Abstract—This work proposed the simulation of a highly sensitive surface plasmon resonance (SPR) optical fibre sensor equipped with a hematite (α−Fe₂O₃) layer coated with silver gratings on the surface of a D-shaped optical fibre. α−Fe₂O₃ nanomaterial film was utilised as the sensing layer. Free electrons on the metal surface were stimulated via evanescent waves on the fibre surface to generate surface plasmon waves. The resonance absorption peaks were monitored to determine the changes in refractive index (RI). The SPR fibre sensor was optimised using the finite element method to analyse the structural parameters of the D-shaped optical fibre and silver gratings. This method was also applied to examine the effect of the thickness of the hematite sensing layer on sensor sensitivity (S). The hematite-coated silver gratings significantly enhanced the sensor as revealed by the simulation outcomes. In this work, the maximum response S of the sensor can reach 6.4 μRIU when the external RI was changed from 1.33 to 1.39 with 45 nm thick silver grating, 50 nm width air gaps and 12 nm thick hematite (α−Fe₂O₃). The results suggest the high potential of α−Fe₂O₃ nanomaterials in optical fibre-sensing applications.

Index Terms—optical fibre sensors, silver gratings, surface plasmon resonance (SPR), hematite (α−Fe₂O₃),

I. INTRODUCTION

Biosensors with surface plasmon resonance (SPR) are considered as a leading optical sensing technology because they can be applied in environmental monitoring and medical biochemical and biomolecule diagnostics, among other fields [1], [2], [3]. A metal-dielectric interface that accommodates a p-polarized electromagnetic (EM) wave is present in the optical structure of SPR, and a surface plasmon wave (SPW) runs across this interface. Strong light absorption is caused by energy transfer when the p-polarized light is incident on the metal-dielectric interface such that the propagation constant (and energy) owing to the resulting evanescent wave is similar to the SPW. The output signal demonstrates resonance wavelength is a sharp dip at a specific wavelength[4]. A thin metallic layer of either Ag or Au that is directly integrated onto a coupling prisms base[5] is commonly utilised in such cases. During the incidence of TM-polarized light on the prism metal interface and reflectance measurement, a sharp dip occurs at either the resonance angle (angular interrogation) or resonance wavelength (spectral interrogation). This phenomenon depends on the adopted interrogation method. The refractive index (RI) of the dielectric (sensing layer) can be accurately determined by understanding the resonance wavelength or angle. Miniature size and measurement portability outside the confines of a laboratory are the important benefits of fibre-optic SPR sensors. These sensors are also used as low-cost components to enhance the multichannel performance of high-throughput screening and remote sensing. Fibre sensors with different geometries are used for selective cladding removal [6], [7], and tapered geometries [8] and as D-shaped fibres [9]. The detection accuracy (DA) and sensitivity (S) of the SPR sensors to the variation in the RI of the environmental liquid [10]. Several preliminary studies on the sensing performance of SPR fibres have shown that PCF and POF should be extensively applied in plasmonic sensors based on pure metallic nanostructures. TFBG and LPG may also be explored to improve the sensing performances of the Au layers because the former feature a larger (ε/ε₁) ratio than the latter, where ε₁ and εᵢ are the permittivities imaginary and real sections, respectively, thus accounting for the absorption and reflection of light in the metal [10]. Several preliminary studies on the sensing performance of SPR fibres have shown that PCF and POF may be extensively applied in plasmonic sensors based on pure metallic nanostructures. TFBG and LPG may also be explored to improve the sensing performances of sensor designs[11]. The plasmonic grating configurations of SiO₂ and SiC were introduced for salivary cortisol detection and analyzed on the basis of the on-power-loss spectrum, which leads to the enhancement of sensing performance[12]. Au grating is fabricated on the side surface of a D-shaped optical fibre by using a focused ion beam to improve the S of sensors to the variation in the RI of the environmental liquid [13]. S can be improved as a benefit of the LSPR effect on the Au grating [14]. Fibre sensors with multilayered graphene are used for ethanol detection, and sensing performance is enhanced by enforcing the optimum radiation damping condition in terms of variable Ag layer thickness and temperature in the sensor variants [15]. Various oxides with distinctive crystalline and stoichiometry phases can be formed by Ge. These oxides include hematite (α−Fe₂O₃), wustite, maghemite, and magnetite. α−Fe₂O₃ is the thermodynamically stable phase of Fe₂O₃. This semiconductor material is inexpensive, nontoxic, abundant in supply, and exhibits excellent thermodynamic stability when subjected to high temperatures [16]. Based on an optical perspective, α−Fe₂O₃ features a band gap of 2.2 eV in the visible range and a high RI. Hence, α−Fe₂O₃ can benefit various optical applications, such as electrochromism, interferences filters, photocatalysts, and solar energy conversion [16], [17], [18], [19]. α−Fe₂O₃ thin films can be developed.

