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Previous research showed that the ability to make inferences about our own and
other’s mental states rely on common brain pathways; particularly in the case of
close relationships (e.g., romantic relationships). Despite the evidence for shared neural
representations of self and others, less is known about the distributed processing
within these common neural networks, particularly whether there are specific patterns
of internode communication when focusing on other vs. self. This study aimed to
characterize context-sensitive coupling among social brain regions involved in self and
other understanding. Participants underwent an fMRI while watching emotional video
vignettes of their romantic partner and elaborated on their partner’s (other-condition)
or on their own experience (self-condition). We used dynamic causal modeling (DCM)
to quantify the associated changes in effective connectivity (EC) in a network of brain
regions involved in social cognition including the temporoparietal junction (TPJ), the
posterior cingulate (PCC)/precuneus and middle temporal gyrus (MTG). DCM revealed
that: the PCC plays a central coordination role within this network, the bilateral MTG
receives driving inputs from other nodes suggesting that social information is first
processed in language comprehension regions; the right TPJ evidenced a selective
increase in its sensitivity when focusing on the other’s experience, relative to focusing
on oneself.

Keywords: social cognition, self and other, brain network, effective connectivity, DCM, PEB

INTRODUCTION

Social neuroscience research has shown that when trying to understand another’s emotional and
mental states, we rely on psychological processes and brain systems similar to those that we use
to understand our internal states (e.g., Lamm et al., 2016). Indeed, similar brain networks are
recruited when processing self and other’s internal states in both affective (Singer et al., 2004;
Jackson et al., 2005; Lamm et al., 2011), and cognitive tasks (Ochsner et al., 2004; Mitchell et al.,
2006; Lombardo et al., 2010). Consistent with these findings—and supporting the idea that inferring
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or understanding oneself and others are only ‘‘semi-independent
skills’’ (Dimaggio et al., 2008)—recent evidence suggests that
enhancing the capacity to understand our thoughts and feelings
increases the ability to infer those of others (Böckler et al., 2017).

According to simulation theories of social cognition, the
closer the other is to oneself, the more likely we are to
ground inferences about them on knowledge about oneself
(Aron et al., 1991; Gallese and Goldman, 1998; Adolphs, 2002;
Goldman, 2006; Gallese, 2014). Therefore, close relationships
(such as romantic partners) suggest themselves as a relevant
context to characterize the intimate relationship between
self and other processing. A previous study, in which
participants were presented video-vignettes of their romantic
partners, confirmed a significant overlap between the functional
anatomy of self and other processing, implicating brain regions
associated with both socio-affective and socio-cognitive systems
(Esménio et al., 2019).

Despite the evidence for shared neural representations of
self and others (e.g., Lombardo et al., 2010), less is known
about how information flows within these common neural
networks, specifically, are there specific patterns of internode
connectivity when focusing on other vs. on the self? The
objective of the present study was to characterize the information
flow among social brain regions involved in self and other
understanding. We, therefore, analyzed the effective connectivity
(EC) in a network of brain regions involved in social cognition
that included the bilateral temporoparietal junction (TPJ), the
posterior cingulate (PCC)/precuneus (prec) and the bilateral
middle temporal gyrus (MTG; e.g., Van Overwalle, 2009; Bzdok
et al., 2012; Schilbach et al., 2012; Schurz et al., 2014; Alcalá-López
et al., 2018). These particular brain regions had previously been
shown to be engaged by the experimental paradigm used in the
present study (Esménio et al., 2019).

