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Abstract

This thesis presents a new approach for integrating Case-Based Reasoning (GBR) with a 

Neural Network (NN) in diagnostic systems. In the hybrid NN-CBR approach, the neural 

network makes hypotheses and provides remindings that are used in guiding the search for 

similar experiences in a library of previous cases. GBR is responsible for the selection of a 

most similar match for a given problem, as to support a particular hypothesis made by the 

neural network, or to decide among hypotheses. Items called diagnosis descriptors have been 

created in order to represent in an intelligible way the knowledge stored in the neural network. 

These descriptors are used for consultation purposes, for confirming or refuting a final result, 

and for building explanations.

The NN-GBR architecture has been used in the development of a system for the diagnosis 

of Congenital Heart Diseases (GHD). The system has been evaluated using two cardiological 

databases with a total of 214 GHD cases. The cases of the first database were collected with 

the supervision of an expert in GHD, while the cases of the second database were collected 

without expert supervision. The hybrid system has shown a good performance when 

diagnosing cases of the first database. Additionally, its diagnosis descriptors created to 

interpret the knowledge of the neural network have been found to be similar to the knowledge 

elicited from experts for the same diagnostic problems. A drop in performance could be 

observed when the system was trained to diagnose cases of the second database, whose cases 

were collected without the supervision of an expert. Three other well-known databases have 

been used to evaluate the NN-GBR approach further. The hybrid system manages to solve 

problems that cannot be solved by the neural network on its own. Additionally, its indexing 

mechanism based on remindings provided by the neural network introduces a significant 

reduction in the number of case comparisons, if contrasted with a standard nearest-neighbour 

procedure.

By using these alternative knowledge representation and reasoning schemes, the hybrid 

NN-GBR approach suggests some solutions for common GBR problems (e.g. indexing and 

retrieval), as well as for neural network problems (e.g. the interpretation of the knowledge 

stored in a neural network and explanation of reasoning).
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Chapter 1

Introduction

This thesis presents a new approach for integrating Case-Based Reasoning (CBR) 

with a Neural Network (NN) in diagnostic systems. In addition to being able to 

solve problems that cannot be solved by the neural network on its own, this hybrid 

approach proposes some useful solutions for common CBR problems, such as 

indexing and retrieval, as well as for neural network problems, such as the 

interpretation o f the knowledge stored in a neural network and the explanation of 

reasoning. A hybrid NN-CBR model is introduced here, as well as its use in the 

development o f a system for the diagnosis o f Congenital Heart Diseases (CHD).

Case-Based Reasoning (CBR) is the field of Artificial Intelligence (AT) that investigates how 

previous experiences can be remembered and used in solving new problems, in an attempt to 

reproduce a reasoning process commonly observed in people.

Earlier work in Expert Systems (ES) (Hayes-Roth 1983) was different in that it focused 

on reproducing expertise by eliciting knowledge from a person, representing and using it in 

problem-solving. The usual attempt was to try to embody the knowledge of an expert in a set 

of rules, and apply these rules in a systematic form to solve new problems. Besides having 

some cognitive support, this idea was also commercially appealing, as machines could 

increase their expertise simply by augmenting their number of rules.

However, knowledge elicitation has proved to be a very difficult and time-consuming task 

(Hayes-Roth 1983). Furthermore, it has been noticeable that most experts do not rely only on a 

plain set of rules to solve new problems. Experts are often found to use cases to evaluate 

situations, suggest solutions and validate them (Klein & Calderwood 1988).

CBR has been introduced in the early 1980s as an alternative view of problem-solving
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and a more plausible model of human reasoning. Instead of relying solely on general 

knowledge of a problem domain, CBR was based on the use of specific knowledge of 

previously experienced, concrete problem situations (cases). The first memory model based on 

these principles proposed that a memory would be organised as memory organization packets 

(MOPs) whose functions were to store general knowledge as well as specific experiences of 

that general knowledge (Riesbeck & Schank 1989). This model was based on the Theory of 

Dynamic Memory (Schank 1982) which says that experiencing, understanding, remembering 

and learning cannot be separated from each other. When we are faced with a new experience, 

we try to understand it by remembering old experiences and comparing them with the new 

one. During this process the new experience is incorporated in our memory and associated 

with other experiences which we have had previously (learning).

EPF (Lebowitz 1983) and CYRUS (Kolodner 1983a; Kolodner 1983b) were the first 

systems to use MOPs as a cognitive model of a memory. IPP could read stories about 

terrorism, ‘understand’ them and build a memory of those stories. CYRUS had a similar use: 

to store and retrieve events in the life of Cyrus Vance, who was the Secretary of State of the 

USA. The system could understand stories collected from newspapers and answer questions 

about Vance’s diplomatic meetings based on those stories. Following it, many other systems 

were developed using the same memory organization principles, such as CHEF (Hammond 

1986), CASEY (Koton 1988), MEDIATOR (Kolodner & Simpson 1989) and PERSUADER 

(Sycara 1988). However, independently of the memory scheme used, the operation and the 

main principles behind CBR have remained the same: four 'REs' steps are generally followed 

by the case-based systems, namely REtrieve, REuse, REvise and REtain (Aamodt & Plaza 

1994; Watson & Marir 1994a). When a new problem is posed, the first step in the CBR cycle 

is the retrieval of similar cases. By comparing the new case with previous experiences, the 

case-based system must find which past experiences most resemble the new case. The solution 

suggested by the retrieved case(s) can then be reused for the new case. The assumption is that 

if a solution was applied successfully previously, there is a high probability that it can be used 

again in a similar situation. However, the old solution would usually have to be adapted to fit 

the requirements and constraints of the new problem. In the revise step, the solution composed 

for the new situation is tested for success. This is done by applying the solution to the real 

world, or by having it evaluated and repaired by a teacher when failures are detected. The last 

step in the CBR cycle is the storage of the new case, where its description and solution are 

indexed and retained for future use.
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Many advantages have been introduced by case-based systems (Kolodner 1993). Firstly, 

CBR may be able to ease the task of knowledge acquisition (ie. eliciting knowledge from an 

expert and translating it into one of the knowledge representation formalisms) as most of the 

knowledge needed for solving new problems is contained in cases that have already been 

solved. Secondly, case-based systems can learn incrementally simply by appending new cases 

to their library of previous cases and indexing these cases for future use. CBR also seems to be 

a natural problem-solving method, which enables case-based systems to explain their 

reasoning relatively easily. Furthermore, CBR makes possible the composition of new 

solutions based on previous solutions used in old cases, which is generally much less 

complicated than building new solutions from scratch according to the requirements and 

constraints of the new case.

However, despite the relative success with which CBR techniques have been employed, 

they have also brought with them some disadvantages. For instance, in CBR systems reasoning 

is based on a set of cases that does not necessarily cover all the problem’s solution space. 

Because of this, it is not guaranteed that an optimal solution for a given problem can be found. 

Although this last statement is true for every heuristic method, this is still a problem CBR 

researchers have to deal with. Other difficulties faced by case-based systems include the 

following:

• a case-based system might allow previous cases to bias it too much in solving a new 

problem;

• the most relevant experiences are often not considered when a new problem is being 

solved;

• non-case information (eg. rules), which may also be available, is ignored in a pure CBR 

system;

• for large systems, it might be a difficult task to manage an extensive case library, which 

does not happen with other generalization-based approaches.

Additionally, the idea that people use cases in problem-solving goes somehow against the 

observation that experts in typical application areas treated by AI methods reason by using 

generalised rules. AI practitioners have remarked that it is intuitive for experts to express their 

knowledge in the form of rules, and that this is not a new idea. In fact, some papyri have been 

found dating from the 17th century B.C where a series of diagnoses were described in an ‘i f ...
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then fashion (Crevier 1993). The counter-argument to this conviction is that representing 

knowledge with rules is different from actually using rules to reason. When using rules in 

problem-solving, it is often the case that rules have exceptions, and that some rules are also 

contradictory. When this happens, people usually start referring to previous experiences to try 

to explain these exceptions and contradictions.

The debate on which reasoning method is the most plausible, appropriate and/or efficient 

is a very long one. What is certain is that CBR and more traditional A1 approaches to 

reasoning have their own advantages and drawbacks. In order to incorporate in one single 

architecture the benefits of both approaches and to minimise their drawbacks, CBR has been 

combined with complementary forms of reasoning, such as rule-based, model-based or neural 

networks. Our goal here has been to investigate what type of gain could be obtained from 

integrating CBR with neural networks to solve classification problems. The main reason for 

this choice was that by combining CBR with neural networks, we could benefit both from the 

logical and cognitive nature of symbolic systems and from the numeric, associative and self- 

adapting nature of the neural networks. Additionally, we wanted to continue our previous 

work in which neural networks were combined with symbolic systems (Reategui & Leao 

1993; Leao & Reategui 1993; Leao, Reategui & Guazzelli 1995), as well as with CBR systems 

(Reategui & Campbell 1995; Reategui, Campbell & Borghetti 1995).

We present here a new approach for integrating Case-Based Reasoning (CBR) with a 

Neural Network (NN) in diagnostic systems. When solving a new problem, the neural network 

is used to make hypotheses and to guide the CBR module in the search for a similar previous 

case that supports one of the hypotheses. The knowledge acquired by the network is 

interpreted and mapped into symbolic diagnosis descriptors, which are kept and used by the 

system to determine whether a final answer is credible, and to build explanations for the 

reasoning carried out. The NN-CBR model has been used in the development of a system for 

the diagnosis of Congenital Heart Diseases (CHD). The system has been evaluated using two 

cardiological databases with a total of 214 CHD cases. Three other well-known databases have 

been used to evaluate the NN-CBR approach further. The hybrid system manages to solve 

problems that cannot be solved by the neural network with a good level of accuracy. 

Additionally, the hybrid system suggests some solutions for common CBR problems, such as 

indexing and retrieval, as well as for neural network problems, such as the interpretation of the 

knowledge stored in a neural network and the explanation of reasoning.

We present an overview of the research in hybrid architectures in chapters 2 and 3. The
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main reason for dividing the topic into two chapters has been that two types of hybrid

architectures were related to our work:

• the ones combining CBR with other reasoning techniques;

• the ones combining neural networks with symbolic approaches.

While chapter 2 is devoted to the combination of CBR with other reasoning techniques, 

chapter 3 is devoted to the integration of neural network with symbolic approaches. Chapter 4 

analyses with a greater level of detail some particular research which served as a basis for the 

development of the work reported in the present thesis. Chapter 5 introduces the new case- 

based architecture where CBR was combined with the CNM. A system addressed to 

Congenital Heart Disease (CHD) diagnosis is also presented in this chapter. This sytem was 

built with the collaboration of the Institute of Cardiology in Porto Alegre, RS, Brazil, which 

provided the cases to develop the case library of the system and test it. Chapter 6 presents

validation results. Chapter 7 compares our NN-CBR approach with other related work.

Chapter 8 presents conclusions and directions for further research.



Chapter 2

Combining CBR with other Reasoning 
Approaches

This chapter advances some criteria for analysing hybrid systems that 

integrate CBR with neural networks, rule-based or model-based approaches. 

Several systems are described and their features highlighted according to the 

criteria established.

2.1 Introduction

This premise that people rely on concrete previous experiences when solving new problem has 

been confirmed either by simple observation or (on some other occasions) by psychological 

experimentation. For instance, it has been observed that engineers rely on cases when trying to 

identify problems that occur in telephone switching networks (Kopeikina, Brandau & 

Lemmon 1988), that novices use previous examples to learn a new cognitive task (Ross 1989), 

or simply that people feel comfortable in using cases to make decisions (Klein & Calderwood 

1988). However, determining how people remember pertinent cases at the right times has not 

been a trivial task. Moreover, how could computer programs simulate this behaviour? This has 

been one of the central problems in CBR, and has come to be known as the indexing problem.

2.2 Indexing in CBR Systems

Indexing a new case consists of creating appropriate pointers which designate under what 

circumstances the case may have a lesson to teach and, therefore, when it is likely to be 

useful.
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Both manual and automated methods have been used in CBR index selection. Choosing 

indexes manually involves deciding under what circumstances a case will be useful, and 

identifying striking features which should make the case memorable. Although manual 

indexing is a difficult and time-consuming task, it may represent a good choice in some 

circumstances, especially when cases are complex and the knowledge needed for accurate 

case indexing is not concretely available, or it is too elaborate to be inserted in an indexing 

algorithm.

Choosing indexes with automated methods consists of building algorithms that can 

identify the circumstances in which a case can be useful. The main advantage of automated 

indexing over manual index selection is that it eases the knowledge acquisition process in 

which experts have to identify the features they use to recall past experiences, which is 

usually a non-trivial task. The methods for automated index selection most commonly used in 

pure CBR systems are:

• Checklist-based indexing: In this method the domain is analysed and the dimensions 

that tend to be important are computed. These are put in a checklist and all cases are 

indexed by their values along these dimensions. The system CHEF (Hammond 1986), 

a case-based planner whose specialty is to create new recipes, indexes known recipes 

through the following dimensions: texture and taste o f food, preparation method, and 

ingredients. For example, a Beef and brocoli recipe could be indexed by CHEF the 

following way:

Beef and brocoli:

preparation: stir-fry 

ingredient: brocoli 

ingredient: beef 

texture: crunchy vegetable 

taste: savoury

Although this method of automated index selection can be easy to implement, the 

method is only as good as the checklist used by the system builder. An incomplete 

checklist will result in insufficient indexing, while a checklist that does not 

discriminate between important and unimportant dimensions will result in
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overindexing and retrieval of too many cases.

Difference-based indexing: How can a system determine that some indexed feature is 

not predictive? Or how can it appreciate that it is predictive? The answer relies on the 

identification of the similarities and differences among cases indexed in an equivalent 

fashion. The system CYRUS (Kolodner 1983a), whose main goal was to build a 

memory of events that happened in the life of Cyrus Vance, the US Secretary of the 

State at the time, found out that it could make no special predictions about meetings in 

which the main participant was a foreign minister because, by keeping track of 

similarities among several meetings with foreign ministers, it realised that they had 

nothing in common except the things common to all meetings. Difference-based 

indexing tries to solve this problem by finding out features that can differentiate cases 

from one another so that at retrieval time best-matching cases can be selected from the 

library. But it is certain that not all features that are different across similar cases make 

useful indexes, and this is a problem difference-based indexing methods have to 

confront. For instance, it would not make much sense for CYRUS to index the 

meetings of the American Secretary of State by room size, as this would probably not 

allow any inferences to be made.

Explanation-based indexing: Difference-based and checklist-based indexing provide a 

simple way for determining potentially predictive features to be used as indexes. But 

they have a major problem: they choose indexes based on a model of the kinds of 

features that are usually predictive but do not analyse cases individually for their 

predictive features. This causes two problems: extra features are often chosen for 

indexing that are not predictive in a particular case, and some features that are 

predictive in that case, but not in general, are not indexed. Because these methods do 

not always discriminate cases well enough from each other, retrieval based on indexes 

chosen by these methods results in many superfluous cases being retrieved. A separate 

ranking process must sort the cases that are recalled to determine which are the most 

appropriate. Explanation-based indexing methods are aimed at choosing indexes 

appropriately for individual cases. The reasoner attempts to explain why a given 

solution worked or failed to work:



2. Combining CBR with other reasoning approaches 19

1) Successful solutions (credit assignment): To create this type of explanation, a 

reasoner must keep track of the features found to be useful in achieving a goal. 

An example of this type of explanation-based indexing occurs in the system 

JULIA (Hinrichs 1988; Hinrichs 1989), which works in the domain of meal 

planning. When elaborating a meal for several guests, JULIA decides to make a 

tomato tart as the main dish. It chose this type of tart because it was summer and 

tomatoes were in season, and because a vegetarian friend was coming for dinner. 

‘Summer’, ‘tomatoes in season’ and ‘vegetarian guest’ were the reasons for 

JULIA to select the tomato tart, therefore these are the elements used to index the 

case.

2) Unsuccessful solutions (assignment of blame): After the reasoner discovers it has 

made a mistake, it attempts to explain it. Then, the reasoner extracts from the 

explanation the concrete recognisable features of the situation that were 

responsible for the problem. In the next step, the reasoner generalises those 

features to the point where they still make sense in the explanation derived. An 

example of this type of explanation-based indexing can be given again from the 

behaviour of the system CHEF. When making the recipe of a strawberry soufflé, 

the results are not satisfying as the strawberries produced more liquid than the 

leavening could handle. The cause of the failure is attributed to ‘too much liquid 

in strawberries', which can be generalised to ‘too much liquid in fruit'. The 

unsuccessful case is then indexed by ‘type of food = soufflé’ and ‘dish includes 

fruit'.

Despite the fact that explanation-based indexing relies on the analysis of the success or 

the failure of each particular case, there is still no guarantee that the indexes provided by the 

explanation-based methods will discriminate a case from similar ones. A combination of 

different indexing approaches can be used to provide a solution to this problem. For instance, 

an explanation-based method can be used to generate a set of useful indexes, while difference- 

based methods can be used to discard those features that do not discriminate.

Despite the possibility of combining an explanation-based method with other checklist or 

difference-based methods, explanation-based indexing has additional problems. Firstly, it can
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only be as good as the domain model from which explanations are drawn. Moreover, if the 

existing domain model is not complete enough, in certain situations the system would not be 

able to build any explanation for the faults identified, which would inhibit it from indexing the 

cases at hand.

Another problem with explanation-based indexing is that it indexes cases specifically for 

situations in which it is known that they are used. However, it is possible that a case can be 

useful in unanticipated ways, and indexing according to explanations alone may keep it from 

being remembered in these situations.

The indexing problems reported, as well as the wish to improve upon CBR systems, have 

led researchers to propose alternative architectures where case-based techniques have been 

combined with other reasoning mechanisms. The next sections present a general framework 

for describing hybrid CBR architectures, and describe several systems combining CBR with 

some other reasoning and/or learning technique.

2.3 Combining CBR with other Approaches

Although indexing has been one of the central problems in CBR, it has not been the only 

reason to incite researchers to combine CBR with complementary forms of reasoning, such as 

rule-based, model-based or neural networks. Other facts that have also influenced the 

construction of such hybrid architectures are:

• in order to represent human expertise more accurately, the specific knowledge stored in 

cases should be complemented by some form of generalised knowledge (Strube et al. 

1995). For instance, students in US business schools learn from specific cases, as well 

as from general principles applicable to these cases. Therefore, cases and general 

knowledge should not be kept apart. An example of the practical use of such a 

combination of general and specific knowledge can be given by the congenital heart 

disease diagnostician ChartD2 (Reategui, Campbell & Leao 1996a). The system, when 

solving a new case, uses its general knowledge to draw hypotheses and to guide the 

search for the most similar cases it has already ‘seen’. The retrieved cases, 

representing specific knowledge, are then used to support one of the hypotheses and to 

justify the conclusion reached.
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• managing large case libraries and getting the most out of cases may be a difficult task 

in CBR systems. Organising cases according to some generalisation principle has the 

possibility of giving the user a clearer view of what types of cases exist in the library, 

and reducing the number of case comparisons when a best-match is looked for. The 

case-based tool REMIND, for instance, organises the case library by employing user- 

defined attributes to create an initial prototype hierarchy, which is then partitioned 

further by an inductive method. The final hierarchical structure is efficient for case- 

browsing and reduces the number of case comparisons during case-matching.

• previous cases may influence a CBR system in different directions without giving it 

many hints on which cases to consider as more important. This problem can be 

partially solved by good indexing schemes which enforce the retrieval of relevant cases 

only. However, in large case libraries, even efficient indexing mechanisms may have 

problems in indicating exclusively pertinent cases. In such circumstances, it may be 

advisable to have only a reduced set with selected cases for consideration in the case- 

matching process. For instance. Surma & Vanhoof (1995) use an algorithm to partition 

the cases of the library into standard and exception cases. The standard cases are used 

to generate rules, while only the exception cases are used in the case-matching process.

Several other techniques have been used to combine CBR with other reasoning 

approaches. In the project INRECA (Manago et al. 1993; Auriol et al. 1994) a general 

framework for combining induction with CBR in classification tasks has been proposed and 

implemented in the generic tool that combines the systems PATDEX (CBR) and KATE 

(induction). This integration has been based on the understanding of the advantages and 

weaknesses of each approach. Four levels of integration between induction and CBR were 

identified in the project, each level providing certain advantages that could be suitable for one 

type of application or another. The integration levels defined in INRECA were modified and 

further specified here in order to describe other mixed paradigms combining CBR with 

different reasoning mechanisms h

^The levels defined originally in INRECA are: toolbox (the two mechanisms work in an independent 

fashion); co-operative level (one mechanism uses the results of the other to improve its performance);
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(la) independent approach: the two reasoning mechanisms work side by side in an 

independent fashion. They are activated to solve the same problem, but they may 

reach equivalent or different answers. When reaching different answers, an external 

mediator, or the user himself, decides which answer to take. For instance, a rule- 

based and a CBR system can be used independently to identify malfunctions in an 

engine. When different answers are provided by each system, the user himself or an 

external mechanism decides which answer to take. This may be useful for the 

comparison of two different techniques in solving a particular problem, with the 

advantage that two existing systems can be employed.

(lb) back-up approach: one of the mechanisms starts the reasoning and transfers it to the 

other mechanism when it cannot complete the process. The main reason justifying 

this approach is that alternative results can be presented to the user when the 

reasoning mechanism commonly used to solve the problem cannot reach a plausible 

answer. For example, the system CASEY (Koton 1988), a cardiac disease 

diagnostician, starts its reasoning process by first activating a CBR module. If no 

answer is provided by this module, the system attempts to solve the same problem 

by activating the Heart Failure Program, an earlier model-based expert system.

(Ic) interactive approach: one of the mechanisms starts the reasoning process and 

transfers some intermediate results to the other mechanism, which proceeds with the 

reasoning from that point to the end. This approach is frequently used in the design 

of alternative indexing methods. For instance, in a system for fault diagnosis, 

model-based reasoning may be used to estimate the probable location of a faulty 

component. The hypotheses generated can be then used by a CBR module to 

retrieve similar previous cases (Feret & Glasgow 1993). Another alternative to this 

approach is that a higher level of interaction can be established between the two 

reasoning mechanisms, where the responsibility for the reasoning is transferred

See Riesbeck & Schank (1989) for a more detailed explanation of MOPs and a 
description of several systems implemented using these memory structures.

workbench level (individual models and capabilities of each mechanism are combined); seamless

integration (the most relevant parts of the two mechanisms are mixed in a single system).
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several times until the system reaches a final conclusion.

(Id) unified approach: the two reasoning mechanisms are completely integrated by 

having certain features of each of them combined in a single system. This approach 

is most commonly used in the combination of CBR with neural networks, with the 

main goal of creating efficient indexing and retrieval mechanisms. For instance, the 

system INSIDE (which was developed for the use of Singapore Airlines), keeps 

cases as intermediate nodes of a neural network. Case indexing and retrieval in this 

hybrid architecture are a consequence of the learning and activation functions of the 

neural network, respectively.

The four levels of integration described above are illustrated in figure 2.1.

(la) Independent
Other 

CBR mechanism

(lb) Back-up
Other 

mechanismCBR

reasoning

(Ic) Interactive
Other 

mechanism
CBR

reasoning

(Id) Unified

(CBR + O th e r \ 
mechanism 'J

reasoning

Figure 2.1: The four integration levels for hybrid CBR systems

For each of these levels, other criteria can also be employed to detail further the type of 

integration used: The levels of integration (la), (lb) and (Ic) can employ one of two types of 

general knowledge:

(2a) compiled knowledge: general knowledge is the result of the pre-processing of 

existing cases (e.g. decision-trees or rules inductively generated from cases, neural 

networks);

(2b) elicited knowledge: general knowledge can represent the knowledge of an expert, 

knowledge found in books or simply commonsense knowledge (e.g. rules or graphs 

learned through a knowledge acquisition process).

For level (Id), the most natural choice is to use compiled general knowledge, by having
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the same cases of the library pre-processed to originate general knowledge. However, it is also 

possible that a system would, for instance, use cases as the consequents of expert rules 

{elicited knowledge), and have them selected as near matches when the rules are fired.

Different levels of priority can be assigned to the reasoning mechanisms. This feature 

applies mostly for architectures where the two mechanisms are separate, working in a 

somewhat competitive way, as in (la) and (lb). For architectures where the co-operation 

between the components is higher, it becomes difficult to establish the level of priority 

between them.

(3a) giving priority to CBR: the other reasoning mechanism serves as an alternative 

device when no final answer can be provided by the CBR system;

(3b) giving priority to the other reasoning mechanism: the CBR system is used to 

produce a final answer when the other reasoning mechanism fails to solve the 

problem addressed.

Giving priority to CBR can be a good alternative for applications in domains with a weak 

model (or a limited body of rules), where cases are usually of primary importance in the 

reasoning process. In contrast, giving priority to the other reasoning mechanism can be more 

suitable for applications where there is a strong domain model with well-established rules, or 

where cases are sparse or difficult to collect.

For level of integration (Ic) and (Id), the co-operation between CBR and the other 

reasoning mechanism can have different purposes:

(4a) general knowledge supporting CBR: general knowledge can be used to assist in a 

CBR task. For example, rules extracted from cases can be used to index and retrieve 

cases in the library (Zeleznikow, Hunter & Vossos 1993);

(4b) cases complementing general knowledge: cases can support the reasoning performed 

by the mechanism based on general knowledge. For example, cases can be used to 

deal with missing information in a consultation of a decision-tree (Auriol et al. 

1994);

(4c) mutual support: cases and general knowledge can support each other in the



2. Combining GBR with other reasoning approaches 25

reasoning process. For instance, a rule may support the selection of a particular case 

as the most similar, and an existing case can support the firing of a rule (Rissland & 

Skalak 1989).

Because of the smaller amount of interaction existing in architectures of the type (la) and 

(lb), it is difficult to determine the level of co-operation between the two mechanisms.

For levels of integration (la), (lb) and (Ic), the knowledge embedded in cases and in the 

generalisations can be:

(5a) equivalent and address the same problems;

(5b) complementary and address different problems.

To illustrate item (5a), a system that diagnoses car malfunctions could store previous 

cases of car problems, as well as rules specifying the problems related to certain collections of 

symptoms (this is the approach generally used to combine GBR with Model-Based Reasoning 

(MBR), which refers to the use of general causal knowledge, usually to describe well- 

understood causal devices). To exemplify item (5b), a similar system diagnosing car 

malfunctions could have a set of rules that, instead of identifying the car problems themselves, 

would be used to determine other associated symptoms that could help the system to retrieve 

the most similar previous case from the library.

For unified architectures, it is usual that both cases and general knowledge would be 

equivalent, as they address the same problem. The reason for this is linked to the fact that the 

usual choice of unified approach employs compiled knowledge, ie. the cases pre-processed to 

originate general knowledge are the same as those used in the reasoning process.

These characteristics provide a framework for the analysis of hybrid GBR systems that 

combine GBR with other reasoning approaches. Table 2.1 lists several such systems and their 

main features, and the next section comments briefly on each of them.
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Systems / 

features

Level of 

integration

Type of 

general 

knowledge

Priority in 

the

reasoning

process

Form of support Knowledge 

embedded in 

cases and in 

generalisations

CABARET interactive elicited * mutual equivalent

GREBE interactive elicited * mutual complementary

IKBALS interactive compiled * general knowledge 

supports case retrieval

equivalent

INRECA various compiled various various equivalent

REMIND unified * * general knowledge 

used to structure the 

case library and to 

support ease retrieval

*

BUBE/CcC+ interactive compiled * general knowledge 

supports case retrieval

equivalent

Surma & 

Vanhoof(1995)

back-up compiled mles * equivalent

CASEY back-up and 

interactive

elicited CBR general knowledge 

supports case retrieval

equivalent

CABATA interactive elicited * general knowledge 

supports case retrieval

complementary

ARAMBHS back-up elicited rules, then 

CBR, then 

MBR

* equivalent

Feret &

Glasgow (1993)

interactive elicited * general knowledge 

supports case retrieval

equivalent

Table 2.1: Comparison of CBR systems 

* classification does not apply
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2.3.1 Combining CBR with other Symbolic Reasoning Mechanisms

An approach that has become rather popular within the CBR community is the use of 

rules in cooperation with CBR. Many of the systems of this type are legal applications, where 

the partitioning of the knowledge into rules and cases was a natural alternative, as in 

CABARET2 (Rissland & Skalak 1989; Skalak 1989), GREBE (Branting 1989) and IKBALS 

(Zeleznikow, Hunter & Vossos 1993). These three systems combine CBR and rules in an 

interactive approach, as in fact most hybrid CBR architectures do.

CABARET (Skalak 1989) has been conceived as a domain-independent shell, and 

applied in statutory interpretation, ie. in the determination of the meaning of a legal rule by 

analysing its terms and then applying it to a particular set of facts. CABARET integrated a 

CBR and a rule-based module using a central control scheme, as defined in Skalak (1989)^. 

The system worked with 30 types of expert heuristics to control and interleave reasoning with 

rules and reasoning with cases. The system’s architecture was characterised by the following:

• there are two co-reasoners (case-based and rule-based);

• each co-reasoner has an independent mechanism to report the results achieved, or some 

intermediate state of the reasoning;

• there is a controlling process that uses the set of heuristics and the reports provided by 

each reasoner to decide how the system as a whole is to proceed.

^Although CABARET has been conceived as a domain-independent shell, its first application was in the 

domain of law.

^Four different ways of integrating CBR with Rule-Based Reasoning (RBR) have been identified in 

Skalak (1989), according to the type of control used to co-ordinate the two reasoning mechanisms: Co­

equal reasoners with invocation by a separate control module; Co-equal reasoners with two-way 

invocation (the control between the two reasoning mechanisms is dispersed between them); CBR- 

dominant (the RBR mechanism may be called by the CBR module, but not the opposite); RBR-dominant 

(the CBR mechanism may be called by the RBR module, but not the opposite). This classification 

scheme has also influenced the classification presented here. However, we were more concerned with the 

type of interaction between the two reasoning mechanisms, whereas Skalak (1989a) has focused mostly 

on the type of control used to manage them.
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Legal rules and cases addressed the same types of problem. However, although being 

combined in an interactive approach, rules and cases might contradict each other. For 

instance, a rule may say that an attitude should lead to punishment, and the case library might 

contain cases contradicting it (or supporting it). This feature enables CABARET to reason 

from different points of view (e.g. the prosecuted or the prosecutor). Thus, even with the same 

set of rules and cases the system can reach different conclusions. The main contributions of 

the accompanying research have been the establishment of a framework for the development 

of systems integrating CBR and rules, as well as the definition of the set of heuristics for a 

central control module to co-ordinate the reasoning process.

The system GREBE (Branting 1989) has also been designed for the domain of law. It too 

integrates CBR and RBR in an interactive approach, as in CABARET. GREBE uses both 

legal and commonsense rules, in addition to category exemplars (previous cases) to determine 

the classification of new cases. While exemplar-based explanations are used to bridge the gap 

between new case descriptions and generalisations, domain theory in the form of general rules 

is used to explain the equivalence of new cases and category exemplars. Generalisation-based 

reasoning and CBR are considered complementary approaches in GREBE, where each of 

which is necessary for the success of the other. It has been demonstrated that some 

explanations that GREBE produces could not be produced by other methods limited 

exclusively to generalisation or case-based reasoning.

