2+(pa)_ , (u j -u„ )+P„  (4.4.23)

where

K, = (\|f + aP) At (4.4.24)

and,

K 2  = ( t | / - ap )^A t  (4.4.25)

Solving the above two equations simultaneously for uj we can write.
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Ki - K 2 +(pa) Up +(pa)^Un +Pp
u j = -------------------J—T --------------------  (4.4.26)

W n + W p

Once the velocity is known, the pressure at the solution point, Pj can be calculated by 

direct substitution for uj into either equations 4.4.22 or 4.4.23.

The density at the solution point can now be obtained from the pathline 

compatibility, i.e. equation 4.3.3,

Once the pressure and density are known, the temperature can easily be calculated 

from equation 4.4.21. In the ideal gas model, the ratio of specific heats, y, is a 

constant for a given fluid and hence the speed of sound can subsequently be 

calculated from equation 4.4.20.

The above steps are the predictor steps. For the corrector steps, these solution point 

parameters are now re-evaluated using the average values of u, p, p, and, a along 

each characteristic.

The procedure for the implementation of the corrector steps based on average values 

is sununarised below.

For calculation of Uo;

dgt 1 At At (
doX r rX

“ o + U j

=>Xo = X j - — ( u o + u j )  (4.4.28)
X i - x „  “ ■ 2

If Xo > 0 then.
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Uo = Ui-i +
Uj - u i-1
Xj -  Xj_i X i - Y ( u o + U j ) - X i - i

u. 1 +
Uj -  Uj_i At
Xj - X i-1 2 y

(4.4.29)

“ o = “ r
Xi-Xj_i 2 J

1 +
Uj -  Uj_i At 
Xi-Xi_, 2 y

where the subscript j together with superscript r refer to the solution condition at the 

previous iteration step, r.

For calculation of Up and ap,

1 At

| ( u p + « j )  +  ̂ ( a p + a 5 )
Xj X p

=> *p = *i - y ( “p +ap +Uj +aj)

Up from linear interpolation.

(4.4.30)

Up =Ui_i +
Ui “ U i-1

^i - X i _ i -  y ( “ p + a p  +Uj + a j )

Uj -U j_ i  At/
= U; ----- — — l û» + a„  + u j + 4 )' i ^ i -X i- i  2  \ P 

Rearranging for the unknowns, Up and ap.

(4.4.31)

/
u. 1 +

Uj -  Uj_i At
Xi-Xj .1  2 y

Uj -  Uj_i At

'i ^i- 1

Performing the same manipulation for ap, we obtain.

= (^4.32)^X;-X;_i  2  ̂ X: -X;_i 2
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a p  = a j _ i  +
- a i - 1

Xi -Xi_i
At /

X i - X i _ i -  2 + a„ +r P  ' “P " j + 4 )

=  a;  - + a„ +
‘ X i - X i . i  2 l"p ' “P 4 +4 )

(4.4.33)

 ̂^  ~ At
V I j

^  aj -a j_ i  At^ At / r . „r( u j + a - )  (4.4.34)
Xi-Xi_i 2  P ' 2

As for the predictor step, equations 4.4.32 and 4.4.34 can be solved simultaneously 

for Up and ap.

Similarly a 2x2 system of equations can be set up for u„ and a„ in the corrector step,

d _ t   1 At
d_x 2  

2
Xi -X p

= X i - Y ( ( u n  - a „ ) + (uj - aj) )

(4.4.35)

u„ = Ui + «i+1 -U i

=  Ui -

Xi+l -  X,

U j + i - U j  At 
'  X j + I - X j  2

i - X i - y ( u „ - a „  + u5 - a 5 )

(“ n - a n + U j “ 4 )

(4.4.36)

u,  ̂ I " i+i-Uj At
V Xj+i -  Xj 2  y

Uj+i-Uj At 
Xi+I-Xj 2

1 + ^i+1 - At
V î+l V < « ■ » >

The locations of Xp, x„, and Xq can now be calculated directly from equations 4.4.28, 

4.4.30 and 4.4.35 by performing the relevant substitutions. The dependent flow 

variables at the solution point can now be calculated at the next r+ 1  iteration step;
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p r ‘ = K, - - (p a )p + (p a ) j ] (u f* -U p )  + Pj (4.4.39)

(pa)„+(pa) ' a f ' - U n )  + P„ (4.4.40)

where Ki is given by,

Ki = 4- ('P + ap )p+( 'P  + ap)^ At (4.4.41)

and K2 by, 

K o  =  — ( 'P -ap)_^+( 'P -ap)^ At (4.4.42)

Solving the equations 4.4.39 and 4.4.40 simultaneously for uj we can write.

u'+^ =J

Ki-K2+^ (pa)p+(pa)^ 1
"P + 2 (pa)„+(pa)j

1
2 (pa)p+(pa)J_

1
' * ' 2

_(pa)„+(pa)j
(4.4.43)

Once is calculated, can be calculated from either equation 4.4.39 or 

equation 4.4.40. The density is given by.

p f  =
( p r ’ - P o )  + |( a o  + a f  )po-VoAt

(4.4.44)

The speed of sound and temperature are calculated according to relations 4.4.20 and 

4.4.21.

The above calculation procedure is repeated until a certain tolerance is satisfied for 

the three dependent variables, i.e. P, u, and p. The advantage of this process is that 

only one iteration calculation is involved since the location of the initial points p, o 

and n are computed directly without any iteration and results in considerable savings 

in calculation time without any loss of global accuracy (see section 4.6).
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4.4.1.2 The Intact End Point Calculation

j + 1

i o i+1n X

Figure 4.4.3: Grid Scheme for an intact end point

In this case, the positive characteristic is non-existent, the pathline characteristic 

X q ( C o )  is infinity, and the solution point velocity uj is zero. The flow conditions at 

the initial points n and o are worked out as for the interior point. Just the predictor 

steps are presented here. The corrector steps are then applied as in section 4.4.1.1.

The relevant compatibility equations are,

Pj -  Po -  ^ 0 (p j -  Po) = (k -  l)(q -  up)^ At = YqAt (4.4.45)

Pj -  P„ -  (pa)„ (O -  u J  = [(k -  l)(q -  up)_  ̂-  (ap) jA t  = [ÿ  -  ap]^ At (4.4.46)

Equation 4.4.46 can be rearranged to give an expression for Pj.
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Pj = P „ - (p a )_ ^ u „+ [T -ap ]^ A t  (4.4.47)

Thus the solution point density is given by,

(4.4.48)

The temperature and speed of sound are calculated from the ideal gas equations

4.4.20 and 4.4.21 respectively.

4.4.1.3 The Ruptured End Point Calculation

There are two time domains for discharge at the rupture point. The first to occur is 

the choked flow time domain whose duration depends on how quickly the pressure at 

this point drops down to the external pressure. When choked, the flow at this point is 

sonic and no further disturbance can propagate upstream. Once the external pressure 

is reached, the second time domain is initiated and in this period the outflow is 

subsonic.

As for the interior point calculation, at each node, both predictor and corrector steps 

are performed in the calculation procedure. Just the predictor steps are presented 

here. The corrector steps are then applied as in section 4.4.1.1.

For sonic flow.

Ma = - = 1  (4.4.49)

Therefore at the solution point, we can take uj = aj.
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ti+At

i- 1  P 1O X

Figure 4.4.4: Grid Scheme for the ruptured end point

From equation 4.4.49 and the ideal gas expressions given by equations 4.4.20 and

4.4.21 we obtain,

9 9 Pja . = u . = k ^ ^ P j = P j - (4.4.50)

Once the flow conditions at the initial points, p and o are established according to the 

procedure shown for the interior point, the other flow conditions at the solution point 

can be calculated.

The relevant compatibility equations are:

148



Chapter 4  App. o f the MOC fo r  FBR Simulation and Modelling ofESDV Response.Ideal Gas

Pj -  Po -  ao (pj -  Po) = (k -  l)(q -  up)^ At = (4.4.51 )

P j-P p + (p a )p (u j-U p )  = |^ (k -l)(q -u p )p + (ap )p  At = [<P + ap]pAt (4.4.52) 

Rearranging equation 4.4.51 and 4.4.52,

Pj -  aoPj = Pq - aoPo + 'Po^t = A j (4.4.53)

Pj+(pa)pU j =Pp+(pa)pU p + [<P + ap]pAt = A 2  (4.4.54)

Substituting for Pj from equation 4.4.50 into the above two equations,

PjUj 2
T "^ o P j -  = 0 (4.4.55)

^  + ( p a ) p U j - A 2 = 0  (4.4.56)

The system of 2x2 equations above are solved simultaneously for uj and pj. Pj is then 

obtained from either 4.4.53 or 4.4.54. The above process is repeated iteratively using 

the corrector steps until a convergence tolerance is satisfied for uj and pj.

In the case of subsonic flow, the solution point pressure Pj equals the external 

pressure Pext-

The velocity at the solution point can therefore be calculated by rearranging equation 

4.4.54.

A2 Pext (4.4.57)
(Pa)p

The density at the solution point can be calculated from equation 4.4.53, 

P j = ^ ^ S ^  (4.4.58)
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The temperature and speed of sound are calculated as usual from equations 4.4.21 

and 4.4.20 respectively.

4.4.2 The Second Order Solution

The first order approximation does not account for the curvature of the characteristics 

in regions where fluid properties change dramatically in a non linear manner. This is 

usually the case for two-phase mixtures or condensible gases when the first order 

approximation can lead to a significant global error.

Flatt (1985) proposed a singly-iterative second order method of characteristics which 

accounts for the curvature of the characteristics by considering them as arcs of 

parabolas. The advantage of this approach over the classical ST method is that only a 

single iteration is needed for the solution point properties. The previous time line 

properties are calculated directly from solution of quadratic interpolation formulas 

for spatial discretisation.

4.4.2.1 Interior Point Solution

The characteristic line can be considered to be curved by making the approximation 

that it is a section of a parabola with a horizontal axis as shown in Figure 4.4.5. This 

approximation permits use of a well-known geometric property, i.e., the tangents to 

points j and p meet halfway along the time axis at point q, so that

‘q = | ( ‘p + * j ) = ‘p + y = ‘j - Y

The interior point grid for a second order solution is given below.

150



Chapter 4 App. o f  the MOC for FBR Simulation and Modelling o f ESDV Response: Ideal Gas

t

At/2

At/2

P ni-1 i+l Xo 1

Ax Ax

Figure 4.4.5 Curved characteristics in the ST MOC method
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Introducing the parameter, L, so that at any point along the pathline characteristic,

L = — = u (4.4.60)

Along the positive characteristic,

= - — = u + a (4.4.61)

Along the negative characteristic,

L(_) = —  = u -  a (4.4.62)

Considering only the positive Mach line characteristic, the slope of the tangent at the 

node point j can be written as.

2

(4.4.63)

* q = ^ j - y L j ( + )

Similarly for the tangent at, p on the same positive characteristic.

y
X q  X p  L p ( ^ )

(4.4.64)

At
Xq -  Xp +  2  Lp(+)

Equation 4.4.63 to 4.4.64 and eliminating Xq,

Xp =  Xj -y (L p (+ )  +Lj(^)) (4.4.65)
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Lp(+) falls on the same time line as points i- 1  and i where conditions are known, so 

interpolation is needed to evaluate conditions at point p(+). To maintain a coherent 

second order scheme, a quadratic interpolation is needed based on the three point 

stencil, i-1 , i, and i-i-1 .

Lp+ - C i ( x p  -  x J  + C 2 (xp -X j)  + Lj .̂

where

Cl =

and

Wi{+) ~^^(+)  +^+i(+) 
2(Ax)^

Co = 2Ax

From equation 4.4.61,

(4.4.66)

(4.4.67)

(4.4.68)

^p(+) ^j(+) “ “ (’‘p " ’‘i " î(+)

Equating equation 4.4.69 to equation 4.4.66

(4.4.69)

Co + —  Ix + Li(^) +'Lj{+)  = 0
At

CiX^+2C3X-hC4 = 0

where

(4.4.70)

X (4.4.71)

Co = ^ 2  1 ^ -h---
2 At

(4.4.72)

(4.4.73)
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The solution to the quadratic equation 4.4.66 can be expressed in the special form,

X = Xp -  Xj =  ------------------------------------------------------------------------- (4.4.74)
C3±VC3-C,C4

Expressing the solution in this form has been shown to give better numerical results 

(Flatt, 1985) than the conventional form if the coefficient C, becomes very small.

Considering equation 4.4.70 for C, = 0, the physically correct solution of equation 

4.4.74 will be the one with the upper sign if  C^X), or lower sign if  €^<0. Both cases 

can be expressed in the single form.

X = Xp -  Xj = -

1 + ", C,C4^
J "  c l  /

(4.4.75)

Using the above technique, the positions of the points of intersection of pathline, 

positive Mach line and negative Mach line can be determined without the need for 

any iteration. The conditions at these points are then calculated using quadratic 

interpolation formulas as shown by equation 4.4.66.

The conditions at the solution point are obtained by solving the relevant 

compatibility equations using a second order finite difference scheme as proposed in 

section 4.3. The calculations are continued until convergence is reached for the 

dependent variables at the solution point in the same way as outlined for the first 

order solution, see section 4.4.1.

4.4.2.2 Ruptured End Point Solution

To deal with the curved characteristics in the boundary cell, the concept of a ghost 

cell is introduced. The addition of an extra “ghost” cell adjacent to the boundary cell 

permits quadratic interpolation for points, p and o in figure 4.4.6. The conditions at 

the node i+l are the same as at node i, i.e.

Zi+i = Zi (4.4.76)
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where

Z = P,u,p,T,a.

The rest of the calculations are exactly the same as for the interior point, section 

4.4.2.1.

t

Ghost CellAt/2

Rupture PlaneAt/2

Pi-1 i + l  Xo 1

Ax

Figure 4.4.6 Boundary cell layout for second order scheme
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4.5 THE INITIAL CONDITION

4.5.1 Steady State

Most often, the initial condition for a transient problem is steady state. Compatibility 

between the specified initial condition and the unsteady equations throughout the 

system is highly desirable. Inasmuch as steady state is a special case of unsteady flow 

it should be possible to utilise an unsteady simulation code to determine a balanced 

steady-state solution. There are obvious advantages to this procedure since only a 

single code for the transient analysis would be needed along with the corresponding 

data set. However, in most systems, convergence to steady state fi-om arbitrary initial 

conditions is very slow, requiring many iterations (Fox, 1975; Vardy and Chen, 

1983; Shimada, 1988).

Following FBR of long gas transmission lines, unsteady state flow stops only when 

the pipe is fully evacuated. The massive bulk of contained inventory coupled with the 

choking condition at the rupture plane considerably lengthens the convergence time 

to steady state.

The flow in the pipeline prior to rupture can be taken to be isothermal steady state. 

This can be justified by the fact that flow is slow (Flatt, 1986) and since the pipeline 

is very long, there is ample opportunity for heat transfer to maintain isothermal 

conditions. Typically flow velocities in pipelines vary firom 10 to 25 m/s and 

therefore for pipeline lengths of greater than 1 0 0  kilometres, a residence time of 

hours per particle is to be expected.

The equations for steady state isothermal flow of a compressible fluid can be derived 

from the same set of conservation equations that are used for the unsteady state 

analysis (see 2.4.16 in sec. 4.2). For steady state, all the partial derivatives with 

respect to time, t, are set to zero, thus resulting in ordinary differential equations with 

respect to x. The resulting steady state equations are:

Continuity equation:
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du dp
p— + 11— = 0 (4,5.1)

dx dx

Momentum equation:

dP du ^
— + pu— - p  = 0 (4.5.2)
dx dx

Energy equation:

dP o dp
u— - a  u — -\}/ = 0 (4.5.3)

dx dx

From the continuity equation, equation 4.5.1, we can write.

du
dp = —p —  (4.5.4)

and from the momentum equation, equation 4.5.2, we get,

dP = -pudu + pdx (4.5.5)

Differentiating the ideal gas equation of state with respect to p, we get,

dp = —  (4.5.6)

Equating equations 4.5.4 to 4.5.6, the following equation is obtained, 

dP du

(4.5.7)
RT u

Substituting for du from equation 4.5.7 into equation 4.5.5 yields.
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U
dP = — dP + pdx

(4.5.8)

dP =
Pdx

1 -

u

Therefore, the solution procedure using finite difference equations based on fluid 

properties at the previous grid point are as follows,

First calculate the pressure drop across the space step. Ax,

AP =

1-

u
Ax

(4.5.9)

P j = Pi_i + Pi- 1

1 -
u
RT

Ax

i-1

where i denotes the grid point where the fluid conditions are being calculated and the 

subscript i- 1  denotes fluid conditions at the previous grid point.

Next calculate the change in velocity as a result of this pressure drop.

Au = -
u

pRT
AP

(4.5.10)

Ui = Ui_i 1-

AP

Finally the change in density can be calculated once the change in velocity is known.
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p
Ap = ——All 

u
(4.5.11)

Pi  = P i - i
All ^

1 -  

V ^ i - \ J

The temperature T remains constant throughout and therefore the energy equation is 

redundant.

The speed of sound for an ideal gas is given by,

a; = V(rRT) (4.5.12)

where y is the ratio of specific heats and for a given ideal gas is always constant 

regardless of both temperature and pressure.

4.5.2 Pipeline Rupture at t = 0

In terms of a graphical representation of the system, the pipeline runs along the x- 

axis firom x=0 to x=L, however the flow at normal steady-state conditions travels 

firom right to left and hence the velocity, u, has a negative magnitude. Once rupture 

occurs (at t=0 ), choking over the entire cross-section of the pipe at the rupture point 

(assumed to be at x=L) takes place. This sudden disturbance to the steady-state 

system results in the creation of a pressure or expansion wave which quickly travels 

firom x=L to the left of the pipe. In so doing it effectively carries information of the 

conditions that existed at x=L along the pipeline.

To the right of the expansion wave there will be a large pressure drop firom the 

pressure peak at the expansion wave fi'ont to the open end rupture point where the 

pressure is continuously decreasing with time, albeit slowly, to atmospheric pressure. 

To the left of the expansion wave, flow will continue unperturbed by the changes that 

are occurring on the other side of the expansion wave. In fact, the flow in this region 

can be approximated by the isothermal steady state equation.
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Taking frictional effects into consideration, the pressure gradient (dP/dx)^ is positive 

in the isothermal flow region that is as yet undisturbed by the expansion wave.

Therefore in the initial time domain, there will be a pressure peak somewhere in 

between x=0 and x=L. It moves slowly from right to left until it reaches x=0\ Its 

location is always close to the point of flow reversal where u=0 .

The conservation equations are solved numerically because they are highly non­

linear, and finding an analytical solution is made difficult by the existence of a 

singularity at the ruptured end (Flatt, 1986). At the time of rupture, choked flow 

conditions occur at x=L and therefore the Mach Number, Ma=l. The conservation 

equations can be simplified and then solved to give a linear system of equations for 

pressure, temperature, Mach number, and velocity in terms of x. These partial 

derivatives all tend to infinity as Ma tends to 1.

. This singularity problem is overcome by assuming that at t=0:

1. there is isentropic expansion flow over the first Ax mesh

2 . the location of the pressure peak at the expansion wave front occurs at a 

distance of one Ax from the rupture point. The flow conditions at this point will be 

that which existed at x=L at t<0

3 . all points in the flow field on subsequent grid points to the left of the pressure 

peak can be approximated by steady state isothermal flow conditions.

The assumption of isentropic expansion flow over the first Ax leads to the use of the 

‘Riemann variables’ (Hirsch, 1995) in calculating the conditions at x=L.

For the special case of isentropic flow, the flow is adiabatic and reversible. 

Therefore,

Qh = 0

P = 0 (4.5.13)

\j/ = 0
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The compatibility equations for unsteady isentropic flow are therefore, 

pathline compatibility,

d P - a ^ d p  = 0 (4.5,14)

positive Mach line compatibility,

dP + padu = 0 (4.5.15)

negative Mach line compatibility,

dP -  padu = 0 (4.5.16)

Introducing the Riemann variable, w, so that,

dw 8 w dx Bw 9w  ̂ 9w ,.  ^
—  (4.5.17)
dt dt dt 9x 9t dx

where X is the characteristic slope

With reference to equations 4.5.14 to 4.5.16 the Riemann variables are,

ÔWi = Ôp -  - y  ÔP along “  = u
a dt

5 w 9 = ôu  + — ÔP = ôu + a~ ^  along—— = u + a (4.5.18)
pa p dt

J. sj 1 ôp 1 dx
owo =: ou —— oP = ou —a —  along-— = u — a

 ̂ pa p dt

Expressing equations 4.5.18 in the form of equation 4.5.17, and using equations 

4.5.14 to 4.5.16 to perform the partial differentials with respect to x and t, the 

following result is obtained,

(4.5.19)
dt dt dt

Equation 4.5.19 shows that the variable, w is a constant for isentropic flow and is 

termed as a Riemann invariant.
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The Riemann invariants, C+ or C. can be integrated to give,

W2  = u +  I a(p)—J
I

\ Yzl
a = (ky) 2  p 2  

From equation 4.5.22,

dp da

(4.5.20)

w? = u — I a(p)—

Using the isentropic relations,

P = kp'^ (4.5.21)

and

a^ = kypT̂ -̂  (4.5.22)

where k is a constant.

From equation 4.5.21,

dP Y_i 2
—  = kyp ' = a
dp

(4.5.23)

(4.5.24)

(ky)2 ^

Substituting for dp/p from equation 4.5.24, and for ‘a’ from equation 4.5.23 into 

equation 4.5.20, the Riemann invariant along becomes.
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2
W2 = u  +  -a  (4.5.25)

^ y - 1

and along X.,

2
W2 = u -  -a  (4.5.26)

^ y - 1

Therefore for any point in an isentropic flow field, and Wj which represent the 

propagation of pressure waves along their respective characteristics are always 

constant. This principle can be used to obtain the conditions at the rupture plane.

