
Abstract

Motivation: Laplacian matrices capture the global structure of net-
works and are widely used to study biological networks. However, the
local structure of the network around a node can also capture biological
information. Local wiring patterns are typically quantified by counting
how often a node touches different graphlets (small, connected, induced
sub-graphs). Currently available graphlet-based methods do not consider
whether nodes are in the same network neighbourhood.
Contribution: To combine graphlet-based topological information and
membership of nodes to the same network neighbourhood, we generalize
the Laplacian to the Graphlet Laplacian, by considering a pair of nodes
to be ‘adjacent’ if they simultaneously touch a given graphlet.
Results: We utilize Graphlet Laplacians to generalize spectral embed-
ding, spectral clustering and network diffusion. Applying Graphlet Lapla-
cian based spectral embedding, we visually demonstrate that Graphlet
Laplacians capture biological functions. This result is quantified by apply-
ing Graphlet Laplacian based spectral clustering, which uncovers clusters
enriched in biological functions dependent on the underlying graphlet. We
explain the complementarity of biological functions captured by different
Graphlet Laplacians by showing that they capture different local topolo-
gies. Finally, diffusing pan-cancer gene mutation scores based on dif-
ferent Graphlet Laplacians, we find complementary sets of cancer related
genes. Hence, we demonstrate that Graphlet Laplacians capture topology-
function and topology-disease relationships in biological networks.
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1 Introduction

Systems biology is flooded with large scale “omics” data. Genomic, pro-
teomic, interactomic, metabolomic and other data, are typically mod-
eled as networks (also called graphs). This abundance of networked data
started the fields of network biology, allowing us to uncover molecular
mechanisms of a broad range of diseases, such as rare Mendelian disor-
ders (Smedley et al., 2014), cancer (Leiserson et al., 2015), and metabolic
diseases (Baumgartner et al., 2018). In personalized medicine, network
analysis is applied to the tasks of bio-marker discovery (Li et al., 2015), pa-
tient stratification (Gligorijević et al., 2016) and drug repurposing (Durán
et al., 2017).

Many network analysis methods use the Laplacian matrix as it cap-
tures the global wiring patterns of a network (see section 1.1). These
methods include spectral clustering, spectral embedding and network dif-
fusion. Each of these families of methods relies on the fact that the eigen-
decomposition of the Laplacian matrix naturally uncovers network clus-
ters (see section 1.2). Applications of spectral embedding include visu-
alizing genetic ancestry (Lee et al., 2010) and pseudo-temporal ordering
of single-cell RNA-seq profiles (Campbell et al., 2015). Applications of
spectral clustering include detection of functional sub-network modules
in single-cell genomic networks (Bartlett et al., 2017) and identification
of functional modules in co-regulatory networks (Luo et al., 2018). Net-
work diffusion methods are widely used for protein function prediction
(Cao et al., 2013) and discovery of disease genes and disease modules, see
Cowen et al. (2017) for a full review.

1.1 Laplacian matrix definition

The Laplacian matrix captures the global structure of a network: for each
node it captures the adjacency relationship with other nodes (i.e. who
are its neighbours) and its degree centrality (a measure of the node’s
importance in the network). In a network, G(V,E), two nodes, u and
v, are adjacent if there exists an edge (u, v) ∈ E connecting them. The
adjacency of all nodes in graph G is represented in an n × n symmetric
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adjacency matrix A:

A(u, v) =

{
1 if (u, v) ∈ E
0 otherwise.

(1)

The neighbourhood of a node is defined as the set of nodes adjacent to
it. A node’s degree is the size of its neighbourhood, or equivalently, the
number of nodes that are adjacent to it. The degree matrix of G is defined
as the diagonal matrix, D, where D(u, u) is equal to the degree of node
u:

D(u, v) =

{
deg(u) if u = v

0 otherwise.
(2)

The Laplacian, L, is defined as L = D−A. The symmetrically normalized
Laplacian, Lsym, is defined as Lsym = D−1/2LD−1/2.

1.2 Laplacian matrix eigendecomposition

j Spectral clustering, spectral embedding and network diffusion analyze
networks based on the eigendecomposition of the Laplacian matrix natu-
rally uncovering densely connected sub-networks present in the network.
The eigendecomposition of L, is defined as LU = UΛ, where the i-th col-
umn of the n× n matrix U is known as the i-th eigenvector and Λ is the
diagonal matrix whose diagonal elements are the corresponding eigenval-
ues. Uncovering densely connected sub-networks present in the network
(i.e. network clustering), can be defined as solving the ratio-cut problem:
to cut a network into d similar-sized sub-networks whilst minimizing the
number of edges being cut. An approximation of this problem is formu-
lated as follows:

minimize
U∈<n×d

trace(UTLU) subject to: UTU = I, (3)

where each column of U is a normalized indicator vector assigning each
node to one of the d sub-networks. This problem is solved by d normalized
eigenvectors of L associated with d smallest eigenvalues, illustrating how
the Laplacian matrix captures clusters present in the network.