The system IKBALS (Zeleznikow, Hunter & Vossos 1993) has as a main goal to 

investigate ways of reducing the problems associated with modelling law using only a rule- 

based approach. Among the main problems identified in the use of rules in legal expert 

systems are the difficulties in representing open-textured legal predicates using rules, as well 

as the deficiencies found in the explanations produced by traditional expert systems developed 

in this domain. Differently from CABARET and GREBE, IKBALS uses an inductive 

algorithm (Induce!) to produce a decision-tree from the available cases. This tree is later 

converted into production rules that are then used by the system to locate relevant similar 

cases. Another difference between IKBALS and CABARET is that the latter uses a central 

control to perform the integration between the rule-based and the CBR modules, while 

IKBALS uses a distributed control (as defined in Skalak (1989)).
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Another important approach to combining inductive learning methods with CBR has been 

delineated in the INRECA project (Manago et al. 1993, Auriol et al. 1994), which we have 

already mentioned in the introduction of this chapter. In the project, advantages and 

weaknesses of CBR and induction were analysed and distinct levels of integration were 

proposed in order to minimise drawbacks and use the best features of each approach. In each 

level of integration, different alternatives are possible for combining CBR and induction. For 

example, cases can be used to minimise the problem of handling missing values during 

consultation in a decision-tree {CBR complementing general knowledge)', and decision-trees 

can be used to perform consistency checks in the case library {general knowledge supporting 

CBR). Many applications in different domains have been tested in the INRECA project, 

including the maintenance of aircraft engines, the estimation of risk factors for car insurance 

companies and the selection of hotels according to travellers’ preferences. A recent extension 

to the project has been the incorporation of the INRECA tree (Auriol et al. 1995) into the 

system. This tree is based on both decision-trees (Quinlan 1986) and k-d trees (Friedman, 

Bentley & Finkel 1977). The main advantage of the new INRECA tree is that it can be used 

either as a k-d tree in the case-based reasoning process (e.g. in case indexing and retrieval) or 

as a decision-tree in the induction process (e.g. for case generalisation).

Similarly to the PATDEX/KATE tool developed in the INRECA project, the system 

REMIND (Barietta 1994) is a generic tool for developing systems that combine CBR and 

inductive processes. However, REMIND is based on a unified approach where the cases are 

part of an indexing/retrieval scheme divided into three levels: a prototype hierarchy, an 

inductive indexing structure and the weighted nearest-neighbour algorithm. At the top of the 

indexing structure is the prototype hierarchy. This hierarchy is built according to attributes 

selected by the system developer that serve as an initial support for partitioning the available 

cases (for indexing and retrieval purposes). The inductive method is then used to partition the 

prototypes of the lower branches of the hierarchy further. When a new case is presented to the 

system, it compares the new case with the prototype structure and then retrieves cases under 

the most specific prototype that matches the new case. Once the best prototype is matched, the 

system follows the inductive indexing structure created for that prototype. The cases collected 

in this last step are then passed to the nearest-neighbour matching algorithm for a final
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ranking procedure. REMIND has already been used in the development of systems in different 

application areas, such as in legal decision-making, in medical outcome analysis, and in help 

desks.

In Bamberger & Goos (1993) another different integration method is presented where a 

case-based and an inductive learning system (CcC-k and BUBE, respectively) are combined in 

an interactive architecture. BUBE is used to learn rules that are later employed to reduce the 

number of cases that are analysed by CcC-H when a problem is being solved (general 

knowledge supporting case retrieval). The learned rules generate a set of possible solutions, 

and provide the cases corresponding to these solutions to the CcC+ system for a more detailed 

similarity computation. One of the main advantages of BUBE/CcC-f- is that the response time 

of the inference process is minimised by the integration of CBR and rules, while the 

performance and the quality of the explanations provided are kept at a good level.

Surma & Vanhoof (1995) also use induction to learn rules from cases. However, their 

approach to reasoning is different in that their architecture has a back-up level of integration 

which gives priority to the generalised knowledge expressed in the rules. This reasoning 

scheme is based on the following assumption (from Riesbeck & Schank (1989)): “ When an 

activity has been repeated often enough, it becomes rule-like in nature. We do not reason from 

prior cases when well-established rules are available” . The algorithm below has been 

conceived according to this assumption:

/ / a  new case is covered by some rule,

then apply a solution from a rule with the highest priority, 

else  adapt the solution from the most similar case.

In this architecture the case library is split into two disjoint sets, one containing exception 

cases and the other containing standard cases. The set of standard cases is used by an 

induction algorithm to produce a rule-base. When a new case is presented to the system, this 

rule-base is used to classify the case. If no existing rule applies, the case is classified by the 

nearest-neighbour algorithm using the exception cases. This problem-solving approach has 

been tested with relative success on a few different domains. However, the method of giving 

priority to the generalised knowledge contained in the rules might not be suitable in other 

domains where cases play an important role, as in the domain of law.
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Another hybrid CBR approach is the combination of CBR with Memory-Based 

Reasoning (MBR). One of the best-known systems that uses such an approach is CASEY 

(Koton 1988). CASEY integrates CBR with the Heart Failure Program, a model-based expert 

system that deals with patients with cardiac diseases. CASEY’s memory organisation is based 

on CYRUS (Kolodner 1983a). It contains descriptions of previous cases as well as 

generalisations derived from similarities between cases. The descriptions of cases are made 

out of input features such as symptoms, test results and medical history, as well as solution 

data, such as the causal explanation for the patient’s symptoms, therapy recommendations and 

outcome information. The steps below summarise the method used by CASEY to solve a 

given case:

• retrieval of a similar case from the library;

• evaluation of the differences between the new and the previous case using the 

knowledge existing in the Heart Failure Program, with the main purpose of ruling out 

answers that present inconsistencies;

• If no match is found for the new case, the Heart Failure program can be used to solve 

the problem.

This architecture uses mainly a back-up level of integration with priority given to the 

case-based component. However, the fact that the Heart Failure Program provides similarity 

metrics for the CBR mechanism reveals a higher level of interaction between the two 

reasoning mechanisms than that found in more standard back-up approaches. The main 

advantages introduced by CASEY were the use of model-based knowledge to control the 

quality of a match performed by the CBR system, and the use of the Heart-Failure Program to 

solve diagnostic problems that could not be solved by the CBR mechanism.

The system CABATA (Lenz 1993) also combines CBR and MBR in an interactive 

architecture conceived for planning tasks. The system was tested in a travel planning 

application, where a previous holiday trip had to be retrieved from memory according to some 

preliminary specifications established by the user. In addition to these specifications, the 

system uses two types of rules to help it find a similar previous holiday: rules that can increase 

or decrease the importance of certain features (e.g. if holiday type is city then season is less
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important); and rules that contain domain-specific knowledge to build constraints (e.g. if 

region is sea then region must not belong to mountains). One peculiarity of CABATA is that 

the reasoning is conducted in a way where the user interacts with the system, having the 

chance to interfere in a solution by modifying conditions and constraints.

Feret & Glasgow (1993) present another architecture combining CBR with MBR. The 

architecture has been applied to the diagnosis of faults in two different devices, namely a 

robotic system called Fairing servicing subsystem, and a Reactor building-ventilation system. 

The approach to modelling the devices has been based on the Automated Data Management 

System, which describes a device in terms of a hierarchy of components or groups of 

components. The hybrid architecture uses an interactive approach where an estimate of a 

location of a component whose failure explains the observed symptoms is first generated 

using the MBR techniques {general knowledge supporting case retrieval). These hypotheses 

are then used to retrieve previous cases. The main role of CBR in this system is to refine the 

possible answers given by the MBR module and to assist an operator in the final stage of a 

diagnostic session. The tests executed in the two experiments indicate that the performance of 

the hybrid approach is better than the MBR approach used on its own, and that CBR can 

minimise the impact of using partially incorrect models.

In ARAMIIHS (Macchion & Vo 1993), MBR, CBR and rules are combined to detect 

problems in a vehicle equipment bay that schedules the launching of a flight by computing 

guidance actions, telemetry, emissions and other types of evidence. The MBR mechanism of 

the system has three purposes: describe technical, causal and structural aspects of the vehicle 

equipment bay. The diagnostic capabilities of this mechanism are activated when CBR and the 

mechanism of rules fail to provide a satisfying solution to a given incident. The CBR 

mechanism is only activated when rules cannot solve the problem. Indexes connecting from 

one to several symptoms to a case have either a positive or negative influence on the 

associated diagnosis. This predominance in the reasoning process characterises ARAMIIHS as 

a mainly back-up architecture with a scheme of mixed priority levels: priority is given firstly 

to rules, then to CBR, then to MBR. The authors claim that from a cognitive point of view the 

system mimics the expert’s reasoning process: if an incident occurs frequently, he can 

recognise the situation automatically (use of rules). If the problem has already occurred
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previously, he can recall its past global or partial solution (use of CBR). Otherwise he must 

activate a heavier process based on a technical representation of the equipment to be 

diagnosed (use of MBR).

2.3.2 Combining CBR with Neural Networks

Another approach that is becoming more common is the combination of CBR with neiural 

networks. The majority of the architectures integrating these two reasoning mechanisms has a 

unified level of integration. This frequent choice of architecture is due to the fact that it can 

provide good solutions for CBR indexing and retrieval problems. For instance, cases can be 

represented in intermediate nodes of the neural network, being indexed by the network 

learning mechanism, and retrieved by the network consultation mechanism.

The architecture presented in Becker & Jazayeri (1989) has been developed to deal with 

design problems, where the previous case most similar to the case being solved has to be 

retrieved so that its design solution can be adopted directly for the new case, or modified to fit 

new requirements.

To perform this task, the system uses a neural network composed of three layers: an input 

layer where features are described, an intermediate layer connected to the input layer where 

old cases are represented, and an output layer where the design choices are kept.

Three types of knowledge are used to select the most similar cases: knowledge about the 

problem (input features); knowledge about old cases (old cases’ features and the design 

solutions adopted); meta-knowledge about criteria for selecting new cases (importance of each 

attribute). The network also includes modification rules that are used to change the 

importance of certain attributes according to the values present in other attributes.

Regarding the level of integration between case-based and neural-network components, 

this architecture has a unified approach. The cases themselves are part of the neural network, 

and case-retrieval is carried out by this hybrid structure. This type of architecture is interesting 

from the point of view that a neural network can use old cases to support a decision on a 

design solution. However, because the neural network is used to connect all the previous cases 

to their solutions and descriptions (case features), the neural network is not used to form 

generalisations. Thus, when solving a new problem, it has to compare each case individually 

with the current situation and select the one that appears to be the most similar (thus, many of
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the inconveniences of the nearest-neighbour algorithm can also apply to this system, such as a 

processing time that increases linearly with the number of existing cases, and a possible lower 

accuracy rate than other algorithms (Barietta 1994)).

Thrift (1989) also combines neural networks and cases in a unified approach, where the 

neural network is used for case filtering, ie. selecting the most relevant cases in a case library 

given a set of input values. By using a set of training cases different from the case library, this 

system manages to form generalisations while keeping relevant previous cases for future 

reference.

The neural network used in this architecture has been conceived with three layers: an 

input layer composed of ‘factors’ (features and feature values); an intermediate layer 

composed of previous cases; and an output layer composed of actions (solutions adopted in 

the previous cases). Therefore the architecture proposed by Thrift is also characterised by 

being unified, as cases are part of the neural network. The backpropagation algorithm is used 

to adjust the weights connecting factors to previous cases. Seeing it from a different point of 

view, the algorithm is used to establish a similarity measure between cases. The case selection 

is also influenced by the presence of hidden factors that are computed in accordance with the 

input factors. The backpropagation algorithm determines changes in the function of the action 

units, according to given input factors. The author remarks, however, that many of the current 

learning algorithms could equally well be used to adjust the weights that appear as parameters 

in the system.

When presented with a new problem the neural network indicates the most similar case in 

the library by taking its maximally-responding case unit. The solution adopted for that case is 

applied directly to the new case or modified to conform to some new conditions.

This hybrid neural-network approach has the advantage of being able to refer to previous 

cases when giving a solution to a new problem. In addition, because a training set different 

from the case library is used to train the neural network, its generalisation capabilities are 

bigger than those of Becker & Jazayeri (1989).

In Myllymaki & Tirri (1993), another example of a unified architecture combining CBR 

with neural networks is presented, where cases correspond to certain nodes in the neural 

network. In the architecture proposed, a CBR system using Bayesian probabilistic reasoning is
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implemented in a connectionist network. The system is addressed to case matching and 

adaptation problems.

The neural network is composed of three layers, the connection weights between nodes of 

different layers being computed using probability theory. The first layer of the network 

contains one node for each possible attribute value aij. The output of these nodes is either

entered by the user or calculated by the a priori probability of the presence of the value. The 

second layer has several groups of nodes, each group representing one attribute. The weight 

W(Ai), connecting a value node aij to an attribute node is P(Ai = a{j I  C = ck), ie. the 

conditional probability that the attribute A/ has the value aij, given an observation from class 

ck- The activation value of the nodes in the second layer is calculated by the weighted sum of 

the values coming from the first layer. In the third layer there is one node for each existing 

class. The activation of these nodes is calculated as a function of the weighted product of the 

values coming from the previous layer.

This is another example of a unified architecture combining CBR with neural networks, 

where cases correspond to certain nodes in the neural network. The major advantage of this 

architecture is that it provides a sound theoretical explanation for the case-matching process 

via probability propagation. This architecture is similar to those of Becker & Jazayeri (1989) 

and Thrift (1989), as they all represent the entire set of previous cases in the intermediate 

layer of the network. One of the main problems in this type of approach is that in the presence 

of noise it might be disadvantageous to use all the cases in the library. In order to improve the 

performance of the system, an alternative method for disposing of noisy cases may be used.

Grow and Learn (GAL) (Alpaydin 1991) uses a neural network with a topology similar to 

those of Becker (1989) and Thrift (1989). However, GAL keeps only representative cases in 

the intermediate layer of its three-layered network. It uses the prototype-based incremental 

principle, where a given class of objects is represented by the accumulation of relevant 

exemplars of the class and the modification of other class representations. GAL is composed 

of three layers, where the first layer is formed by input nodes, the second layer by exemplar 

(or prototype) nodes and the third layer by nodes representing classes. In the training phase, 

for each new case presented to the network, a winner-take-all procedure selects the closest 

exemplar in the network. When no exemplar exists for a class, a new node has to be created in
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the third layer of the network and connected to its new exemplar. Correct answers do not 

originate any changes in the network. For incorrect answers, new exemplar nodes have to be 

created and connected to their corresponding classes. In order to decrease the complexity of 

the network, a sleep phase has been introduced here. In this phase, one of the exemplar units 

is selected at random. The input vector is set equal to the weight vector of the chosen 

exemplar and the response of the network is computed. The response is the class to which that 

exemplar is connected. Then, that particular exemplar is disabled and the response is 

computed once more, this time without that unit. If the class found in the two cases are the 

same, that exemplar is removed. This procedure reduces the number of exemplars that are 

close to class boundaries, but not as close as other exemplars.

The learning method adopted by GAL does not consider the densities for the classes 

represented. Because of this, GAL can be compared with the nearest-neighbour algorithm 

where, instead of using all cases for comparison with new cases, only representative cases are 

kept.

The architecture of ARN2 (Azcarraga & Giacometti 1991) is similar to the architecture of 

GAL. Once again, the first layer (or the input layer) contains nodes representing attributes; the 

third layer (or the output layer) contains nodes representing classes. The second layer (or 

intermediate layer) contains nodes corresponding to prototypes, which are represented by 

reference vectors. A reference vector with n elements can be considered as a point in n- 

Euclidean space, possessing an influence region with a predefined radius. In the learning 

phase, when the system gives a wrong answer, the influence region of the activated prototype 

node is decreased in order to exclude the misclassified example. This is one of the main 

differences between ARN2 and GAL. Another important difference between the two models 

is that ARN2 does not have a sleep phase where ineffective prototype nodes are removed from 

the network.

The system INSIDE (Lim et al. 1991) uses a very similar approach to that of GAL and 

ARN2. It keeps only representative cases as part of its neural network, and its learning 

algorithm is based on the same principles as the algorithm used by ARN2. INSIDE was 

developed for the use of Singapore Airlines with the purpose of giving technicians support for 

diagnosing problems in the Inertial Navigation System used by their aircraft. Its neural
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network has three layers: an input layer that keeps symptoms and test results; a hidden layer 

fully-connected with the input layer and where the representative cases are kept; an output 

layer sparsely-connected to the hidden layer where each node corresponds to a type of fault 

that can be diagnosed by the system.

A clustering-based learning algorithm is adopted to train the neural network. This 

algorithm creates clusters for representative cases according to their features. Then, for each 

new case, a distance is calculated between the existing cluster centres and the new case. If the 

new case falls correctly into one of the clusters’ zone, the case is only marked ‘covered’. 

When it falls incorrectly into a cluster zone, the radius of attraction of that cluster is 

diminished. Cases that do not fall into any zone have a new cluster created for them.

A consultation in this system starts by the computation of the Euclidean distance between 

every cluster centre and the feature vector of the new case. The smallest distance shows the 

closest cluster, which corresponds to one of the nodes of the hidden layer, ie. a representative 

case. This representative case is connected to certain fault diagnoses that are assumed to be 

present in the new case too.

Furthermore, INSIDE contains a Flowchart mechanism that is used to provide solutions 

when the neural/CBR mechanism fails to give an answer. By using this other mechanism, the 

system attempts to cover both typical and more atypical cases. The main difference between 

INSIDE and ARN2 resides in the particularities of the methods used for learning prototypes 

and adjusting their influence regions.

The Prototype-Based Indexing System (PBIS) (Malek 1995) is based on ARN2, but its 

main purpose is to improve the performance of ARN2 by keeping both prototypical and non- 

prototypical cases. PIBS has a unified architecture with a memory divided into two different 

levels. The first level is the intermediate layer of the ARN2 network containing prototypical 

cases. The second level is a flat memory in which similar cases are grouped together in zones. 

Each zone of similar cases is connected to the closest prototype of the same class. 

Additionally, there is an atypical zone which stores boundary cases that fall into uncertain 

regions.

When a new case is presented to the network, if only one class is activated, the prototype 

with the highest output is selected. When more than one class is activated, the system selects
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the memory zones associated with the activated prototypes and retrieves the most similar case 

from these memory zones. When no prototypes are activated, the system looks for similar 

cases in the atypical memory zone.

The main difference between PB IS and other prototype-based incremental neural 

networks is that PB IS uses both prototypical and boundary cases in the reasoning process. It 

provides an interesting approach to dealing with typical and atypical situations. The 

prototypical knowledge of the intermediate layer is used to classify the more ordinary cases, 

while less common problems are solved with the help of the other memory level (typical and 

atypical zones). The consequent switching from neural networks to case-based search gives 

this model some of the features of back-up architectures as well.

When we compare prototype-based incremental neural networks with other models based 

on inductive methods, incremental learning in the networks seems to be simpler. In PBIS, for 

example, learning means adding cases to the memory zones and modifying the influence 

regions of the prototype nodes. In systems using inductive methods, learning usually implies 

the rearrangement of large parts of hierarchical structures.

All the systems combining CBR with neural networks presented above have an 

architecture with a unified level of integration where the network is used mainly for case 

retrieval purposes. Table 2.2 shows a summary of the main characteristics of these systems 

according to the framework detailed at the beginning of this chapter.

Level of 

integration

Type of

general

knowledge

Priority in 

the

reasoning

process

Form of support Knowledge 

embedded in 

cases and in 

generalisations

Systems

combining CBR 

and neural 

networks

unified compiled * integration for case 

retrieval purposes

*

Table 2.2: Main features of systems combining CBR with neural networks 

* classification does not apply
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2.4 Difficulties and Inconveniences with Hybrid CBR 
Approaches

Most of the problems in diagnostic CBR systems are related to indexing, ie. how to 

remember the appropriate cases at the right times. The CBR architectures that combine case- 

based methods with other symbolic approaches provide some solutions for such problems. For 

instance, decision-trees can be used as a means of case organisation/retrieval, while 

production rules can be used to locate relevant similar cases. One of the main inconveniences 

with the decision-tree mechanism is that for classification tasks that become more intricate, 

the knowledge represented in decision-trees is difficult to understand (Quinlan 1993; Winston 

1992). Furthermore, updating decision-trees may require a great deal of computation 

(sometimes the rearrangement of the entire tree), which can make learning a hard task.

In contrast, the architectures that combine neural networks with CBR usually have more 

‘elegant’ learning mechanisms. The incorporation and indexing of new cases in the library is 

done in a natural way. However, using the network to learn generalisations through previous 

cases produces a representation of knowledge that is often difficult to understand. And as 

stated by Sammut (1995), a representation that is opaque to the user may allow the program to 

learn, but a representation that is transparent to the user also allows the user to learn.

Here, we have focused on the development of a case-based model that would represent 

classificational (or diagnostic) knowledge in a format that is easy to understand. However, we 

also wanted the architecmre to provide the users with good learning and explanation 

capabilities. The solution conceived was the following:

• the Combinatorial Neural Model has been used to provide the system with learning 

capabilities. The network not only identifies important features and combinations of 

features that can be observed frequently in certain diseases, but also provides indexes 

for the search for similar previous cases when a problem is being solved;

• diagnosis descriptors have been used to make explicit the opaque classificational 

knowledge of the neural network. These descriptors have a simple and readable 

structure, which enables the user to understand the diagnostic knowledge employed by
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the system in the reasoning process.

• CBR has been used as a mechanism for retrieving similar previous experiences that can 

support a diagnostic hypothesis. Using previous experiences to support a result that has 

been reached can be justified by the fact that it is intuitive (Kolodner 1993, page 27) 

and that people are more ready to accept solutions that are grounded explicitly on 

previous cases (Georgin et al. 1994).

Chapter 5 gives further details on how each of these techniques has been used in the 

hybrid architecture, and chapter 7 explains how our work is differentiated from other previous 

research.



Chapter 3

Related Research: Integrating Symbolic and 
Connectionist Processing

This chapter complements the previous one by presenting some related research 

which investigate the benefits o f combining neural networks with other symbolic 

approaches. The major reason for the interest in this other type o f hybrid 

architecture is that in certain circumstances one single approach cannot provide 

all the necessary resources to represent knowledge and reason in a given domain. 

Although it may be desirable to have models in which the components are as 

simple and homogeneous as possible, from an engineering perspective having a 

connectionist model with a hybrid configuration may well be the only solution for a 

given application (Lange 1992). This chapter presents a brief introduction to 

symbolic and connectionist processing. The strengths and weaknesses o f each 

approach are highlighted, and their complementarity and cognitive appeal are 

discussed. Following that discussion, several connectionist!symbolic systems are 

examined.

3.1 Introduction

Despite sharing the same philosophical foundation, i.e. that cognition or thought processes 

can, at some level, be modelled by computation (Honavar 1995), neural and symbolic 

approaches were based on very different architectural concepts. While symbolic systems were 

mainly representation-oriented, connectionist systems have been process-oriented. Thus, one 

of the main goals of symbolic AI has been the definition of the most appropriate structures to
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express the knowledge of a particular application domain, as well as the methods needed for 

handling these structures. In contrast, neural-network scientists were more concerned with 

creating connectionist architectures in which intelligent behaviour would emerge from the 

interaction of a large number of simple processing units.

One of the first connectionist models, introduced in the early 60s, was the Perceptron 

(Rosenblatt 1962). Its learning and adaptation capabilities raised a great deal of interest and 

expectations. In 1969, however, Minsky and Papert (1969) pointed out a number of limitations 

in the model, which had serious consequences in the development of the field in the following 

years. In 1974, Paul J. Werbos created a procedure that could adjust the weights of a neural 

network and that did not have the limitations of the Perceptron. This procedure, known as 

baclgropagation, was rediscoverd in the 80s and popularised by Rumelhart, Hinton & 

McClelland (1986a). It consists of a learning technique in which the network is able to adjust 

its connection weights based on a given set of examples containing an input pattern and a 

target output pattern. This period could be considered as seeing the rebirth of neural networks, 

when two lines of research became distinct. The first was more concerned with the cognitive 

implications of connectionist models and would try to deal with higher-level problems such as 

representing knowledge or implementing production systems with neural networks (Touretzky 

& Hinton 1987). The other line focused more on lower-level pattem-recognition problems, 

such as in signal processing, speech and image recognition (Simpson 1990).

However, despite the efforts in trying to use connectionist systems in higher-level tasks, 

connectionist systems suffered strong criticism for their lack of ability in performing certain 

cognitive tasks (Fodor & Pylyshyn 1988). The argument has been that neural networks can 

learn representations that model the statistical properties of a set of cases, but that they cannot 

learn structural relationships that may exist between concepts in the domain knowledge. The 

reason for this is that connectionist models acknowledge only causal associations as a 

primitive relation among nodes in a network. Traditional work in symbolic AI, in contrast, 

acknowledges not only causal relations among the concepts represented, but also structural 

relations. Thus, in connectionist models the relation A->B can only mean that some state of A
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affects states of B. But it cannot express, for example, that A is part of B, as this is not a type 

of mental representation connectionist networks recognised

Nevertheless, the success of neural networks in pattem-recognition applications became 

apparent. Their numeric, associative and self-adapting nature enabled them to be employed 

successfully in applications where symbolic systems did not perform well, such as in the 

recognition of characters (Carpenter & Grossberg 1992), signal, image and speech processing 

(Simpson 1990). The main reason for symbolic systems not to perform well in such 

applications is that the symbolic vocabulary for representing knowledge and reasoning is 

generally not suitable for pattem-recognition tasks. Due to their intelligible knowledge 

representation formalisms, and to the transparency with which such systems can treat 

reasoning, symbolic systems have been addressed to higher-level tasks with more success.

It is noticeable at this stage that the weaknesses and strengths of connectionist and 

symbolic systems are complementary, as well as their styles of reasoning. Each paradigm 

mimics well one of two types of thought of the human brain (Kurzweil 1990):

• as mentioned before, neural networks are very well suited for solving pattem- 

recognition tasks, and in general the tasks involving the five senses in human beings. 

We do not have a conscious control over such tasks, and thus we cannot explain 

exactly how we execute them. For instance, we find it difficult to explain how we 

recognise a face. Another relevant phenomenon is that we find it impossible not to 

think of elephants when we are asked to do so. Likewise, neural networks can 

perform these tasks efficiently, but with little or no knowledge of how they achieve 

the results.

• symbolic systems are well suited for dealing with problems that require some type of 

logical reasoning. This is the type of reasoning we use to play games and solve

^According to Fodor & Pylyshyn (1988a), distributed networks cannot be considered structural 

representations because no one node on its own in this kind of network represents a concept (only the 

group of nodes does). Networks that represent concepts with microfeatures do not have structural 

representations either, because concepts are represented in the form of lists, where it is not possible to 

establish the direction of relationships, or the elements to which the relationships apply when more than 

one relationship appears in a list.
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problems in a notably sequential manner. In the human brain, these types of thought 

occur at a more conscious and controlled level. For example, after solving a 

mathematical problem, we can easily trace our mental processes backwards to explain 

how we found the solution. In the same way, symbolic systems can perform this type 

of reasoning with traces that permit a deeper understanding about how the 

conclusions were reached.

But apart from this suggested cognitive complementarity, other more practical reasons 

have brought researchers to integrate symbolic and connectionist processing. On the symbolic 

side, expert system developers have faced several problems related to knowledge acquisition, 

e.g. the elicitation of knowledge from an expert and translation into one of the knowledge 

representation formalisms (Barr & Feigenbaum 1986). Until that moment, machine learning 

researchers had been the main people responsible for the creation of methods to ease the 

knowledge acquisition phase and to incorporate in expert systems the ability to leam with 

experience (Michalski, Carbonell & Mitchell 1983). However, the solutions offered also had 

some drawbacks regarding their ability to perform incremental learning and to maintain the 

consistency of the acquired knowledge^. The idea of using neural networks in the learning 

process in expert systems therefore seemed to be appealing (Gallant 1988).

With the appearance of systems combining neural and symbolic processes, a number of 

classification schemes for hybrid architectures were proposed. In Medsker & Bailey (1992), 

hybrid architectures are classified in accordance with the degree of connection of the symbolic 

and the neural components. The possible classes are:

• stand-alone: the neural and the symbolic components work in an independent fashion. 

The main reason for the choice of this type of architecture is that the user can compare 

the performance of the two technologies (ie. neural networks and symbolic system). 

For instance, an expert system and a neural network can be constructed for the same 

fault-diagnosis problems. When solving new cases, the user can contrast the 

performance of the two systems and opt for the results given by one of them, or the

^This is mainly related to the difficulties in re-structuring decision trees when new concepts are learned, 

or keeping the consistency of a rule set when new rules are incorporated.
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other. This type of model does not benefit from the integration of the connectionist and 

the symbolic approaches, as there is no interaction between connectionist and symbolic 

modules.

transformational: a system conceived with one approach migrates to another approach. 

For example, the need for heavy numeric processing and strong adaptive capacity 

justify the conversion of an expert system into a neural network. Transforming a neural 

network into an expert system, in contrast, may be necessary if better explanation 

capabilities and richer knowledge representation formalisms are needed. Here there 

isn’t any interaction between the connectionist and symbolic modules, which may 

restrain this type of architecture from benefiting from the integration between the 

connectionist and the symbolic approaches.

loosely-coupled: the application is decomposed into separate neural-network and 

symbolic components, which communicate via data files. For instance, the neural 

network may be responsible for pattem-recognition tasks, while the expert system may 

use the information coming from the neural network to solve classification problems, 

and to explain the reasoning process. Some benefits from the integration of the two 

approaches are gained in this type of architecture. In the example, some tasks that are 

handled with difficulty by the expert system are left for the neural network, and vice 

versa. Loosely-coupled architectures are used mostly to combine existing expert 

systems and neural networks.

tightly-coupled: the application is decomposed into separate neural-network and 

symbolic components, which, this time, communicate via resident memory stmctures. 

This type of integration enables the establishment of a higher level of interaction 

between symbolic and connectionist modules. Therefore, more benefits can be gained 

from the combination of the two approaches.

fully-integrated: the main feature of this type of architecture is that it allows the 

connectionist and the symbolic modules to share data and knowledge representation 

structures. The communication between them is made by the dual nature 

(symbolic/connectionist) of the hybrid representation. For instance, a node of the
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neural network may also represent a concept of the symbolic system, which makes a 

clear distinction between symbolic and connectionist components difficult. Fully- 

integrated  architectures also try to model human reasoning in a cognitively-plausible 

way, and by doing so, they benefit both from the numerical nature of the neural 

networks and from the comprehensible knowledge representation of symbolic systems.

A similar classification scheme has been proposed by Goonatilake & Khebbal (1995) to 

classify hybrid systems combining different ‘intelligent’ techniques according to functionality 

and communication requirements. The possible classes in this scheme are:

• function-replacing hybrids, for systems where a function in one technique is performed

by another technique. For example, systems that use genetic operators to select weights 

in a neural network.

• intercommunicating hybrids, where independent modules coordinated by a central 

control perform different functions to generate solutions. For example, an expert 

system that replaces its symbolic pattern matcher by a neural network.

• polym orphic hybrids, where a single processing architecture is used to simulate the 

functionality of different intelligent techniques. For example, neural networks that can 

perform some type of symbolic processing.

In Sun (1995a), a yet different classification scheme has been proposed, where four types 

of integration between neural and symbolic processes are described, according to the type of 

neural network used and to the degree of connection between the components. The possible 

classes in this scheme are:

• Architectures in which a localist^ network is used fo r  symbolic processing. Each node 

in the neural network represents a particular concept, and a connection between two 

nodes represents a liaison between the respective concepts. In such models, the 

mapping between neural network and symbolic structures is direct.

