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Highlights

• Propose two new approaches (DAMSD and DAMSDI) to HSI subpixel
target detection

• Address scarcity of target spectra and improve subpixel target subspace
estimation

• Provide and prove two ways of synthesising target-background mixed
spectra
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Abstract

The performance of subspace-based methods such as matched subspace detector (MSD)

and MSD with interaction effects (MSDinter) heavily depends on the background subspace

and the target subspace. Nonetheless, constructing a representative target subspace is

challenging due to the limited availability of target spectra in a collected hyperspectral

image. In this paper, we propose two new hyperspectral target detection methods termed

data-augmented MSD (DAMSD) and data-augmented MSDinter (DAMSDI) that can effec-

tively solve the scarcity problem of target spectra and from which a representative target-

background mixed subspace can be learned. We first synthesise target-background mixed

spectra based on classical hyperspectral mixing models and then learn a target-background

mixed subspace via principal component analysis. Compared with MSD and MSDinter,

the learned mixed subspace is more representative as spectral variability of target spectra

is explained to the largest extent and it leads to an improvement in computational speed

and numerical stability. We demonstrate the efficacy of DAMSD and DAMSDI for subpixel

target detection on two public hyperspectral image datasets.
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1. Introduction

Hyperspectral remote sensing collects the spectra for all pixels in a scene that can

record up to 490 bands ranging from 400 to 2500 nm [1]. One of the important tasks in

hyperspectral image (HSI) applications is target detection, where the presence or absence

of an interested target object in a pixel of HSI is determined by comparing the target5

spectrum and the pixel spectrum. A target can be categorised into multi-pixel, full-pixel

and subpixel target if its size is larger than, equal to or smaller than the ground sampling

distance, respectively. Target detection is a challenging problem for two reasons. First,

the spectra of objects are highly variable due to radiometric and atmospheric variations.

Second, in the subpixel case, a pixel containing target will be mixed by the target object10

and the background (non-target) object, thus the collected spectrum is a combination of

spectra of different materials. These two factors result in a dramatic difference between the

target spectrum measured in the laboratory environment and that measured in real scenes.

Target detection methods can be classified as signature-based methods or sparse representation-

based methods, depending on the availability of prior knowledge about target spectral15

characteristics [2]. Signature-based methods require the user to provide information of the

target in the form of a single spectrum or a subspace and model the background by us-

ing probability distributions [3] or subspaces [4, 5]. For example, adaptive matched filter

(AMF) [3] and constrained energy minimisation (CEM) [6] are classical approaches built on

a single target spectrum; matched subspace detector (MSD) [5] and MSD with interaction20

effects (MSDinter) [7] built on a target subspace. Methods of this type are suitable for tar-

gets of any sizes, but their performances rely on the accuracy of prior target information.

Sparse representation-based methods [8, 9] describe an observed spectrum as a sparse lin-

ear combination of training samples from the target class and the background class. These

methods depend less on the accuracy of individual target spectrum, but they only work25

well when there are sufficient samples for each target.

While methods including iterative estimation [10] and multi-instance learning [11] have

been proposed to improve a single target spectral signature, few work has been done on

improving the target-background subspace used in MSD, a classical and widely-adopted
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subspace-based method for subpixel target detection. Instead of simply concatenating the30

target subspace matrix and the background subspace matrix, in this paper we propose to

learn a representative target-background mixed subspace directly from data. As spectral

information of target is generally scarce and often only one library spectrum is available, we

will first augment target data by synthesising target-background mixed spectra. Specifically,

if the light ray is assumed to interact with ground materials only once before it reaches the35

sensor, we synthesise data based on linear mixing model (LMM); if we assume second-order

interaction, then two classical bilinear mixing models (BMM) are adopted. Next, we learn

the target-background mixed subspace by applying principal component analysis (PCA) to

synthetic data. Performing the generalised likelihood ratio test, we obtain two new target

detectors, called data-augmented MSD (DAMSD) in the case of linearly mixed data and40

data-augmented MSDinter (DAMSDI) in the case of bilinearly mixed data.

The main contributions of this paper are summarised as follows:

1. We propose two new approaches to HSI target detection called DAMSD and DAMSDI,

which address the scarcity issue of target spectra and improve the target-background

subspace estimation in MSD and MSDinter.45

2. We provide two ways of synthesising target-background mixed spectra and prove the

capability of the methods in representing any target spectrum in the scene with first-

order or second-order scatterings.

3. We justify that the target-background mixed subspace constructed via PCA extracts

the target information that is more discriminative from the background and improves50

both numerical stability and computational speed of the detector.

The rest of this paper is organised as follows. Section 2 reviews MSD and MSDinter.

Section 3 introduces the data-augmentation method and proposes new target detectors.

Section 4 presents experiment results on two public real hyperspectral image datasets.

Section 5 concludes the paper and suggests future work.55
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2. Binary hypothesis testing model for HSI target detection

The task of target detection can be formulated as a statistical question of binary hy-

pothesis testing and the decision is made based on the likelihood ratio test (LRT). Given

an observed spectrum x, the binary hypotheses are formed as follows:

H0 : target absent in x;

H1 : target present in x.
(1)

Treating x as a random vector with a specific probability distribution p(x), the LRT is60

given by

LR(x) =
p(x|H1)

p(x|H0)
. (2)

If the detection statistic LR(x) exceeds a pre-defined threshold η, then H1 is accepted as

the most likely hypothesis and thus x will be labelled as target. If LR(x) < η, then x will

be labelled as background.

In practice, the distribution of x includes some unknown parameters. Replacing these65

parameters by their maximum likelihood estimators (MLEs) in the LRT leads to the gen-

eralised likelihood ratio test (GLRT):

GLR(x) =
maxω1 p(x|H1)

maxω0 p(x|H0)
=
p(x; ω̂1)

p(x; ω̂0)

H1

≷
H0

η, (3)

where ω0 and ω1 denote the unknown parameters in the probability distribution conditioned

on H0 and H1, respectively; and ω̂0 and ω̂1 are the corresponding MLEs.

2.1. Matched subspace detector (MSD)70

In the matched subspace detector (MSD), the spectrum vector is restricted to lie in

a low-dimensional subspace of the spectral band space. As a linear mixing model, any

spectrum from the pixel containing only background materials will be modelled as a linear

combination of background bases, and any spectrum from the pixel containing the subpixel

target material will be modelled as a linear combination of target and background bases.75

In other words, the binary hypotheses associated to the MSD are given as follows: for an

L-dimensional hyperspectral spectrum x,

H0 : x = Sbαb,0 +wb (target absent);

H1 : x = Stαt + Sbαb,1 +wt (target present),
(4)
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where the matrices Sb ∈ RL×rb and St ∈ RL×rt represent the background subspace and the

target subspace, respectively; αb,0 and αb,1 denote the coefficient vectors of Sb, αt denotes

the coefficient vector of St; wb and wt are assumed to be Gaussian white noise vectors with80

variances σ2b and σ2t , respectively: wb ∼ N (0, σ2bI) and wt ∼ N (0, σ2t I); and I denotes

the identity matrix. The low dimensionality constraint on subspaces requires the number

of columns in subspace matrices Sb and St to be smaller than the dimension of original

data space, i.e. rb, rt < L. For the sake of notational simplicity, we introduce notations

SL = [St, Sb] and αL = [αt, αb,1] to denote the concatenation of subspace matrices and85

that of coefficient vectors, respectively.