Denoting conditions at the rupture plane by the subscript, rp and conditions at the 

next grid point by the subscript in, and using the Riemann invariant along 1+,

y  _  1 ~  y  _  I ^in (4.5.27)

Uin and ain are known quantities as they are the steady state conditions that existed at 

the rupture plane prior to FBR.

For FBR of high pressure pipelines, we assume that at the rupture plane. Ma = 1, and 

so both velocity and speed of sound at that point at t = 0  are given by.

7 - 1 ^
y + i^ (4.5.28)

As a check for a^, it can also be obtained from equation 4.5.27 once u^ is known.

arp = a|n  + ^ ( u m - " r p )  (4.5.29)

Another relation for an ideal gas in an isentropic environment is,

TP  ̂ = k (4.5.30)

where T is the temperature.

Substituting for T from equation 4.5.12 into equation 4.5.30, and equating conditions 

at the rupture plane to those at the next grid point (denoted by subscript in).
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2 (t -1) 2

'  = % P i . '  (4.5.31)

Re-airanging the above, an expression for is obtained,

2 y

Pin (4.5.32)Prp -
^y -1

The temperature at the rupture plane at t=0 is obtained from equation 4.5.12 and the 

density is obtained from the ideal gas equation o f state.

Hence all the conditions at the various grid points on the initial time line, t=0 are 

accounted for. These conditions form the basis for the initiation of the calculation 

procedure outlined in section 4.4. A summary o f the procedure is given below.

4.5.4 Summary of Calculation Procedure

1. Divide the pipeline length into grid points o f equal length. Ax.

2. Calculate the maximum At permissible for numerical stability using the CFL 

criterion (equation 4.6.1). In this study a value of 0.9At is used in order to avoid 

loss of accuracy due to the resulting relatively large values of Ax (see section 

4.6).

3. The conditions at the ruptured end at t=0 are calculated using the Riemann 

variables, thus making the assumption of isentropic flow over the first Ax. The 

conditions at the other grid points at t= 0  are calculated using the isothermal 

flow equation.

4. Once the solutions are obtained at t = 0, the characteristic and compatibility 

equations are applied at t > 0 in equal intervals of 0.9At. The pipeline will be 

completely evacuated when there is equal pressure along the whole length of 

the pipeline thus giving u = 0 .
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4.6 OPTIMISATION AND VALIDATION OF THE FBR IDEAL GAS 

MODEL

In this section, the models proposed in sections 4.4.1 and 4.4.2 are optimised in terms 

of an evaluation of performance with respect to CPU times and accuracy. This is 

followed by comparisons of the optimised model results with field data, and those 

from the MWT and HYBRID-MG models developed by Chen et. al. (1992). The 

importance of taking into account heat transfer effects on FBR simulation are also 

discussed.

Field data are those obtained on the night of the Piper-Alpha tragedy when FBR of a 

long gas line between the Piper Alpha and MCP-01 platforms occurred due to 

excessive fire loading. A FORTRAN based computer programme, called PIPERUP 

is developed for this purpose.

The prevailing conditions prior to FBR are given below:

Pipeline length, L 54 km

Inner diameter, D 0.4191 m

Initial pressure, Pi„ 117 bar

Initial temperature. Tin 283 K

Average molecular weight, MWav 0 . 0 2 1 1  kg/mol

Heat capacity ratio, k 1.26

Heat transfer coefficient, Uh 5.0 w W k

Fanning friction factor, f 0.00324

Ambient temperature. Too 300 K

Table 4.1: Piper Alpha Input Data
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The fluid within the pipeline comprises methane (ca. 73.6 mole%) and ethane (ca. 

13.4%). Their behaviour is assumed to be approximated by an ideal gas during the 

depressurisation process.

4.6.1 The modelling of the fast transient near the ruptured end: Nested grid 

system

The Courant-Friedrich-Lewy stability criterion has to be satisfied for the required 

time step, At. This is given by

Ax
At<T :---- r (4.6.1)

(|u + Îmax)

The space step, Ax is dependent on the number of grid points used to discretise the 

flow field. This is defined as

Ax = —-----— —  (4.6.2)
No. of gnd points

where L is the pipe length.

Clearly, greater accuracy is achieved when Ax is small so that interpolation errors are 

minimised. This however means a greater number of calculations per time step, and 

in the case of simulation of FBR of a long pipeline, the above will result in a 

significant increase in CPU time.

Figure 4.6.1 shows the effect of Ax on the predicted variation of discharge rate with 

time using PIPERUP, within the range of At stipulated by equation 4.6.1. Curves A - 

F show the results obtained for Dx’s of 200m, 100m, 54m, 27m, 2.7m, and Im 

respectively.

The data have been generated using a first order MOC for the case of the Piper Alpha 

pipeline FBR. The discretisation is based on a Simple Grid Scheme (SOS) where 

uniform spacing is used throughout.

As the grid is refined, the solution tends to convergence thus confirming that the 

MOC is both consistent and stable (see chapter 3 for definitions).
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Figure 4.6.1: Variation of release rate with decreasing space-step (PIPERUP)

Curve A: Ax = 200m 
Curve B: Ax = 100m 
Curve C: Ax = 54m 
Curve D: Ax = 27m 
Curve E: Ax = 2.7m 
Curve F: Ax = Im
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The results obtained using a space step of Im (At = 1.4ms) are taken to be the 

converged solution of the test problem. For this, space step, the CPU time simulating

the first 36.9 seconds of discharge is 333.45 seconds on a lOOMHz Pentium 

computer. For a space step of 2.7m, the corresponding CPU time (At = 3.7ms), is 

only 118.33 seconds: the decrease in time is almost inversely proportional to the 

increase in space step. However, as can be seen from figure 4.6.1, the differences in 

predicted release rates are negligible for these two cases.

For a space-step greater than 225 metres, PIPERUP is unable to resolve the 2x2 

system of quadratic equations 4.4.13 and 4.4.14 for initial point data at, p in the 

rupture cell, obtained from interpolation over such a large space step.

The corresponding CPU time for the complete evacuation (20,000s) of the pipeline 

using the SG method for a space step of 2.7 m is estimated to be 17.5 hrs on the same 

computer as above.

In order to reduce the CPU time, a nested grid system used by Picard and Bishnoi 

(1989) and later by Chen et. al. (1992) is implemented. This involves modelling the 

fast transient near the rupture plane with a grid that is smaller than that for the slow 

transient which will exist through the rest of the pipeline. Clearly the longer the 

pipeline, the slower is the transient at the closed end, and therefore a large Ax is 

sufficient to accurately model the flow conditions in this region. In addition, a large 

Ax is particularly attractive with regards to lowering CPU times.

In this study, the nested grid scheme is implemented in the following manner:

A chosen number of normal time-space meshes at the pipe exit is divided into 5x5 

cells where Ax2 is the length of each step.

A number of columns of meshes in the first normal time-space mesh at the pipe exit 

is further divided into 5x5 cells such that the space-step is Ax% (see figure 4.6.2).

Figure 4.6.2 shows a schematic representation.

Since the smaller cells are geometrically similar, and contained within the large 

normal mesh (space-step = Axg), a consistent Courant number is maintained all the 

way through the discharge and numerical instability is avoided. Therefore accuracy
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Figure 4.6.2: Multiple Grid System Arrangement
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in the fast transient region near the open end is assured, whilst speeding up the rest of 

the calculations along the coarser grid where AXj is large.

For the purposes of terminology, a single refinement to the simple grid system (just 

one 5x5 division over the two Ax’s next to the rupture plane) will be termed ‘Nested 

Grid Scheme (NOS)’, whereas the double refinement (two 5x5 divisions) will be 

termed as ‘Compound Nested Grid Scheme (CNGS)’.

At the junctions of different size meshes, the flow variables at the finer grids are 

linearly interpolated in time from the values on the coarse grids.

In the case of highly transient two-phase flows, however, a different technique based 

on direct solution of the compatibility equations is used (see chapter 5). This is 

primarily because of the non-linear variation of fluid properties along the pipeline.

Figure 4.6.3 shows the release rate data obtained using the various schemes described 

above. Curve A shows the data using the SGS. Curves B and C on the other hand 

show the corresponding data using NGS and CNGS respectively. The appropriate 

choice of Ax for each scheme and the corresponding CPU times using a Hewlett 

Packard 486 PC are given in the figure legend.

From the data, it is clear that a nested grid scheme for fine resolution near the 

ruptured end is essential if an underestimation of the release rate, one of the most 

important factors in risk assessment, is to be avoided.

The difference in results, albeit small, between NGS and CNGS is due to the higher 

resolution of the fast transient near the pipe exit in the latter case.

In fact, CNGS has a resolution five times greater than NGS at the ruptured end. The 

SGS model takes the longest because its grid is coarsest near the rupture plane and 

therefore convergence of the iteration procedure for the solution points takes longer. 

This is despite the fact that the total number of elements used in this scheme is the 

least compared to the other schemes used here.

Likewise, convergence in CNGS will be faster than in NGS, but the CPU time is 

longer because of the fact that more calculations are performed in CNGS than can be
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Figure 4.6.3: Comparison of predicted release rate for the various schemes

Curve A: SGS; Axg =27m. Elapsed CPU time = 994s

Curve B: NGS; Axg =27m, Ax2 =5.4m. Elapsed CPU time = 541s

Curve C: CNGS; Axg =27m, Ax2 = 5.4m, with Ax% = 1.08m. Elapsed CPU time 
755s
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compensated for by faster convergence. CNGS has 5 more calculations for each 

space step and 5 more for each time step than NGS.

To obtain the same resolution as CNGS, SGS would need a space step of 1.08m and 

the CPU time is estimated to be ca. 25,000 s. Therefore the CNGS model gives the 

same resolution but is about 33 times faster. This becomes particularly relevant when 

simulating complete discharge following FBR of long pipelines.

There is little difference in the results between NGS and CNGS presented here 

because they have been applied to a permanent gas. However, care should be taken 

when using the same argument to depressurisation of two-phase mixtures or 

condensible gases where fluid properties are expected to vary markedly along the 

pipeline.

Henceforth, the CNGS model is chosen to perform validation tests because it gives 

the best accuracy in a reasonably fast time. Chen et. al. (1992) have published data 

obtained by two models called Multiple Wave Tracing (MWT) and Hybrid MULTI­

GRID (Hybrid-MG). Both employ the compound nested grid scheme as used in this 

study.

The Hybrid-MG model uses the classical method of specified time intervals whereas 

the MWT model is a characteristic grid type method (see Chapter 3) where the waves 

at t= 0  are traced forward in time.

Figure 4.6.4 shows a comparison of the predicted release rates over the full period of 

depressurisation of the Piper to MCP-01 pipeline for the three models mentioned 

above. Curve A shows the results obtained using CNGS whereas curves B and C 

show the results for Chen’s Hybrid-MG and MWT methods respectively.

It is striking to note that the CPU time for the CNGS (curve A) using the modified 

method of specified time intervals as used in this study on a Hewlett Packard 486 PC 

is only 2.4 hours. The corresponding CPU times for HYBRID-MG (curve B) and 

MWT (curve C) as developed by Chen et. al. are 22.1 hours and 2.9 hours 

respectively on a SUN SPARC workstation.
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Figure 4.6.4; Comparison of the predicted release rates over the full period of 
depressurisation of the Piper to MCP-01 pipeline.

Curve A: CNGS; Axg =200m, A%2 = 40m, with Axi = 8 m; CPU time = 2.4 hrs 
(Hewlett Packard, 486 PC).

Curve B: Hybrid-MG; Axg =200m, Ax2 = 40m, with Ax% = 8 m; CPU time = 22.1 hrs 
(SUN SPARC workstation).

Curve C: MWT; Axg = 125 m, Ax2 = 50 m, Axi = 10 m; CPU time = 2.9 hrs (SUN 
SPARC workstation).
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The slight difference in values given in figure 4.6.4 between our modified ST method 

(Curve A), and Chen et. al.’s MWT (Curve C) can be attributed to the different 

approaches adopted.

In the former, some smearing of the solution always results because of the need to 

interpolate to calculate the conditions at the intersection points of Mach lines and 

path-lines with the initial time line (p,o and n) (see figure 4.4.2). The extent of the 

smearing diminishes with the magnitude of space-step at and near the rupture point.

For MWT, the only smearing of the exact solution is due to interpolation of the 

pathline intersection. At very small Ax’s near the rupture plane, the results of CNGS 

for the modified ST method can be expected to approach those from MWT.

Both Hybrid-MG and CNGS for the modified ST method give the same accuracy, 

but CNGS developed in this study is almost ten times faster. This is due to solving a 

matrix of interpolation equations simultaneously (see section 4.4.1) which drastically 

reduces the number of iterations involved.

For the sake of comparison, the CPU time for the same simulation using the CNGS 

model developed in this study is only 40 minutes on a Pentium PC. (Hewlett Packard 

lOOMhZ Vectra Series 4 Pentium PC).

4.6.2 The effect of curved characteristics

In addition to the errors resulting firom linear interpolation of fluid properties, a 

second source of inaccuracy can be attributed to the approximation of the 

characteristic curves by straight lines.

Particularly difficult are problems where the nonlinear fiiction term of the 

momentum equation has a high fL/D value (f, L and D are the fiiction factor, the 

length and the hydraulic diameter of the pipe respectively) and where the Mach 

number range is high subsonic (Flatt, 1985). For flows where either or both of these 

phenomena result in curved characteristics, the linear characteristic assumption as 

made in the first order solution can lead to global errors greater than first order. For
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FBR this can also lead to numerical instability for the ruptured end boundary 

calculation.

Figure 4.6.5 shows predicted release rate data for the first order linear characteristic 

(Curve A) and the second order curved characteristic (Curve B) models. The 

corresponding CPU times are given in the figure legend.

As explained earlier, the release rate data is most sensitive to the mode of calculation 

near the rupture plane, and is therefore chosen here as the parameter by which the 

effect of incorporating curved characteristics is judged. The methodology for 

modelling of curved characteristics near the rupture plane was given in section 4.4.2.

The results in figure 4.6.5 show that both first and second order solutions produce 

very similar results (the curved characteristic solution giving slightly higher 

estimates for release rate). This is to be expected, since the properties of a permanent 

gas are expected to vary relatively linearly along the pipeline. The difference in the 

results is however more significant in the case of two phase mixtures (see section 

5.8.1).

The CPU times for both are also very similar with the second order solution taking 

slightly longer to reach convergence.

4.6.3 Intact End Pressures

During the Piper Alpha FBR, measurements of intact end pressure were recorded 

(Chen, 1993). These are used for comparison with predictions from the present 

CNGS using linear characteristics and the MWT models developed by Chen et al., 

(1992).

Figure 4.6.6 shows such data. Curve A shows the measured data whereas curves B 

and C show the results of Chen et. al’s MWT and our CNGS models respectively.

Both models show excellent agreement with each other but underestimate the intact 

end pressure. This is due mainly to the assumption of ideal gas. The effect of 

inclusion of real fluid behaviour including two-phase flow on the above results will 

be shown later (see chapter 5).

175



Chapter 4 App. of the MOC for FBR Simulation and Modelling ofESDV Response: Ideal Gas

2200

1800 i

1400 --

 Curve A
 Curve B

1000  -

600 -

200
60 7040 5020

Time (s)

Figure 4.6.5: Predicted release rate versus time profiles for first and second order 
CNGS.
Curve A; First order solution; CPU time = 9 seconds 
Curve B; Second order solution; CPU time = 24 seconds 
Ax3=500m, Ax2= 1 0 0 m, Axi=20m
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Figure 4.6.6: Comparison of Piper-Alpha intact end pressure predictions 

Curve A: Measurement
Curve B: Chen et. al.’s MWT; Axg = 125 m, Ax2 = 50 m, Axi = 10 m; CPU time 

2.9 hrs (SUN SPARC workstation).
Curve C: CNGS; Axg =200m, Ax2 = 40m, with Axi = 8 m; CPU time = 2.4 hrs 

(Hewlett Packard, 486 PC).
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At the intact end of the pipe, the properties change much less dramatically with time 

and the global error is linear, i.e. for a constant time-step, a change in space-step will 

affect a change in intact end pressure m a linear fashion. The results from Chen et. 

al.’s MWT model are very close to the results from the present CNGS indicating that 

interpolation errors do not affect accuracy in the intact end region where the transient 

is much slower than at the ruptured end.

4.6.4 Heat Transfer Effects

As soon as rupture occurs, choking takes place across the entire cross-section of the 

pipe at the ruptured end. Immediately a pressure peak is set up which travels as an 

expansion wave towards the intact end. The pressure peak effectively divides the 

pipeline into two regions, the ruptured end side and the intact end side (Flatt, 1985).

On the ruptured end side, strong expansion due to the massive pressure drop will 

produce a reversal of flow so that there is an outflow through the ruptured end. In the 

initial time period, i.e. the first few seconds after rupture, there is such a large change 

in flow conditions with time so that the flow can be considered to be adiabatic.

Figure 4.6.7 shows plots of the fluid temperature profiles with distance from the 

ruptured end in the first few seconds after FBR. Curves A - C are the adiabatic 

temperatures (heat transfer coefficient of zero) at 1.36, 20.4 and 135.9 seconds after 

rupture respectively. Curves D - F show the corresponding temperatures at the same 

times by taking heat transfer into account. The heat transfer coefficient is taken to be 

5 W/m"K.

The closeness o f the data for adiabatic and non-adiabatic release illustrates the 

prevalence of adiabatic flow (Flatt, 1985), especially near the broken end. In this 

region, the gas molecules are accelerated relatively rapidly and at least initially, over 

a relatively short distance, the adiabatic assumption does not differ much from the 

non-adiabatic case. However with the progression of time, heat transfer effects will 

become increasingly important and therefore should be taken into account. The 

results at 135.9 seconds (c.f. curves C and F) already show that the adiabatic model 

will underestimate fluid temperatures. The extent of this underestimation increases 

with time and is expected to affect the release rate data.
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Figure 4.6.7; Comparison of adiabatic and non-adiabatic temperature variations with 
distance from the ruptured end.

Curve A: Adiabatic model, t = 1.36s 
Curve B: Adiabatic model, t = 20.4s 
Curve C: Adiabatic model, t = 135.9s 
Curve D: Non-adiabatic model, t = 1.36s 
Curve E: Non-adiabatic model, t = 20.4s 
Curve F: Non-adiabatic model, t = 135.9s
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Some workers such as Faimelop and Rhyming (1982), Lang and Fannelop (1987), 

along with Olorunmaiye and Imide (1993) have assumed isothermal flow in 

modelling FBR. This simplifies the solution since only two equations have to be 

solved, thus rendering it faster than any adiabatic or heat transfer models. However 

such assumptions have been shown to underestimate mass flow rate at the ruptured 

end by as much as 20% (Olorunmaiye and Imide, 1993). Also an isothermal 

assumption will not permit accounting for the effect of pipe lagging and changes in 

external temperature, for example due to fire, on the rate of heat transfer and hence 

the release rate. Lagging around a pipe has the effect of decreasing the heat transfer 

coefficient and therefore the fluid temperatures can be expected to be lower in lagged 

pipes.

Finally, figure 4.6.8 shows the effect of thermal radiation such as that due to a fire on 

the variation of fluid temperature along the pipeline in the first » 140 s following 

FBR. In this case, the ambient temperature is taken as 1500 K. Curves A - C show 

the fluid temperature profiles in the case of an external fire at 1.36, 20.4 and 135.9 s 

following FBR.

The corresponding data at the same times subsequent to FBR, in a no fire situation 

(ambient temperature = 294 K) are also given (Curves D - F). It is interesting to note 

that even at such high flowrates as encountered during FBR, a relatively significant 

rise in the temperature of the fluid may be observed due to fire. This is the case even 

during the early stages of the discharge process.

As FBR is usually accompanied by a fire, it is therefore important to be aware of its 

potential effect on release rate data. In the Piper Alpha case examined here, fire is 

ignored as it is assumed that the pipeline was mainly submerged under water during 

FBR.
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Figure 4.6.8: Effect of external conditions on fluid temperature variation within the 
pipeline as a function of distance jfrom the rupture plane.

Curve A: External fire, t = 1.36s 
Curve B: External fire, t = 20.4s 
Curve C: External fire, t = 135.9s 
Curve D: No fire, t = 1.36s 
Curve E: No fire, t = 20.4s 
Curve F: No fire, t = 135.9s
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4.7 VALVE CLOSURE MODELLING

The characteristic equations as given by equation 4.4.2 in section 4.4.1 stipulate the 

way in which information is propagated through a flow field. As such, they play a 

fundamental role in dictating the ESDV response time. To illustrate this, it is 

important to appreciate the nature of the process taking place following FBR.

FBR results in a centred expansion wave that propagates along the pipeline away 

from the rupture plane with the speed of sound. The origin of a centred expansion 

wave is a singular point where infinite values for flow properties exist at any given 

time and distance (Zucrow & Hoffman, 1976). The velocity at the front of the wave 

which is a characteristic is, a. This wave imparts a drop in pressure which in turn 

results in a series of expansion waves which propagate into the disturbed fluid with 

an increasing negative velocity, -u and decreasing speed of sound, a. These waves 

result in the acceleration of the fluid particles (which have a characteristic with 

velocity, u) in the opposite direction and hence result in outflow. Accordingly, the 

speed of propagation , dx/dt = u + a of each consecutive expansion wave is smaller 

than that of the preceding wave and hence the waves diverge.

Figure 4.7.1 is a schematic representation of the above phenomenon. The zone near 

the rupture plane represent domains of rapid changes in flow properties such as 

pressure and discharge velocity. Indeed this type of behaviour is synonymous with 

FBR where massive amounts of inventory are released during the first few seconds 

following rupture. This trend is immediately superseded by a much lower and 

gradually decreasing discharge rate.