Riadh A.Kadhim is with the Institute of Fundamental and Frontier Science (IFFS), University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China; University of Technology, Iraq (e-mail: alazizdl@gmail.com. Liming Yuan, Hao Xu, Jiang Wu, Zhiming Wang are with the Institute of Fundamental and Frontier Science (IFFS), University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China (Limy_@uestc.edu.cn ; Hao.xu.15@uestc.edu.cn ; Jiangwu@uestc.edu.cn ; zhmwang@uestc.edu.cn).
by utilising various techniques, such as sputtering [17], [18], [19], [20], \(\alpha - Fe_{2}O_{3} \) is an iron-oxide polymorph with low toxicity, high corrosion resistance, air stability, and low cost. These properties are attributed to the compounds core-shell nanostructure with a biphatic formation. \(\alpha - Fe_{2}O_{3} \) also displays synergistic effects within biosensors or chemicals [21]. The potential use of core-shell nanostructures in sensing applications is attributed to their unique catalytic properties and extremely large surface area [22]. The development of SPR-based optical fibre arsenic (As(III)) sensor relies on the use of an \(\alpha - Fe_{2}O_{3}/SnO_{2} \) core-shell nanostructure (denoted as [\(\alpha - Fe/Sn \)] CS) generated via hydrolysis. [23]. Lossy mode resonance (LMR) is a sensing method that is similar to SPR. In LMR, a transparent metal oxide is used instead of a metal layer. An optical fibre LMR-based As(III) sensor is utilised by using core-shell nanostructures (\(\alpha - Fe_{2}O_{3} \) NPs as the core with \(SnO_{2} \) as the shell) as the layer for sensing [24].

This work proposed improving the S and DA of optical fibre sensors by presenting a D-shaped optical fibre SPR-based sensor with Ag grating-coated \(\alpha - Fe_{2}O_{3} \). The Ag grating layer showed a sharpened SPR curve dip that allowed the Au layer to retain its DA and S. The oxidation problem of the Ag grating layer in air was addressed coating with an \(\alpha - Fe_{2}O_{3} \) layer. \(\alpha - Fe_{2}O_{3} \) films can be deposited by utilising various techniques, such as magnetron sputtering. \(\alpha - Fe_{2}O_{3} \) is an iron-oxide polymorph with low toxicity, high corrosion resistance, air stability, and low cost. Additionally, the parameters of bimetallic layer thickness (Ag, \(\alpha - Fe_{2}O_{3} \)) and the gap width between Ag gratings (\(w_{g} \)) and residual cladding thickness (\(d_{r} \)) were optimised to obtain the maximum SPR sensor with the maximum S. This paper is organized as follows. In Section 2, the design and theoretical background of the study are discussed. The performance parameters are elaborated on in Section 3. The results and discussion are provided in Section 5, and conclusions are given in Section 5.