The background subspace Sb is often unknown and thus should be estimated from back-

ground spectra in the HSI. In [12], principal component analysis (PCA) is used to identify

component spectra. The leading eigenvectors of the background covariance matrix, which

represent the linearly independent sources of spectral variation, are taken as columns of the90

background subspace. The target subspace may be specified by the user or constructed by

using PCA if data are available.

The GLR for the hypotheses given in Eq. (4) is then written as

GLR(x) =
L(α̂L, σ̂

2
t ;x)

L(α̂b, σ̂
2
b ;x)

=

[
xT (I − Pb)x
xT (I − PL)x

]L/2
, (5)

where L denotes the likelihood function with the MLEs α̂L, α̂b, σ̂
2
t , σ̂

2
b ; Pb = Sb(S

T
b Sb)

−1STb =

SbS
T
b is the projection matrix onto the column space of Sb; and PL = SL(STLSL)−1STL is95

the projection matrix onto the column space of SL.

Applying a monotonic transformation on the GLR, the MSD is obtained as

DMSD = GLR(x)2/L − 1 =
xT (PL − Pb)x
xT (I − PL)x

H1

≷
H0

η. (6)

However, concatenating St and Sb in H1 may be ineffective for two reasons. First,

learning the Sb that explains the largest amount of spectral variability of background spectra

cannot guarantee that the spectral variability of target spectra is well explained. Second,100

a matrix inversion is required to compute PL, which has a computational complexity of

O(L3). Meanwhile, if any column vector of St is nearly a linear combination of columns of

5

                  



Sb, then SL will be ill-conditioned and result in large numerical errors when inverting the

matrix [13].

2.2. Matched subspace detector with interaction effects (MSDinter)105

The MSD is built on the assumption that any spectrum is a linear combination of

subspace bases. In reality, however, as photons may interact with multiple objects before

entering the sensor, the collected spectrum may be a non-linear combination of component

spectra. Our previous work [7] extends the H1 of MSD by modelling the second-order

scatterings between target components and background components as an inter-crossing110

term, i.e.

H0 : x = Sbαb,0 +wb (target absent);

H1 : x = Stαt + Sbαb,1 + Sinterαinter +wt (target present),
(7)

where Sinter = [St,1�Sb,1, · · · ,St,1�Sb,rb ,St,2�Sb,1, · · · ,St,2�Sb,rb , · · · ,St,rt�Sb,1, · · · ,St,rt�
Sb,rb ] represents rbrt pairs of interactions between bases in the target subspace (St,i) and

bases in the background subspace (Sb,i); � denotes the element-wise multiplication between

two column vectors; and αinter denotes the coefficient vector associated with Sinter. Again,115

we simplify the notation through concatenating matrices and vectors as SI = [St, Sb, Sinter]

and αI = [αt, αb,1, αinter].

As with the MSD, the target detector called MSDinter is derived from the GLR and

given by

DMSDinter = GLR(x)2/L =
xT (I − Pb)x
xT (I − PI)x

H1

≷
H0

η, (8)

where PI = SI(S
T
I SI)

−1STI .120

The problem of numerical instability is more severe in MSDinter due to the additional

concatenation of Sinter. Moreover, given SI is a matrix of L × (rb + rt + rbrt), S
T
I SI may

even be non-invertible if rb > L/2.

3. The data-augmented matched subspace detectors

Instead of simply concatenating the target subspace and the background subspace to125

represent the target-background subspace for the pixels mixing target and background, it
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is desirable to learn a target-background mixed subspace directly from target-background

mixed spectra by using PCA, for at least two benefits. Firstly, PCA can identify the

components that explain the greatest amount of spectral variability of a target spectrum

which is mixed by background in subpixel target detection problems, thus creating a more130

representative subspace for the mixed target. Secondly, as all column vectors of the new

mixed subspace obtained by such data learning rather than matrix concatenating are now

orthonormal, we can avoid the matrix inversion operation in Eqs. (6) and (8), leading to

an improvement in numerical stability and computational speed.

Despite these benefits, it is hardly possible to learn an informative target-background135

mixed subspace in practice due to the scarcity of target spectra. To address this issue, we

will propose two ways of synthesising target-background mixed spectra in this section –

one describes the first-order scattering between spectra as in MSD, and the other describes

the second-order scattering as in MSDinter. From these synthetic data, we construct a

target-background mixed subspace with a set of orthonormal vectors, which will replace140

the concatenated subspace used in the alternative hypothesis H1 of MSD and MSDinter,

and the resultant new target detectors are called DAMSD and DAMSDI hereafter.

3.1. Data-augmented matched subspace detector (DAMSD)

Given N background spectra collected in the HSI, we synthesise the same number of

target-background mixed spectra based on the linear mixing model (LMM) [14], i.e. a145

convex combination of the prior target spectrum and a background spectrum:

tLMM,n = γntprior + ζnbn, (9)

where n ∈ {1, . . . , N} is an index for the spectrum, tprior denotes the prior target spectrum

commonly measured in a laboratory and bn denotes the background spectrum of the nth

pixel in the collected HSI; and γn is a random number sampled from a uniform distribution

U(0.05, 1). As the target pixels are sparse in the HSI, we treat the spectra of all pixels150

as background spectra; that is, N equals to the total number of pixels in the HSI. The

proportion of the target material in a pixel is determined via γn. As its true value is

unknown and varying across pixels, we choose γn randomly from the uniform distribution
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to imply that values within the range are allowed and equally likely to exist in the synthetic

data. The lower bound is set to be 0.05 to ensure that the target-background mixed spectra155

contain at least some spectral information of target. The upper bound is set to be 1 to

allow for the existence of a pure target pixel. Following the sum-to-one constraint in LMM,

we set ζn = 1− γn.

With abundant target information after such a data augmentation, it is now possible to

learn a target-background mixed subspace using PCA. Accordingly, the binary hypotheses160

will be modified as

H0 : x = Sbαb +wb (target absent);

H1 : x = Stbαtb +wt (target present),
(10)

where Stb ∈ RL×rtb represents the target-background mixed subspace constructed from

PCA, and αtb is the coefficient vector of Stb.

Following the derivation of MSD, we apply the GLR test and obtain the following target

detector, termed DAMSD:165

DDAMSD =
xT (I − Pb)x
xT (I − Ptb)x

H1

≷
H0

η, (11)

where Ptb = Stb(S
T
tbStb)

−1STtb = StbS
T
tb. Note that the leading eigenvectors obtained from

PCA are orthonormal and thus (STtbStb)
−1 is an identity matrix and Ptb is simplified as

above.