In the case of a check valve, its activation time, t, is predominantly governed by the 

time it takes for the first centred expansion wave characteristic) to travel from 

the rupture plane to the location of the valve. At this instance, the velocity, û  of the 

gas in the reverse direction is zero and hence the valve will not be exposed to a 

pressure surge provided it closes instantaneously. The problem arises for larger 

values of t̂  when the flow velocity û  rapidly increases. The resulting pressure surge 

which may be significant is estimated from Joukowski’s equation (Wylie and 

Streeter, 1978) which is given by:
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Figure 4.7.1: A schematic representation of expansion wave propagation with time 
following full bore pipeline rupture.
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AP = p(aUr+Ur) (4.7.1)

It is then up to the design engineer to decide whether the mechanical integrity of the 

pipeline may be undermined following exposure to this level of pressure surge. Such 

a decision clearly requires a prior knowledge of the fluid velocity, u .

For a ball valve on the other hand, t̂  depends on whether sufficient time has lapsed 

for the expansion waves to cause a drop in the fluid pressure equal to that for which 

the valve has been set to trigger.

4.7.1 Check Valve

Check valves, or non-return valves, are placed in pipelines to prevent back flow. 

Ideally, when the flow reverses at the location of the check valve, it closes 

instantaneously preventing back flow. More realistically, since the position is 

controlled by the flow and valve dynamics, closure occurs after some level of back 

flow is established. This causes an instantaneous stoppage of the reverse flow with a 

corresponding rise in pressure.

The study of the effects of FBR of a single pipeline can be considered as the study of 

a single element system. The introduction of valves in line turns a single element 

system into a multi-element one.

Check valve closure is simply modelled by introducing closed end boundary 

conditions at the required time and space co-ordinates, relative to the passage of flow 

reversal and distance from the rupture plane respectively. Here we are assuming a 

worst case scenario in which the flow of gas is assumed to remain unhindered until 

complete closure of the valve.

Figure 4.7.2 shows a schematic representation of the appropriate boundary conditions 

on either side of the valve, i, and j, are the local initial and solution nodes 

respectively in the space-time grid and p, and n, are the points where the C  ̂ and C 

characteristic lines intersect the spatial axis between two adjacent nodes. The Ĉ  

characteristic on either side is zero since the flow velocity at that point is zero.
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Figure 4.7.2: Grid scheme for the check valve closure.
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The solution pressure, is obtained on the downstream side by rearranging the 

negative compatibility equation and using average values for the discrete parameters 

for iteration steps greater than 1 as in the predictor corrector method. Hence

Pj = Pn -  (pâ)j, u„ + (v  -  ap) At (4.7.2)

whereas on the upstream side, the positive compatibility is used,

Pj = Pp + (pa)jp Up + ( v  + aP) .p At (4.7.3)

The density on either side of the valve can be obtained from the pathline 

compatibility equation.

4.7.2 Ball Valve

The modelling of the ball valve is more complex due to its relatively complicated 

‘closure geometry’ and slow closure rate. Here, the variations in fluid flow properties 

must be evaluated as a function of time during valve closure.

The compatibility equations need to be re-arranged to take account of the pressure 

drop across the closing valve. If conditions on the upstream and down stream sides of 

the valve are denoted by the subscript j ’+ and j ’- respectively, then the corresponding 

characteristics diagram for the conditions on either side of the valve is given in 

Figure 4.7.3.

The compatibility equations for each of the characteristic lines, C+, C- and Co are 

respectively given by:

Pj'+ -  Pp +  ( p 4 p j ' + ( ^ j =  +  a|3)pj*+At = K i (4.7.4)

Pj’-  -  Pn “  (pa)ni'_ (u j “  un ) = ( V -  aP) nj -  = K2 (4.7.5)

186



Chapter 4 App. of the MOC for FBR Simulation and Modelling ofESDV Response: Ideal Gas

j - 1 j ’-

c+

pi- 1 0  V

j’+

Direction of flow

j+ 1

n i+ 1i’+

Figure 4.7.3: Grid scheme for the conditions on either side of the closing ball valve.
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Pj + -  Po -  P )  (p j-P o )  = (V)oj'+At = K j (4.7.6)

Equations 4.7.4 to 4.7.6 contain 4 unknowns that change with time, namely , u. 

and Pj. The closure relation for the above system of equations can be derived from 

the valve loss equation (Swaffield and Boldy, 1993; Wylie and Streeter, 1993):

Q(t) = C d ( t ) A f ( t ) J ^ ^  (4.7.7)

where Q is the volumetric flowrate through the valve at any time, t during closure, C<j 

is the valve discharge coefficient, and Af is the valve area open to flow.

Equation 4.7.7 represents the variation of flow rate of a fluid through a closing valve 

as a function of the pressure drop. It has been derived essentially for an 

incompressible fluid flow but it may be used in conjunction with a gas pipeline by 

assuming that the inertial effects of the gas within the boundary of the valve are 

minimal (Wylie and Streeter, 1993, Wylie, 1997, Boldy, 1997). This can be justified 

by the time constant for flow through the valve which is very small in relation to that 

for flow through the pipeline.

For example, the pipeline time constant is given by (Wylie and Streeter, 1993),

tp = —  (4.7.8)
^ a

where L is the length of the pipeline and a, is the acoustic velocity through the pipe. 

For a 1 km pipeline containing methane as presented in the case study in section 4.8 

the minimum time constant, tp = 5 s.

The time constant for a closing valve (Wylie and Streeter, 1993) is given by.

APu
ty = (4.7.9)

M, and u are respectively the mass flowrate and fluid velocity through the valve. AP 

is the pressure drop for a closing valve . For the valve under study, the maximum ty is
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ca. IxlO'^s which is orders of magnitude shorter than the minimum time constant for 

the pipeline.

The above also provides a justification to using a steady state equation such as 

equation 4.7.7 in an unsteady flow simulation. When the time constant for any 

element such as valve, compressor or pump is much smaller than that of the pipeline, 

steady state equations can always be used, even in highly unsteady flow situations 

(Wylie and Streeter, 1993, Wylie, 1997).

The valve discharge coefficient is a function of valve type and degree of opening. For 

the purposes of this thesis we use the following correlation fitted to the data given by 

Wylie^ for a ball valve:

Cd =Ao+AiG5 + A205^+A303^+A4ti5'^ (4.7.10)

where A  ̂ to A  ̂ are the curve fitting constants (see nomenclature) and w is the 

percentage area of valve opening.

The valve area open to flow is a function of the speed of closure of the valve. If the 

valve is moving across at Uy m/s then at time t, the valve will have travelled a 

distance of UyXt = x metres. The distance left to travel by the closing valve will be 

2R-X. Figure 4.7.4 illustrates the ball valve closure geometry.

From figure 4.7.4 it is apparent that the area available to flow is twice the area CBD. 

The area CBD is obtained by subtracting the area of the triangle ABD from the area 

of the sector subtended by the angle 0, ABCD. ABD is always an isosceles triangle 

where.

R c o s | = R - ^ ^ ^  (4,7.11)

or.
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'(2R-x)/2

C 2R-X

Figure 4.7.4: A schematic representation of ball valve closure geometry. The
unshaded area represents the valve flow area, A f  (equation 4.7.15). The 
shaded area is the area covered by the valve.
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0 = 2 COS-1
R -

^ 2 R -x ^

R

Area of segment ABCD is given by,

(4.7.12)

0  n
ABCD = — 7iR^ = 

360

2  cos ^

" 2 R - x “
2

R

360
TCR' (4.7,13)

The area of the triangle ABD is given by V2 x base x height, i.e. 

(2 R -x ) '
ABD = R - R ^ - R -

(2 R -x )
(4.7.14)

Therefore valve area, Af = 2(ABCD-ABD).

The valve flow area at any given time, t during closure is related to uj via

Af (t) = 2

r f  
R -

2  cos -1

2 R -x (t)

JtR'
360

R -
(2 R -x (t)) '

iR ^ -
r (2 R -x (t))^  

2  ,

(4.7.15)

where R is the pipeline radius and x, is the distance traversed by valve at time, t as 

indicated in figure 4.7.4.

The corresponding volumetric flowrate through the valve can be simply expressed in 

terms of the fluid velocity, u(t) as:
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Q(t) = u(t)Af(t) (4.7.16)

Substituting for Q(t) from equation 4.7.16 into equation 4.7.7,

u ( t )  =  C < i ( t ) J ^ ^  ( 4 . 7 . 1 7 )

When the valve is just about to shut, the discharge coefficient, Ca, is unity since no 

constriction of flow has taken place yet. The flow velocity at this moment can be 

expressed from the valve equation 4.7.7 as.

2 A P o
Uo =  J — -2 -  ( 4 . 7 . 1 8 )

V Po

A P o  is the valve fully open pressure loss over the pipe element that contains the valve 

( P i . i  - P i+ i  ; figure 4 . 7 . 3 )  and u o  and p o  are the respective fluid velocity and density 

through the fully open valve.

Taking ratios of flow rate over a given time interval during closure, the pressure loss 

across the closing valve is:

A P
A P ( t )  =  Pj.^.-Pj._ =  2J  UjPj=K4UjPj ( 4 . 7 . 1 9 )

Uo^dPo

where,

K 4 =  ^  ( 4 . 7 . 2 0 )

UoCdPo

The pressure drop across the valve can also be obtained from the compatibility 

equations by subtracting equation 4 . 7 . 5  from equation 4 . 7 . 4 , i.e.:

Pj'4- -  P j -  =  K i  - K 2 + P p  -  Pn -U j ( ( p a )p j .+  + (p a )n j -_ )  +  (^)pj._^Up

+ (pa)„j._Un
( 4 . 7 . 2 1 )

Similarly from equations 4.7.5 and 4.7.6:
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P|+ ~Pj'_ -  K3 - K 2  + P q - P n  -Uj(pa)nj._ +(pa)^.._Un

(4.7.22)

Equating equations 4.7.21 to 4.7.22 and re-arranging we have:

P i  = — 1=̂ (4.7.23)

where.

K 5 = Ki - K 3 +Pp -P q  +(^)p.,^Up +(^)^.,^Po (4.7.24)

Substituting for pj from equation 4.7.23 into equation 4.7.19,

P j'+  -  P j ’-  -  K 4 U j  p j  -  K 4 U j

K5 -(pa)pj.+ Uj

FL (4.7.25)

Equation 4.7.25 gives the pressure drop across the valve in terms of the fluid velocity 

through it. Therefore by equating it to equation 4.7.21, a cubic equation for the fluid 

velocity, uj is obtained:

u j + KgU j +  K7U j +  Kg — 0 (4.7.26)

where,

K< =
— Kf

(4.7.27)

(4.7.28)

193



Chapter 4 App. o f the MOC fo r FBR Simulation and Modelling ofESDV Response: Ideal Gas

Ko =
-  1 p ) .

Ki - K j  +Pp -P „  +(pa)p.,^Up ■—  (4.7.29)

Equation 4.7.26 results in three real roots for the fluid velocity, two of which are 

positive. The solution is taken as that which is less than the maximum choke velocity 

at the rupture plane.

The remaining dependent variables P j . ,  P j-+ , and pj can then be calculated from the 

three compatibility equations 4.7.4 to 4.7.6.
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4.8 CASE STUDY

The particular case examined here relates to a real North Sea pipeline of length and 

diameter 145km and 0.87m, respectively, containing methane. The initial flow 

velocity is lOm/s and the line pressure and temperature are 133 bar and 283 K 

respectively. Under such conditions the inventory is in the gas state and its properties 

may be approximated as ideal. A constant fanning friction factor, f  = 0.0018205 and 

ratio of specific heats, y = 1.33 are used. The pipeline is partially insulated with a 

heat transfer coefficient of 5 W/m^K.

For the sake of analysis, worst case scenarios are assumed in which rupture occurs 

during pumping at the high pressure end of the pipeline (at the riser section in the 

case of offshore platforms). Additionally, the ball valve is assumed to be set to 

trigger at a 1 0  bar drop below the normal operating pressure.

The following is a quantitative assessment of hypothetical situations following FBR 

involving the provision of both check valves and ball valves placed at various 

distances from the rupture plane.

4.8.1 Fluid Dynamics Data

Figure 4.8.1a shows fluid velocity and pressure profiles at various time intervals 

spanning the first 50 s following FBR in the absence of ESDVs. Some of the salient 

features of the data together with their implications are summarised in the following:

i) FBR produces an expansion wave which results in a significant change in fluid 

pressure and velocity to choke conditions in the immediate vicinity of the rupture 

plane. However, the conditions downstream of the expansion waves remain much 

the same as those prior to rupture, oblivious to the rapid changes occurring at the 

rupture end. This is manifested in the constant pressure and velocity lines shown in 

the figure.

ii) The sudden loss in pressure results in flow of gas in opposite directions, so that 

there is an outflow at both ends of the pipeline. The position of flow reversal

195



Chapter 4 App. o f the MOC for FBR Simulation and Modelling o f ESD V Response.Ideal Gas

(Ü

£
3
(0
t f >

0)

400140
pressure profiles

-  350
120

-  300

100
250

Curve A; Os 
Curve B; 10.4s 
Curve C; 20.7s 
Curve D; 31.1s 
Curve E; 41.5s

80
-  200

- 15060

-  100
40

velocity profiles -  50

20

-500
6 10 12 14 160 2 4 8

E

0
1
2  
3  
u.

Distance from rupture plane (km)

Figure 4.8.1a: Pressure and fluid velocity profiles following FBR.
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Figure 4.8.1b: Flow reversal location along the pipeline as a function of time 
following FBR.
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corresponds to the points at which the velocity profiles cross the abscissa ( positive 

values denote flow towards the rupture plane in figure 4.8.1a). For clarity, the flow 

reversal location is also mapped as a function of time and distance along the 

pipeline in figure 4.8.1b.

iii) At any given time, the flow reversal point lags the pressure peak.

iv) In the case of a check valve, its activation time, t& is directly dictated by its 

location relative to the position of the flow reversal. For example from figure 5a, 

the minimum activation time, t& for a valve positioned 4.6 km from the rupture 

plane is 10.4 s. However, for a ball valve located at the same location and set at 

1 0  bara below the working pressure, the corresponding activation time is 1 1 . 2  s. 

This difference in time, although small represents a considerable difference in the 

amount of inventory released.

4.8.2 Mass release data

Figure 4.8.2 shows the effect of ESDV proximity to the rupture plane on the total 

amount of inventory release prior to complete pipeline isolation. Curve A represents 

the data for a check valve whereas curve B represents the corresponding data for a 

ball valve. Negligible closure time is assumed for the former. The ball valve on the 

other hand is assumed to close at a rate of 2.54 cm/s. The released inventory has been 

calculated on the basis of fitting a polynomial to discharge rate versus time data and 

integrating the resulting equation over the valve response time, f . Added to this is the 

amount that remains in the isolated section of the pipeline following complete valve 

shut-down and de-pressurisation to the ambient pressure.

From the data it is clear that in terms of limiting the inventory loss, a check valve 

offers a far better degree of protection as compared to a ball valve when either is 

placed in close proximity to the rupture plane. This is of course on the basis of the 

assumption that the check valve closes instantaneously, upon the detection of flow 

reversal and as such it would not be exposed to a pressure surge. Ironically, 

experience in the nuclear industry (Lee et. al., 1993) has shown that relatively large 

values of flow reversal velocity are required to ensure complete valve closure.
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Figure 4.8.2: The variation of inventory loss as a function ofESDV proximity to the 
rupture plane: curve A; check valve; curve B; ball valve.
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At longer distances, the difference in performance between the two valves becomes 

insignificant.

It is noteworthy that the deceptively simple argument assuming that the total 

inventory released following valve shut-down is equal to that within the isolable 

section of the pipeline prior to FBR results in significant underestimates. This is 

particularly so in the case of ball valves placed in close proximity to the rupture 

plane. Figure 4.8.3 graphically supports this argument. Curves A and B show the 

results for a check and ball valve respectively.

The data show the variation of the % underestimate of inventory released as a 

fimction of valve proximity to the rupture plane.

4.8.3 Pressure/time history

4.8.3.1 The effect of time delay

Figure 4.8.4 shows various pressure transients created on the upstream side of a 

check valve positioned 300 m firom the rupture plane (just above the sea level in 

offshore platforms). Curve A represents the response for valve closing upon sensing 

flow reversal. Curves B, C and D on the other hand, represent the data for closure at

0.55,1.4, and 6.5 s after the passage of flow reversal. In practice such time delays 

may represent an intentional damped closure of valve in order to avoid damage due 

to valve slamming (Thorley, 1989; Koetzier et. al., 1986; Lee et. al., 1993).

The data relate to a short pipeline (10 km) as pressure fluctuations are more 

pronounced in such cases (see later).

The data in figure 4.8.4 indicate significant pressure oscillations, the amphtude of 

which directly increases with time delay. Indeed such fluctuations have often been 

observed in practice primarily in pipelines transporting water and steam in the 

nuclear industry (Lee et. al., 1993). They arise as a consequence of the reflection of 

the expansion waves (generated following FBR) fi'om the closed end of the pipeline. 

As the speed of the reflected wave is equal to the local speed of sound relative to the 

fluid velocity (left running characteristic) such oscillations are expected to be more 

fi-equent in pipelines containing liquids. Experimental data reported in the literature
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Figure 4.8.3: Percentage underestimate of total inventory loss based on the simple
isolation section approximation: curve A; check valve: curve B; ball valve.
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Figure 4.8.4: The effect of time delay on pressure-time history at the upstream side of 
a check valve placed 300m jfrom rupture plane.
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(Hsu and Graham, 1976; Kieffer, 1977; Picard and Bishnoi, 1987) are in support of 

this view.

Figure 4.8.5 shows the same data as in figure 4.8.4 but for different length pipelines. 

For the sake of illustration, the check valve is assumed to close 1.7s after the passage 

of flow reversal. The data indicate that short pipelines are particularly prone to 

transient pressure oscillations. For example, in the case of a 1 km pipeline, 

emergency isolation would result in a massive (40 bar) pressure pulse occurring 

during the first 4s following emergency shut-down. Such dynamic oscillations are 

clearly undesirable in practice as they can give rise to serious pipeline vibration 

problems. They are less pronounced in long pipelines because of fiictional losses 

which cause attenuation of the pressure waves.

An additional danger, particularly in the case of pipelines transporting condensible 

liquids is due to cavitation (Simpson and Bergant, 1996). In such cases, if  the drop in 

fluid pressure is sufficient to reach its vapour pressure, a vaporous cavity is produced 

which may suddenly collapse in response to a reflected pressure wave. This may 

cause the check valve to open momentarily thus resulting in further loss of inventory.

Figure 4.8.6, shows the variation of upstream valve pressure during closure, 

modelled using the appropriate theory described earlier. Curves A and B show the 

results for a check and ball valve respectively.

The closure rate for the ball valve is 5.3 cm/s which is approximately double the rate 

used in practice for such diameter pipelines. No fluctuations in pressure can be 

observed despite such a rapid closure rate. The data for a check valve are also 

included for comparison.

When choosing the time step. At for the ball valve simulation, it is important to bear 

in mind that the time step for the simulation always has to be appreciably less than 

the valve closure time if  the valve dynamics is of primary interest. The valve closure 

time in our case is 16.5s, and the time step for the simulation is 2.3x10'^s.

Figure 4.8.7 shows the effect of faster ball valve closure times on the upstream 

pressure time profile. Curve A shows the closure rate at 5.27 cm/s whereas curves B
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Figure 4.8.5: The effect of pipeline length on the upstream pressure-time history of a 
check valve, placed 300m from the rupture plane. The valve is assumed to 
close 1.35 seconds after the passage of flow reversal.
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Figure 4.8.6: Upstream valve pressure-time histories: curve A; check valve: 
curve B - ball valve.
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and C show the results for closure at 8.7 and 10 cm/s respectively. As is to be 

expected the pressure build up is greater, the faster the valve shuts.

4.S.3.2 Pressure surge data

Figure 4.8.8 shows the variation of pressure surge developed at the upstream side of 

the check valve as a function of the delay in its closure relative to the passage of flow 

reversal. Each pressure surge has been calculated on the basis of equation 4.7.1 and 

corresponds to the resulting head caused by bringing of the fluid impinging on the 

upstream side of the valve to rest.

As expected zero pressure surge is recorded when the valve closes instantaneously, 

upon the detection of flow reversal. However, only a small delay (ca. 1.1 s) in valve 

closure results in a significant build up in pressure head reaching a peak of 49 bar 

(corresponding to ca. 37% increase in line pressure). Interestingly, further increase in 

time delay actually results in a reduction in pressure head. This is primarily because 

the drop in the line pressure due to inventory loss has a more marked effect on 

reducing the pressure head that is developed during the latter stages of discharge.
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Figure 4.8.7: Upstream ball valve pressure-time histories for different valve closure 
rates
Curve A: Closure rate = 5.27cm/s 
Curve B: Closure rate = 8.7 cm/s 
Curve C: Closure rate =10 cm/s
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Figure 4.8.8: Variation of surge pressure at the upstream side of a check valve with 
closure time delay (relative to the passage of flow reversal). The valve is 
positioned 300 m from the rupture plane.
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4.9 CONCLUSIONS

Some of the important conclusions of our findings are:

i. The modification to the classical ST method of characteristics proposed in 

this chapter gives the same accuracy of results as the classical ST method but 

for a given run, CPU time for the former is less than a tenth of the latter. This 

is because in the modified case, no iteration is needed to calculate the 

locations of the initial points. The validity of this approach is tested by 

comparison of this model’s results (CNGS) with the classical ST approach for 

the Piper Alpha FBR scenario. Good agreement is also obtained with the 

Wave Tracing Method, based on a characteristic grid type solution, of Chen 

et. al. (1993).

ii. The use of a nested grid is essential if underestimation of the release rate is 

to be avoided and if accuracy in the fast transient region near the rupture 

plane is not to be compromised.

iii.For a given pipeline, although the number of elements in a nested grid 

scheme is greater than that for a simple grid scheme, the CPU time for the 

former is faster due to accelerated convergence near the rupture plane.

iv. In the case of permanent gases, the use of curved characteristics makes little 

difference to accuracy as compared to the first order linear solution. However 

the CPU time is significantly longer.