^Although the word localist is not common in English, this is the term used by the author when 

classifying a particular type of hybrid architecture.
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• Architectures in which a distributed network is used fo r  symbolic processing. The 

main objective of this type of integration is to make the neural network perform the 

functional equivalent of symbolic processing in a holistic and functional way.

• Architectures combining separate symbolic and neural-network modules. This type of 

architecture is based on the juxtaposition of a neural network and a symbolic system.

• Architectures that use neural networks as basic elements in symbolic models: here, a 

general symbolic structure is used, but each component of this structure is replaced 

by a small-scale neural network, in order to enhance the model with more fault- 

tolerant elements, capable of parallel computation and partial matching.

In this last classification scheme, the architectures described in all but the third item are 

more symbiotic in that their neural network and symbolic components are intermingled, 

resulting (as in polymorphic  and fully-integrated  architectures) in an organization where the 

distinction between what is symbolic and what is connectionist can hardly be determined.

The three classification schemes have some similarities, and sometimes overlap. For 

instance the fully-integrated  systems of the first scheme are similar to the polymorphic 

hybrids of the second scheme; the architectures in which a localist network is used fo r  

symbolic processing  and the architectures in which a distributed network is used fo r  symbolic 

processing  of the second scheme can both be treated as specific cases of polym orphic hybrids. 

In constrast, the architectures defined in some of the schemes cannot be classified in other 

schemes. For instance, independent and transformational models cannot be classified by 

Sun’s classification schemes. In Medsker & Bailey’s two models, there is no necessary 

interaction between symbolic and connectionist components, which is not foreseen by Sun’s 

classification schemes.

The architectures that integrate separate symbolic and neural-network modules are the 

ones that relate most to the work developed in this thesis, where the Combinatorial Neural 

Model has been combined with a separate CBR module. Table 3.1 shows the classification of 

some of these architectures which are related to our research, according to the three 

classification schemes presented.



3. Related research; integrating symbolic and connectionist processing 48

Sytems /  Classification Medsker & Bailey 

(1992)
Sun (1995a) Goonatilake & Khehal 

(1995)

INNATE/QUALMS 

(Becraft, Lee & Newell 

1991)

loosely-coupled
combining separate 

symbolic and neural- 

network modules

intercommunicating

Knaus (1992) tightly-coupled combining separate 

symbolic and neural- 

network modules

intercommunicating

Tirri (1995) tightly-coupled combining separate 

symbolic and neural- 

network modules

function-replacing

SCRuFFY

(Lin & Hendler 1995)
tightly-coupled combining separate 

symbolic and neural- 

network modules

intercommunicating

CONSIDERR 

(Sun 1995b)
fully-integrated combining separate 

symbolic and neural- 

network modules

intercommunicating

NEXTOOL

(Machado & Rocha 1992)
tightly-coupled combining separate 

symbolic and neural- 

network modules

intercommunicating

Yang & Bhargava (1990) transformational does not apply function-replacing

Kintch (1988) tightly-coupled combining separate 

symbolic and neural- 

network modules

intercommunicating

LeMICON 

(Bookman 1995)
tightly-coupled combining separate 

symbolic and neural- 

network modules

intercommunicating

Marker-passing networks fully-integrated localist or distributed 

network used in 

symbolic processing

polymorphic

Table 3.1: Classifying some hybrid connectionst/symbolic systems
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Each of these systems is commented on further in the next section.

3.2 Integrating Neural Networks with Symbolic Systems

In this section we describe several architectures that are related to the research presented in 

this thesis. These architectures, in most cases, combine separate symbolic and neural-network 

components.

A common approach to the combination of connectionist and symbolic components is the 

integration of an expert system with a neural network. The system of Becraft, Lee & Newell 

(1991), for example, combines a model-based expert system (QUALMS) with a neural 

network (INNATE) to serve as an assistant in the diagnosis of faults in large-scale chemical 

process plants. The benefits of using a neural network in this diagnostic problem come from 

the fact that much of the information involved in the diagnostic process is numeric in nature 

(such as process sensor readings), which is easily handled by neural networks. The expert 

system is left with the task of handling symbolic information, which is more difficult to treat 

with neural networks. In the diagnostic process, the network is used as a first-level filter. Its 

inputs correspond to sensor values or alarm states of the process, and its outputs represent the 

presence or absence of particular faults. After a fault is identified by the network, the expert 

system uses its knowledge about the structure and function of the plant to analyse the results, 

and either confirms the diagnosis or offers alternative solutions. This architecture can be 

classified as loosely-coupled, as it combines a separate expert system and neural network  that 

do not share memory and knowledge representation structures. According to Goonatilake & 

Khebbal’s classification, this is an intercommunicating hybrid  where the neural network 

performs some initial calculations that are later provided to the expert system for a further 

analysis.

In Knaus (1992) the main objective has been the representation of the knowledge of 

experts in neural networks, for a particular problem in architecture. The initial goal of this 

system was to create an expert system that would give marks to architectural projects, 

according to some pre-defined criteria. A rule-based system was constructed initially for the 

application, but the developers were not satisfied with the results obtained, as the kinds of 

concepts with which the system had to deal (such as aesthetics and efficiency of the
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architectural project) were difficult to encode in production rules. Thus, an alternative 

solution was tried, by representing the knowledge of an expert in a neural network. This 

network was combined with an expert system, the latter being responsible for starting the 

reasoning process and for finding a preliminar solution for the problem. This solution was 

then adjusted by the neural network according with the expert’s knowledge encoded in the 

network. This hybrid system has been capable of reproducing the official system of mark 

attribution for architectural projects. One of its peculiarities is that no learning mechanism is 

used by the neural network, as the existing criteria for the evaluation of architectural projects 

should not be modified according to the projects analysed. This architecture can be classified 

as tightly-coupled, as it combines a separate expert system and neural network  that share 

memory and knowledge representation structures. According to Goonatilake & KhebaTs 

classification, this is an intercommunicating hybrid  where the neural network refines the 

solution initially found by the rule-based system.

Tirri (1995) uses a neural network to support a task performed by a symbolic expert 

system. In this architecture, the knowledge base of the system is divided into three sub­

knowledge bases: a rule-base, a fact-base and a neural network. The rule-based is composed 

by condition-action rules, each condition being formed by one or more predicates. Each 

predicate can be connected to a corresponding representation in the neural network. When 

given a new problem, the inference engine of the expert system performs the normal 

backward/forward chaining of rules. However, the inference engine may encounter a rule 

which has a predicate in its condition part for which no value can be determined by the facts 

in the fact-base. In this case, the system tries to decide on the value of the predicate by 

activating a corresponding neural network, and using the predicate arguments as parameters 

for the network. The neural network returns a boolean value that determines whether the 

predicate was true or false. As this architecture uses a neural network to perform a pattern- 

matching task, it can be classified as function-replacing, combining separate neural-network 

and sym bolic components.

Similarly to INNATE/QUALMS and the system developed by Tirri (1995), the 

SCRuFFY (Lin & Hendler 1995) architecture uses a neural network to support the diagnostic 

task performed by an expert system. In SCRuFFY, distinct roles are assigned for the
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connectionist and symbolic components. While a backpropagation neural network is used to 

classify input signals, a rule-based expert system is used to analyse these signals and make 

decisions on which actions to take. The reasoning process in SCRuFFY starts with the neural 

network examining parts of input signals to determine the current state of the system. A 

temporal pattern matcher is then used to analyse the ou^uts of the neural network over time, 

looking for patterns in the consecutive network outputs and trying to provide further evidence 

for the expert system. The expert system makes control decisions according to the information 

provided by the pattern matcher, and monitors the effect of the decision from new changes in 

the input signal. The pattern matcher is therefore the bridge that converts the numeric output 

produced by the neural network into the symbolic knowledge handled by the expert system. 

SCRuFFY has been used in the construction of systems for chemical process and welding 

control, and in the analysis of ballistic signals, all applications related to control problems. 

This architecture can be classified as tightly-coupled and intercommunicating, where separate 

neural-network and symbolic components cooperate in the identification of control problems.

The system CONSYDERR (CONnectionist SYstem with Dual-representation for 

Evidential Robust Reasoning) (Sun 1995b) establishes a much higher level of cooperation 

between symbolic and connectionist components than that of the systems already reviewed. 

CONSYDERR is divided into two layers: a symbolic layer where each node represents a 

concept of the domain, and a microfeature (or connectionist) layer where each node is a fine­

grained representation of a concept in the first layer. To express rules, the nodes of the 

symbolic layer are connected from rule antecedents to rule consequents. All the nodes in the 

microfeature layer are connected to the concepts in the symbolic layer accordingly. When a 

node in the symbolic layer is activated, all the nodes in the microfeature layer connected to 

that concept are subsequently activated for inter-layer action. The activity in the other 

direction also applies, ie. from microfeatures to concepts. This architecture was applied in 

natural language understanding, having shown a good ability to solve lexical disambiguation 

problems. Other types of applications cosidered were day-to-day commonsense reasoning and 

planning. CONSYDERR can be classified as fully-integrated  and intercommunicating, with 

separate connectionist and symbolic components that have a very high level of interaction.
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The system NEXTOOL (Machado et al. 1991; Machado & Rocha 1992) has a different 

approach from the ones presented so far in that it uses a symbolic system (semantic network) 

with the main purpose of representing declarative knowledge about the domain, as well as 

some procedural knowledge which has a correspondence with the knowledge stored in the 

neural network. In the approaches reviewed, the focus has been on the use of the symbolic 

component to represent mainly causal relationships between concepts (e.g. procedural 

knowledge represented in rules). Little or no attention has been given to the representation of 

structural aspects of the domain knowledge, which can be achieved with the use of 

mechanisms such as semantic networks and frames. The neural network used by NEXTOOL 

is the Combinatorial Neural Model (CNM), which stores knowledge complementary to that of 

the semantic network. While the semantic network represents declarative knowledge of the 

domain, the CNM is responsible for learning and refining classification patterns, in addition to 

carrying out the reasoning in the system. The integration of the symbolic and the connectionist 

component in this architecture is achieved by influence links that express causal relationships 

in the semantic network and that have corresponding connections in the neural network. Thus, 

the symbolic influence links and the neural network can be also seen as representing the same 

classification problem. The semantic network is used to guide the consultation process, 

collecting input information for the neural network. The network propagates the activation of 

the input nodes to the ouQ)ut nodes (classes or diagnoses). In case the evidence provided is not 

sufficient for the neural network to reach a conclusion, the semantic network guides the 

questioning of the user for further information. This architecture has been employed 

successfully in the development of a system for the diagnosis of renal syndromes: uremia, 

nephritis, calculosis and hypertension (Machado et al. 1991). The model of integration of 

neural and symbolic processes used by NEXTOOL has had a great deal of influence on the 

work presented in this thesis, and will be treated in more detail in the next chapter. It can be 

classified as tightly-coupled, intercommunicating, where separate connectionist and symbolic 

components are integrated.

Yang & Bhargava (1990) have had a different approach to combining neural networks 

with symbolic systems. They designed a transformational model that uses a neural network to 

implement a rule-based expert system. The neural network was used initially to learn
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classificational knowledge, and it was later converted into a rule-based system. The rules 

handled by the system considered the following types of correlation between attributes:

• logical concurrence: when input F/ is highly correlated with output Dj\

• negative concurrence: when there is a strong negative correlation between an input F/ 

and an output Dj.

• disjunction: output Z)y occurs whenever either input F/ or F]̂  is observed;

• exclusive disjunction: output Dj occurs whenever either input F/ or F^ occurs, but not

both;

• sufficient implication: if all of inputs F /+7, F /+2,,,., F/+y  ̂occur, then Dj occurs too;

• necessary implication: if input F/ does not occur, then Dj does not occur either.

Although no interaction in the reasoning process exists between the connectionist and the 

symbolic components, this architecture is able to take advantage of their integration: while 

neural networks are used to learn and refine knowledge, a rule-like representation is available 

for consultation and explanation purposes. This model could be also classified as function- 

replacing, as induction algorithms, more commonly used to build rule-based systems, have 

been replaced here by a neural network.

Hybrid connectionist/symbolic systems are also becoming more popular in language- 

understanding applications. The model in Kintch (1988), for instance, used a symbolic 

production system to build symbolic representations of the alternative interpretations of text 

and to construct a localist network in which the different interpretations competed. While the 

localist network was used for disambiguation purposes, the symbolic production system 

allowed the model to perform the rule-firing and inferencing that is difficult for connectionist 

models. More recently, LeMICON (Bookman 1995) has made use of connectionist and 

symbolic techniques to construct plausible interpretations of text. The system’s architecture 

supports both structured and non-structured representations'^. While structured representations

'̂ In structured representations each node of the network represents a concept, and a connection between 

two nodes represents a relationship between concepts. In non-structured representations, a single concept
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provide intelligibility and comprehensibility, non-structured representations enable 

similarities to be found between texts that have no explicit connections.

Another area of research that is related to connectionist/symbolic processing is that of 

marker-passing networks. These networks are different from neural-network models in that 

their units do not have numeric activation functions. Instead, their units spread their activation 

by propagating symbolic markers through the network. This feature makes marker-passing 

networks to be known as the most symbolic of the connectionist models. Because of this 

symbolic character, marker-passing networks units do not have the graded level of activation 

seen in other neural-network models, which gives marker-passing networks an ‘all-or-nothing’ 

character^. This is one of the main drawbacks of the approach. Furthermore, marker-passing 

networks do not possess the learning capabilities observed in other connectionist models 

(Lange 1992). But despite these difficulties, marker-passing networks have been used 

successfully in areas such as planning (Hendler 1988), and natural language understanding 

(Chamiak 1986).

3.3 Difficulties with Hybrid Symbolic/Connectionist 
Approaches

It is possible to observe from the description of the systems presented in the previous 

subsection that two main reasons have led researchers to the development of hybrid 

architectures combining connectionist and symbolic approaches. The first is related to an 

engineering problem: in certain circumstances no one single approach can provide the 

appropriate means for knowledge representation and reasoning in a given domain. Apart from 

fully-integrated and polymorphic hybrids, the other types of architecture are usually designed 

for this reason. For instance, the system NEXTOOL {tightly-coupled, intercommunicating)

can be represented through several interconnected nodes. This last form of representation is notedly less 

intelligible.

În Hendler (1989), a marker-passing network is expanded to represent concepts with microfeatures and 

to contain numeric activation functions that represent the activation strength of a unit. Therefore, units 

that receive strong activation become part of a marker path, whereas units that do not receive enough 

activation cannot support further marker propagation.
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employed a symbolic semantic network to represent domain knowledge, and a neural network 

to learn and perform classification tasks. INNATE/QUALMS (loosely-coupled, 

intercommunicating) opted for using a neural network to process signals (which can be done 

efficiently by connectionist systems), and for using an expert system to analyse these signals 

and make decisions.

The second reason for combining symbolic and connectionist approaches is related not 

only to the complementarity of their nature, but also to the possibility of modelling cognitive 

processes in a plausible way by using both approaches. The architecture of CONSYDERR, for 

example, provides a flexible knowledge representation mechanism which can be used in a 

variety of tasks. Additionally, by having a two-layered knowledge representation scheme (one 

layer representing microfeatures, the other layer representing more complex symbolic 

concepts), the architecture proposes a plausible model for learning and reasoning. By having 

the connectionist microfeature layer connected to the symbolic concept layer, this architecture 

also provides a solution for one of the best-known problems of neural networks, ie. the 

representation of the numerical knowledge of neural networks in a comprehensible symbolic 

fashion.

The system NEXTOOL also proposed a solution to this problem, by connecting the nodes 

of the neural network to influence links of a semantic network. However, neither NEXTOOL 

nor CONSYDERR are able to provide a symbolic representation, in a graded scale, of the 

importance of feature/value pairs in the identification of a class (or diagnosis). This problem 

has been tackled by HYCONES (Reategui & Leao 1993), which is presented in the next 

chapter, and later by NN-CBR, presented in chapter 5.

Another problem on which hybrid symbolic/connectionist systems do not focus is that of 

referring to specific previous experiences when solving a problem and proposing a solution. 

This has been considered as an intuitive problem-solving approach (Kolodner 1993), as well 

as an effective way of supporting results achieved (Georgin et al. 1994). Our idea in this thesis 

has been to incorporate, in a single architecture, the capacity of referring to previous 

experiences, the knowledge representation facilities of symbolic systems, and the learning 

capability of neural networks.
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The next chapter presents some previous research that has led eventually to the results 

obtained in the work presented in this thesis. In this previous research, many experiments 

were carried out. Some of these experiments proposed solutions for the integration of 

symbolic and connectionist approaches, and tackled problems such as the symbolic 

representation of neural-network knowledge.



Chapter 4

Knowledge Graphs, CNM, HYCONES and 
other Experiments

The work reported in this thesis represents a natural next development o f some 

previous research conducted by Dr. Beatriz de Farial Leao, at the Cardiology 

Institute (Porto Alegre, RS - Brazil) and myself, at Universidade Federal do Rio 

Grande do Sul (Porto Alegre, RS - Brazil). This chapter summarises the previous 

research and introduces some topics that are important for the understanding o f 

the system presented later: for example, knowledge graphs, the neural network 

CNM, the systems NEXTOOL and HYCONES. We also describe in this chapter 

other more recent experiments carried out at University College London. Three 

systems have been developed in these experiments, each o f them based on a 

different architecture and applied to a particular domain, namely classification o f 

credit card transactions, identification o f the profile o f patients in evaluation for 

heart transplants, and diagnosis o f Congenital Heart Diseases.

4.1 Introduction

The knowledge representation formalism of knowledge graphs has been conceived with the 

main goal of providing a means for the represention and combination of knowledge elicited 

from multiple experts. The need for such a mechanism to elicit and represent knowledge can 

be exemplified in the environment of a large company (e.g. a bank). It may be interesting for 

such a company to build a corporate knowledge base using the expertise of its more prominent 

specialists in a particular problem domain (e.g. credit aproval). In order to build this corporate



4. KGs, CNM, NEXTOOL, HYCONES and other experiments

knowledge base, the elicitation and normalising of the knowledge of the company’s specialists 

is required. However, if the task of eliciting knowledge from one expert is already complex, 

the difficulty becomes much higher when a large number of experts is concerned.

The knowledge acquisition methodology of knowledge graphs provides the means for 

eliciting and representing the knowledge of multiple experts (Machado, Rocha & Leao 1990). 

Several experiments in this direction have been carried out. For instance, Greco & Rocha 

(1988) showed the soundness of the knowledge graph approach for the analysis and 

description of text understanding in a population, finding a significant correlation between 

this understanding and the electrical brain activity, measured through the electro­

encephalogram. Theoto et al. (1987) have shown that this approach can be used to 

characterise the different understandings that a same text can have in populations with 

different backgrounds of knowledge about a specific subject. Later, Leao & Rocha (1990) 

used knowledge graphs to highlight the observation that the knowledge representation models 

built by experts in congenital heart diseases are smaller and less complex than those built by 

non-expert cardiologists.

In addition to having been used in all these experiments, the knowledge graphs have also 

been the source of inspiration for the development of the Combinatorial Neural Model (CNM) 

(Machado & Rocha 1990), which is the neural network used in our research.

The next section presents the knowledge representation formalism of knowledge graphs 

and the methodology used in order to elicit the graphs. Section 4.3 describes the CNM, a 

neural network which has a very similar structure to that of the graphs for representing 

classification knowledge. Section 4.4 describes the system NEXTOOL, which combined the 

CNM with semantic networks in the development of hybrid expert systems. Section 4.5 

describes HYCONES (Reategui & Leao 1993; Leao & Reategui 1993), a hybrid 

symbolic/connectionist system that has been based on NEXTOOL and which set the grounds 

for the development of the architecture presented in this thesis. Section 4.6 presents other 

more recent experiments which have been carried out at University College London.
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4.2 Knowledge Graphs

A Knowledge Graphs (KG) is defined as a directed AND/OR acyclic graph used to 

represent the knowledge of an expert (or a group of experts) for a diagnostic hypothesis. 

Figure 4.1 shows the basic structure of the KG.

Knowledge graph

hypothesis nodes 

intermediate nodes 

evidence nodes

Figure 4.1 : The basic structure of the knowledge graph

Three types of nodes can be identified in the graphs:

• hypothesis nodes: representing the diagnostic hypotheses considered in the graph;

• evidence nodes: representing symptoms, tests results or any other information that 

supports the diagnostic hypothesis. They appear in the graph in their order of 

importance, from left to right.

• intermediate nodes: representing different groupings of evidence used by an expert for 

reasoning about a problem.

Figure 4.2 gives an example of the use of a KG for the representation of diagnostic 

knowledge for the diagnosis of Atrioventricular Septal Defect (AVSD), a common congenital 

heart disease.
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Knowledge graph 

AVSD

AVSD = Atrioventricular septal defect 
A = Left anterior hemi blockage 
B = Down's syndrome 
C = Cardiomegaly on CXR 
D = Increased pulmonary flow on CXR

A B C D
(9) (8) (8) (7)

Figure 4.2: Knowledge graph for the diagnosis of AVSD

The graph shows that there are two different trees that lead to the diagnosis. The first 

tree consists of the three leftmost nodes of the graph (A, B and C) connected by a logical 

AND in an intermediate node. The second tree consists of the fourth node of the graph (D), 

connected by a logical AND to the first tree. The two different trees can be described as two 

different alternatives to reach the diagnosis, which means that they become connected by a 

logical OR.

The knowledge acquisition method for the elicitation of knowledge graphs starts with a 

series of interviews with an expert, where he or she has to determine the set of problems to be 

solved, as well as the evidence that influences the identification of each problem. For 

instance, in a medical context, the expert would have to determine the diseases that the system 

would try to diagnose, as well as the symptoms and the result of clinical examinations that 

amount to determining-factors for the identification of each disease. Then, for each of the 

problems considered, the expert would have to sort the pieces of evidence selected, according 

to their order of importance. These items are placed in the evidence nodes layer, while the 

possible solutions for the problems (diagnoses) are placed within the hypothesis nodes layer. 

In the next phase, the evidence nodes that have some particular degree of importance when 

seen together are connected in an intermediate node. The intermediate nodes are then 

connected to the hypothesis nodes. In the last phase of the construction of the graphs, an 

importance degree, in a 1 to 10 scale, is assigned to each of the nodes. The detailed knowledge 

acquisition method for the elicitation of knowledge graphs can be found in Appendix A.
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4.3 The Combinatorial Neural Model

The knowledge acquisition methodology of knowledge graphs inspired the development of the 

Combinatorial Neural Model. The structure of the CNM is therefore very similar to that of the 

graphs.

Table 4.1 (adapted from Denis & Machado (1991)) summarises the main features of the 

CNM and contrasts them with other well-known connectionist models.

model/ features Network

properties

Learning Example of 

applications

Perceptron 

(Rosemblatt 1962)

Acyclic network 

with 2 layers

Reinforcement: supervised learning 

where the connection weights are 

rewarded when the system performs 

correctly and punished when it does 

not

character

recognition

Backpropagation 

(Rumelhart, 

Hinton & 

McClelland 1986)

Acyclic network 

with at least 3 

layers

Error correction: supervised learning 

that adjusts the connection weights 

proportionately to the difference 

between the expected output and the 

actual values obtained in the output 

layer

speech processing, 

adaptive control of 

robot arm 

movements

ART

(Grossberg 1976)

Cyclic network 

with 3 layers

Competitive or cooperative: non­

supervised learning where connections 

can inhibit neighbouring nodes 

(competitive) or excite them 

(cooperative)

radar and sonar 

signal recognition, 

image processing
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Kohonen (1988) Cyclic network 

with 2 layers

Learning based on randomly- 

connected systems: non-supervised 

learning that supports the theory that 

the human brain is similar to a 

network randomly connected when 

analysed from a macroscopic level

speech recognition, 

learning the 

probability 

distribution of data

Hopfield (1982) Cyclic network 

with 1 layer

The connections and their weights are 

pre-determined (ie. before the network 

is activated)

recognition of data 

or complete images 

from fragments, 

associative memory

CNM Acyclic network Supervised learning similar to classification.

(Machado & with 3 or more backpropagation (error correction) diagnosis of

Rocha 1990) layers where punishments and rewards are 

computed for each connection of the 

network. The actual connection 

weights are calculated through the 

normalisation of the punishment and 

reward accumulators

medical diseases

Table 4.1: Comparison of neural network models

The Perceptron (Rosemblatt 1962) has been the first connectionist model developed. This 

network aroused a lot of interest at the time, for its ability to recognise linearly separable 

patterns. However, the model is not appropriate for classes that are not linearly separable, as 

in the problem of the exclusive-OR (XOR). This problem has been used by Minsky and Papert 

(1969) to illustrate the deficiencies of the Perceptron, which contributed to the stagnation in 

neural network research for about a decade.

The backpropagation algorithm (Rumelhart, Hinton & McClelland 1986) has been 

designed to train multi-layer Perceptrons (networks with one of more intermediate layers 

between the input and output layers). This algorithm has been tested in different problems.
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such as the exclusive-OR, in problems of visual pattem-recognition and speech processing. In 

most circumstances, the baclgropagation found good solutions for the problems, although the 

algorithm, sometimes, gives a weight configuration for the network that would correspond to a 

local mimimum of the error-function.

Grossberg (1976) has developed the network ART, which uses a non-supervised learning 

mechanism to form information clusters. In this network the connections between nodes are 

bi-directional. The bottom-up connections try to classify the input stimuli, while the top-down 

connections try to learn how to cluster the stimuli (ie. how to form classes). The learning 

process selects the first input presented to the network as an initial cluster. The next input is 

compared with the first example. They are grouped in the same cluster if the distance between 

the two examples is smaller than a given threshold. Otherwise, the new example will start 

another cluster. This process is repeated for all the input examples available. The number of 

clusters grows in accordance with the threshold function selected, as well as with the distance 

metric used to compare the training examples.

At the beginning of the 80s, Kohonen (1988) proposed a network that was based on some 

theoretical work on the organisation and functioning of the human brain. A spatial 

arrangement of processing units was used in the design of the network, which enabled the 

structured representation of input patterns. A self-organisation mechanism operates as a 

clustering algorithm. When some stimuli form a cluster in the input area of the network, the 

algorithm maps the patterns of the cluster to a specific area in the network. The algorithm 

arranges these areas so as to capture the general topology of patterns observed in the input 

clusters. Kohonen has shown that this algorithm could be used for problems of speech 

recognition, where the network could learn a phonological map with distances between units 

that were proportional to vectorial-distances shown as input examples.

The network built by Hopfield (1982) had as a main goal to serve as a self-associative 

memory, or to be used in optimisation-problems. This network is more appropriate for 

problems that can be modelled through a binary-represention, such as black and white images 

where the input elements can be represented by the values of each image dot (eg. 0 = white, 1 

= black). When used as a memory accessible by content, this network presents a problem. 

Despite the patterns shown and stored by the neural network, it can converge to a
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representation which is different from the examples presented to it. This may result in a 

situation where the network is not capable of finding an existing pattern. Moreover, if a 

training example shares too many representation bits with another example, the network may 

converge to a representation uniquely for this second example.

The CNM network has been conceived more recently (Machado & Rocha 1990). The 

main reason for the development of this neural network model has been to provide a 

computerised method that would use the same reasoning model of the knowledge graphs. 

Moreover, by having a neural network with a similar structure to that of the knowledge 

graphs, machine learning and knowledge engineering technologies could join their efforts in 

the development of intelligent systems. For instance, graphs elicited from experts could have 

the importance degree of their nodes adjusted by the neural network. This could be achieved 

easily by mapping the importance degree of the graphs into connection weights of the CNM 

network, and using the network’s refinement algorithm to adjust these weights according to a 

set of training examples.

The CNM has a feedforward topology with three layers \  where:

• output layer: contains nodes that represent the different diagnostic hypotheses;

• input layer: contains nodes that represent evidence such as symptoms, test results or 

any other information that supports the diagnostic hypothesis.

• intermediate layer: specifies different combinations of evidence that can lead to a 

particular diagnostic hypothesis.

The main difference between the CNM and the other neural network models presented in 

table 4.1 relies on its different structure and learning algorithms, which are based on the 

reasoning model of the knowledge graphs. The CNM has been used in a variety of tasks, 

including toy problems (Denis & Machado 1991) and real-world applications. These were 

usually higher-level tasks, such as medical diagnoses (e.g. renal syndromes (Machado & 

Rocha 1992) and congenital heart diseases (Leao & Reategui 1993)) or other types of 

classification (e.g. credit card transactions (Reategui & Campbell 1994)). Other neural

^Although the CNM can assume a configuration of three layers or more, usually three layers are 

sufficient to represent the problems addressed.



4. KGs, CNM, NEXTOOL, HYCONES and other experiments

network models have also been developed to address such higher-level problems. These 

models have been classified as connectionist expert systems, and were employed in tasks such 

as the diagnosis and treatment of sarcophagus diseases (SEC (Gallant 1988)), identification of 

film titles (RUBICON (Samad 1988)), diagnosis of fever and identification of precious stones 

(FUZZNET (Romaniuk 1989a)).

The main difference between the CNM and these other models remains once again in the 

CNM’s learning algorithm and in the activation functions of its cells (fuzzy-and, fuzzy-or). 

Another peculiarity of the CNM in relation to other neural network models is that it can keep 

pathognomonic pathways, ie. the ones that have rewards but no punishments, even if low 

values appear in the reward accumulators. This feature endows the CNM with the ability of 

dealing with two concepts often used in medical domains, ie. specificity and sensitivity 

(Owens et al. 1990). Besides reinforcing frequently-successful pathways, the CNM is capable 

of identifying features that are specific to a class (even if not too frequent). These features are 

given a significant weight by the CNM^. The Combinatorial Neural Model will be explained 

in detail in chapter 5.

4.4 The System NEXTOOL

NEXTOOL (Machado et al. 1991; Machado & Rocha 1992) is a hybrid tool for the 

development of expert systems which makes use of a semantic network to represent the 

domain knowledge, and the CNM network to solve classification problems. NEXTOOL’s 

semantic network is devided into two parts:

• An Intensional Semantic Network: involving only the classes of concepts (objects) and 

a set of primitive relationships.

• An Extensional Semantic Network: where the classes of objects are instantiated.

This organisation of the semantic network provides a clear differentiation between 

expressions at the conceptual level and the statements at the extensional level. Figure 4.3

^Another example of a neural network that tries to work with specificity and sensitivity concepts is 

SMART (Guazzelli & Leao 1994), a modified version of the ART model based on the CNM.
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shows a fragment of a semantic network representing knowledge related to the diagnosis of 

Appendicitis. Four important classes are defined in the example:

• Hypotheses: represent the categories (or classes) of the classification problems;

• Attributes: represent features that provide information about the subject under analysis;

• Evidence: represents the possible outcomes of attributes;

• Procedures: represent the tasks that are executed to measure one or more attributes.

Intensional
Semantic
Network

 instance-of -f

Extensional
Semantic
Network

measures 
Procedure) Attribute

part-of

Hypothesis

-outcome

^y^influences

Measurem. 
of temp. Appendicitis

Normal 
temp Fever

Figure 4.3: NEXTOOL’s semantic network divided into Intensional 

and Extensional levels

In the example, a Procedure for determining the value of an Attribute has an associated 

Cost and Risk. Each Attribute, when assiuning certain values, may represent a piece of 

Evidence which can be used to indicate a particular diagnostic hypothesis. The Extensional 

Semantic Network for this same example shows that the Measurement o f temperature of a 

person has a given Cost (1), but no Risk. A  Measurement o f temperature indicating Fever 

represents a piece of Evidence for the identification of Appendicitis.
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The integration of the symbolic and the connectionist component in this architecture is 

achieved by the influence links of the semantic network, which have corresponding 

connections in the neural network. The subset of the semantic network composed by the 

relationship influences and its associated objects in the Extensional Semantic Network are 

called Influence Network. Every object belonging to the Influence Network will have a neuron 

associated in the neural network, whose activation will represent its possibility degree. For 

instance, ‘the patient has appendicitis with possibility 0.7’ means that the neuron associated 

with the Appendicitis of the semantic network presents an activation equal to 0.7.