The number of eigenvectors is a tuning parameter in constructing the optimal sub-

space. It also determines the number of coefficients that needs to be estimated. From the170

perspective of PCA, selecting a larger number of eigenvectors could explain more spectral

variability. From the perspective of regression, given that the number of spectral bands

is fixed, using more eigenvectors as predictors faces the risk of overfitting. In MSD, we

only have to tune one parameter, namely the number of eigenvectors in the background

subspace (rb); the number of eigenvectors in the concatenated target-background subspace175

equals to rb plus the number of prior target spectra supplied by the user (rt). The DAMSD

has two tuning parameters, namely rb and rtb, for the numbers of eigenvectors of the back-

ground subspace and the target-background mixed subspaces, respectively. To ensure that
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the DAMSD is a more parsimonious model than the MSD, we impose constraints on rb and

rtb as follows: rDAMSD
b ≤ rMSD

b,opt and rDAMSD
tb ≤ rMSD

b,opt + rt, where rMSD
b,opt denotes the optimal180

number of eigenvectors in the background subspace used in MSD that gives the best target

detection performance. This condition guarantees that the DAMSD always uses fewer pre-

dictors than the MSD and thus fewer parameters need to be estimated. In the experiment

section, we will evaluate the DAMSD with and without the constraints, to justify the value

of these constraints.185

Learning a target-background mixed subspace would be useful for subpixel target de-

tection only if the synthetic data could represent mixed target spectra in the scene. We will

now show that synthesising target-background mixed spectra using Eq. (9) is capable of

recovering any target spectrum if the light ray interacts only once with the ground material.

Assumption 1. Let et1, . . . , e
t
mt

denote the endmembers in an HSI that represent target190

materials, eb1, . . . , e
b
mb

denote the background endmembers, and at1, . . . , a
t
mt
, ab1, . . . , a

b
mb

de-

note the corresponding abundance coefficients. Let f denote a non-linear mixing function

of endmembers for a background spectrum and g denote a non-linear mixing function of

endmembers for a subpixel target spectrum. Assume that f and g have the following forms:

195

f(eb1, · · · , ebmb
) =

mb∑

i=1

abie
b
i + ∆

g(et1, · · · , etmt
, eb1, · · · , ebm) =

mt∑

i=1

atie
t
i +

mb∑

i=1

abie
b
i + ∆,

(12)

where ∆ is a small constant.

The assumption in terms of Eq. (12) states that any interaction between spectra whose

order is higher than one is negligible. It also constrains the form of non-linear mixing

functions, from which we could prove the following proposition.

Proposition 1. Under Assumption 1, any real target spectrum treal can be recovered200

from a set of synthetic spectra tmix that are mixed with K + 1 background spectra whose

abundance vectors are linearly independent and by using Eq. (9), where K denotes the

number of pure background endmembers in an HSI.
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Proof. Under Assumption 1, any real target spectrum, denoted by treal, can be represented

by using a function g as205

treal = g(t, b1, · · · , bK) = αt+
K∑

i=1

βibi + ∆, (13)

where t denotes the prior target spectrum; b1, . . . , bK denote K background endmem-

bers, each of which represents a pure background object, and they are typically unknown

yet deterministic. The abundance vector of each observed target spectrum, denoted by

(α, β1, . . . , βK), is also unknown and deterministic. There are 1 +K coefficients in total.

Under Assumption 1, any real background spectrum observed at the nth pixel, denoted210

as brealn , can be represented using a function f as

brealn = fn(b1, · · · , bK) =

K∑

i=1

βn,ibi + ∆. (14)

fn follows the assumption specified in Eq. (12) and the subscript n is used to remind that

the abundance vector (β1, . . . , βK) is different for different real background spectra.

Following the mixing strategy in Eq. (9), a synthetic target-background mixed spectrum

is given by215

tmix,n = γnt+ (1− γn)brealn = γnt+
K∑

i=1

(1− γn)βn,ibi + ∆. (15)

Eqs. (13) and (15) have exactly the same functional form but differ in their coeffi-

cients of (t, b1, . . . , bK). Synthesising N target-background mixed spectra and recording

their coefficients, i.e. (γn, (1 − γn)βn,1, . . . , (1 − γn)βn,K), generate a coefficient matrix of

size (1 + K) × N . If this coefficient matrix has full row rank, then we can represent the

coefficient vector in Eq. (13) as a linear combination of column vectors of the coefficient220

matrix. In other words, we can recover treal by representing its unique coefficient vector of

(t, b1, . . . , bK) based on (K + 1) linearly independent coefficient vectors.

On the one hand, as each background endmember corresponds to a distinct background

material and there are only a limited number of materials in an HSI, K is a relatively

small number. On the other hand, as an HSI collects data over a large spatial area, the225

number of pixels N is generally large. Mixing each background spectrum with the library
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target spectrum will synthesise N target-background mixed spectra. It is reasonable to

speculate that, out of N synthesised spectra, there exists a set of (K + 1) spectra whose

abundance vectors are linearly independent and thus any real target spectrum with first-

order scatterings can be represented and recovered as a linear combination of these spectra.230

3.2. Data-augmented matched subspace detector with interaction effects (DAMSDI)

To characterise the multiple scattering effect, we adopt two classical hyperspectral non-

linear mixing models, both of which add bilinear interaction terms to the LMM, i.e.

x = aiei + ajej + aijei � ej +w, (16)

where ei and ej denote endmembers; ai, aj , aij denote the abundance coefficients and rep-

resent the fraction of pixel area covered by the corresponding materials. In Singer and235

McCord’s model [15], the interaction term is regarded as an artificial third endmember.

Thus, the abundance vector is constrained to sum to one to express that the observed spec-

trum can be fully described by the endmembers. In Fan’s model [16], Eq. (16) is derived

through approximating the non-linear mixing model by the second-order Taylor series and,

as a result, aij = aiaj . This interaction coefficient has a clear physical interpretation that240

the probability of a light ray interacting with two endmembers depends on the areal fraction

of each endmember [17]. These bilinear mixing models (BMMs) are applied to interaction

phenomena caused by two layers of materials, such as a layer of vegetation above the soil,

or a secondary source of illumination reflected from another object [18].

Taking the above two physical intuitions into account, we propose to synthesise target-245

background bilinearly mixed spectra as follows:

tBMM,n = γntprior + ζnbn + γnζntprior � bn, (17)

where tprior � bn =




tprior,1bn,1

tprior,2bn,2
...

tprior,Lbn,L




; γn is again a random number sampled from U(0.05, 1).

The coefficient of the interaction term is assumed to be γnζn following [16] and γn + ζn +

11

                  



γnζn = 1 following [15]. From these two conditions, we derive ζn to be 1−γn
1+γn

. Note that

Eq. (17) is different from Eq. (7) as we are now mixing the prior target spectrum with250

background spectra collected in the HSI, rather than mixing it with bases in the background

subspace.