V. The inclusion of heat transfer effects is necessary if the late time regime is to 

be modelled accurately. The effects of a fire surrounding a pipeline can only 

be modelled if the model includes heat transfer from the surroundings.

vi. The dynamic response of both check valves and ball valves following FBR 

depends primarily on their proximity to the rupture plane and the flow 

reversal propagation speed. As the latter is directly related to the velocity of 

sound in the fluid medium relative to the escaping fluid.
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a) pipelines containing gases are expected to be more susceptible to 

delayed emergency shut-down compared to those containing 

liquids. This however should be balanced against the higher 

pressure surges expected in liquid pipelines.

b) shut-down delay is expected to be longer when rupture occurs 

during ‘normal’ flow as compared to that occurring during ‘shut- 

in’. This is because in the former the expansion wave propagation 

velocity, which directly affects the valve activation time, is 

decelerated due to the normal flow of gas in the steady state 

direction.

vii.In the case of a check valve, the amphtude and frequency of upstream 

pressure fluctuations following emergency shut-down are directly related to,

a) gas flow reversal velocity at the time of valve closure

b) valve proximity to the rupture plane

c) pipeline length

d) fluid compressibility

Pipelines incorporating ball valves are generally not susceptible to pressure 

surges or oscillations.

viii.No pressure surge is expected in the case of a check valve closing 

instantaneously upon sensing flow reversal. However, even in the case of a 

very short delay (ca 2 s), a relatively large build-up in the pressure surge to a 

maximum value can be expected. It then diminishes in magnitude for larger 

closure delays.

ix. In terms of limiting the amount of released inventory following emergency 

shut-down, a check valve offers a far better degree of performance as 

compared to a ball valve when either is placed at close proximity of the 

rupture plane. At longer distances however, the difference in performance 

becomes insignificant.
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X. A deceptively simple argument that the total amount of inventory released 

following FBR is equal to that present in the isolable section of the pipeline 

prior to ESD may give rise to gross underestimates particularly in the case of 

ball valves placed in close proximity of the rupture plane.

210



Chapter 5:Development & Validation o f  CNGS-HEM & its Application in Predicting ESDV/SSIV
Response

CHAPTER 5: DEVELOPMENT AND VALH)ATION OF THE 

CNGS-HEM MODEL AND ITS APPLICATION 

IN PREDICTING ESDV OR SSIV RESPONSE

5.1 INTRODUCTION

In this chapter, the CNGS coupled with the Homogeneous Equilibrium Model, 

(CNGS- HEM) described in chapter 2 is used to derive the relevant characteristic and 

compatibility equations for simulating FBR of pipelines containing two-phase multi- 

component hydrocarbon mixtures.

In solving these equations, particular areas of attention, primarily due to the highly 

non-linear variation of the physical properties of such fluids are:

use of a flash calculation procedure for accurate prediction of fluid properties such 

as p, a and P at each node, and at each interpolation point during the numerical 

discretisation

^  accurate prediction of the ‘wall’ friction factor as its is shown that this parameter 

has an important effect on fluid dynamics

the calculation for the initial conditions (t=0 ) at the broken end

^  direct use o f the method of characteristics to calculate fluid conditions at the 

boundaries between the coarse and fine grids. Linear interpolation is not deemed to 

be sufficiently accurate for this purpose

use of curved characteristics near the rupture plane

use of smaller than maximum permissible At, according to the CFL condition, for 

accurate simulation of the choking condition, thus avoiding numerical instability.

The above is followed by optimisation and validation of the model by comparison 

with various field data. The validated model is then used to predict the dynamic 

response of ESDV or SSIV’s following FBR of a pipeline containing a condensable 

gas mixture and comparisons are made in terms of the general trends observed in 

chapter 4 for pipelines containing permanent gases.
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5.2 CHARACTERISTIC AND COMPATIBILITY EQUATIONS

The conservation equations for a real fluid as derived in Chapter 2 are as follows,

P t + p u ^ + u p x  = 0

pUf+puUx+?x = P (5.2.1)
■5/ \ Qh“ uB

?t + u ? x - a  (pt+upx) = (p p —" = V

where qh is the equation for heat transfer and is discussed in section 5.4, p is the 

friction force term and is discussed in section 5.3.

The expressions for the speed of sound, a, and the thermodynamic parameter, cp for 

real multi-component multi-phase fluids have been derived in Chapter 2, and can be 

written as;

Single phase mixtures,

a^ = 7 ^  (5.2.2)
kp

cp = ̂ ^  (5.2.3)

Two-phase mixtures,

(5.2.4)a : =

(p = p^ (5.2.5)

The conservation equations for a real fluid are very similar in form to those for an 

ideal gas. The derivation procedure for the characteristic and compatibility equations 

are exactly the same as for an ideal gas and will therefore not be dealt with in this 

chapter (see Chapter 4, section 4.2 for details).

The characteristic equations for propagation of the disturbance caused by FBR are 

given by the same equations as derived in chapter 4; i.e. equation 4.2.14 for the
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pathline characteristic and equations 4.2.15 for the left running and right running 

Mach line characteristics.

The final form of the compatibility equations are also given in Chapter 4; equation 

4.2.28.

Discretisation of the above equations is based on the modifications to the classical 

method of specified time intervals (ST) (see section 4.4.1, chapter 4, for details), but 

bulk mixture parameters such as density and entropy are calculated by performing a 

pressure temperature flash. The coupling of the flow equations together with the 

thermodynamic and phase equilibrium equations form the basis of the CNGS-HEM 

model. Before the calculation procedure for this model can be presented, the 

important hydrodynamic constitutive relations relevant to a homogenous flow model, 

namely wall friction and wall heat transfer need to be addressed. All hydrodynamic 

constitutive relations pertaining to momentum exchange between two phases are 

non-existent.
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5.3 FRICTIONAL FORCE EFFECTS

In all cases of depressurisation of a pipeline containing non-volatile liquid, volatile 

liquid or gas, the main contribution to the pressure drop in the pipeline can be 

attributed to frictional effects at the wall (Richardson and Savilie, 1991). The longer 

the pipeline the greater the significance of frictional pressure drop on the transient 

flow profiles. Therefore an accurate representation of the friction forces acting on the 

fluid in the pipeline is of primary importance.

For gas flow in short and medium length pipelines, frictional effects are often small 

and localised, hence they have normally been considered to be relatively 

unimportant. However, for long pipelines, such effects can be important.

Frictional effects are, cumulative and become important for long term transients. In 

long pipes, they can give rise to significant pressure drop and ‘line packing’ under 

transient conditions. Modelling of frictional effects may be done either by 

numerically calculating the friction factor in equation (2.4.16) using known field data 

or by using experimental correlations. The shear stress at the wall tends to be 

proportional to the pressure gradient, while the average velocity may be out of phase 

with the pressure gradient because of the inertia of the main flow.

Assuming that the minor losses are negligible, the frictional force can be expressed 

by the empirical relation

P = - 2 -^ p u |u | (5.3.1)

As the transients progress, and the high frequency content of the pressure waves dies 

out, a point is reached where the explicit procedure is no longer suitable. An implicit 

procedure that allows large time-steps is more appropriate.

Despite the importance of pressure drop in these transient flow situations, and the 

consequent extensive research into this topic, there is still no satisfactory method for 

calculating frictional pressure drop, especially for two-phase flows. The most popular 

methods are often cumbersome, heavily dependent on empirically determined 

coefficients, and have considerable uncertainty (Thorley and Tiley, 1987). Simpler
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forms or firmer theoretical bases for predictive methods can only be achieved with a 

narrowing of the ranges of applicability.

At the fluid wall interface, the presence of the viscous drag force can be modelled as 

a linear combination of unsteady and steady wall drag or friction. The significance of 

each of these effects on the fluid flow is now discussed.

5.3.1 Unsteady Wall Friction

Unsteady wall friction has been known to be important in transient one-dimensional 

liquid flow, particularly, in affecting pressure propagation in a pipe. It is well known 

that quasi-steady state wall friction alone under-predicts the attenuation of pressure 

wave propagation in a pipe (Holmboe and Rouleau, 1967). Zielke (1968) has shown 

that in transient laminar flow, the shear stress at the pipe wall can be written as a 

combination of steady state drag and a transient component.

x „ , ^  + - ^ f w ( t - f ) ^ ( t O d f  (5.3.2)
P ^ JopD pD I 3t

where,

4p.t

W ( t ) = W ( T l )

w (n )=

0.282095ti'P-^ -1.25 + 1.057855T|°^ + 0.9375!) +

0.39671) -0.351563!)^ for 1)<  0.02;

.-26.3744!) , .-70.8493!) , .-135.0198!) , .-218.9216!)
® ® ® ® (5.3.3)

-h e"322-5544Ti ti>0.02.
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In the above correlation, the transient component is a time integral and its evaluation 

requires the storage of all previous flow velocity gradient. This requires enormous 

computer capacity and therefore the calculation process is rather cumbersome.

Hirose (1971) extended the correlation of Zielke into turbulent flow. He developed 

an empirical weighting function to adapt the method characteristics which is very 

simple compared to the analytical expression for laminar flow based on Zielke’s 

approach.

This approach was further developed by Trikha (1975) who proposed the following 

approximation for the time integral,

W ( t - t ') - :^ (t ')d t  =  W j(t  + A t )  + W 2 ( t  +  At) + W 3 ( t  + A t )  (5.3.4)
0  ^

where,

Wi (t + At) = w , + A t)-u(t)]

nj = 26.4, n 2  = 2 0 0 , ng =8000 

mj = 1, m 2  = 8 .1, m 3  = 40

(5.3.5)

Equation 5.3.5 enables the calculation of the time integral explicitly in terms of the 

previous time-step velocity only and is based on the method of characteristics, so it is 

well suited for use in conjunction with the CNGS-HEM model.

Both Zielke and Trikha’s methods give good predictions for the pressure wave 

attenuation data of Holmboe and Rouleau (1967). These authors concluded in their 

study that for viscous liquids, the frequency dependent shear term is valid and can 

accurately predict the distortion and decay of transients in the laminar flow regime. 

They also showed however that for low viscosity liquids such as water a frictionless 

solution is just as valid, especially in cases of water hammer. The drawback as far as 

the use of these correlations for highly turbulent flow as experienced in a pipeline
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following FBR, is that they are only applicable in the laminar flow regime. In 

addition, pipe roughness is not taken into account.

Chen (1993) used Trikha's approximation to Zielke's correlation, equation 5.3.3 to 

assess the significance of unsteady frictional effects in modelling Edward's and 

O'Brien's (1970) blowdown experiments of sub-cooled water lines. It is shown that 

the unsteady wall friction reaches a maximum of 5% of the steady wall friction 

immediately following rupture, but then decreases rapidly to less than 0 .0 1 % of the 

steady wall friction after 0.001s. Based on this study, Chen concludes that unsteady 

wall friction is negligible in high pressure blowdown problems.

The effect of transient wall friction in turbulent liquid flow was first studied by 

Wood and Funk (1970). They showed that unsteady wall friction is a factor of 2.5 

larger than steady wall friction at a Reynolds number of 10000, but it diminishes 

quickly to only 40% of the steady wall friction at Reynolds number of 35000. At 

higher Reynolds numbers, the effect can be expected to be even smaller, but no 

further data is presented.

Kagawa et. al. (1983) developed a model which requires less computer storage and 

computation than Zielke's exact model, yet is more accurate than Trikha's 

approximation model. Kagawa's weighting function is derived by approximating 

Zielke's function with a series of first-order lag elements.

By comparing predictions with experimental data, Budny et. al. (1990) concluded 

that frequency-dependent friction factor for laminar flow based o Zielke's equation 

can be extended into the transition zone and beyond, at least to a Reynolds number of 

1 1 , 0 0 0  and is capable of predicting the decay over many cycles.

Yigang and Jing-Chao (1990) developed a new approach for simulating frequency- 

dependent terms both in the frequency and time domain by using the method of non­

linear square integral optimum. Because this new method is optimised over a large 

frequency range and requires fewer terms of the first order lag elements than 

Kagawa's model, it is computationally efficient and accurate in both frequency and 

time simulations. The model is appropriate for analysing the frequency and transient 

responses, pressure surges, and pressure attenuation in hydraulic pipelines. In the
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Trikha and Kagawa models, the frequency dependent friction equation in the time 

domain includes an unknown current flow rate. Therefore an interactive algorithm is 

needed to calculate the frequency-dependent friction in the MOC, which makes the 

simulation complex and time consuming. The Yigang-Jing-Chao method does not 

need any iterations and requires only half of the computation time of Trikha and 

Kagawa models.

Eichinger and Lein (1992) proposed and investigated two new methods of presenting 

the unsteady friction term, one method being based on wall shear stress and the other 

on friction power.

The formula for unsteady friction term based on wall shear stress is solely dependent 

on the value of the gradient of velocity in the near wall region. In this case, 

calculation of the velocity profile near the wall is necessary. This is particularly true 

in turbulent flow because as the Reynolds number increases, so does the gradient 

near the wall.

On the other hand the formula for the friction term based on the friction power is 

based on consideration of energy of the incompressible fluid. The difference between 

the work of the internal and external forces, and of the kinetic energy of a volume 

element of an incompressible fluid is the friction dissipation per unit of time. 

Preliminary investigations by Eichinger and Lein (1992) revealed that friction factor 

based on wall shear stress gave considerably better results.

Vardy et. al. (1993) show that expressions similar to that developed by Zielke for 

transient laminar friction in pipes, is justified both theoretically and experimentally 

for transient turbulent fiiction. They develop the idea of a family of Curves, one for 

each value of the product of fiiction factor, pipe diameter and Reynolds number 

(fDRe). The Zielke expression is shown to be an asymptotic limit of the family of 

weighting function Curves. However the correlations are only valid for smooth pipes.

From the review carried out in this study, it seems that there is still some uncertainty 

in the accurate prediction of unsteady fiiction factor in rough pipes where highly 

turbulent flows prevail. Moreover from the few studies performed to date (Wood and 

Funk, 1970; Chen, 1993) the effect of the unsteady component in wall shear stress
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calculations seems to diminish in magnitude the greater in turbulence the flow 

becomes.

In the absence of any theoretically and experimentally justified transient turbulent 

fiiction calculation for rough pipes, it has been decided to ignore this component in 

the model proposed in this study. The effect o f this approximation will be evaluated 

by comparing the results of the simulation with field data (see section 5.9).

The advantage of using a method of characteristics solution for FBR as indeed for 

any transient flow scenario is that any unsteady state fiiction factor correlation such 

as that given fiom equations 5.3.4-5.3.5 can easily be incorporated, (see for example 

Zielke, 1968;Trikha, 1975; Brown, 1969; Eichinger & Lein, 1992 ; Vardy et. al., 

1995, 1996).

5.2.2 Steady Flow Friction Factor

For the calculation of unsteady flow in pipes, the steady state fiiction term is usually 

used, and can produce acceptable results although it is well known that this term does 

not describe the real physical phenomenon accurately. Perhaps it is reasonable to 

expect this to be valid for small perturbations around a steady flow condition and 

some experimental evidence exists to support this. However this would not be 

expected to be true in the case of large and rapid disturbances.

Flatt (1985) and Van Deen and Reintsema (1983) argue that the fiiction factor is 

weakly dependent on Reynolds number, and may be considered as constant at high 

Re (> 10^) typically encountered during FBR.

Thorley and Tiley (1987) use a constant fiiction term in the modelling of unsteady 

transient flow of compressible fluids in relatively short pipelines with a reasonable 

degree of accuracy.

The effect of utilising either a steady flow fiiction factor or a flow dependent fiiction 

factor on modelling FBR particularly for a long pipeline containing a condensable 

gas is investigated by comparison with experimental data in section 5.8.1.
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5.2.3 Flow Dependent Friction Factor

Friction factor is dependent on the type of flow which may vary from point to point in 

a pipeline, and in addition on pipe roughness. The traditional way of estimating the 

friction factor for a Newtonian fluid flowing through a pipe is based on the well 

known Moody Friction Chart. This however is unsuitable for computer simulations 

and therefore explicit correlations are sought.

For fully developed turbulence, the ‘rough pipe law’ (Perry and Green, 1997) which 

assumes that the friction factor is solely dependent on the pipe roughness and size is 

used.:

- 7 =  = 2Ai logf—jBi (5.3.6)

where f^ is the fanning friction factor, and K \ and are constants.

For partially developed turbulence either the smooth pipe law (Perry and Green, 

1997) or the Blasius form of the smooth pipe law are used. Here the friction factor is 

assumed to be only dependent on the fluid properties and pipe size. The smooth pipe 

law is traditionally expressed as,

- ^  = 2A2log{2ReVf7)B2 (5.3.7)
V  w

The Blasius form of the smooth pipe law is given as,

fw = (5.3.8)

where Aj, B2, A3 and B3 are all constants.

The above equation is applicable only over a very limited range of Re. For the 

transition zone between partially and fully developed turbulence a combination of 

both the rough and smooth pipe laws is used. The Colebrook equation (Perry and 

Green, 1997) has been universally adopted for this regime.

The key factor in applying a flow-dependent friction factor is the determination of 

which flow regime is prevalent at a particular point and time. Typical high-pressure
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gas pipeline flows are characterised by their high Reynolds numbers. The key 

decision to be made for such flows therefore, is whether it can be assumed that fully 

developed turbulence has been achieved, so that the rough pipe law which is 

independent of Reynolds number and hence flow may be employed. For partially 

developed turbulent and transition zone flow however, the friction factor would vary 

with changes in Reynolds number.

Many expressions exist for calculating friction factor with respect to the transition 

zone from partially to fully developed turbulent flow. The most accurate to date, 

based on agreement with experimental data, is the Colebrook equation (Perry and 

Green, 1997). It presents results within 5% of experimental data, though its major 

disadvantage is that the solution for the friction factor requires iteration, i.e. it is non­

explicit and hence not practical for use in a computer simulation.

An extensive review of nineteen explicit friction factor equations was presented by 

Zigrang and Sylvester (1985). They classified the equations according to precision, 

into three categories, namely, simple, intermediate and high precision equations. The 

equations were compared for precision against the Colebrook equation, in the range 

2500 < Re < 10  ̂ and 4x10'^ < s < 0.005. All the equations in the intermediate and 

high precision categories were found to give rise to relative errors well within 1 % of 

the Colebrook equation (within 6 % of experimental data).

In this study, the Moody (Massey, 1983) approximation to the Colebrook equation is 

used.

f^ =0.001375 1 +
E 10*^  

20000— +
\  D Re y

(5.3.9)

which is valid for Re > 2000.

For Re < 2000, the following well established laminar flow correlation is employed, 

f „ = - ^  (5.3.10)

where the Reynolds number is given by.
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Re =
puD

(5.3.11)

where p is the fluid viscosity.

In their review, Zigrang and Sylvester (1985) categories the Moody (Massey, 1983) 

approximation as an intermediate precision formulation. It is chosen instead of a high 

precision equation because its relative simphcity means that it involves less CPU 

time, but difference in accuracy is only a maximum of 1 %.

Other friction factor expressions that have been used for transient fluid flow analysis 

are those of Chen (1979) and Churchill (1977). The convenience of these correlations 

are that they cover the whole range of Reynolds numbers and pipe roughness, and 

produce results of almost the same accuracy as those produced by the Colebrooke 

equation. The Chen equation was used by Bisgaard et. al. (1987) in modelling the 

transients as a result of rupture of high pressure gas pipeline. It has the advantage of 

being simpler than the Churchill equation, yet producing the same accuracy of results 

(Chen, 1979).

In this study the Chen (1979) equation for friction factor is compared with 

predictions obtained using the Moody approximation, equation 5.3.9. The Chen 

correlation is.

1
-4 .0  log

5.0452
3.7065D Re

•log
1 /  \  1.1098

2.8257
5.8506

VD Re0.8981 (5.3.12)

5.3.4 Friction factor for two-phase homogeneous flow

The friction resulting from the viscous boundary at the wall is similar to the single 

phase one. It is usually represented by the single phase wall friction multiplied by a 

two-phase multiplier (Friedel, 1979) or with single phase variables replaced by some 

two-phase mixture variables (Egely and Saha, 1984). A comparative study of two- 

phase frictional pressure drops is given by Idsinga et. al. (1979).
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For a two-phase mixture, the wall friction is assumed to arise from the liquid phase 

only, so that f^g, the gas friction part is zero.

When the two-phase multiplier is used, the wall friction pressure drop is written in 

terms of the liquid friction factor.

(5.3.11)

where fwi is the liquid friction factor and (|)iô  is the two-phase multiplier.

The liquid friction factor can be calculated from any single phase friction factor 

equation such as equation 5.3.9 or equation 5.3.10.

is given by the following correlation of Friedel (1979),

2  324FH
'*’10 -  Pj.0.045^g0.035

0.224

H =
r \ 

Pi
0.91

vPi j

0.19
1 -

1^1

0.7

Fr =
gl^Pm

(5.3.12)

We =
G^D
ap m

where % is the fluid quality, a  is the surface tension, G is the mass flowrate and Fr 

and We are the Froude and Weber numbers respectively. The subscripts g, 1 and m 

refer to gas, liquid and mixture properties respectively.
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The other alternative to calculating two-phase momentum loss due to friction is 

based on replacing single phase properties by mixture properties. It is only suitable 

for homogeneous flows where both phases move at the same velocity so that,

P = -2 -^ P m u H  (5-3.13)

where is the two-phase mixture friction factor and can be determined either by 

equation 5.3.9 or equation 5.3.10 where the following substitutions are made for flow 

parameters,

p_uD
Re = R e ^ = - ^ —  (5.3.14)

M'm

The mixture density can be calculated from equation 2.5.29, see chapter 2.