The semantic network is used in NEXTOOL mainly to guide the consultation process and 

to collect input information for the CNM network. The neural network is the actual 

mechanism in the hybrid scheme responsible for determining the solutions for the diagnostic 

(or classification) problems. The network operates by propagating the activation of the input 

nodes to the output nodes (classes or diagnoses). In case the evidence provided is not 

sufficient for the neural network to reach a conclusion, the semantic network guides the 

questioning of the user for further information.

The model of integration of neural and symbolic processes used by NEXTOOL has had a 

great deal of influence on the design of HYCONES, a system for the diagnosis heart diseases. 

The system HYCONES is presented in the next subsection.

4.5 The System HYCONES

HYCONES is a HYbrid CONnectionist Expert System developed for the diagnosis of 

Congenital Heart Diseases (CHD) (Reategui & Leao 1993; Leao & Reategui 1993). The 

system was conceived with the main purpose of trying to improve some of the knowledge- 

modelling facilities of NEXTOOL, by replacing NEXTOOL s semantic network with a 

mechanism of frames. HYCONES’ architecture was also intended to employ the symbolic 

component (frames) for representing both declarative and procedural knowledge of the 

domain, and the connectionist component (CNM) to learn classification patterns and carry out 

the reasoning in the system.

Figure 4.4 shows the architecture of HYCONES.
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Final-user interface
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Hybrid knowledge base

frame
mechanism

neural
network

Inference engine

Explanation mechanism

Learning mechanism

System developer interface
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Figure 4.4: The architecture of HYCONES

The Hybrid knowledge base consists of a combination of a frame mechanism with the 

CNM neural network. The frame mechanism provides the system with facilities for the 

representation of the domain knowledge according to the four classical abstraction concepts: 

generalization, classification, aggregation, and association (Hull & King 1987). Furthermore, 

the symbolic knowledge stored in the frame system is used by the Explanation mechanism in 

order to build explanations for the reasoning carried out. The neural network , in contrast, is 

used by the Inference engine to solve new problems, and by the Learning mechanism to 

acquire or refine knowledge about classification problems. In this architecture, the Case 

library serves the exclusive purpose of providing training examples for the Learning 

mechanism.

Figure 4.5 gives an example of the description of domain knowledge through the use of 

the abstraction concepts.
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Figure 4.5: Representation of the domain knowledge in HYCONES

Three main levels can be observed in figure 4.5: a level of classes, a level of findings 

and a level of diagnosis. The levels of classes and findings are used to describe the declarative 

aspects of the domain knowledge, represented in figure 4.5 as the first four layers, from top to 

bottom. The finding Left anterior hemi block is connected to the class Conduction 

Disturbance by an is-a arc (classification). This class is then connected to the 

Electrocardiogram (ECO) class by a part-of arc, indicating that Conduction disturbance is 

one of the components of an ECO examination. The class ECO is connected to a more generic 

class - Non-invasive investigation examinations - by another is-a arc, depicting the use of a 

generalisation concept. The connection between the levels of findings and diagnoses is 

acomplished through links that indicate the influence of a finding in the identification of a 

diagnosis. These symbolic links also represent the connections of the neural network from 

evidence nodes {input layer) to hypothesis nodes {output layer). The integration of the 

symbolic and the connectionist components of this architecture is therefore similar to that of 

NEXTOOL, where influence links of a semantic network expressed the causal relationships
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also observed in the neural network. However, HYCONES ranks these influence links into 

four degrees of importance, and presents them in the form of diagnosis descriptors where:

• triggers: reference a finding that, when present, indicates the diagnosis as a potential 

solution to the problem;

• primary findings: reference a list of findings that can assure the diagnosis 

identification;

• secondary findings: reference a list of findings that can increase the confidence in the 

diagnosis;

• negative findings: reference a list of findings that can exclude a diagnosis from the set 

of possible ones.

A particular method has been used to map the knowledge stored in the CNM neural 

networks into the diagnosis descriptors. This method was based on the computation of the 

sensitivity and sensibility degrees of the findings observed in a set of training examples 

(Owens et al. 1990). The guidelines for building a diagnosis descriptor are the following:

• trigger: the most specific of the group of findings which is frequently observed for the 

diagnosis.

• primary findings: findings frequently observed for the diagnosis, showing a sensitivity 

degree higher than a threshold previously set;

• secondary findings: findings that have a high sensitivity degree, but not as high as 

those referenced by primary findings.

Because of the difficulties in identifying negative evidence, no automated method was 

used in the selection of negative findings. Instead, these findings would be selected explicitly 

by an expert. They would be represented as connections with negative weights in the neural 

network, as well as in the negative findings attribute of the diagnosis descriptors.

In HYCONES the inference process starts after the collection of findings from the 

environment, which is guided by the symbolic component that stores the frame hierarchy 

(item 4a in chapter 2 - general knowledge supporting CBR). These findings would correspond
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to the inputs of some of the neural networks. Based on the evidence given, the networks are 

activated, indicating some diagnosis descriptors as the potential solutions to the problem. 

Attached to each of these diagnosis descriptors there is an evidential factor, obtained from the 

respectively-triggered neural network. The diagnosis descriptor showing the highest 

evidential factor will be the final solution. However, this value must be higher than a 

previously-defined threshold. Whenever the final evidential factor is below this threshold, the 

system requests further information from the user. This request is based on the list of essential 

and complementary findings of the triggered diagnosis descriptors. Additional evidence is 

then supplied to the neural network. At the end of this cycle, the system presents the final 

conclusion, along with an explanation of the reasoning process. This explanation is obtained 

through the analysis of the observed findings for the case, which correspond to the trigger, the 

primary and the secondary findings of the diagnosis descriptor carrying the highest evidential 

factor. HYCONES’ main contribution has been the definition of the mechanism for 

integrating the formalism of frames with the CNM network.

4.6 Other Prior Experiments

By using the four abstraction concepts, the system HYCONES attempted to improve on 

NEXTOOL’s facilities for the representation of domain knowledge. Moreover, HYCONES 

has introduced a mechanism that enabled the symbolic representation of the importance of 

feature/value pairs in the identification of a class (Reategui & Leao 1993). However, 

HYCONES could still not refer to specific previous experiences when solving a problem and 

proposing a solution.

Some later experiments that focused on this problem, and which led to the development 

of NN-CBR, have included:

• CCard: classifying credit card transactions (Reategui & Campbell 1995);

• ChartDl: diagnosing congenital heart diseases (Reategui, Campbell & Leao 1996);

• Profile: identifying the profile of patients in evaluation of suitability for heart 

transplants (Reategui, Campbell & Borghetti 1995).
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The next subsection describes in detail the system Ccard. The other two systems are 

summarised in subsection 4.6.2, where a comparison of all the experiments is presented.

4.6.1 Classifying Credit Card Transactions

One of the major problems related to credit card theft is that some transactions which appear 

after the theft nevertheless have to be accepted and payed for by the credit card companies, as 

they were carried out by the credit card owner and not by a thief. The credit card companies 

do not have an efficient way of discriminating between these transactions and fraudulent ones, 

leading to the loss of large amounts of money every year.

A hybrid architecture integrating a CBR system with a neural network has been devised 

to solve this problem. The CBR system keeps track of all the transactions carried out with a 

particular card after the reported theft. When a new transaction appears, the CBR system 

looks for best matches in the set of previous transactions. The neural network learns general 

patterns of use and misuse of credit cards through the analysis of old cases, and uses this 

knowledge to decide when to grant or deny authorization to transactions.

This achitecture made use of a Central Control, ie. the CBR system and the neural 

network are coordinated by a central device which requests services from one or both of the 

mechanisms. This central device uses the answers coming from the neural-network and the 

CBR components to determine a final result.

The system designed to solve the credit card problem consists of 5 main components: 

case library, the knowledge base, the neural network, the CBR system and the Central 

Control. The following subsections detail each of these components.

4.6.1.1 The case library

A case is seen here as a collection of transactions for a particular account. The role of the case 

library is therefore to provide the cases for the CBR system and for the training of the neural 

network.

All the transactions that happened after the reported theft, in addition to a few 

transactions that happened before the theft, are kept for each case of credit card theft. A 

typical transaction record is presented in figure 4.6.
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Account: 715389819

Theft date: 28/10/91 Amount: 84.91

Transaction date: 22/01/92 Type of company: 5311

Company: Galeries Lafayette Transaction type: FNG

Location: Paris Status: To be denied authorisation

Figure 4.6: A typical record for a credit card transaction

The field credit card Account contains the number of the account of the stolen card, and 

Theft Date refers to the date on which the credit card was stolen. The meaning of the next 

three fields are self-evident. The field Type o f Company refers to categories in which 

companies are classified, e.g. supermarkets, restaurants, petrol stations, etc. In the example 

given in figure 4.5, the code 5311 refers to department stores. The field Amount shows the 

amount in sterling to be debited in that credit card account. The field Transaction Type 

contains a three digit code which breaks down the transactions into categories describing such 

things as whether the transaction was carried out in Britain or abroad and whether the 

purchase was for consumables or non-consumables. The field Status refers to one of the two 

categories in which a transaction can be classified, i.e. to be granted or to be denied 

authorization.

4.6.1.2 The Knowledge Base

The Knowledge Base stores all the domain knowledge used to process the data coming from 

the outside world and transform it into appropriate input to the CBR system and the neural 

network. The domain knowledge permits representation in an hierarchical frame scheme 

which makes use of the four basic abstraction concepts: generalization, classification, 

association and aggregation (Hull & King 1987). Figure 4.7 presents three excerpts of the 

frame hierarchy for the credit card system depicting the use of the abstraction concepts. 

Besides providing flexible constructs to model the domain knowledge, the abstraction 

concepts can offer additional pieces of evidence for the inference mechanism. For example:
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the set of transactions called Company Categories has been defined in order to inter­

relate different Company types. For example, the Company Types: Children clothes, 

Men clothes and Sports Clothes can be associated in a group called Clothing. 

Therefore, transactions carried out in companies with different types, which belong to 

the same category, present a good degree of similarity.

the aggregation Country is composed of counties, which are composed of cities, etc. 

Transactions carried out in different locations, but in the same city have a good 

similarity degree, while transactions in different countries, for instance, present a much 

lower similarity degree.

Qothing

Small
AmountAmount

Time from 
theft date

Short period 
after theft

Location Near

Country

5641  -

Children's clothes
Counties

5611  -

Men's clothesCities Towns Company
Type

5655 -

Sports clothes

5411  -

Supermarketsframes

5 4 6 2 -

Bakeries
instances

is-a arcs 
part-of arcs 
member-of arcs

Figure 4.7: Examples of the use of the abstraction concepts in the frame hierarchy
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4.6.1.3 The Neural Network

We have used the Combinatorial Neural Model (CNM) as our choice of neural network 

(presented in section 4.3). The CNM is employed here to recognise general patterns of 

behaviour for the use and the misuse of credit cards, and use this knowledge in the 

classification of new transactions. After a learning period, the neural network is able to 

recognise, for instance, that donations or magazine subscriptions are usually classified with 

the status to be granted, and transactions envolving large amounts of money are usually 

classified with the status to be denied authorization. While the neural network stores general 

knowledge about use and misuse of credit cards, the CBR system is left with the task of 

learning how each customer used his or her credit card, and detecting discrepancies in their 

habitual way of using their cards.

4.6.1.4 The CBR system

The idea behind CBR is to emphasise the use of concrete case instances in problem-solving. 

The CBR system takes the transactions carried out with a particular credit card as a source of 

knowledge to be used in the classification of subsequent transactions for the same card. When 

classifying a new transaction, the CBR system assumes that if there is an old transaction that 

matches the new one with a good similarity degree, they must both be classified in the same 

way.

As the number of transactions for each case of credit card theft is not too large, the 

transactions for each case can be kept in the Case Base in a flat structure. Thus, a best match 

for an incoming transaction can be found by searching serially the set of transactions stored 

for that same case of card theft. The CBR system determines the degree of match between two 

attributes by measuring the distance between them in a qualitative scale. When the values are 

within the same qualitative region, they present a good degree of match. For instance, if the 

interval Small for the attribute Amount o f Money were defined as [0,18], the values 12.00 and 

16.00 would be considered small, and therefore would match perfectly. However, having fixed 

boundaries for the intervals can represent a problem. For example, if the next interval Average 

were defined as [19,50], there would be no similarity between the amounts 18 and 19, while
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the amounts 19 and 20 would match perfectly. Fuzzy overlapping boundaries for each 

qualitative region have been defined to minimise this problem. Figure 4.8 depicts the 

definition of the overlapping intervals Small and Average.

Interval Small [1,23]

1 ... ... 18 19 20 21 22 23
1 ............. ZJ

1 .9 .8 .7 .6 .5 ^
1 Pertinence degree
r to each interval

1 1 1 1 1 1 J
c 1 1
18 19 20 21 27 23 ... ... 60

Interval Average [18,60]

Figure 4.8: Example of fuzzy overlapping intervals

The CBR system also takes into account how important an item of evidence is in the 

classification process when calculating the degree of match between attributes. For example, 

the attribute Location is more important than the attribute Company Type, as Location might 

give the reasoner a better indication of whether the owner or the thief used the credit card for 

a particular transaction. The importance of each attribute was determined through the analysis 

of the human specialists’ strategy to classify transactions. The similatity between two 

transactions is thus computed through the formula:

Sim (Ta, Tjy) = ^  i=l,n (Importance(Ati) x Match(Vala(Ati), Valb(Ati)))

where Ta and 7^ are the transactions being compared, n is the number of attributes defined for 

a transaction, Ati is the i^^ attribute, Vala(Ati) is the value of the attribute Ati for transaction 

Ta, Valb(Ati) is the value of attribute Ati for the transaction Importance (Ati) returns the 

importance of the attribute Ati Match(Vala(Ati), Valh(Ati)) returns the degree of match 

between the values of the two attributes.

4.6.1.5 The Central Control

The role of the Central Control is to request services from the neural network and the CBR 

system and to mediate their answers.
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The main steps followed by the Central Control algorithm are described below:

1) Verify the number of previous transactions existing in the case library for the same account

to which the incoming transaction belongs.

2) If the number of previous transactions < minimum number of cases^.

- Activate the neural network for the incoming transaction;

- Give the answer provided by the neural network as a final answer;

- Store the transaction in the case library with the appropriate classification result.

3) If the number of previous transactions >= minimum number of cases

- Activate both the CBR system and the neural network for the coming transaction;

- If the answers coming from the CBR system and the NN are the same, give them as a 

final answer;

- If the answers are different, the final answer should be the one carrying the higher 

confidence factor:

Final = Max fa  x CBRconfidence-factor > ^^confidence-factor)

where C B R con fiden ce-fac to r  represents the highest degree of similarity computed in the 

CBR matching process, a  represents a constant used to normalise the value of the result 

provided by the CBR system in relation to that provided by the neural network, and 

co n fid en ce -fa c to r  represents the output of the neural network.

4.6.1.6 Evaluation

The prototype of the system to control credit card transactions has been implemented in 

Common Lisp. A total number of 54 findings was described in the knowledge base for the 2 

possible diagnoses (i.e. to be granted and to be denied authorization). A  major British bank 

provided a database with 172 cases of credit card theft, each case containing an average of 18 

transactions, totalising 3237 transactions. Approximately half of the total number of cases was 

used to train the neural network, and the other half was used to test the system. The system 

was able to classify correctly 89.0% of the cases (ie. 1430 transactions out of the 1606

^The parameter minimum number of cases has been set to several different values, the best performance 

being achieved when the parameter was set to numbers in the interval [5,9].
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transactions contained in the testing set). The general performance of the system was 

considered to be satisfactory, especially because human specialists (who are not highly 

trained) are expected to produce a 90% level of performance. Furthermore, for our 

application, by having the two reasoning components working side by side, we could simulate 

the behaviour of humans performing the same classification task. When the first transactions 

for a particular case of credit card theft appear, the human expert can only exploit general 

knowledge about use and misuse of credit cards to classify this first set of transactions. 

However, after a certain number of transactions, the observer can start using more specific 

knowledge related to that particular case; that is to say, the instances of transactions carried 

out with the same card. The prototype described here behaves similarly, leaving the first set of 

transactions to be classified by the neural networks and only later activating the CBR system. 

Moreover, the use of a CBR component enables the system to retrieve previous transactions 

that can help the user to understand why a new transaction was granted or denied 

authorisation.

4.6.2 Comparing the experimental systems

Some similarities can be found between the system for the classification of credit card 

transactions {Ccard) and HYCONES. For example, the representation of the domain 

knowledge in a hierarchy of frames, and the use of diagnosis descriptors to represent in a 

symbolic formalism the knowledge used to build explanations for the reasoning process. The 

main differences between the two systems lie in the methods used to build the diagnosis 

descriptors and in the reasoning process itself. Table 4.2 shows the main differences among 

HYCONES, Ccard, NN-CBR and two other experimental systems.
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HYCONES

(Leao & 

Reategui 1993)

Ccard

(Reategui &

Campbell

1995)

ChartD2

(Reategui, 

Campbell & 

Leao 1996a)

Profile

(Reategui, 

Campbell & 

Borgbetti 1995)

NN-CBR

(Reategui, 

Campbell & 

Leao 1996b)

Building Calculating the Calculating the Calculating the Through the Through the

diagnosis sensitivity and sensitivity and sensitivity and CNM network CNM network

descriptors specificity of specificity of specificity of

findings findings findings

Reasoning CNM network CNM network Diagnosis Diagnosis Neural network

and CBR descriptors descriptors used used to make

module used to make to make hypotheses and

working hypotheses and hypotheses and to provide

independently. guide the search guide the search remindings for

the two being for similar for similar the search of

coordinated by previous cases previous cases similar previous

a central cases

control

Table 4.2: Comparing the experiments that led to the NN-CBR architecture

HYCONES built the diagnosis descriptors according to the computation of the 

specificity and sensitivity degrees of all the findings observed for each diagnosis. Its reasoning 

process was based on the recognition of patterns using only the generalised knowledge of the 

CNM network. The explanation of reasoning in HYCONES was based solely on the 

description of the importance of each finding in the diagnostic process (knowledge that could 

be obtained from the diagnosis descriptors). The idea of using cases as a complementary 

resource for the explanation of reasoning (Georgin et al. 1994) seemed to be appropriate. 

Furthermore, it could also improve the level of acceptability of answers provided by the 

system.

Based on this idea, the system for the classification of credit card transactions {Ccard) 

combined the main structure of HYCONES (ie. the frames hierarchy and the CNM) with a 

CBR component. Ccard made use of a central control unit to mediate the answers given by the
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neural network and the case-based component. The main problem with the architecture of 

Ccard was that its structure was somewhat connected to the application for which it was 

developed. Moreover, the CBR module used in Ccard was based on a nearest-neighbour 

algorithm with no indexing scheme, which we thought should be improved if we were to try a 

similar approach in other classification problems with large case libraries.

A different architecture was then conceived, following the same idea of investigating 

how the use of specific cases in CBR could be complemented by the help from other sources 

of knowledge. This architecture was implemented in the system ChartDl, which addressed 

the problem of congenital heart disease diagnosis. ChartD2 proposed some solutions for the 

indexing problems faced in Ccard through the use of the diagnosis descriptors learned 

through the calculation of the sensitivity and specificity of findings. No neural network was 

used, though, and the diagnosis descriptors were the main components responsible for making 

hypotheses and for guiding the search in the library for similar cases. One of the main 

limitations found in this experiment was that a more powerful generalisation mechanism was 

needed to build the descriptors and to index the cases in the library.

Following ChartD2, an experiment in clinical psychology was built, where the main 

problem to be solved was the identification of the psychological Profile of patients in 

evaluation for heart transplants. In this experiment the same type of reasoning process 

conceived in ChartD2 was kept. However, in Profile the diagnosis descriptors were built with 

the help of the CNM. Some further tests, however, showed that the CNM itself could be more 

useful than the diagnosis descriptors to index cases in the case library. The NN-CBR 

architecture has been the outcome of these last experiments. In this hybrid architecture, the 

CNM is used not only to build the diagnosis descriptors but also to make hypotheses and 

guide the CBR search for similar cases in the library. The next chapter details the NN-CBR 

architecture and each of its main components. Chapter 6 then presents validation results 

obtained from a series of tests with NN-CBR applied to the CHD domain as well as in three 

other domains.



Chapter 5

The Hybrid NN-CBR Model

This chapter introduces NN-CBR, a hybrid neural network and CBR model 

that combines specific and general knowledge in reasoning. Specific knowledge is 

represented in the form o f cases while general knowledge is represented in neural 

networks as well as in diagnosis descriptors. When solving a new case, the NN- 

CBR system uses its general knowledge to guide the search for the most similar 

case it has already ‘seen’. The retrieved case, representing specific knowledge, is 

then used to suggest a possible solution for the new case. NN-CBR (Reategui, 

Campbell & Leao 1996b) is the final result o f a series o f experiments on hybrid 

CBR systems (Reategui & Campbell 1995; Reategui, Campbell & Borghetti 1995; 

Reategui, Campbell & Leao 1996a). Besides enhancing some o f its predecessor’s 

capabilities, the structure and behaviour o f NN-CBR offer solutions for common 

problems in CBR in general, such as case matching, indexing and learning.

5.1 Introduction

The premise that human thought is based on the use of past experience has been supported by 

research in both psychology and cognitive science. According to this premise, learning is a 

product of experiencing new facts, trying to understand them and, while doing so, integrating 

them with the knowledge we already have. New experiences can be integrated with our 

previous body of knowledge in two different ways. They can be compiled into summary 

representations or they can be incorporated in our memories as single episodes. Experiences 

that lie in the memory as single episodes will form a body of specific knowledge, where all
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the details about each experience are kept. The summary representations of experiences, on 

the other hand, form a body of more generalised knowledge that covers the normal but not 

situations that are different from the norm.

A memory system that attempts to model cognitive processes of the human brain should 

therefore be able to store and manipulate specific knowledge, in the form of single episodes, 

as well as more general knowledge, in the form of abstractions or summary representations of 

these episodes.

This chapter introduces one particular case-based model where both general and specific 

knowledge are used in reasoning. Specific knowledge is represented in the form of cases while 

general knowledge is represented in the form of diagnosis descriptors and neural networks. 

This model was used in the development system for the diagnosis of Congenital Heart 

Diseases (CHD). When finding a solution for a new case, the system uses its general 

knowledge to guide the search for the most similar case it has already ‘seen’, and to increase 

the reliability of the solution found. The retrieved case, which represents specific knowledge, 

is then used to indicate a possible solution and to build the final explanation.

The next section introduces NN-CBR, describing how each of the elements of the hybrid 

architecture operate.

5.2 The NN-CBR Model

The NN-CBR model has been built with the main purpose of investigating how CBR and 

neural networks can cooperate in order to solve problems observed in each approach. While in 

other previous research cases are usually kept as an integral part of the neural network, in our 

model the neural network and case-based components are independent. This feature enabled 

us to deal separately with problems related to CBR (e.g. indexing and retrieval) and neural 

networks (e.g. the interpretation of the mathematical knowledge of the network, a problem 

which has not been treated in previous published research on the combination of CBR and 

neural networks).

Figure 5.1 shows the main components of the hybrid architecture and the way they all 

interact.
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Figure 5.1: The main components of the hybrid NN-CBR architecture and their interaction

Four different components can be distinguished, each playing a different role in the 

reasoning process. The domain knowledge unit represents knowledge of the application 

domain by storing a hierarchical representation of all the findings^ used in case descriptions. 

This unit is employed mainly for guiding the collection of information from the user and for 

inferring further evidence. The case library stores case descriptions and the solutions adopted 

in these cases. The neural network is trained with the cases stored in the library, and is used 

during the consultation process to make hypotheses of possible diagnostic solutions and to 

guide the search for similar cases. The diagnosis descriptors keep a summary representation 

of the knowledge stored in the neural networks, and are used mainly to ratify or refute a final 

result, and to build explanations.

The next subsections examine each of the components of the architecture.

*A finding corresponds to a feature/value pair. We have opted for using the word ‘finding’ with the 

purpose of employing more accurate terminology for the medical example presented later in this chapter.
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5.3 Representing the Domain Knowledge

The domain knowledge unit serves the purpose of representing knowledge of the application 

domain. It keeps taxonomic knowledge about the findings used in case descriptions as well as 

storing interrelationships among findings. Here, the domain knowledge is represented in the 

same way as for HYCONES (Leao & Reategui 1993) and ChartD2 (Reategui, Campbell & 

Leao 1996). The four classical abstraction concepts have been used to provide the necessary 

flexibility for knowledge modelling (Hull & King 1987).

Through the use of the abstraction concepts, namely generalisation, classification, and 

aggregation, the domain knowledge can be represented in a complex hierarchy where:

• an instance represents a basic finding that is used in case descriptions;

• a class describes the common aspects observed in all of its instances (classification);

• a superclass describes common aspects of all of its subclasses (generalisation);

• aggregations groups different classes that, together, represent a different concept. For 

example the parts of a car, when put together, represent the car itself.

Figure 5.2 presents an excerpt of the hierarchy used to represent knowledge in the 

domain of CHD. This hierarchy of findings has been constructed previously by Leao, 

Timmers, Van der Lei & Mulligan (1990). The class Domain, located at the top of the 

hierarchy, is divided into three subclasses, namely History, Investigation examination and 

Physical examination. Each of these classes is subsequently subdivided by is-a and part-of 

arcs. In the example, is-a arcs partition the class Investigation examinations into Invasive and 

Non-invasive, implying that the properties defined for Investigation examinations are also 

valid for its subclasses. The class Non-invasive is divided into two other classes to represent 

results obtained in ECG and CXR examinations. The class ECG is connected to the classes 

Rhythm, Conduction disturbances and Hypertrophy o f heart chambers by part-of arcs, 

implying that an ECG examination should be made out of these three types of analysis. The 

class Conduction disturbances is not subdivided any further; instead, it is connected to an 

instance called Left anterior hemi blockage. Each of the instances of the domain hierarchy
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represents a medical finding that is symptomatic of one or more cardiac diseases. In the 

example, the instances Down’s syndrome, Cardiomegaly on CXR, Left anterior hemi blockage 

and Increased pulmonary flow on CXR are defined as being symptomatic of Atrioventricular 

septal defect (AVSD), a typical problem in the domain of CHD.
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Figure 5.2: The representation of the domain knowledge

The instance described for each finding outlines its most important properties. For 

example, the finding Left anterior hemi blockage is described in the following way:

• it is-a type of Conduction disturbance,

• its morbidity is 4 on a 1-5 scale, which means that this finding is of considerable 

importance and would hardly ever indicate a false-positive result^;

• it is part-of the results obtained from an ECG examination.

The description of findings can be used for different purposes, such as building 

explanations, inferring facts during the reasoning process, or simply for consultation. The 

inference of other facts during the reasoning process can be helpful in providing further 

evidence for incoming cases. For example, determining that the presence of the finding Bi-

^This is the morbidity scale used by the system Intemist-I (Miller et al. 1986).
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ventricular hypertrophy implies the presence of both Right ventricle hypertrophy and Left 

ventricle hypertrophy enables the system to conclude that the observation of the first finding 

indicates that the presence of the other two findings should be also taken into account.

5.4 Representing Cases

The idea behind CBR is to use concrete cases in the reasoning process. When presented with a 

new case, a CBR system attempts to retrieve in its case library the case (or cases) that most 

resemble the current case description.

In case-based systems, the case library is usually organised in one of the following ways: 

flat memory, shared-feature networks, discrimination networks and redundant discrimination 

networks^. The last three approaches cluster together similar cases, which makes retrieval 

more efficient. However, these techniques are disadvantageous from another point of view. 

They demand extra space to store the organisational information for the networks and they 

require more complex procedures for the inclusion of cases in the case library. In addition, 

they present problems in dealing with missing information and in keeping the network optimal 

when cases are added (Kolodner 1983).

Here, the case library is organised in a flat memory partitioned by the cases’ diagnoses; 

that is, its cases are grouped according to their diagnoses and stored in a sequential manner. 

The main advantage of this approach is the simplicity of the case library, which facilitates its 

maintenance and allows for the use of simpler retrieval and learning algorithms. The major 

disadvantage of this approach is that, for big case libraries, the search for a case can be very 

expensive. In our NN-CBR approach, however, an indexing mechanism based on the use of 

remindings provided by the neural network reduces the search in the case library, thus 

minimising the problem of having the cases stored in a flat-memory fashion.

Each case consists of a simple feature/value vector (or list of findings) and a diagnosis. 

However, as a description of the domain is stored in the domain knowledge hierarchy, the 

representation of a case can be seen as structured. Figure 5.3 shows the representation for the 

case AVSD 17, composed of the medical findings: Left anterior hemi blockage. Wide and split

^See (Kolodner 1993) for a detailed explanation and examples of actual use of each of these memory 

organisation schemes.
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5'2, Increased pulmonary flow on CXR, History o f cardiac murmur, Cardiomegaly on CXR, 

Systolic murmur. Frequent respiratory infections and Growth retardation. These findings can 

be observed in the rightmost nodes of the hierarchy, ie. the instance nodes. The connections 

between findings and classes, and among the classes themselves, further explain the types of 

problems represented in the hierarchy. For example, from figure 5.3 we can work out tha tZ ,^  

anterior hemi-blockage is a type of Conduction disturbance, which is part-of the results 

obtained from an ECG, which is a non-invasive investigation examination. The structured 

representation of cases can give the user a more thorough view of the problem, and make 

explicit the interrelationships among classes for the case findings.
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Figure 5.3: The structured representation of cases
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5.5 The Combinatorial Neural Model

The CNM has been based on the knowledge representation formalism of knowledge graphs. 

Here, it is responsible for learning which findings and clusters of findings are important for 

each diagnosis. It has a feedforward topology with three layers'^, where:

• output layer: contains different nodes, each representing a separate diagnostic 

hypothesis;

• input layer: contains nodes that represent evidence such as symptoms, test results or 

any other information that supports the diagnostic hypothesis.

• intermediate layer: specifies different combinations of evidence that can lead to a 

particular diagnostic hypothesis.

Figure 5.4 depicts the basic structure of the CNM.

Diagnostic hypothesis

Output layer 

Combinatorial layer 

Input layer

Figure 5.4: Basic structure of the CNM

The input layer is formed by fuzzy-number cells. These fuzzy numbers (values in the 

interval [0,1]) represent the degree of confidence the user has in the information that is 

observed and inserted into the neural network. Cells in different layers are linked by 

connections with an associated weight which represents the influence of lower-layer cells on 

the output of upper-layer cells.

'^Although the CNM can assume a configuration of three layers or more, usually three layers are 

sufficient to represent the problems addressed.
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The connections of the input layer can be either excitatory or inhibitory. An excitatory 

connection propagates the arriving signal using its weight as an attenuating factor. An 

inhibitory connection performs fuzzy negation on the arriving signal X, transforming it to 1-X. 

The connection then propagates the signal, multiplying the value obtained (1-X) by the 

connection weight.