To detect the target, we apply the procedure used in DAMSD, that is, constructing

a target-background mixed subspace Stb by applying PCA to the synthetic data from

Eq. (17), creating binary hypotheses as Eq. (10) and applying the GLR test. The target255

detector, termed DAMSDI, will have the same formula as Eq. (11); the projection matrix

Ptb = StbS
T
tb in the equation will be different as Stb is now different.

As we will show in Proposition 2, owing to the bilinear interaction terms, the data

synthesised based on Eq. (17) could recover any real target spectrum with second-order

scatterings. We start by modifying Assumption 1 to a slightly more general mixing func-260

tions.

Assumption 2. Let et1, . . . , e
t
mt

denote the target endmembers, eb1, . . . , e
b
mb

denote the

background endmembers, and at1, . . . , a
t
mt
, ab1, . . . , a

b
mb

denote the corresponding abundance

coefficients. Assume the non-linear mixing functions f and g, representing a background

spectrum and a subpixel target spectrum respectively, have the following forms:265

f(eb1, · · · , ebm) =

mb∑

i=1

abie
b
i +

mb∑

i=1

mb∑

j≥i
abia

b
je
b
i � ebj + ∆

g(e1, · · · , em) =

mt+mb∑

i=1

aiei +

mt+mb∑

i=1

mt+mb∑

j≥i
aiajei � ej + ∆,

(18)

where we simplify the notation by combining target and background endmembers as (e1, . . . , emt+mb
) =

(et1, . . . , e
t
mt
, eb1, . . . , e

b
mb

) and abundance coefficients as (a1, . . . , amt+mb
) = (at1, . . . , a

t
mt
, ab1, . . . , a

b
mb

);

∆ is a small constant.

Eq. (18) states that any interaction whose order is higher than two is negligible.

Proposition 2. Under Assumption 2, any real target spectrum treal can be recovered from270

a set of synthetic spectra tmix that are mixed with (K + 1)2 background spectra whose

abundance vectors are linearly independent and by using Eq. (17), where K denotes the

number of pure background endmembers in an HSI.
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Proof. Under Assumption 2, any real target-background spectrum treal has the following

expression275

treal = g(t, b1, · · · , bK) = αt+
K∑

i=1

βibi +
K∑

i=1

αβit� bi +
K∑

i=1

K∑

j≥i
βiβjbi � bj + ∆. (19)

The number of coefficients equals to (1 +K +K +K(K + 1)/2) = 1
2K

2 + 5
2K + 1.

Under the same assumption, any real background spectrum brealn has the expression

brealn = fn(b1, · · · , bK) =

K∑

i=1

βn,ibi +

K∑

i=1

K∑

j≥i
βn,iβn,jbi � bj + ∆. (20)

A target-background mixed spectrum synthesised from Eq. (17) with ζn = 1−γn
1+γn

is given

by

tmix,n = γnt+ ζnb
real
n + γnζnt� brealn

= γnt+

K∑

i=1

ζnβn,ibi +

K∑

i=1

K∑

j≥i
ζnβn,iβn,jbi � bj +

K∑

i=1

γnζnβn,it� bi + ∆.
(21)

From Eq. (21), we can obtain a coefficient matrix of size (12K
2 + 5

2K + 1) × N . If280

this coefficient matrix has full rank, some linear combination of its column vectors will

equal to the coefficient vector of Eq. (19) and hence could represent treal. For K > 1,

1
2K

2 + 5
2K + 1 < (K + 1)2. Therefore, if we can find (K + 1)2 background spectra whose

abundance vectors are linearly independent, then the full-rank condition on the coefficient

matrix is guaranteed and treal can be recovered.285

4. Experiments

In this section, we evaluate the effectiveness of DAMSD and DAMSDI on two public real

hyperspectral image datasets, namely HyMap and MUUFL. In both datasets, the target

has a size smaller than the ground sampling, suggesting the use of MSD for subpixel target

detection. Moreover, the datasets provide only one library spectrum that can be used as290

the prior information on target, suggesting the need and potential of data augmentation.

The HyMap dataset is a benchmark dataset for hyperspectral subpixel target detection [19,

20, 21, 22]. The MUUFL dataset provides two HSIs over the same scene, thus serving the

13

                  



purpose of model validation [23, 24]. The proposed methods are compared against MSD,

MSDinter and four classical target detection methods, namely CEM [6], AMF [3], signed295

ACE (sACE) [25] and OSP [4].

4.1. The HyMap dataset

4.1.1. Data description

Fig. 1a shows the HSI over Cooke City, MT, USA. It was collected by Rochester Institute

of Technology in July 2006 using the HyMap sensor [26]. The image contains 126 spectral300

bands corresponding to wavelengths from 450 to 2500 nm with a 15 nm average spectral

bandwidth and 280× 800 pixels with approximately 3 meters of ground resolution.

In the HyMap dataset, four types of fabric panels (F1, F2, F3, F4) and three types of

vehicles (V1, V2, V3) are prepared as targets. Fig. 1b shows their ground-truth locations

and Table 1 lists information on target type, size, number of pixels used to define the region305

of interest (ROI), and number of pixels for the guard region; ROI is a region including a

target; the guard region should not include any target pixels and is used to prevent the

influence of target spectrum on background estimation. F3 and F4 have two samples with

different sizes; F3a and F4a denote the sample with a size of 2m × 2m, and F3b and F4b

denote the 1m × 1m sample.

Table 1: Target information in the HyMap dataset. ‘n(ROI)’ and ‘n(Guard)’ denote the number of pixels

used to mark the target region and the guard region, respectively.

Target Description n(ROI) n(Guard)

F1 red cotton, 3m × 3m 9 16

F2 yellow nylon, 3m × 3m 9 16

F3a blue cotton, 2m × 2m 9 16

F3b blue cotton, 1m × 1m 1 8

F4a red nylon, 2m × 2m 9 16

F4b red nylon, 1m × 1m 1 8

V1 Chevy Blazer 1 8

V2 Toyota T100 1 8

V3 Sabura GL Wagon 1 8

310
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(a)

(b)

(c)

Figure 1: (a) The Hymap dataset with a size of 280× 800× 126; (b) ground-truth locations of seven targets

are marked in different colors; targets F3 and F4 come in two sizes and are marked separately as F3a, F3b,

F4a and F4b, respectively; and background pixels are in black; (c) position and fraction of implanted targets

in the training and test stages.
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Fig. 2a shows the target spectra measured in the laboratory environment and Fig. 2b

shows the spectra measured by the airborne sensor. We can clearly see a mismatch be-

tween two sets of spectra, which may be caused by imperfect radiometric and atmospheric

correction and the mixing phenomenon between target and background objects. The latter

issue has been particularly modelled in the alternative hypothesis of MSD-type methods.

(a) measured in the laboratory environment

(b) measured by the airborne sensor

Figure 2: Reflectance spectra of seven targets in the HyMap dataset.