The mixture viscosity is given by,

1 % (5.3.15)
M-m M-g M-i

The gas and liquid viscosities are calculated according to the Ely and Hanley scheme 

for non-polar gaseous mixtures, and the Dymond and Assael scheme for liquid 

mixtures (Assael et. al., 1996).

The merits of either method with regard to accuracy has been tested by Chen (1993) 

with relation to the depressurisation of Edwards and O’Briens (1970) blowdown 

experiments of subcooled water lines. He shows that both methods do not vary 

significantly in their blowdown predictions.

The advantage of the method whereby the single phase properties are replaced by 

two-phase mixture properties is that no additional calculation needs to be performed 

for surface tension. In this study, this method is therefore preferred to the Friedel 

method.
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5 . 4  W A L L  H E A T  T R A N S F E R

It was shown in Chapter 4 that the inclusion of a heat transfer term in the 

conservation equations is important when simulating depressurisation from long 

pipelines over a long duration. Heat transfer occurs by means of forced convection 

through the turbulent boundary layer of the gas in the pipe, conduction through the 

pipe wall, by natural convection outside the pipe, and radiation to the surroundings.

In terms of the effect on fluid dynamics during FBR, heat transfer is expected to have 

a much smaller impact than frictional forces. For this reason, as an approximation, the 

external heat transfer at the wall is modelled in the same way as for a permanent gas,

q h = ^ U h ( T „ - T )  ( 5 . 4 . 1 )

The above equation assumes that the pipe wall thickness is small and that the pipe 

wall is at the same temperature as the fluid.

The true heat transfer coefficient varies with the flow conditions, e.g. flashing or 

condensing flow, and necessitates different correlations for different conditions. A 

constant heat transfer coefficient of 5 W/m^K and 100 W/m^K for lagged and non­

lagged pipes respectively are used.
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5.5 THE INITIAL CONDITION

5.5.1 Steady State Flow

In Chapter 4 the equations for the steady state isothermal flow for an ideal gas were 

derived. The corresponding equations for a real fluid are presented here. The energy 

equation is redundant since temperature remains constant. The steady state 

conservation equations of mass and momentum are exactly the same as for the ideal 

gas, see equations 4.5.1 and 4.5.2 in section 4.5. However the equation of state for a 

real fluid will include a compressibility factor, so by differentiating the equation of 

state with respect to p, we get.

dp  =
dP

ZRT
(5.5.1)

Performing the same algebraic manipulation as in section 4.5, the following 

equations for a real fluid are used to describe isothermal steady state flow:

Pressure drop

A P =  -p P

1 -
u

ZRT

Ax

(5.5.2)

P i = P i - l  +  r   ̂ Ax
1-

u
ZRT

i- 1

Change in velocity as a result of this pressure drop.
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U: =  U i- 1 1-

(5.53)
A

AP
(pZRT)._,

The density and speed of sound of the fluid at the required grid point can be obtained 

by performing a pressure-temperature flash based on the isothermal temperature, and 

pressure as calculated from equation 5.5.2.

5.5.2 Rupture Plane Calculation at t=0

Two separate procedures are used for determining the rupture plane boundary 

condition at t= 0  depending on the type of fluid present in the pipeline prior to 

rupture.

For a gas pipeline, the assumption of isentropic expansion as used in Chapter 4 is 

utilised. In such a case, there is isentropic expansion flow over the first Ax mesh, 

with the outflow conditions calculated according to Riemann variables.

Taking the Riemann invariant along the positive characteristic, 1+,

U + J a ( p ) ^  = u + J -W2 = u +  I a(p)— = u +  I (5.5.4)

When FBR occurs, a decompression process at the initial pressure Pin is initiated. If 

the new pressure after a decompression of AP is P, then the local fluid velocity at that 

point in the decompression process is given by.

p[u = — I —  (5.5.5)
pa
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The flow properties u, p and a are those of the bulk fluid. An analytical solution to

the above is not possible for a real gas, unlike an ideal gas. If the pipeline fluid is a

non-ideal multi-component dense gas mixture which may form a liquid phase during 

decompression, then the thermodynamic relationship between p, a and P becomes 

highly non-linear (see Chapter 2 for thermodynamic relationships). Consequently, 

equation 5.5.5 can only be solved numerically as done by Groves et. al. (1978) and 

Picard and Bishnoi (1988) in the following manner.

Expressing equation 5.4.5 in finite difference form.

Ur+l = Ur -
Pr+1- P r

(pa)r
(5.5.6)

where r shows the current level of decompression and r+ 1  denotes the new level 

resulting from an incremental decompression step.

In this study the new pressure is taken as,

Pr+I = 0.95P, (5.5.7)

The calculation procedure for the boundary condition at the rupture plane at t=0 is as 

follows:

Starting the decompression process at the initial pressure. Pin and temperature, T^ 

calculate the bulk density and speed of sound by performing an isothermal flash, 

making a note of the initial entropy (kept constant throughout the decompression 

process)

^  calculate the new fluid pressure and velocity using equations 5.5.7 and 5.5.6 

respectively. Perform an isentropic pressure-entropy flash based on the initial 

entropy and the new pressure to obtain new density and speed of sound. Compare 

the new speed of sound, ar+i, and velocity Ur+i . If velocity is less than speed of 

sound then repeat calculation until Ur+i=ar+i, when the fluid conditions at the 

mpture plane are known based on an isentropic decompression.

Thus making the above assumption of isentropic flow over the first Ax, the initial 

conditions for a multi-component non-ideal gas mixture are calculated.
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In the case of FBR of a pipeline containing a volatile liquid such as an LPG mixture 

(used for validation purposes in this thesis), the initial pressure of the liquid falls 

almost immediately to the saturation pressure which for this fluid is greater than 

atmospheric pressure. Hence gas evolution starts immediately and the decompression 

process during the transition from compressed liquid to saturated liquid can be 

assumed to be isothermal.
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5.6 CALCULATION PROCEDURE FOR CNGS-HEM

5.6.1 Interior point calculation

In this section the calculation procedure for CNGS-HEM at t >0 for an interior point 

in the discretisation grid is given. The grid structure for numerical discretisation of 

the compatibility equations is ST (see section 4.4.1), and the CNGS with the same 

specifications as outlined in chapter 4, section 4.6.1 is used. The solution procedure 

for the first order method is first outlined followed by that for the second order 

curved characteristics.

In the ST grid, solution points are forced to coincide with a specific grid pattern. The 

Mach and pathlines are extended backwards to intersect the previous time level grid 

line. The location of the points of intersection, p and n, for the positive and negative 

Mach lines respectively, are located by solving a set of simultaneous equations for Up, 

ap and Un, an using derivations based on linear interpolation and characteristic 

equations (see section 4.4.1). The location of the pathline intersection is calculated 

just on the basis of linear interpolation and characteristic equation for Uq.

Once the positions of points p, o, and n are determined, the values of P and T are 

calculated at each location by linear interpolation. An isothermal pressure- 

temperature flash is then performed at each location to ascertain the bulk density and 

(p at all points p, o and n, and for the point o, also the value of the speed of sound. 

The latter can be calculated in such a manner since there is no prior requirement to 

calculate the location of point, o unlike points, p and n where linear interpolation is 

used to estimate the speed of sound. The term v|/ is also calculated at each location 

based on (p determined from a flash calculation.

Once all the flow conditions are known at points p, o and n, then the compatibility 

equations can be solved for density, pressure and velocity as shown in section 4.4.1. 

To calculate the temperature at the solution point, an iterative numerical scheme to 

solve the following equation is employed.
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P j-p (T |,P j)  = 0 (5.6.1)

where P, p and T are pressure, density and temperature respectively. The subscript, j 

denotes conditions at the solution point, and the superscript, r relates to the unknown 

temperature.

Solution of equation 5.6.1 becomes a root finding problem where a temperature is 

sought to match the density obtained from the compatibility equations to that 

calculated from an isothermal pressure-temperature flash.

This is achieved using the method of Brent (Brent, 1973, Press et. al, 1994). It 

combines root bracketing, bisection and inverse quadratic interpolation to converge 

from the neighbourhood of a zero crossing. The bracketing of the root is performed 

by a routine which, given a function such as equation 5.5.1 and an initial guessed 

range for the root, expands the range geometrically until a root is bracketed by the 

returned values (see the ZBRAC routine in Press et. al. 1994). The above combines 

the robustness of bisection with the speed of a higher-order method when 

appropriate. Based on our experience of using this technique for FBR simulation, it 

produces rapid convergence.

Once the temperature is obtained at the solution point, the speed of sound and the 

parameter cp is found by a flash calculation.

The above steps are repeated until convergence is achieved for the dependent 

variables, P, p and u.

For the second order method, the same procedure is adopted, except for quadratic 

interpolation equations replacing linear equations. A block diagram indicating the 

various steps involved in shown in figure 5.6.1.

5.6.2 Rupture Plane Calculation at t>0

The calculation at the ruptured end for a two-phase mixture will be slightly different 

than that for a permanent gas as detailed in Chapter 4. Since no algebraic relationship 

exists for the speed of sound of a two phase mixture, simultaneous solution of the 

positive and pathline compatibility equations is not possible (see section 4.4.1.3).
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The negative or left running characteristic at the rupture plane will be vertical (the 

gradient, l/(u-a) is infinity), and hence perpendicular to the x-axis as shown in figure

5.6.2 below.

Ax

t

Ghost CellAt/2

Rupture PlaneAt/2

Pi-1 i+ l  XO 1

Figure 5.6.2: Three characteristic curves at the rupture plane

Since the negative Mach line is vertical, the conditions at the previous time level, X; 

are already known so that the negative compatibility equation becomes.
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Pj -  Pi -  ^ ((p a )i + (pa)j)(uj -  Ui)

(5.6.2)

= ̂ ( ( v  -  ap); + (v  -  ap) .)(tj -  ti)

This compatibility equation can be solved together with the pathline and positive 

compatibility equations given by equations 4.3.9 and 4.3.11 respectively (see section 

4.3). The calculation of bulk density and speed of sound is as discussed in section 

5.6.1.

5.6.3 Calculation at the boundary between grids of different size

The introduction of a nested grid system in chapter 4 created boundaries between 

different size grids. At the junctions, the flow variables at the finer grids are linearly 

interpolated in time from the values on the coarse grids.

In the case of highly transient two-phase flows, however, a different technique based 

on direct solution is proposed.

The calculation procedure for the predictor step only is presented here. The corrector 

step will follow the same procedure as outlined in chapter 4.

The calculation at solution point j+4 in figure 5.6.3 is given as an example.

For the predictor step,

—̂  = —  = ------ — Xg = X| - 4AtiUo (5.6.3)
d^x Uo Xi-Xo

234



Chapter 5 .Development & Validation o f  CNGS-HEM & its Application in Predicting ESDV Response

The characteristic grid at the boundary is illustrated in figure 5.6.3 below:

j+4

5At,

i n i+l i+5i- 1 P o

Ax. Ax

Figure 5.6.3 Boundary between fine and coarse mesh

4At
(5.6.4)

(5.6.5)=  X:
-  X
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Following the same mathematical manipulation as that performed in section 4.4.1, 

the simultaneous equations obtained for the solution of points Up and ap are,

u. l + 4Ati
V Ax2 y

(5.6.6)

l + ̂ 4 - ^ 4 A t i  
V Ax2 y

(5.6.7)

Similarly a 2x2 system of equations can be set up for u„ and â  based on the same 

mathematical manipulation to yield.

u.
Axi

Atja^ = Uj (5.6.8)

Ax Ax
AtiUn =Ui

The solution for u  ̂depends on the direction of fluid flow. 

If A.Q > 0 then.

(5.6.9)

U;
^ 0=7" (5.6.10)

I f L < 0 ,

Ui

Ax y

(5.6.11)

The locations of Xp, x ,̂ and x  ̂can now be calculated directly from equations 5.6.3 to 

5.6.5 by substituting the calculated values for Up, ap, u ,̂ â , and u  ̂ from the above 

equations.
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The values of P and T at the three initial points are then calculated using the 

interpolation equations, 4.4.6 to 4.4.8. The density, p, and speed of sound, a, can then 

be calculated by performing an isothermal flash.

All the initial point flow variables are now available to compute the flow conditions 

at the solution point j.

For the positive compatibility,

Pj -  Pp + (pa)p (u j -  Up ) = (\|/ + ap) p 4At 1 = Ki (5.6.12)

The negative compatibility,

Pj -  Pn -  (pa)n(uj -  Un) = ( v  -  ap)„ Atj = K ; (5.6.13)

The pathline compatibility if  > 0,

Pj -  Po -  (a^ )„ (pj -  P o  ) = V O 4 A t  1 (5.6.14)

The pathline compatibility if  X  ̂< 0,

P j  -  P o  - (a^)o(pj -  P o )  = V o A t i  (5.6.15)

Solving equations 5.6.12 and 5.6.13 simultaneously for uj we can write,

K i  - K 2 + ( p a )  Up + ( p a ) ^ U j i  +  Pp  -  
U j= ------------------ j - r  ^ --------------------  (5.6.16)

(pa)^+(pa)p

The above equation has the same form as that for an ideal gas (see equation 4.4.26 in 

section 4.4.1.1).

The pressure is calculated either from equation 5.6.12 or equation 5.6.13. The density 

at the solution point can now be obtained from the pathline compatibility, if Xo>0 , 

then.
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(Pj -  Pq)+  ^oPO -
Pj = — ----------   Ô---------------------------------------  (5.6.17)

ao

The above steps are the predictor steps. The corrector steps can be repeated according 

to the procedure outlined in chapter 4.
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5.7 REVIEW OF RELEVANT EXPERIMENTAL DATA FOR TWO PHASE 

FBR SIMULATION

For obvious reasons, the amount of experimental data available relating to FBR is 

very scarce and the limited data that is reported is mainly confined to short (ca 1 0 0 m) 

small diameter (ca. 0 . 1  m) pipelines containing single component fluids.

Chen et. al (1993) report that even with such short pipelines, except for the early 

stages of rarefaction wave propagation, sufficient time exists for the discharging fluid 

to reach thermodynamic equilibrium. Hence, such small scale experiments are 

expected to adequately represent the changes occurring during FBR of much longer 

pipelines encountered in practice. The only data which actually relate to the FBR of a 

long pipeline (> 5 km) are those which were taken during the Piper Alpha tragedy. 

The following is a review of the experimental work pertinent to FBR.

Foothills Pipeline (Yukon) Ltd. (1981) reported the results of a series of tests at their 

Northern Alberta Burst Test Facility. A total of six tests were performed. The main 

purpose of the tests was to examine the effect of gas composition on the fracture 

behaviour of the pipe. This renders the data unsuitable for validating FBR by the fact 

that, during experiment, the pipeline fracture propagates along the axial direction 

covering some considerable lengths. Modelling the rupture condition effectively is 

thus made difficult in the CNGS-HEM since the rupture boundary is assumed to be 

fixed.

Jones and Gough (1981) performed a series of tests under the auspices of British Gas 

using short pipe sections of 120ft (36.6m) length and 4in(0.1016m) diameter 

containing natural gas, with a bursting disk at one end. However, the very short 

length and small diameter of pipeline make the data unsuitable for modelling with 

CNGS-HEM.

Some data for long pipelines have been reported by Sens et. al. (1970). The test 

involved a 11.8km pipeline of internal diameter 0.1065m. However no details are 

provided regarding the gas composition and therefore effective validations cannot be 

performed in our case.
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Two sets of data found to be suitable for the modelling of long pipes (>100m) are 

those of intact end pressure data obtained from Piper Alpha tragedy, and a series of 

experiments carried out by Shell and BP on the Isle of Grain (Chen, 1993, 

Richardson and Saville, 1996).

In the case of the Piper Alpha FBR, the conditions prior to rupture are given in 

chapter 4, section 4.6. The exact fluid composition is given in the table below:

Component mole%

CH4 73.6

C A 13.4

C3H3 7.4

i-C^H.o 0.4

1 . 0

i-CsH,^ 0.08

n-C5Hi2 0.07

n-CgH14 0 . 0 2

Nz 4.03

Table 5.7.1 : Composition of mixture in sub-sea line from Piper-Alpha to MCP-01

Another set of data available are the Isle of Grain depressurisation tests. Two parallel 

pipelines, both extensively instrumented and of length 100m are used. The pipeline 

diameter is 150mm. Pressure transducers and thermocouples measuring fluid 

temperature were attached along each line. Inventory and hold-up were also 

measured using load-cells and neutron back scattering.

The pipelines contain commercial propane or LPG. This usually comprises a mixture 

of propane and other low molecular weight hydrocarbons, such as butane and ethane.
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The exact composition is not given, but Chen (1993) assumes a mixture of 95 mole% 

propane and 5 mole% butane.

Both the steady and transient tests that take place were initiated by rupture of a disc 

at the downstream end of the pipeline. A series of tests simulating small bore to full 

bore rupture were performed. Of the transient full bore tests, tests P40 and P42 are 

chosen for validation with the present CNGS-HEM model. The relevant conditions 

are.

Test Initial LPG Initial LPG Ambient air

pressure (Bara) tem perature (C) tem perature (C)

P40 2 1 . 6 17.8 19.1

P42 11.3 2 0 . 0 18.6

Table 5.6.2: Initial and ambient conditions for LPG tests
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5.8 OPTIMISATION OF CNGS-HEM

In this section, the CNGS-HEM model will be optimised in terms of accuracy and 

CPU time minimisation in conjunction with Piper Alpha data.

The above will involve investigating the influence of various approaches such as the 

CNGS (chapter 4, section 4.6.1), curved characteristics (second order solution), and 

the effect of various At. As a test for accuracy, an HEM based on a simple grid 

scheme (SGS-HEM) model as used in chapter 4, is set up to provide a means for 

comparison.

The effect of the use of curved characteristics in the region of phase transition is also 

discussed.

5.8.1 Convergence and accuracy of first and second order solutions

To ascertain the most suitable method of solution, a series of tests were performed 

with SGS-HEM, and first and second order CNGS-HEM to investigate the effects on 

CPU times and accuracy. All simulations were performed on a DEC AlphaServer 

8400 5/440 running at 440MHz.

All thermodynamic information required by the model (including gas-liquid phase 

behaviour), is provided by the Peng-Robinson equation of state. Real fluid departures 

fi*om idea gas behaviour are also determined firom this equation (see chapter 2 ).

The introduction of a real fluid equation of state and subsequent calculation of 

component mass balances at each node in the discretisation grid renders the 

calculation very slow. For example, performing a sample calculation over 1 At using 

the permanent gas model CNGS with a coarse grid Ax  ̂ (see figure 4.6.2) of 500 

metres takes 0.65 seconds on a lOOMHz Pentium PC, whereas the same calculation 

using CNGS-HEM takes 85.63 seconds. As a means of providing a test for the 

converged solution, it would be most appropriate to use a Ax of Im all the way along 

the pipeline as was the case in chapter 4. However, this is very impractical in terms 

of the extra computation time for the HEM. As a result, the reference solution to
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which comparisons are made is taken to be that provided by the SGS-HEM with a 

uniform Ax of 10m.

Figure 5.8.1 shows the results of release rate versus time over a depressurisation 

period of 450 seconds. Curve A shows the results for the 2“** order curved 

characteristics solution for CNGS-HEM with a coarse grid Ax of 500m. Curve B 

shows the results for the 2”*̂ order solution with Ax o f 250m, Curve C shows the first 

order solution with Ax of 250m and finally. Curve D shows the results for the SGS- 

HEM model with a Ax of 10m (reference solution).

The first order CNGS-HEM solution (Curve C) consistently underestimates release 

rate whereas both second order solutions give better agreement with the SGS-HEM. 

For the second order solutions, increase in Ax does not lead to a significant loss of 

accuracy, but savings in CPU times are significant. Based on this test, the 2"*̂  order 

CNGS-HEM with a grid spacing, Axj of 500m is chosen for the validation tests.

Both second order solutions exhibit a certain amount of oscillation, with the 

amplitude of oscillation increasing with Ax. Further increase in Ax can be expected to 

lead to greater oscillation and is therefore not tested. This oscillatory phenomenon in 

second order solutions is well documented (Hirsch, 1995). The important point to 

note is that these oscillations, even at a Axj of 500m, are not intense as reported by 

Picard and Bishnoi (1989).

Although a first order solution is attempted by Picard and Bishnoi (1989) for the 

modelling of a hypothetical break to a sour gas pipeline, they still report diverging 

oscillations in pressure and density values with eventual termination of the 

simulation. The authors claim that these oscillations can be controlled by using a 

critical grid spacing equivalent to 0.5 nodes per metre of pipeline.

This implies that the application of a grid spacing of greater than 2 metres would 

give rise to a divergent solution. This trend is clearly not reproduced in our study, 

either in the first order or the second order solution. A stable solution is obtained in 

each case as it is evident in figure 5.8.1.

One possible reason for the greater stability of the present model is the use of an 

isothermal pressure-temperature flash to calculate the bulk mixture density (see
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Figure 5.8.1: Release rate profiles for different grid settings
Curve A; 2"̂  order, Ax = 500m, CPU time = 3.75 hours
Curve B; 2"  ̂order. Ax = 250m, CPU time = 12.2 hours 
Curve C; U* order. Ax = 250m, CPU time =12.1 hours 
Curve D; U* order simple, Ax = 10m, CPU time = 250hours
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One possible reason for the greater stability of the present model is the use of an 

isothermal pressure-temperature flash to calculate the bulk mixture density (see 

section 5.4) at the locations p, o and n (see figure 4.4.2) on the previous time level. 