II. DESIGN AND THEORETICAL BACKGROUND

SPWs are created by using fibre SPR sensors via evanescent wave on the fibre surface. Free electrons are then generated on the metal surface. A section of energy from light (incident) is absorbed when the evanescent wave resonates with the SPW, resulting in a reduction in the reflected light energy. Thus, the spectrum will achieve the ultimate peak of absorption resonance. The RI on the medium changes with the resonance peak position. Therefore, the sensors RI can be examined by observing alterations in the resonance peak position. The proposed SPR fibre-optic sensor (figure 1a) was designed through side polishing method with a depth of 0.1 \(\mu m \) to create a plane-sensing area. Ag and \(\alpha - Fe_{2}O_{3} \) layers were deposited onto the plane surface of the D-shaped fibre optic via pulsed laser deposition or magnetron sputtering. Then, the nanolithography technique was used to fabricate Ag\(\alpha - Fe_{2}O_{3} \) gratings. Figure 1b shows the cross-section of the SPR sensor. The core and cladding diameters of the single-mode fibre were 9 and 125 \(\mu m \) respectively. The length of the sensing region was \(L = 1 \) mm. The width of Ag gratings and the air gaps between gratings are represented by \(w_{g} \) and \(w_{a} \), respectively. The quantities of residual cladding are represented by \(d_{r} \) and \(A \). The grating period, and \(\eta = w_{g}/d \) is the duty cycle.

A. SPR Phenomenon

The SPR optical structure featured a metal-dielectric interface, which accommodated a p-polarized EM wave that was a SPW running across the interface. Strong light absorption occurred because of the energy transfer during the incidence of a reduction in the reflected light energy. Thus, the spectrum will achieve the attributed to the resulting evanescent wave that was similar to the SPW. The following expressions provide the aforementioned resonance condition [25]:

\[
K_{SPW} = K_{0} \left(\frac{\varepsilon_{mr}n_{2}^{2}}{\varepsilon_{mr} + n_{s}^{2}} \right)^{1/2}
\]

where \(K_{0} = \frac{2 \pi}{\lambda} \)

The propagation constant (KSP) with \(\varepsilon_{mr} \) as the metal dielectric constant (\(\varepsilon_{mr} \))’s genuine section is represented by the term on the right. \(n_{s} \) denotes the sensing (dielectric) layers RI. This technique works effectively for sensing distinct variables because the matching condition of this propagation constant exhibits high sensitivity towards light fluctuations within the dielectric constant [25].

B. Fibre Core and Cladding

A step-index single-mode fibre with pure silica as cladding and a silica core (3.1 doped GeO\(_{2}\)) was considered for theoretical modelling. The Sellmeier dispersion relation provides the fibre core and claddings wavelength-dependent RI (n) [26]:

\[
n(\lambda) = \left(1 + \frac{a_{1}\lambda^{2}}{\lambda^{2} - b_{1}^{2}} + \frac{a_{2}\lambda^{2}}{\lambda^{2} - b_{2}^{2}} + \frac{a_{3}\lambda^{2}}{\lambda^{2} - b_{3}^{2}}\right)^{1/2}
\]

where the Sellmeier coefficients are represented by \(b_{3}, b_{2}, b_{1}, a_{3}, a_{2} \) and \(a_{1} \), and the wavelength is represented by \(\lambda \). This study utilised the parameters shown in Table I [26].

C. Dispersion Relationships

Given their remarkable absorption features, silver and gold are commonly utilised in the sensing fields within the structure of SPR sensors. Silver displays a sharper resonance peak than gold and offers excellent DA. Nevertheless, silver shows a high risk to be oxidised within air space. The surface of silver is commonly coated with a sensitive metal oxide to prevent its oxidation and enhance the sensors sensitivity [27]. The Drude dispersion model [28] is used for wavelength dependencies of the metal layer dielectric constant.

\[
\varepsilon_{m}(\lambda) = 1 - \frac{\lambda^{2}\lambda_{c}}{\lambda_{p}^{2}(\lambda_{c} + i\lambda)}
\]

\[
\sqrt{\varepsilon_{m}(\lambda)} = n_{m}(\lambda) + jk_{m}(\lambda)
\]

where \(\varepsilon_{m} \) is the metals complex permittivity, \(k_{m} \) and \(n_{m} \) refer to the imaginary and real sections of the index of metals refraction, respectively, \(\lambda_{c} \) is the collision wavelength.
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2020.2992854, IEEE Sensors Journal.