The combinatorial layers are formed by hidden fuzzy AND-cells. They associate different 

input cells in intermediate chunks of knowledge which are relevant in the classification 

process. The output Y of the fuzzy-AND function corresponds to the minimal value coming 

from the lower layer, ie. the smallest value obtained from the product of individual input 

signals Xj, X2, x „  with their corresponding connection weights Wj, (figure 5.5).

X }

AND Y = min{wy. Xj}

Figure 5.5: The fuzzy-AND function

The output layer of the CNM is formed by fuzzy OR-cells. They implement a competitive 

mechanism between the different pathways that reach the diagnostic hypothesis. The output Y 

of the fuzzy-OR function corresponds to the maximum value coming from the lower layer, ie. 

the largest value obtained from the product of individual input signals Xj, X2 , x„ with their 

corresponding connection weights wj, W2,...,w„ (figure 5.6).

X ]

O R Y = max {Wj, Xj}

Figure 5.6: The fuzzy-OR function
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5.5.1 The Neural Network Learning Mechanism

The learning mechanism of the CNM uses a supervised learning method to determine the 

combinations of features that are influential for each diagnosis. The learning method is split 

into two different algorithms:

• Punishment and reward algorithm

• Pruning and normalisation algorithm

The punishment and reward algorithm uses a mechanism analogous to that of 

backpropagation to identify successful and unsuccessful pathways of the neural network, ie. 

pathways that lead to the correct and to incorrect diagnoses, respectively. For each connection 

of the neural network that join a pair of nodes, two accumulators are defined: one to compute 

rewards, the other to compute punishments. The learning algorithm takes into account the 

evidential flow  and the importance o f the example when determining the values of 

punishments and rewards, where:

• the evidential flow  observed in a connection corresponds to the following product (for 

excitatory connections):

destination-node activation X connection weight

For inhibitory connections, the following product is used:

(1 - destination-node activation) X connection weight

• the importance degree o f an example is a numerical value assigned to each of the 

training cases. The influence of an example in the learning process is directly 

proportional to its importance degree.

Two different versions exist for the punishment and reward algorithm. The first one, 

called the scratch version, is used to initialise a neural network and compute its punishment 

and rewards according to a set of examples. After going through all the training examples, the 

algorithm produces a trained network which stores punishment and reward accumulators in 

the interval [-ne,+ne\, for ne the number of training examples given to the network. To

become operational, the network has to have its accumulators converted into connection
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weights, which is the job of the pruning and normalisation algorithm.

The algorithm for punishment and reward (refinement version) is used to adjust the 

knowledge that already exists in the neural network, according to what the incoming examples 

contain. This version of the algorithm increments the punishment and reward accumulators 

taking into account the values previously calculated. As in the scratch version, the punishment 

and reward values produced have to be processed by the pruning and normalisation algorithm 

in order to make the neural network operational.

The normalisation process converts the net values of the accumulators (ie. rewards minus 

punishments) into connection weights with values between 0 and 1. This process generates an 

operational network. However, a large number of connections may still be removed from the 

neural network without influencing its performance. This is done by a pruning mechanism, 

which removes from the neural network all the negative or weak connections (ie. those with 

net values of the accumulators containing a negative or a small number). In practice, the 

pathways selected for pruning are those with connection weights smaller than a pruning 

threshold (which should not exceed sqrt(Tacc), where Tacc is the minimum value to be 

accepted for an output of the network).

This learning algorithm identifies and maintains all the pathognomonic pathways (ie. 

those with no punishments and a positive number of rewards), even when a small net value of 

the accumulators is computed. It achieves this by attributing weights with values bigger than 

sqrt(Tacc) to these connections, which guarantees the acceptance of the hypothesis indicated 

by the pathway. The choice of thresholds is a very important detail for the good performance 

of the CNM network. The thresholds can be selected empirically through the systematic 

testing of the network with different threshold settings. The configuration producing the best 

performance is the one to be selected.

A more detailed explanation of the punishment and reward algorithm, and the pruning 

and normalization algorithm (Machado, Rocha & Denis 1992), is presented in Appendix B.

5.5.2 Training the CNM for a Simple D iagnostic Problem

Here we present an example to ilustrate the use of the CNM network in learning how to 

solve a simple diagnostic problem (Denis & Machado 1991). In this problem, only positive 

evidence is considered, which is frequently observed in medical diagnosis. The database used
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to train the system has four cases of patients with either disease dl or d2. The patients present 

some of the following symptoms; si, s2, s3, s4. The cases that form the database are shown in 

table 5.1.

Patient Disease Symptoms

John dl si, s2, s3

Diana dl si, s2, s4

Maria si, s3, s4

Peter s2, s3, s4

Table 5.1: The cases used to train the CNM network

When building the network for this particular example, four distinct input nodes (each 

representing a particular symptom) are created and linked to different combinatorial nodes.

When building the network for this particular example, four distinct input nodes are 

created, each representing a particular symptom. The input nodes are then connected to the 

diagnostic hypotheses either through a direct link, or through a combinatorial node. Each 

combinatorial node associates two or three input nodes, representing the importance of 

different combinations of symptoms for each hypothesis. Figure 5.7 shows the CNM network 

built for the example. Notice that the network has been split into 2 different drawings, one for 

diagnosis dl, the other for diagnosis d2, with the only purpose of making its visualisation 

clearer. The input nodes of both network excerpts are exactly the same, while their 

combinatorial nodes, as well as their output nodes, are different.
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Output nodes

Combmatonal 
nodes

Input nodes

Figure 5.7: The initial neural network created for the example

The scratch version of the learning algorithm is then used to train the neural network. 

When presented with the first case of the database (that of John), the pathways activated by 

the evidence (si, s2, s3) which lead to the correct diagnosis (dl) are rewarded by the scratch 

learning algorithm, whereas the pathways that lead to an incorrect diagnosis (d2) are 

punished. The top part of figure 5.8 shows the effect of the punishment and reward algorithm 

in the neural network when it is presented with the case of John (once again, with the purpose 

of simplifying the drawing, the neural network has been split into two different networks, one 

for diagnosis dl, the other for diagnosis d2).
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John (si, s2, s3) => dl

Network A

dl

pathways not affected 
pathways punished 
pathways rewarded

Network B

nl

s3 s4si

n3 n4

s4 sis3

n6

Figure 5.8: Training the neural network to solve a simple diagnostic problem

The bottom part of figure 5.8 shows the network already trained and pruned, where two 

different structures can be observed in the network. The node nl of network A represents a 

strong pathway leading to the diagnostic hypothesis, which has been called knowledge germ. 

The nodes n2 and n3 represent factual information about the patients John and Diana. 

However if a higher pruning threshold is used, only the strongest pathways will remain. For 

example, if the threshold 0.6 is used to prune the network, only the nodes n l of network A, 

and n4 of network B would be kept.
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5.6 The Diagnosis Descriptors

The main difficulty in representing the knowledge of the CNM neural network comes from 

fact that, for each diagnosis (or class) represented in the network, there is a large number of 

nodes in the combinatorial layer, each representing a combination of findings which is 

relevant for the identification of the diagnosis. Trying to describe the relevance of each node 

of the combinatorial layer in an ‘all-or-nothing’ symbolic fashion, would not result in a 

representation easy to read or understand, as the number of combinatorial nodes is usually 

large. For example, if we were trying to represent the knowledge stored in the non-pruned 

neural networks of figure 5.8, the following set of rules would be necessary.

If 57 Then D l

If 52 Then D l

If 57 and 52 Then D7

If 57 and 52 and S3 Then Dl

If 57 and 52 and S4 Then D l

If 55 Then 7)2

If 5^ Then 7)2

If S3 and S4 Then D2

If 57 and S3 and S4 Then D2

If 52 and S3 and S4 Then 7)2

We can conclude from this example that the rules created to explain the two neural 

networks are not much easier to read than the networks themselves. And for more complex 

problems, the number of rules would increase dramatically, making rule-sets even more 

intricate and difficult to understand. The solution conceived for representing the knowledge of 

the CNM has been to describe, for each problem addressed, the importance of the findings 

that are frequently observed. The symbolic structure created for representing the knowledge of 

the CNM has been called diagnosis descriptor. A diagnosis descriptor is a record-like 

structure which was based on the ideas taken from the mechanism for knowledge 

representation of Knowledge Graphs (KGs) (detailed in the previous chapter). Figure 5.9
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shows the main structure of a diagnosis descriptor.

D iagnosis descriptor ►disease
name

Trigger: f l
Primary: f2.
Secondary: fm + f ...,fn

Figure 5.9: The main structure of the diagnosis descriptor

The descriptors rank the most important findings for each diagnosis in three attributes: 

trigger, primary findings and secondary findings. The findings referenced by these attributes 

are characterised by their frequency and specificity in relation to the diagnosis. Findings that 

are specific are important for their discriminatory properties, being normally observed only in 

one diagnosis and not in others. Findings that are frequent, on the other hand, are important 

for confirming a certain diagnostic hypothesis. The description of each attribute follows:

• Trigger: this attribute references a finding that is usually specific and frequent for the 

diagnosis and that, when present, strongly indicates the diagnosis as a potential 

solution for the case. The trigger can be seen as the leftmost node in a knowledge 

graph, representing the most important evidence for the diagnosis.

• Primary findings: this attribute references a number of findings which are frequent for 

the diagnosis, and which usually appear together with the trigger. These findings 

correspond to the leftmost tree of findings which is observed in the knowledge graphs. 

Primary findings are important elements in the diagnostic process, being able to 

provide a high degree of confidence for the diagnostic conclusion;

• Secondary findings: this attribute references findings that are not so frequent or 

specific for a diagnosis, but which can can reinforce the diagnostic conclusion (or 

sometimes determine it). These are other findings found in the knowledge graph, 

findings that do not belong to the graph’s leftmost tree, but which can also be used as 

evidence for reinforcing a diagnosis.
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A mapping between knowledge graphs, diagnosis descriptors and neural network has 

been defined here, as the diagnosis descriptors as well as the CNM have been based on the 

reasoning model of the knowledge graphs. Figure 5.10 gives an example of this mapping, 

where a knowledge graph for the diagnosis of AVSD is converted into a corresponding 

diagnosis descriptor and a neural network.

Knowledge graph 

AVSD

D
( 9 )  ( 8 )  ( 8 )  ( 7 ) 0

Diagnosis descrip tor > AVSD

Trigger: A

Primary: B,C
Secondary: D

Neural
network

Figure 5.10: The mapping of a KG into a diagnosis descriptor

The mapping from knowledge graph into neural network is direct. The arcs linking nodes 

of the graphs are transformed into neural-network connections, while the importance degrees 

assigned to the nodes of the graphs are converted into connection weights. The mapping 

between graphs and diagnosis descriptors is also straightforward. The attributes trigger, 

primary findings and secondary findings of the diagnosis descriptors correspond to the 

following elements of the knowledge graphs, respectively: leftmost node, leftmost tree^ and 

other nodes.

^To simplify the representation of the diagnosis descriptors, the finding corresponding to the trigger of 

the diagnosis is not repeated in the list of primary findings.
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The ideas for converting knowledge represented in one form (knowledge graphs) into 

another form (eg. neural network or diagnosis descriptors) have been used to provide the 

guidelines for the interpretation of the neural network knowledge into diagnosis descriptors. 

The main goal here has been to transform the mathematical knowledge stored in the neural 

network, in the form of accumulators and connection weights, into more intelligible symbolic 

knowledge. The following method is used to select the findings for each attribute:

• Trigger: references a finding that is normally observed in a diagnosis but that is not 

observed in others, being highly specific and frequent. The findings selected as triggers 

are those that appear in the nodes of the network possessing the highest connection 

weights. For instance, for the diagnosis AVSD, the node of the network containing 

only the finding Left anterior hemi blockage is the strongest node. Thus, the findings 

Left anterior hemi blockage is selected as the trigger for the diagnosis AVSD. When 

more than one finding appears in the strongest node for one diagnosis (ie. the node 

with the highest connection weight), the finding with the highest specificity degree is 

selected as the trigger.

• Prim ary findings: this attribute references findings that have a high sensitivity degree, 

ie. findings that are very frequent for the diagnosis. This is justified by the fact that the 

findings observed in most of the cases for a particular diagnosis are generally expected 

to be present in other cases with that same diagnosis. These findings appear in nodes of 

the neural network with a high value in the reward accumulator. Additionally, they 

may also be observed in other nodes combined with the trigger (the trigger being 

another frequent finding). For instance. Increased pulmonary flow on CXR is selected 

as a primary finding for the diagnosis Atrial Septal Defect (ASD), because the node 

combining the finding Increased pulmonary flow on CXR with the trigger of ASD (ie. 

Wide and Split S2) has a high value in the reward accumulator.

• Secondary findings: this attribute references findings that reinforce the diagnostic 

hypothesis. They are selected by taking the findings that appear in strong nodes of the 

network, whether they have been combined with the trigger or not.
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By discriminating the different levels of influence that findings have in relation to 

diagnoses, it is possible to represent, in a symbolic way, the importance of feature/value pairs 

(findings) in the identification of a diagnosis (or class). This could not be done by other 

hybrid architectures which also addressed the problem of representing in a symbolic system 

the knowledge of the neutal networks (e.g. NEXTOOL, which represented any connection of 

the neural network in the same type of influence links in its symbolic semantic network).

In the NN-CBR architecture, the diagnosis descriptors are employed in three important 

tasks. Firstly, for consultation purposes. A fmal-user who wants to know which findings 

influence the diagnosis of certain diseases may browse the diagnosis descriptors to obtain 

such information. For the system developer, this feature is also most important, as he or she 

can have an idea of the knowledge stored in the neural network by looking at the diagnosis 

descriptors.

The second function of the diagnosis descriptors is that of building explanations. When a 

conclusion is reached, the attributes of the diagnosis descriptors can be used to show which of 

the features observed in the problem case had more influence in the identification of a 

diagnosis. In a case-based context, the attributes of the diagnosis descriptors can be used as 

corroborative evidence for the user in the selection of a certain case as the most similar 

previous experience. For instance, if the new case and the most similar case retrieved have a 

set of common findings that are defined as trigger or primary findings in the diagnosis 

descriptor, it is likely that the two cases represent a good match.

The last function of the diagnosis descriptors is that of reinforcing a final result. This is 

important here especially because in the hybrid NN-CBR model we disregard the minimum 

degree of confidence accepted by the CNM neural network (we consider hypotheses coming 

from the network with a high or with a low degree of confidence). The mechanism for 

reinforcing a final result computes the average intra-class similarity for all cases in the case 

library taking into account the attributes trigger and primary findings of the diagnosis 

descriptors. A diagnostic hypothesis is refuted if its similarity with the problem case is 

smaller than the average intra-class similarity previously computed for the same diagnosis. 

This method for reinforcing a final result by using the knowledge stored in the diagnosis 

descriptors is presented with more detail in section 5.9.



5. The hybrid NN-CBR model 100

The system HYCONES also addressed the problem of representing the knowledge of the 

neural network in symbolic diagnosis descriptors. The system used the CNM network to lead 

the reasoning process, and built the diagnosis descriptors through the computation of the 

sensitivity and sensibility degrees of the findings observed in a set of training examples. Here, 

the method for building the diagnosis descriptors has tried to be more faithful to the 

knowledge of the neural networks. Instead of using the sensitivity and sensibility concepts, we 

have considered directly the knowledge stored in the CNM network.

5.7 The Learning Process

In the hybrid NN-CBR approach, learning encompasses three main tasks^;

(1) training the neural networks;

(2) incorporating new cases in the case library;

(3) building the diagnosis descriptors.

The neural network is initially trained according to the learning algorithms detailed in the 

section 5.5. The cases used to train the network are also stored in the library in a sequential 

manner, as described in section 5.4. Then, the connections of the neural network are analysed 

and interpreted in diagnosis descriptors, in order to provide the system with symbolic 

representations of the diagnostic knowledge stored in the network.

We present here an example of the training of the neural network in the domain of CHD, 

as well as the construction of diagnosis descriptors for the diagnoses considered. Figure 5.11 

shows an excerpt of a neural network computing punishments and rewards for the diagnoses 

of AVSD and VSD when case AVSD7 is presented.

^One more step could be included here, which is the knowledge-acquisition phase necessary for the 

construction of the domain knowledge hierarchy. Learning this type of declarative knowledge involves a 

knowledge engineering process where experts have to be interviewed and textbooks consulted. In Hull & 

King (1986) and Mattos (1991) there are more detailed explanations about the acquisition and 

representation of declarative knowledge using the abstraction concepts.
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The excerpts selected show the influence of four different findings in the identification of 

the two diagnoses.

Case presented: AVSD7

Left anterior henni biockoge 
Down's syndrome 
Increased pulmonary flow on CXR 
Systolic cooing murmur right ventricle} 
History of cardiac murmur 
Cordlomegoly on CXR 
Left atrium hypertrophy on EGG

A V S D V S D

c l c2 c3c4cJc(c7c8c9p’*i

Left Down's Increased Systolic
anterior syndrome pulmonorycoolng
hem I flow on murmur
b lockage CXR right

ventricle

>  ' c 2 ' c 3 c ^ c 5 c 6 ' c 7c 8 c 9 ' " 'mm
Left Down's Increased Systolic
anterior syndrome pulmonorycoolng
hemi flow on murmur
b lock age CXR right

ventricle

pathways punished 
pathways rewarded

Figure 5.11: The punishment and rewards computed by an AVSD and a 

VSD network when case AVSD7 is presented

In order to simplify the drawing, the network has been separated into two small 

networks, both with the same structure. The input and intermediate nodes in both networks 

represent the same groupings of findings. The difference between them is that the output node 

of the first network represents the AVSD diagnosis, while the output node of the second 

network represents the VSD diagnosis.
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When presented with the case AVSD7, all the connections of the AVSD network are 

activated, leading to the correct diagnosis. The connections of the VSD network are also 

activated, but they lead to an incorrect diagnosis (VSD instead of AVSD). Because of this the 

connections {cl, c2,..., clO} are rewarded, while {cF, c T c l O ’}  are punished.

After the training period, the connections which have a larger number of punishments 

than rewards are removed from the network. In the given example, the connections {cl, c2, c3, 

c5, c7} still remain in the AVSD network, having reward values higher than punishment 

values. The connections {cS’, clO’}  have not been rewarded in observation of case AVSD7. 

However, the findings represented in these connections are very common in VSD cases, 

which causes a high number of rewards to be computed by the connections. Table 5.2 shows 

the final number of punishments and rewards for these remaining connections, after the 

complete training period (66 training examples).

cl c2 c3 c5 c7 c8’ clO’

rewards 8.55 7.22 10.26 10.26 7.22 15.4 13

punishments 0 0 0 1.71 1.44 0.85 0.72

weight 0.93 0.89 1 0.83 0.56 1 0.84

Table 5.2: The punishments and rewards for the AVSD and the VSD networks

The punishment and reward accumulators of the network are then normalised into 

connection weights between the values 0 and 1. The following information can be observed or 

concluded from the table:

The connection c3 (from Left anterior hemi blockage to AVSD) obtained the highest 

weight for the AVSD diagnosis (1.0), which indicates that, when present, this finding 

has a very high importance for the identification of AVSD. For the VSD problem, the 

connection c8' obtained the highest weight.

The nodes connecting the Left anterior hemi blockage to other findings (Down’s 

syndrome and Increased pulmonary flow on CXR) also obtained high connection
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weights (connections cl and c2).

• The finding Increased pulmonary flow on CXR, although frequent in AVSD or VSD 

problems, had its connections pruned both from the VSD and the AVSD network. This 

is justified by the fact that this finding is not specific to any of the diagnoses, and on its 

own it cannot indicate any of them. However, the finding Increased pulmonary flow on 

CXR appears in other nodes, where it is combined with Left anterior hemi blockage, as 

well as with Systolic cooing murmur right ventricle . This shows that the combination 

of Increased pulmonary flow on CXR with Left anterior hemi blockage is both frequent 

and speccific to AVSD, which is important for the identification of the diagnosis. 

When combined with Systolic cooing murmur right ventricle, Increased pulmonary 

flow on CXR is frequent and specific to VSD problems.

The construction of the diagnosis descriptor for the AVSD disease is shown in figure

5.12.
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AVSD

W = 1
w=0.8

r=10 w=0.9 w=0.8 w=0.8 w=0.8 w -0.8 r 4.3^

Left Down's Increased Cardiomegaly Right History Left Tachypnea
anterior syndrome pulm oiwy on CXR ventricle of cardiac ventricle
hemi flow on hypertrophy mumiur hypertrophy
blockage CXR

D iagn osis descrip tor ^ AVSD

Trigger: Left anterior hemi blockage______

Primary: Down's syndrome
Increased pulmunary flow on CXR 

________ Cardiomegaly on CXR__________

Secondary: Right ventricle hypertrophy 
History of cardiac murmur 
Left ventricle hypertrophy 
Tachypnea

Figure 5.12: The construction of the diagnosis descriptor of AVSD

The finding with the highest connection weight (w) is selected as the trigger of the 

diagnosis (ie. Left anterior hemi blockage). Then, other findings that appear in nodes with a 

high reward accumulator (r) are selected as primary findings. In the example, the nodes 

combining the finding Left anterior hemi blockage with Down s .syndrome, and with 

Increased pulmonary flow on CXR, are selected to form the primary findings. The node 

combining Cardiomegaly on CXR with Down's syndrome is also selected for its high 

frequency in AVSD cases (r=7.2, the same as Left anterior hemi blockage combined with 

Increased pulmonary flow on CXR). Other findings that appear in strong nodes are selected as 

secondary findings. For example, the finding Tachypnea, which appears in a node with 

Down's syndrome, is selected as a secondary finding.
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It is important to remark here that, by eliciting the information above, we convert the 

‘opaque’ knowledge stored in the network into meaningful attributes, which rank the 

importance of findings in determining the solutions of the problems addressed. This more 

intelligible representation can be used for several purposes, such as for consultation and for 

building explanations.

5.8 The Reasoning Process

Before starting the reasoning process, the user has to provide the system with all the evidence 

observed for the case to be solved. The collection of evidence from the user is guided by the 

knowledge stored m the domain knowledge hierarchy. The user enters investigation 

examination results, physical examination results, and history findings according to the terms 

used in the domain knowledge hierarchy.

The collected evidence is then presented to the CNM network. In the hybrid NN-CBR 

approach, three possibilities are considered:

1. The neural network is activated, according to the functions described in section 5.5, and 

indicates only one diagnosis as a possible answer, with a high or low degree of 

confidence^. In this circumstance, the CBR module has to find a case in the library that is 

similar to the new case and that can support the same diagnostic hypothesis. The CBR 

module uses the findings that have activated the strongest pathway in the network as 

remindings for the retrieval of cases from the library. A most similar case among these is 

found using a particular case-matching procedure. This procedure uses a similarity metric 

that is based on the computation of the relative goodness of attribute-value pairs (in our 

case findings). The relative goodness of an atttribute-value pair was used originally in 

INFERULE (Uthurusamy, Fayyad & Spangler 1991) as a measurement to support 

partitioning of a set of examples into two subsets. Instead of relying on the information

^When used on its own, the neural network does not present any result if the confidence degree that is 

obtained is lower than a preset threshold.
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entropy to determine the discriminating power of an attribute (as in ID3^ (Quinlan 

1986)), the importance of an attribute-value pair in INFERULE is indicated by the fact 

that the class distribution in its corresponding subset differs significantly from the class 

distribution in the original set. In other words, the goal of this method is to choose an 

attribute that maximises the difference between the class distribution of the resulting 

subsets and the expected class distributions. In general, the bigger this difference, the 

more likely it is that the subset partition induced by the attribute-value pair is relevant to 

the classification. However, a small distance indicates that the distribution of classes in 

the original set does not change significantly when the set is partitioned. This would 

indicate that the attribute-value pair is probably not relevant to the classification task.

The relative goodness of an attribute-value pair can be obtained by the following method:

• Let C be a set of previous cases. Each case consists of a specification of the values 

of all attributes and a diagnosis, which can assume one of m possible values {di,...,

• Let fi  be a finding equivalent to an attribute-value pair <A=ai> (where A is the 

attribute that takes on one of the values {a\,..., ak})\

• Let nj be the number of examples in C that belong to diagnosis dj. C(fi), contained in 

C, is the subset of examples in C with findings fi. C(fi, dj), contained in C(fi) is the 

subset of examples with finding/) and diagnosis dj.

În ID3, the entropy measures the discriminating power of an attribute by favouring attributes that result 

in outcome vectors that are unevenly distributed. Thus, an attribute-value pair is not appropriate for 

partitioning a dataset if its corresponding subset of examples has equal numbers of examples from 

different classes. INFERULE’s attribute selection criterion appeared to give the best overall results in 

comparison to several other methods that were tested, including ID3, the Chi-Square test, and Fisher’s 

exact test for statistical independence (Uthurusamy, Fayyad & Spangler 1991).
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Then, we have:

E i ( d j ) =  ' 7 c i '

where ICI is the number of examples in the set C. Ei(dj) is the expected number of 

examples in C(fi) that have diagnosis dj, so, Ei(dj) is an estimate of the actual value

i / ^SE(fi)= 1/ y "  , Ei(dj)(nj-Ei (dj)) 
nj

SE(fi) is a standard error mesurement associated with the E/s (estimates) defined 

previously. SE adjusts for the fact that an estimate that is based on a smaller data set is 

less accurate than one based on a larger set. The geometric distance between two class 

vectors is defined as:

DI(fi)= ^ 'E iL ,[ E i(d j) -  l C( f i , d j ) l f  

<Ei(dj), Eiidz),..., Ei(dm)> and <\C(fi, dj)\, \C(fi, d2 )\,..., \C(fi, dm)\>

Note that the first vector is the expected class vector of the subset and the latter is 

the actual class vector of C(fi). Finally,

Rg(fO= I  - ( SE(fi ) . _ i  )
D l(fi)

where Rg(fi) is the relative goodness of the findings fi (or the attribute-value pair 

<A=ai>), After evaluating all attributes and their values, the finding with the maximum 

Rg value is the one considered to be better for partitioning the data set. In our case, the 

findings with the biggest values of Rg are the ones considered to be more important for 

case comparisons.

The degree of similarity between two cases is then calculated by the weighted sum of the 

relative goodness of each finding that appears in both cases. The following formula is 

used:
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HURgjfi)
^  ^findings

where Rg(fi) is the relative goodness of a finding (/ ranging through the n common 

findings between the new case and the previous case), and Nfindings the mean of the 

number of findings of both cases. The use of Nfindings the divisor expression of the 

formula accounts for unmatched features between two cases (the smaller the number of 

unmatched features, the highest the similarity). Moreover, using the square-root of 

^findings (instead of uniquely Nfmdings) enables cases showing a larger number of

common features to have a higher similarity.

After finding the previous case that shows the highest similarity with the problem 

case, the diagnostic conclusion has to be confirmed. We do this by computing the 

similarity of its diagnosis descriptor with the problem case. A minimum similarity degree 

has to be found between the descriptor and the new case for the diagnosis to be given as a 

final result. The calculations used to reinforce a diagnostic conclusion using the 

diagnosis descriptors are presented in the next section (5.9).

An example of how the system would solve a case according to this first prescription is 

given below.

Case Presented - ASD32 : Wide and split S2

Increased pulmonary fiow on CXR 

Systolic ejection murmur pulmonary artery 

Right ventricle hypertrophy on ECG 

History o f cardiac murmur 

Cardiomegaly on CXR 

Right atrium hypertrophy on ECG 

Growth retardation 

Extertional Dyspnea
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When presented with case ASD32, the first step in the reasoning process is to activate the 

neural network. Figure 5.13 shows the strongest nodes of the network having been given 

case ASD32.

ASD

0.651.0 0.78 0.7

B D

VSD

0.620.68

G

Strongest network nodes reaching the ASD hypothesis

A = Wide and split S2 
B = Increased pulmonary flow on CXR 
C = Systolic ejection murmur pumonary artery 
D = Right ventricle hypertrophy on ECG

Strongest network nodes reaching the VSD hypothesis

E = Growth retardation 
F = Exertional dyspnea 
G = Right atrium hypertrophy on ECG

Figure 5.13: The strongest outputs of the neural network when 

presented with case ASD32

Two diagnoses are indicated, ASD and AVSD. However, the connection linking the 

finding Wide and split S2 to the diagnosis ASD is the one to carry the highest weight 

(1.0), which produces the strongest output. The network is thus able to indicate the 

diagnosis of ASD with a high degree of confidence. The CBR module then has to retrieve 

cases in the library to support this hypothesis, ie. cases for the diagnosis of ASD 

containing the finding Wide and split S2. Figure 5.14 shows a few similar cases retrieved.
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Case ASD19

Wide and split S2
Increased pulmonary flow on CXR
Systolic ejection murmury pulmonary artery
Rigth ventricle hypertrophy on ECG
History of cardiac murmur
Cardiomegaly on CXR
Right atrium hypertrophy on ECG
Normal growth
Dyspnea when breast feeding

Case ASD 15

Case ASD5

Wide and split S2 
Increased pulmonary flow on CXR 
Systolic ejection murmury pulmonary artery 
Rigth ventricle hypertrophy on ECG 
History of cardiac murmur 
Cardiomegaly on CXR 
Growth retardation 
Tachypnea
Right bundle branch blockage

Wide and split S2
Increased pulmonary flow on CXR
Systolic ejection murmury pulmonary artery
Rigth ventricle hypertrophy on ECG
History of cardiac murmur
Cardiomegaly on CXR
Normal growth
Dyastolic murmur right ventricle 
Frequent respiratory infections

Figure 5.14; A set of cases similar to ASD32 retrieved by 

the case-matching procedure

Cases ASD 19 and ASD5 have the same number of similar and mismatching findings 

(matching findings appear in the figure in bold). However, some of the similar findings 

have a different degree of importance. This is taken into account by the matching 

procedure detailed previously, which calculates the importance of each finding through 

the computation of their relative goodness. The finding Growth retardation (0.67) has a 

lower relative goodness value than the finding Right atrium hypertrophy on ECG (0.73). 

Therefore, the case containing this last finding is selected as the most similar previous 

case (in the example, the case ASD 19). In the last step of the reasoning process, the 

problem case is compared with the diagnosis descriptor of ASD, in order to reinforce the 

final diagnosis.
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2. In the second path that may be followed by the reasoning process, the neural network 

finds two or more possible diagnoses with the same level of confidence. Normally, these 

hypotheses would be discarded by the neural network, and it would simply reply with a 

message such as: ‘it was not possible to reach any conclusion’̂ . In our hybrid approach, 

these hypotheses are passed to the CBR module, together with the findings of the 

network that indicated each diagnosis. These findings are clustered and used as 

remindings by the CBR system, ie. in the search for previous cases that have had the 

same set of findings. A certain number of previous cases is retrieved and a computation 

of similarity with the new case is carried out, indicating a most similar case. The example 

below shows how the system would behave according to this description.

Case presented - AVSD17 : Left anterior hemi blockage

Wide and split S2

Increased pulmonary flow on CXR 

Hystory o f cardiac murmur 

Cardiomegaly on CXR 

Systolic heart murmur 

Frequent respiratory infections 

Growth retardation

When presented with case AVSD 17, the neural network indicates two different 

hypotheses for the problem: diagnoses AVSD and ASD. Figure 5.15 shows the strongest 

nodes of the network when activated by case AVSD 17.