The role of each of these regions for social processing is
well-documented. For example, the MTG is primarily involved
in language-related processes, such as semantic processing and
speech perception (Spreng et al., 2009; Amft et al., 2015), story
and narrative comprehension (Mar, 2011), memory processing;
particularly, autobiographical memory (Spreng et al., 2009) and
emotional processing (Schilbach et al., 2012). The PCC/prec is
involved in a wide range of highly integrated tasks (Cavanna
and Trimble, 2006), is associated with both self-related processes
including self-representation and self-reflection (Cavanna and
Trimble, 2006; Johnson et al., 2006), consciousness (Vogt and
Laureys, 2005; Northoff et al., 2006), future thinking and
prospective memory (Christoff and Gordon, 2008) and other
related processes, such as the theory of mind (TOM) or
mentalizing (Saxe and Powell, 2006; Bzdok et al., 2012; Schurz
et al., 2014); narrative comprehension (Mar, 2011) as well as
in empathic and forgivability judgments (Farrow et al., 2001;
Ochsner et al., 2004).

Finally, the TPJ—a key social brain region—is traditionally
associated with social-cognitive processes such as visual
perspective-taking and mental inference/TOM (Saxe and
Kanwisher, 2003; Aichhorn et al., 2006; Van Overwalle, 2009;
Ramsey et al., 2013; Schurz et al., 2014; Kanske et al., 2015).
Importantly, whereas the left TPJ (LTPJ) seems to be mainly

involved in language processes (Binder et al., 2009) and intention
detection (Berthoz et al., 2002), the right TPJ (RTPJ) has been
mostly associated with self-awareness (Decety and Lamm,
2007), and differentiation between self and other perspectives
(Santiesteban et al., 2012a; Steinbeis, 2015). Indeed, the RTPJ
has been shown to play a major role during TOM (Saxe and
Kanwisher, 2003), especially when a difference in perspective
exists between self and other (Aichhorn et al., 2006; Sommer
et al., 2007; Santiesteban et al., 2012a). In short, the right TPJ
appears to play a crucial and context-sensitive role in functional
integration, whenmaking inferences about others, relative to self.

As previously mentioned despite the converging findings
supporting the involvement of these brain areas in social
understanding, a functional integration among these regions
has not been established. In particular, the changes in
coupling between (i.e., extrinsic connectivity) and within
(i.e., intrinsic connectivity) these regions that underwrite
differential processing during inferences about self and others
are largely unknown. This research requires the use of analytical
approaches such as dynamic causal modeling (DCM) that allow
us to characterize the causal relationships between the brain
nodes of a network.

DCM is a generative model-based Bayesian approach that
infers EC within networks of distributed brain regions (Razi
and Friston, 2016), in which neuronal responses were measured
either with fMRI (Friston et al., 2003; Friston, 2009) or
electromagnetic responses such as EEG and MEG (David et al.,
2006; Kiebel et al., 2008). Particularly in fMRI, DCM combines
a dynamic forward neuronal model of how cortical regions
interact and influence each other with a detailed biophysical
hemodynamic model that transforms neuronal activity into the
measured response (i.e., blood oxygen level response—BOLD;
Buxton and Frank, 1997; Friston et al., 2003; Stephan and Friston,
2010; Daunizeau et al., 2011). This combination of an a priori
biologically plausible neural network model with the measured
BOLD response, makes it possible to infer the information flow
in terms of directed intrinsic and extrinsic EC; namely the
effect that one neuronal system has on another (Friston, 2009;
Daunizeau et al., 2011).

As the method of choice for modeling causal interactions
in neuroimaging data, task-related DCM has been extensively
applied to study a wide variety of processes in both clinical
and non-clinical populations. Some examples include DCM
studies on speech perception (Osnes et al., 2011), motor
functioning (Minkova et al., 2015), language and motor
rehabilitation post-stroke (Rehme et al., 2011; Kiran et al.,
2015), attention (Fairhall et al., 2009), executive function in
major depression (Schlösser et al., 2008), spatial and lexical
processing (Deng et al., 2012), response inhibition and working
memory in Schizophrenia (Allen et al., 2010; Zhang et al.,
2013), inter-hemispheric integration in Alzheimer’s disease
(Rytsar et al., 2011).