The approximation of the sensing layer, and Δ alters the RI of the sensing medium. If Δn alters the RI of the sensing layer, and $\Delta \lambda_{res}$ is the corresponding alteration in resonance wavelength, then the SPR sensors sensitivity is defined as follows [31].

$$S = \frac{\Delta \lambda_{res}}{\Delta n}$$ \hspace{1cm} (6)

$$DA = \frac{1}{FWHM}$$ \hspace{1cm} (7)

Fig. 1: Schematic of SPR fibre sensor based on silver grating-coated hematite ($\alpha - Fe_2O_3$). (a) 3D structure probe. (b) Cross-section of SPR sensor.

TABLE I: Sellmeier coefficients for the fibre core and cladding

<table>
<thead>
<tr>
<th>coefficients</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>b_1 (µm)</th>
<th>b_2 (µm)</th>
<th>b_3 (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cladding (pure silica)</td>
<td>0.6961663</td>
<td>0.4079426</td>
<td>0.8974794</td>
<td>0.0684043</td>
<td>0.1162414</td>
<td>9.896161</td>
</tr>
<tr>
<td>Core (3.1 doped GeO$_2$)</td>
<td>0.7028554</td>
<td>0.4146307</td>
<td>0.8974540</td>
<td>0.0727723</td>
<td>0.1143085</td>
<td>9.896161</td>
</tr>
</tbody>
</table>

associated with losses, and λ_p is the wavelength associated with bulk plasma frequency. Table II lists the values of Au and Ag λ_c and λ_p.

TABLE II: Dispersion coefficients for Au and Ag

<table>
<thead>
<tr>
<th>dispersion coefficients (µm)</th>
<th>Au</th>
<th>Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_p</td>
<td>0.16826</td>
<td>0.14541</td>
</tr>
<tr>
<td>λ_c</td>
<td>8.9342</td>
<td>17.614</td>
</tr>
</tbody>
</table>

To determine the complex RI of the hematite $\alpha - Fe_2O_3$ layer, reflectance was ascertainment by utilising the expression $R = 1 - [Texp(A)]^{1/2}$, whereby A represents layer absorption. The approximation $n = [(1 + R)/(1 - R)] + ((4R)/(1 + R^2) - (k)2)^{1/2}$ was utilised to ascertain the layer RI (n), in which k refers to the extinction coefficient associated with the absorption coefficient (α) as $k = \alpha \lambda /4$ [29].

Based on transmission function, the amount of power conveyed via power monitors T was calculated and normalised towards the source of power based on the p-polarised light.

$$T = \exp(-\frac{4\pi}{\lambda_0} imag(n_{eff})L)$$ \hspace{1cm} (5)

In this case, n_{eff} represents the surface plasmon modes effective index, λ_0 refers to light source wavelength, and L corresponds to the sensing regions length. The plot of the sensor output (SPR response curve) denotes the normalised transmitted power against wavelength. Phase matching between the surface plasmon mode and the optical fibres fundamental mode generates resonance. The SPR response experiences a dip when this resonance condition is reached [30].

