UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Microseismicity of an Unstable Rock Mass: From Field Monitoring to Laboratory Testing

Colombero, C; Comina, C; Vinciguerra, S; Benson, PM; (2018) Microseismicity of an Unstable Rock Mass: From Field Monitoring to Laboratory Testing. Journal of Geophysical Research: Solid Earth , 123 (2) pp. 1673-1693. 10.1002/2017JB014612. Green open access

[thumbnail of Colombero_et_al-2018-Journal_of_Geophysical_Research__Solid_Earth.pdf]
Preview
Text
Colombero_et_al-2018-Journal_of_Geophysical_Research__Solid_Earth.pdf - Published Version

Download (1MB) | Preview

Abstract

The field-scale microseismic (MS) activity of an unstable rock mass is known to be an important tool to assess damage and cracking processes eventually leading to macroscopic failures. However, MS-event rates alone may not be enough for a complete understanding of the trigger mechanisms of mechanical instabilities. Acoustic Emission (AE) techniques at the laboratory scale can be used to provide complementary information. In this study, we report a MS/AE comparison to assess the stability of a granitic rock mass in the northwestern Italian Alps (Madonna del Sasso). An attempt to bridge the gap between the two different scales of observation, and the different site and laboratory conditions, is undertaken to gain insights on the rock mass behavior as a function of external governing factors. Time- and frequency-domain parameters of the MS/AE waveforms are compared and discussed with this aim. At the field scale, special attention is devoted to the correlation of the MS-event rate with meteorological parameters (air temperature and rainfalls). At the laboratory scale, AE rates, waveforms, and spectral content, recorded under controlled temperature and fluid conditions, are analyzed in order to better constrain the physical mechanisms responsible for the observed field patterns. The factors potentially governing the mechanical instability at the site were retrieved from the integration of the results. Abrupt thermal variations were identified as the main cause of the site microsesimicity, without highlighting irreversible acceleration in the MS-event rate potentially anticipating the rock mass collapse.

Type: Article
Title: Microseismicity of an Unstable Rock Mass: From Field Monitoring to Laboratory Testing
Open access status: An open access version is available from UCL Discovery
DOI: 10.1002/2017JB014612
Publisher version: https://doi.org/10.1002/2017JB014612
Language: English
Additional information: This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Earth Sciences
URI: https://discovery.ucl.ac.uk/id/eprint/10098146
Downloads since deposit
48Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item