The linear interpolation technique employed by Picard and Bishnoi (1988, 1989) to 

calculate mixture density might not necessarily correspond to that obtained by 

solving the equation of state at the interpolated values of pressure and temperature. 

The discrepancy is likely to be further exacerbated in the highly transient flow area 

that exists near the rupture plane.

The argument that second order curved characteristics alleviates this type of 

numerical instability is not appropriate because both first and second order CNGS- 

HEM are stable. As a check, a first order CNGS-HEM is run over a longer period 

(2000s) of depressurisation for the Piper Alpha FBR. No stability problem is 

encountered. It can be said however that a second order solution that takes into 

account curved characteristics is likely to give better predictions near the mpture 

plane (see figure 5.8.1).

Another interesting phenomenon that needs addressing when dealing with a fluid 

undergoing a phase change during depressurisation is the abmpt change in speed of 

sound on crossing the gas/liquid phase transition interface. This places an additional 

restriction, in addition to that given by the CFL criterion, on the choice of At.

5.8.2 Effect of At on flow predictions

In a study by Picard and Bishnoi (1987) on a numerical procedure for the prediction 

of the acoustic velocity in two-phase multi-component fluids, a sudden reduction in 

expansion wave velocity was observed at approximately the calculated dew point. 

The sudden drop in the speed of sound can be attributed to the fact that as a second 

phase forms, the compressibility of the fluid decreases abmptly.

Figure 5.8.2 shows a plot of variation of predicted sound velocity for a range of 

temperatures along various isobars for the Piper Alpha mixture. Curve A shows the
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isobar of 80 bar, and Curves B and C show the isobars corresponding to 70 and 60 

bar respectively.

The procedure for the calculation of the sound velocity is given in chapter 2 and is 

the same as that proposed by Picard and Bishnoi (1987).

The sudden drop in speed of sound coincides with the onset of condensation in the 

mixture. The higher the pressure, the greater the drop in sound velocity. The high 

speeds of sound are obtained for gas phase flows and the onset of two phase 

condensate flows causes a sudden reduction in the expansion wave velocity, the 

magnitude of which will vary depending on mixture. On either side of the sharp 

transition however, the variations in the speed of sound are relatively linear.

Figure 5.8.3 shows the variation of predicted fluid density for a range of temperatures 

along various isobars for the Piper Alpha mixture. Curve A shows the isobar of 80 

bar, and Curves B and C show the isobars corresponding to 70 and 60 bar 

respectively; the same ranges over which the phase transition from single phase to 

two phase takes place.

Unlike the speed of sound predictions, the variation of density does not exhibit a step 

like change across the phase boundary but the overall behaviour is non-linear.

A boundary between a gas and two-phase can be termed as a condensation boundary 

whereas that between liquid and two phase can be termed as a boiling boundary. 

Either boundary may have a velocity faster or slower than the fluid velocity during 

depressurisation. The basic assumptions in dealing with such interfaces are firstly 

that a distinct interface exists and secondly that no mixing occurs across any such 

interface.

The presence of the interface between a single phase and a two-phase mixture poses 

problems from a computational viewpoint for two reasons.

Firstly, the substantial difference in acoustic velocities between the two different 

states (depending on the difference in compressibility) means that if the characteristic 

lines were to cross such an interface, significant refraction would occur as 

schematically represented in figure 5.8.4 for a left travelling interface.
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Figure 5.8.2: Variation of speed of sound with temperature along various isobars for 
the Piper Alpha mixture

Curve A: P = 80 Bar 
Curve B: P = 70 Bar 
Curve C: P = 60 Bar
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Figure 5.8.3: Variation of predicted fluid density for a range of temperatures along 
various isobars for the Piper Alpha mixture.

Curve A: P = 80 Bar 
Curve B: P = 70 Bar 
Curve C: P = 60 Bar
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Figure 5.8.4: Refraction effect of single phase/two phase interface on characteristic 

lines

The propagation velocity of the positive Mach line is greater in a single phase than in 

a two phase mixture so that the gradient (At/Ax) will be steeper in two phase flow 

than in single phase flow. The reverse is true for the negative Mach line.

Secondly, other fluid properties may change significantly across an interface so the 

compatibility equations have to account for the presence of an interface (Nakamura 

et. al., 1975). The added complexity of the mathematical modelling that is necessary 

to fully account for this phenomena is avoided in this study by using a small enough
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At to effectively minimise the error caused by the refraction of characteristic lines. 

This is explained below.

The maximum possible At, Atmax in keeping with the CFL criterion is given by 

equation 4.6.1. In the CNGS models a At that is 90% of this maximum permissible is 

taken for all tests performed (see chapter 4). For a permanent gas model, this 

criterion is valid as sound velocity variations are linear. To understand the effect of 

taking a smaller At, it is first necessary to look at the effect At has on the 

characteristic lines.

For both first and second order solutions, the values of the velocity, u, and speed of 

sound, a, need to be calculated a priori before the locations of points p and n can be 

calculated (see sections 4.4.1 and 4.4.2 for the first and second order solutions 

respectively). In the first order solution for example, in order to calculate the location 

of point p, i.e. is the point of intersection of the positive Mach line on the previous 

time line, the following two equations, as shown in chapter 4 but repeated here for 

reference, are solved simultaneously for Up and ap.

U: — U: 1
+ - -----—  Ata. =Ui (4.4.13)

Xi-Xi_i P

+ —— ^ ^ A tU o  = a ; (4.4.14)
Xi-Xi_i P

Once Up and ap are known, the location of Xp is calculated from,

X p = X j - A t ( u p + a p )  (5.8.1)

Using a smaller At has the effect of pushing the location of Xp closer to that of Xi 

where the exact conditions are known and so flow values are likely to be close to 

those at Xi, thus minimising interpolation errors. This effect is illustrated in figure 

5.8.5.
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t

single-, two 
phase \ phase

interface
Ati

Figure 5.8.5: Effect of smaller At on resulting accuracy of prediction of point p

The broken lines indicate the refracted characteristics whilst the straight 

characteristic line denotes the first order solution.

At2 is smaller than Ati and results in a smaller interpolation error A^2.
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Quantification of errors caused by presence of the phase transition interface is carried 

out in the following manner. A cell is located where the node at Xi has a two phase 

condensate whereas the node at Xi.i has a single phase gas. The values of Up and ap 

are calculated for a chosen At from equations 4.4.13 and 4.4.14 and the 

corresponding location of Xp is calculated from equation 5.8.1. Once Xp is found, the 

pressure, temperature and density are calculated from linear interpolation. The 

interpolated values of pressure and temperature are used to perform an isothermal 

flash calculation and the calculated results for bulk mixture density and speed of 

sound are compared with the interpolated values to check accuracy. This procedure is 

repeated for several different At’s satisfying the CFL criteria.

Figure 5.8.6 elucidates the above by showing the effect of % of maximum 

permissible At on the % errors in density (Curve A) and speed of sound (Curve B) 

predictions. Errors in the prediction of density through interpolation are consistently 

higher, up to 60% of maximum permissible At after which there is a sudden increase 

in the errors associated with the linear interpolation calculation of speed of sound. 

The generally higher errors associated with the linear interpolation prediction of fluid 

density can be attributed to its overall non-linear variation with pressure and 

temperature as shown in figure 5.8.3.

The sudden increase in errors pertaining to the calculation of speed of sound is a 

consequence of the refraction of the Mach line at the phase transition interface. If the 

same At as used in the permanent gas model (i.e. 90% of maximum permissible, 

Atmax ) is to be used then errors of about 33% and 16% can be expected for the 

calculation of speed of sound and density respectively. It must be stressed that this 

error is only for the cell containing the interface between different phases which in 

most cases of pipeline depressurisation would account for only one cell on any given 

time level. The data in figure 5.8.6 indicate that an unacceptably small At is required 

in order to reduce the error introduced by calculating density using linear 

interpolation to agreeable levels.

The error arisen in the determination of density through linear interpolation can of 

course be eliminated by calculating it directly via an isothermal flash. In itself, this
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Figure 5.8.6: The effect of % of maximum permissible At on the % errors in density 
and speed of sound predictions (Piper Alpha mixture).
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would give rise to an increase in CPU as compared to obtaining density using linear 

interpolation. However, our experience has shown the fact that the much larger At 

that can now be afforded gives rise to a significant overall reduction in CPU.

The error in the calculation of speed of sound remains, since it is obtained by 

simultaneous solution of equations 4.4.13 and 4.4.14 for point p, and equations 

4.4.15 and 4.4.16 for point n. However, the discrepancy is minimised by utilising a 

small At. For point, o (figure 4.4.2), however, since the value of acoustic velocity is 

not needed to find Xq, it is calculated by performing a flash calculation.

With regards to other cells away from the phase transition cell, the errors associated 

with calculating speed of sound at a given cell using linear interpolation are not 

expected to be as significant as inferred from figure 5.8.2. These can be anything up 

to a maximum of 1-3% for At = 0.9xAtmax depending on proximity to the rupture 

plane. The discrepancy is significantly lower for smaller At’s (<1%). However, the 

cumulative effect of such errors can become significant thus giving rise to spurious 

results especially in the late time regime.

The effect of A t is also particularly acute at the rupture plane in terms of maintaining 

the choking condition for homogeneous flow, u = a (see section 5.5.2 for details). 

The rupture plane calculation is unique in that it is the only occasion when flash and 

flow calculations are coupled so that the thermodynamic speed of sound is compared 

with the outflow velocity obtained from the flow equations (compatibility equations). 

When using a A t =  0.9xAtmax, the predicted outflow velocity is underestimated in 

respect to the predicted sound velocity by anything up to about 4 0 % . It is necessary to 

reach a A t =  O.lxAtmax before the choking condition can accurately be satisfied 

(underestimation is less than 1% ). The choice of A t to uphold the choking condition 

will very much depend on the mixture present. Thus for any new mixture, a 

calculation needs to be done to check the optimum At.

Figure 5.8.7 shows the effect of two different At’s on release rate profiles for the 

Piper Alpha FBR. Curve A shows the results obtained from the CNGS-HEM model 

with A t =  0.9Atmax whereas Curve B shows the results obtained using a A t =  0 .1  Atmax-
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Figure 5.8.7: Release rate profiles for different A t settings (Piper Alpha mixture). 
Ax3 = 500m, Ax2 = 100m, Axi = 20m 
Curve A; A t =  0.9Atmax, CPU time = 7.5 hours 
Curve B; A t = 0.1 Atmax, CPU time = 40 hours
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When necessary, the outflow velocity at the rupture plane is replaced by the 

thermodynamic sound speed.

Using a large A t (Curve A) gives rise to an underestimation of release rate due to the 

discrepancies mentioned above. The significant increase in CPU is due to the fact 

that the model with A t =  0 .1  Atmax has to perform nine times as many calculations as 

compared with A t =  0.9Atmax to reach a specific time. However, CPU times are less 

than this ratio for the former due to better convergence in the fast transient region 

near the rupture plane. In fact for A t =  0 .1  Atmax, we find that just one iteration of the 

corrector step is needed before convergence is obtained. A t =  0.9Atmax requires at 

least two.

Greater accuracy can be expected if a smaller At is employed, but this will lead to an 

even greater increase in CPU time. For relatively short pipelines, an even smaller At 

becomes more practical. For the Piper Alpha simulation, At = 0.1 Atmax provides a 

good accuracy (see section 5.9) in a reasonable time scale for the purposes of this 

study.

The scenario might arise in some cases where the interface reaches the closed end 

boundary and a single phase exists throughout the pipeline. It should then be possible 

to use a larger At (within the CFL criterion) since the added restriction placed by the 

presence of a fluid interface is lifted. This would then require the construction of a 

variable grid with different time steps.
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5.9 VALIDATION OF CNGS-HEM

5.9.1 Rupture of Piper to MCP-01 subsea line

Figure 5.9.1 shows the predicted intact end pressure/time history for the Piper Alpha 

to MCP-01 subsea line.

Also shown are the measured data taken during release on the night of the disaster; 

Curve A. Curves B,C, and D show the results predicted by CNGS-HEM (section 5.6 

and 5.8), CNGS-HEM-CF and CNGS (section 4.6.1) respectively.

CNGS-HEM-CF refers to the HEM with a constant friction factor of 0.00324 as is 

also the case in the ideal gas model, CNGS. All the models considered here have the 

following grid spacings, Axa=500m, AXz=100m, and AXj=20m, and for the HEM At = 

0.1 Atg^ which corresponds to a time step of 0.103 seconds.

The CNGS-HEM makes provision for a flow dependent friction factor by utilising the 

Chen (1979) friction factor equation. No data is provided for the roughness of the 

pipe, and hence the value corresponding to that for carbon steel (s=0.004mm) (Perry 

and Green, 1997) is used in this study.

The largest discrepancy is obtained from the ideal gas model which demonstrates the 

importance o f accurate prediction of real fluid effects in any study regarding FBR of 

pipelines containing multi-component fluids. However the difference in CPU times is 

staggering (1.5 minutes compared to 6  days). Hence for the particular system studied 

for a quick reasonable estimate of the effects of FBR, a permanent gas model ma be 

useful.

Very good agreement is obtained using the CNGS-HEM (Curve B) as opposed to the 

CNGS-HEM-CF (Curve C). This proves the importance of accurate prediction of 

friction factor for long pipelines. The results for CNGS-HEM shows a slight 

deflection at about 1518s. This corresponds to the onset of condensation at the closed 

end as indicated in figure 5.9.2. The formation of the liquid phase has a significant 

effect on friction factor because of increased viscous drag which is only accounted for 

by CNGS-HEM.
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Figure 5.9.1: Comparison of intact end pressure (Piper Alpha) 
Ax3 = 500m, Ax2 = 100m, Axi = 20m

Curve A: Measurement 
Curve B; CNGS-HEM, CPU time = 6 days 
Curve C; CNGS-HEM-CF, CPU time = 5.5 days 
Curve D; CNGS, CPU time = 1.5 minutes
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Returning to figure 5.9.2, Curves A and B show the data obtained using the CNGS- 

HEM and Chen at. al.’s (1993) META-HEM respectively. It is interesting to note 

that the two sets of data are in good accord. The maximum liquid volume fraction is 

ca. 0.034 corresponding to a liquid mass fraction of about 15%. As the pipeline 

continues to dépressurise, less inventory stays in the liquid phase and at about 

10,100s following FBR the closed end is exposed to gas only.

Figure 5.9.3 shows the phase envelope for the Piper-Alpha mixture. It may be 

observed that the two-phase region covers a relatively wide range of pressures and 

temperatures. This is due to the fact that the mixture is made up of many 

components. For a mixture containing fewer components, the two-phase region can 

be expected to be narrower. The extent of two-phase flow formation during any 

depressurisation process is determined by the thermodynamic path followed by 

pressure and temperature.

Figure 5.9.4 shows the variation of release rate with time.

Curve A shows the data generated using the META-HEM whereas Curves B and C 

show the corresponding data using CNGS-HEM and CNGS respectively. The results 

of CNGS-HEM and META-HEM are in good agreement, with the latter predicting a 

slightly higher release rate. The discrepancy increases with depressurisation time. 

However both methods predict much higher release rates than the CNGS model.

5.9.2 FBR experiments using LPG at the Isle of Grain

The validation for Piper Alpha showed that the CNGS-HEM gives good accuracy 

when modelling FBR of pipelines containing a predominantly gaseous mixture. To 

test the applicability of the CNGS-HEM for a flashing liquid mixture, the 

experimental data of BP and Shell Oil Isle of Grain (Richardson and Saville, 1996, 

Chen, 1993) are used as a basis for comparison. Tests P40 and P42 (see section 5.6), 

in particular, are selected as they relate to FBR.

In both tests, a diaphragm covering the whole pipe cross-section is ruptured. The 

pertinent experimental conditions including pipeline dimensions, and material 

compositions as well as starting temperature and pressure were given in section 5.6.
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Figure 5.9.2: Comparison of condensation volume fraction at closed end of pipe 
(Piper Alpha)

Curve A: CNGS-HEM 
Curve B: META-HEM

260



chapter 5 Development & Validation of CNGS-HEM & its Application in Predicting ESDV Response

100

80 -

Dew

Bubble

60

40 --

20  -

220 2801601 0 0

Temperature (K)

Figure 5.9.3: Phase envelope for the Piper Alpha mixture
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Figure 5.9.4: Comparison of predicted release rate of CNGS-HEM, META-HEM and 
CNGS (Piper Alpha).
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Curve B: CNGS-HEM 
Curve C: CNGS
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The same assumptions made by Chen (1993) are employed in this work, namely, 

constant wall heat transfer coefficient and pipe roughness scale of 100 W/m^K and

0.05 mm respectively.

The results for Piper Alpha suggested that the calculation for fiiction factor based on 

flow dependent correlations is particularly sensitive to the presence of liquid. In view 

of this finding, it is decided here to test the results for both the Chen (1979) friction 

factor equation (see also section 5.4) and the Moody (Massey, 1983) approximation 

to the Colebrook equation (Perry and Green, 1997) (see also section 5.4). For 

reference purposes, the CNGS-HEM in conjunction with Chen’s equation is denoted 

by CNGS-HEM-CH whilst CNGS-HEM-MC relates to the Moody-Colebrook 

correlation.

Figure 5.9.5 shows the results for prediction of open and closed end pressure-time 

histories for the LPG mixture. Curve A shows the measured data at the open end. 

Curve B shows the data at the closed end. Curves C and D on the other hand show 

open end predictions for CNGS-HEM-MC and CNGS-HEM-CH respectively, 

whereas Curves E and F show respective closed end predictions for CNGS-HEM-MC 

and CNGS-HEM-CH.

An extremely rapid initial decrease in pressure is recorded by measurement at the 

closed and open ends (Curves A and B). This is due to the speed of sound in a liquid 

mixture being much greater than that in a gas or a two-phase mixture (Wyhe and 

Streeter, 1993; Thorley, 1991). The greater speed of propagation of disturbance 

following FBR will mean that depressurisation will be on a much faster scale in the 

liquid LPG mixture. The rapid decrease corresponds to a very short period of 

expansion of the compressed liquid propane followed almost immediately by flashing 

of the liquid propane.

The rate of drop in pressure is expected to decrease with an increase in pipeline length 

due to the more significant fiictional and inertial effects.

A slight undershoot can be noticed in both measured open and closed end pressure 

data (Curves A and B). This can most probably be attributed to non-equilibrium 

effects such as delayed bubble nucléation arising from the rapidity of the pressure
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Figure 5.9.5: Pressure time profiles at closed and open ends for test P40 (LPG) 
For both CNGS-HEM: Axs = 20m, Ax2 = 4m, Ax% = 0.8m; CPU time =1.4 hours

Curve A: Measurement (Open End)
Curve B: Measurement (Closed End)
Curve C: Open End, CNGS-FCEM-MC 
Curve D: Open End, CNGS-HEM-CH 
Curve E: Closed End, CNGS-HEM-MC 
Curve F: Closed End, CNHS-HEM-CH
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decrease, and possibly due to reflection of expansion waves in the compressed liquid 

off the closed end of the pipe.

Once the transition to saturated liquid is reached, the pressure at the closed end 

remains approximately at the saturation pressure for a further 1 2  s, gradually 

dropping to atmospheric pressure in the subsequent 1 0  s indicating the possibility of 

thermodynamic equilibrium in this region.

Referring to the theoretical predictions, the initial undershoot due to the transition 

from liquid to two-phase flow is not predicted since the calculation procedures start 

with the fluid at the saturation pressure. However, both models on the whole provide 

reasonably accurate predictions of the pressure/time histories. The CNGS-HEM-MC 

gives slightly better agreement and is therefore chosen as the preferred method in all 

subsequent simulations in this study.

Referring to figure 5.9.5, the finite difference between model and experimental data 

may be attributed to a number of reasons including the uncertainty associated with 

the measurement of pressure or precise information on the fluid composition. In the 

former case, it is interesting to note that the final open end pressure is well below 

atmospheric pressure (see Curve A).

It should also be pointed out that the composition of 95 mole% propane and 5 mole% 

butane 2is used in this study is an approximate one for commercial LPG. The actual 

composition is not known precisely, but the mixture usually containes propane and 

other low molecular weight hydrocarbons, such as butane and ethane.

Figure 5.9.6 shows the effect of addition of a small amount of ethane on the LPG 

depressurisation profiles. The new LPG composition is taken to be 94.5 mol% 

propane, 4.95 mol% butane and 1 mol% ethane.

It is interesting to note that even a small change in composition gives rise to a 

relatively large change in the pressure profiles. The addition of a light hydrocarbon 

hastens the depressurisation process. The converse would be expected if a heavier 

hydrocarbon was chosen. Also the saturation pressure is dictated by the mixture 

composition which will have a significant effect on the pressure profiles, especially
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SO at the closed end where the liquid mixture stays at the saturation pressure for a 

comparatively long time.

Another possible source of error is the fact that cubic equations of state such as Peng- 

Robinson tend to under-estimate liquid densities (Reid et. al., 1986). This could have 

a noticeable effect on the mass and momentum transfer phenomena and hence the 

pressure/time profiles.

Uncertainty in the pipe roughness can also lead to spurious pressure profile 

predictions. Chen (1993) showed the effect of this on pressure profile predictions and 

found that the higher the pipe roughness, the slower is the depressurisation rate. He 

concludes however that uncertainty in the roughness length scale is less than that of 

the rupture mechanism and therefore uses a roughness scale of 0.05mm for all his 

simulations.

Figure 5.9.7 shows the predicted (Curves A and B) and measured temperature profiles 

(Curves C and D) at the closed and open ends for test run P40. The predicted 

temperature profiles show similar trends as those observed above for pressure profiles 

when compared to experimental data. The open end predictions are slightly higher 

whereas the closed end predictions are slightly lower than measured data. Open end 

temperatures are overestimated between 2  and 1 0  seconds with a maximum 

discrepancy of about 5 °C.