315

4.1.2. Experimental settings

Since there is only one sample for each target, we adopt the false alarm rate (FAR)

as the evaluation criterion for the HyMap dataset. All the methods in our experiments

identify a pixel as target if its detection statistic is larger than a pre-defined threshold.
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Table 2: Parameters rb, rtb in subspace-based methods for the HyMap dataset.

rb rtb

OSP MSD MSDinter DAMSD DAMSDI DAMSD DAMSDI

F1 71 27 58 25 10 25 11

F2 38 21 37 21 14 19 11

F3a 25 11 32 6 5 11 6

F3b 111 111 29 11 5 11 6

F4a 67 51 56 41 51 35 39

F4b 53 53 117 53 3 52 2

V1 43 43 10 10 10 9 9

V2 4 2 21 2 2 3 3

V3 45 45 104 16 16 19 19

The threshold, however, is unknown and thus we set it as the largest detection statistic of320

pixels in the ROI. Any pixel outside of the ROI and guard region whose detection statistic

is larger than this threshold is called a false alarm and the FAR is defined as the number

of false alarms divided by the number of background pixels in the image; the number of

background pixels equals to the total number of pixels in the image minus the number of

pixels in the ROI and guard region. A target detection method is more effective if it has a325

lower FAR.

Targets will be detected in a sequential manner. That is, when one target is being

detected, the other targets will be treated as the background. Moreover, pixels located in

the guard region do not count as target nor background [27].

OSP, MSD, and MSDinter require the estimation of background subspace. Here we330

apply PCA to mean-centered pixels and select the first rb principal components to form Sb.

MSD and MSDinter also require the estimation of target subspace. Since there is only one

target spectrum, we subtract the background mean spectrum and normalise the centered

spectrum to unit length with respect to L2. In DAMSD and DAMSDI, the background

subspace and the target-background mixed subspace are estimated based on background335

spectra and target-background mixed spectra, respectively. For these two methods, we do
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Table 3: Target detection false alarm rates (FARs) for the HyMap dataset. Best results are in boldface.

CEM AMF sACE OSP MSD MSDinter DAMSD DAMSDI

F1 4.91e-05 4.91e-05 0 0 0 4.46e-06 4.46e-06 5.80e-05

F2 0 0 0 0 0 0 0 0

F3a 4.00e-02 4.14e-02 7.10e-02 1.67e-03 7.88e-03 3.39e-04 6.25e-04 1.67e-03

F3b 6.07e-02 8.89e-02 7.51e-02 1.29e-03 2.41e-03 4.69e-03 8.57e-04 1.70e-03

F4a 1.07e-04 1.07e-04 0 0 0 1.29e-04 4.46e-06 0

F4b 1.09e-02 2.21e-02 4.71e-02 7.86e-04 9.06e-04 1.59e-02 5.05e-03 2.68e-04

V1 1.88e-02 3.44e-02 1.51e-02 5.97e-03 1.33e-03 1.04e-02 3.30e-04 6.03e-04

V2 2.88e-01 5.06e-01 2.81e-01 1.23e-02 9.68e-03 2.29e-02 5.96e-03 7.26e-03

V3 1.19e-02 1.81e-02 7.33e-03 5.04e-03 3.31e-03 1.81e-02 4.64e-04 4.33e-04

sum 4.31e-01 7.11e-01 4.97e-01 2.71e-02 2.55e-02 7.25e-02 1.33e-02 1.20e-02

not mean center the spectra and apply PCA directly to the original background spectra

and target-background mixed spectra. The reason is that the two sets of spectra have

different mean values and, as the label of the test pixel is unknown, it is unclear about

which mean value should be subtracted from it. As explained in Section 3.1, to obtain a340

more parsimonious model, the tuning parameters rb, rtb are searched under the constraints

that rDAMSD
b , rDAMSDI

b ≤ rMSD
b,opt and rDAMSD

tb , rDAMSDI
tb ≤ rMSD

b,opt + 1. Table 2 lists the optimal

values of rb, rtb of OSP, MSD, MSDinter, DAMSD, and DAMSDI for each target.

4.1.3. Results and discussions

The detection results for all methods are listed in Table 3. Out of nine targets, DAMSD345

reduces the FARs of MSD on five targets and is as good as MSD on one target; DAMSDI

outperforms MSDinter on six targets and performs equally well on one target. Compared

with all methods excluding DAMSDI, DAMSD achieves the best performance on five tar-

gets; DAMSDI is optimal on six targets. The sum of FARs of DAMSD and DAMSDI are also

smaller than other methods. This suggests the effectiveness of learning a target-background350

mixed subspace from synthetic data.

In addition to detection accuracy, the efficacy of target detectors could also be reflected

in the separability between pixels that contain the target material and pixels that contain
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Figure 3: 2D plot of the detection statistics for target V2 in the HyMap dataset.

only background materials. In Fig. 3, we plot the detection statistic of all comparison

methods for the subpixel target V2. We first notice that MSD and MSDinter distinguish355

target pixels from background pixels more clearly than other existing methods as very

few background pixels have high detection statistics. The detection maps of DAMSD and

DAMSDI are almost identical to the corresponding baselines, suggesting that the proposed

methods maintain this advantage. Moreover, LMM-based methods are more effective in

suppressing the background pixels than BMM-based ones.360

Finally, we verify that the proposed methods could learn a more representative target-

background mixed subspace. Fig. 4 shows the spectrum from the pixel containing target
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Figure 4: Projections of the spectrum of the pixel containing target V3 onto the background subspace Sb

and target-background mixed subspace Stb. The number of eigenvectors used to estimate Sb and Stb are

given by rb, rtb, respectively.

V3 and its projections onto the estimated background subspace, i.e. Pbx, and the target-

background subspace, i.e. PLx (for MSD), PIx (for MSDinter) or Ptbx (for DAMSD(I)),

that give the lowest FAR. The subspaces estimated by MSD and MSDinter are built upon a365

large number of eigenvectors and thus almost fully represent the target spectrum. DAMSD

and DAMSDI build more compact subspaces and thus the projections deviate more from

the target spectrum. However, the subspaces estimated by DA-type methods are more

discriminative as the projection onto the target-background mixed subspace lies closer to the

target spectrum than the projection onto the background subspace. This clear distinction370

contributes to improved detection performance.
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4.1.4. Simulation study

In this section, we manually implant multiple samples of targets F1–V3 into the image

in order to create a training set and a test set on which MSD, MSDinter, DAMSD and

DAMSDI will be evaluated. Moreover, we will examine the choices of parameters, including375

the target proportion in synthesising target-background mixed spectra and the number of

eigenvectors in forming background subspace and target-background mixed subspace.