In this study, we used DCM combined with Parametric
Empirical Bayes (PEB) and Bayesian model reduction (BMR)
to examine the changes in EC associated with focusing on the
partner’s internal states, in comparison to focusing on one’s
own experiences (Friston et al., 2016). Technically, this entails
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inverting a fully connected model for each subject, using subject-
specific posteriors over the model parameters to estimate group
means (using PEB) and then removing redundant parameters
(using BMR). In our application, the key parameters of interest
were changes in intrinsic and extrinsic connectivity that model
the context-sensitive changes in coupling or information flow
due to focus on other, vs. self. Following on previous work using
this experimental paradigm (Esménio et al., 2019), our primary
hypothesis was that focusing on the partner (other conditions)
would increase the sensitivity of the RTPJ to its afferents from
other nodes within the social brain network under study.

MATERIALS AND METHODS

Participants
Forty-two participants—in amonogamous romantic relationship
for at least 1 year—were enrolled in this study. Before any
procedure, all participants were screened on the telephone
for an assessment concerning inclusion/exclusion criteria.
Inclusion criteria included: (1) the absence of any diagnosed
neuropsychiatric or neurodegenerative disorder; (2) absence,
in the past year, of a dependency/abuse of alcohol or drugs;
(3) ability to attend the MRI session; and (4) age between 20 and
50 years. In the final sample, all the participants were Caucasian,
right-handed and the age of the participants ranged from 23 to
40 years old (M = 31.17, SD = 4.76; for men: M = 32.13,
SD = 4.89, for women: M = 30.22, SD = 4.50). The majority of
participants had college degrees (68%). The mean duration of the
relationship was 7.78 years (SD = 4.76; range = 1–15 years). 33.3%
were married couples, 36.7% were living together, and 30.0%
were in dating relationships. Additionally, 38% of the couples
had children.

The study complied with the principles expressed in the
Declaration of Helsinki (with the amendment of Tokyo 1975,
Venice 1983, Hong Kong 1989, Somerset West 1996, Edinburgh
2000) and was approved by the local University Institutional
Review Board. At the beginning of this study, the procedure
was explained to the participants who provided informed
written consent.

Experimental Task
Each participant watched a set of video-vignettes of his/her
romantic partner expressing emotional contents, and was asked
to, while watching, either focus on his/her own experience (self
condition) or his/her partner’s experience (other condition).
These video-vignettes of 20 s duration containing the expression
of positive and negative emotional contents were extracted from
a previously video-recorded interaction task performed in the
lab, where participants shared things that they either liked
(positive videos) or disliked (negative videos) about their partner
(more details regarding the interaction task can be found in
Coutinho et al., 2017, 2018).

The final fMRI task comprised two blocks (self and other),
each containing three different conditions: positive trials (N = 8),
negative trials (N = 8) and partner-neutral trials (N = 6).
The latter was extracted from the Emotional Movie Database
(Carvalho et al., 2012). Blocks were displayed in a randomized

order across participants and stimuli were displayed in a pseudo-
randomized order across blocks.

Each trial consisted of: (1) fixation cross (5 s); (2) instructions
in accordance with the current block (3 s); (3) video vignette
(20 s); and (4) behavioral response (4 s).

An example of a trial is shown in Figure 1. In the
block Other, the performance was assessed in terms of the
percentage of trials in which participants accurately detected
their partner’s emotional state (e.g., by choosing a negative
descriptor for vignettes in which partner expressed negative
emotions or contents). In the block Self, since the participants
were reporting their own emotion, performance was measured
in terms of the percentage of trials in which the participant
reported an emotional state congruent with that expressed by
their partner. The results of the behavioral responses provided
by the participants at the end of each trial can be found in
Supplementary Table S1. However, it should be noted that
these behavioral responses aimed essentially to ensure that the
participants were focusing on their own (in self-condition) and
the other’s experience (other conditions).

