Baseline use of hydroxychloroquine in systemic lupus erythematosus does not preclude SARS-CoV-2 infection and severe COVID-19

Maximilian F König1*, Alfred HJ Kim2-4, Marc H Scheetz5-7, Elizabeth R Graef6, Jean W Liew9, Julia F Simard10, Pedro M Machado11-13, Milena A Gianfrancesco14, Jinoos Yazdany14, Daman Langguth15, Philip C Robinson16*, On behalf of the COVID-19 Global Rheumatology Alliance

1Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
2Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
3Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
4Andrew M. and Jane M. Bursky Center of Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, Missouri, USA
5Midwestern University, Departments of Pharmacy Practice and Pharmacology, Chicago College of Pharmacy, and College of Graduate Studies, Downers Grove, IL, USA
6Midwestern University Pharmacometrics Center of Excellence, Downers Grove, IL, USA
7Northwestern Memorial Hospital, Department of Pharmacy, Chicago, IL, USA
8Division of Rheumatology and Clinical Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
9Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
10Department of Epidemiology & Population Health; and Department of Medicine, Division of Immunology & Rheumatology, Stanford School of Medicine, Stanford, CA, USA
The use of hydroxychloroquine (HCQ) in the prophylaxis and treatment of Coronavirus disease 2019 (COVID-19) has received significant attention by politicians and media figures. This has occurred despite limited data supporting its efficacy in COVID-19 as well as considerable concern about its safety when used at high doses (>400 mg daily) and in combination with other QT interval-prolonging drugs [1–4].

An inaccurate narrative has emerged in recent weeks that patients with systemic lupus erythematosus (SLE) who are taking HCQ as a baseline therapy are less affected by or do not develop COVID-19 [5–7]. This assumption has been challenged by Monti et al. [8], referencing...
data from the COVID-19 Global Rheumatology Alliance registry on patients with rheumatic disease which previously identified 19/110 (17%) patients with SLE [9]. A case series of 17 patients with lupus or antiphospholipid syndrome who developed COVID-19 on a median HCQ dose of 400 mg daily (median HCQ blood level of 648 ng/mL) has since become available [10].

As of April 17, 2020, we have now identified 80 patients with SLE and COVID-19 in the global physician-reported registry. Patients were predominantly female (72/80, 90%) and less than 65 years of age (69/80, 86%). Importantly, 64% (51/80) of SLE patients were taking an antimalarial (HCQ or chloroquine) prior to infection with SARS-CoV-2 (30% as monotherapy). Notably, 21.1% (121/573) of all reported patients with rheumatic disease in the registry were treated with an antimalarial prior to onset of COVID-19, yet 49.6% (60/121) required hospitalization. In patients with SLE, frequency of hospitalization with COVID-19 did not differ between individuals using an antimalarial vs non-users (55% [16/29] vs 57% [29/51], p=ns; chi-squared test). In lupus patients, escalation to maximum level of care (non-invasive ventilation, invasive ventilation, or ECMO) was required regardless of HCQ use (Table 1). Thus, patients with lupus – even if they are using an antimalarial such as HCQ as baseline therapy – can develop SARS-CoV-2 infection and severe COVID-19 at similar frequency as lupus patients not on antimalarials.

### Table 1. Coronavirus disease 2019 severity in patients with SLE by antimalarial use

<table>
<thead>
<tr>
<th></th>
<th>All SLE (n=80)</th>
<th>Antimalarial Yes (n=51)</th>
<th>Antimalarial No (n=29)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospitalized</td>
<td>45 (56%)</td>
<td>29 (57%)</td>
<td>16 (55%)</td>
</tr>
<tr>
<td>Level of Care*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Did not require oxygen</td>
<td>48 (60%)</td>
<td>33 (65%)</td>
<td>15 (52%)</td>
</tr>
<tr>
<td>Required supplemental oxygen, non-invasive or invasive ventilation or ECMO</td>
<td>30 (38%)</td>
<td>17 (33%)</td>
<td>13 (45%)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

*Information unknown for 2 cases*

There are currently >40 ongoing clinical trials examining HCQ in the prophylaxis or treatment of SARS-CoV-2 infection which employ highly variable strategies with regards to dosing (total oral loading dose 400-1400 mg), duration, and time of initiation [11]. However, dosing considerations of HCQ in COVID-19 may be critical to understand why patients with lupus may not be protected from SARS-CoV-2 infection.