We generate 40 target-implanted spectra x in the training stage and 400 spectra in

the test stage by using the library spectrum as the target spectrum t, mixing the target

spectrum linearly and bilinearly with the collected background spectrum b via the following380

two models, and adding additive zero-mean white Gaussian noise n [28, 29]:

• linearly implanted target:

x = ftt+ (1− ft)b+ n; (22)

• bilinearly implanted target:

x = ftt+ (1− ft − fm)b+ fmt� b+ n. (23)

In the linear case, the implanted fraction ft is set as 1%, 5%, 20%, 50%; in the bilinear case,

ft is set as 1% and fm is set as 1%, 5%, 20%, 50%. The variance of the Gaussian noise at385

each band is set to match the signal-to-noise ratio of 30dB. The locations and fractions of

implanted targets are shown in Fig. 1c. Pixels in the ROI and guard region of the target

are replaced by randomly sampled background pixels. For all comparison methods, the

background subspace and the target-background mixed subspace are constructed from the

training data and used to detect targets in both training and test stages. The area under390

the receiver operating characteristic (ROC) curve (AUC) statistic is used to evaluate the

detection performance, which will be carefully explained in Section 4.2.2.

Table 4 lists the training and test AUCs of MSD, MSDinter, DAMSD and DAMSDI.

For linearly implanted targets, the proposed methods achieve similar average AUC to MSD

in the training stage and higher average AUC of 0.02 in the test stage. For bilinearly395

implanted targets, the advantage is more distinct as the average AUC improves by 0.07 in
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Table 4: Training and test AUCs on detecting linearly and bilinearly implanted targets. Boldface indicates

the best performance; underline indicates the better one between DAMSD and DAMSDI.

Linearly implanted targets

training AUCs test AUCs

MSD MSDinter DAMSD DAMSDI MSD MSDinter DAMSD DAMSDI

F1 0.9415 0.9776 0.9367 0.9272 0.9486 0.9281 0.9537 0.9290

F2 0.8504 0.9682 0.8563 0.8599 0.8256 0.9488 0.8292 0.8421

F3 0.9672 0.9666 0.9554 0.9682 0.9793 0.9349 0.9451 0.9750

F4 0.9412 0.9256 0.9420 0.9294 0.9461 0.3378 0.9531 0.9750

V1 0.9182 0.9738 0.9087 0.9166 0.8948 0.2896 0.9003 0.9173

V2 0.8926 0.9218 0.9229 0.9092 0.8763 0.2806 0.9350 0.9229

V3 0.9532 0.9532 0.9541 0.9696 0.8763 0.4328 0.9721 0.9750

average 0.9235 0.9553 0.9251 0.9257 0.9067 0.5932 0.9269 0.9338

Bilinearly implanted targets

training AUCs test AUCs

MSD MSDinter DAMSD DAMSDI MSD MSDinter DAMSD DAMSDI

F1 0.9254 0.9677 0.9342 0.9462 0.9167 0.3565 0.9536 0.9586

F2 0.5461 0.9941 0.7099 0.7052 0.5071 0.9657 0.6791 0.6769

F3 0.9982 0.9359 0.9968 0.9938 0.9969 0.1636 0.9880 0.9945

F4 0.9331 0.9901 0.9380 0.9491 0.9240 0.9269 0.9555 0.9599

V1 0.8230 0.9890 0.9997 0.9999 0.8125 0.1246 0.9981 0.9976

V2 0.7265 0.9651 0.7918 0.7381 0.7604 0.7443 0.7887 0.7212

V3 0.8552 0.9952 0.9071 0.9384 0.8220 0.7734 0.8656 0.9518

average 0.8296 0.9767 0.8968 0.8958 0.8199 0.5793 0.8898 0.8944
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Figure 5: Training and test ROC curves for bilinearly implanted targets V3 and V2.

both training and test stages. MSDinter shows outstanding performance on the training

data but deteriorates sharply on the test data, signifying overfitting; this issue does not

arise in the proposed methods. DAMSDI is slightly superior to DAMSD for both linearly

and bilinearly implanted targets as the majority of targets have higher AUCs and the400

average test AUC is also higher. In addition, we provide the training and test ROC curves

for bilinearly implanted targets V3 and V2 in Fig. 5; V3 corresponds to the case where

the proposed methods outperform MSD by a large margin and V2 corresponds to the case

where the performance is less satisfactory. When DA-type methods have similar AUCs to

MSD, e.g. in the training stage of V2, they also exhibit similar patterns of ROC curves.405

The synthesis of target-background mixed spectra depends on γn, which represents

the proportion of the target object in a pixel and is randomly sampled from a uniform

distribution with a lower bound l of 0.05 and an upper bound u of 1. To better understand

its influence on the detection performance, we select three values for u, namely 0.2, 0.5
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Table 5: Effect of the target proportion γn on the training and test AUCs of DAMSDI for the bilinearly

implanted targets. γn is randomly sampled from U(0.05, u) and three values of u are compared. Median

AUCs (in normal font size) and range of AUCs (in small font size) are reported with the best ones in bold.

training AUCs test AUCs

u=0.2 u=0.5 u=1 u=0.2 u=0.5 u=1

F1 0.94420.0000 0.94140.0001 0.94620.0002 0.92260.0000 0.95680.0001 0.95860.0001

F2 0.73360.0002 0.72370.0001 0.70520.0000 0.64200.0002 0.68510.0000 0.67690.0000

F3 0.99440.0001 0.99470.0001 0.99380.0001 0.99110.0001 0.99200.0001 0.99450.0000

F4 0.94670.0000 0.94450.0001 0.94910.0002 0.92780.0000 0.95840.0001 0.95980.0001

V1 0.99990.0000 0.99990.0000 0.99990.0000 0.99890.0000 0.99760.0000 0.99760.0000

V2 0.73980.0004 0.74040.0003 0.73810.0004 0.69670.0004 0.70600.0006 0.72120.0006

V3 0.93300.0004 0.93280.0006 0.93840.0004 0.94800.0003 0.94750.0006 0.95180.0002

avg 0.8988 0.8968 0.8958 0.8753 0.8919 0.8944

and 1, implement the DAMSDI experiment with bilinarly implanted targets for five times,410

and report the median AUC for assessing the detection efficacy and the range of AUCs for

assessing the stability of result. From Table 5, we see that the training AUCs of DAMSDI

may be improved on targets F2, F3, V2 by using different values of u other than 1, but the

test AUCs decline at a larger magnitude. Therefore, without any prior knowledge on the

target proportion in a pixel, we will use u = 1 as the default setting for all experiments in our415

paper; all reported results on real datasets are generated from the setting that corresponds

to the median sum of FARs (for the HyMap dataset) or the median average of AUCs (for

the MUUFL dataset). Moreover, the ranges of AUCs are near zero for all targets, indicating

that our method is very stable over random synthesis of target-background mixed spectra.

We now further investigate the relationship between the ground-truth implanted fraction420

fm and the target proportion γn by taking V2 as an example. Although the formulae for

implanting targets, i.e. Eq. (23), and for synthesising the target-background mixed spectra,

i.e. Eq. (17), are not identical, fm and γn both reflect the amount of target information in

a pixel. Table 6 suggests that, when the target-background interaction spectrum occupies

a small fraction of the pixel’s spectrum, e.g. fm = 0.01, DAMSDI with a small upper425

bound of the target proportion (u = 0.2) achieves a higher AUC than with a large upper
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Table 6: Training AUCs of DAMSDI with different upper bounds of target proportions u on detecting

bilinearly implanted target V2 with different implanted fractions fm.

u
fm

0.01 0.05 0.2 0.5

0.2 0.6030 0.6749 0.8059 0.8753

0.5 0.5846 0.6655 0.8136 0.8979

1 0.5786 0.6536 0.8036 0.9167

Figure 6: Effects of rb on MSD and rb, rtb on DAMSDI for detecting the bilinearly implanted target V2.

bound (u = 1). When the interaction spectrum occupies a large fraction, e.g. fm = 0.5, it

is preferable to use a large value of u.