1.3 Matrix alternatives to the Laplacian

Laplacian matrices only capture direct interactions between nodes. To
capture the influence of long-range interactions between nodes, Estrada
(2012) proposed the k-path Laplacian by generalizing the concepts of ad-
jacency and degree. The k-path Laplacian defines a pair of nodes u and v
to be k-adjacent if the shortest path distance between them is equal to k.
Analogously, k-path degree, degk(u), generalizes the concept of the degree
to the number of length k shortest paths that have node u as an endpoint.
The k-path Laplacian, LPk , is defined as:

LPk (u, v) =


−1 if d(u, v) = k

degk(u) if u = v

0 otherwise.

(4)

3



Vicus is an alternative to the Laplacian that captures the intricacies
of a network’s local structure (Wang et al., 2017) based on network label
diffusion. Label diffusion is defined as P = BQ, where the n×d matrix Q
assigns the n nodes of network G to one of d possible labels ( for labeled
nodes), B is an n × n diffusion matrix, and the reconstructed matrix P
is an n× d matrix used for predicting labels for unlabeled nodes. To give
Vicus its ‘local’ interpretation, the label diffusion process determining
B is constrained to diffuse information of each node only to its direct
neighbourhood. Under given assumptions and defining Vicus as LV =
(I−BT )(I−B), it was shown that Q can be learned as the eigenvectors of
LV . As Q captures the local connectivity between nodes that is implied by
the ‘localized’ diffusion matrix B and can be computed as the eigenvectors
of LV , Vicus is interpreted as a Laplacian matrix. Vicus is applied to
protein module discovery and ranking of genes for cancer subtyping (Wang
et al., 2017).

1.4 Problem

All Laplacian based applications are based on the same underlying prin-
ciple of guilt by association, inferring information on a given node based
on the group of nodes it is most tightly connected with. However, alter-
native approaches have inferred information on a given node based on the
shape of its interaction pattern, typically independent of the identity of
the nodes it is interacting with. These alternative approaches are based
on graphlets, small connected sub-graphs (see section 2.1 for a formal def-
inition), to capture the local topology around a node in a network. For
example, graphlet based methods have been applied to predict protein
function (Milenković and Pržulj, 2008; Davis et al., 2015) and to identify
new cancer genes (Milenković et al., 2010) directly from the similarities
in terms of their interaction patterns in PPI networks.

Alternatives to the Laplacian matrix that take local topology into ac-
count have been suggested. The k-path Laplacian captures the influence
of long-range interactions between nodes, but ignores short-range interac-
tions. Vicus captures local topology around each node as the strength of
its connection to its neighbours after applying a localized label diffusion
algorithm. Although Vicus is focused on capturing local topology, it lacks
interpretability from a structural perspective.

1.5 Contribution

We introduce the Graphlet Laplacian, allowing us to analyze nodes based
on their network neighbourhoods, whilst restricting the pattern of their
interactions to that of a prespecified graphlet. Hence, each graphlet
(Figure 1-A) has its own corresponding Graphlet Laplacian. We gen-
eralize spectral embedding, spectral clustering and network diffusion to
utilize Graphlet Laplacians. Through graphlet-generalized spectral clus-
tering of model networks and biological networks, we show that differ-
ent Graphlet Laplacians capture different local topologies. By applying
graphlet-generalized spectral embedding, we visually demonstrate that
Graphlet Laplacians capture biological functions as well. We quantify
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this through graphlet-generalized spectral clustering analysis. We show
that Graphlet Laplacians are not only as biologically relevant as alterna-
tive Laplacian matrices, but also capture complementary biological func-
tions. Finally, by graphlet-generalized diffusing of pan-cancer gene mu-
tation scores on the human PPI network, we show that Graphlet Lapla-
cians capture complementary disease mechanisms. We compare our re-
sults against those based on alternative state the art Laplacian matrices.
A similar methodology based on network motifs was presented by Benson
et al. (2016) for spectral clustering of directed networks. compare our
results to those of the standard Vicus.

