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Abstract

Evolutionary information derived from the large number of available protein sequences and structures could
powerfully guide both analysis and prediction of protein-protein interfaces. Three questions are addressed.
First, can residue conservation be quantified? Second, are protein-protein interfaces conserved? Third, can
the conservation of protein-protein interfaces be useful in their prediction?

To answer the first question, this work reviews 17 methods to quantify positional residue conservation
in multiple alignments. It proposes two new measures: one a concrete score, which is then used throughout
the remainder of the work, and the other a generalized formula for scoring conservation.

To answer the second question, the conservation of residues at protein-protein interfaces is compared
with other residues on the protein surface in six homodimer families. A probabilistic evaluation shows that
interface conservation is higher than expected by chance and usually statistically significant at the 5% level
or better.

To answer the third question, the utility of conservation in the discrimination of biological from non-
biological crystal contacts is assessed. Conservation and size information is calculated for contacts in 53
families of homodimers and 65 families of monomers. Biological contacts are shown to be usually con-
served and typically the largest contact in the crystal. Neural networks are then applied to the problem of
using size and conservation alone or in combination to predict whether or not a given contact is biologi-
cally relevant. The best neural networks combine the two measures and achieve accuracies of over 98%.
It is concluded that although size is the most powerful single discriminant, conservation adds important
predictive value.
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Chapter 1

Introduction

1.1 Protein-protein interactions

Protein-protein interactions are ubiquitous in biology. Transient associations between proteins underpin
a broad range of biological processes, which includes hormone-receptor binding, nuclease inhibition, the
action of antibody against antigen, signal transduction, correction of misfolding by chaperones and enzyme
allostery. Associations that are more permanent are essential for proteins whose stability or function is
defined by a multimeric state. Such proteins range from those in grand assemblies, eg, muscle fibres and
viral capsids, to those in humbler ones, eg, oligomeric enzymes and oxygen carriers.

The following section (1.1.1) describes five biological systems. Each system relies on protein-protein
interactions in one form or another. These examples illustrate the importance of protein-protein interactions
and show that such interactions vary considerably, both in kind and function.

1.1.1 The range and importance of protein-protein interactions
1.1.1.1 Inhibition: barnase and barstar

Barnase is an enzyme secreted by Bacillus amyloliquefaciens. It helps provide food for the microorganism
by degrading extracellular RNA for ingestion. Although an extracellular enzyme, occasional mistargeting
and intracellular folding means some barnase ends up in the cytoplasm. In this compartment, the ribonu-
clease would destroy the bacterium if were not for the action of barstar, barnase’s intracellular inhibitor.

Barstar forms a tight and permanent complex with barnase (K4 = 10~ “M)(Figure 1.1). It forms salt
bridges and hydrogen bonds with the enzyme’s catalytic residues, blocking the active site completely and
preventing further hydrolysis of RNA. During formation of this enzyme-inhibitor complex, barnase re-
mains relatively rigid. Meanwhile barstar undergoes a conformational change, opening itself up to bind the
enzyme (Kleanthous & Pommer, 2000, and refs therein).

1.1.1.2 Signalling: G protein-coupled receptors

Guanine-nucleotide-binding proteins (G proteins) can act as signal transducers. Upon binding guanine nu-
cleotides, such as GTP, a G protein changes its conformation. This in turn alters its ability to interact with
different proteins and results in the G protein leaving one protein-protein complex to join another, which
propagates a signal. G proteins are implicated in a variety of “information” systems within cells, includ-
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Figure 1.1: Bamase-barstar inhibitor complex.
Barstar (bottom, semitransparent) binds bamase (top, solid dark grey), blocking the enzyme’s active site
(overlap region). Atom coordinates belong to PDB structure Ibrs (Buckle et al, 1994). This picture was
generated using MolScript and RasterSD.

ing protein synthesis, cytoskeletal organization, visual transduction and intracellular messenger generation
(Morgan, 1994).

G protein-coupled receptors (GPCRs) represent one example of G proteins as signal transducers. In a
typical GPCR, such as the |3-adrenergic receptor (Figure 1.2), the G protein sits next to the intracellular
portion of a hormone receptor. This G protein is heterotrimeric, comprising two tightly associated subunits,
Gp and Gy, and a GTP-binding subunit, Ga- When an agonist hormone, such as adrenaline, binds to the ex-
tracellular portion of the GPCR, the intracellular portion changes conformation. This change induces G a to
swap bound GDP for GTP, which in tum causes this subunit to dissociate from the other two. Now “active”,
Ga may stimulate(or inhibit) a range of downstream targets. Its stimulationofone suchtarget, adenylyl
cyclase, promotesthe production of cyclic AMP (cAMP) (Hyvonen et al,2000,andrefstherein). The
rise in cAMP in tum may stimulate cAMP-dependent kinase and precipitate a cascade of further reactions,

which eventually lead to, say, an increase in heart rate.

1.1.1.3 Oligomerization: hydroxylamine oxidoreductase

Nitrification is the bacterial process by which organic nitrogen, in the form of ammonia, is oxidized to
nitrite and nitrate. It is part of the biogeochemical nitrogen cycle, which facilitates the exchange of nitrogen
between the air, soil and organisms. Hydroxylamine oxidoreductase (HAO) is an important enzyme in
nitrification. Once ammonia monooxygenase (AMO) has oxidized ammonia to hydroxylamine (Equation

1.1), HAO oxidizes hydroxylamine to nitrite (Equation 1.2).

NH3-h02 + 2H+-h2e--"NH20H + H20 (I.I)

NH:20H + H20 * HNO2 + 4H+ A 4¢" (1.2)
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Figure 1.2: Signal transduction in the 3-adrenergic G protein-coupled receptor (GPCR).
Diagrams (a) to (i) show the order of events when an agonist binds to a f-adrenoceptor that is linked to
an adenylyl cyclase-stimulating G protein (Gs). (a) Before agonist-binding, Gos has GDP bound and is
inactive. (b) The agonist binds, inducing a conformation change in the GPCR; this causes G o5 to exchange
GDP (c) for GTP (d) and become active. (€) Now active, Gos has less affinity for the y and B subunits
and dissociates from them. (f) Gos binds allosterically to adenylyl cyclase, promoting cAMP-production.
This in turn invokes a chain of further intracellular signals. (g) G qs’s low intrinsic GTPase activity means
it eventually hydrolyses bound GTP to GDP and returns to an inactive state (h). (i) The now inactive G g
rejoins the ¥ and 8 subunits of the GPCR. Adapted from Morgan (Morgan, 1994).
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Figure 1.3: Trimeric hydroxylamine oxidoreductase (HAO) from N. europaea.
The arrangement of peptide chains is shown from the side (a) and top (b). Each subunit is in a different
colour: red, green or blue. The 24 haem groups (8 per subunit) are shown separately (c) from the top view.
Iron atoms are highlighted in yellow. Trimerization allows the haems to form a ring, which stabilizes elec-
tron transfer. Atom coordinates belong to the PDB structure Ifgj (Igarashi et al, 1997) and were obtained
from the PQS (Henrick & Thornton, 1998). The figure was created using MOLSCRIPT (Kraulis, 1991 ).

These two reactions occur in the autotrophic bacterium Nhrosomonas europaea and, by donating
electrons to its respiratory electron transfer chain, provide energy for this microorganism’s growth
(Richardson & Watmough, 1999, and refs therein).

HAO is a homotrimer (Figure 1.3). Each subunit contains eight haem groups. Haem groups are useful
for redox reactions such as 1.2 because, typically, a single haem can bind and transfer one electron at a time.
The haem groups of HAO are not typical. Their sophisticated arrangement supports an electron transfer
network that can bind and transfer two electrons simultaneously. This so-called “dielectron transfer” allows

HAO to oxidize NHiOH (reaction 1.3) in a more efficient two steps (reactions 1.3 and 1.4).
NHiOH ~ (HNO) + 2H+ + 2e", (1.3)

(HNO) + HiO 4. HNOi + 2H+ + 2¢' (1.4)

Trimerization benefits HAO in a number of ways. First, the extensive interfaces between the subunits
provide a stable hydrophobic environment for electron transfer. Second, the association of the subunits,
which resembles a head of garlic, creates clefts and cavities believed to bind cytochrome c-554, the recipient
of this electron transfer. Third, trimerization allows one haem per subunit, known as P460, to crosslink to
another subunit. This positioning of P460 is believed central to HAO’s catalysis of the two-step reaction

activity (Igarashi et al, 1997) (Hendrich et al, 2001).

1.1.1.4 Structural proteins: tubulin, microtubules and dynamic instability

The cytoskeleton is a network of protein filaments that spatially organizes the cytoplasm of eukaryotic
cells. It comprises three main types of filaments: actin filaments, microtubules and intermediate filaments.
Microtubules are stiff, tube-like polymers of tubulin. These are highly dynamic structures, alternately
growing and shrinking by the gain and loss of tubulin subunits. The cell exploits their dynamic behaviour
in a number of processes. Among other things, it uses microtubules to position organelles in the cytoplasm,
to align chromosomes on the spindle during mitosis and meiosis, and to change its shape in morphogenesis.

The repeated unit that makes up a microtubule is a heterodimer of homologues a-tubulin and P-tubulin
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+ end
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Figure 1.4; Polymerization of tubulin heterodimers into microtubules.
(a) Tubulin heterodimer: a-subunit (dark grey, bottom), |3-subunit (semitransparent light grey, top) and
site of GTP or GDP binding, (b) Polymerization: the a-subunit of a new unit binds to the p-subunit of
an existing unit, (c) Tubulin units polymerize to form protohlaments, (d) Protofilaments assemble into
hollow polymers (microtubules), 13 protofilaments in cross-section, (a) and (b) depict PDB structure Iffx
(Gigant et al, 2000). Images were created using MolScript and Raster3D.

(Figure 1.4). These heterodimers associate end-to-end to form protofilaments, which combine laterally to
make tubes. Because heterodimers are asymmetric, microtubules are polar: a-tubulin sits at one terminus;
P-tubulin sits at the other. This polarity is key to how microtubules grow and how their growth is regulated.

The terminus crowned by P-tubulin is known as the “plus end” of the microtubule because it elongates
much faster than the other terminus (the “minus end”). When a new dimer is added to the plus end, its a-
subunit interacts with the existing terminal P-subunit. The site of interaction is special for both protomers:
it is where the P-subunit normally binds GTP or GDP, and where the a-subunit normally catalyses the
hydrolysis of GTP. The rate of polymerization depends on the affinity of the new a-subunit for the existing
P-subunit. This in tum depends on whether the P-subunit is currently accommodating a GTP, which acts as
bait to the a-subunit, or GDP, which does not. If GTP, the a-subunit binds strongly and microtubule growth
is quick. If GDP, the a-subunit binds weakly and no elongation occurs. Meanwhile, a-subunits of dimers
already incorporated into the microtubule slowly hydrolyse bound GTP to GDP. This gradually destabilizes
the associations between units and can result in depolymerization of the microtubule.

Depending on whether their plus end is capped with GTP or not, microtubules can thus alternate between
periods of net growth and net disassembly, a phenomenon called “dynamic instability” ( Alberts et al, 1994,

and refs therein) (Nogales, 2000, and refs therein).

1.1.1.5 Allostery: haemoglobin and the two-state model

Haemoglobin resides in red blood cells and carries oxygen, as well as CO2 and H+, around the bodies of
bony vertebrates. Haemoglobin A, the predominant isoform in adults, is a tetramer with the structure a iPz-
The a and P subunits are not identical but are homologous and function similarly. Each one contains a
single haem prosthetic group, which is responsible for binding O2. Tetrameric haemoglobin thus carries

between zero and four molecules ofOz.
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Obligate / | Permanent/ Specific /
Example interaction non-obligate transient multispecific /
nonspecific
Barnase-barstar non-obligate | permanent specific
Go-Ggy complex in GPCR | non-obligate | transient specific
HAO trimer obligate permanent specific
o-f subunits in tubulin dimer obligate permanent specific
Tubulin units in protofilament | non-obligate | transient specific
Haemoglobin A tetramer obligate permanent specific
SH3 domain of Abl tyrosine | non-obligate transient multispecific
with a range of partners?
Aggregation of casein non-obligate | permanent nonspecific

Table 1.1: Some protein-protein interactions classified.
All interactions shown here are biological.
2 For example, see Musacchio et al (Musacchio et al, 1994).

Haemoglobin exists in two conformational states: tense (the T-state) and relaxed (the R-state). When
haemoglobin is in the R-state, its subunits have a high affinity for O,. When in the T-state, their affinity
is low. Haemoglobin is in continuous equilibrium between these two states, and so the affinity of any one
molecule is constantly changing. However, the position of this equilibrium depends on how many O , are
already bound: the more ligands bound, the further the R-state is favoured and the higher the affinity.

This is an example of “homotropic allostery”, ie, when allostery and activity are at equivalent sites in a
multimer, and “positive cooperativity”, which is illustrated by Equations 1.5 and 1.6:

T,=R,, where0<n<4 (1.5
Kequilibrium = %,F"—} =L" (1.6)
n

where T, is the T-state with n O, ligands bound, c is an affinity factor, and L is the equilibrium constant
at Top and Rg. The first equation (1.5) shows the equilibrium between the T- and R-states. The second
(Equation 1.6) shows how the equilibrium constant for this interconversion is modulated by the value of
n. The positive cooperativity of haemoglobin plays an important physiological role, complementing the
opposing effects of CO, and other heterotropic (ie, binding somewhere other than the active site) allosteric
molecules. It helps ensure O; tends to be picked up by haemoglobin when it is abundant and tends to be
released when it is scarce (Creighton, 1996, and refs therein).