III. PERFORMANCE PARAMETERS

The performance of an SPR sensor is affected from two concepts. Firstly, the greatest shift in resonance wavelength ($\Delta \lambda_{res}$) for a particular change (Δn) in the sensing layer RI is recommended. Secondly, the smallest full width at half minimum (FWHM) should be associated with the SPR curves ($\Delta \lambda_{1/2}$). A considerable change could produce a remarkable sensitivity because the resonance wavelength adapts to alterations in the RI of the sensing medium. If Δn alters the RI of the sensing layer, and $\Delta \lambda_{res}$ is the corresponding alteration in resonance wavelength, then the SPR sensors sensitivity is defined as follows [31].
The figure of merit (FOM) of the proposed sensor depends on the sensitivity and full width at half maximum (FWHM) and is defined as follows [32].

$$\text{FOM} = \frac{S}{\text{FWHM}}$$ \hspace{1cm} (8)

The SPR curves depth is proportional to sensitivity, whereas its width is inversely proportional to detection accuracy. A narrow FWHM produces considerable results for detection accuracy. Thus, the performance of any sensor is highly dependent on sensitivity and detection accuracy, aiding in the measurement of resonance wavelength. The factors that affect the S and DA of SPR sensors include surface roughness, quantity of residual cladding and metal layer thickness [27]. The transmission dip should be defined in detail to observe the resonance wavelength accurately. Thus, another condition may be integrated over the dip as observation of the FWHM. Occasionally, the FWHM may not be defined given the extremely shallow dip arms. In such cases, FWHM is addressed by adjusting the probe design parameters [33].

IV. RESULTS AND DISCUSSION

The resonant wavelength was affected by the number of Ag gratings. Figure 2a shows the number of Ag gratings as the transmission spectra fluctuated between 5 to 50. No shift occurred in the resonant wavelength when the number of Ag gratings exceeded 20 and 30. As the grating arrays length overrode the fibre core diameter, the number of Ag gratings showed a minimal influence on the response of the sensor to the outer environment [34]. When the external RI was high (1.39) and the number of Ag gratings was 5, a secondary peak appeared at a shortened wavelength in addition to the sharp primary resonance peak. This secondary peak was due to a quadrupole resonance that had a different electron oscillation pattern from the primary dipole resonance, resulting in a reduction in the DA of the primary resonance peak. Thus, the number of Ag gratings was set to 20. As shown in figure 2b, reduction in the quantity of residual cladding resulted in a deep and wide SPR curve. Consequently, the detection accuracy decreased, and sensor sensitivity increased. Conversely, the association between the SPR and fundamental mode was weakened when the amount of residual cladding increased, resulting in a shallow SPR dip and narrow width. Finally, the sensitivity decreased, whereas the detection accuracy showed improvement [30].

Figure 3 illustrates the relationship between the external RI and resonant wavelength at various air gap widths and the fixed grating width of $w_g = 0.5 \mu \text{m}$. The increase in the sensing mediums RI resulted in a nonlinear increase in each air gaps resonance wavelength. The S of the SPR fibre sensor was determined on the basis of the curve slope. The maximum S values of the SPR fibre sensor at the sensing medium RI of 1.39 with the air gap widths of 10, 30, 50, and 70 nm were 4.6, 4.4, 4.2, and 4.0 $\mu \text{m/RIU}$, respectively. A minor reduction in S was observed with increased gap widths. High S was obtained when the air gap width (w_g) between the gratings was 10 nm. This finding implied the lack of an indefinite increase in the sensors S with the width of air gaps between Ag gratings.

Figure 4a illustrates the relationship between the wavelength at RI = 1.39 and transmission spectra in terms of the distinct thickness of Ag gratings. The reduced thickness of Ag gratings produced a remarkable dip in SPR, thereby increasing S. With increased Au layer thickness, S increased whereas DA decreased. Thickness increased as DA reached its minimum possible measurable value, resulting in the maximum Au layer thickness of 65 nm. Increased Au layer thickness produced shallow transmission spectra. Occasionally, the DA was lower than its defined limit, as shown in Figure 4b. Therefore, the Ag layer performed better than the Au layer in retaining its DA and S.
This behavior affected the decreasing variation in shift resonance wavelength (Δλ_{res}), thereby decreasing S. Accordingly, S decreased to 5.0 μm/RIU when α – Fe₂O₃ thickness was 14 nm. As shown in Figure 7b, the α – Fe₂O₃ thickness of 12 nm produced the highest S. Thus, the α – Fe₂O₃ thickness of the proposed SPR sensor was set to 12 nm.