Image Acquisition
Structural (T1) and functional images (T2∗) were acquired with
a clinically approved 3T MRI scanner (Siemens Magnetom
Tim Trio, Erlangen, German). Data were acquired from each
participant in a session that included one structural T1 scan
[192 sagittal slices, repetition time (TR) = 2,000 ms.; echo time
(TE) = 2.33 s, flip angle (FA) = 7◦, slice thickness = 0.8 mm,
slice gap = 0 mm, pixel size = 0.8 × 0.8 mm2, the field of
view (FoV) = 256 mm] and one functional BOLD sensitive
echo-planar imaging (EPI) sequence [39 axial slices; repetition
time (TR) = 2,000 ms.; echo time (TE) = 29 ms., FA = 90◦, matrix
size = 64 × 64, slice thickness = 3 mm, pixel size = 3 × 3 mm2,
field of view (FoV) = 222 × 222 mm]. Synchronization
between the paradigm and the acquisition was insured for
each TR.

Data Preprocessing
Data preprocessing was performed using the Statistical
Parametric Mapping software (SPM12; Wellcome Department
of Cognitive Neurology, London, UK1). Preprocessing steps
included: (1) slice-timing correction; (2) motion correction
through the re-alignment to the mean image; (3) rigid-body
registration of the mean functional image to the T1;
(4) normalization of the functional acquisition to the Scale
barr Neurological Institute (MNI) standard space (Ashburner
and Friston, 1999) through the application of a rigid body
transformation and a nonlinear spatial normalization following
nonlinear registration of the T1 to the MNI T1 template;
(5) regression of motion parameters, white matter (WM) and
cerebrospinal fluid (CSF) signals; (6) smoothing with an 8-mm
full-width half-maximum Gaussian kernel to decrease spatial
noise; and (7) high pass temporal filtering (filter width of
128 s) to remove low-frequency noise. A general linear model
(GLM) was inverted for each subject to identify subject-specific

1http://www.fil.ion.ucl.ac.uk
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FIGURE 1 | Scheme of an emotional trial for the other condition. To keep the confidentiality of the participants the image contained in this Figure corresponds to the
photograph of the first author of this work who permitted its inclusion.

regional responses for subsequent DCM analysis. All images
were inspected visually to ensure that participants had no brain
lesions or disproportionate head motion. Nine participants
were excluded: one due to head motion higher than 2 mm
in translation and 1.5◦ in rotation; two due to anatomical
abnormalities; two due to technical problems; four due to
abnormal patterns of activation during the video condition.

Effective Connectivity Analysis
In brief, our fMRI experimental design was a standard block
design with a 2 × 3 factorial structure (a two-level self vs. other
factors, and three levels of valence; positive, negative and neutral).
For the DCM analyses, we focused on the main effects of the
self-other factor. In other words, we asked whether this factor
changed directed connectivity within the social brain network
under study.

DCM was implemented using the Statistical Parametric
Mapping software (SPM12; Wellcome Department of Cognitive
Neurology, London, UK) to estimate the EC between the
regions of interest (ROIs; Zeidman et al., 2019). Based on
the group results from a previous study (Esménio et al.,
2019), we selected the brain regions associated with high-level
social processing (Bzdok et al., 2012; Schurz et al., 2014;
Alcalá-López et al., 2018); namely, those regions activated
during both self and other condition. These included the
left and right MTG, the PCC/precuneus and the left and
right TPJ. Since the RTPJ was the only significant region

for the contrast self vs. others, this region was designated as
the index node, which was connectivity dependent upon the
self-other context.

Regarding the regional responses for each subject (i.e., the
selection of the ROIs), five peak coordinates were used:
LMTG (−56, −14, −12), RMTG (56, −10, −12), PCC/prec
(−10, −52, 30), LTPJ (−49, −61 28) and RTPJ (50, −48,
18). These coordinates were obtained by combining several
group analyses from the above-mentioned previous study
(Esménio et al., 2019), and standard coordinates from the recent
literature on the social brain (Alcalá-López et al., 2018). The
regional responses corresponded to the principal eigenvariate
within an 8-mm sphere centered on the corresponding
subject-specific peak activation within 10 mm of the
group coordinates.