1.1.2 Classifying protein-protein interactions

A particular protein-protein interaction complex may belong to one or more of the following categories:
obligate or non-obligate; permanent or transient; biological or crystallographic; specific, multispecific or
nonspecific. These classes are defined below and illustrated in Table 1.1.

1.1.2.1 Obligate vs non-obligate

The subunits of an obligate complex are stable and functional within the multimeric state but not outside it.
A non-obligate complex is one composed of protomers that are each independently stable and functional in
their own right.
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1.1.2.2 Permanent vs transient

Transient complexes are those that form temporarily. These are common in signalling pathways and in
hormone-receptor binding, and are a type of non-obligate interaction. Permanent complexes can also be
non-obligate, but once formed are unlikely to dissociate under normal physiological conditions (eg, enzyme-
inhibitor). Obligate complexes are by definition permanent.

1.1.2.3 Biological vs crystallographic

A biological complex is one that exists under normal physiological conditions. A crystallographic complex
is one observed in a crystal structure. The interfaces defined in a crystallographic complex are known as
“crystal contacts”.

Some crystal contacts correspond to real biological interactions. Most do not. Rather, they are artifacts
of crystal packing and have no biological relevance. Crystal contacts therefore come in two types:

1. biological crystal contacts, ie, crystal contacts that belong to real biological complexes;
2. nonbiological crystal contacts, ie, those that do not.

In some literature, although not here, “crystal contact” is taken to mean nonbiological crystal contact and
“crystallographic complex” is used to describe a crystallographic complex that does not correspond to a
biological interaction.

1.1.2.4 Specific, multispecific and nonspecific

The interaction of a protein A with another protein B is specific if both of the following are true:

1. the interaction always occurs at the same site;
2. only B and its analogues bind at this site.

Binding surfaces involved in specific interactions usually exhibit high complementarity. As a result, the
complexes formed often have high affinity. All the interactions described in section 1.1.1 are specific. In
some literature, although not here, “multispecific” describes a family of homologous proteins that contains
members forming different specific interactions. Herein, that version of multispecificity will be termed
“familial multispecificity”.

The interactions of a protein A with a set of proteins X are multispecific if all of the following are true:

1. the interactions always occur at the same site;
2. only members of X and their analogues bind at this site;
3. X is plural but finite.

Multispecific interactions are not arbitrary; they follow a particular theme. For instance, a typical Src
homology 3 (SH3) domain binds a variety of different proteins with low affinity. Nevertheless, it does show
some selectivity: it restricts its interactions to targets with a Pro-X-X-Pro binding motif (Mayer, 2001, and
refs therein).

The interactions of a protein A are nonspecific if either of the following are true:

1. the interactions occur at random positions A;
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2. any protein is a suitable partner.

Aggregation is an example of nonspecific binding: proteins bind to random partners in random orientations.

1.2 Characteristics of interactions and interfaces

Protein-protein interactions occur at the surface of a protein and are biophysical phenomena, governed by
the shape, chemical complementarity and flexibility of the molecules involved. Towards the common goal
of understanding how proteins interact, a number of studies have characterized the properties of interfaces
between polypeptide chains.

A large number of studies of theoretical studies have examined the physical and chemical aspects of
protein-protein interfaces. Their findings are described below.

1.21 Geometry
1.2.1.1 Size

Most studies define the size of a protein-protein interface with respect to one protomer as the accessible
surface area (ASA) lost upon complexation. Estimates of the average size of an interface vary with the type
of complex and the dataset used. According to one study by Argos ( Argos, 1988), dimers contribute, on
average, 12% of their ASA to the contact interface, trimers 17.4% and tetramers 20.9%. These averages
conceal great variation. For instance, the interface of dimeric superoxide dismutase is 670 A 2, 9% of its
total ASA,; that of tetrameric catalase is 10 570 A2, 40% of the surface (Jones & Thornton, 2000, and refs
therein). Jones & Thornton (Jones & Thornton, 1996) showed that among homodimers interface ASA is
roughly linearly related to molecular weight.

1.2.1.2 Planarity

The planarity of an interface is usually measured as the root-mean-square deviation of its best-fit plane.
Most interfaces are relatively flat compared with the rest of the surface. This is particularly the case for
homooligomers, partly thanks to packing constraints, and less so for more heterogeneous complexes, eg,
antibody-antigen complexes [Thomas Kabir, personal correspondence] (Jones & Thornton, 1997a). There
are exceptions. In some obligate complexes, such as the homodimer gamma interferon, subunits interlock
in a sprawling, convoluted embrace.

1.2.1.3 Shape

Most interfaces are roughly circular. Jones & Thornton showed that the set of residues in a homodimer
interface could be approximated by the set of as many residues in a circular patch. In their dataset,
the residue overlap between the theoretical patch and biological interface ranged between 54% and 87%
(Jones & Thornton, 1997a).

1.2.1.4 Symmetry

Almost all homooligomeric complexes are symmetrical. There are a number of conjectures as to why this
should be. One is that symmetry allows so-called “finite assembly”, where the shape and interaction of
subunits precludes unwanted aggregation. Blundell & Srinivasan suggest that highly symmetric assemblies
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are more energetically stable than asymmetric aggregates (Blundell & Srinivasan, 1996). Wolynes has
speculated that the folding landscape for symmetric proteins has fewer kinetic barriers ( Wolynes, 1996).

Symmetric interfaces may be categorized as isologous or heterologous. Isologous interfaces are those
where identical surfaces on two subunits interact. These interfaces have a two-fold axis of symmetry and
can occur only in dimers. Heterologous interfaces describe interactions between different surfaces on two
subunits. Monod et al have suggested isologous interfaces are easier to evolve from monomers than het-
erologous ones: a mutation that strengthens the inter-subunit association is acquired doubly if the interface
is isologous (Goodsell & Olson, 2000, and refs therein).

1.2.1.5 Complementarity

Geometric complementarity describes the physical fit between two surfaces. Several methods exist
to measure geometric complementarity within an interface. Among those used in modern studies are
the shape correlation index (Lawrence & Colman, 1993), based on distance and the angle of the nor-
mal vectors to the molecular surface, the gap index (Jones & Thomton, 1996), which measures the
volume of cavities between the interacting surfaces and normalizes by the interface area, and pack-
ing density (Gerstein et al, 1995), measured using Voronoi polyhedra. A study by Lo Conte et al
(Lo Conte et al, 1999), which using all three methods, showed that shape complementarity was marginally
higher in oligomers and inhibitor complexes than in antibody-antigen complexes, and that packing density
at the centre of interfaces resembles that of the protein interior.

1.2.2 Chemistry
1.2.2.1 Hydrophobicity

Hydrophobic interaction is considered a driving force stabilizing associations within proteins (Dill, 1990,
and refs therein). However, the hydrophobic effect is thought less influential in associations between pro-
teins (Sheinerman et al, 2000, and refs therein).

In transient complexes, the proportion of hydrophobic groups differs only slightly between the interface
and the surface (Lo Conte et al, 1999). In obligate and permanent complexes the interfaces tend to be
significantly more hydrophobic (Chothia & Janin, 1975) (Young et al, 1994) (Jones & Thornton, 1995).
Studies examining the dispersion of hydrophobicity in interfaces show that, in obligate complexes at least,
hydrophobic groups tend to scatter rather than concentrate in a single large patch (Larsen et al, 1997).

1.2.2.2 Amino acid composition

The amino acid composition found at interfaces lies between that of the protein interior and the protein
surface but is much closer to the surface. Compared with the rest of the surface, interfaces are typically
richer in the aromatic residues His, Tyr, Phe and Trp; somewhat richer in the aliphatic residues Leu, Ile, Val
and Met, and depleted in the charged residues Asp, Glu and Lys. Most abundant is the charged residue Arg.
This may be because Arg is a prolific hydrogen-bond former and is able to form water-mediated hydrogen
bonds with other Args (Magalhaes et al, 1994) (D’ Alessio, 1999). Composition varies with the class of
interface. Protease-inhibitor complexes are richer in Cys; antibody-antigen interfaces are richer in Tyr. But
the preponderance of Arg and depletion of Lys are common (Lo Conte et al, 1999). Figure 1.5 shows the
distances between the amino acid compositions of the surface, interior and interface in different classes of
complex.
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Figure 1.5: Distance between amino acid compositions.
Pairwise distances are calculated by projecting the fractional compositions of amino acids into 20-

dimensional space and measuring the Euclidean distance between them, ie, d = ,/% >i(si— t,-)z, where
s; and #; are the percentage areas contributed by residue type i to surfaces s and ¢ . Distance is in units of
percentage area (Lo Conte et al, 1999, and Joel Janin, personal correspondence). Note that in this diagram
“interface” is defined conservatively and includes only those atoms that are completely buried on complex-
ation. Other studies, such as that of Jones & Thornton (Jones & Thornton, 1995), which tend to define
the interface more loosely, show obligate interfaces as being closer in composition to the surface than the
interior.

1.2.2.3 Electrostatics

Non-obligate protein-protein interfaces are often quite polar. Polar groups can help make interactions spe-
cific: a prospective partner must complement the existing pattern and direction of positive and negative
charge. This is an advantage if, as is the case with most non-obligate interactions, subunits must find each
other in the cytoplasmic soup. However, polar groups can also oppose complex formation, owing to des-
olvation effects. A protein-protein interaction must therefore balance the thermodynamic cost of burying
polar groups from water with the kinetic benefit of electrostatic interactions at the interface, ie, hydrogen
bonds and salt bridges (McCoy et al, 1997) (Sheinerman et al, 2000, and refs therein).

Hydrogen bonds are more common in non-obligate complexes than in obligate or permanent com-
plexes. Average frequencies of hydrogen bonds per 100 A 2 of buried surface have been calculated as 0.88
for obligate homodimers, 1.4 for permanent non-obligate complexes and 1.1 for antibody-antigen com-
plexes (Jones & Thornton, 2000, and refs therein). However, these averages hide great variation: among
non-obligate complexes studying by Lo Conte et al, the number of hydrogen bonds ranged from 3 to 50
(Lo Conte et al, 1999). This study also found the majority of bonds formed were most often mediated by
water.

Salt bridges are rarer than hydrogen bonds, occurring in only half the homodimers analysed by Jones
& Thornton (Jones & Thornton, 1996). This is unsurprising because ionic interactions, which represent an
extreme form electrostatic interaction, can occur between only a subset of hydrogen bonding residues.
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[ Complex | K4 (mol dm™) range |
Ribonuclease inhibitor with angiogenin 10-1¢
Barnase with barstar 1071
Caspase-activated DNase (CAD) 10~
with inhibitor ICAD)
Activated G with adenylyl cyclase 1073
o-tubulin with B-tubulin 10-°
(in tubulin dimer)
of-haemoglobin with of-haemoglobin 10~°
(in oz B2-haemoglobin)

Table 1.2: Dissociation constants for some example protein-protein complexes

1.2.3 Prediction of protein-protein interfaces based on physical and chemical char-
acteristics

The consistency apparent in observations of oligomeric interfaces has led some groups to suggest the
location of a putative interface may be predictable from protomer structure alone ( Young et al, 1994)
(Lijnzaad & Argos, 1997) (Jones & Thornton, 1997b). Jones & Thornton (Jones & Thornton, 1997b) de-
veloped a predictive method in which, for each protomer in a dataset of dimers, they defined roughly
circular patches on the molecular surface, then assessed and ranked each patch according to its chemical
and physical properties. Because the properties that make a good interface depend on the type of complex,
patches on protomers from homodimer, heterodimer and antigen-antibody complexes were ranked by dif-
ferent criteria. Their method proved most powerful when applied to simple homodimers and weakest when
applied to transient dimers, mirroring the degrees of physico-chemical consistency observed for these types
of complexes.

The geometric and electrostatic complementarity observed within interfaces has been the basis of many
studies that dock two proteins of known structure (Sternberg et al, 1998, and references therein). These
algorithms usually begin by treating the two proteins as rigid bodies that are docked to produce a tight
complex. Putative complexes are then assessed and refined according to electrostatic or chemical criteria to
predict the “best” complex.

1.2.4 Kinetics and energetics of binding
1.2.4.1 Affinity and dissociation constants

The affinity between two protomers in a protein-protein interaction is most often expressed as their dis-
sociation constant at thermodynamic equilibrium, K4. For the interaction between protomers A and B,

ie,
A+B+ AB,
Ky is given by
[A][B]
Kyg="—"—.
[AB]

This scheme also accommodates interactions involving more than two protomers, provided those interac-
tions are first broken down into successive bimolecular steps.

Values of K in biological systems range from 104, denoting loose association, to 1016, denoting tight
associations. Table 1.2 gives the dissociation constants of some example complexes.
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The dissociation constant can be determined experimentally by measuring equilibrium concentrations
of A, B and AB. The range of K dictates the choice of experimental technique. Available techniques for the
micromolar range and above are fluorescence quenching, equilibrium ultracentrifugation or microcalorime-
try. For the nanomolar range: enzyme-linked immuno-absorbant assay (ELISA). Below the nanomolar
range, direct measurement is unreliable. In this case, kinetic measurements, ie, measurements of associa-
tion and dissociation rates, are used in preference to equilibrium methods (Janin, 2000, and refs therein).