2 Materials and methods

2.1 Graphlet Laplacian definition

We generalize the Laplacian matrix so that it can capture the local topol-
ogy of a network around a node in a broader sense than the identity of
its direct neighbours. One of the most sensitive methodologies to capture
network topology around a node are graphlets: small, connected, non-
isomorphic, induced sub-graphs of a large network (Pržulj et al., 2004).
All graphlets up to four nodes are depicted in Figure 1-A. To illustrate
how graphlets can be used to quantify the local topology around a node,
consider node a in the dummy network presented in Figure 1-B. Graphlet
G1 (i.e. a three node path) that touches node a can be found in this
dummy network twice: via paths a-b-c and a-b-e. Node a is said to touch
G1 twice. By making these counts for a given node over all graphlets, the
local network topology for a given node can be quantified by means of a
vector, as illustrated for node a in Figure 1-C. Here we see that node a
can be found as part of an edge once (G0), as part of a three node path
twice (G1), never as part of a triangle (G2) and so on.

Having established that by counting how often a node touches graphlets
can be used to quantify its local topology, we go on and generalize the
concept of the Laplacian to that of a Graphlet Laplacian by generalizing
the definitions of adjacency and degree to ones based on graphlets. First,
we define two nodes u and v of G to be graphlet-adjacent with respect
to a given graphlet, Gk, if they simultaneously touch Gk. Going back to
our previous example, we find that nodes a and b are graphlet-adjacent
w.r.t. graphlet G1 twice, as G1 can be induced on the dummy network
twice: via paths a-b-c and a-b-e, each time including both nodes a and
b. Similarly, nodes a and c and nodes a and e are graphlet adjacent only
once, w.r.t. graphlet G1.

Given this extended definition of adjacency, we define the graphlet
based adjacency matrix as:

Ak(u, v) =

{
akuv if u 6= v

0 otherwise,
(5)

where akuv is equal to the number of times nodes u and v are graphlet-
adjacent w.r.t graphlet Gk. Analogously, the graphlet degree generalizes
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the node degree as the number of times node u touches graphlet Gk. We
extend the degree matrix to the Graphlet Degree matrix for graphlet Gk,

Dk(u, v) =

{
dku if u = v

0 otherwise,
(6)

where dku is the number of times node u touches graphlet Gk. For an
underlying graphlet Gk, we define the Graphlet Laplacian LGk , as:

LGk = Dk − (Ak/θ). (7)

where θ = size(Gk) − 1. As opposed to the Laplacian simply capturing
for each node its neighbours, the Graphlet Laplacian LGk captures for each
node how strongly (i.e. frequently) each node is connected in the shape
of Gk with each of the other nodes. LG0 and LG1 are illustrated in Figure
1-C. Finally, note that the Graphlet Laplacian for graphlet G0, LG0 , is
equivalent to the standard Laplacian, L.

2.2 Graphlet Laplacian properties

To allow for an easy interpretation of the Graphlet Laplacian for each
graphlet, Gk, we introduce the two-step transformation function, T , which
maps graph G to its Graphlet Laplacian representation: T (G,Gk) = LGk .
First, T converts G = {V,E} to a weighted network G′ = {V,E′}, where
the weight of each edge (u, v) in G′ corresponds to akuv/(size(Gk) − 1)
measured in G. Next, T converts G′ to its standard Laplacian represen-
tation. This shows that the Graphlet Laplacian can be interpreted as the
Laplacian of an undirected weighted network. Therefore, the Graphlet
Laplacian retains the following key properties of the Laplacian:

• The Graphlet Laplacian, LGk , is symmetric and positive semi-definite.

• The smallest eigenvalue is 0 and the corresponding eigenvector is the
constant vector 1. eigenvector

• The Graphlet Laplacian has n non-negative, real-valued eigenvalues:
0 = λk1 ≤ λk2 , . . . , λkn.

• The multiplicity of the eigenvalue 0 equals the number of connected
components in G′, which we refer to as graphlet based components.

2.3 Spectral embedding

Spectral Embedding embeds a network in a lower dimensional space, plac-
ing nodes close in space if they share many neighbours. Here, we generalize
the Laplacian Eigenmap embedding algorithm (Belkin and Niyogi, 2003)
so that two nodes are embedded close in space if they frequently simul-
taneously touch a given graphlet. Given an unweighted network G with
n nodes, we find a low dimensional embedding, Y = [y1, ...,yn] ∈ Rd×n
such that if nodes u and v are frequently graphlet-adjacent with respect
to graphlet Gk, then y(u) and y(v) are close in the d-dimensional space

6



(A)
G0 G1 G2 G3 G4 G5 G6 G7 G8

(B)

G:

abc

ed

(C)