Next, a DCM model was computed for each subject,
combining: (1) the five regions of interest; (2) a fully
connected model (displayed in Figure 2A), where every
region shares a connection with all the other regions in the
network (i.e., full extrinsic connectivity) and has a connection
to itself (i.e., intrinsic connections); (3) driving inputs on
every node (apart from the index node—the RTPJ), where
the driving input comprised the visual stimulation during
the vignettes viewing blocks (displayed in Figure 2B); and
(4) condition-specific or modulatory effects on all the afferents
to the RTPJ (including intrinsic self-connections, as shown
in Figure 2C).
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FIGURE 2 | Dynamic causal modeling (DCM) initial model. (A) Connectivity architecture. (B) Driving inputs. (C) Modulatory effects. (D) Final model.

In respect to the condition-specific or modulatory effect,
it represented the effect of making inferences about a close
other relative to self. Thus, based on previous findings showing
rTPJ as the only region significant when inferring about
Other rather than Self (Esménio et al., 2019), were selected
as plausible locations all the connections to RTPJ, including
the self-connection.

In summary, this five ROI model comprised a fully connected
architecture (i.e., five intrinsic/self-connections and 20 between
regions/extrinsic connections), four driving inputs exerting
direct effects on four ROIs—the LMTG, the RMTG, the
PCC, and the LTPJ—and five context-sensitive or modulatory
effects (i.e., the four other ROIs that shared a connection
with the RTPJ—LMTG, LTPJ, PCC and RMTG—and a
self-modulatory effect). The ensuing model architecture is
displayed in Figure 2D.

The selections of the position for the modulatory effect
and the driving inputs’ locations were based on the results
of the previous study (Esménio et al., 2019) and the
connectivity architecture in Alcalá-López et al. (2018). The
latest represents a meta-analysis that derives a social brain
definition from 26 meta-analyses of social-cognitive capacities
with significant convergence from original 25,339 initial foci
from 3,972 neuroimaging studies in 22,712 participants.

After the model specification, this model was estimated
and inverted for each subject, and the ensuing posterior
densities over connectivity parameters (i.e., posterior means and
covariances) were taken to the between-subject level for inference
about group effects using Parametric Empirical Bayes (PEB;
Friston et al., 2016).

A second level PEB model was then computed over
the parameters to describe how group-level effects constrain
parameter estimates on a subject basis. More specifically, the PEB
model computed as second-level posteriors for each model the
mean and differences of the group. These second-level posteriors
were then used as empirical priors that shrink subject wise
posterior estimates, thereby eliminating a between-subject degree
of variability.

Accordingly, PEB random effects (RFX)’s underlying
assumption is that all subjects use the same model architecture
but express different parametric effects in terms of the
connection strengths or their modulation. In other words,
all subjects share the same architecture but express condition-
specific effects to a greater or lesser extent.

The final step, the elimination of redundant parameters
using BMR, enables one to identify context-sensitive changes in
connectivity by comparing models that do and do not contain
modulatory parameters.

BMR provides an efficient way to invert large numbers of
reduced models, i.e., simplified versions of the full model that do
not contain certain connections, following the computationally
expensive inversion of a full model. These inverted models (full
and reduced) are specified not only in terms of their priors but
also their likelihood. The latter can then be used to identify
which parameters/connections are redundant in the full model
by comparing the likelihood ofmodels that do and do not contain
a certain connection.

Three different PEBs (and consequent BMRs) were
performed, each addressing one sort of connectivity: i.e., the
average connectivity across conditions (corresponding to DCM’s
matrix A); the driving inputs (matrix C—the blue arrows
in Figure 2B); and the context-sensitive or modulatory
effect (matrix B—the blue arrows in Figure 2C). The
results of this reductive form of Bayesian model selection
are shown in Figures 3, 4, where the parameter estimates
of the extrinsic connections correspond to the underlying
connection strengths or information flow (in Hertz). In respect
to intrinsic connections, the effects are modeled in terms of
the log scaling of inhibitory self-connection (of 0.5 Hz). Only
connectivity parameters that survived to a posterior probability
of 95% are shown (when comparing models with and without
each parameter).