1.2.4.2 Energetics

The Gibbs free energy of dissociation may be calculated from the K 4 using the equation
Ky
AGy = —RTIn o

where T is temperature, R is the gas constant, and ¢® = 1 mol dm~3 under standard conditions. Although
not an energy as such, AGY is often referred to as the “binding energy”. The higher its value binding energy
the more favourable the interaction. In biological systems, AG § ranges from 6 to 19 kcal mol 1.

The binding energy is a balance of two components, entropy and enthalpy. These are related to AG § by

the equation
AGY = AH] —TASG,

where AHJ and AS§ are the changes in enthalpy and entropy respectively. The interaction is “enthalpy
driven” when AH] is positive (favourable) and ASJ negative (unfavourable). If the converse is true, the
interaction is “entropy driven”. Determining the relative contributions of enthalpy and entropy to the inter-
action is not as easy as it might seem. In principle, AH could be estimated from van't Hoff’s law:
AHS = _Rd(and) .
d(1/T)
However, this works poorly in practice. Rather, AHJ is best measured directly by isothermal titration
calorimetry (ITC). In this technique, sensitive microcalorimeters are used to measure the heat evolved on
mixing protomers A and B. This heat corresponds to —AH 3.
The heat capacity change, AC§, can be calculated by measuring AH ] at different temperatures, thanks
to the relationship ( )
d{AH]
ACy = —37
The heat capacity change is useful because it can indicate how much the hydrophobic effect contributes
to stabilizing the AB complex. Some groups have postulated a direct relationship between ACJ and the
amount of buried hydrophobic surface area of the form

ACdo = aAASAnonpolar + bAASApolar )

where a and b are constants, and AASA ;,pnpotar and AASA po1,- are the changes in ASA for nonpolar and
polar surfaces respectively. However, there is evidence to suggest the true relationship is less straightforward
(Janin, 2000, and refs therein) (Henriques et al, 2000, and refs therein).
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1.2.4.3 Anatomy of interface thermodynamics

Some residues at a protein-protein interface contribute more to the binding energy than others. The energetic
importance of a residue can be measured by first mutating it to a reference amino acid type, such as Ala,
then recording the consequent change in the free energy of binding as

AAG; = AGJ' + AGT™,

where AGY' and AGT" are values of AG for the wild-type and mutant respectively. This so-called “alanine-
scanning mutagenesis” has been used to map the thermodynamic properties of dimer interfaces and re-
vealed that important residues are not necessarily distributed evenly. Rather, residues with high AAG 4
often concentrate in “hot-spots” of binding energy (Bogan & Thorn, 1998). There is also evidence from
other thermodynamic studies that residues distant from the interface can play a critical role in stabiliz-
ing protein-protein interactions (Hedstrom, 1996). Such residues are believed to be energetically coupled
with those directly involved in binding and allow binding energy to propagate through tertiary structure
(Lockless & Ranganathan, 1999).

1.3 Experimental technologies for detecting and measuring protein-

protein interactions

Protein-protein interactions have been subject to just about every possible form of experimental analysis.
Table 1.3 summarizes some of the main experimental methods currently used to study protein-protein in-
teractions.

1.3.1 Classifying experimental methods

Experimental methods for analysing protein-protein interactions are here divided into two classes: presence
methods and characterization methods. Presence methods can detect unknown protein-protein interactions.
These seek to find out whether proteins interact. Characterization methods characterize interactions. They
seek to discover how proteins interact.

Presence methods provide only general information but can often be performed on a large scale, such
as in high-throughput screening. They may be subdivided into three further categories: pairwise methods,
which detect whether two proteins interact; fishing experiments, which detect all proteins that interact with
a given “bait” protein; and all vs all methods, which detect all interactions among a group of proteins.

Characterization methods provide more detailed information about protein-protein interactions but are
usually performed on only a small scale. These are mainly applied to known interactions and illuminate
specific aspects of a complex such as binding energy, structure, conformational changes, kinetics and so
forth.

1.4 Evolution of oligomers

It is usually assumed that, in evolution, single protomers came first and oligomers later. This can be justified
by the intuition that simplicity usually precedes complexity and not the other way around. Some workers
have even cited the amino acid composition of oligomeric interfaces as supporting evidence. Specifically, if
oligomers came first, then why should oligomeric interfaces be midway in composition between the interior
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Performed on whole cell or chosen compartments. First isolate protein fraction.
Then identify which proteins are present using any of immunoprecipitation, affinity
Cell-map proteomics chromatography, sedimentation equilibrium and 1D or 2D gel electrophoresis.

Chemical cross-linking

Analyse complexes by 1D native gel electrophoresis and mass spectrometry
I-TOF or ES)

Covalently link any peptide terminii that are close during complexation

Detect changes in secondary structure and thereby show whether conformational

Cireular dichroism (CD) changes occur on complexation
Co-crystallography Perform X-ray crystallography on intact complex to give 3D structure of interaction
Electron microscopy (EM) Visualize multimers at a coarse grain level
Isothermal calorimetry (ITC) Measure heat change on complexation

A microarray is a small chip that contains a matrix of bound cDNA bait. When cell
Microarrays lysate is washed over the chip, mRNA sticks to its complementary bound cDNA. A

Nuclear magnetic resonance (NMR)

Protein chips

Resonance energy transfer (FRET/BRET)

microarray therefore measures mRNA levels in a cell. Correlated levels of mRNA
expression are used as a rough guide as to whether two proteins might interact

Isotope labelling: identify close-together atoms in a complex from their NOE
transfers

Immobilize arrays of protein bait on a chip. Wash solution of (eg, photo-) labelled
prey proteins over the chip. Interacting prey protein remain stuck to bait and are
detectable by their label

Tag subject protein tagged with a fluorescent (FRET) or bioluminescent (BRET)
probe. If subject binds to another protein, the probe noticeably changes its

wavelength

Surface plasmon resonance (SCR)

Yeast two-hybrid (Y2H)

Immobilize bait protein on activated optical metallic surface. Interaction between
the bait and prey alters the diffractional properties of the plate, causing an optical
change

In addition to bait and prey, this method involves a reporter gene and two protein
domains that bind to it: B, which binds at the promoter, and A, which activates
transcription. The bait is fused to B, the prey to A. If the prey and bait interact, so
do A and B, which causes expression of the reporter and leads to a colour change
or other noticeable phenotype
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and exterior (D’Alessio, 1999, and refs therein)? Accepting this supposition prompts at least two further

questions:

1.

2.

Does oligomerization confer biological, and therefore evolutionary, advantages?

By what mechanisms could oligomeric complexes have arisen from monomers?

This section explores possible answers to the above questions.

1.4.1 Advantages of being an oligomer

Oligomers possess a number of talents not shared by monomers (Goodsell & Olson, 1993, and refs therein)

(D’ Alessio, 1999, and refs therein). These are summarized below.

1.

Subunit interfaces. In some multimeric enzymes (eg, E. coli aspartate transcarbamoylase) the active
site is formed at the junction of two subunits. This arrangement can bestow several advantages,
including improved specificity through substrate channeling and assisted catalysis through subtle
intersubunit motions.

. Interaction of subunits. Subunit interaction can be dynamic. It can endow a complex with coop-

erativity (eg, in haemoglobin) or substrate feedback inhibition. In the extreme case of bovine mi-
tochondrial F1-ATPase, catalysis is aided by a continuous cycling of the enzyme’s oligomeric state
(Abrahams et al, 1994).

. Reduced surface area. Combining several functional proteins into one aggregate reduces the total

surface area accessible to solvent. This is easier on the host: fewer ions and ordered water molecules
are needed to neutralize and hydrate the protein surface.

. Multiple active sites. Some multimeric enzymes (eg, dimeric superoxide dismutase) have an active

site on each subunit. This reduction of surface area has a kinetic advantage in that productive colli-
sions between enzyme and substrate are more likely.

. Structural frameworks. Oligomerization enables the cell to form structural frameworks. These can

used for protection, scaffolding (eg, tubulin) or mechanical transduction (eg, in muscle contraction).

. Coding efficiency. Building a range of large structures out of identical bricks, or groups of identical

bricks, makes more use of less genetic information.

. Modular architecture vs one long polypeptide. It is more robust to build a necessarily large and

complex structure such as HAO (see 1.1.1.3) from separate modules than from a single polypeptide
chain. First, a single chain version of the HAO homotrimer would require a longer gene, which,
assuming a constant mutation rate, would accumulate a deleterious mutation more quickly. However,
as has been noted by Monod et al (Monod et al, 1965), the effect of a single deleterious mutation in
a repeated module would be multiplied throughout the oligomer. Second, if the single chain version
of HAO develops a fault during transcription, translation or folding, the whole structure is lost; in the
modular scheme, only the faulty module is lost, and this may be replaced.

Points 1, 2, 3 and 4 could also apply to the advantages of having multiple domains in a multidomain protein.
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1.4.2 Mechanisms of oligomeric evolution

The most general models of oligomer evolution describe the transition from monomer to dimer
(D’ Alessio, 1999). This is a reasonable simplification because it can be applied iteratively to explain higher
order oligomers. The models described below all assume the following starting condition: the availability
of expendable genetic material. This redundancy, which probably entered the hypothetical genome through
a duplication event, provides a relatively safe arena for evolutionary experimentation.

1.4.2.1 The mutation model

The mutation model starts with one aloof monomer. This monomer acquires a primary mutation that makes
its surface adhesive enough to bind another protein. The site of the mutation need not be the only source of
adhesion — it may complement existing “preprimary” mutations — but it tips the balance. The new protein-
protein interaction is stable or metastable, which means the complex corresponds to only one of many
possible kinetic paths. After this, two things can happen. If the interaction is detrimental to the host organ-
ism, it is removed from the gene pool (negative selection). If the interaction is tolerated (neutal survival)
or advantageous (positive selection) it stays and continues to evolve. Secondary mutations then make the
complex fully stable if it was not so already. Over time, genetic drift leads to the evolved dimer, which is the
one observed today. By this point the primary mutation is no longer readily detectable (D’Alessio, 1999,

and refs therein).

1.4.2.2 The domain-swap model

The domain-swap model (also impenetrably known as the Rosetta Stone model) starts with two monomers
A and B, as shown in Figure 1.6. Fusion of the genes for A and B leads to expression of the fused two-
domain protein AB. Relatively few mutations then produce a primitive binding site between the two do-
mains. Successive point mutations optimize this domain-domain interface and result in a stronger associ-
ation. One of two things may happen next. In the first scenario, recombination separates the genes for A
and B, the two domains will once again be separate proteins. However, because of the optimized bind-
ing site, monomers A and B will interact as a heterodimer. In the second scenario, a deletion in the loop
between the two domains restricts relative positioning of A and B, disrupting the interdomain interface.
However, the A and B domains of two AB proteins can interact, forming a domain-swapped homodimer
(Marcotte et al, 1999).

The domain-swap model is believed to explain some but not all protein-protein interactions, and con-
sidered to be subsumed by the more general mutation model (D’Alessio, 1999).

1.5 The use of sequence data to infer molecular interactions

Sequence-based computational approaches to predicting molecular interactions have become popular in
recent years, thanks largely to the rapid growth of available protein and DNA sequence data and related re-
sources. Sequence-based approaches contrast with patch analysis, docking and other computational meth-
ods described in section 1.2.3 because they consider the genetic provenance of the interacting proteins or
molecules and usually assume some kind of evolutionary model. These methods can be roughly divided
into comparative genomic methods, which generally seek to detect potential interacting pairs of proteins,
and structure-level methods, which seek to locate or characterize the site of an interaction on a protein

structure and the residues involved.
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Figure 1.6: domain-swap model of dimer evolution.
Circle A and square B are domains. Lines above shapes represent the genes for A and B. See text for
explanation. Adapted from (Marcotte et al, 1999).
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1.5.1 Comparative genomics
1.5.1.1 Gene order

The tenet of gene order methods is simple: if two genes are close together, their products are likely to
interact. In fact, the closer, the more likely. A study by Huynen et al (Huynen et al, 2000) showed that if
the adjacency of two genes was conserved among phylogenetically distant genomes, there is a 63% chance
their products are part of the same multimer and a 30% chance they have a direct physical interaction. If
one considers only those genes involved in the metabolic pathway of E. coli, this likelihood rises to 90%.
One explanation for why proteins from adjacent genes should interact is convenience: adjacent genes can
share regulation and expression systems, which can be an evolutionary advantage if their products interact
(Teichmann et al, 2001, and refs therein).

In a similar vein, Enright et al and Marcotte et al have both published methods that infer protein-protein
interactions from gene fusion events (Enrightet al, 1999) (Marcotte et al, 1999). These methods rely on
the domain-swap model of evolution (section 1.4.2.2). They predict that if domains A and B are fused in
one protein, then whenever orthologues (ie, homologues of the same function) of A and B are on separate
proteins, these proteins will interact. Although these methods have enjoyed some success, in their current
form they inevitably suffer from high rates of overprediction.