A significant and rapid rise in the measured temperature at the open end (Curve A) 

can be noticed towards the end of the depressurisation process. The rise corresponds 

to the cessation of two-phase flow with the consequent onset of gas phase flow at the 

rupture plane, and is probably a reflection of different heat transfer rates fi-om the wall 

to the fluid. The CNGS-HEM-MC cannot reproduce this trend because a constant 

heat transfer coefficient is used. Hence further improvement of the model in this late 

time regime can be obtained by introducing correlations to account for fluid state 

dependent heat transfer rate.

The slight levelling of the temperature immediately before the subsequent rise 

corresponds to the moment when the flow at the rupture plane ceases to be choked,

i.e. when the pressure reaches atmospheric pressure for the HEM.
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Figure 5.9.6: Effect of the addition of 1 mol% ethane on pressure-time profiles at 
open and closed ends for test P40 (LPG).

Curve A: Measurement (Open End)
Curve B: Measurement (Closed End)
Curve C: Open End, CNGS-HEM (2 component LPG mixture)
Curve D: Open End, CNGS-HEM (2 component 4- lmol% ethane LPG mixture) 
Curve E: Closed End, CNGS-HEM (2 component LPG mixture)
Curve F: Closed End, CNHS-HEM (2 component + lmol% ethane LPG mixture)
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Figure 5.9.7: Temperature-time profiles at the open and closed ends for test P40 
(LPG) Ax3 = 20m, Axi = 4m, Axi = 0.8m; CPU time = 1.4 hours

Curve A: Measurement (Open End)
Curve B: Measurement (Closed End)
Curve C: CNGS-HEM (Open End)
Curve D: CNGS-HEM (Closed End)
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Figure 5.9.8 shows the comparisons for total line inventory during depressurisation 

for test run P40. Curve A shows the load cell values whereas Curves B and C show 

the predictions using Chen’s (1993) META-HEM and the current CNGS-HEM 

respectively. Both models overestimate line inventory and give very similar results.

Figure 5.9.9 shows model predictions for release rate/time data for run P40. Curve A 

shows the results for CNGS-HEM whereas Curve B shows the results for META­

HEM. CNGS-HEM gives higher predictions for release rate. Figure 5.9.10 shows 

release rate predictions for run P42. The same trend is observed in this case. 

Unfortunately no experimental data exists to allow comparison. Since the release rate 

is dependent on outlet velocity and fluid density at the rupture plane, it is worth 

comparing the predictions for both these parameters by the respective models.

Figure 5.9.11 shows the predictions for flow velocity/time at the rupture plane for run 

P42. CNGS-HEM (Curve A) gives lower velocity predictions than META-HEM, and 

therefore CNGS-HEM must give higher predictions for density than META-HEM in 

order to produce the higher release rates observed. A direct comparison cannot be 

made for density since such data at the rupture plane is not presented for META­

HEM by Chen (1993).

A disagreement in density prediction is a consequence of different pressure and 

temperature predictions. This is especially exaggerated for a LPG mixture since the 

phase envelope is very narrow, so even a small difference in pressure and 

temperature prediction can lead to the mixture being close either to the dew point 

curve or to the bubble point curve. Figure 5.9.12 shows the phase envelope for the 

LPG mixture. The existence of a very narrow area for two-phase flow means that the 

depressurisation process follows a very fine line from the bubble point curve to the 

dew point curve.

Figures 5.9.13 and 5.9.14 show the pressure and temperature profiles using CNGS- 

HEM for test P42. In both figures. Curves A and B are the measurement data at the 

open and closed ends respectively, whereas Curves C and D are the corresponding 

data obtained using CNGS-HEM.
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Figure 5.9.8: Comparison of total line inventory predictions with test P40 
measurements (LPG)

Curve A: Measurement 
Curve B: META-HEM 
Curve C: CNGS-HEM
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Figure 5.9.9: Comparison of predictions of release rate for test P40 (LPG)

Curve A: CNGS-HEM 
Curve B: META-HEM
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Figure 5.9.10: Comparison of predictions of release rate for test P42 (LPG).

Curve A: CNGS-HEM 
Curve B: META-HEM
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Figure 5.9.11: Comparison of predictions of flow velocity at the rupture plane for test 
P42 (LPG)

Curve A; CNGS-HEM 
Curve B: META-HEM
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Figure 5.9.12: Phase envelope for LPG mixture
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Figure 5.9.13: Pressure-time profiles at open and closed ends for test P42 (LPG); 
Axj = 20m, Axj = 4m, Ax, = 0.8m; CPU time =1.4 hours

Curve A: Measurement (Open End)
Curve B: Measurement (Closed End)
Curve C: Open End, CNGS-HEM 
Curve D: Closed End, CNGS-HEM
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Figure 5.9.14: Temperature-time profiles at open and closed ends for test P42 (LPG) 
Ax3 = 20m, Ax2 = 4m, Axi = 0.8m; CPU time =1.4 hours

Curve A: Measurement (Open End) 
Curve B: Measurement (Closed End) 
Curve C: Open End, CNGS-HEM 
Curve D: Closed End, CNGS-HEM

276



Chapter 5:Development & Validation of CNGS-HEM & its Application in Predicting ESDV Response

As occurred in test P40, the comparison of CNGS-HEM pressure and temperature 

profiles with measurement both show a slight over-estimate at the open end and an 

under-estimate at the closed end.

It is known (see sections 5.8.1 and 5.8.2) that the various interpolation techniques 

used to calculate fluid properties on the previous time line in MOC will lead to some 

smearing of the true solution. For multi-component fluids such as the Piper Alpha 

mixture with a wide phase envelope (see figure 5.9.3), any significant error may 

accrue only in the cell containing the gas/two-phase interface as shown in section 

5.8.2 and hence excellent prediction of closed end pressure/time histories are 

obtainable (see figure 5.9.1).

Mixtures such as LPG exhibiting a narrow phase envelope, are especially sensitive in 

terms of magnitude of the density variation with pressure and temperature, and 

therefore accurate prediction of the latter parameters along each time line is essential 

for FBR simulations. Solution of the compatibility and characteristic equations in 

CNGS-HEM is an accurate way of predicting flow and fluid parameters at the 

various grid points, however inaccuracies arise when interpolation is performed to 

predict pressure and temperature variation in between grid points. Such errors can be 

expected to be especially acute for mixtures such as LPG. However the fact that the 

discrepancy between model and experimental data is not so great suggests that the 

assumptions made during interpolation are not too far off reality.

Figure 5.9.15 shows the comparisons for total line inventory for test run P42. Again 

CNGS-HEM and META-HEM agree very well with each other with both slightly 

over-estimating compared to measurement. It might be expected that higher release 

rate predictions as is the case with CNGS-HEM with respect to META-HEM would 

lead to significant under-estimation of total line inventory, but this is not the case as 

clearly illustrated in figures 5.9.8 and 5.9.15. This is because CNGS-HEM predicts 

less gas evolution than META-HEM which signifies higher density predictions 

throughout the pipeline and hence greater line inventories in spite of higher release 

rates (see figures 5.9.9 and 5.9.10).
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Figure 5.9.15: Comparison of total line inventory with test P42 measurements (LPG)

Curve A: Measurement 
Curve B: CNGS-HEM 
Curve C: META-HEM
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Figure 5.9.16 shows the results of a comparison for the open end pressure made using 

CNGS-HEM (Curve B) and other models including META-HEM, MSM-CS, 

BLOWDOWN, and PLAC (Curves B,C,D, and E respectively) for the LPG mixture. 

The measurement data (load cell) is given by Curve A.

The BLOWDOWN model was developed by Richardson and Saville (1991), the 

MSM-CS model by Chen (1993) and the PLAC code by Hall et. al. (1993). The 

BLOWDOWN simulation for pipelines is based on quasi-steady state, equilibrium 

and homogeneous two-phase flow assumptions. The MSM-CS model takes into 

account the slip velocity between the two phases and thus incorporates the relevant 

hydrodynamic constitutive relations that accompany this effect. As a result, two 

momentum equations, one for each phase, are solved instead of just one in META­

HEM. The MSM-CS is based on the same solution techniques as META-HEM.

PLAC is an extension of the nuclear reactor safety code TRAC in that it incorporates 

a flash calculation package, MULTIFLASH, to predict VLE data for hydrocarbon 

mixtures. In addition to this, the original critical flow boundary condition in TRAC is 

replaced by a homogeneous frozen flow model. It allows different temperatures for 

the two phases thus permitting thermal non-equilibrium since two energy equations 

are solved for each phase. This creates a dilemma as to which temperature should be 

used for the equilibrium phase behaviour, an inevitable problem in determining the 

phase behaviour of multi-component mixtures.

From figure 5.9.16 it is apparent that the best predictions are obtained from CNGS- 

HEM and META-HEM. BLOWDOWN substantially under-estimates open end 

pressure because of the quasi steady flow assumption. MSM-CS gives almost the 

same predictions as BLOWDOWN. It is surprising that the former cannot provide a 

better prediction of the pressure profile at the open end. This could be due to the use 

of unrealistic hydrodynamic constitutive relations. Another possible reason is 

inaccuracy in prediction of wave propagation velocities.

PLAC also gives rise to poor predictions. It predicts a large drop in pressure of at 

least 2 bara at about 5 seconds after rupture and continues to drop thereafter. One of 

the reasons for this discrepancy might be due to the fact that no actual flash
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Figure 5.9.16: Pressure time profiles at the open end for test P42 (LPG).

Curve A: Measurement 
Curve B: CNGS-HEM 
Curve C: META-HEM 
Curve D: MSM-CS 
Curve E: BLOWDOWN 
Curve F: PLAC
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calculations are performed to determine fluid properties during the depressurisation. 

As discussed before, depressurisation profiles for mixtures such as LPG are 

especially sensitive to accurate thermodynamic prediction. In PLAC fluid physical 

properties are calculated at a given pressure and temperature in a cell by interpolation 

from look-up tables generated using the phase equilibrium package before transient 

flow calculations begin.

Chen (1993) shows by way of a comparison of total line inventory prediction for test 

P42 that the initial inventory from PLAC start at a much lower value (695 kg) than 

measurement (970 kg), and drops to less than 20% within 5 seconds (CNGS-HEM 

and META-HEM predictions are given in figure 5.9.15). The considerable under­

estimation can be attributed to two possible reasons.

Firstly, too much gas formation is predicted in the pipeline by PLAC and hence 

lighter line inventory prediction. Hall (1993) take the initial state of the fluid as 80% 

liquid which means that PLAC starts transient flow calculations at a point that is 

already quite well into two-phase flow as opposed to near the saturation point. 

CNGS-HEM starts its calculations at the saturation point and gives good initial 

agreement, so the initial state of the fluid is in reality close to this point. A second 

reason could be due to over-estimation of the release rate by the homogeneous frozen 

critical flow boundary condition, but this would also be linked to the phase velocities 

calculated at the rupture plane as discussed earlier.

Figure 5.9.17 shows the results of a comparison for the closed end pressure made 

using CNGS-HEM (Curve B) and other models including META-HEM, MSM-CS, 

BLOWDOWN, and PLAC (Curves B,C,D, and E respectively) for the LPG mixture 

9tast P42). The measurement data (load cell) is given by Curve A.

CNGS-HEM, META-HEM and BLOWDOWN give very similar predictions with 

MSM-CS doing less well and PLAC performing very poorly. As also occurred for the 

open end pressure predictions, PLAC shows a very sharp drop in pressure at the 

closed end at ca. 5 seconds and continues to drop at a much faster rate than the other 

models thereafter.
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Figure 5.9.17: Pressure-time profile predictions at the closed end for the test P42

Curve A: Measurement 
Curve B: CNGS-HEM 
Curve C: META-HEM 
Curve D: MSM-CS 
Curve E: BLOWDOWN 
Curve F: PLAC
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From the above, it is clear that the CNGS-HEM provides relatively good predictions 

of the conditions following FBR. This demonstrates that such types of failures can be 

simulated effectively by using the method of characteristics together with the 

homogeneous equilibrium model as long as thermodynamic and phase behaviour 

predictions are accurate and applied rigorously.
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5.10 CASE STUDY - ESDV/SSIV SHUTDOWN PIPER ALPHA

Having thus gained confidence in the use of CNGS-HEM, the proceeding sections 

illustrate the use of this model to study the dynamic response of ball and check valves 

following FBR of a pipeline containing a condensable gas or a two phase mixture. 

The simulations are performed in conjunction with the Piper Alpha mixture which 

exhibits a clear phase transition during depressurisation. In order to reduce CPU 

times, the analogous results based on assuming that the fluid behaves as an ideal gas 

are also presented and the resulting errors are quantified.

5.10.1 Fluid dynamics data

Most of the important points discussed in chapter 4 regarding pressure and velocity 

profiles generated following FBR of a pipeline containing an ideal gas are equally 

applicable for any real fluid mixture. In terms of valve closure dynamics, the 

difference between two-phase and single phase flows is the effect that the former have 

on activation times. For a check valve, this depends very much on its location relative 

to the position of flow reversal, whereas for ball valves, the activation times are 

essentially dictated by the rate of depressurisation within the pipeline. Both these 

phenomena are influenced directly by the rate of propagation of the expansion waves 

through the fluid medium away fi-om the rupture plane.

The expansion wave velocity is calculated relative to the fluid motion and in all MOC 

numerical procedures is given by the right running Mach line (=u+a).

Figure 5.10.1 shows the predictions for expansion wave velocities over the first 360 

metres of pipeline as measured firom the rupture plane. Curves A and B show the 

results at t=0 and t= 0.6 s respectively following FBR for the two phase mixture 

whereas Curves C and D show the corresponding data in the case of an ideal gas 

assumption.

As has already been discussed in section 5.8.2, a sudden drop in sound velocity 

occurs due to the onset of two phase flow. This obviously leads to a reduction in the
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Figure 5.10.1: Predictions for the expansion wave velocities over the first 360 m of 
pipeline as measured from the rupture plane (Piper Alpha mixture).

Curve A: Two-phase; t = Os following FBR 
Curve B: Two-phase; t = 0.6 s following FBR 
Curve C: Ideal gas; t = Os following FBR 
Curve D: Ideal gas; t = 0.6s following FBR
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expansion wave velocity as compared to that for the permanent gas. At t=0, this 

effect is only noticed at the rupture plane (cf. Curves A and C).

At t = 0.6 s however, the phase transition interface has moved about 120m (Curve B) 

from the rupture plane. Over this distance, the presence of a two phase mixture 

results in a relatively large difference in expansion wave velocities between the two 

phase and ideal gas scenarios (Curves B and D). The sharp rise in expansion wave 

velocity at 120 m (Curve B) corresponds to the point in the pipeline where gas phase 

exists and hence in this region the difference between the two models is less 

pronounced. Finally, the results from the two models converge because the fluid in 

the rest o f the pipeline is stationary.

Clearly, the presence of a two-phase mixture will affect the ESDV activation time. 

Figure 5.10.2 shows the variation of fluid velocity with distance from the rupture 

plane at different times for the Piper Alpha mixture. Curves A-C show the results 

from the two phase model at 9.23, 27.69, and 46.15 s respectively whereas Curves D 

to F show the corresponding results for an ideal gas.

The ideal gas model predicts faster fluid velocities than the two-phase model, a result 

of higher sound velocity predictions. This will in turn lead to faster activation times 

for a check valve. Taking the example of a check valve placed 6.1 km from the 

rupture plane, the two-phase model predicts an activation time of ca. 9.23 s whereas 

the ideal gas model predicts an activation time of ca. 8 . 6  s. These are obtained by 

determining the times corresponding to zero flow velocity at the given location.

Figure 5.10.3 shows the variation of pressure with distance at different times for the 

Piper Alpha mixture. Curves A - C  show the results for the two phase model at 9.23, 

27.69, and 46.15 s respectively whereas Curves D - F show the corresponding results 

for an ideal gas.

The ideal gas gives larger pressure drops leading to faster depressurisation rate 

predictions with the effect increasing with time. These profiles are necessary in 

determining activation times for a ball valve. For example, for a ball valve placed at 

the same distance as the check valve (6 . 1  km) from the rupture plane and triggered to 

initiate shutdown on sensing a pressure drop of greater than 1 0  bara, the 

corresponding activation time are 7.5s (gas phase) are 9.23 s (two phase)
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Figure 5.10.2: Variation of fluid velocity with distance from the rupture plane at 
different times subsequent to FBR (Piper Alpha mixture).

Curve A: Two-phase; t = 9.23 s 
Curve B: Two-phase; t = 27.69 s 
Curve C: Two-phase; t = 46.15 s 
Curve D: Ideal gas; t = 9.23 s 
Curve E: Ideal gas; t = 27.69 s 
Curve F: Ideal gas; t = 46.15 s
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Figure 5.10.3: Variation of pressure with distance from the rupture plane at different 
times subsequent to FBR (Piper Alpha mixture).

Curve A: Two-phase; t = 9.23 s 
Curve B: Two-phase; t = 27.69 s 
Curve C: Two-phase; t = 46.15 s 
Curve D: Ideal gas; t = 9.23 s 
Curve E: Ideal gas; t = 27.69 s 
Curve F: Ideal gas; t = 46.15 s
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respectively. For both ball and check valves, the difference in activation times 

between the two models can be expected to be more noticeable the further the valves 

are placed from the rupture plane.

On the other hand, although the differences between the gas phase and two-phase 

activation times are small, for the high momentum flows that occur as a result of 

FBR, approximation of real behaviour with an ideal gas assumption could lead to 

significant under-estimations in inventory loss calculations.

5.10.2 Mass release data

The general trends observed from the ideal gas model are expected to be apphcable 

for two-phase flows, namely, that a check valve offers a better degree of protection as 

compared to a ball valve when either is placed in close proximity to the rupture 

plane, and that at long distances the difference in performance between the two 

valves becomes insignificant. However, a considerable under-estimation in the 

release rate and hence the calculated inventory loss will result if  the ideal gas model 

is used as opposed to two phase.

Figure 5.10.4 shows the variation of release rate with time subsequent to valve 

closure for various arbitrary delays in shut-down. The ESDV is placed 300m from 

the rupture plane. Curves A and B respectively show the results obtained using the 

two-phase model for valve shutdown taking place 1.37 and 6.47 s after the passage of 

flow reversal. Curves C and D show the corresponding results for an ideal gas.

It is clear from the data that the predicted release rate in the case of the two-phase 

mixture is significantly higher than that for the gas following emergency isolation of 

the pipeline. Pipeline depressurisation times are also longer.

For example, in the case of a 1.37 s delay in shutdown, complete evacuation of the 

isolated section of the ideal gas pipeline takes ca. 10 s (Curve C). The corresponding 

evacuation time for the two-phase mixture is ca. 16 s (Curve A). Similar differences 

can be observed for a closure delay of 6.47 s.
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Figure 5.10.4: Variation of release rate with time subsequent to check valve closure 
for arbitrary delays in shutdown (Piper Alpha mixture).

Curve A: Two-phase; valve closure delay after the passage of flow reversal = 1.37 s 
Curve B: Two-phase; valve closure delay after the passage of flow reversal = 6.47 s 
Curve C: Ideal gas; valve closure delay after the passage of flow reversal = 1.37 s 
Curve D: Ideal gas; valve closure delay after passage of flow reversal = 6.47 s
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The combination of the higher flow rate and the slower depressurisation rate for the 

two-phase mixture clearly indicate that the total inventory released prior to pipeline 

isolation will be greater than that for the gas pipeline. For the ranges tested, this is 

regardless of the delay in valve closure.

5.10.3 Pressure/Time history

Figure 5.10.5 shows the effect of time delay in valve closure following the passage of 

flow reversal on the pressure/time history at the upstream side of a check valve 

placed 300 m from the rupture plane. Curves A-D show the data for the two-phase 

mixture whereas Curves E-H relate to the gas system. The data is taken for a shorter 

pipeline (5 km) in order to reduce the CPU time. The general conclusions reached are 

however not expected to be affected.

As foreseen, when the valve shuts immediately on sensing flow reversal, i.e. at t=0 s, 

no pressure oscillation is predicted by either model (Curves A and E).

From our experience, the pressure peaks associated with expansion waves always 

shghtly precede the loci of flow reversal (see section ). As a result, when 

instantaneous shutdown of check valve occurs at the position of flow reversal 

(Curves A and E), there is a slight pressure differential across the valve. However, 

this disturbance quickly disappears due to frictional effects before being able to 

reflect from the intact end thus not giving rise to pressure oscillations. The larger the 

time delay, the greater is the resulting pressure differential impinging on the 

upstream valve face and the greater the consequent disturbance oscillating within the 

isolated section.

The upstream pressure predicted from the two phase model is always larger than that 

from the gas phase; the difference becoming more pronounced with the delay in 

valve closure. The latter is due to the increase in the volume fraction of liquid with 

the passage of time prior to valve closure, and also due to increasing non-linearity in 

fluid properties as a result of the increasing magnitude of the pressure disturbance.

The magnitude of the observed pressure peaks in figure 5.10.5 are however alarming.
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Figure 5.10.5: The effect of time delay in valve closure following the passage of flow 
reversal on the pressure-time history at the upstream side of a check 
valve placed 300m from the rupture plane (Piper Alpha mixture).

Curve A: Two-phase; time delay = Os 
Curve B: Two-phase; time delay = 0.57s 
Curve C: Two-phase; time delay = 1.37s 
Curve D: Two-phase; time delay = 6.47s 
Curve E: Ideal gas; time delay = Os 
Curve F: Ideal gas; time delay = 0.57s 
Curve G: Ideal gas; time delay = 1.37 
Curve H: Ideal gas; time delay = 6.47s
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For example, a delay of 6.47 s in valve closure results in a pressure rise of almost 30 

bara on the upstream side of the valve. This could have serious consequences in 

practice.