RESULTS

Regarding the connectivity architecture, a distinction must be
made between the extrinsic and intrinsic connections. The
extrinsic or directed connections reflect the EC between regions,
i.e., the effect that one region has on another region (in Hertz),
whereas the intrinsic or self-inhibition connections reflect how
susceptible a region is to the influence of other regions. In other
words, the self-inhibition connections reflect the rate of decay
of neuronal activity in each region, where a lower self-inhibition
means that a region is more sensitive to its inputs. Representing
a rate of decay of neural activity the estimated parameters
(EP) of intrinsic connections are log-scaling parameters set to
default strength of −0.5Hz when the average connectivity across
conditions is zero. Finally, while intrinsic disinhibition means
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FIGURE 3 | Average or “Baseline” Connectivity results. (A) Parameters posterior estimates. (B) The structure and parameters of the winning model. The black
lines/values illustrate the (natural) connectivity between brain regions; i.e., irrespective of stimulus and task. The numbers are the strength of connectivity (Hz).

FIGURE 4 | Driving inputs and modulatory effect results following Bayesian model reduction (BMR). (A) Driving inputs. (B) Modulatory effects or condition-specifics.
(Left) Parameters posterior estimates (EP). (Right) The structure and parameters of the winning model. The black lines/values illustrate the connectivity between brain
regions. The arrows in blue represent the driving inputs (upper) and modulatory effects (lower), respectively. The numbers quantify the strength of connectivity or
information flow (Hz).

a node increases sensitivity to all afferent inputs; an increase
in extrinsic connectivity is specific to the afferent connection
in question.

In terms of average connectivity several connections were
removed: from LTPJ to PCC; from RMTG to LMTG and PCC;
and from RTPJ to LTPJ, to PCC and RMTG. In the final
connectivity architecture: (1) the PCC exerts a positive influence
in every region but only receives input from LMTG; (2) the
RTPJ receives input from all the other regions having only one
efferent to LMTG; (3) the LTPJ exerts a negative influence on
all the other nodes (except for PCC), which can be interpreted
as a ‘‘tonic’’ inhibition (Stephan and Friston, 2010); and (4) in

both bilateral regions; i.e., MTG and TPJ, the information
flows from the left region to the right node. In respect of the
intrinsic connections, we can see that there was a ‘‘tonic’’ negative
self-inhibition in all the nodes in this network, particularly in
the PCC (Ep = −0.91). The resulting connectivity architecture
is summarized in Figure 3.

In terms of driving inputs, the winning model retained only
driving inputs to the bilateral MTG (left, Ep = 0.086 Hz and
right, Ep = 0.165 Hz). Finally, in terms of the context-sensitive
changes in connectivity, the only modulatory effect that survived
BMR was a decrease in RTPJ’s self-inhibition (Ep = −0.91). In
other words, RTPJ was disinhibited during the other condition;

Frontiers in Human Neuroscience | www.frontiersin.org 6 April 2020 | Volume 14 | Article 151

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Esménio et al. Self Other Processing Brain Networks

thereby increasing its sensitivity to all its afferents. These results
are summarized in Figure 4.

Finally, to take these results further, we performed a
supplementary PEB analysis, focusing exclusively on the
combination of intrinsic (within the region) connections
(i.e., all intrinsic connections were allowed to change). The
results show that the disinhibition in RTPJ’s (Ep = −0.64)
sensitivity was accompanied by a decrease in LMTG’s
(Ep = 0.22) intrinsic sensitivity. In other words, if all nodes
are allowed to change their excitability, the differential
activation elicited in RTPJ is explained by a reciprocal change
in LMTG’s and RTPJ’s excitability. These results are shown in
Supplementary Figure S1.