1.5.1.2 Phylogenetic profiles

Phylogenetic profiles are based on the following hypothesis: if two proteins A and B are functionally
linked, then a given genome will have either both A and B or neither one. In the method of Pellegrini et al
(Pellegrini et al, 1999), two proteins are predicted to interact, directly or indirectly, if their pattern of occur-
rence among genomes is similar. This method is better at detecting pairs of proteins that share a function or
metabolic pathway than those that interact directly. In an assessment by Huynen et al (Huynen et al, 2000),
34% of pairs predicted for Mycoplasma genitalium were functionally linked. Because phylogenetic profiles
draw their strength from the sequencing of whole genomes and the ability to detect orthologues across them,
it is likely to become more powerful with time.

1.5.2 Structure-level methods

All sequence-based methods to localize molecular interactions are relatively new. Prior to the beginning of
this work, only a handful of methods for analysis or prediction had been described. Four are summarized
below. All rely on the general premise that restricted evolutionary variability of residues reflects their
functional importance. Or more specifically, if a protein-protein interaction plays an important functional
role, it is interesting to study how patterns of evolutionary conservation in the protomer sequences relate to
the maintenance of the interaction. Most also benefit from the fact that residues usually involved in binding
are on the molecular surface and surface conservation is generally low. This potentially high signal to noise
ratio arises because changes in surface residues do not generally influence folding and overall stability as
much as changes in residues at the structural core, so any mutational intolerance that does exist can be
detected more easily.

1.5.2.1 Correlated mutations

Consider a pair of residues whose interaction (or non-interaction) is essential for the host’s survival. If
one residue mutates, that interaction may be lost and the host’s fitness severely impaired. However, if
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the other residue undergoes a compensatory mutation, either at the same time or a few generations later,
the interaction, and the host’s fitness, could be preserved. Compensatory mutations, usually detected as
correlated mutations, are thus considered evidence that two residues are functionally linked. Correlated
mutations within a protein sequence have been shown to be important in maintaining stability and function
(Serrano et al, 1990) (Shindyalov et al, 1994) (Taylor & Hatrick, 1994) (Gobel et al, 1994).

Pazos et al (Pazos et al, 1997) took this further. They proposed correlated mutations should occur at
domain-domain interfaces and, if they did, they should also occur at protein-protein interfaces. Identifying
correlations within a single domain sequence is more straightforward than in either a multidomain sequence
or between different proteins. In order to identify correlated residue pairs, the residues involved must
have a long and intimately linked evolutionary history. Ideally, they should also have been subject to a
similar rate of evolution. Residues from different proteins rarely meet these criteria. Even in multidomain
sequences, which have often arisen from recent domain-insertion, splicing or recombination events, a linked
evolutionary history between residues is not guaranteed. Moreover, it is unwise to assume domain-domain
interfaces are under the same kind of evolutionary pressure borne by protein-protein interfaces. After all,
two proteins can have the choice not to interact.

Pazos et al performed their analysis on 21 two-domain proteins and one dimer. For each protein, they
calculated correlations of amino acid substitutions for all residue pairs in a multiple sequence alignment.
Then, to test the hypothesis that correlated mutations identified residues in contact, they compared the
pairwise correlations with pairwise residue distances in the crystal structure. Unfortunately, their results
only weakly supported their hypothesis and their method as it stood was not obviously useful for predicting
protein-protein interactions.

Lockless & Ranganathan (Lockless & Ranganathan, 1999) used correlated mutations, calculated differ-
ently from Pazos et al, to test their hypothesis that residues at protein-protein binding sites are energetically
coupled with residues distant from the interface. These distal residues support binding indirectly, stabiliz-
ing association by allowing binding energy to propagate through the structure rather than being localized at
the interface. Their results, performed on just one complex but corroborated by mutagenesis experiments,
showed that correlated mutations can correspond well to energetic couplings.

1.5.2.2 Evolutionary tracing at binding site

Lichtarge et al (Lichtarge et al, 1996) described a method for defining functional residues at binding sites.
They start with the multiple alignment and associated phylogenetic tree for a protein of interest. Their
“evolutionary trace” method then defines a series of cross sections of the tree. A cross section near the root
defines a few major branches, each of which represents a low-resolution division of the families. Moving
the cross section away from the root and towards the leaves, subfamilies are defined that are progressively
smaller and more numerous. This is done in discrete stages to produce a subfamily grouping for each level
of sequence identity. At each stage, aligned residues are classified as “conserved”, ie, invariant through the
entire alignment, “class-specific”, ie, invariant within a clade, or “neutral”, ie, variable within the clade.
As the families become smaller, so does the sequence variation they describe, resulting in the number of
class-specific residues increasing with resolution.

Lichtarge et al used an interactive molecular graphics program to view the protein of interest, colouring-
in conserved and class-specific residues identified for increasing levels of sequence identity resolution. They
found the patterns of clade-specific residue conservation correlated well with observed patterns of relative
binding energy. Their method was not, however, particularly automatic. Nor was it predictive. Rather it was
a form of exploratory data analysis; after all, considering residue conservation at multiple cross-sections of
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the family tree is a complex business whose interpretation is ultimately subjective.

1.5.2.3 Searching for 3D binding motifs

De Rinaldis et al (de Rinaldis et al, 1998) developed a search tool that uses evolutionary information to
compare binding motifs on protein surfaces. Given a query structure and its sequence alignment, their
method maps amino acid substitution patterns of surface residues onto a three-dimensional grid. The grid,
which corresponds to a coarse grain model of the structure, is filtered to remove unconserved positions and
acts as a profile of the surface. For each protein in a database of structures, they then compare the amino
acids on its surface with distributions in the profile and assess the similarity of any aligned residues using
amino acid exchange probabilities from a mutation data matrix. Their method could be used to identify

homologous surface patches involved in interfaces.

1.6 Conservation at protein-protein interfaces

Intuitively, protein-protein interfaces should be conserved among similarly interacting orthologues. After
all, if a protein’s function is common within a homologous family and essential or advantageous for the
survival of the host organism, the maintenance of that function describes the limits to which mutational
variation in the sequence may be tolerated. Moreover, if protein-protein interfaces are conserved, then
conservation could be used predictively, discriminating spurious interfaces from true biological ones.

This thesis explores the above themes. It breaks down into three main work chapters. Chapter 2 ex-
amines the challenges involved in extracting quantitative evolutionary information from multiple sequence
alignments. It surveys the range of strategies that have been used to score residue conservation and develops
a new conservation score. Chapter 3 tests the premise that protein-protein interfaces are conserved. Rigor-
ous statistics and the conservation score of chapter 2 are used in this analysis of a small data set of manually
validated homodimers. Chapter 4 develops the analysis methods of chapter 3 into a predictive method. This
chapter assesses the utility of conservation and size in discriminating biological from nonbiological crystal
contacts.

Chapter 5 concludes this work, consolidating the results and suggests new directions for this fertile area.
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Chapter 2

Scoring residue conservation

2.1 Introduction

A multiple sequence alignment is a historical record. The patterns of amino acid variability in its columns
tell a story of evolutionary pressure, mutation, recombination and genetic drift that often spans many mil-
lions of years. This story can be read in different ways, depending on which model of evolution is deemed
most appropriate.

According to the neutral model of molecular evolution (Page & Holmes, 1998, and refs therein), once
a protein has evolved to a useful level of functionality, most new mutations are either deleterious, in which
case they are removed by negative selection, or neutral, in which case they are kept. Most of the substi-
tutions observed in an alignment are therefore neutral; rather than representing improvements in a protein,
they indicate how tolerant the protein is to change at that position. In an already optimized protein, the rate
of substitution will be inversely correlated with the functional constraints acting on that protein. Fibrinopep-
tides are under fewer functional constraints than ubiquitin; they also evolve about 900 times faster. The most
functionally important residues of haemoglobin (see Figure 2.1), those that secure the haem group, show a
much lower rate of substitution than others do in the protein.

The selectionist model of molecular evolution offers a different perspective (Page & Holmes, 1998, and
refs therein) (see Figure 2.2). It agrees with the neutralist model that most mutations are deleterious and
removed by negative selection, but disagrees about those mutations that are kept. According to this model,
the majority of accepted mutations confer a selective advantage whereas neutral mutations are rare. The
relative merits of the two models, or their compromise (the “nearly neutral” model), are not considered here.
Rather, we consider alignments from the perspective of the neutral model only. This model accords better
with the idea of conservation among orthologous sequences and is arguably the more evident in alignments
from structural biology.

So if the degree of functional constraint dictates how conserved a position is, then the converse must also
be true, ie, the degree of conservation must indicate the functional importance of that position. Identifying
conserved regions of a protein can be tremendously useful. Residues involved in an active site or a structural
core can sometimes be identified with little prior knowledge of the protein structure.

In the past, patterns of conservation in multiple alignments were identified by inspection alone. How-
ever, the rapid increase of available sequences and published analyses has emphasized the need for objec-
tive, automated methods, and in the last decade or so this has been the subject of considerable research.
Much of that work has focused on extracting global patterns and motifs from multiple alignments, often
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Figure 2.1; Multiple sequence alignment of adult a- and ~-haemoglobin (Hb) and myoglobin (Mb) from
four vertebrate species.

Amino acids are coloured by their physical and chemical properties according to the scheme of CLUSTALX
(Thompson et al, 1997). Stars on the top ruler indicate invariant positions. Note the invariant F at position
50 and H at position 101. These residues both bind the haem group and so are functionally constrained.
After ref (Page & Holmes, 1998).

Neutralist model Selectionist model

Deleterious
Neutral
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Figure 2.2: Neutralist and selectionist models of molecular evolution.
The pie represents the total number of mutations arising in a gene. The .size of each slice represents its
contribution to the total according to the neutralist or selectionist model. The slice size is not exact; it
merely serves to illustrate the contrasting emphases of the two models. See text for details. After ref
(Page & Holmes, 1998).
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Figure 2.3: Some example columns from different multiple alignments.
Each labelled column represents a residue position in a multiple sequence alignment. The rows denote the
sequence number of a particular amino acid. Amino acids are identified by their one-letter code, gaps by
a dash (“-”). Note that column (k) comes from an alignment of ten sequences whereas column (j) comes
from an alignment of only four.

with a view to exploring the relationships between homologues and developing diagnostic tests for func-
tions of newly discovered sequences. For instance, statistically robust profile methods, such as PSI-BLAST
(Altschul et al, 1997) and those based on hidden Markov models (Eddy, 1996), have become increasingly
popular.

Despite these advances there have been few recent insights into the derivation of a quantitative conser-
vation measure for a single aligned position, and there certainly is no standard method. Ask a life scientist
how similar two sequences are and he will probably quote a percentage identity or an E-value. Ask him
how conserved a position is in a family and the reply is most likely to be qualitative. This chapter discusses
what a quantitative measure of conservation should actually measure, and, by surveying almost than twenty
scores, examines some of the problems inherent in developing such a score.

2.1.1 Exercises for a conservation score

There is no rigorous mathematical test for judging a conservation measure; if there were, one would use
the test and not bother with an additional score. Rather than accuracy then, a conservation score may be
judged on its verisimilitude: its ability to depict realism and its concordance with biochemical intuition.
Figure 2.3 is part of an attempt to make these abstract notions more concrete. It shows columns of amino
acids taken from hypothetical multiple sequence alignments of orthologues. Applying basic biochemical
knowledge to this collection of columns reveals some concrete qualitative comparisons. Specifically, from
most conserved to least conserved, the following orders seems reasonable: (a) > (b) > (c) > (d) > (e) > (f),
then (g) > (h) > (i), and lastly (j) > (k).

Column (a) contains only D and is therefore the most obviously conserved. Column (b) also contains E,
so (b) is more variable than (a). Column (c) contains D and E but is less dominated by any one than (b), so
(c) more variable than (b). Column (d) contains nine D and one F; it is clearly more variable than column
(a), but is it more variable than column (b)? Phenylalanine is large and non-polar whereas aspartate and
glutamate are both smaller and polar. Because the amount of stereochemical variability in column (d) is
greater than in column (b) it seems likely a mutation from D to E glutamate would be more tolerable than
one from D to F (a conclusion supported by the exchange probabilities in a mutation data matrix; see later).
Column (e) implies both conservative substitutions (between D and E) and non-conservative ones (between
the acids and phenylalanine). Column (e) is thus the least conserved so far. Column (f) contains the same
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amino acid types as (e). However, because it is less skewed towards an abundance of D and E, ie, more
evenly mixed, (f) is more variable.

Columns (g) and (h) are equivalent in terms of the number and frequency of their amino acids. However,
because (g) contains only branch-chain amino acids whereas (h) encompasses a broader mix of stereochem-
ical characteristics, (g) is more suggestive of conservative substitutions in response to negative selective
pressure. Column (i) is the most variable column encountered so far, as judged by biochemistry or amino
acid frequency.

Columns (j) and (k) illustrate the importance of gaps. Column (j) is taken from an alignment of four
sequences. In each sequence, a leucine is present at that position. Column (k) also contains four leucines
but, because it comes from an alignment of ten sequences, it also contains six gaps. For column (k), then,
there is strong evidence that leucine is not functionally constrained. After all, this amino acid has been
shed from six other orthologues with apparent impunity. There is no such evidence for column (j), the
conservation of which remains untarnished. The comparison between columns (j) and (k) also highlights
the dangers of having too small an alignment. The alignment of (j) could be the same as that of (k) but with
six sequences missing; an example of lack of data producing completely different conclusions about the
same site.