Figure 5.10.6 shows the results for the effect of pipeline length on the upstream 

pressure-time history of a check valve, placed 300m from the rupture plane (Piper 

Alpha mixture). The valve is assumed to close 1.37 seconds after the passage of flow 

reversal. Curves A - C  show the results obtained using the two phase model for 

pipeline lengths of 1,5 and 54 km respectively. Curves D - F show the corresponding 

results for the ideal gas model.

As noted in chapter 4, the shorter the pipeline the greater is the frequency and 

magnitude of oscillation since the pressure waves are reflected to and fro between the 

closed walls at either end in considerably smaller time periods. The differences 

between the results predicted from the ideal gas and two-phase models become more 

pronounced the shorter the pipeline since the subsequent large changes in pressure 

can lead to considerable and frequent changes in fluid properties which can only be 

detected accurately by a two-phase model. For long pipelines, both models give 

similar results because of a reduction in the frequency of pressure oscillations.

Figure 5.10.7 shows the upstream ball valve pressure-time histories for different 

closure rates for the Piper Alpha mixture. Curves A and B show the two-phase model 

results for closure rates of 2.54 and 5.08 cm/s respectively whereas Curves C and D 

show the corresponding data for the ideal gas assumption. As before, the valve is 

assumed to activate on sensing a pressure drop of 1 0  bara below the normal operating 

pressure (117 bara).

As expected, both the ideal gas and two phase models show that the faster is the valve 

closure rate, the greater is the accmal of line pressure. Closure times after activation 

are 16.5 seconds for valve closure at 2.54 cm/s and 8.25 seconds for a closure rate of 

5.08 seconds.

As the valve starts to close the pressure continues to drop at the valve location while 

the aperture diameter is still comparable to that of the pipe. On approaching the 

halfway stage of closure, the pressure then starts to build up with the two-phase 

model predicting higher pressures than the ideal gas. The observed faster initiation
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Figure 5.10.6: The effect of pipeline length on the upstream pressure-time history of 
a check valve, placed 300m from the rupture plane. Check valve shuts 
1.37 s after the passage of flow reversal (Piper Alpha mixture).

Curve A: Two-phase; pipeline length = 54km 
Curve B: Two-phase; pipeline length = 5km 
Curve C: Two-phase; pipeline length = 1km 
Curve D: Ideal gas; pipeline length = 54km 
Curve E: Ideal gas; pipeline length = 5km 
Curve F: Ideal gas; pipeline length = 1km
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Figure 5.10.7: Upstream Ball Valve pressure-time histories for different closure rates 
(Piper Alpha mixture)

Curve A: Two-phase, 2.54 cm/s 
Curve B: Two-phase, 5.08 cm/s 
Curve C: Ideal gas, 2.54 cm/s 
Curve D: Ideal gas, 5.08 cm/s
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time for this pressure increase in the case of the ideal gas can be attributed to the fact 

that wave velocity predictions are larger in this case. When the valve crosses the 

halfway stage, the continuing pressure rise is steeper in the ideal gas than the two 

phase model and the former goes on to give higher line pressure predictions, even 

after the valve fully shuts. This result is surprising considering that up to now, the 

results for check valve closure have indicated that the ideal gas model predicts lower 

valve face pressures.

Figure 5.10.8 shows the pressure variation with time at the downstream side of the 

ball valve during closure for the Piper Alpha mixture. Curves A and B show the two- 

phase model results for closure rates of 2.54 and 5.08 cm/s respectively whereas 

Curves C and D show the corresponding results for an ideal gas.

In this case, there is a significant difference between the ideal gas and the two phase 

models with the latter predicting much higher pressures. Hence the pressure drop 

across the valve is much greater in the ideal gas than in the two phase model. This in 

turn gives rise to faster depressurisation rates and as a result contributes to the lower 

inventory loss predictions as discussed in section 5.10.2.

5.10.4 Pressure Surge

Figure 5.10.9 shows the pressure surge versus time delay predictions obtained using 

the two-phase (Curve A) and ideal gas models (Curve B). Pressure surge data were 

calculated using equation 4.7.1 shown again below,

AP = p(aur +Up j (4.7.1)

It is surprising to note that the ideal gas model predicts much higher pressure surge 

despite its lower density. Figure 5.10.10 shows the variation of fluid density at the 

valve location with time as predicted from the two phase (Curve A) and the ideal gas
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Figure 5.10.8: Downstream Ball Valve pressure-time histories for different closure 
rates (Piper Alpha mixture).

Curve A: Two-phase, 2.54 cm/s 
Curve B: Two-phase, 5.08 cm/s 
Curve C: Ideal gas, 2.54 cm/s 
Curve D: Ideal gas, 5.08 cm/s
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Figure 5.10.9: Variation of pressure surge at various valve closure time delays 
following the passage of flow reversal (Piper Alpha mixture).

Curve A: Two-phase 
Curve B: Ideal gas
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models (Curve B). As expected a large difference in density prediction is obtained, 

the two phase giving larger density values.

The lower pressure surge observed in the case of the two phase mixture is due to the 

overriding effect of the terms û  ̂and u^a in equation 4.7.1, both being much higher in 

the case o f the ideal gas assumption as opposed to the two-phase model, as shown in 

figures 5.10.11 and 5.10.12.

The sudden drop in the term u^ shown in figure 5.10.12 which also affects the 

pressure surge data at the same time corresponds to condensation effects.
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Figure 5.10.10: Variation of fluid density at the valve location for various closure 
time delays subsequent to the passage of flow reversal (Piper Alpha 
mixture).

Curve A: Two-phase
Curve B: Ideal gas
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Figure 5.10.11: Variation of the term, u ,̂ at the valve location for various closure 
time delays subsequent to the passage of flow reversal (Piper Alpha 
mixture).

Curve A: Two-phase
Curve B: Ideal gas
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Figure 5.10.12: Variation of the term, ua, at the valve location for various closure 
time delays subsequent to the passage of flow reversal (Piper Alpha 
mixture).

Curve A: Two-phase
Curve B: Ideal gas
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5.11 CONCLUDING REMARKS

In this chapter, the ideal gas model based on the method of characteristics and relying 

on a specified time intervals grid for numerical discretisation (CNGS) as proposed in 

chapter 4 has been developed to deal with two-phase flows (CNGS-HEM). 

Subsequent optimisation and validation with field data have also been made for 

condensable gas (Piper Alpha) and flashing liquid (LPG) flows in long pipelines 

(>=100m). The conclusions that can be drawn are as follows:

^  The use of curved characteristics at the rupture plane for real fluid flows enables 

use of large Ax’s without sacrificing global accuracy, yet at the same time 

allowing fast CPU times

^  Significant error can be eliminated by performing isothermal flash calculations to 

determine fluid densities in between grid points instead of relying on interpolation 

techniques. The elimination of this error contributes to much greater stability of 

the model as divergent oscillations in pressure and density as noticed by Picard 

and Bishnoi (1989) are not prevalent

The magnitude of each time step is restricted by the phase transition boundary and 

the satisfaction of the choking boundary condition for homogeneous fluid flow 

(u=a).

The results of CNGS-HEM for the Piper Alpha simulation show excellent 

agreement with measured data pertaining to intact end pressures. Comparison of 

other data such as volume fraction of condensation and release rate with Chen’s 

(1993) META-HEM also show good agreement. A comparison of the efficiency 

of the CNGS-HEM with META-HEM with respect to CPU times is not possible 

since they are run on different computers. META-HEM takes about 6  weeks on a 

DEC station to profile 20000 s of depressurisation. CNGS-HEM takes 6  days on a 

DEC AlphaServer 84(X) 5/440 running at 440MHz.

CNGS-HEM gives good agreement when modelling pressure, temperature and 

total line inventory variations with time for FBR of a pipeline containing a LPG
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^  mixture. CNGS-HEM also compares very favourably with META-HEM, however 

two-fluid models such as MSM-CS (Chen, 1993) and PLAC perform surprisingly 

poorly in comparison. This backs up the findings of Chen (1993) that the fluid can 

be taken to be at thermal and mechanical equilibrium during the depressurisation 

process. Thermal non-equilibrium is insignificant except for the very early stages 

of depressurisation when processes such as delayed bubble nucléation may be 

prominent

^  CNGS-HEM predicts higher release rates for the LPG FBR experiments than 

META-HEM although velocities at the rupture plane exhibit the opposite trend. 

This is due to CNGS-HEM predicting higher fluid densities than META-HEM, 

signifying a smaller rate of gas evolution

Models such as PLAC that use interpolation techniques during the transient 

depressurisation calculations to calculate mixture properties are generally faster 

than more complete models such as CNGS-HEM, but can result in considerable 

inaccuracy for certain types of mixtures, especially those with a very narrow phase 

envelope

The dynamic response of both ball and check valves are affected by making the 

assumption of ideal gas. The ideal gas assumption predicts higher fluid and 

expansion wave velocities leading to faster activation times for both types of 

valves. The ideal gas model also fails to detect the reduction in expansion wave 

velocity due to the onset of two-phase flows.

Pipelines containing two-phase fluids can be expected to be more susceptible to 

delayed emergency shutdown than those containing just gas.

^  The ideal gas model can significantly under-estimate release rate and total 

depressurisation time thus yielding under-estimations with respect to inventory 

loss predictions. This can have damaging consequences when performing the 

safety case for any installation.

^  For check valves, the two-phase model predicts higher upstream valve pressures 

with respect to the ideal gas model. The difference between the two models 

increases with valve closure time delay due to increasing real fluid effects.
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^  The pressure surge in a two-phase mixture can be expected to be smaller than that 

in a gas phase. This is due to the lower velocity and speed of sound predictions in 

two-phase flows.
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CHAPTER 6: CONCLUSIONS AND SUGGESTIONS FOR 

FUTURE WORK

6.1 CONCLUSIONS

This thesis describes the development and application of a mathematical model based 

on the Method of Characteristics to describe the fluid dynamic effects subsequent to 

full-bore rupture (FBR) of a high pressure pipeline. The study also includes 

simulation and analysis of ESDV dynamic response, particularly for ball valves and 

check valves following FBR.

In chapter 2, the Navier-Stokes equations are simplified to the Euler equations. This 

is done based on the assumptions of homogeneous equilibrium and viscid-inviscid 

fluid flow together with negligible heat conduction effects within the fluid.

By making the assumption of homogeneous flow, a single momentum equation is 

sufficient for both phases and likewise with respect to the energy equation for the 

assumption of thermodynamic equihbrium between the two phases. As a result of 

these assumptions, the equations obtained for a real fluid are similar to those 

obtained for an ideal gas.

The use of the derived thermodynamic relations require prior knowledge of the state 

(gas, liquid or two-phase) of the mixture This is provided by the Michelsen stability 

criterion which thus allows accurate tracking of the phase boundary transition.

In chapter 3, the hyperbolic nature of the Euler equations of flow is shown in terms 

of the characteristic wave solutions. Various numerical techniques for the solution of 

the Euler equations are reviewed and based on this, the method of characteristics 

using a specified time (ST) interval grid is chosen for the following reasons:

discontinuities in the initial value may propagate along the characteristics, making 

it easy to handle

no additional smoothing parameter is needed to control overshoot and oscillation 

as is the case with second or higher order explicit finite difference schemes

306



Chapter 6 Conclusions and Suggestions fo r  Future Work

^  the boundary conditions are properly posed

boundary conditions may be introduced at predefined times in the ST grid 

approach. This feature makes the ST method useful in modelling the dynamic 

effects of ESDV closure at various locations within the pipeline by choosing an 

appropriate grid spacing.

In chapters 4 and 5, it is found that a proposed modification to the classical ST 

method of characteristics gives the same accuracy of results as the classical ST 

method but for a given run, CPU time for the former is less than a tenth of the latter. 

This is because in the new procedure, no iteration is needed to calculate the locations 

of the initial points. The validity of this approach is tested by comparison of this 

model’s results (CNGS) with the classical approach for the Piper Alpha FBR 

scenario, assuming that the mixture always stays in the gas phase. Good agreement is 

also obtained with the Wave Tracing Method, based on a characteristic grid type 

solution, of Chen et. al. (1993).

It is also shown that the use of a nested grid is essential if  underestimation of the 

release rate is to be avoided and if  accuracy in the fast transient region near the 

rupture plane is not to be compromised. For a given pipeline, although the number of 

elements in a nested grid scheme is greater than that for a simple grid scheme, the 

CPU time for the former is faster due to accelerated convergence near the rupture 

plane.

In the case of ideal gases, the use of curved characteristics makes little difference to 

accuracy as compared to the first order linear solution. However the CPU time is 

significantly longer. For real fluids, the use of curved characteristics at the rupture 

plane enables use of large Ax’s without sacrificing global accuracy, yet at the same 

time allowing fast CPU times

The inclusion of heat transfer effects is necessary if  the late time regime is to be 

modelled accurately. The effects of a fire surrounding a pipeline can only be 

modelled if  the model includes heat transfer firom the surroundings.

In chapter 5, the CNGS is further developed so as to handle two-phase flows (CNGS- 

HEM). Subsequent optimisation and validation with field data have also been carried
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out for condensable gas (Piper Alpha) and flashing liquid (LPG) flows in long

pipelines (>=100m). The conclusions that can be drawn are as follows:

Significant error can be eliminated by performing isothermal flash calculations to 

determine mixture fluid densities in between grid points instead of relying on 

interpolation techniques. The elimination of this error contributes to much greater 

stability of the model as divergent oscillations in pressure and density as noticed 

by Picard and Bishnoi (1989) are not prevalent.

The magnitude of each time step is restricted by the phase transition boundary and 

the satisfaction of the choking boundary condition for homogeneous fluid flow 

(u=a).

^  The results of CNGS-HEM for the Piper Alpha simulation show excellent 

agreement with measured data pertaining to intact end pressures. Comparison of 

other data such as volume fraction of condensation and release rate with Chen’s 

(1993) META-HEM also show good agreement. A comparison of the efficiency 

of the CNGS-HEM with META-HEM with respect to CPU times is not possible 

since they are run on different computers. META-HEM takes about 6  weeks on a 

DEC station to profile 20000 s of depressurisation. CNGS-HEM takes 6  days on a 

DEC AlphaServer 8400 5/440 running at 440MHz.

CNGS-HEM gives good agreement when modelling pressure, temperature and 

total line inventory variations with time for FBR of a pipeline containing a LPG 

mixture. CNGS-HEM also compares very favourably with META-HEM. 

However two-fluid models such as MSM (Chen, 1993) and PLAC perform 

surprisingly poorly by comparison. This backs up the findings of Chen (1993) that 

the fluid can be taken to be at thermal and mechanical equilibrium during the 

depressurisation process. Thermal non-equilibrium is insignificant except for the 

very early stages of depressurisation when processes such as delayed bubble 

nucléation may be prominent.

^  CNGS-HEM predicts higher release rates for the LPG FBR experiments than 

META-HEM although velocities at the rupture plane exhibit the opposite trend. 

This is due to CNGS-HEM predicting higher fluid densities than META-HEM, 

signifying a smaller rate of gas evolution.
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^  Models such as PLAC that use interpolation techniques during the transient 

depressurisation calculations to calculate mixture properties are generally faster 

than more complete models such as CNGS-HEM, but can result in considerable 

inaccuracy for certain types of mixtures, especially those with a very narrow phase 

envelope.

With regards to the valve closure simulations in chapters 4 and 5, the following 

conclusions can be drawn,

i. The dynamic response of both check valves and ball valves following FBR 

depends primarily on their proximity to the rupture plane and the flow 

reversal propagation speed. As the latter is directly related to the velocity of 

sound in the fluid medium relative to the escaping fluid,

a) pipelines containing gases are expected to be more susceptible to 

delayed emergency shut-down compared to those containing liquids. 

This however should be balanced against the higher pressure surges 

expected in hquid pipelines. On the other hand, pipelines containing 

two-phase fluids can be expected to be more susceptible to delayed 

emergency shutdown than those containing just gas.

b) shut-down delay is expected to be longer when rupture occurs during 

‘normal’ flow as compared to that occurring during ‘shut-in’. This is 

because in the former the expansion wave propagation velocity, which 

directly affects the valve activation time, is decelerated due to the 

normal flow of gas in the opposite direction.

ii. The dynamic response of both ball and check valves are affected by making 

the assumption of ideal gas. The ideal gas assumption predicts higher fluid 

and expansion wave velocities leading to faster activation times for both 

types of valves. The ideal gas model also fails to detect the reduction in 

expansion wave velocity due to the onset of two-phase flows.

iii.In the case of a check valve, the amplitude and frequency of upstream 

pressure fluctuations following emergency shut-down are directly related to,

a) gas flow reversal velocity at the time o f valve closure
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b) valve proximity to the rupture plane

c) pipeline length

d) fluid compressibility

The two-phase model predicts higher upstream check valve pressures with 

respect to the ideal gas model. The difference between the two models 

increases with valve closure time delay due to increasing real fluid effects. 

Pipelines incorporating ball valves are generally less susceptible to pressure 

surges or oscillations depending on closure rate.

iv.No pressure surge is expected in the case of a check valve closing 

instantaneously upon sensing flow reversal. However, even in the case of a 

very short delay (ca 2 s), a relatively large build-up in the pressure surge to a 

maximum value can be expected. It then diminishes in magnitude for larger 

closure delays.

V. The pressure surge in a two-phase mixture can be expected to be smaller 

than that in a gas phase. This is due to the lower velocity and speed of sound 

in two-phase flows.

vi. In terms of limiting the amount of released inventory following emergency 

shut-down, a check valve offers a far better degree of performance as 

compared to a ball valve when either is placed at close proximity of the 

rupture plane. At longer distances however, the difference in performance 

becomes insignificant.

vii.The ideal gas model can significantly under-estimate release rate and total 

depressurisation time thus yielding under-estimations with respect to 

inventory loss predictions. This can have serious implications when 

performing the safety case for any installation.

viii.A deceptively simple argument that the total amount of inventory released 

following FBR is equal to that present in the isolable section of the pipeline 

prior to ESD may give rise to gross underestimates particularly in the case 

o f ball valves placed in close proximity of the rupture plane.
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In conclusion, the results of this thesis demonstrate the importance of analysing the 

effect of fluid flow behaviour following full bore pipeline rupture on the dynamic 

response of emergency shutdown valves. The general conclusions reached however, 

are applicable to the range of parameters tested in the present study. Although, they 

may serve as a useful starting point, a comprehensive analysis is recommended in 

conjunction with the particular system under investigation. This is particularly the 

case for pipelines containing two-phase mixtures. The MOC has been shown to be a 

powerful tool in allowing such type of analysis.
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6.2 SUGGESTIONS FOR FUTURE WORK

ESDV dynamic simulation studies in flashing liquid flows

ESDV dynamic simulations in this study have been performed in conjunction with a 

condensable gas mixture. The techniques used to date should be applied to simulate 

the effect o f flashing liquid flows such as LPG on the various parameters tested, e.g. 

inventory loss, pressure surge, pressure oscillation and valve activation times.

Use of variable At depending on flow conditions

The use of a At that is only 10% of the maximum permissible according to the CFL 

criterion has been shown to be necessary for accurate prediction of fluid parameters 

across the phase transition interface. Further investigation needs to be performed to 

clarify if the At can be increased when the whole pipeline contains the same phase. 

The same test also needs to be performed with respect to satisfying the choking 

condition at the rupture plane during the late time regime.

Use of an implicit-explicit method of characteristic scheme

The possibility exists to model the characteristic curve relfraction across the phase 

transition interface as a result of different fluid compressibility (Nakamura et. al., 

1975) within the confines of an implicit MOC. The drawback of this methodology is 

that it can only be applied when the acoustic effect is not so important, i.e. for Mach 

numbers less than 0.5. However this method should be suitable for internal flows far 

from the rupture plane. The advantage of this method is that it is implicit so that fluid 

parameter interpolations occur along the temporal axis instead of the spatial axis. An 

investigation of the use of this method in conjunction with the method proposed in 

this thesis needs to be performed with the potential of further reduction in CPU time.
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Use of interpolation techniques for the calculation of fluid properties

Since a significant proportion of CPU time is spent performing flash calculations, it 

is envisaged that great reduction in CPU time is likely if flash calculations can be 

avoided wherever possible. In the slow transient region that exists the further one 

gets fi-om the rupture plane in any long pipeline, fluid thermodynamic properties tend 

to vary much less drastically than in the fast transient region. Therefore, the 

prediction of fluid properties based on various interpolation techniques ought to be 

tried as an alternative to always performing flash calculations. Numerical tests need 

to be conducted to assess the impact on accuracy of using a variety o f interpolation 

techniques that are available.

More accurate prediction of liquid density

It is well known that the use of cubic equations of state lead to under prediction of 

liquid mixture densities. The use of a volume correction factor such as that proposed 

by Peneloux et. al. (1982) as well as other equations of state on density predictions 

require further investigation. This obviously will have an effect on release rate 

profiles.

Effect of pipe elevation and fluid structure interaction

The effect of pipe elevation on fluid transients needs to be addressed. Pipe elevations 

can lead to interesting effects such as slugging which have detrimental effects with 

regards sudden surges in flowrate at the downstream end.

In the present study, the pipelines have been assumed to be rigid. Often the risers 

linking subsea wellhead clusters to semi-submersibles or sometimes floating 

production storage and off-loading systems (FPSO’s) are flexible pipes and as a 

result are prone to the phenomenon of fluid structure interaction. The effect of this 

with regards to transient fluid flow predictions in flexible pipes needs to be studied.
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Other transient flow scenarios

The present model can easily be extended to deal with transient fluid flow in pipe 

networks, and can also be used to study the effect of other equipment such as pumps 

and compressors in line.
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