Graphlet G0 G1 G2 G3 G4 G5 G6 G7 G8 
Graphlet  
Count(a) 

1 2 0 2 1 0 0 0 0 

 

(D) LG
0 =


1 −1 0 0 0
−1 3 −1 0 −1
0 −1 2 −1 0
0 0 −1 2 −1
0 −1 0 −1 2

 LG
1 =


2 −1 −.5 0 −.5
−1 5 −1.5 −1 −1.5
−.5 −1.5 3 −1 −1
0 −1 −1 3 −1
−.5 −1.5 −1 −1 4


Figure 1: Illustration graphlets and Graphlet Laplacians. Node a is
coloured in green throughout. The graphlet counts of node a for graphlet G0

and G1 are coloured in red throughout. A: All graphlets with up to 4 nodes,
labeled G0 to G8. B: A dummy network. C: A vector of graphlet counts
describing the local topology of node a in the example network, G. Node a
touches graphlet G0 via edge (a, b). Node a touches graphlet G1 twice, via paths
a-b-c and a-b-e. D: The Graphlet Laplacians for graphlets G0 and G1, applied
on the network, G, shown in panel B. The diagonal elements correspond to the
graphlet counts of each node; e.g. LG

0 (1, 1) is equal to 1, the number of times
node a touches graphlet G0, LG

1 (1, 1) is equal to 2, the number of times node
a touches graphlet G1. The off-diagonal elements correspond to the number
of times two nodes touch a given graphlet together, scaled by size(Gk) − 1.
LG

0 (1, 2) = −1, as a and b form G0 once and size(G0)− 1 = 1. LG
1 (1, 2) = −1,

as a and b form G1 twice and size(G1)− 1 = 2.
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by solving:

minimize
Y

n∑
u=1

n∑
v=1

Ak(u, v) ‖yu − yv‖2

subject to : Y Dk1 = 0 and Y DkY
T = I,

(8)

where Ak is the graphlet-based adjacency matrix of G for graphlet Gk, Dk
is the graphlet-based degree matrix of G for graphlet Gk. The columns
of Y are found as the generalized eigenvectors associated with the 2nd to
(d+ 1)th smallest generalized eigenvalues solving Y LGk = ΛY Dk, where Λ
is the diagonal matrix with the generalized eigenvalues along its diagonal.

2.4 Spectral clustering

Spectral clustering uncovers groups of nodes in a network that form densely
connected network clusters. By generalizing spectral clustering to Graphlet
Laplacian based spectral clustering, we are able to identify network com-
ponents that are densely connected with respect to a given graphlet. Many
different variations of spectral clustering exist (Von Luxburg, 2007). Aim-
ing for a balanced clustering, we generalize normalized spectral cluster-
ing as defined by Ng et al. (2002) to use different Laplacians including
Graphlet Laplacians, all denoted by a generic L in algorithm 1. We skip
the normalization step (i.e. step 1) for Vicus, as Vicus is already normal-
ized.

Algorithm 1 Normalized spectral clustering

Input A network G with n nodes, and a number of clusters d.
Output d clusters of the n nodes of G.

1: Compute the Laplacian matrix, L, and corresponding diagonal matrix, D,
for the network G.

2: Compute the normalized Laplacian as: Lsym = D−1/2LD−1/2.
3: Compute the d eigenvectors of Lsym associated with its d smallest eigenval-

ues: Y = [y1, . . . ,yd] ∈ Rn×d.
4: Normalize Y so that each row has unit norm.
5: Cluster the n points {y}nu=1 into d groups using k-means.

For each network, we determine the numbers of clusters, d, by using
the rule of thumb: d ≈

√
n/2 (Kodinariya and Makwana, 2013). In

the Supplement Section 1, we present the justification for this approach,
based on inspection of the spectra of different Laplacian matrices of each
network. Because of the heuristic nature of spectral clustering, we perform
20 runs for each clustering and consolidate them into a single clustering
applying ensemble clustering (Ghosh and Strehl, 2002).

2.5 Network diffusion

Network diffusion refers to a family of related techniques, which propa-
gate information on nodes through the network. Here, we will focus on
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generalizing the diffusion kernel to graphlet based diffusion kernel. The
diffusion kernel is often called the ‘heat kernel’, as it can be viewed as
describing the flow of heat originating from the nodes across the edges of
a graph with time. In network biology, nodes typically represent genes
and ‘heat’ on a node represents experimental measurements. For a set of
n nodes, these measurements are encoded in vector P0 ∈ Rn. Information
is diffused as follows: P = HP0, where H is a diffusion kernel. For a given
graphlet Gk, we define the graphlet based diffusion kernel, Hk

α, as:

Hk
α = e−αL

G
k , (9)

where the parameter α ∈ R controls the level of diffusion. This way,
diffusion of information on nodes propagates between nodes restrained by
how often they form a given graphlet Gk together.