Another parameter in the proposed methods is the number of eigenvectors used to

construct background and target-background mixed subspaces, i.e. rb and rtb. In Fig. 6,430

we present the training AUC of MSD and DAMSDI on detecting the bilinearly implanted

target V2 for different values of rb and rtb. The 3D plot of DAMSDI suggests that, for

a large range of rb and rtb (rb ≥ 80), its AUC varies smoothly over consecutive subspace

ranks. Comparing the AUC scores between MSD and DAMSDI, we see that, within this

range, DAMSDI is always superior to the optimal MSD.435

We now examine the constraints on rb, rtb discussed in Sections 3.1 and 4.1.2; that is

rDAMSD
b , rDAMSDI

b ≤ rMSD
b,opt and rDAMSD

tb , rDAMSDI
tb ≤ rMSD

b,opt + 1. On the one hand, imposing

the constraint reduces the search space for the most representative subspaces that gives the

largest AUCs, thus reducing the training time. As shown in Table 7, for most targets, the

number of pairs to be searched in the constrained case, i.e. rMSD
b,opt × (rMSD

b,opt + 1), is much440
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Table 7: Effect of constraining rb and rtb on the training and test AUCs of DAMSDI for bilinearly implanted

targets. ‘con’ and ‘unc’ represents the method with and without the constraints rDAMSDI
b ≤ rMSD

b,opt, r
DAMSDI
tb ≤

rMSD
b,opt + 1, respectively. rb and rtb list the optimal number of eigenvectors for background and target-

background mixed subspaces, respectively.

training AUCs test AUCs rMSD
b,opt rb rtb

con unc con unc con unc con unc

F1 0.9462 1.0000 0.9586 0.9998 11 11 70 6 29

F2 0.7052 0.9999 0.6769 0.9972 5 5 120 1 11

F3 0.9938 1.0000 0.9945 0.9993 16 16 60 6 27

F4 0.9491 0.9999 0.9599 0.9971 11 11 112 6 12

V1 0.9999 0.9999 0.9976 0.9976 125 120 120 10 10

V2 0.7381 0.9999 0.7212 0.9993 2 2 93 3 24

V3 0.9384 0.9999 0.9518 0.9975 11 11 93 6 20

average 0.8958 0.9999 0.8944 0.9983

smaller than a full search of rb and rtb over 126 × 126 pairs. In addition, the constrained

methods are less likely to overfit the training data. On the other hand, methods without

constraints will detect targets more effectively than the constrained ones since the subspaces

with a larger number of eigenvectors could explain spectral variability to a greater extent

and hence are more informative. We evaluate the effect of constraining rb and rtb on445

the detecting bilinearly implanted targets, and results are listed in Table 7. We see that,

without the constraints, DAMSDI achieves near optimal performances in the training stage.

Since target spectra are implanted into the same scene in the same manner, there is a high

similarity between the training and test data. Therefore, the test performances are almost

identical to the training ones for both constrained and unconstrained methods. We will450

further study the impact of subspace ranks on the MUUFL dataset which contains real

training and test data.
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4.2. The MUUFL Gulfport dataset

4.2.1. Data description

The second real dataset is the MUUFL dataset, which was collected in November 2010455

over the campus of the University of Southern Mississippi – Gulfport, MS, USA [30]. Three

hyperspectral images were taken over the same scene at two altitude levels. In this ex-

periment, we use Flight 1 image as the training data and Flight 3 image as the test data

since they were collected at same altitude and thus have the same spatial resolution. The

image contains 72 spectral bands ranging from 375 to 1050 nm with a 10 nm bandwidth460

and 325 × 337 pixels with 1 meter of ground resolution. The first and last four bands are

removed due to sensor noise [11]. The RGB image is shown in Fig. 7.

Figure 7: The MUUFL Gulfport dataset in RGB and ground-truth locations of 40 targets marked in different

colours.

In this experiment, we select 40 subpixel targets of sizes 0.5m×0.5m and 1m×1m and

of five different fabrics: brown (BR) (10 samples), dark green (DG) (10 samples), pea

green (PG) (10 samples), vineyard green (VG) (2 samples), faux vineyard green (FVG) (8465

samples). The ROI for each target is defined by a 5-by-5 rectangular region centered at

the ground-truth location and is shown in Fig. 7. The library spectrum is available for all

targets except FVG; we will use the library spectrum of VG as that of FVG, as suggested

in [30].
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4.2.2. Experimental settings470

For the MUUFL dataset, we use the area under the receiver operating characteristic

curve (AUC) statistic as the evaluation measure. The reason is as follows. In the HyMap

dataset, we calculate the FAR when the single target is correctly identified. In the MUUFL

dataset, as each target has multiple samples, we could calculate the FAR when one target

sample is detected, two samples are detected, up to all samples are detected. This essentially475

give the true positive rate and the false positive rate, which are used to plot the ROC curve.

Therefore, using AUC would be a more informative criterion for evaluating the detection

performance, which is also adopted in [23]. A target detection method is more effective if

it has a larger AUC.

The background subspace and the target-background mixed subspace are constructed480

by following the same procedure as with the HyMap dataset. rb and rtb are searched under

the constraints r
DAMSD(I)
b ≤ rMSD

b,opt , r
DAMSD(I)
tb ≤ rMSD

b,opt + 1, aiming for the largest AUCs for

each target in the training data. The optimal values are listed in Table 8 and will be used

to build subspaces in the test stage.

Table 8: Parameters rb, rtb in subspace-based methods for the MUUFL dataset.

rb rtb

OSP MSD MSDinter DAMSD DAMSDI DAMSD DAMSDI

BR 31 15 28 7 7 13 13

DG 32 27 28 20 20 27 27

PG 50 32 38 21 23 17 17

VG 6 4 29 4 4 3 3

FVG 49 19 52 17 15 19 20

4.2.3. Results and discussions485

Table 9 lists the AUCs of individual targets and the mean value of AUCs on training and

test data. As CEM, AMF and sACE do not learn any parameter and calculate detection

score based on the formula and input data, their detection performances in the training

and test stages solely depend on the data provided in the particular stage. In other words,
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Table 9: Training and test AUCs for the MUUFL Dataset. Best results are in boldface.