DISCUSSION

Previous research in social neuroscience of self and other
processing speaks to the existence of shared neural systems for
self and other processing (e.g., Decety and Sommerville, 2003;
Lawrence et al., 2006; Lombardo et al., 2010; Rütgen et al., 2015;
Lamm et al., 2016). In particular, in the context of romantic
relationships, a remarkable overlap was found in the brain
regions recruited when attending to one’s own internal states and
those of a partner—as shown in our previous work (Esménio
et al., 2019). This previous study also revealed that focusing on
the partner preferentially recruited further brain regions involved
in socio-cognitive processes, such as the RTPJ.

Hence, in the present study, we used DCM (combined with
PEB and BMR) to estimate the information flow within a social
brain network comprising the bilateral TPJ, PCC/precuneus and
bilateral MTG, during a social inference task. We were especially
interested in analyzing changes in directed connectivity or
information flow when participants focused on their romantic
partner, rather than on themselves.

Our results showed that—in terms of extrinsic
connections—in the final model a small number of extrinsic
connections were redundant, in particular the connections to
the PCC and from the RTPJ. Regarding the PCC, these results
suggest that—as in the Default Mode Network (DMN) which
is also known as a mentalizing network—this region seems to
have a coordination or orchestrating role within social brain
networks (Hagmann et al., 2008; Deshpande et al., 2011; Raichle,
2015; Esménio et al., 2019). Also, based on findings of the
analyses developed by Alcalá-López et al. (2018), using fMRI
task-constrained and task-unconstrained modalities to compute
the ‘‘functional coupling’’ between 36 social brain seeds, the
PCC is a plausible candidate for mediating the information
flow between low level-limbic networks and high-level cognitive
networks devoted to social processes.

On the other hand, the RTPJ appears to play the role of a
receptor node within the network under analysis, as it shares
afferents connections with all the nodes, having only an efferent
connection with the LMTG. This result is particularly interesting
when considering the role of this region in high-level cognitive
processes, such as detection of intention, belief reasoning,
perspective-taking and self-other distinction (Brass et al., 2009;
Santiesteban et al., 2012b; Ramsey et al., 2013).

Regarding the driving inputs—that correspond to the
stimulation during the vignette blocks—we found that the only
necessary driving inputs were those that entered through the
bilateral MTG. Taking in consideration that the driving inputs
were conveying visual and auditory information, this result
goes in line with the study by Alcalá-López et al. (2018), that
suggests that the lower sensory social networks are connected
with high-level social neural systems through the bilateral MTG
and the bilateral posterior superior sulcus (pSTS). Finally, this
result suggests that the social information provided by the
stimuli may have first entered the system through language and
narrative processing regions (Spreng et al., 2009; Mar, 2011)
to be represented and then assimilated hierarchically by more
integrative or high-level regions, such as the PCC and the TPJ.

At last, concerning the modulatory effect of focusing on other
relative to self, even though we tested for models where the
RTPJ could selectively increase its sensitivity to different afferents
or inputs, we found that a sufficient explanation for our data
was an increase in postsynaptic responsiveness—as mediated by
intrinsic disinhibition. It is generally thought that these changes
in excitability rest upon fast synchronous interactions between
inhibitory interneurons and pyramidal cells that express NMDA
receptors (Moran et al., 2011, 2013; Symmonds et al., 2018). It is
important to note however that in this DCM analysis, we do not
identify the source of the neuromodulatory effects mediating the
social process under study; we only identify the brain regions that
constitute the targets of any context-sensitive modulation.