2.6 Topological dissimilarity of networks

2.6.1 Graphlet Correlation Distance

The Graphlet Correlation Distance (GCD-11) is the current state of the
art heuristic for measuring the topological distance between networks
(Yaveroǧlu et al., 2014). First, the global wiring pattern of a network
is captured in its Graphlet Correlation Matrix (GCM), an 11 × 11 sym-
metric matrix comprising the pairwise Spearman’s correlations between
11 different graphlet based counts over all nodes in the network. The
Graphlet Correlation Distance between two networks is computed as the
Euclidean distance of the upper triangle values of their GCMs.

2.6.2 Non-graphlet based network descriptors

The difference between the following non-graphlet based network descrip-
tors can be used to measure the distance between two networks:

• The degree distribution is the distribution of node degrees over all
nodes. It is summarized as a vector of counts, i.e. the kth value is
the number of nodes that have degree k. To measure the distance
between two networks, this vector is first rescaled to reduce the
contribution of higher degree nodes. The pairwise distance between
two networks is the euclidean distance between their rescaled degree
distribution vectors. For more details, see (Yaveroǧlu et al., 2014).

• The diameter of a connected network is the maximum shortest path
distance that is observed among all node pairs. The distance between
two networks is the absolute difference of their diameters.

• The average clustering coefficient is the total number of three node
cliques in the network over the number of possible three node cliques
in the network. The distance between two networks is the absolute
difference of their average clustering coefficient.

2.7 Cluster enrichment analysis

To assess if a cluster of genes is biologically relevant, we measure if it is
statistically significantly enriched in a specific biological annotation term
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by applying the hyper-geometric test. That is, we consider each cluster
as a ’sampling without replacement’, in which each time we find a given
annotation, we count that as a ’success’. The probability of observing the
same or higher enrichment (i.e. successes) of the given annotation purely
by chance is equal to:

p = 1−
X−1∑
i=0

(
K

i

)(
M −K
N − i

)
/

(
M

N

)
, (10)

where N is the number of annotated genes in the cluster, X is the number
of genes annotated with the given annotation in the cluster, M is the
number of annotated genes in the network, and K is the number of genes
annotated with the given annotation in the network. An annotation is
considered to be statistically significantly enriched if its enrichment p-
value is lower than or equal to 5% after application of the Benjamini and
Hochberg correction for multiple hypothesis testing.

2.8 Data

2.8.1 Real biological network data collection

We create three types of molecular interaction networks for human and
baker’s yeast (S. cerevisiae) by collecting the following data: experi-
mentally validated protein-protein interactions (PPIs) from IID version
2018-05 (Kotlyar et al., 2016) and BioGRID version 3.4.161 (Stark et al.,
2006), genetic interactions from the same version of BioGRID, and gene
co-expressions from COXPRESdb version 6.0 (Okamura et al., 2015).

2.8.2 Random model network generation

For each of the following eight random network models we generate ten
networks containing 2,000 nodes at edge density of 1.5%: Erdős-Rènyi ran-
dom graphs (ER) (Erdős Paul and Rényi Alfréd, 1959), generalized ran-
dom graphs with the degree distribution matching to the input graph (ER-
DD) (Newman, 2010), Barabási-Albert scale-free networks (SF) (Barabási
and Albert, 1999), geometric random graphs (GEO) (Penrose, 2003),
geometric graphs that model gene duplications and mutations (GEO-
GD) (Pržulj et al., 2010), stickiness-index based networks (Sticky) (Pržulj
and Higham, 2006), popularity-similarity optimization graphs (PSO) (Pa-
padopoulos et al., 2012) and nonuniform PSO graphs (nPSO) (Muscoloni
and Cannistraci, 2018). A summary on the basic properties of these net-
works and how to generate them can be found in Supplement Section
2.1.

2.8.3 Biological annotations

For each gene in our biological networks, we collect the most specific exper-
imentally validated biological process annotations (BP), cellular compo-
nent annotations (CC) and molecular function annotations (MF) present
in the Gene Ontology (GO) (Ashburner et al., 2000).
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2.8.4 Cancer gene annotations

We collect the pan-cancer gene mutation frequency scores computed by
Leiserson et al. (2015) for the purpose of detecting pan-cancer disease
modules. Leiserson et al. (2015) collected raw pan-cancer mutation data,
such as SNV’s, indels and CNA’s, from the TCGA database (Kandoth
et al., 2013). These data were filtered to exclude statistical outliers and
include only the samples (corresponding to a patient) for which SNV and
CNA data were available. The resulting data set contains mutations
on 11,565 genes across 3,110 patients in cancers across 20 different tis-
sues. Additionally, we collect the sets of known cancer driver genes in all
available tissues from IntOGen (Gonzalez-Perez et al., 2013) and Cosmic
(Futreal et al., 2004).