The SPR curves depth is proportional to S, whereas its width is inversely proportional to DA. A narrow FWHM produced desirable results for DA. The performance of any sensor is highly dependent on sensitivity and DA. In Figure 8, the SPR fibre sensors spectra with RI as the number of gratings were fixed at 20. The gap width between gratings was 10 nm, the Ag layer thickness was 45 nm, and α – Fe₂O₃ thickness was...
Fig. 5: Spectra of the proposed SPR fibre sensor with varied external RIs, 20 silver gratings, 10 nm gap width between gratings and silver thickness of 45 nm.

12 nm. At Ag/α − Fe₂O₃ grating thickness of Ag 45 nm + α − Fe₂O₃ 12 nm and increased external RI from 1.33 to 1.39, the SPR curve dip deepened and widened. Thus, the sensitivity was enhanced, but DA was decreased, especially at high external RI.

Figure 9(a,b) illustrates that the relationship between the external RI and resonant wavelength varied with different thicknesses of α − Fe₂O₃. Au and Ag layer thicknesses were set at 45 nm, the external RI and α − Fe₂O₃ thickness increased, and the resonance wavelength was diverted toward the long-wave direction. The S of the SPR fibre sensor with various thicknesses of the sensing layer regions could be determined on the basis of the curve slope. The minimum S values of the SPR fibre sensor with the sensing medium RI of 1.33 and 0, 3, 5, 8, 10, and 12 nm α − Fe₂O₃ thicknesses were 2.2, 2.6, 1.8, 2.1, 2.0, and 2.4 µm/RIU, respectively. The maximum S values of the SPR fibre sensors with the sensing medium RI of 1.39 were 4.6, 4.8, 5.6, 5.8, 6.2, and 6.4 µm/RIU.

The S of the SPR fibre sensor was affected by metal layer thickness (Ag), the gap width between the Ag gratings (w₂), and residual cladding thickness (d_r). All of these parameters were optimised to obtain the maximum SPR S of the sensor, which reached 4.6 µm/RIU. When a α − Fe₂O₃ layer was coated on the Ag grating, the maximum SPR S of the sensor...
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2020.2992854, IEEE Sensors Journal

shaped optical fibre sensor equipped with α of SPR sensors and DA were studied. A single-mode D- α effects of the various thicknesses of α respectively; the gap width between gratings was 10 nm; and

The thickness and number of Ag gratings were 45 nm and 20, and constructed by using COMSOL Multiphysics software.

of α Ag gratings was proposed and simulated to observe the effects increased with increased α Sensor sensitivity under the premise of calculable FWHM reported in the literature. The results are shown in Table IV.

coated Ag gratings was compared with that of other sensors RIU range of 1.33-1.39 when the gap width of Ag gratings was 10 µm. The simulation outcomes thickness was fixed at 45 nm, S increased to 6.4 µm/RIU when the Ag grating with a thickness of 0-14 nm and the Ag layer thickness was 12 nm. Finally, the SPR fibre sensor reached 6.4 µm/RIU. The introduction of $\alpha - Fe_{2}O_{3}$ grating

Fig. 8: Spectra of the proposed SPR fibre sensor with varied external RIs and (45+12) nm thick Ag/$\alpha - Fe_{2}O_{3}$ grating