^The system HYCONES, which used the CNM network as the main component of its inference process, 

decided between two or more hypotheses given by the neural network by analysing the number of 

punishments stored in each node of the network that was used to produce each hypothesis. The diagnoses 

indicated by nodes with a higher number of punishments were not considered further. This mechanism 

has been based on the idea that more specific collections of findings (those represented in nodes with 

less punishments) are more likely to produce correct answers.
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A

AVSD

1.0 0.7
0.92 0.9

B

ASD

0.83

D B

Strongest network nodes reaching AVSD hypothesis

A = Left anterior hemi blockage 
B = Increased pulmonary flow on CXR 
C = Cardiomegaly on CXR 
D = Systolic heart murmur

Strongest network nodes reaching ASD hypothesis

E = Wide and split S2 
F = Frequent respiratory infections 
B = Increased pulmonary flow on CXR 
C = Cardiomegaly on CXR

Figure 5.15: The strongest outputs of the neural network when 

presented with case AVSD17

The connection that links the node Left anterior hemi blockage to AVSD, as well as the 

connection linking the node Wide and split S2 to ASD, are the strongest ones. Both are 

able to indicate the corresponding diagnoses with the highest degree of confidence. To 

discriminate between the two hypotheses, the findings that activated these nodes (Wide 

and split S2 and Left anterior hemi blockage) are clustered by the CBR module and used 

as a reminding to retrieve similar cases. Figure 5.16 shows the cases retrieved by this 

process.
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Case AVSD2

Left anterior hemi blockage 
Wide and split S2 
Increased pulmonary flow on CXR 
History of cardiac murmur 
Cardiomegaly on CXR 
Systolic heart murmur 
Right atrium hypertrophy on ECG 
Right bundle branch blockage 
Systolic cooing murmur right ventricle

Case AVSD12

Case AVSDIO

Left anterior hemi blockage 
Wide and split S2 
Increased pulmonary flow on CXR 
History of cardiac murmur 
Cardiomegaly on CXR 
Right ventricle hypertrophy on ECG 
Down's syndrome
Systolic ejection murmur pulmonary artery 
Systolic cooing murmur left ventricle 
Dyspnea when breast-feeding

Left anterior hemi blockage 
Wide and split 82 
Increased pulmonary flow on CXR 
History of cardiac murmur 
Systolic heart murmur 
Right atrium hypertrophy on ECG 
Right bundle branch blockage 
Right ventricle hypertrophy on ECG 
Left ventricle hypertrophy on ECG 
Normal growth

Figure 5.16: A set of cases similar to AVSD17 retrieved by 

the case-matching procedure

The cases AVSD2, AVSDIO and AVSD 12 are retrieved by the created reminding, and 

AVSD2 is selected as the most similar among the three. In order to reinforce the final 

result, the problem case is compared with the diagnosis descriptor of the corresponding 

final diagnosis.

3. The third path that may be followed by the reasoning process is characterised by the 

neural network not being able to find any answer for the given problem. No remindings 

can be built, and the CBR module has to go through all the cases in the library looking 

for a close match. The final answer has then to be reinforced using the diagnosis 

descriptors, as in the examples presented above. Only a very small percentage of cases is 

diagnosed by this method, as the neural network covers a very large proportion of the 

problem space and can usually give an answer, even if with a low confidence degree. 

Cases that cannot be diagnosed by the network are usually very atypical and therefore 

difficult to diagnose. This will be discussed further in chapter 6 .
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After arriving at a final solution, the system has to verify that it is credible. This is 

important here especially because we have disregarded the minimum degree of confidence 

accepted by the neural network (we have considered hypotheses coming from the network 

whether they carry a high or low degree of confidence). Therefore, an additional mechanism 

has to be used in order to give credibility to a solution found by the hybrid NN-CBR system. 

This is presented in the next section.

5.9 Reinforcing a Final Result

The method used in the hybrid NN-CBR system to reinforce a final result starts by 

computing the average intra-class similarity for all cases in the case library taking into account 

only the attributes trigger and primary findings of the diagnosis descriptors. The similarity 

between a case Cj and a diagnosis descriptor is computed through the formula:

« X p  X Spec(FI,Dk) + Sens(Fi,D k)
Sim(Cj, Dk) = ------------

^  ^ fin d in gs

where i ranges through the n common findings between the case considered and diagnosis 

descriptor Djc {trigger and primary findings only), Spec(Fi,Djc) is the specificity of finding F/ 

for the diagnosis Dj ,̂ and Sens(Fi,D]^) is the sensitivity of finding F/ for the same diagnosis. 

The constant (3 is used to attribute a higher importance to the specificity of a finding in 

relation to its sensitivity. This is justified by the fact that the sensitivity of a finding only 

measures how frequent the finding is in a diagnosis. It does not show how discriminating the 

finding is, ie. the efficiency with which the finding can be be used to discriminate among 

diagnoses. The specificity degree is a factor that is more effective for discrimination as it 

accounts for the number of times that a finding appears for one diagnosis but not for others. 

The variable a  is used to give an increasing degree of importance for findings that have been 

classified as primary and triggers, respectively. Finally, the variable Nfindings corresponds to

the number of findings used to describe the problem case.

The sensitivity degree of a finding in relation to a diagnosis measures its frequency for 

that diagnosis. It can be obtained through the formula (Owens et al 1990):
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Sens(F,D) = noplf^D

where noF  is the number of cases with diagnosis D where finding F is present and no  is the 

total number of cases with diagnosis D.

The specificity degree Spec(F,D) of a finding F in relation to a diagnosis D is inversely 

proportional to the the frequency with which a finding appears in diagnoses other than D. The 

specificity degree of a finding can be obtained through the formula (Owens et al 1990):

Spec(F,D) = n^fD/fiy^D

where /iwFD is the number of cases without finding F and with other diagnoses than D, and 

nyvD is the total number of cases with diagnoses other than D.

Having determined the average intra-class similarity for each diagnosis considered, we 

must then calculate the intra-class similarity between the problem case and the diagnosis 

indicated by the system. The same formula for the computation of the similarity between a 

case Cj and a diagnosis descriptor Dĵ  is used, with the only difference that here all the

attributes of the diagnosis descriptor are considered. Using all the attributes at this stage 

enables cases that do not have a sufficient number of important attributes {trigger and primary 

findings) to still have a minimum level of similarity with the diagnosis descriptor.

To exemplify this procedure, let us continue with the diagnosis of case AVSD 17. AVSD 

has been identified by the NN-CBR system as the hypothesis for the case. To reinforce this 

hypothesis, AVSD will be compared with the diagnosis descriptor of AVSD. The average 

intra-class similarity of AVSD has been computed previously as 1.8, considering only triggers 

and primary findings of AVSD. The calculation of the intra-class similarity of the case 

AVSD 17 is shown below (this time taking into consideration the trigger, primary findings and 

secondary findings of AVSD):

Common findings:

trigger: Left anterior hemi blockage, spec: 0.98, sens: 0.80, a  = 1.0

prim ary: Increased pulmonary fiow on CXR, spec: 0.47, sens: 0.87, a  = 0.5

Cardiomegaly on CXR, spec: 0.57, sens: 0.73 

secondary: Frequent respiratory infections, spec: 0.76, sens: 0.27, a  = 0.25
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Systolic heart murmur, spec: 0.76, sens: 0.33 

Hystory o f cardiac murmur, spec: 0.59, sens: 0.67 

Wide and split 5'2,spec: 0.79, sens: 0.27

For p = 2.0, the degree of similarity between AVSD and AVSD 17 is 2.27.

As the degree of similarity between AVSD17 and AVSD (2.27) is bigger than the 

average intra-class-similarity calculated previously for AVSD (1.8), AVSD is considered to be 

a credible result for the problem.

After confirming the result, an explanation is built using the retrieved previous case and 

the corresponding diagnosis descriptor. This explanation highlights the importance of the 

findings present in the problem case, according to their characterisation in the descriptor of 

the final diagnosis. Furthermore, the matches and mismatches of the problem case witli similar 

previous cases are used to support the answer given to the user. The system produces the 

following explanation for the AVSD 17 case:

“ The finding Left anterior hemi blockage has been identified as a trigger of the 

diagnosis AVSD. Thus, this finding indicates the diagnosis AVSD with a high 

degree of confidence. The findings Increased pulmonary flow on CXR and 

Cardiomegaly on CXR were identified as Primary findings of AVSD cases, and as 

such they reinforce this diagnosis with a high degree of confidence. The findings 

History o f cardiac murmur and Frequent respiratory infections support the same 

diagnostic hypothesis. Although Wide and split S2 is a trigger of another diagnosis 

(ASD), it can also be observed in some AVSD cases. Case AVSD2 is the most 

similar previous case in the library, and it also carries both the AVSD trigger Left 

anterior hemi blockage and the ASD trigger Wide and split S2. The following 

findings are common among the two cases: Left anterior hemi blockage. Wide and 

split S2, Increased pulmonary flow on CXR, History o f cardiac murmur, 

Cardiomegaly on CXR and Systolic heart murmur. The finding Growth retardation 

of the problem case was not matched. The findings Mid-diastolic rumbling left 

ventrivle. Right atrium hypertrophy on ECG, Systolic cooing murmur right 

ventricle and Right bundle branch block of the retrieved case were not matched.
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However, there is a degree of similarity sufficiently high between the problem case

and the AVSD diagnosis descriptor to indicate this diagnosis as a final result.”

5.10 Final Remarks

In summary, the complete reasoning process of the hybrid NN-CBR system can be 

described by the four 'REs’ steps:

• REtrieve: the neural network proposes solutions and provides remindings that are used 

for the retrieval of similar past cases in the case library;

• REuse^^: the solution of the most similar case is reused for the new case. For the types 

of problems that we target, this step consists simply in classifying the new case in the 

same way as the retrieved past case has been classified;

• REvise: the degree of credibility of the solution is computed using the knowledge 

stored in the diagnosis descriptors (solutions with low levels of credibility are not 

considered);

• REtain: The new case is stored in the case library and later used to train the neural 

network.

The last step of the problem-solving procedure consists of building an explanation for the 

solution found, by using the retrieved case and the corresponding diagnosis descriptor. 

Relying on causal knowledge (diagnosis descriptors) as well as on previous experiences to 

build explanations has proved to be useful in improving the level of acceptance of the 

explanations provided by expert systems (Georgin et al. 1994). From a cognitive point of 

view, using both general and specific knowledge is more plausible than relying solely on some 

type of compiled knowledge. There is no shortage of confirmations from psychology (e.g. see 

Estes 1984; Sternberg1984) that people keep in their memories experiences represented in 

single episodes, as well as summary representations of these experiences. Both types of 

knowledge are used to understand and solve a newly-posed problem. NN-CBR also stores

*̂̂ The Reuse step applies mostly to systems that deal with design and planning tasks, where a complex 

previous solution has to be modified according to requirements and constraints of the new case.
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single cases and summary representations of these cases (diagnosis descriptors and neural 

networks), and attempts to use the two types of knowledge in reasoning.

The hybrid NN-CBR architecture also proposes solutions for problems in the area of 

hybrid connectionis/symbolic systems, and CBR. For instance, the difficulty in understanding 

the knowledge stored in a neural network has been scaled down by the creation of diagnosis 

descriptors that interpret the connections and weights of the network in three attributes: 

triggers, primary and secondary findings. Another problem addressed has been that of 

referring to relevant previous experiences in case-based systems, which we have tackled by 

using an alternative indexing scheme based on information that can be obtained from the 

neural network.

The next chapter presents validation results obtained from the application of the methods 

presented here in the domain of cardiology, as well as in soybean disease diagnosis, 

mushroom classification, and in solving the so-called MONK’s Problems.



Chapter 6

Validation Results

The hybrid NN-CBR approach has been tested firstly in the Congenital Heart 

Disease (CHD) domain. Two different databases provided by the Institute o f 

Cardiology, RS (Porto Alegre, Brazil) were used to train and test the overall 

software. The experiments carried out are detailed in the next sections. The hybrid 

approach has been also tested in other domains, namely mushroom classification, 

soybean disease diagnosis and solving the MONK’s problems (Thrun 1991). The 

main objective o f this further evaluation has not been to show that the NN-CBR 

performance is superior to that o f other systems originally designed for each 

application. Instead, our main goal has been to show that the NN-CBR model is 

also suitable for applications other than the diagnosis o f CHD. Furthermore, we 

wanted to show that, for other applications, the performance o f the NN-CBR 

system would again be superior to that o f the CNM network on its own.

6.1 Diagnosing three Frequent CHD Problems

The hybrid NN-CBR model presented in the previous chapter has been evaluated first in the 

domain of cardiology using a database obtained from the records of the Institute of 

Cardiology in the Brazilian state of Rio Grande do Sul. This database contained the three 

most frequent isolated CHD diagnoses, namely Atrial septal defect (ASD), Ventricular septal 

defect (VSD) and Atrioventricular septal defect (AVSD). These heart diseases can be grouped 

together because they usually present the symptom Increased pulmonary and flow on CXR. A 

total of 99 cases for these three different Congenital Heart Diseases (CHD) can be found in



6. Validation Results 120

this database. The distribution of the cases for each diagnosis is the following: 24 AVSD 

cases, 40 VSD cases and 35 ASD cases. This database will be called Chd3.

The cases for these three diseases have been collected with the supervision of an expert 

in CHD. The patient’s history, physical examination, CXR and ECG findings were also 

extracted from the medical files and stored in the domain knowledge hierarchy. The system 

was trained with two-thirds of the cases randomly selected from this database, and tested with 

the remaining one-third of cases. The performance of NN-CBR was compared with that of the 

CNM and the nearest-neighbour algorithm. Table 6.1 shows the results of this basic step of 

validation.

Results NN-CBR CNM nearest-

neighbour

Correct 31 93.94% 28 84.85% 26 78.79%

Misclassified 0 0.00% 1 3.03% 5 15.15%

No conclusions 2 6.06% 4 12.12% 2 6.06%

Total 33 100.0% 33 100.0% 33 100.0%

Table 6.1: CHD, training-set A, testing-set A

The performance of NN-CBR is slightly better than that of the CNM. This happens 

mainly because for most of the problems that the neural network cannot solve, the CBR 

module can find a credible answer. NN-CBR also achieves a higher level of accuracy than the 

nearest-neighbour algorithm used by our CBR module. This can be explained by the fact that 

the main reasoning mechanism used by NN-CBR is the CNM. In circumstances where the 

CNM has a better performance than the nearest-neighbour method, the NN-CBR system will 

also perform better.
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Two other symbolic learning algorithms have also been tested with database Chd3 (in 

Reategui, Campbell & Leao (1996a)), namely Pbl3 (Uehara et al. 1993) and 103^ (Quinlan 

1986). Pbl3 (Prototype-based Learning) is an inductive algorithm capable of learning concept 

descriptions, consisting of prototypical attributes and attribute importances, by using a 

distance metric based on prototype and information theory. Pbl3 answered correctly 29 out of 

the 33 CHD cases (87.88%), reaching a performance close to that of NN-CBR. However, the 

inference approach developed in the NN-CBR presents some advantages over Pbl3. In NN- 

CBR, the search for a best match in the case library is narrowed via the use of the neural 

network. Pbl3 inspects all the cases in the library during the categorisation process, which can 

be expensive for large case libraries.

NN-CBR also showed a better performance than the decision trees generated through the 

simplified version of ID3. The decision trees answered correctly 25 out of the 33 CHD cases 

(75.75%), while 31 correct answers were given by NN-CBR. Another advantage that favours 

the reasoning mechanism employed by NN-CBR is that the discrimination trees generated by 

ID3 can be complex and difficult to understand. A pruning procedure may be used to simplify 

the trees and thus improve their comprehensibility. However, even after pruning a tree may be 

too big to be comprehensible (Feng & Michie 1994). An alternative solution is to convert the 

trees into rules, which have the same expressive power, but which seem to lend themselves to 

more user-friendliness (Quinlan 1993). However, the problem of comprehensibility still holds 

at some level of intensity in rule-based systems, and because of this it is recommended that 

induced rules be as short as possible. To induce short rules, one must usually relax the 

requirement that the induced rules be consistent with all the training data. Such measures may 

encounter a complexity barrier that limits how much can be done in order to make a rule-set 

comprehensible, without letting it lose too much of its accuracy.

A diagnosis descriptor compacts what would be a large set of rules into a simple record­

like structure, which describes only the importance of findings for a diagnosis, without

^A simplified version of the ID3 algorithm which does not deal with unknown attribute values was used 

here. The reason for this choice was that the description of the cases in the training set was not given in 

terms of attributes/values, but simply as lists of medical findings, so that no difference between unknown 

and absent attributes was made visible.
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enforcing the ‘all-or-nothing’ conditions found in rules. The example below (figure 6.1) 

shows how a diagnosis descriptor summarises the knowledge of a set o f rules for the 

diagnosis of AVSD.

It'Left anterior hemi blockage 

Then AVSD  

If Left anterior hemi blockage 

Down's syndrome 

Then AVSD  

U' Left anterior hemi blockage 

Increased pulmonary flow on CXR 

Then AVSD  

If Left anterior hemi blockage 

Cardiomegaly on CXR 

Then AVSD  

If Left anterior hemi blockage 

Right ventricle hypertrophy 

Then AVSD

If Left anterior hemi blockage 

History o f cardiac murmur 

Then AVSD  

If Left anterior hemi blockage 

Left ventricle hypertrophy 

Then AVSD  

If Down's syndrome 

Increased pulmonary flow on CXR 

Then AVSD  

If Down's syndrome 

Tachypnea 

Then AVSD

D ia g n o s is  d escr ip to r > AVSD

Trigger: Left anterior hemi blockage

Primary: Down's syndrome
Increased pulmunary flow on CXR
Cardiomegaly on CXR

Secondary: Right ventricle hypertrophy 
Hystory o f cardiac murmur 
Left ventricle hypertrophy 
Tachypnea

Figure 6.1: A set o f symbolic rules and a diagnosis descriptor representing

the AVSD problem

When designing the diagnosis descriptors, our goal has not been to define logical 

operators to determine the possible combinations o f attributes that would be necessary for the 

identification of a diagnosis, e.g. that the presence of the trigger with two or more primary
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findings would be sufficient to determine a particular diagnosis. The number of combinations 

of findings that can lead to the identification of a diagnosis is usually very large, and trying to 

describe all these combinations explicitly in a symbolic way would result in a representation 

that would not be easy to read. The examples given in chapter 5 (section 5.5), as well as the 

example above, show how a small number of combinations of evidence is expanded into a set 

of rules that is not very easy to comprehend without a detailed examination. The solution we 

have created for this problem has been to keep a representation of the combinations of 

findings in the neural network, and to define only the importance of the findings in the 

diagnosis descriptors. This form of representation allows the diagnosis descriptors to have a 

simpler structure which is easy to read and understand. Another property enabling the 

simplification of the diagnosis descriptors is that they are not used for reasoning purposes, 

but more for consultation and explanation purposes. In the NN-CBR approach, the mechanism 

that determines the sufficiency of evidence for a hypothesis to be singled out is the neural 

network.

A second experiment in the CHD domain has been the presentation of 38 other cases 

from four different CHD problems to the systems for diagnosis: Aortic Stenosis (AST), Aortic 

Coarctation (ACOA), Persistent ductus arteriosis (PDA), Tetralogy o f Fallot (TFLT). The 

expected result was that the systems would not be able to diagnose any of the cases. Table 6.2 

shows the results for this experiment.

Results NN-CBR CNM nearest-

neighbour

Misclassified 9 23.68% 30 78.95% 32 84.21%

No conclusions 29 76.32% 8 21.05% 6 15.79%

Total 38 100.0% 38 100.0% 38 100.0%

Table 6.2: Systems trained to diagnose ASD, VSD and AVSD, diagnosing four 

other diseases: AST, ACOA, PDA and TFLT
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In this experiment, NN-CBR performs considerably better than both the CNM and the 

nearest-neighbour algorithm. This is mainly because the NN-CBR system has a verification 

method that calculates and enforces a minimum level of credibility for final results. This 

method, presented in detail in chapter 5, computes the average intra-class similarity for all 

cases in the case library taking into accoimt the attributes trigger and primary findings of the 

diagnosis descriptors. A diagnostic hypothesis is refuted if its similarity with the problem 

case is smaller than the average intra-class similarity previously computed for the same 

diagnosis. The threshold mechanism used by the CNM^ is not as efficient when presented 

with cases that the neural network should not be able to diagnose. The neural network always 

seems to find some evidence indicating one diagnosis or another. Regarding the nearest- 

neighbour algorithm used here, it does not include any control on the minimum similarity 

degree required for the system to present an answer. Because of this, the nearest-neighbour 

method diagnosed inappropriately almost all the cases in this last experiment. However, it 

would be possible to include in the nearest-neighbour method a procedure that would only 

accept answers carrying a confidence degree higher than a given threshold. The inclusion of 

such a control would improve the performance of the nearest-neighbour method in relation to 

the identification of cases that do not belong to any of the classes that the system was taught 

to identify.

6.2 CHD - Diagnosis of four other Problems

The 38 cases used in the last experiment (cases with heart diseases AST, ACOA, PDA and 

TFLT) are in fact part of a second database provided by the same institute (Institute of 

Cardiology - Rio Grande do Sul), which contains a total of 115 cases distributed in the 

following way: 28 AST cases, 28 ACOA cases, 31 PDA cases and 28 TFLT cases. These 

cases have been collected without expert supervision and present incomplete descriptions.

This database has been combined with the Chd3 database to train and test a system for 

the diagnosis of all seven types of CHD problems (the database containing cases with the

În the training period of the CNM network, all the weights of the network are calculated using the 

confidence threshold (Tacc) as a reference (see further details in Appendix B). When solving new 

problems, this threshold is used to determine whether an answer can be passed forward or not.



6. Validation Results 125

seven diseases will be called ChdJ). The total number of cases of Chd7 was 214. Table 6.3 

shows the performance of NN-CBR, the CNM and the nearest-neighbour algorithm when 

diagnosing a set of cases extracted from Chd7\

Results NN-CBR CNM nearest-

neighbour

Correct 52 73.24% 42 59.15% 36 5&7%

Misclassified 9 1Z 68% 10 12.12% 27 3&0%

No conclusions 10 14.08% 19 26.76% 8 11.3%

Total 71 100% 71 100% 71 100%

Table 6.3; The performance of the systems when diagnosing the seven CHD diseases

Similar conclusions to those of the first experiment can be drawn from the results shown 

in table 6.3. The NN-CBR system again shows a better performance than that of the CNM and 

the nearest-neighbour algorithm. However, it is noticeable that the overall performance of 

each system is degraded in relation to its performance in the first experiment (table 6.1). 

There is a very important factor that has induced this drop in performance. The cases of 

database Chd7 have been transcribed from old medical records to our case format without the 

supervision of an expert. The transcription of a case from an old record to a different format 

consists of two main tasks: understanding the problem sometimes explained in a somewhat 

free format, and then restating the problem using a particular vocabulary. VanLehn (1989) 

reports several experiments showing that experts have a better capacity of understanding and 

retaining details of a newly-posed problem. In our CHD experiment, this claim is confirmed 

by the fact that the cases collected with expert supervision had more detailed descriptions. 

While in database Chd3 an average of 9 medical findings was used to describe each case, for 

database Chd7 an average of 5 findings was observed. To some extent, it can be claimed that 

the knowledge of an expert was embedded in the cases of database Chd3, while the
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knowledge of a less experienced cardiologist was embedded in the cases of database ChdV. 

Therefore, NN-CBR was able to learn more ‘effective rules’ and thus perform better using the 

cases of database ChdS.

Machado, Rocha & Leao (1990) also report the differences between expert and non­

expert knowledge. They say that despite using smaller graphs, the experts displayed a larger 

number of pathways capable of associating evidence with the diagnostic hypotheses, 

evidencing a greater semantic capacity in comparison to non-experts. The same paper also 

reports that non-experts were frequently unable to include the key items of evidence 

employed by experts in their reasoning, even using large clusters (ie. a combination of a large 

number of items of evidence). These statements support the results obtained in our research, 

where the performance of each of our trial systems using the cases transcribed with the 

supervision of an expert had a better performance than the same systems using cases collected 

without expert supervision. Table 6.4 shows the performance of NN-CBR for each of the 

seven types of CHD diagnoses separately.

ASD VSD AVSD AST ACOA TFLT PDA Total

Correct 13 10 8 6 6 5 4 52

100.0% 90.9% 88.9% 66.7% 66.7% 55.5% 44.4% 73.2%

Misclassified 0 0 0 1 2 2 4 9

0% 0% 0% 11.1% 22.2% 22.2% 44.4% 12.7%

No conclusions 0 1 1 2 1 3 2 10

04% 9T% 11.1% 22.2% 11.1% 33.3% 22.2% 14.0%

Total 13 11 9 9 9 9 11 71

100% 100% 100% 100% 100% 100% 100% 100%

Table 6.4: The performance of NN-CBR for each of the seven 

types of CHD diagnoses

The results demonstrate that NN-CBR was able to solve more accurately problems 

related to the first three CHD diagnoses (ASD, VSD and AVSD), ie. the diagnoses for which 

the cases were transcribed with the supervision of an expert. The diagnosis descriptors built
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for these three diagnoses are also more similar to the ‘mean’ knowledge graphs elicited from 

multiple experts. Figures 6.2 to 6.8 show the leftmost trees of the experts’ and non-experts’ 

knowledge graphs, and the trigger and primary findings of the diagnosis descriptors for each 

diagnosis. A comment of Dr. Beatriz Leao about the results obtained is also presented for 

each of the problems addressed.

Experts' mean KG 
ASD

Wide and Increased
split 82 pulmonary

flow on CXR

Non experts' mean KG 
ASD

Increased ^ ^ h t  Systolic Pulmonary
pulmonary bundle murmur trunk
flow on CXR branch dilation

blockage

Diagnosis descriptor ► ASD

Trigger: Wide and split 82

Primary: Increased pulmonary flow on CXR

Figure 6.2: Comparing expert and non-expert KGs with the diagnosis descriptor of ASD
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Experts' mean KG 
AVSD

Non experts' mean KG 
AVSD

Lett Down's Cardiomegaly 
anterior syndrome on CXR 
hcmi 
blockage

Down's Increased Left Systolic
syndrome pulmonary anterior cooing

now hemi murmur left
on CXR blockage ventricle

Diagnosis descriptor > AVSD

Trigger: Left anterior hemi blockage

Primary: Down's syndrome
Cardiomegaly on CXR
Increased pulmonary flow on CXR

Figure 6.3: Comparing expert and non-expert KGs with the diagnosis descriptor o f AVSD

Experts' mean KG 
VSD

Systolic
murmur

Cardiomegaly 
on CXR

Increased Right
pulmonary Left ventricle
flow on CXR ventricle hypertrophy

hypertrophy

Non experts' mean KG 3
VSD

Increased 
pulmonary 
now 
on CXR

Frequent
respiratory
infections

Systolic Left Right
murmur ventricle ventricle

hypertrophy hypertrophy

Diagnosis D escriptor ^ VSD

Trigger: Systolic murmur

Primary: Increased pulmonary flow on CXR 
__________Left ventricle hypertrophy_________

Figure 6.4: Comparing expert and non-expert KGs with the diagnosis descriptor of VSD
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Experts' mean KG
AST

Systolic
ejection
murmur
aorta
artery

Left
ventricle
hypertrophy

Cardiomegaly 
on left 
ventricle

Non experts' mean KG 4
AST

Systolic
ejection
murmur
aorta
artery

Dilation 
ascending 

Left aorta
ventricle artery
hypertrophy

Diagnosis D escriptors ^ AST

Trigger: Systolic ejection murmur aorta artery 

Primary: Left ventricle hypertrophy
Cardiomegaly on left ventricle 

_________ SI-hypo___________________________

Figure 6.5: Comparing expert and non-expert KGs with the diagnosis descriptor o f AST

Experts' mean KG
ACOA

Absent or 
diminished 
peripheral 
pulses on 
lower extremities

Hypertension

Non experts' mean KG 
ACOA

Different pulses
on lower
extremities

Absent or
diminished
peripheral
pulses on

Erosion 
costal 
arcs

lower extremities

Left
ventricle 
hypertrophy

Back
murmur

Diagnosis D escriptor ^  ACOA

Trigger: Absent or diminished peripheral pulses on lower extremities

Primary: Systolic ejection murmur aorta artery 
Left ventricle hypertrophy 
S3

Figure 6.6: Comparing expert and non-expert KGs with the diagnosis descriptor of ACOA
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Experts’ mean KG 
ÏFL T

Unique

Cyanosis /
Cyanotic Systolic ejection 
spells murmur pulmonary 

artery

Non experts’ mean KG 6  
TFLT

Cyanosis

Decreased Imp-pee 
pulmonary flow  
on CXR

Right 
ventricle 
hypertrophy

Systolic ejection 
murmur pulmonary 
artery

Diagnosis descriptor ^ TFLT

Trigger: Decreased pulmonary flow on CXR

Primary: Cyanotic spells
Right ventricle hypertrophy

r=3B?

Figure 6.7: Comparing expert and non-expert KGs with the diagnosis descriptor o f TFLT

Experts’ mean KG 
FDA

Non-experts’ mean KG 
PDA

Continuous Hyperkinetic
munnur pulses

Continuous 
murmur

Increased 
pulmonary 
Row on CXR

Left atrium 
hypertrophy 
on ECO 

Left ventricle 
hypertrophy

Diagnosis descriptor | ^ | PDA

Trigger: Dyspnea

Primary: Increased pulmonary flow on CXR 
Left ventricle hypertrophy 
Systolic ejection murmur pulmonary artery 
Left atrium cardiomegaly on CXR

m

Figure 6.8: Comparing expert and non-expert KGs with the diagnosis descriptor of PDA
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Comments of Dr. Beatriz Leao^ for each diagnosis;

• ASD, AVSD and VSD: the classic symptom for ASD is Wide and split S2. The 

other symptoms that appear in the experts’ and non-experts’ graphs can also be 

observed in ASD cases, but they are not so specific to this disease (such as Increased 

pulmonary flow on CXR, which is present in all heart diseases with increased 

pulmonary flow: ASD, VSD, AVSD and PDA). The system was able to detect this 

difference by classifying Wide and Split S2 as a trigger, and Increased pulmonay flow  

on CXR as a primary finding, which is very good. For AVSD and for VSD, the system 

has also been able to identify the findings that are most specific and frequent.

• AST and ACOA: The system has been able to identify the most specific findings for 

each of the two diagnoses (Systolic ejection murmur aorta artery for AST and Absent 

or diminished peripheral pulses on lower extremities for ACOA). In AST, the findings 

selected as primary are in accordance with the experts’ graphs, with the exception of 

the finding SI-hypo. In ACOA, the systems’ description is a bit less accurate, though. 

The finding S3, for instance, is not really relevant for the diagnosis of ACOA. This 

finding indicates the presence of cardiac insufficiency, which only occurs in the most 

serious cases of ACOA. But as the records of the patients used to train the system have 

been taken from hospitalised patients, it is understandable that most of the patients 

with ACOA would also present the finding S3.

• TLFL: Although the systems’ description for this diagnosis is different from that of 

the experts’ mean knowledge graph, the system has been able to identify important 

findings in TLFL. These findings appear either in the non-experts’ mean knowledge 

graph (Decreased pulmonary flow on CXR and Right ventricle hypertrophy) or in the 

experts’ graph (Cyanotic spells).

3Dr. Leao, who is an expert in CHD, has been responsible for the collection of knowledge graphs from 

more than 40 experts and non-experts in CHD in an experiment described in Leao (1988) and in Leao & 

Rocha (1990).
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• PDA: Here the system has not been able to identify the trigger of the diagnosis. The 

probable reason for this has been that the murmurs which were present in the PDA 

cases of the training database were classified in different ways (such as Systolic 

ejection murmur pulmonary artery, or Non-specific systolic murmurY.