3 Results and discussion

We investigate the potential usage of Graphlet Laplacians to analyze net-
work data via embedding, clustering and network diffusion experiments.
We consider Graphlet Laplacians for graphlets with up to four nodes.
We compare our results to the state of the art Laplacian matrices: the
standard Laplacian, the k-path Laplacian and Vicus. We consider path
lengths up to three for the k-path Laplacian, corresponding to the maxi-
mum size of the considered graphlets underlying the Graphlet Laplacian.
We set Vicus’ diffusion parameter to 0.9, as this value is recommended in
the original paper (Wang et al., 2017) and leads to the largest number of
enriched functions (see Section 3.2).

3.1 Graphlet Laplacians capture different local
topologies

While the standard Laplacian simply captures the direct neighborhoods
of nodes and can be used to cluster densely connected nodes together, the
graphlet-based neighborhood captured by our Graphlet Laplacian allows
for clustering of nodes that strongly participate in a given graphlet of inter-
est. Because different graphlets capture different local topologies around
nodes in a network (e.g., G3 involve paths while G8 involves cliques),
clusters obtained by using different Graphlet Laplacian are expected to
possess different topological features, which we assess as follows.

To assess if two graphlet Laplacians, LGi and LGj , capture different
topologies, we apply each Laplacian to cluster nodes in a network using
Graphlet Laplacian based spectral clustering. The resulting clusters are
used to partition the network into two sets of sub-networks, by induc-
ing the sub-networks from each clustering. LGi and LGj capture different
topologies if the corresponding sets of sub-networks have significantly dif-
ferent topology, which we measure by the overlap of two distributions:
the distribution of GCD-11 distances between the sub-networks produced
from LGi with the sub-networks produced from LGj and distribution of
GCD-11 distances between the sub-networks produced from LGi . The two
Graphlet Laplacians capture statistically significantly different topologies
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if the Wilcoxon-Mann-Whitney U-test (MWU) between the two distribu-
tions of distances is lower than or equal to 5% (see Figure 2 for the case
of LG0 and LG4 ). For each type of model network, we perform this test
ten times and report the least significant p-value for each pairwise com-
parison of Graphlet Laplacian based sub-networks. We also considered
the following non-graphlet based network distance measures: degree dis-
tribution distance, diameter distance, and average clustering coefficient
distance (see section 2.6.2). In general and independent of the network
distance measure used, clusters obtained from different Graphlet Lapla-
cians are typically statistically significantly topologically different at the
5% significance level. This is true across all of our biological networks and
most of our model networks, with some exceptions in geometric models
which are known to have homogeneous structure. Thus, Graphlet Lapla-
cians not only capture network cluster that have different topology, but
can also be used to measure the structural homogeneity of a given network.

We illustrate this by investigating how the parameters of the PSO/nPSO
model networks influence the topological homogeneity of the networks gen-
erated, see Supplementary Figures 7,8 and 9. At a low temperature (i.e.
nodes are connected to nearby nodes) and low number of communities
(i.e. the angle of each node is sampled from a univariate Gaussian), both
types of networks are homogeneous. As temperature increases, newly
added nodes are more uniformly connected in space (i.e. are more ran-
domly connected), making the generated PSO and nPSO networks closer
to ER networks, thus breaking the homogeneous structure. In nPSO net-
works, increasing the number of communities increases the homogeneity
of the networks. This effect is stronger at lower temperatures.

3.2 Different Graphlet Laplacians capture differ-
ent biological functions

In biological networks, genes having similar functions tend to be densely
connected to each other (Hartwell et al., 1999), which is why spectral clus-
tering based on the standard Laplacian matrix has been used to uncover
functional regions in networks (Bu et al., 2003). Alternatively, graphlets
have been used to show that functionally related genes tend to be simi-
larly wired, independent of them being densely connected (Milenković and
Pržulj, 2008). As graphlet Laplacians capture both types of information,
they should also capture biological functions.