Figure 2.3 will be used here as a testing ground for some of the scores surveyed in the forthcoming
section 2.2.

2.1.2 Requirements of a conservation score

A score that quantifies the degree of conservation at an aligned position should fulfil the following criteria.

1. Mathematical properties. The score should be a function that maps a set of arguments (the input
space), which includes the aligned column and possibly other information, to a number (the output
space). Convenient scores will have an output space that is continuous and bounded.

2. Amino acid frequency. The score should take account of the relative frequencies of amino acids in a
column. For instance, using the columns from Figure 2.3, it should reproduce the ranking (a) > (b) >

©)>()>®.

3. Stereochemical properties. The score should recognize conservative replacements and that some
substitutions incur more chemical and physical change than others. For instance, it should score

column (g) as more conserved than column (h).

4. Gaps. A preponderance of gaps suggests a position can be deleted without significant loss of protein
function. The score should therefore penalize such positions and should rank column (j) as more
conserved than column (k). An ideal score might also recognize that, in terms of protein structure,
the difference between a small residue, eg, glycine, and a gap is less than between a large residue, eg,
tryptophan, and a gap.

5. Sequence weighting. Sometimes a position appears conserved among a number of sequences not
because of functional constraint but because those sequences have not had sufficient evolutionary
time to diverge. A typical alignment often includes some sequences that are very closely related to
each other. These clusters of highly similar sequences may reflect bias in the sequence databases
or result from nature’s irregular sampling of the space of acceptable mutations. Either way, such
clusters can monopolize alignments, masking important information about allowed variability from
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more sparsely represented sequences. For instance, the high frequency of aspartate in column (b)
may owe more to the tight homology of sequences 1 to 9 than aspartate being stereochemically
preferable in that position. A good conservation score should therefore find some way to normalize
against redundancy and bias in the alignment. A facile solution would be simply to remove sequences
at a certain level of similarity. However, this is wasteful of what little information these removed
sequences could contribute. A good conservation score should therefore find some way to normalize
against redundancy and bias in the alignment without loss of evolutionary information.

6. Simplicity (de Bono, 1999). Most scoring methods, from E-values that describe sequence similarity
to A-level grades, have their limitations. Understanding the shortcomings of these methods is key
to employing them wisely and interpreting their results meaningfully. Therefore, on the reasonable
assumption that no method is perfect, a good conservation score should be no more complex than
it needs to be so its deficits can be understood. To quote Einstein, “everything should be made as
simple as possible, but no simpler”.

2.2 A survey of conservation scores

Over the last thirty years a number of methods have been proposed to score residue conservation. The
scores surveyed here, which number more than fifteen, are presented in approximately increasing order
of sophistication in terms of what they try to achieve. For clarity, the names given to each score by its
authors are ignored in favour of the following convention. Scores whose values increase with increasing
conservation are denoted C,gme, Where the subscript identifies the author. Scores that do the converse are
denoted Vigme-

2.2.1 Symbol frequency scores

Scores in this category consider amino acids as symbols in a uniformly diverse alphabet. They focus on their
relative frequency of these symbols and do not account for sequence redundancy in the alignment. Because,
by definition, none model stereochemical properties (criterion 3) or weight their sequences (criterion 5) the
discussion instead concentrates on how well they fulfil the remaining criteria.

In 1970, Wu & Kabat (Wu & Kabat, 1970) introduced the first widely accepted measure of conserva-
tion. Their score, which they used to identify the variable regions on antibodies, was defined as

k
Vkabe = — XN,
ni

where k is the number of amino types present at the aligned position, # is the number of times the most
commonly occurring amino acid appears there and N is the number of sequences in the alignment. The
variable N acts as a scaling factor and is constant for a given alignment. For clarity, this survey will tend to
set such constants apart from the main equation.

Applying the score to Figure 2.3, Vg correctly reproduces the ranks (a) > (b) > (c) > (e) but fails to
distinguish (e) from (f). This is because it cares only about the frequency of the most commonly occurring
symbol and ignores the frequencies of the rest. Vgape has other problems; for one, it is discontinuous along
its output space. A strictly conserved column, such as column (a), always scores 1. A column that is strictly

conserved except for one aberrant amino acid is 2 N%l > 2, regardless of how many sequences are in the



CHAPTER 2. SCORING RESIDUE CONSERVATION 36

alignment. This discontinuity is biologically meaningless (Shenkin et al, 1991). The score also fails to
consider gaps, and so fulfils only the criterion of simplicity.

Jores et al (Jores et al, 1990) recognized the Kabat score’s inability to distinguish (e) from (f) and in
response proposed a modified version:

kpair 1
Viores = Hpair, X EN(N -1),
where %N (N —1) is the number of possible pairs of amino acids in the column, & 4 is the number of distinct
pairs and 7p,ir, is the number times the most frequently distinct pair occurs. By considering pairs rather than
singlets, this score improves upon Vigp,. However, all the other deficits remain. It is still discontinuous:
whereas complete conservation scores one, the next most conserved value possible is 2 % > 2. It does
not account for gaps. Even its simplicity is questionable: Vs does the same job, but is significantly more
awkward to compute, than the symbol entropy scores discussed later.

Lockless & Ranganathan (Lockless & Ranganathan, 1999) propose a different type of symbol fre-
quency score. They measure the conservation at an aligned position as the extent to which amino acid
frequencies at that position deviate from frequencies over the whole alignment. To model this deviation,
they employ binomial probabilities. If an amino acid a occurs in the sequence databases at fractional fre-
quency ¢,, then the probability of a occurring n, times in a column of N residues is P(X = n;) where
X ~ Bin(N,q,). For example, if half the amino acids in SWISSPROT (Bairoch & Apweiler, 2000) were
Ds, then the probability of D occurring nine times in column of ten residues is the same as the probability
of getting nine heads from ten coin tosses. This probability compared with the probability for the overall
frequency of a in the alignment to give a measure of deviation

Pa=mn,

d(ng,ng) =1In (P(X =7

where 7, is the average frequency of a in the whole alignment. The distance d describes how much the
frequency a at the position differs from that of a across the alignment. When these frequencies are the
same, d = 0, when they are different d may be positive or negative. The conservation for the column,
Clockless'» 1S taken as the root mean square deviation over all 20 amino acids, ie,

CLockiess = Zd (nayﬁa)z .
V a

If a single column can be represented by a point in 20-dimensional space of binomial probabilities, then
Clrockless measures the Euclidean distance between that point and the point representing the “average” col-
umn.

In a typically diverse alignment, Lockless & Ranganathan’s score identifies columns dominated by only
a few amino acids, since the binomial probabilities of these columns would be small. Some strictly con-
served columns score higher than others. For instance, if cysteine occurs least frequently in the alignment,
a strictly conserved column of cysteine will score higher than a strictly conserved column of histidine. Al-
though this has some intuitive appeal - strictly conserved columns of rare amino acids are visually more
striking in an alignment — the authors do not argue its case. But this arbitrariness is symptomatic of a deeper
malaise: that Cpcxiess is complex. Its purpose is to measure how different a column is from the rest of the

f _ N2
'In their original paper, Lockless & Ranganathan presented their score as AG® = kT*4[3, (ln ﬁ(i;;: ) . For clarity, gratuitous
references to thermodynamics are removed to give Gckiess-
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alignment. However, d could be calculated far more simply, say, as the Euclidean distance between the two
sets of amino acid frequencies. Instead Cyycpjess USes a binomial model that brings in further data, namely
the frequencies of amino acids from a sequence database. This extra information adds considerably com-
plexity to the score, but is this complexity worth it? Considering that (arguably) more important information
about stereochemistry, gaps, and the like is omitted, it seems not.

2.2.2 Symbol entropy scores

Symbol entropy scores are a specialization of symbol frequency scores (section 2.2.1). Scores in this
category all account for the relative frequencies of symbols using Shannon’s entropy or variations thereof.

2.2.2.1 Background

Shannon’s information theoretic entropy (Shannon, 1948) (hereafter referred to as “Shannon’s entropy”) is
an often-used measure of diversity (Baczkowski et al, 1997) (Durbin et al, 1998). It can be derived from
two roots, one combinatoric and one information theoretic. The combinatoric derivation goes as follows.
Given 10 coloured balls, of which 5 are red, 2 green and 3 yellow, the number of distinct sequences you can
make is 10! / (5'2!31) =2520. More generally, given N objects that fall into K types, the number of distinct
ways they can be permuted is given by the multinomial coefficient,

N!

W=
K '
H,’:] ni

2.1

where n; is the frequency of the ith type. As N becomes large, N! can be calculated using Sterling’s
approximation, InN! ~ NInN — N, such that

K
InW = —NZp,-lnp,- y
i
where p; = n; / N, the fractional frequency of type i. Transforming linearly gives the Shannon entropy:

K
S=-Y pilog, pi. (2.2)
i

The quantities S and W monotonically increase with each other. S ranges from zero, when objects of only
one type are present, to Syuqx = log, K > 0, when all types are present in equal proportion. It has been shown
that Shannon’s entropy belongs to a general class of diversity index ( Good, 1953),

K
D(o,B) = ¥ pf* (~logpi)® .

Of this class, both Shannon’s entropy (D(1,1) ) and Simpson’s index (D(2,0) = ¥X p?) have been used in
ecology for measuring species diversity (Baczkowski et al, 1997, and refs therein). Note that the base of
the logarithm affects only the unit of measurement, not the score itself since, for any a and b, log ,x o< log,, x.

The original use of Shannon’s entropy was in information theory, a branch of electronic engineering that
examines communication and the handling of information (Gregory & Zangwill, 1987, and refs therein)
(Durbin et al, 1998). In many older telecommunication systems, such as radio, the signal constructs the
output. In more modern systems, such as teleprinting and many digital systems, the range of possible
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outputs is small and known in advance. This allows a much more economical approach called encoding,
in which the signal selects output from a finite list. The selective information content of an encoded signal
depends not on the size or complexity of the output as such, but on the number of alternative forms it might
have taken, and on the relative likelihood of each. The simplest selective operation is one that chooses
between two equally likely possibilities, eg, the symbols A and B. This is a binary decision and the gain in
information when it is made is one binary digit (bit). Choosing between four symbols requires two bits, eg,
to identify one of {Al, A2, B1, B2}, you must make two binary decisions: “A or B?” and “1 or 27”. More
generally, the number of binary decisions needed to choose between K equiprobable symbols is log, K.
Rearranging gives

1
S=logy K= —log, - = —log, p,

where p is the probability of selecting any one symbol. In this context, S is the information required to
make the selection and hence is a measure of uncertainty. If symbol A is far more likely to be selected than
B, then the outcome of the selection is more certain. This can be accommodated by partitioning the — log p
with prior probabilities:

S = pa(—log; pa) + ps(—log, ps) ,

where p4 and pp are the probabilities of selecting A and B respectively. Generalizing for K symbols gives
the Shannon entropy (equation 2.2). The total selective information content of a signal is defined as the
amount of uncertainty it resolves:

I = Shefore — Safter » (2.3)

ie, the difference between the information entropy before the signal and after it.

2.2.2.2 Scores

In 1991, two groups proposed residue conservation scores based on Shannon’s entropy. Until then, entropy
had been used for scoring positional conservation, but only in nucleotide sequences ( Schneider, 1997,
and refs therein). Sander & Schneider (Sander & Schneider, 1991) defined their score as a normalized
Shannon’s entropy:
K
1
Vschneider = — inp; x—
Schneider ;Pl Pi K’
where K = 20, representing the 20 amino acid types. Shenkin et al (Shenkin et al, 1991) proposed the
related score
Vshentin =25 X 6,

where S is Shannon’s entropy 2.2 and X in that equation is also 20. These scores are transformations of each
other and so are trivially different. Both purport to have conveniently bounded ranges: 0 < V schneiger < 1
and 6 < Vepenrin < 120. However, neither would score column (i) in Figure 2.3 as maximally variable. This
is more a minor artifact than a serious deficit. Shannon scores treat columns of residues as if they were
rows of coloured balls. Maximal diversity occurs when all colours are represented evenly. But if there are
more colours than there are balls to represent them, this limit can never be reached. Similarly, V schneider and
Vshenkin can reach their top value only when there are at least 20 sequences in the alignment.

Gerstein & Altman (Gerstein & Altman, 1995) present another variation on this theme. To compare
sequence conservation with structural conservation in a multiple alignment of protein structures, they define



CHAPTER 2. SCORING RESIDUE CONSERVATION 39

VGerstein, Which measures the entropy of a position relative to that if the sequences were aligned randomly:

K K
VGerstein = Zﬁz log, p; — ZP:‘ log, pi,
i 4
where 7; is the average frequency of amino acid i in the alignment and K = 20. This score, which is in the
same form as equation 2.3, measures the information content of the position in bits. Not that this bestows
any particular advantage; like the other entropy scores, V Gersein delivers nothing grander than a conveniently
expressed multinomial coefficient (equation 2.1).