Training AUCs

CEM AMF sACE OSP MSD MSDinter DAMSD DAMSDI

BR 0.9609 0.9625 0.9783 0.9912 0.9873 0.9784 0.9862 0.9846

DG 0.9518 0.9685 0.9585 0.9807 0.9849 0.9798 0.9941 0.9937

PG 0.9588 0.9710 0.9486 0.9741 0.9812 0.9815 0.9840 0.9867

VG 0.9685 0.9889 0.9761 0.9924 0.9938 0.9990 0.9972 0.9994

FVG 0.9290 0.9236 0.9363 0.9714 0.9799 0.9816 0.9900 0.9846

average 0.9538 0.9629 0.9596 0.9819 0.9854 0.9841 0.9903 0.9898

Test AUCs

CEM AMF sACE OSP MSD MSDinter DAMSD DAMSDI

BR 0.9790 0.9732 0.9826 0.9639 0.9687 0.9665 0.9753 0.9785

DG 0.9626 0.9614 0.9612 0.9811 0.9755 0.9611 0.9746 0.9779

PG 0.9473 0.9491 0.9448 0.9598 0.9679 0.8825 0.9801 0.9600

VG 0.9778 0.9765 0.9737 0.9899 0.9882 0.9687 0.9904 0.9562

FVG 0.9526 0.9541 0.9795 0.9549 0.9457 0.8740 0.9678 0.9622

average 0.9639 0.9684 0.9699 0.9699 0.9692 0.9305 0.9776 0.9670

target detection in the training stage and test stage can be viewed as two separate tasks.490

Therefore, it is possible that the test AUCs of these methods are higher than the training

AUCs. OSP, MSD, MSDinter, DAMSD and DAMSDI learn optimal rb and rtb on the

training data and generally they are expected to perform worse on the test data. In the

training stage, DAMSD and DAMSDI are both superior to all comparison methods as they

achieve higher AUCs on four targets and obtain the best average AUC. In the test stage,495

DAMSD sustains its superior performance to MSD, in terms of both the number of targets

and the average AUC. Same conclusion can be drawn when comparing MSDinter with

DAMSDI. This result is again in favor of learning a more representative target-background

mixed subspace than concatenating target subspace and background subspace.

Another potential advantage of DA-type methods is that they speed up target detection500

by avoiding the matrix inversion operation. We record the execution time in the test stage
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Table 10: Effect of the target proportion γn on the AUCs of DAMSD and DAMSDI for the MUUFL training

data. γn is selected from U(0.05, u) and three values of u are compared. ‘worst’ denotes the smallest average

of AUCs out of three rounds of experiments.

DAMSD DAMSDI

u = 0.2 u = 0.5 u = 1 u = 0.2 u = 0.5 u = 1

BR 0.9881 0.9862 0.9862 0.9905 0.9859 0.9846

DG 0.9950 0.9948 0.9941 0.9944 0.9937 0.9937

PG 0.9892 0.9863 0.9840 0.9878 0.9860 0.9867

VG 0.9943 0.9978 0.9972 0.9913 0.9988 0.9994

FVG 0.9879 0.9871 0.9900 0.9870 0.9852 0.9846

average 0.9909 0.9904 0.9903 0.9902 0.9899 0.9898

worst 0.9908 0.9899 0.9897 0.9902 0.9898 0.9897

only since it matters the most in real-time target detection; the target detection algorithm

is executed on a computer with Intel Core i5 CPU at 2.4 GHz and 8.0 GB RAM using

MATLAB (R2018a). For MSD, MSDinter, DAMSD and DAMSDI, the average execution

time to detect one target is 362, 382, 221, 221 ms, respectively.505

Next, we investigate the effect of choosing different upper bounds u of the target pro-

portion γn on the training performance of DAMSD and DAMSDI. We set u = 0.2, 0.5, 1

and run the experiment for three times. Table 10 reports results from the round whose

average AUC (mean value of AUCs averaged over five targets) equals to the median of the

three average AUCs. It also lists the smallest value of average AUC from three rounds of510

experiments, denoted as ‘worst’. The performance does not change much by using different

values of u, indicating that our method is quite insensitive to this parameter. Similarly

to the simulation study with the HyMap dataset, we cannot find an optimal value of the

upper bound that could give the highest AUC on all targets and hence u = 1 is used as

the default setting. Comparing the worst average AUC to the median average AUC, we515

find that their difference is tiny, which suggests that our method is stable over randomly

synthesised target-background mixed spectra.

We end this section by investigating the effect of constraining rb, rtb on training and test
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Table 11: Training and test AUCs of DAMSD and DAMSDI with constrained (‘con’) and unconstrained

(‘unc’) rb and rtb for the MUUFL data. Values in boldface mean that unconstrained DAMSD and DAMSDI

achieves higher AUCs than constrained ones.

DAMSD DAMSDI

Training AUC Test AUC Training AUC Test AUC

con unc con unc con unc con unc

BR 0.9862 0.9942 0.9753 0.9734 0.9846 0.9930 0.9785 0.9692

DG 0.9941 0.9941 0.9746 0.9746 0.9937 0.9937 0.9779 0.9779

PG 0.9840 0.9896 0.9801 0.9697 0.9867 0.9906 0.9600 0.9724

VG 0.9972 0.9990 0.9904 0.9681 0.9994 0.9994 0.9562 0.9562

FVG 0.9900 0.9900 0.9678 0.9678 0.9846 0.9909 0.9622 0.9754

average 0.9903 0.9934 0.9776 0.9707 0.9898 0.9935 0.9670 0.9702

performances of DAMSD and DAMSDI; the constraints are r
DAMSD(I)
b ≤ rMSD

b,opt , r
DAMSD(I)
tb ≤

rMSD
b,opt + 1. From Table 11, we see that the unconstrained DA-type methods outperform520

constrained ones on the training data. However, on the test data, unconstrained DAMSD

performs much worse than the constrained one and the benefit of using unconstrained

DAMSDI becomes smaller. This could be an indication of model overfitting.

5. Conclusion and future work

This paper proposed two new methods to improve the estimation of target-background525

mixed subspace used in MSD and MSDinter. We augmented target data in two ways

to overcome the scarcity problem of target spectra, learned a target-background mixed

subspace which represents mixed target spectra in subpixel target detection problems and

reduces the detection time, and then obtained two new subpixel target detectors, namely

DAMSD and DAMSDI. Encouraging results on the HyMap and MUUFL datasets suggests530

that learning a subspace from synthetic target-background mixed data could improve the

target detection performance.

While we mix the target spectrum with all background spectra, the target in fact usu-

ally only interacts with nearby materials. In our future work, we would add a data pre-

processing step prior to the construction of target-background mixed subspace, such as535
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first identifying the pixels that potentially contain the target and then mixing the target

spectrum with the spectra from these pixels and their surrounding pixels. This would allow

us to obtain an even more representative target-background mixed subspace. Moreover, it

would be valuable to investigate the use of other endmember extraction methods in our

future work, especially for non-linearly mixed spectra. Furthermore, as mentioned in Sec-540

tion 1, sparse representation (SR)-based methods require a set of training target samples.

Exploring the applicability of data-augmentation methods to SR-based methods would be

another interesting future work.
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