Similar to *in-vitro* studies indicating activity of antimalarial 4-aminoquinoline derivatives against SARS-CoV-1 and MERS-CoV [12,13], a putative role for HCQ in the treatment of COVID-19 has been suggested by its antiviral effect in cell culture systems [14,15]. Given the assumptions made when moving from a cell-based model to a complex *in vivo* system, *in vitro* potency cannot be expected to translate into *in vivo* efficacy [16], as observed for chloroquine in a mouse model of SARS-CoV-1 infection [17]. To date, no *in vivo* exposure response data are available for HCQ in COVID-19. Few data are available to extrapolate what drug concentrations must be achieved to observe *in vivo* efficacy, and in which compartment (e.g. whole blood vs. epithelial lining fluid vs. lung parenchyma). Even for influenza and approved antiviral drugs (oseltamivir), the direct relationship between drug concentration and *in vivo* activity is uncertain [18,19]. Current *in vitro* data suggests that the concentration of HCQ at which 50% of the maximal activity against SARS-CoV-2 is obtained (EC50) is 0.72-4.51 μM (i.e. ~242-1,515 ng/mL) [14,15], similar to the EC50 observed in SARS-CoV-1 and MERS-CoV [13]. Ninety percent inhibition of SARS-CoV-2 (EC90) with HCQ was achieved at ~5-15 μM (~1,679-5,038 ng/mL), while clearance required ~20 μM (~6,717 ng/mL) [14,15]. Importantly, both EC50 and EC90 concentrations may be insufficient to
improve clinical outcomes. Instead, the concentration of HCQ required to eliminate SARS-CoV-2 may be a more meaningful target [20]. Such concentrations of HCQ (i.e. ~6,700 ng/mL), however, are not safely achievable in whole blood, and little is known about the concomitant concentrations obtainable in lung parenchymal cells in humans (assuming this represents a critical site for antiviral activity in COVID-19). Without an understanding of effective HCQ concentrations in target tissues, effective therapeutic doses remain difficult to predict by simulation. For dosing strategies to be informed, an intricate understanding of HCQ transfer constants between the blood and the lung tissue is required.

HCQ used in the treatment of SLE is typically prescribed at doses of 5.0-6.5 mg/kg, with a maximum dose of 400 mg daily. The majority of patients with SLE on chronic HCQ treatment do not achieve whole blood concentrations of 5-15 μM (~1,679-5,038 ng/mL) [21,10], corresponding to the EC90 for SARS-CoV-2 [14,15]. While pulmonary drug concentrations in mice are known to reach much higher levels than in blood, these HCQ concentrations may be required to achieve meaningful antiviral activity in blood. The difficulty of achieving potentially meaningful blood concentrations at HCQ doses typically prescribed in SLE may have important implications for trial design in COVID-19, and needs to be considered when interpreting outcomes of these studies. Notably, results from an open-label, randomized, controlled trial using doses as high as HCQ 1200 mg for three days (followed by a maintenance dose of 800 mg daily for 2-3 weeks) did not suggest efficacy of HCQ in suppressing viral replication [22]. These efficacy data, and the irrefutable clinical data collected through the COVID-19 Global Rheumatology Alliance registry, establishes that lupus patients on baseline therapy with HCQ are not universally protected from COVID-19.

Acknowledgement: M.F.K. was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award no.
T32AR048522, and received personal fees from Bristol-Myers Squibb and Celltrion, unrelated to this manuscript. A.H.J.K. was supported by grants from NIH/NIAMS and Rheumatology Research Foundation, and personal fees from Exagen Diagnostics, Inc. and GlaxoSmithKline, unrelated to this manuscript. P.M.M. is supported by the National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC), and received consulting or speaker’s fees from Abbvie, Eli Lilly, Novartis, and UCB Pharma. J.Y. received personal fees from Astra Zeneca and Eli Lilly, unrelated to this manuscript. P.R. reports personal fees from Abbvie, Pfizer, UCB Pharma, Novartis, Eli Lilly, and Janssen, and non-financial support from Roche. The views expressed here are those of the authors and participating members of the COVID-19 Global Rheumatology Alliance, and do not necessarily represent the views of the American College of Rheumatology, the European League Against Rheumatism, or any other organization.

References


193 18 CENTER FOR DRUG EVALUATION AND RESEARCH. APPLICATION
194 NUMBER: 021246Orig1s045 and 021087Orig1s062 [Abstracted from NDA 21087/S-062
195 Clinical Review, T. Vargas-Kasambira].
196 https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/021246Orig1s045_021087Orig1s
198
199 Rayner CR, Bulik CC, Kamal MA, et al. Pharmacokinetic-Pharmacodynamic
200 Determinants of Oseltamivir Efficacy Using Data from Phase 2 Inoculation Studies.
201 Antimicrobial Agents and Chemotherapy Published Online First: 9 May 2013.
202 doi:10.1128/AAC.02440-12
203
204 Arnold SL, Buckner F. Hydroxychloroquine for treatment of SARS-CoV-2 infection?
205 Improving our confidence in a model-based approach to dose selection. Clin Transl Sci
206 Published Online First: 8 April 2020. doi:10.1111/cts.12797
207
210
213 doi:10.1101/2020.04.10.20060558