Like Vj,res, Shannon-based scores rank (a), (b), (c), (e) and (f) correctly. Unlike V jors, they are con-
tinuous. In a column strictly conserved but for one aberrant residue, the entropy decreases to the score’s
minimum with an increasing number of sequences. Shannon’s entropy is also much simpler to calculate:
whereas Vs requires information about pair frequencies, which itself requires combinatoric calculations,
entropy requires only fractional frequencies of the symbol types; the entropy equation does the combina-
torics.

So the symbol entropy scores fulfil criteria of mathematical properties and amino acid frequency, and,
with their straightforward calculation, acquit themselves of complexity. But as well as being simple, these
scores are simplistic. Amino acids are not coloured balls, no matter how mathematically convenient it is
to think otherwise. None of these scores could distinguish column (g) from (h) in Figure 2.3. When Ger-
stein & Altman compare structural conservation, using an atom coordinates-based scheme, with sequence
conservation, using Vgersein, they find the two have little in common (Gerstein & Altman, 1995). Perhaps
a sequence conservation score that considered stereochemistry would have led them to a different conclu-
sion.?

More worryingly, none of these scores account for gaps. This is a problem. In the Shannon scheme,
it is most natural to consider a gap as another symbol type, the “21st” amino acid. Doing this, however,
has absurd consequences. For instance, column (k), which is predominantly gapped, would score as more
conserved than columns (c) or (g).

2.2.3 Stereochemical property scores

Scores in this category consider only the stereochemical properties of the amino acids in a column. These
scores typify a view orthogonal to that of the symbol frequency and symbol entropy scores described above.

In 1986, Taylor (Taylor, 1986) classified amino acid types according to their stereochemical properties
and their patterns of conservation in the Dayhoff mutation data matrix (Dayhoff et al, 1978). He embodied
this consolidation of mutational and physical data in a Venn diagram (Figure 2.4), in which each overlapping
set represents a distinct physical or chemical property. Taylor then devised a set theoretic method based on
this diagram to score positional conservation. His method finds the smallest set or subset that describes
the amino acid types observed at an aligned position. The variability of the column is taken as the total
number of residue types belonging to that set. The number of possible subsets of the Venn diagram is large
and many of these sets have little physical meaning. To reduce the possibility of high conservation being
ascribed to meaningless subsets, Taylor compiled a list of 70 sets and subsets that might reasonably be

2Interestingly, an almost identical criticism has recently been leveled by Mirny & Shakhnovich Mimy & Shakhnovich, 2001) at
a comparison of structure and sequence conservation by Plaxco et al Plaxco et al, 2000). Plaxco et al used a score much like Vgersrein
and formed similarly heretical conclusions.
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Aromatic ' Positive
Hydrophobic

Figure 2.4: Taylor’s Venn diagram of amino acid properties.
Taylor argues Cys should appear twice because although the reduced form (c s-n) has similar prop-
erties to Ser, the oxidized form (Cs-s) is more like Val. Adapted from refs (Taylor, 1986) and
(Livingstone & Barton, 1993).

conserved, and suggested only these “valid” sets should be considered. Taylor’s score can be expressed as

Vray/or = min (n({% :Aligned ¢ XandX G Valid))) ,

where Aligned is the set of amino acids at the aligned position. Valid is Taylor’s set of 70 valid sets and
n (X) is the number of elements in set X. Vjayior ranges from I to 20.

Taylor’s score accomplishes some things the symbol scores could not. It recognizes that column (b)
from Figure 2.3 is more conserved than (d) and that (g) is more conserved than (i). It does not explicitly
model gaps but there is a natural way these could be incorporated into the scheme: a gap could belong only
to the largest superset. But Taylor’s score is clumsy. The ad hoc clause of reducing the number of valid
sets to 70 makes the score more computationally tractable but diminishes its simplicity and elegance. To
interpret the score properly one must accept that some subsets in the Venn diagram are forbidden. This
introduces a degree of subjectivity on top of that supplied by the Venn diagram itself.

Taylor’s score has more conspicuous problems. First, the score of strictly conserved columns depends
on the amino acid: a column of Ps scores I, Hs score 3, Ws score 4. Similarly, column (g) in Figure 2.3 would
score the same as a strictly conserved column of I. Second, it fails to account for amino acid frequencies
and cannot distinguish column (b) from (c) or (e) from (f).

Clearly, a Venn diagram is picturesque but unwieldy. Could it be abridged to something more conve-
nient? Zvelibil et al (Zvelibil et al, 1987) reduce Taylor’s diagram to a truth table of amino acids vs ten

property descriptors (Figure 2.5). They define their score as

Vzvelibil — "const XJq ;

where ficonst is the number of properties whose state (ie, truth or falsehood) is constant for all amino acids

in the column. For example, column (b) in Figure 2.3 contains D and E, which share 9 properties, and
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ILVCAGMFYWHKREQDNSTPBZXA

1 00000000000000000000000e  Hydrophobic
2 0000000Ceseeeseeeeecesee  Polar

3 00000000000000000000000e  Smal

4 0000000000000000000e c0ee  Proline

5 0000ee00000000000e 000Cee Ty

6 ©000000000000000000000ee  Aliphatic

7 00000000888 00000000000ee  Aromatic

8 000000000088 000000000ee  Positive

9 0000000000000e 08 cocoocooee  Negative
10 00000000008 00808 0O0000ee  Charged

Figure 2.5: Truth table profile of amino acid properties.
Amino acid (across) are each described in terms of ten properties (down). A filled circle means the amino
acid above it possesses that property. The symbol “A” represents a gap, which is considered to have all
properties. Adapted from ref (Livingstone & Barton, 1993).

scores 0.9. Although it has a less erratic output space, Vzyeipi retains Vrgyor’s failure to account for amino
acid frequency. In their program AMAS (Analysis of Multiply Aligned Sequences), Livingstone & Barton
(Livingstone & Barton, 1993) turn this weakness into a strength. AMAS uses Vzyeripi to split sequences into
subgroups and thus infer an evolutionary or functional hierarchy from the alignment. For example, given
column (f) of Figure 2.3 AMAS may decide sequences {9,10} are in a different subfamily from sequences
{1..8} because the Vz,;pi score within these sets is much higher than in their superset {1..10}. The success
of AMAS demonstrates Vz,.pi; is better suited to this kind of selectionist analysis. In particular, Vzyeipit
could add welcome sophistication to the evolutionary trace method of Lichtarge et al (Lichtarge et al, 1996)
(see chapter 1.5.2.2).

2.2.4 Mutation data scores

Scores in this category use mutation data from a substitution matrix to quantify stereochemical variability
in an aligned column. No scores in this category normalize against sequence redundancy in the alignment.

2.24.1 Background

Substitution matrices provide a quantitative and reasonably objective measure of amino acid similar-
ity. A substitution matrix is a table of amino acid exchange probabilities derived from an analysis
of the evolutionary changes seen in a group of homologous proteins. Figure 2.6 shows BLOSUMG62
(Henikoff & Henikoff, 1992), a popular substitution matrix. Others well known matrices include the
Dayhoff Mutation Data Matrix (MDM) (Dayhoff et al, 1978) and the Pairwise Exchange Table (PET)
(Jones et al, 1992). The non-diagonal pairwise scores indicate how likely one amino acid is to be sub-
stituted by another in a homologous protein. The diagonal scores, which pitch an amino acid against itself,
indicate how likely an amino acid is to substituted at all, ie, its “mutability”. Because the chance of a substi-
tution increases with evolutionary time, any particular matrix is parameterized by some kind of evolutionary
distance. For instance, BLOSUMS62 captures the rates of exchange one would expect in homologues that
were 62% identical. Evolutionary distance not only affects the likelihood of a mutation but also its nature.
Mutations that differentiate close homologues are mostly influenced by the genetic code, whereas those
separating divergent sequences are dominated by stereochemistry (Benner et al, 1994).
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Figure 2.6: The BLOSUMS62 substitution matrix.
BLOSUMG62 (Henikoff & Henikoff, 1992), which stands for BLOcks SUbstitution Matrices from se-
quences clustered at 62% identity, is constructed from BLOCKS (Henikoff & Henikoff, 1991) version 5.0
and SWISSPROT (Bairoch & Apweiler, 2000) version 22. Entries for identical residue are on the diagonal
and highlighted in bold.

The primary purpose of substitution matrices is to help evaluate whether an observed alignment of two
sequences, or two residues, is biologically correct or an artifact of the alignment algorithm. This purpose is
evident in their construction. The non-diagonal elements of the matrix describe the likelihood of a protein
substituting amino acid a for b as a ratio of two probabilities

P(a,b|Match)

R(a,b) = —————
(a,8) P(a,b|Random)’

(2.4)

where P(a,b|Match) is the probability of a substituting for b under the assumption their positions are
biologically equivalent in the protein, and P (a,b|Random) is the probability of observing a and b aligned
randomly, which is a function of their respective overall frequencies in the database. Popular pairwise
alignment algorithms score a given alignment by accumulating R (a, b) over every position in the sequence,
typically in conjunction with a length-dependent gap penalty. This accumulation is awkward with raw
R (a,b) because it involves many slow floating-point multiplications. For computational convenience then,
R (a,b) is instead expressed as its logarithm, scaled and rounded to the nearest integer:

m(a,b) = int|AlogR (a,b)] ,

where A is a scaling constant. Probabilities may now be accumulated by simply summing m(a,b)
(Durbin et al, 1998). The likelihood ratio 2.4 may or may not be used to calculate diagonal elements,
depending on the matrix. If not, as is the case for the PET, then m (a,a) is derived from the observed muta-
bility of a in the dataset used to compile the matrix. Simplistically, the observed mutability of a in a trusted
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alignment of two sequences is the number of times a is seen to change divided by the number of times a
occurs. This mutability, calculated over the whole dataset, is typically normalized in several ways before
it reaches the substitution matrix. Most significantly, it is inverted such that a large m (a,a) indicates a is
unlikely to mutate within the prescribed evolutionary time.

But if the diagonal scores in the matrix measure the inertia of an amino acid against mutation, then
this is where the analogy between a substitution matrix and a similarity matrix breaks down. The diagonal
of a substitution matrix helps an alignment algorithm decide whether two amino acids should be aligned.
Its use is normative concerning the alignment. A similarity matrix used by a conservation score must
assess the similarity of the amino acids in a column. Its use is descriptive concerning the alignment. The
conservation score does not seek to question the validity of the alignment; rather, it assumes the alignment
is correct and seeks to describe its features. These two motives are fundamentally different. For instance,
the diagonal in a substitution matrix tells you that Trp is rarely substituted whereas Arg is substituted more
readily. This makes sense; Trp is unique among amino acids whereas Arg has more obvious replacements.
A conservation score that used the substitution matrix to measure similarity would therefore rate a column
containing only Trp as more conserved than one containing only Arg. This is would be wrong. Given that
we trust the alignment, strict conservation of a more replaceable amino acid suggests a greater evolutionary
constraint on that position. The functional constraint could be such that, although other amino acids are
similar, because they differ even slightly in their geometry and chemistry, being similar is not enough.
Therefore, a measure of replaceability is not just different from a measure of similarity, it is actually at odds
with a descriptive measure of conservation.

How can this be resolved? The simplest answer is to redefine the diagonal, hence explicitly converting
the substitution matrix into a similarity matrix, ideally in a way that minimally disturbs the off-diagonal
values. For example, all diagonal values could be constant, set to the highest diagonal or off-diagonal
value. Alternatively, the entire matrix could be normalized to take into account diagonal values — though
this would count as perturbation of perfectly good off-diagonal values. If the similarity matrix is explicitly
for measuring conservation, there is even a case for scaling diagonal values inversely to their values in
the substitution matrix; ie, the more replaceable an amino acid is, the more significant an event is its
conservation and so the higher its self-similarity score.

2.2.4.2 Scores

Karlin & Brocchieri (Karlin & Brocchieri, 1996) propose the following score, which they use to study
conserved positions in DNA-binding proteins:

2

N N
Ckarlin (x) = ZEM(S,‘ (%),55 () x N(N-1)

i j>i

where s; (x) is the amino acid at column x in the ith sequence, and M (a, b) is the similarity between amino
acids a and b. The similarity matrix M is defined such that

m(a,b)

/m(a,a)m(b,b)’

where m is BLOSUMG62 or a similar substitution matrix. The normalization 2.5 ensures that M (a,a) = 1

M(a,b) = (2.5)

always and that, provided m has a typical range, —1 < M(a,b) < 1. This in turn means C g,;, ranges from
-1 to 1. Ckgniin is a so-called “sum of pairs” (SP) score. It describes conservation by calculating the sum of
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all possible pairwise similarities between residues in an aligned column. For example, column (e) in Figure
2.3 contains five Ds, four Es and one F. This would be described by the number
10M(D,D) + 6M(E,E) +20M(D,E) + 5M(D,F) + 4M(E,F)

Crartin = 10+6+20+5+4 :

From the above calculation, it is clear that this score reflects not only stereochemical variation in a column
but also the relative frequencies of the amino acids present. If the distribution of D, E and F was even more
dominated by D, there would be more high scoring M (D,D) terms and fewer low scoring terms.