To informally visualize this, we perform spectral embedding. We focus
on the embedding of the yeast GI network, for which we use 14 core biolog-
ical process annotations defined by Costanzo et al. (2016). We illustrate
the spectral embedding of the symmetrically normalized LG3 Graphlet
Laplacian in Figure 3. The embeddings of the other Laplacian matri-
ces of the yeast GI network can be found in the Supplement, Section
3. As seen in Figure 3, the spectral embedding of LG3 correctly groups
and separates the biological processes of ‘nuclear cytoplasmic transport’,
‘metabolism / mitochondria’, ‘Golgi / endosome / vacuole sorting’ and
‘Chrom. seg. / kinetoch. / spindle / micro tub.’. In the supplement, we
illustrate that Vicus and the Laplacian fail to find any grouping at all,
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Figure 2: Comparison of topological distance distributions between
sub-networks captured by two different Graphlet Laplacians in the
human PPI network. The distribution of GCD-11 distances between the
sub-networks from LG

0 (in blue) is statistically significantly different from the
distribution of GCD-11 distances between the sub-networks from LG

0 and the
sub-networks from LG

4 (in red) with MWU p-values ¡5%. This means thatLG
0

and LG
4 capture different topologies in the human PPI network.

placing all of the nodes in the same dense cluster. Embeddings based on
LP2 and LP3 succeed in separating different genes into different clusters,
but without grouping them in a biologically meaningful way.

Next, we aim to quantify this result by measuring the difference in
functions captured by different Graphlet Laplacians. We apply Graphlet
Laplacian based spectral clustering for each graphlet on our set of hu-
man molecular networks and assess the functional enrichments in terms
of the percentage of clusters enriched and the total number of annota-
tions enriched (Figure 4). Additionally, we create a baseline to validate
the statistical significance of our enrichment results. We perform the same
experiment 100 times with randomized GO-annotations. We do this by
swapping the sets of gene annotations in the molecular networks such that
no gene has its original set of annotations.

First, we observe that clusterings based on all Graphlet Laplacians but
LG4 tend to be of similar quality as those based on the standard Laplacian
or Vicus, both in terms of percentage of clusters enriched as well as total
number of annotations enriched. LP2 and LP3 capture the lowest amount
of functions in PPI networks, both in terms of percentage of clusters
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enriched and GO-BP annotations enriched. Secondly, in our randomized
experiment with randomized GO-annotations, we consistently find 0% of
the clusters to be enriched, regardless of the type of Laplacian matrix
used. This shows that all Laplacian based enrichments are statistically
significant. We find similar results in yeast, see Supplement, Section 5.
In the Supplement, we additionally observe that for each network and
annotation type, there is always at least one Graphlet Laplacian that
shows a larger number of the total number of enriched annotations than
Vicus. We conclude that Graphlet Laplacians are at least as biologically
relevant as the standard Laplacian, k-path Laplacian and Vicus.

Having established that Graphlet Laplacian based clusters capture bi-
ological functions, we quantify the overlap in their enriched functions. In
the Supplement, Section 6, we calculate the Jaccard Index between the
sets of enriched functions corresponding to each Graphlet Laplacian. For
GO-BP enrichments in clusterings on the human PPI and COEX net-
works, the average Jaccard Index is 0.22 and 0.30 respectively, meaning
that different Graphlet Laplacians capture different functions. To fur-
ther demonstrate this point, we present the number of GO-BP functions
that are enriched only in the clustering obtained by a particular Graphlet
Laplacian in Figure 5. We observe that each type of Laplacian matrix
shows a tendency to capture some distinct biological functions, indicating
the link between the biological function and the topology of these diverse
molecular networks. The same is observed for GO-MF and GO-CC anno-
tations, both in yeast and human networks (see the Supplement, Section
7). Combining this observation with our previous results, we can conclude
that Graphlet Laplacian based spectral clustering allows for distinguish-
ing different sets of similarly wired network components that are not only
biologically relevant, but may also capture complementary biological func-
tions.

3.3 Different Graphlet Laplacians capture com-
plementary sets of pan-cancer related genes

Laplacian based approaches towards predicting cancer related genes are
based on guilt by association: genes which tend to be connected to fre-
quently mutated genes are used as cancer gene predictions. Here we show
that by considering the different shapes (i.e. graphlets) by which genes
can be connected to frequently somatically mutated genes, complementary
cancer mechanisms can be captured.

We do this by diffusing (see section 2.5) the gene mutation frequency
scores (see section 2.8.4) on the human PPI network based on different
Graphlet Laplacian matrices. Network diffusion is a method underlying
many of the different approaches of cancer gene prioritization (Cowen
et al., 2017). We prioritize genes as potential cancer related genes ac-
cording the highest diffused score first. We measure the quality of these
scores using the area under the Precision-Recall (PR) curve and the area
under the Receiver Operator Characteristic (ROC) curve. We assume a
gene is correctly classified as a cancer related gene if it is known to be
a cancer driver gene in at least one type of cancer (see section 2.8.4).
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Figure 3: Capturing biological functions with Graphlet Laplacian LG
3 .