Another aspect that has to be taken into consideration here, which justifies minor 

differences between graphs and diagnosis descriptors, is that the graphs shown in figures 6.1 

to 6,7 are in fact ‘mean’ representations of several graphs elicited from multiple experts and 

non-experts (Leao 1988; Leao & Rocha 1990). That is, for each diagnosis, several graphs 

elicited from different experts have been merged in one single graph, so as to accumulate the 

overall knowledge of the population of experts. The methodology used to construct these 

‘mean’ knowledge graphs (Machado, Rocha & Leao 1990) analyses the frequency of 

occurrence of arcs in the experts’ graphs to determine an initial ‘population knowledge 

graph’. The arcs of this graph that have a frequency lower than a given threshold are then 

pruned, to generate the final mean knowledge graph. As the graphs shown here represent a 

kind of consensus knowledge of several experts, it is acceptable that the diagnosis descriptors 

do not always have an exact correspondence with what is represented in the mean knowledge 

graphs. This is especially true if the view of the specialist who collected the cases from which 

the diagnosis descriptors were built diverges from the consensus found in the experts’ mean 

knowledge graph. As observed by Machado, Rocha & Leao (1990), there is often a high 

degree of divergence in the evidence selected by different specialists to support the same 

diagnostic hypothesis. Therefore, as the graphs shown here represent the consensus 

knowledge of several experts, it is acceptable if the diagnosis descriptors built according to 

cases collected by a yet different expert (or non-expert) do not always correspond exactly to 

what is represented in the mean knowledge graphs.

 ̂No PDA case in the database contained a murmur described as Continuous murmur. We believe that 

the system would have a better chance to identify correctly the trigger and primary findings of PDA if 

the murmurs appearing in PDA cases were described in a more generic way.



6. Validation Results 133

Regarding the percentage of misclassifications, it can be expected to be low for any 

diagnosis in which the cases we collected with the supervision of an expert. In our experience 

of the first three types of diagnosis for which our system has been developed, it was exactly 

0.0%. For the other four diagnoses, the percentage of misclassifications is higher than these 

figures. However, it is still much lower than the value of the expression:

100 - percentage o f correct classifications

which represents the number of incorrect answers that would be presented by the system if no 

mechanism were used to enforce a minimum level of confidence for an answer to be given to 

the user. The level of misclassification could be still reduced, though, if cases with more 

complete and correct representations were introduced into the library and used to refine the 

knowledge of the system, e.g. somewhat as in Leao & Reategui (1993). In this previous 

experiment, a neural network created from mean knowledge graphs and whose performance 

was not satisfactory (42.5% accuracy) was refined using a set of cases. After the training 

period, the level of accurary presented by the system increased to 78.7%.

In our CHD example, only two correct answers were intercepted by the mechanism that 

enforces a minimum level of credibility, while seven answers were correctly blocked. In 

applications where it is desirable that the system should give an answer rather than stating 

that no conclusion could be reached, the mechanism that checks the credibility of answers can 

be deactivated. In the CHD example, this would increase the number of correct answers from 

52 to 54 (76.1%), but it would also increase the number of misclassifications, from 10 to 17 

(23.9%).

The different steps which the reasoning mechanism can follow when diagnosing a case 

have also been evaluated separately. These steps define three different procedures to solve a 

given problem:

(1) one hypothesis only is indicated by the neural network. The CBR module has to 

find a similar previous case to confirm the hypothesis, using remindings provided by 

the neural network.

(2) two or more hypotheses are made by the neural network. The CBR module uses 

remindings provided by the neural network to find the most similar previous case
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that will reinforce only one of the hypotheses.

(3) no hypothesis is made by the neural network, and the CBR module has to search 

for a similar previous case without having any clue for the retrieval.

The performance of each of these procedures when diagnosing cases of databases Chd3 

and Chd7 is presented in table 6.5.

Chd3

correct

Chd3

incorrect

CM?

no concl.

CM7

correct

CA6f7

incorrect

CM7

no concl.

(1) One hypothesis 

given by NN 28 0 2 45 7 9

(2) More than one 

hypothesis made by 

NN

3 0 0 6 0 0

(3) No hypothesis 

made. CBR module 

works on its own

0 0 0 1 2 1

Total 31 0 2 52 9 10

Table 6.5: The performance of NN-CBR's reasoning procedures for 

the Chd3 and Chd7 databases

In procedure 1, the neural network is the actual mechanism that determines the final 

answer, as it makes only one hypothesis, and guides the case-based component in the search 

for similar previous cases supporting this same hypothesis. This method showed a good 

performance, making no mistakes for the Chd3 database, and 7 mistakes out of 52 answers for 

the Chd7 database.

Procedure 2 presented a very high level of accuracy in the diagnosis of problems of both 

databases (Chd3 and ChdT), demonstrating that it is possible to find correct answers with a 

good level of confidence for cases that cannot be diagnosed uniquely by the neural network. 

This procedure uses remindings provided by the neural network to search the case library for
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similar experiences and discriminate between two or more hypotheses. In both experiments 

presented in table 6.5, the system reached only correct answers through this method, which 

demonstrates its capacity in identifying appropriate previous experiences through the use of 

the neural netowk remindings.

The case-based method diagnosing cases on its own (with no use of remindings coming 

from the neural network), presented a much lower level of accuracy (procedure 3). The cases 

left for this procedure are usually more difficult to diagnose, as they do not conform with the 

norm and, thus, cannot be diagnosed by the ‘general rules’ represented in the neural network. 

The idea of leaving such cases to be diagnosed solely by the CBR component comes from 

Riesbeck & Schank (1989), who say that we only reason from prior experiences when well- 

established rules are not available to solve the problem. However, there are several 

difficulties associated with the diagnosis of cases that do not conform with the norm. Firstly, 

it is hard to determine which parts of these cases can be used as remindings for the retrieval of 

previous experiences. As these cases are atypical, there is no statistical evidence that the use 

of such remindings would result in the retrieval of appropriate cases. Secondly, it is difficult 

to determine how similar a previous case has to be to enable the use of its solution for a new 

case. Thirdly, but not less importantly, these atypical cases may in fact be the product of a 

noisy and/or incomplete description of what would instead be more ordinary cases.

We have tried to tackle these problems by using the mechanism that enforces a minimum 

degree of similarity between a new case and a diagnosis descriptor. However, it is certain that 

the representation of an atypical (or incorrect) case cannot bear too many similarities with the 

diagnosis descriptor for the same diagnosis, as the descriptors take into account mostly the 

pieces of evidence that are either frequent or specific for a problem (but not for the evidence 

found to be atypical). Thus, we have had to relax the similarity constraints for procedure 3, so 

that the system can still find solutions for atypical problems. However a lower level of 

accuracy should be expected from this procedure. In our architecture, a lower degree of 

confidence is also given for answers determined by such a method. The advantage of using 

procedure 3 is that it enables the system to continue to diagnose some cases correctly even 

when the neural network cannot make any hypothesis or reminding. In applications where the 

number of misclassifications should be kept as low as possible, this module could be
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deactivated to guarantee a lower number of errors.

6.3 The Soybean Disease and the Mushroom Classification 
Database

The main objective of this further validation step has not been to show that the NN-CBR 

performance is superior to that of other systems originally designed for each application.

Instead, our main goal has been to show that the NN-CBR model is also suitable for

applications other than the diagnosis of CHD. Furthermore, we wanted to show that for other 

applications, the performance of the NN-CBR system would again be superior to that of the 

CNM network on its own.

The soybean disease and the mushroom databases have been obtained from Murphy & 

Aha (1994). The soybean database contains 630 cases of 15 different diagnoses (Michalsky & 

Chilausky 1980), while the mushroom database is composed of 8400 cases belonging to one 

of two classes. One-fifth of the cases from the mushroom database were randomly selected to 

train and test the CNM network and NN-CBR (ie. 1624 cases, where 812 were used in 

training, and another 812 were used in testing the system). The results of the tests for both

databases are presented in table 6.6.

Results mushroom

NN-CBR

mushroom

CNM

soybean

NN-CBR

soybean

CNM

Correct 803 98.9% 774 95J% 310 91.2% 269 87.0%

Misclassified 9 1.1% 9 1.1% 24 7.0% 21 6J ^

No conclusions 0 0 .0% 29 3.6% 6 L8% 23 6.8%

Total 812 100% 812 100% 340 100% 340 100%

Table 6.6: The performance of the CNM network and NN-CBR in the diagnosis of soybean 

diseases and in the classification of mushrooms
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NN-CBR and the CNM network achieve a high level accuracy in the mushroom and the 

soybean example. NN-CBR also shows a superior performance to that of the CNM in both 

problems. It is easy to observe that the cases diagnosed by the CNM where there were no 

conclusion, are diagnosed correcly by the NN-CBR in most circumstances. Table 6.7 shows 

the performance of each procedure involved in the reasoning process for the two databases 

(mushroom and soybean diseases).

mushroom

correct

mushroom

incorrect

mushroom 

no concl.

soybean

correct

soybean

incorrect

soybean 

no concl.

(1) One hypothesis 
given by NN

774 9 0 296 16 5

(2) More than one 
hypothesis made by 
NN

29 0 0 11 0 0

(3) No hypothesis 
made. CBR module 
works on its own

0 0 0 3 8 1

Total 803 9 0 310 24 6

Table 6.7: The performance of each procedure in the reasoning process for the soybean and

the mushroom databases

The efficiency of the indexing mechanism that uses remindings coming from the neural 

network to select similar previous cases is again confirmed in table 6.7 (procedures 1 and 2). 

In the mushroom example, only 9 answers (out of 783) were given incorrectly by procedure 1. 

The same procedure generated only 16 incorrect answers (out of 312) for the soybean 

problem.

In the mushroom example, as well as in the soybean example, all the answers provided 

by procedure 2 have been correct. The same level of accuracy can be observed in the CHD 

example, which confirms the efficiency of this indexing mechanism in identifying relevant 

previous experiences for the discrimination among two or more hypotheses.
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The case-based method used to diagnose more atypical cases on its own (3) shows a 

much lower level of accuracy. However, as discussed previously, this third procedure is left 

with the cases that are the most difficult to diagnose, and thus a lower level of accuracy 

should be expected from it. The goal of using such a method is that the diagnosis of 

complicated cases can still be attempted, even if a lower level of confidence is attached. But 

we stress again that this mechanism should only be activated for applications where giving an 

answer is better than not reaching any conclusion, and that it can be deactivated for 

applications where the level of misclassifications has to be kept as low as possible.

The mechanism that intercepts answers that are believed not to be credible also showed a 

good performance. In the mushroom problem, no answer has been intercepted incorrecly. In 

the soybean problem, five answers were intercepted correctly, and no correct answer was 

blocked (the 6th answer for which the system could not conclude anything was not an 

intercepted answer, but simply a case that neither the NN not the CBR module could 

diagnose).

6.4 The MONK s Problems

The MONK’S Problems rely on an artificial robot domain, in which robots are described by 

six different attributes (Thrun 1991):

• head-shape (A): round (Al), square (A2), octagonal (A3)

• body-shape (B): round (B l) , square (B2), octagonal (B3)

• is-smiling (C): yes (Cl), no (C2)

• holding (D) : sword (Dl), balloon (D2), flag (D3)

• jacket-colour (E): red (El), yellow (E2), green (E3), blue (E4)

• has-tie (F): yes (FI), no (F2)

The learning task is a binary classification task. Robots either belong to a certain class

(X) or not. But instead of providing a complete class description for the learning

problem, only a subset of all 432 possible robots with their classification is given. The
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learning task is then to generalise over these examples and, if possible, to derive a 

simple class description. Table 6.8 shows the performance of NN-CBR for the 3 

MONK’S Problems.

Results MONK s Problem 
1

MONK s Problem 
2

MONK’S Problem 
3

Correctly diagnosed 354 81.95% 261 60.4% 374 86.6%

Misclassifications 48 11.1% 156 36T9& 48 11.1%

No conclusions 30 6.95% 15 3.5% 10 2.3%

Total 432 100.0% 432 100.0% 432 100.0%

Table 6.8: The performance of NN-CBR for the MONK’s Problems 1, 2 and 3

The system had a satisfactory performance for MONK’s Problems 1 and 3. For the 

second problem, the system did not manage to learn the classification rules well, which led to 

a poor performance.

In the first MONK’s Problem, the target rule used to build the database (which learning 

algorithms should ideally learn) was:

'If [jacket-colour = red (El)] OR [head-shape = body-shape (A=B)], then the robot

belongs to class X, otherwise it does nof

This rule is composed of two clauses, each of which requires a different type of 

reasoning:

1. determining which feature/value attributes are important for the identification of a 

class (eg. E l indicates class X)

2. determining that certain relationships among attributes can serve as evidence for the 

identification of a class (eg. in class X, head-shape and body-shape are the same).

The type of reasoning of item 1 can be reproduced well by our hybrid model of 

reasoning. For instance, NN-CBR selected E l as the trigger of class X. Regarding the rule
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stated in item 2, NN-CBR does not have the means to represent explicitly this kind of 

relationships between attributes. However, the CNM network kept nodes with ‘same body and 

head shapes’ with very high connection weights: (Al, Bl), (A2, B2) and (A3, B3). This 

enabled the system to perform well, nevertheless, for the first MONK’s Problem.

In the second MONK’s Problem, the target rule used to build the database was:

‘When exactly two o f the six attributes have their first value, the class is X ’

This second problem requires the representation of a type of classificatory knowledge 

that could not be learned at all by our hybrid approach. NN-CBR does not consider the order 

of the values of each attribute as evidence for the diagnostic process. Instead, the system 

relied on the importance of feature/value attributes for each class, which led to a bad 

performance.

In the third MONK’s Problem, the target rule used to build the database was:

‘When [jacket-colour = green (E3) AND holding = sword (Dl)] OR [jacket-colour not

blue (El or E2 or E3) AND body-shape not octagonal (Bl or 82 )], the class is X ’

In the third MONK’s Problem, once again each clause of the rule requires a different 

type of reasoning. The first clause requires the representation of the importance of features in 

relation to a diagnosis, as in item 1 of the first MONK’s Problem. This knowledge was not 

represented explicitly in the diagnosis descriptors. It was only kept in the neural network in 

the form of a node clustering the findings E3 and D l. The weight of this node was not very 

high, though, as 5% misclassifications have been introduced intentionally in the training set 

as to test the capability of learning algorithms to cope with noise. In the training set, the two 

findings (E3 and D l) appeared together in examples of class X and examples of ‘not X’.

The second clause uses conjunctions of negative statements, which cannot be represented 

explicitly in NN-CBR. However, the findings E4 (jacket-colour = blue) and B3 (body-shape = 

octagonal) were kept in the list of findings of the diagnosis descriptor of ‘not X ’. 

Furthermore, the neural network kept nodes with high connection weights indicating class X 

for the clusters: (Bl, El), (Bl, E2), (B2, El), (B2, E2), (B l, E3) and (B2, E3) (representing



6. Validation Results 141

‘not E4’ and ‘not B3’) .̂ Despite the 5% level of noise intentionally introduced in this 

database, the system achieved a reasonably good performance as it managed to represent in 

the neural network and the diagnosis descriptors the concepts used to create the database. For 

all the MONK’S Problems, NN-CBR had an equal or better performance than the CNM.

• MONK’S Problem 1: 79.6% of correct answers by the CNM;

• MONK’S Problem 2: 58.1% of correct answers by the CNM;

• MONK’S Problem 3: 86.6% of correct answers by the CNM.

6.5 Further Comments

It has been observed in all experiments mentioned above that there is a substantial 

reduction of the number of cases considered by the CBR module for each problem solved. In 

our hybrid approach, differently from the nearest-neighbour algorithm, the number of case 

comparisons when solving a new problem does not increase linearly with the number of 

existing cases in the library. The indexing scheme based on the use of knowedge coming from 

the neural network enables a big reduction in the number of cases compared, as depicted in 

table 6.9.

Chd3 Chd7 mushroom soybean MONK’S

1

MONK’S

2

MONK’S

3

NN-CBR 15 15 300 25 23 43 28

nearest-

neighbour
66 143 812 290 124 124 124

reduction 77.3% 89.5% 6^0% 91.4% 81.5% 65.3% 77.4%

Table 6.9: The reduction in the number of case comparisons between the 

NN-CBR approach and the nearest-neighbour algorithm

^The weights of the three last clusters were not very high again, due to the noise introduced in this 

database.
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For case-based systems which have to deal with large case libraries, the high number of 

case comparisons may represent one of the biggest problems. Michie, Spiegelhalter & Taylor 

(1994b), who compared the performance of several classification systems (including decision 

trees, neural networks, the nearest-neighbour algorithm and others), concluded that the 

nearest-neighbour algorithm was the slowest of all methods tested, when dealing with large 

datasets. Our mechanism of retrieving cases by using the remindings provided by the neural 

network represents a new approach in reducing the number of case comparisons in CBR 

systems, which may also apply to making the nearest-neighbour algorithm faster when dealing 

with large datasets. Table 6.9 shows the reduction in case comparisons obtained in our 

experiments, which reached up to 91.4% for the soybean dataset.

This approach also represents an alternative form of narrowing the search space in terms 

of possible outcomes for a problem in CBR. When a new problem is being solved, instead of 

looking for a best match amongst all cases in the library (ie. cases for all the possible 

diagnoses), we try to make hypotheses (using the neural network), and search for similar 

cases within this set of hypotheses. This approach may lead the system to find a best-match 

which in fact is not the most similar case existing in the library. For instance the best possible 

match for a new AVSD case, according to the nearest-neighbour algorithm, is an ASD case 

previously diagnosed. However, as the remindings provided by the neural network do not 

indicate the ASD hypothesis, no ASD case will be looked for, and another previous AVSD 

case will be presented as the best-match. As demonstrated in the example, by narrowing the 

search space the system does not allow the nearest-neighbour method to look at cases 

individually without taking into account more general knowledge. This characteristic also 

enables the NN-CBR system to achieve a better performance when compared with the 

nearest-neighbour algorithm for the tests reported earlier in this chapter (tables 6.1 and 6.3).



Chapter 7

Discussion

This chapter is divided into two sections. The first section contrasts our CBR - 

neural network approach with other related work. Additionally, it comments 

further on the results obtained in the experiments presented in the validation 

chapter (chapter 6). The second section has the main goal o f indicating the 

limitations o f our hybrid approach, as well as identifying the types o f applications 

where the option for a hybrid architecture may be suitable.

7.1 The NN-CBR Architecture and other Related Work

This section starts by analysing the main features of the NN-CBR architecture according to 

the same framework used to describe the hybrid CBR systems presented in chapter 2 (table 

7.1).

Level of 

integration

Type of 

general 

knowledge

Priority in 

the

reasoning

process

Form of support Knowledge 

embedded in 

cases and in 

generalisations

NN-CBR interactive

back-up

compiled neural

network

neural network 

supports case 

retrieval

equivalent

Table 7.1: The main features of NN-CBR
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NN-CBR operates with two different levels of integration: interactive and back-up. 

When operating with an interactive level, the neural network makes hypotheses and provides 

remindings for the CBR module in the selection of a previous case that can support one of the 

hypotheses. For problems where the neural network cannot make any hypothesis, the CBR 

module tries to take over and solve the problem on its own {back-up approach). This approach 

enables the system to deal with cases that would not be solved if an exclusively neural 

network approach were used. The reasoning process implemented gives priority to the neural 

network. As in Surma & Vanhoof (1995), this reasoning scheme is based on the assumption 

that we do not reason from prior cases when well-established rules are available (Riesbeck & 

Schank 1989). However, this reasoning mechanism does not present a high level of accuracy 

when diagnosing the more atypical cases for which the neural network cannot make 

hypotheses. The use of this method may be advantageous in applications where giving an 

answer is better than not reaching any conclusion. For example, in credit authorisation tasks 

where each application for credit has to receive some response. In this domain, the system 

would ideally produce an answer for all the credit demands, even if a certain priority would 

be given to one of the outcomes in order to reduce the risk of answers that could lead to loss 

of money (eg. giving priority to ‘refuse credit authorisation’). For problems where the number 

of misclassifications should be kept as low as possible, this module could be deactivated to 

guarantee a lower number of errors.

Although having presented good results in the experiments described in chapter 6, giving 

priority to the general knowledge of the neural network may be problematic in some other 

circumstances. For instance, it may be not appropriate in domains where cases play a primary 

role, as in the domain of the English Common Law. Our target, however, has been to solve 

diagnostic problems in domains where general knowledge has a fundamental importance, and 

where facts can be transformed into rules when they are observed with a certain frequency.

The type of general knowledge kept in our architecture is compiled, and it is used for 

several purposes, from solving new problems to building explanations. This knowledge 

results from the learning process of the neural network and is stored in the network itself, as 

well as in the diagnosis descriptors.
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Regarding the kind of support offered by the neural network, it provides the case-based 

component with remindings that are used to guide the search for similar cases. Therefore, the 

NN-CBR architecture uses different sources of knowledge in the reasoning process, most 

notably the generalised knowledge of the neural network and the specific knowledge stored in 

cases. This does not represent a novelty in itself, given that CBR systems have always 

employed other sources of knowledge in reasoning, be it generalisations of specific cases, or 

simply other types of information that can assist a system to solve the problems that it 

addresses. The system CHEF (Hammond 1986), for example, when creating a new recipe, 

determines the relationship between words using a dictionary that keeps a series of terms 

related to food, recipes and cooking. The system PERSUADER (Sycara 1988), whose goal is 

to generate compromise solutions in labour negotiations, uses inferential rules and heuristics 

to create adaptation tactics for solutions found in old cases. PROTOS (Bareiss 1989; Porter , 

Bareiss & Holte 1990), developed in the domain of clinical audiology, keeps a representation 

of a partial domain theory to assist it in determining category membership. However, there is 

a fundamental difference between the approach presented here and previous ones, which is 

concentrated on the way general knowledge is learned, represented, and (consequently) used.

Many early CBR systems, such as CYRUS (Kolodner 1983a), CASEY (Koton 1988) and 

MEDIC (Turner 1989), have compiled experiences in generalised episodes. These 

generalisations have been used to organise the case library and index the cases by exploiting 

the differences among themk In NN-CBR, general knowledge learned from cases is 

represented in both diagnosis descriptors and neural networks, and used to draw hypotheses 

for possible solutions, to index the cases in the library and to explain the reasoning performed 

by the system. The cases in the library, representing specific knowledge, are used to support a 

particular hypothesis (or to choose among suggested hypotheses) and to present to the user 

previous cases that resemble the current one, highlighting their similarities and implying that

^The theory of Dynamic Memory postulates that a memory contains structures that keep general 

knowledge and that arrange (in a complex hierarchy) specific instances of the general knowledge. These 

memory structures are called Memory Organisation Packets (MOPs) and have been used in most of the 

early CBR systems. See Riesbeck & Schank (1989) for a more detailed explanation of MOPs and a 

description of a number of systems implemented using these memory structures.
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the solutions outlined for those cases should also apply for the new one.

The NN-CBR inference and indexing schemes can be compared to those of PROTOS. To 

select and order the exemplars to match with a given case, PROTOS uses three types of 

indexing knowledge: remindings, prototypicality and exemplar differences. A reminding is a 

cue to a case classification. A reminding from a feature to a category suggests that the 

category is the most general classification for cases described with the feature. A reminding 

from a feature to an exemplar suggests that the exemplar will match cases described with the 

feature. The second type of indexing knowledge, prototypicality, orders the exemplars within 

a category according to their success in previous classifications. The third type of indexing 

knowledge, exemplar differences, indexes exemplars by the features that distinguish them 

from exemplars with similar descriptions.

When searching for an exemplar that matches a new case, PROTOS first collects 

remindings to categories. The most highly ranked categories are selected, and then the most 

prototypical exemplars for each category are retrieved. There is a basic difference in the 

PROTOS and NN-CBR inference processes. NN-CBR also starts by selecting the categories 

(making hypotheses), but then, NN-CBR does not look for the most prototypical cases within 

those categories. Instead, it considers any case in the library containing a set of findings 

detected to be important by the neural network. The assumption here is that even atypical 

cases may well provide the best match and the correct categorisation for a new case, and 

possibly also the most accurate explanation. This can be supported by the premise that one of 

the types of cases we store in our memories is stories (Riesbeck & Schank 1989), i.e. cases 

that have significance because of the extent of their difference from other cases. These cases 

tend to stand alone in the memory and represent the key to making predictions about special 

circumstances.

NN-CBR also uses a different approach for learning its indexes. While PROTOS index 

learning is based on the analysis of experts’ given explanations, NN-CBR’s is based on the 

calculation of how important each finding is in the categorisation process.

When compared with other hybrid approaches combining CBR with neural networks, the 

main peculiarity of NN-CBR is that its neural and its case-based components are somewhat 

independent. The majority of the approaches to combining CBR with neural networks
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integrate the two reasoning mechanisms by keeping cases as an intrinsic part of the neural 

network. This frequent choice of architecture is due to the fact that it can provide good 

solutions for CBR indexing and retrieval problems. For instance, cases can be represented in 

intermediate nodes of the neural network, being indexed by the network learning mechanism, 

and retrieved by the network consultation mechanism. Differently from these architectures, 

NN-CBR does not keep cases as part of the neural network. Instead, two separate NN and 

CBR modules work independently and the reasoning process is interleaved between the two 

modules. Furthermore, our hybrid approach deals with other problems faced by neural 

networks that are not treated in previous published research on the combination of CBR and 

neural networks. For instance, the interpretation of the mathematical knowledge of the neural 

networks into symbolic diagnosis descriptors, and the construction of explanations of 

reasoning using these descriptors. The main common point between our architecture and the 

architectures presented in chapter 2 is that our indexing scheme to select cases in the library is 

also based on the use of the neural network.

Other more traditional case-based indexing methods, such as explanation-based indexing 

(Kolodner 1993), analyse cases individually in order to identify factors that may lead to 

successful or unsuccessful situations, and try to use these factors as indexes. Our approach is 

once again different in that it relies more on the computation of recurrent or unusual 

situations, which is a task assigned to the CNM network. The indexes identified by this 

computation are then used to guide the search for similar cases in the library. The results 

obtained in our experiments, and presented in chapter 6, demonstrate that two indexing 

procedures have been highly efficient in retrieving relevant previous experiences. The first 

scheme uses remindings provided by the neural network to retrieve previous cases that can 

support a single diagnostic hypothesis. The second scheme uses remindings also provided by 

the neural network to retrieve similar cases that can be used to discriminate between 

competing hypotheses. The positive results presented in table 6.5 and 6.7 show that our 

indexing mechanism is capable of determining appropriate remindings in a completely 

automated way, and therefore may serve as an alternative indexing mechanism for case-based 

systems where any interaction with an expert for choosing remindings is difficult or costly.

Another research area that has some relation to the combination of neural networks with
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CBR is the combination of neural networks with other symbolic reasoning mechanisms. The 

major reason for this other type of hybrid architecture is that in certain circumstances one 

single approach cannot provide all the necessary resources to represent knowledge and to 

reason in a given domain. Another important reason for combining symbolic and 

connectionist approaches is that there may be some cognitive plausibility in hybrid models. 

The CONSYDERR architecture (Sun 1995b), for instance, uses a two-layered knowledge 

representation to propose a reasoning model that mimics the biological neural interaction used 

to learn and reason with complex concepts composed of smaller units (microfeatures). 

Although it may be desirable to have models in which the components are as simple and 

homogeneous as possible, from an engineering perspective having a connectionist model with 

a hybrid configuration may be the only solution for a given application (Lange 1992).

Here, we have not been too concerned with the cognitive appeal of our architecture. 

Instead, we have concentrated our efforts on the development a hybrid structure that, although 

not serving as a theory for human cognition, can take advantage of various technologies to 

provide users with good knowledge representation mechanisms, learning capabilities and 

explanation facilities. Additionally, we wanted to respond to a well-known problem of neural 

networks, ie. the problem of representing in a symbolic fashion the numerical knowledge 

stored in the connections of the neural network. The system CONSYDERR provides a 

solution for this problem by connecting the nodes of its connectionist microfeature layer to 

the nodes of a symbolic concept layer. NEXTOOL also tackles this problem by connecting 

the nodes of the CNM network to influence links of a semantic network. However, neither 

NEXTOOL nor CONSYDERR enables the importance of findings (or feature/value pairs) to 

be represented in a graded symbolic scale. NN-CBR represents the importance of such 

findings in the ranking scheme provided by the diagnosis descriptors: triggers reference 

highly relevant findings, primary findings reference findings that are also important, and that 

can be frequently observed with the triggers, and secondary findings represent additional 

evidence which can be used to reinforce a diagnostic hypothesis.

Yang & Bhargava (1990) employ a scheme for setting the weights of a neural network 

which is approximate to our method representing knowledge in diagnosis descriptors. Their 

network has decision nodes that model certain types of correlation between attributes.
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namely: logical concurrence, negative concurrence, disjunction, exclusive disjunction, 

sufficient implication and necessary implication (see chapter 3 for a more detailed 

explanation). These decision nodes in fact cover a wider range of implications than our three 

diagnosis descriptors’ attributes {trigger, primary and secondary findings), as they consider 

relationships of exclusiveness and negation between attributes. However, most of Yang & 

Bhargava's decision nodes have an ‘all-or-nothing’ character, which is scarcely observed in 

real world problems. Our attributes represent fuzzier relationships between findings, 

corresponding to several possible combinations of evidence that can be observed in the real 

world and that are captured and represented in the neural network.

Different classification schemes have been created to describe hybrid approaches 

combining connectionist and symbolic processes, as described in chapter 3. According to 

those schemes, our model could be classified as:

• tightly-coupled;

• intercommunicating;

• combinining a separate neural network and symbolic modules.

The main peculiarity of our approach when compared to other approaches to combining 

symbolic and connectionist processing is that we use a symbolic system (a frame hierarchy) 

with the main purpose of representing declarative knowledge about the domain, as well as 

some procedural knowledge which has a correspondence with the knowledge stored in the 

neural network. In this regard, our model is similar to NEXTOOL (Machado & Rocha 1992), 

which combined the CNM with semantic networks.

Our representation of the domain knowledge followed the representation used in 

HYCONES (Leao & Reategui 1993). However, it is also analogous to the representation of 

the domain knowledge used in other medical projects, such as POSCH (Long et al 1991). In 

this system, the medical and statistical knowledge stored consists of frames of observed data 

and calculated summaries. A frame characterises each variable (e.g. cholesterol), which is 

part-of a more complex concept (lipid profile, in this instance), which may have component 

parts (for example HDL, LDL and VLDL), a range of normal values, the relative importance, 

etc. We use the same abstraction concepts to describe the declarative knowledge of the
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application (ie. aggregation and generalisation). However, in our knowledge representation 

scheme we have also defined the diagnosis descriptors, which enable the frame hierarchy to 

represent both the declarative aspects of the domain knowledge, and the classificational 

knowledge used to solve the problems addressed.

Regarding the applicability of our approach, it has been shown in the validation step that 

NN-CBR is appropriate for some types of diagnostic and classification problems, but not for 

others (such as the classification problem of the second MONK’S database). The NN-CBR 

model of reasoning is particularly suitable for domains such as medicine, where a diagnosis 

can be determined by the observation of some evidence, but never by the absence of evidence. 

For instance, in medicine, cancer cannot be diagnosed on the basis of the simple fact that a 

patient does not have Down's syndrome or increased pulmonary flow  (symptoms of CHD), 

For this same reason the absence of findings is not considered in the construction of the 

knowledge graphs, on which the CNM and NN-CBR have been based.