One criticism leveled at SP scores is that they do not make sense in terms of what the statistic m(a,b)
means (Durbin et al, 1998). Nature is parsimonious and it is improbable that the diversity observed in
column (e) of Figure 2.3 truly results from 20 4 5 + 4 = 29 amino acid substitutions among 10 homologues.
However, if one treats the substitution matrix as no more than a quantitative guide to pairwise amino acid
similarity, the SP score is no less than a convenient way to consolidate this two-dimensional information
into a single number. Besides, the perceived over-counting of amino acid substitutions in the SP scores
is assuaged somewhat by its over-‘counting of self-similarity terms. In fact, SP scores can be seen as a
tug-of-war between self-similarity and substitution, ie:

a=b — m"s—_l)M(a,a)
a#b -  ngnpM(a,b)

K K
Ckarlin °< E 2

a b>a

) (2.6)

where K is the number of amino acid types and n, is the number of occurrence of amino acid type a. The
upper term (a = b) bestows high-scoring M(a,a) values whereas the lower term provides predominantly
low-scoring M(a, b) values. But even if it escapes this criticism, Cga,1in deserves a further reproach: it does
not account for gaps.
The score of Armon et al (Armon et al, 2001) does account for gaps. Armon et al present “ConSurf”,

an implementation and extension of the evolutionary trace method of Lichtarge et al ( Lichtarge et al, 1996).
ConSurf measures conservation using a variation on the SP theme, defining its score as

20

Varmon = Z fabD(av b),
a>b

where

1 ifaminoacidsaandbpresent
fab = .
0 otherwise

and D is a dissimilarity matrix3. In the tug-of-war notation of equation 2.6, this can be expressed as

K K a=b — ng > 1 - naD(a,a)
Varmon = E E <1 — 0 , Q7
“h2atb - (na+np)D(a,b)

where the upper terms contribute conserved scores and the lower terms contribute variability. Rather than
basing their similarities on a substitution matrix, Armon et al use a physico-chemical distance matrix

3Technically, fp is the number of times a and b are seen to exchange in a phylogenetic tree of the sequences. However, the
definition above is a fair approximation (Nir Ben-Tal, personal correspondence).
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(Miyata et al, 1979)*. The physico-chemical distance is defined as

2 2
D(a,b) = <Apola,,) 4 (Avolab) ,
Cpol Ovol
where Apol,;, and Avoly, are the differences in polarity and volume between amino acids a and b, and G po|

and oy, are the standard deviations for these properties. D is zero for all D(a, a), as much as 4.88 (=D(D,W))
for comparisons between real amino acids, 6 for D(a,—) and 0.5 for D(—,—). Distances for gaps are set

heuristically.

Gaps aside, Varmon and Ckgriin are only subtly different. Ckgyin, emphasizes self-similarity more than
Varmon- This is evident from their self-similar terms in equations 2.6 and 2.7: in Cggyin, the coefficient
of M(a,a) grows quadratically with respect n4; for Varmon, the coefficient of D(a,a) grows linearly. Their
substitutions terms also differ, but do not correct the imbalance. For instance, applying V armon to column
(e) of Figure 2.3 produces the number

5D(D,D) +4(E,E) +9D(D,E) + 6D(D,F) + 5SD(E,F)

2.8
5+4+9+6+5 28)

Varmon =

Comparing this with calculation 2.8 underlines this difference in emphasis: in Cggpin, 16/29 = 0.55 of the
terms are self-similar whereas in V4pmop, this fraction is lower at 9/20 = 0.45. The scores are also different
in that V4,0, employs a physico-chemical distance matrix. But to what advantage? Armon et al argue that
polarity and volume are the most important factors governing conservation of amino acid type. The most
obvious way to check this would be to see if these factors dominate a substitution matrix. If volume and
polarity do dominate, Armon et al might as well have used a substitution matrix instead. If volume and
polarity do not dominate, this challenges their assertion and needs to be explained.

Thompson et al (Thompson et al, 1997) do not use an SP score; they prefer instead a vectorial measure.
Their program CLUSTALX, a graphical user interface to the CLUSTALW multiple alignment package
(Higgins et al, 1996), plots a graph of positional conservation beneath a visual display of a multiple align-
ment. In the column at position x in the alignment, Thompson et al consider the residue of the ith sequence,
si(x), to be a point X; in K-dimensional space:

M (a1, s (x))
M (az,si(x))

M (a, s; (x))

where a,, is the nth symbol in an alphabet of K possible amino acids and M(a, b) is similarity as judged by
a substitution matrix. The consensus amino acid, which for columns that are not strictly conserved will be
a hypothetical construct, is the centre of gravity of all points from the column, X, ie,

X= 2

N
3.
i

Z|

The degree of conservation among these points is then related to the average Euclidean distance of all points

4But their score is included in this section because the effect is much the same.
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from the consensus point:

CThompson = Pamino X 3 Z [X Xx| ) 29)

where pamino 1s the fraction of symbols that are not gaps.

All three of Ckariin, Varmon and Crpompson correctly order columns (a) to (f) and (g) to (i) in Figure
2.3 and have mathematically continuous output spaces. Crrompson has the aesthetic advantage of defining
a consensus point in amino acid space. Although this may not correspond to a particular amino acid, the
closest amino acid could easily be found.

Pilpel & Lancet (Pilpel & Lancet, 1999) use a mutation data score to help analyse amino acid variability
in olfactory receptor sequences. They define their score as

Viancet = EZ M (;;P[;)

where p, is the fractional frequency of amino acid a in the aligned column, the alphabet of amino acids
is K = 20 and M(a,b) is a BLOSUMSG62 or similar substitution matrix. Although this score is not directly
comparable to those above, the following alteration makes it extremely similar to the tug-of-war definition
of Ckariin (equation 2.6):

K K
ChNotLancer = ZE aPbM(a,b) .
a b

This intermediate score now has properties almost identical to that of Cggyin, so further discussion is best
focused on how Cworances differs from Vigueer, i€, the placing of the term M(a,b). Having M(a,b) as a
denominator blights Vgncer With an idiosyncratic output space. For instance, if a column contains a and
b such that M(a,b) = 0, then Vignee for this column will be infinity. This will certainly happen if M
corresponds to a raw BLOSUMG62 matrix (Figure 2.6). But it is also difficult to imagine a reasonable matrix
normalization that would avoid this problem. Thus, Vi e fails on at least two counts: its mathematical
properties make it awkward to use and it fails to account for gaps.

2.2,5 Stereochemically sensitive entropy scores

The entropy scores discussed in section 2.2.2 quantified symbol diversity in an elegant and intuitive way.
Their problem was they failed to account for stereochemistry. Scores in this section represent attempts to
build stereochemical sensitivity into the entropy model.

Entropy measures the diversity of N symbols from an alphabet k comprising K types. The difference
between a symbol of one type and that of another is ineluctably uniform. What can be changed is how x
partitions amino acid space. Recognizing the deficiencies of symbol entropy scores, Mirny & Shakhnovich
(Mirmny & Shakhnovich, 1999) use the following stereochemically sensitive entropy score to analyse con-

servation at protein structure cores:
K

Viimy = 3, pilnp;,
i

ie, Shannon’s entropy, where K = 6 and x is the set (eligible amino acids in square brackets): aliphatic
[AVLIMC], aromatic [FWYH], polar [STNQ], positive [KR], negative [DE] and special conformations [GP].
Williamson (Williamson, 1995) provides a similar score, which he uses to look at sequence variability
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Figure 2.7: Amino acid class hierarchy used in PIMA.
Upper case characters are amino acids, lower case characters are amino acid classes. X is a wild-card
character of any type, including a gap. In its original use, which was pairwise alignment, the match score
between two aligned amino acids is the cardinality of the smallest class that includes both elements. This
use has been extended by Vigoidseein (see text). Adapted from ref (Smith & Smith, 1992).

in transporter proteins:
< Pi
Viwittiamson = Y, piln (5) )
i i

where p; is the fractional frequency of type i in the whole alignment, K = 9 and K is the set: [VLIM], [FWY],
[sT1, [NQ], [HKR], [DE], [AG], [P] and [C]. An improvement over the scores discussed in section 2.2.2, Vygirny
and Vwitiamson correctly order columns (a), (b) and (c) from Figure 2.3 as more conserved than columns (d),
(e) and (f). They also order columns (g) to (i) correctly. However, unlike the scores in section 2.2.2, neither
can distinguish among (a), (b) and (c) or among (d), (¢) and (f). So grouping residues in this way has its
price. Moreover, neither score accounts for gaps. In their analysis, Mirny & Shakhnovich acquit themselves
of this charge by choosing to ignore columns that contain gaps. But the problem of how to model gaps in
the entropy score (see section 2.2.2) remains. One solution, which has not been implemented, might be to
factor in gaps at the end using a scalar such as in equation 2.9.

Incorporating stereochemistry into an entropy score involves compromise. But does the choice have to
be so stark: between, on the one hand, a robust but stereochemically insensitive description of relative amino
acid frequencies (eg, Vschneider); On the other, a clumsy partitioning of the 20 amino acids that accounts for
some stereochemistry but ignores relative frequencies within a partition (eg, Vuirmy)? There is a third way. In
their pattern-induced multi-sequence alignment (PIMA) algorithm, Smith & Smith ( Smith & Smith, 1992)
use a hierarchical clustering of amino acids to extract sequence profiles from multiple alignments (Figure
2.7). Given the set amino acid types from an aligned column, PIMA finds the smallest possible “covering
class” in the hierarchy that includes them all. For instance, the amino acids F, W and H are subsumed by

“ (H

the covering class [FWYH] (superset “e” in Figure 2.7). A conservation score has been suggested (although
not implemented) that uses Shannon’s entropy to assess the diversity of symbols in a column, then fac-
tors in the exclusivity of the smallest subset to which those symbols belong (Richard Goldstein, personal

communication), eg,
K
Véoldstein = f (2 Pi lnPi:Y) )
i=1

where K = 21 (ie, 20 amino acids plus one gap symbol), ¥ is the cardinality of the smallest covering class
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(see Figure 2.7) and f is some combining function. Gaps are penalized because they belong to only the
largest superset and so have low cardinality (y = 0). This is much like a synthesis of Vrgy1or and Vschneider-
But because the PIMA hierarchy is ad hoc, and f is likely to be so, any statistical rigour potentially conferred
by the use of entropy is lost.

2.2.6 Weighted scores

Scores in this category attempt to normalize against sequence redundancy in the alignment.

2.2.6.1 Background

Normalizing against redundancy is a concern not only for scoring conservation but also for building se-
quence profiles. Sequence weighting has thus received attention from exponents of both fields and there are
a large number of methods to choose from. A selection of these methods is reviewed here.

The weight of a sequence is inversely related to its genetic distance from other sequences in the align-
ment. The simplest formulation is that given by Vingron & Argos (Vingron & Argos, 1989), where the
weight of a sequence is equal to its average distance from all other sequences, ie,

1 N
wi= o7 2 d(s8) 2.10)
J#i
where w; is the weight of the ith sequence, s;, and d (s;,s;) is the genetic distance between the ith and jth
sequences, measured as their percentage identity or some more sophisticated measure. Sander & Schneider
incorporate a variation of this into their HSSP database (Sander & Schneider, 1991). They define the weight

of a sequence in terms not only of sequence distance but also of the weights of all other sequences:

N
}\.w,- = ij‘d (S,',Sj) N

J#i
where A is a scaling constant. Expressed in the above form, this apparently circular definition can be solved
as an eigenvalue problem. This self-consistency is aesthetically appealing but, because it makes the weight
calculation more complex and since Sander & Schneider do not justify it, an unnecessary mathematical
flourish.

Another formulation attempts to maximize the spread of data in aligned columns using a metric related

to symbol entropy (Henikoff & Henikoff, 1994). This method first weights sequences at individual po-
sitions in an alignment, then combines position weights to give sequence weights. The weight of the ith

sequence at position x is
1

= Y
kxny,

Wi,

where k, is the number of amino acid types present in column x and  ; is the frequency of the ith sequence’s
amino acid at that position. For example, position (b) in Figure 2.3 contains two amino acid types, D and
E. The entropy at this position would be maximal if these two types were evenly distributed, ie, if half the
column was D and the other half E. To accomplish this, one can weight sequences {1..10} such that the
proportions of D and E are equal, ie, let sequence 10 have weight 1/(2 x 1) = 0.5 and let sequences {1..9}
each has weight 1/(2 x 9) = 0.056. Averaging along all positions in an alignment, each sequence then has
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points in 2D space Voronoi polygons

Eigure 2.8: Voronoi diagram
Neighbouring points in a two-dimensional space are separated by a network of planes. Each plane is defined
by the perpendicular to the bisector of two neighbouring points. Sibbald & Argos liken each sequence to a
point and the volume of the surrounding Voronoi polygon to the weight of that sequence.

weight

where L is the length of the alignment.

Sibbald & Argos apply Voronoi diagrams to the problem of sequence weighting. A Voronoi diagram
is a geometric structure that divides space around a set of points or objects. Given a set of points in
two-dimensional space, the perpendicular bisector between each pair of neighbouring points is calculated.
These bisectors are then extended until they all join up, forming polygons around the points as in Eigure
2.8. Analogously, Sibbald & Argos consider sequences in an alignment to be a cloud of points in high
dimensional space. They then apply the Voronoi procedure, defining polyhedra around each point, and take
the weight of a sequence as the volume of its surrounding polyhedron. The more isolated a sequence is,
the larger its polyhedron and the greater its weight. Sibbald & Argos estimate volumes of the polyhedra
by filling the high dimensional space with random sequences. They show their method calculates more
intuitive weights than the earlier method of Vingron & Argos in equation 2.10. However, the margin of
difference is small and the Voronoi method is inconsistent, producing inexplicably different weights for
equally redundant sequences.