In summary, departing from the well-documented
relationship between the selected regions, i.e., the PCC, TPJ
and MTG, and social cognitive processing (Mar, 2011; Schilbach
et al., 2012; Schurz et al., 2014), our results helped to characterize
the different roles that each of these nodes may play within
this social brain network. Regarding the PCC, similar to what
has been found in resting-state studies of DMN connectivity
(Hagmann et al., 2008; Deshpande et al., 2011; Raichle, 2015;
Esménio et al., 2019), this region appears to play a central role
within this network, by exerting an excitatory effect on all the
other nodes. On the other hand, in this experimental paradigm,
the bilateral MTG served as the entry point for stimulus bound
driving input; suggesting that sensory information is first
processed in a region that is associated with language and
narrative comprehension (Spreng et al., 2009; Mar, 2011).

Finally, in line with findings that support a key role of the
RTPJ in social cognition, particularly in self-other distinction
processes (Saxe and Kanwisher, 2003; Aichhorn et al., 2006;
Santiesteban et al., 2012a), our results showed that an increase
in the RTPJ’s sensitivity to afferent inputs from other nodes
was associated with the process of focusing on the romantic
partner (rather than on the self). Since this region has been
causally involved in differentiating self and other representations
(Santiesteban et al., 2012a), a possible explanation is that to
adopt their partner’s perspective, participants had to inhibit their
perspective (Steinbeis, 2015). However, the role of the RTPJ
in the specific dynamics of enhancing vs. inhibiting self-other
representations remains unclear.

The results of this study endorse the importance of using
EC analytic methods, such as DCM, which can estimate the
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effect that one neural system exerts over another, to understand
the dynamic interplay between the nodes of complex brain
networks. Technically, this sort of analysis allows one to quantify
intrinsic (self) connectivity that transpired to play a crucial role
in this study. This is important because functional connectivity
measures (such as those afforded by correlations or Granger
causality) preclude such characterizations. This is particularly
relevant when studying high-level psychological phenomena
such as social cognition that entail different subprocesses and
recruit distinct brain regions.

As with all DCM studies, there are a few qualifications that
should be borne in mind, when interpreting the functional
architectures and estimates of EC. First, DCM and related
approaches do not pretend to provide true or veridical estimates
of directed neuronal coupling. The objective is to find the best
explanation for the data in terms of simplified models of EC.
In other words, the architectures—and condition or context-
sensitive changes in coupling identified in our analyses—are
the best explanations for the data, in terms of model evidence
or marginal likelihood. This means that they provide the
most parsimonious (i.e., simplest) and accurate account. This
follows because log evidence is accuracy minus complexity,
where complexity is scored by the divergence between posterior
and prior estimates of the model parameters: minimizing
complexity precludes overfitting and underwrites generalization
to new data.

A second issue that deserves comment is the use of
fMRI time-series. At first glance, it may seem implausible
that differences in neuronal coupling—that rest upon fast
neuronal transients, in the order of 100 ms—can be detected
by fMRI. The reason why DCM works with slow hemodynamic
responses is that changes in EC produce changes in the
amplitude of fast evoked responses. After convolution with
hemodynamics, these amplitude differences can be detected
efficiently with fMRI. This is a key advantage of having
a forward or generative model of how slow, hemodynamic
responses are caused. In other words, the evidence for a
model with changes in coupling—and accompanying fast
neuronal responses—means that one can assess the evidence
coupling changes, even if the fast neuronal responses cannot be
observed directly.

Regarding future directions, it would be interesting to extend
the present analysis and use DCM to characterize context
sensitive changes in connectivity within other social brain
networks (e.g., the empathy network; the putative mirror-
neuron network). Another important contribution would be
to study the dynamic interplay between different networks
involved in different dimensions of social processing. For
example, to use DCM to characterize the coupling between
more embodied or affective systems and more cognitive

or conceptual systems. These analyses would allow us to
better understand the functional integration of affective and
cognitive aspects of social processing. Specifically, it would
help establish if these respective networks are hierarchically
related—in a way that mental state attribution depends on
the capacity to share another’s internal states. Finally, it
would be interesting to examine the existence of similar
EC patterns in other human dyads, such as parent-child or
therapist-patient exchanges.
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