It has also been observable from this experiment that when well-defined rules exist to 

solve a problem, it is not necessary to go to previous cases to confirm the hypothesis. During 

the testing of NN-CBR, for all the cases where the system considered only one diagnosis as a 

possible answer with a high degree of confidence, the search for a previous case to confirm 

the hypothesis was almost never necessary. However, the system would still look for a most 

similar case as a way of reassuring the user about the correctness of the final result and as a 

means of building a more sound explanation of the reasoning process.

The main contributions of this work have been the definition of the methods to build the 

diagnosis descriptors and the specification of how this type of general knowledge can be 

combined with CBR. This combination can be used to solve some of the problems of indexing 

and retrieval that are still current in CBR. Moreover, a similarity function computing the 

relative goodness of attributes has been defined and applied successfully, which offers a 

solution for case-matching problems where some findings are more important and 

discriminating than others. The relative goodness concept has been used originally as a 

measurement of how discriminating attribute/value pairs are in classifying datasets where data 

are inconclusive, ie. where the attributes used in describing a set of examples are not 

sufficient to specify exactly one outcome (class) for each example. As it has been
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demonstrated in some previous experiments, this technique has been able to achieve better 

results than other techniques such as ID3, or other statistical methods (Uthurusamy, Fayyad & 

Spangler 1991). In our experiments, the performance of the nearest-neighbour algorithm using 

the relative goodness measurement has achieved a very close performance to that of the 

decision trees (the latter using information theory to determine how discriminating an 

attribute is). Using the relative goodness has usually provided us with better results, though, 

which has made us opt for this measurement in our similarity function. However, a yet 

different similarity function may provide a better performance in another domain. In which 

case, this function can simply replace the similarity function which uses the relative 

goodness, without requiring further modifications in the hybrid architecture.

Another relevant possibility offered by our NN-CBR approach is that of combining the 

knowledge of an expert with knowledge extracted from cases. For example, in Leao & 

Reategui (1993) the knowledge graphs of experts and non-experts have been converted into 

CNM networks, and then refined, through the training of the networks with a given set of 

cases. In those experiments, the performance of the refined systems was significantly better 

than the performance of the neural networks created from the graphs and with no refinement 

(improvement from 42.5% accuracy to 78.7% in the case of expert’s graphs). In our hybrid 

approach, combining knowledge graphs with the knowledge stored in cases is also possible: 

the graphs elicited from experts (or non-experts) can be converted into neural networks, 

which are trained with a given set of cases. These cases are stored in the case library and, 

subsequently, the neural networks are mapped into the diagnosis descriptors.

This possibility enables the construction of richer knowledge bases, as not only the 

knowledge of multiple experts can be taken into account during the collection of the 

knowledge graphs, but this knowledge can also be refined by using concrete experiences. 

These experiences are relevant in that they may report subtleties that are usually not 

mentioned by the experts when they try to explain the way in which they solve a given 

problem. The knowledge of experts can also be combined with machine-processed knowledge 

in the inverse way, ie. the information initially extracted from data can be reviewed and 

refined later by experts (McLeish et al. 1991). The main advantage of this approach is that 

the elicitation of knowledge from an expert is eased by having an automated first step of
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knowledge acquisition. Still on the combination of human and machine processed knowledge, 

machine learning and classification techniques may be able to make a substantial contribution 

to organising human knowledge, or even to manufacture new knowledge (Michie, 

Spiegelhalter & Taylor 1994b). For example, the system KARDIO’s interpretations on ECG 

examinations do not contain a single rule of human authorship (Bratko, Mozetic & Lavrac 

1989^

It is also important to stress here that the actual collection of cases is a crucial step in the 

construction of a case library that is to be used by an automated method to generate 

classiflcatory knowledge. As stated by Janet Kolodner (1993), a case-based system can only 

be as good as the quality of the cases it uses to solve new problems. In our experiments this 

claim was supported by the fact that the cases collected with the supervision of an expert led 

to a system that achieved a high level of accuracy, whereas the cases collected by a less 

experienced cardiologist were unable to help the resulting system to reach results as good as 

the former one. Moreover, its symbolic knowledge representations (diagnosis descriptors) 

were not so clear.

7.2 Limitations and Applicability of the Hybrid Approach

We have presented here a hybrid approach which combines case-based reasoning with 

neural networks in order to solve classification^ problems. The classification tasks that may 

be learned by this approach are those in which the classes are known previously, and where 

the main goal is to establish how a new case can be classified into one of the existing classes. 

In this thesis, several examples of applications have been given to illustrate the use of the 

hybrid approach in solving diagnostic and classification problems, in domains as varied as 

congenital heart diseases, mushroom classification, soybean disease diagnosis and

^We consider diagnosis here as a type of classification problem, as the types of diagnoses we deal with 

always have a limited number of possible outcomes. For problems where the number of outcomes cannot 

be enumerated easily, diagnostic problems can be seen as a type of explanation task where different 

interpretations for a set of symptoms observed have to be given. For example, in psychiatric diagnosis, 

different causes may have to be identified to explain the psychological problems presented by a certain 

patient, as in SHRINK (Kolodner 1993).
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classification of objects with complex sets of properties (the MONK’s Problems). In all these 

applications, the main task at hand is the identification of a class (or diagnosis) according to a 

particular case description.

The hybrid architecture NN-CBR introduced a number of facilities related to knowledge 

acquisition and refinement, representation of declarative and heuristic knowledge, and 

explanation of reasoning. However, there is a certain cost for the provision of such facilities, 

which is related to the fact that independent reasoning components (neural network and CBR) 

have to be coordinated. The problems related to having more than one component involved in 

the reasoning process are the following:

• redundancy o f information’, as the diagnosis descriptors are used to represent the 

knowledge stored in the neural networks, both structures keep the same type of 

classification knowledge. Moreover, the cases stored in the case library may be seen as 

one more different form of representation of the same type of knowledge. This 

redundancy of information leads to two major problems:

1) more storage space is needed to keep all these memory structures, namely the 

neural network, the case library and the diagnosis descriptors. In our software 

prototype, these structures are kept in the live memory, which may represent a 

problem for applications dealing with large case libraries. The use of a database 

management system (DBMS) to store the case library could minimise this problem, 

though. The need for integrating DBMSs within CBR methodologies has already 

been discussed by Brown, Watson & Filer (1995), where the authors show that, for 

practical reasons, it is essential that CBR tools can access and use data which are 

kept in existing databases. In such applications, cases must no longer be considered 

as concretely represented at the data level, but as virtual views of the underlying 

data. We believe that the possibility of accessing data stored in commercial 

database systems would not only make the use of the NN-CBR architecture less 

subject to the sizes of case libraries, but it would also enable the quicker 

development of real world applications for which a database storing previous 

experiences already exists. This is a whole new research area that is outside the
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intended scope of this thesis.

2) as for the neural network, diagnosis descriptors and cases stored in the library 

keep correlative knowedge; when one of them is modified, all the others have to be 

updated. This course of action is necessary to avoid the problem of having self­

contradictory knowledge stored in the different knowledge sources. At the 

implementation level, procedures (such as daemons) could be used to update all 

knowledge sources when one of them is modified. For instance, when a new case is 

inserted in the library, a procedure could be activated to refine the neural network 

according to the case, and to recalculate the diagnosis descriptors, in order to 

harmonise the knowledge of all three structures. However, these computations may 

have an undesirable overhead cost. Our recommendation for attenuating this cost is 

that the case library would not be incremented at the occurrence of every new case. 

Instead, it would only be modified after the observation of a certain number of 

cases. This would compel the neural-network learning mechanism, as well as the 

recomputation of the diagnosis descriptors, to be activated only at certain times, 

which would reduce the time necessary to keep the knowledge of the three 

structures harmonised. Furthermore, having control of when to activate the learning 

procedures would enable the user to keep a firmer hand on the performance of the 

system. For example, in situations where a satisfactory performance is regularly 

obtained, the system’s learning mechanism should not be activated, as this could 

represent a change in behaviour and a possible drop in the performance.

• cognitive plausibility: it is more difficult to design a plausible problem-solving 

mechanism in an architecture that uses different knowledge representation and 

reasoning techniques. As observed by Lange (1992), it is desirable for an architecture 

to have components as simple and homogeneous as possible. However, from an 

engineering perspective, having a hybrid scheme combining different representation 

and reasoning mechanisms may well be a good solution for a given application (or 

certain types of applications). We have concentrated our efforts on this goal, ie. 

benefiting from the advantages that could be provided by each of the technologies
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used, instead of trying to build a well-founded model of human reasoning. However, 

from a more abstract point of view, we have also based our work on plausible claims. 

Firstly, we have tried to use general as well as specific knowledge in our reasoning 

mechanism. From a cognitive point of view, using both general and specific 

knowledge is more plausible than relying solely in some type of compiled knowledge. 

There is no shortage of confirmations from psychology (Estes 1984, Sternberg 1984) 

that people keep in their memories experiences represented in single episodes, as well 

as summary representations of these experiences. Both types of knowledge are used to 

understand and solve a newly-posed problem here. Another example of the cognitive 

plausibility found in our reasoning mechanism is the priority given to the general 

knowledge kept in the neural networks. According to Riesbeck & Schank (1989), we 

only reason from prior experiences when well-established rules are not available. We 

have done something analogous in using the neural network to determine the solution 

to a given problem when it indicates only one hypothesis with a high level of 

confidence. Previous experiences are called up to solve a problem on their own only 

when the neural network cannot give any clue on which hypotheses to consider.

In addition to the difficulties reported, in domains where cases play a primary role (such 

as in law), giving priority to the generalised knowledge of the neural networks may not be the 

best policy. Although this priority could be modified in NN-CBR to have the reasoning 

process start with the case-based procedure, the inversion of priority levels would not make 

much sense in our approach. The NN-CBR architecture is grounded on the idea that the 

generalised knowledge of the neural network can guide the CBR system in finding a best 

match, and give the reasoning process a more global view of the problem’s solution space. As 

observed by Barietta (1994), by looking at previous cases individually when solving a new 

problem, the nearest-neighbour algorithm may find a most similar previous case that is only a 

local best match, but which is not optimal. Our reasoning approach forces the system to take 

into account the similarity of a given new case with all the possible classes first, and only at a 

second moment to retrieve cases for comparison. The advantage of having such a reasoning 

method is that the nearest-neighbour algorithm used by the CBR component becomes less 

susceptible to errors when a case library containing noisy cases is analysed. This advantage
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would no longer exist if the priority levels were inverted to benefit the case-based approach.

The NN-CBR architecture is also not the most appropriate for applications that have to 

deal with adaptation problems, ie. the modification of a solution obtained from a previous 

case in order to reuse it in a new case. This reuse step is often needed in design and planning 

tasks, where a complex previous solution has to be modified according to requirements and 

constraints of the new case. As we have not targeted such types of applications, no adaptation 

facilities are provided in our architecture. However, adaptation procedures could be added to 

NN-CBR. This would enable the resulting system not only to diagnose a case, but also to 

propose courses of action to solve the problems diagnosed. For instance, in the CHD problem, 

additionally to identifying CHD diseases, the system could propose treatments based on 

successful previous experiences. Another example could be in fault-diagnosis applications, 

where the system would be able to identify the problem causing the malfunctioning of a 

certain device, and propose a course of action to solve the problem.

When amending adaptation procedures with the NN-CBR architecture in mind, the 

structure of the cases would have to be changed. They would have to include, for instance, 

course of actions and outcomes, showing successful and unsuccessful solutions. The main 

difficulty in amending adaptation procedures is that our measurements for finding a best- 

matching case do not consider that a solution would have to be changed to fit a new case. The 

adaptation requirements of candidate cases during retrieval should also be taken into account 

in some applications, as reported in Déjà Vu when regulating the action of automomous 

vehicles within real industrial environments (Smyth & Keane 1995). As has been 

demonstrated by Smyth and Keane, the use of adaptation-guided retrieval can reduce 

significantly the adaptation costs, as the most adaptable (instead of the most similar) cases are 

selected and preliminary adaptation work is performed during case retrieval. It would be 

difficult to take into account such adaptation requirements within our model of reasoning. 

Thus, for applications where the adaptation costs are too high, our architecture should not be 

considered.
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7.2.1 Modifications and Possibilities

Despite the problems reported, the use of different components in representing 

knowledge and in reasoning may bring some interesting benefits, other than the advantages 

provided separately by each of the techniques used. For instance, implemented systems can be 

combined in a hybrid architecture, each of them being adjusted individually to produce an 

optimal performanceh And in situations where one of the components gives an unsatisfactory 

performance, it may be replaced by a yet different component, without causing too many 

changes in the rest of the architecture. A practical example in our architecture can be given by 

our CBR component. Its similarity function is based on the relative goodness concept. In 

applications where this measurement of the discriminatory capacity of attribute/value pairs 

does not produce good results, the CBR component can be replaced by another case-based 

mechanism using a different similarity function (e.g. one using information theory, as in ID3). 

In NN-CBR, the replacement of the CBR component does not demand further changes in the 

architecture.

Replacing the neural network, however, would cause much deeper modifications, as the 

diagnosis descriptors of the symbolic components have been created specifically to represent 

the knowledge of the CNM network. An example of a hybrid architecture that enables the use 

of different neural networks is HYCONES II (Leao, Reategui, Guazzelli & Mendonca 1994). 

This system incorporates the model SMART (Guazzelli & Leao 1994) in its structure, and 

enables the user to choose whether he wants to use SMART or CNM to solve new problems. 

However, in HYCONES II there is no analysis of the neural networks in order to build 

symbolic descriptors. The analysis of the CNM in NN-CBR is what makes the replacement of 

the neural network by other connectionist models impracticable (if no serious changes in the 

rest of the architecture are wanted).

Another replacement one can think of in the NN-CBR arcuitecture is the substitution of 

the frame system by another mechanism for knowledge representation. For instance, the frame 

hierarchy used to represent the domain knowledge could be replaced by a semantic network, 

as in NEXTOOL (Machado & Rocha 1992). Although the abstraction concepts used in our

^This is not valid for hybrid architectures of \h& fully-integrated type.
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frame mechanism provide a significant amount of flexibility for representing the domain 

knowledge, the user may be more familiar and feel more comfortable with relying on 

semantic networks. The replacement of the frame system in NN-CBR could be achieved 

through the mapping of one knowledge-representation mechanism into another. For instance, 

the abstraction concepts of the frame hierarchy could be mapped into is-a  (generalisation and 

classification), pa rt-o f  (aggregation) and m em ber-of (association) arcs of the semantic 

network. The diagnosis descriptors, which could be more difficult to substitute, could be 

represented in the influence links of NEXTOOL’s semantic network. However, different types 

of influence links would have to be used in order to represent the diagnosis descriptor's 

triggers, prim ary  and secondary findings.

We consider these to be interesting possibilities that could customise our architecture to 

particular wishes and requirements of different users. The next subsections point out some 

problems that have to be watched out for when developing a system with our hybrid 

approach.

7.2.2 Creating the Neural Network

One of the problems one may encounter when building the CNM network is that too 

many combinatorial nodes may be generated to represent the influence of the different 

combinations of evidence for the diagnoses (or classes) considered in the application. This 

kind of adverse effect should be expected especially in applications where there is a large 

number of items of evidence, as well as diagnoses (or classes).

To avoid this problem, the user should not start the construction of the neural network 

with a fully-connected network (ie. the user should not try to combine all the evidence 

considered, in all the possible ways, for each of the diagnoses). Instead, only the findings 

observed for a particular diagnosis should be used to build the clusters that indicate the same 

diagnosis. This method should reduce significantly the number of combinatorial nodes 

created, as well as the time to construct the complete neural network. Alternatively, a 

different mechanism that produces only the relevant clusters of evidence can be used, as in 

Machado, Rocha & Denis (1992), where a genetic algorithm generates and selects the most 

significant clusters for the identification of each diagnosis.

Ajiother difficulty that one may have to face in the use of the CNM is in the adjustment
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of the Tacc parameter. Originally, this parameter is intended to set a threshold for the 

acceptance of answers coming from the neural network, as well as to define the minimum 

value for pathognomonic connections (ie. those that have only rewards but no punishments) at 

the time of the construction of the neiu'al network. In NN-CBR, Tacc is only used to build the 

neural network, as we exploit all the answers coming from the network to build remindings, 

whether they have a high or low confidence degree. The value we have chosen for Tacc has 

been 0.5, which means that pathognomonic connections with a very small number of rewards 

will not have their weights set with values lower than 0.5. In applications where the user 

knows the classifications of previous cases to be always correct, and where he believes 

pathognomonic pathways can be assigned a more important role, the value of Tacc may be 

increased. It is important to stress here that this increment would make the neural network 

more susceptible to noise, though. A high value assigned to Tacc would produce a strong 

weight in a connection with only a few rewards (and we should consider the possibility that 

these few rewards may in fact come from cases classified badly). The extreme situation is 

where Tacc is assigned the value 1, which would make any connection of the network 

containing no punishments to also carry the highest possible weight, therefore making 

pathognomonic pathways into determining factors in the diagnostic process. A smaller value 

of Tacc improves the ability of the system to cope with noisy datasets.

7.2.3 Building the Diagnosis Descriptors

Selecting the trigger, the primary findings and the secondary findings of the diagnosis 

descriptors is an important step in the construction of a system with the NN-CBR 

architecture. These attributes are selected according to the findings that appear in nodes 

carrying a high connection weight or a high number of rewards in the neural network. It is not 

difficult to determine the trigger for a diagnosis, as it appears in the node of the network 

possessing the highest connection weight for the same diagnosis. It may, however, be more 

difficult to define primary and secondary findings. We have used a threshold mechanism to 

determine the secondary findings of a diagnosis. This mechanism chooses as secondary 

findings the evidence appearing in nodes of the neural network with connection weights 

bigger than a given threshold. The value chosen for this threshold has been the value of Tacc, 

as Tacc determines the connections of the neural network able to produce useful answers.
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We have also used a threshold mechanism to determine the prim ary findings of a 

diagnosis, by selecting as prim ary findings the evidence represented in nodes that appear in at 

least half of the training examples. This is justified by the fact that the findings observed in 

most of the cases for a particular diagnosis are generally expected to be present in other cases 

with that same diagnosis, whether they are specific to the diagnosis or not. This method was 

able to build the diagnosis descriptors for the first three diagnoses appropriately (ASD, 

AVSD and VSD). For the other 4 diagnoses, no findings (or combinations of findings) could 

be observed with a frequency higher than the one requested (50%). In such cases, we opted 

for informing the user of the problem, and for continuing the construction of the prim ary  

findings through the selection of the four most frequent findings (located in nodes of the 

network with the highest reward accumulators). We have chosen the number 4 as the 

maximum number of prim ary findings because, according to the knowledge graphs elicited 

from experts and non-experts, clusters with more than five elements are scarcely seen in the 

leftmost trees of the graphs (the trigger references one of these elements, while the prim ary  

findings would reference up to four other elements). Additionally, five is the number that has 

been suggested by Machado & Rocha (1989) as the maximum number of items of evidence to 

be clustered in each combinatorial node of the CNM, making reference to the magical number 

7 plus or minus 2 (Miller 1956).

The use of this alternative method for the selection of the prim ary findings also serves as 

a warning for the user when the system cannot find enough evidence to operate its ordinary 

procedure for the selection of prim ary findings. What has to be considered, though, is that by 

not enforcing a minimum level of frequency in the alternative selection of the prim ary  

findings, the risk of selecting irrelevant evidence as prim ary findings is increased. Thus, in 

such situations the user should always verify the correctness of the diagnosis descriptors, and 

try to rectify possible errors by adjusting the threshold that enforces the minimum level of 

frequency required for prim ary findings.
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Conclusions

We have presented an architecture that contains a new way of integrating CBR and neural 

networks. While a neural network is used to make hypotheses and to guide the search for 

similar cases in the library, CBR is used to select a most similar match for a given problem, 

supporting a particular hypothesis or deciding among hypotheses. Items called diagnosis 

descriptors are created and maintained according to the knowledge stored in the neural 

network, keeping an intelligible description of the knowledge represented in the network and 

defining a ranking scheme for the most important attributes observed in these cases {trigger, 

prim ary findings and secondary findings). This ranking scheme is used for consultation 

purposes, for confirming or refuting a final result, and for building explanations.

A system for the diagnosis of Congenital Heart Diseases (CHD) has been presented and 

evaluated. Together with other tests using the mushroom database, the soybean database  and 

the m o n k ’s Problems database, it has been possible to conclude that:

• the performance of the hybrid NN-CBR system is always equal or superior to the 

performance of the CNM network. From tables 6.1, 6.3, 6.6 and 6.8 of the previous 

chapter, we can see that the hybrid system has been able to introduce an improvement 

in the CNM system’s performance of up to 14.9% (in the number of correct answers).

• the indexing scheme presented here, based on remindings provided by the neural 

network, is promising for guiding the search for the most relevant cases in the library 

when a best match is demanded. Tables 6.5 and 6.7 show the performance of the 

indexing scheme in solving problems related to four different databases. The 

percentage of 93.3 correct answers has been reached for the substantial test database
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Chd3, 76.12% for database Chd7, 98.89% for the mushroom classification problem^ 

and 93.59% for the soybean disease database.

• the indexing scheme based on the remindings provided by the neural network is also 

promising for narrowing the search space and reducing the number of case 

comparisons when a best match is demanded. Table 6.9 shows the significant 

reduction in the number of case comparisons introduced by the hybrid NN-CBR 

approach, resulting in as much as 91.4% less comparisons in the soybean problem (ie. 

an average of 25 case comparisons was necessary to solve the problems at hand, 

instead of 290 if a standard nearest-neighbour procedure had been used).

• the knowledge learned and represented in the diagnosis descriptors is similar to that of 

experts when the cases used to teach the system have complete and correct 

descriptions. Figures 6.1 to 6.7 of the previous chapter show that the diagnosis 

descriptors built through the processing of the cases collected with expert supervision 

a had a very similar representation to that of the mean knowledge graphs elicited from 

multiple experts.

• the diagnosis descriptors can give the user a clearer idea about the knowledge stored in 

the neural network, and can be used to build explanations for the reasoning process 

carried out when finding suitable answers for new cases. As shown in section 5.8 of 

chapter 5, these explanations take into account the importance of the findings present 

in a problem case, according to their characterisation in the diagnosis descriptors.

• for some types of classification problems, the method presented may not be the most 

appropriate, as the neural network and the diagnosis descriptors cannot represent 

explicitly some logic operations between attributes that may be necessary in some 

classification tasks, as in the MONK's Problem number 2.

Along with other CBR systems, NN-CBR has the following advantages:

• it may be able to ease the task of knowledge acquisition, as most of the knowledge 

needed for solving new problems is contained in cases that have already been solved.

• it can learn incrementally through the incorporation of new cases in the library, the
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training of the neural network with the same cases, and updating of the diagnosis 

descriptors.

• it has a rather plausible reasoning mechanism where both general and specific 

knowledge are used in the problem-solving process. General knowledge is represented 

in the neural network and diagnosis descriptors, and used to make hypotheses for 

newly-posed problems. Specific knowledge, in contrast, is represented in the cases 

stored in the library, and used to confirm a given hypothesis or to discriminate 

between hypotheses.

In addition to profiting from the advantages provided by the case-based approach, the 

NN-CBR arcuitecture is also able to minimise some significant difficulties generally faced by 

more traditional CBR architectures. By using the neural network to guide the search for 

similar previous cases, our hybrid system reduces considerably the number of case- 

comparisons when solving a new problem, therefore shrinking some of the difficulties of 

dealing with large case libraries. Furthermore, by using the remindings provided by the neural 

network to retrieve the most relevant experiences, the NN-CBR architecture does not allow 

the existence of a vast number of cases to bias it too much in the problem-solving process.

The main drawbacks of the NN-CBR approach are related to the fact that independent 

reasoning components (neural network and CBR) have to be coordinated, which can represent 

a difficult task. Additionally, when the knowledge of one component is modified, the others 

have to be updated. For instance, when new cases are added to the system’s library, the neural 

network has to make computations on these cases and the diagnosis descriptors have to be 

recalculated, which can have a certain overhead cost.

When compared to other approaches to combining CBR with neural networks, our 

approach is different as it does not keep cases as an intrinsic part of the neural network. 

Instead, two separate NN and CBR modules work in an independent fashion. Furthermore, it 

deals with other problems faced by neural networks that are not treated in previous published 

research on the combination of CBR and neural networks. For instance, the interpretation of 

the mathematical knowledge of the neural networks into symbolic diagnosis descriptors, and 

the construction of explanations of reasoning using these descriptors. The main common point



8. Conclusions 164

between our architecture and the architectures presented in chapter 2 is that our indexing 

scheme to select cases in the library is also based on the use of the neural network.

The main contributions of this work have been:

• the conception of the particular hybrid architecture combining CBR with the CNM. 

This hybrid architecture benefits from the knowledge-representation comprehensibility 

of symbolic systems, the learning ability of connectionist systems, and the explanation 

capability of symbolic and case-based systems.

• the specification of the reasoning process where an alternative indexing scheme that 

calls on the CNM network is used. The analysis of each part of the reasoning 

mechanism in NN-CBR can be valuable for other researchers working with alternative 

CBR indexing and retrieval schemes.

• the definition of the methods to interpret and map the knowledge of the neural network 

into diagnosis descriptors. This is a noteworthy contribution to analysis knowledge 

stored in neural networks, which is a current area of research in neural networks and 

hybrid connectionist systems.

• the construction of a system for the diagnosis of seven common CHD problems, as 

well as the development of other experiments that have proposed different ways for 

combining general and specific knowledge in various domains, namely: classification 

of credit card transactions (Reategui & Campbell 1995); identification of the profile of 

patients awaiting heart transplantation (Reategui, Campbell & Borghetti 1995); and 

diagnosis of three congenital heart diseases (Reategui, Campbell & Leao 1996), the 

latter having an indexing scheme which did not use neural networks, but simply the 

information contained in the diagnosis descriptors.

An interesting subject for further research is the investigation of the behaviour of NN- 

CBR when applied in domains with weak theories, where there are no defined rules and 

where the formation of the diagnosis descriptors could improve the process of solution for 

problems with limited amounts of theory-enforced structure. Using NN-CBR to solve other 

real-world problems could provide a more exhaustive view of the generality of our approach.
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and possibly also suggest insights for how the model could be enhanced from a cognitive 

point of view.

Another extension of NN-CBR could be the redefinition of the diagnosis descriptors at a 

higher level of detail, which would require the use of other statistical methods for the analysis 

of the neural network (e.g. analysis of the weight distribution of the network). Furthermore, a 

mechanism that would enable the system to learn negative findings through the identification 

of findings that commonly lead to misclassifications could be constructed. This idea has been 

based on PROTOS’ method for learning censors, i.e. remindings that identify negative 

associations between case findings and exemplars. PROTOS learns its censors through the 

search for any mutual-exclusion relations used in explanations provided by an expert.

Regarding the reasoning process, an interesting topic for further investigation is the 

search for alternative reasoning steps when an answer is intercepted for lack of credibility. 

For instance, the system could use other indexing cues to find other previous cases that bear 

similarities to the problem case. At the moment, NN-CBR simply states that it is not possible 

to solve the problem. Another way of improving the performance of the system would be to 

investigate how to identify ‘noisy cases’ in the library, which would enable NN-CBR to avoid 

the problem of retrieving inappropriate cases due to previous misclassifications.

We believe that research in this direction can originate more powerful diagnostic and 

classification systems. The investigation of the interconnections of this work with cognitive 

science may also lead to better simulations of the reasoning processes observed in humans, 

and thus make some contribution to the development of general architectures for cognition.
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Appendix A

The knowledge Acquisition Methodology for 
the Elicitation of Knowledge Graphs

A l. Phase 0 - Problem Definition

1) Define the project scope (problem domain).

2) Define the diagnostic hypotheses that will be part of the project.

3) Define a list of symptoms, signs and test results, with the assistance of an expert (or a 

group of experts).

A2. Phase 1 - Knowledge Acquisition

1) Select one of the diagnostic hypothesis.

2) Ask the expert to indicate, in the list of symptoms, the items necessary for the 

formulation of the diagnostic hypothesis, by which a working subset of symptoms is 

defined.

3) Ask the expert to rank the working subset according to the importance of the items for 

the diagnostic.

4) Ask the expert to assume the items of the ordered list as the evidence nodes of a 

knowledge graph and to associate them in the form that he judges necessary to 

establish an adequate foundation for the diagnostic hypothesis (generating 

intermediate nodes that converge to the diagnostic hypothesis).

^From Machado, Rocha & Leao (1990).
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5) Ask the expert to ascribe a membership degree between 0 and 10 for the information 

represented in each node of the graph in relation to the diagnostic hypothesis.

6) Ask the expert to define the logical operators (AND, OR, NOT) associated with the 

nodes of the graph.

7) Repeat the process for the other diagnostic hypotheses, to form a family of graphs.



168

Appendix B

The Learning Algorithms of the 
Combinatorial Neural Model

B l. Neural Network Punishment and Reward Algorithm 

(scratch version)

Given the evidential flow of a neural network connection as the product:

• (activation of the origin node x connection weight), for an excitatory connection;

• ((1-activation of the origin node) x connection weight)) for an inhibitory connection; 

For importance degree the relevance of an example in the learning process, Do:

• Set all the punishment and reward accumulators of the network to 0;

• Set all the weights of the network to 1;

• For each case of the training set Do:

- Propagate the evidence from the input nodes to the output layer, according to the 

activation functions of the CNM;

- For each pathway reaching a diagnosis Do:

If the diagnosis reached corresponds to the correct diagnosis of the case 

Then

navigate backwards from this node to the input nodes, increasing the reward 

accumulators of each traversed connection by the product: 

evidential flow  x destination node activation x importance degree

 ̂ From Machado, Rocha & Denis (1992).
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Else

navigate backwards from the output node to the input nodes, increasing the 

punishment accumulators of each traversed connection by the product: 

evidential flow  x destination node activation x importance degree

B2. Neural Network Punishment and Reward Algorithm 

(refinement version)

For each training example, Do:

• Propagate the evidence from the input nodes to the output layer, according to the 

activation functions of the CNM;

• For each hypothesis H that is a solution for the case. Do:

- Calculate a  = 1 - activation of (H)

- For each pathway reaching the hypothesis H, Do:

navigate backwards from this node to the input nodes, increasing the reward 

accumulators of each traversed connection by the product: 

a  X evidential flow  x destination node activation x importance degree

• For each hypothesis H that is not a solution for the case, but which has an activation 

higher than a pre-established threshold (Tacc), Do:

- Calculate a  = activation of (H)

- For each pathway reaching the hypothesis H, Do:

navigate backwards from the output node to the input nodes, increasing the 

punishment accumulators of each traversed connection by the product: 

a  X evidential flow  x destination node activation x importance degree
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B3. Pruning and Normalization algorithm

For each connection in the network Do:

• Compute the net accumulator value as:

netacc = reward accumulator - punishment accumulator

• If netacc <= 0 then remove the connection of the network

• If the punishment and the reward accumulators have the same value, then set the 

connection weight to 0;

• If punishment accumulator > 0

Then

compute the connection weight as netacc / maxnet, where maxnet is the 

maximum netacc existing in the network for that diagnosis

Else

compute the connection weight as:

sqrt (Tacc) ■¥ (1- (sqrt (Tacc))) x netacc / maxnet 

where Tacc is the threshold that determines the minimum output for an answer 

to be accepted

• If connection weight < pruning threshold, delete the connection 

Remove all nodes that lose access to diagnosis nodes.
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