2D spectral embedding of the yeast GI network using the Graphlet Laplacian for
G3. Points represent genes and are color-coded with 14 core biological process
annotations defined by Costanzo et al. (2016).
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We observe that accuracy is independent of the Graphlet Laplacian used
and on par with the standard Laplacian, with an average area under the
PR and ROC curves of 0.21 and 0.78 respectively. In terms of accuracy
Graphlet Laplacian based scores consistently outperform those based on
k-path or Vicus, which achieve an average area under the PR and ROC
curve of 0.17 and 0.74 and 0.14 and 0.73 respectively (see Supplementary
Figures 17 and 18).

In Figure 6 we evaluate the overlap between the top hundred highest
ranking cancer related genes per Laplacian, measured using the Jaccard
Index. We observe five distinct clusters of different Laplacian matrices
capturing different sets of cancer related genes. Importantly, diffusion
based on three sets of Graphlet Laplacians (LG{2,5,7}, LG{1,3,4,6} and LG{8})
provide scores dissimilar to those achieved using the standard Laplacian
(the average Jaccard Index of each cluster with the standard Laplacian
based scores being 0.79, 0.87 , 0.65 respectively). Conversely, the highest
scoring genes based on LP{2,3} prove to overlap greatly with those based
on the standard Laplacian (the average Jaccard Index being 0.91). Vi-
cus based diffusion provides cancer related gene scores dissimilar from all
other Laplacian matrices, be it at lower accuracy, as shown above. Similar
results are obtained applying graphlet generalized diffusion on the human
COEX network, as shown in Supplement, Sections 8 and 9. We conclude
that Graphlet Laplacian based diffusion can be used to find complemen-
tary sets of cancer related genes.

4 Conclusion

In this paper, we introduce Graphlet Laplacians for simple networks to
simultaneously capture graphlet-based topological information and neigh-
borhood membership information. We demonstrate that they can straight-
forwardly be plugged into current Laplacian based network analysis meth-
ods widely used in systems biology, using spectral clustering, spectral em-
bedding and network diffusion as example applications.

Through our generalized spectral embedding and spectral clustering
methods on real and model networks, we show that different Graphlet
Laplacians capture sub-networks having distinct local topologies and that
are enriched in different, but complementary sets of biological annotations.
Finally, we show that our generalized network diffusion of pan-cancer gene
mutation scores resulted in complementary sets of cancer related genes for
gene prioritization dependent on the underlying graphlet. In all the tested
applications, our Graphlet Laplacians perform as good as and often better
than k-path and Vicus Laplacians, while being directly interpretable.

As indicated, Graphlet Laplacians can directly replace the traditional
Laplacian matrix in state-of-the-art network analysis methods, allowing
them to consider alternative ways of how nodes are connected. For in-
stance, our Graphlet laplacians could be used to extend embedding meth-
ods such as hyper-coalescent embedding (Muscoloni et al., 2017), which
may result in more relevant community detections in biological networks
and in more accurate analyses of the dynamics of cells’ biological pro-
cesses. Furthermore, Laplacian matrices are used in data-integration
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Figure 4: Cluster Quality. A: For our set of human molecular networks
(color-coded), the percentage of clusters enriched in BP annotations, with clus-
ters obtained based on spectral clustering using different Laplacian matrices
(x-axis). B: For our set of human molecular networks, the total number of
enriched GO-BP annotations in clusters obtained based on spectral clustering
using different Laplacian matrices (x-axis).
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Figure 5: GO-BP uniquely enriched. The number of annotations that are
uniquely enriched in clusterings based on the indicated Laplacian matrix for
each biological network (color coded).

frameworks to incorporate prior knowledge (e.g., via so-called graph reg-
ularizations in matrix factorization based data integration). Thus, using
our Graphlet Laplacians in such data-integration frameworks could result
in biologically more accurate patient stratifications, biomarker discoveries,
and drug-target interaction predictions (Gligorijević et al., 2016)

Finally, the applications of Graphlet Laplacians are not limited to
biology, as the generalized network-analysis tools are applicable in any
discipline that uses network representations, including physics, social sci-
ences, and economy.
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R., Stojmirovic, A., and Pržulj, N. (2014). Revealing the hidden language of

complex networks. Scientific Reports, 4, 4547.

22