V. CONCLUSION

Sensor sensitivity under the premise of calculable FWHM increased with increased $\alpha - Fe_{2}O_{3}$ thickness. Only the effects of the various thicknesses of $\alpha - Fe_{2}O_{3}$ on the S of SPR sensors and DA were studied. A single-mode D- shaped optical fibre sensor equipped with $\alpha - Fe_{2}O_{3}$-coated Ag gratings was proposed and simulated to observe the effects of $\alpha - Fe_{2}O_{3}$ thickness on sensor S. The model was optimised and constructed by using COMSOL Multiphysics software. The thickness and number of Ag gratings were 45 nm and 20, respectively; the gap width between gratings was 10 nm; and $\alpha - Fe_{2}O_{3}$ thickness was 12 nm. The simulation outcomes demonstrated that the S of the sensor increased when the $\alpha - Fe_{2}O_{3}$ thickness was 0-12 nm. The RI was within the range of 1.33-1.39 when the gap width of Ag gratings was 10 nm. The proposed sensors minimum response S reached 2.4 µm/RIU, and its maximum response S was 6.4 µm/RIU when the $\alpha - Fe_{2}O_{3}$ layer thickness was 12 nm. Finally, the SPR sensors S can be significantly enhanced by the bimetallic grating layer (Ag/$\alpha - Fe_{2}O_{3}$). A theoretical basis was provided for the development of SPR sensors with high S. Therefore, the SPR fibre sensor is a good candidate for bio/chemical applications given its high S and the advantage conferred by the bimetallic grating layer (Ag/ $\alpha - Fe_{2}O_{3}$). By presenting simulation results, we have proved that the influence of our approach through a D-shaped optical fibre SPR-based sensor with the bimetallic grating layer. In future work directions the actual execution for experimental design is very important for testing the proposed optical fibre structure .

Fig. 9: Relationship between the varied external RIs and resonant wavelength (a) Au. (b) Ag .
TABLE III: sensitivity , DA and FOM at different hematite thicknesses

<table>
<thead>
<tr>
<th>Thickness (nm)</th>
<th>(\Delta \lambda_{SPR} (\mu m))</th>
<th>(\Delta n(RIU))</th>
<th>Sensitivity (RIU)</th>
<th>DA (RIU)</th>
<th>FOM (RIU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.046</td>
<td>0.01</td>
<td>4.6</td>
<td>29.12</td>
<td>133.9</td>
</tr>
<tr>
<td>3</td>
<td>0.048</td>
<td>0.01</td>
<td>4.8</td>
<td>20.72</td>
<td>99.4</td>
</tr>
<tr>
<td>5</td>
<td>0.056</td>
<td>0.01</td>
<td>5.6</td>
<td>17.25</td>
<td>96.6</td>
</tr>
<tr>
<td>8</td>
<td>0.058</td>
<td>0.01</td>
<td>5.8</td>
<td>12.99</td>
<td>75.3</td>
</tr>
<tr>
<td>10</td>
<td>0.062</td>
<td>0.01</td>
<td>6.2</td>
<td>10.82</td>
<td>67.0</td>
</tr>
<tr>
<td>12</td>
<td>0.064</td>
<td>0.01</td>
<td>6.4</td>
<td>8.83</td>
<td>56.5</td>
</tr>
<tr>
<td>14</td>
<td>0.050</td>
<td>0.01</td>
<td>5.0</td>
<td>7.56</td>
<td>37.8</td>
</tr>
</tbody>
</table>

TABLE IV: Comparison with D-shape SPR sensors.

<table>
<thead>
<tr>
<th>Sensor Type</th>
<th>Material</th>
<th>RI Range (RIU)</th>
<th>Sensitivity (RIU)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-shaped fibre</td>
<td>Ag@GO</td>
<td>1.30 to 1.33</td>
<td>833.33</td>
<td>[35]</td>
</tr>
<tr>
<td>D-shaped fibre</td>
<td>Au</td>
<td>1.35 to 1.43</td>
<td>925</td>
<td>[36]</td>
</tr>
<tr>
<td>D-shaped PCl</td>
<td>Au</td>
<td>1.36 to 1.38</td>
<td>3340</td>
<td>[37]</td>
</tr>
<tr>
<td>D-shaped fibre</td>
<td>G+ITO</td>
<td>1.33 to 1.35</td>
<td>5700</td>
<td>[38]</td>
</tr>
<tr>
<td>This work</td>
<td>Ag+(F_2O_3)</td>
<td>1.33 to 1.39</td>
<td>6400</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