Weighting methods popular in the construction of sequence profiles tend to rely on a phylogenetic tree
of the multiple alignment. Thompson et al (Thompson et al, 1994) propose a weighting scheme based
on Kirchhoff’s laws, which describe how charge and voltage are distributed in an electrical circuit. They
view the tree as a system of wires and nodes, and apply a voltage to the root. Kirchhoff’s Current Law
enforces conservation of charge: moving from the root to the leaves, it distributes current at each node so
that the amount of charge entering at the root equals the amount exiting from the leaves. The current exiting
at a leaf is taken as the weight of the corresponding sequence. So far so good. But the current entering
a node is not necessarily distributed equitably among the outputs (branches). Rather, this distribution is
governed by Kirchhoff’s Voltage Law, which apportions greater current to the branch with more leaves.
This inequitable distribution may be sensible for electric currents or water systems but it acts contrary to
the motives of sequence weighting. Given a node that bifurcates into a highly populated subfamily and a

sparsely populated one, the highly populated subfamily will receive the larger share of current and thus be
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upweighted.

Gerstein et al (Gerstein et al, 1994) approach the tree from the opposite direction: they start with
the leaves and work up to the root, each sequence accumulating a share of the branch length as its
weight. More sophisticated methods include those of Altschul et al (Altschul et al, 1989) and Eddy et al
(Eddy et al, 1995) and are discussed at length in Durbin et al (Durbin et al, 1998). Tree-based weighting
schemes are more assumptive than those based only on the alignment. After all, many plausible trees can
describe a single alignment. Choosing one, even if it is the most probable, introduces additional uncertainty
and thus hidden complexity.

2.2.6.2 Scores

Sequence weighting can be more easily incorporated into some scoring models than others. The sum-of-
pairs model (page 43) accumulates contributions on a per sequence-pair basis. This provides an obvious
placing for sequence weights. For entropy scores, which bundle amino acids according to type and disregard
which sequence each came from, the placing is less obvious. Perhaps for this reason, weighted scores have
tended to follow the SP model.

Landgraf et al (Landgraf et al, 1999) use the following score to extend the evolutionary trace method
of Lichtarge et al (Lichtarge et al, 1996),

1 N N
Viandgray () = 5 2, X, wiD (5i (%) ,5; (x)) +w;D (s (%) ,5: (%)) , 2.11)
i j>i
where s;(x) is the amino acid at position x of the ith sequence and w; is the weight of sequence s; as
calculated by the Voronoi scheme of Sibbald & Argos (section 2.2.6.1). D(a,b) measures the dissimilarity
of the amino acids a and b and is calculated as

m(a,a) —m(a,b)

Dlab) === aa

where m is the Gonnet substitution matrix (Benner et al, 1994). One of the first things to notice about D
is its asymmetry. Intuitively, the difference between two amino acids is commutative such that D(a,b) =
D(b,a). However, because, as in most matrices, the diagonal scores in the Gonnet matrix differ depending
on the amino acid, there are many cases when m(a,a) # m(b,b) and therefore D(a,b) # D(b,a). Landgraf
et al recognize this inconsistency and hedge their bets in equation 2.11, with a sum of the form w;D(a,b) +
w;D(b,a). However, because this may give a different result from w ;D(a, b) + w;D(b,a), their handling of
D’s asymmetry is somewhat arbitrary.

Sander & Schneider do not use sequence weights as such (Sander & Schneider, 1991). Rather, they
modify pairwise comparisons by the genetic distance between the sequences being compared:

N N
Csander (x) = A Y, X, d (s1,5)) m (s (x) 5, ()) ,
i j>i
where d(s;,s;) is the distance between sequence s; and s; measured as 100% minus their percentage identity
in the alignment, m is the Dayhoff substitution matrix (Dayhoff et al, 1978), and A scales Csgnger to range
[0’ 1] b ie,

N N -1
A= (EZd(S,',Sj)) )

i j>i
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| Sequence | Column x |

S1 W
52 Q
53, R
$3, R

Figure 2.9: Column from a redundant sequence alignment.
Sequence s3; is the ith copy of sequence s3. See text for details.

There are three obvious ways an SP score can incorporate a notion of sequence weighting. C sgnder
uses one, Vianderas uses another. The remainder of this section will show the choice of how to incorporate
weighting into the score may be more important than the choice of weighting metric. It will also show the
strategies of Csanger and Vignggras are surprisingly inferior to a strategy that looks only slightly different.

Consider an alignment of three sequences that are all equally different from one another. The column
at position x in the alignment contains three different amino acids. The first sequence, s, has a W at this
position, sequence s, has a Q and s3 an R. Because the sequences are uniformly different, this alignment is
“ideal” and requires no sequence weighting. Applying a simple unweighted sum-of-pairs score gives the
result

N N
Csimpte (¥ideat) = X, 3, M (si (x) 5 () = M(W,Q) + M(¥,R) + M(Q,R), @12)
i j>i
where M is a symmetric similarity measure. Now add duplicates of sequence s3 to the alignment to make it
redundant and in need of sequence weighting. Figure 2.9 shows column x, which now contains one W, one
Q and n Rs, corresponding to the n duplicates of s3. Applying Csimple to the new alignment gives the result

Csimple(x) = M(W,Q) +n(M(W,R) + M(Q,R)) +

"("2” l)M(R,R) . 2.13)
Clearly, as n increases two undesirable things happen. First, the M(W,Q) term vanishes out of existence.
Second, the spurious M(R,R) term dominates. A good weighted SP score applied to the redundant alignment
should at best reproduce the result in equation 2.12, at least moderate the affects of increasing n, and at worst
reproduce the result in equation 2.13.
Let the distance between sequences d(s;,s;) be 0 if s; = s; and 1 otherwise. A Csgnger-like modification

t0 Cimple gives

N N

Cbistance (x) = E Zd(Si,Sj)M (si(x),55(x)) ,
ij<i

which, when applied to the redundant position x gives
Cuistance(x) = M(W,Q) +n(M(W,R) + M(Q,R)) . (2.14)

This is certainly an improvement on Cs;npl. because M (R,R) has been factored out. However, it still has
the problem that as n increases, M(W, Q) disappears and the only effective comparisons are those involving
53- A Viandgras-like modification (ignoring inconsistencies) to Csimple gives

N N
Coum (x) = 22 (wi +wj)M (si(x),s;(x)) .

i j>i
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For simplicity, we calculate w; similarly to Vingron & Argos (equation 2.10) as
N
w;p = Zd(si,sj) .
i

This is reasonable because comparisons of this method with other weighting methods by Gerstein et al and
Sibbald & Argos showed it was only slightly inferior. According to this scheme, w| = wy = n+ 1, whereas
the weight of a single duplicate of 53 is w3 = 2. Applying Cy, to the redundant column gives

Csum = (2n+2)M(W,Q) + (n*+ 3n) (M(W,R) + M(Q,R)) + (2n* — 2n)M (R,R) . (2.15)

This result is better than 2.13 but worse than 2.14. M(W,Q) will still disappear because it increases with
linearly with n whereas the other terms increase geometrically. M (R,R) is also present. A third simple
strategy is
N N
Cproduct(x) = Y, Y, wiw ;M (si (x) 55 (x)) ,
i j>i

which, when applied to the column in Figure 2.9 gives
Corodue = (n* +2n+ 1)M(W,Q) + (2n%+ 2n) (M(W,R) + M(Q,R)) + (2n> — 2n)M (R,R) . (2.16)

All terms are now on an equal footing with respect to n. Result 2.16 is clearly better than result 2.15 or
2.13. It is arguably more desirable than result 2.14 in that, although the spurious M (R,R) features, no term
disappears with increasing n.

2.3 Score used herein: Cy,4,,

In this work, we use a sequence-weighted sum-of-pairs score. It is defined as follows:

N N
Cvaidar (1) = 1Y, Y, wiw;M (s; (x) ,5; (x)) ,
i j>i
where N is the number of sequences, s;(x) is the amino acid of ith sequence at position x in the alignment,
w; is the weight of sequence s;, M (a,b) is the similarity of the amino acids a and b, and A scales Cygg4r SO
that it ranges between 0 (maximally variable) to 1 (maximally conserved), ie,

A= (i%wiwf)_l :

i j>i

The weight of a sequence is calculated according the scheme of Vingron & Argos
(Vingron & Argos, 1989):
1 N
wi = —Ed(s,-,sj-) .
N-1jz

In this equation d (s;,s;) is the distance between sequences s; and s;, and is calculated as

1

d(si8) = 1 = ienedsy)

Y M(si(x),s (),

x€Aligned;;
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where Aligned,; is the set of all positions that manifest an amino acid in one or both of s; and s, and
n(Aligned,;) is the size of this set. The comparison matrix M is a linear transformation of the substitution
matrix m such that M takes values in the range [0,1] and all exchanges involving a gap score 0, ie,
yb —mi 1
M(ab) = faf,ﬁ_ﬂ'ﬁ ifa # gapandb # gap
’ 0 otherwise

The matrix m is a modified version of the pairwise exchange table (PET) (Jones et al, 1992), itself an
updated version of the Dayhoff matrix (Dayhoff et al, 1978). The modified PET differs from the original
in that all diagonal elements are set to a constant score, that score being the rounded average of diagonal
elements in the unmodified matrix.

Cvaldar correctly orders columns (a) to (f), (g) to (i), and (j) and (k) in Figure 2.3. It fulfils or partially
fulfils all criteria laid out in section 2.1.2; its output space is continuous and bounded; it accounts for amino
acid frequency, like other SP scores, using the tug-of-war scheme (ie, self-similarity vs substitution); it
quantifies stereochemical diversity uncompromisingly with a full substitution matrix; gaps incur a constant
penalty; and it uses sequence weighting to normalize against redundancy in the alignment. C yg4,- Weights
its sequences using one of the simplest schemes available. Although there are other schemes that give
marginally superior results, the Vingron & Argos weighting is simpler, makes fewer assumptions and at least
gives consistent answers. Cygdqr incorporates its sequence weights shrewdly. By using the multiplicative
scheme of Cproaucr (see page 52), its scores resist the distorting effect of many duplicate sequences in the
alignment.

Cvaidar is not as simple as, say, the entropy score Vjyjny or the SP score Ckqriin, but it trades simplicity for
sophistication in an economical way. Cyg 4,4 attempts far more than these measures, but beyond adjustments
specifically pertaining to gaps, stereochemistry and weighting, it incorporates no additional variables or
transformations.

The normalization of m, the substitution matrix of Cygqq.r is crude. That of Cxgpin is mathematically
more elegant. However, Cyyq,-’s normalization is more respectful of off-diagonal scores. These precious
substitution probabilities are untouched and only the diagonal scores, which are anyway antithetical to the

scoring of conservation, are affected.

2.4 A generalized formula for scoring conservation

No score is perfect. But some scores are less perfect than others. Scores discussed later in the survey tended
to satisfy more of the criteria outlined in sections 2.1.1 and 2.1.2 than those discussed earlier. Shannon’s
entropy offered an elegant way to measure diversity among uniformly different symbols, but faltered when
accounting for stereochemistry. Property-based scores (section 2.2.3) respected stereochemistry but failed
to register symbol diversity. The most successful compromises were seen in the sum-of-pairs scores, al-
though they exposed some limitations of using substitution matrices. Sum-of-pairs scores also seemed to
be the most amenable to sequence weighting, although the review above is unlikely to be comprehensive.

Cvaldar 1s @ compromise. In opting for a sum-of-pairs architecture it trades the mathematical elegance
of Shannon’s entropy for the rich stereochemical sensitivity bestowed by a substitution matrix. Gaps are
incorporated in an ad hoc fashion, grafted on to the matrix. Any clumsiness of C y414,4, can be justified post
hoc: it works, giving results consistent with intuition.

So far this chapter has mainly discussed scores following either the entropy or the substitution matrix



CHAPTER 2. SCORING RESIDUE CONSERVATION 54

model. But is this dichotomy inevitable? One could devise a score that plays entropy and mutation data
to their relative strengths by keeping the assessment of relative symbol frequencies and the assessment of
stereochemistry separate. An example of such a score is considered here.

Positional variability may be seen to have three elements:

1. symbol diversity, normalized to take account of sequence redundancy;
2. stereochemical diversity;
3. gaps.

For a given position, each element can be assigned a score that measures the extent to which it describes
that column. Let ¢ be the normalized symbol diversity (diversity), let r be the stereochemical diversity
(stereochemistry) and let g be the gap cost (gap). For convenience, all measures are continuous and bounded
in the range 0 to 1, where 0 means that element is not present and 1 means that element is at its maximum.
For instance, r = 0 means there is no stereochemical diversity at the position whereas r = 1 means the
position could not be any more stereochemically diverse. Conservation is a function of these three variables.
More intuitively, an assessment of conservation can be seen as a three pronged attack: a position is criticized
on its symbol diversity, its stereochemical diversity and its gappyness. For a position x, we can write

Ciridens (x) = (1 =1 (x))* (1= r ()P (1 - g (x))" . @.17)

The exponents ¢, § and y weight the importance of each element. For the moment, suppose they are all
equal to one. If position x is strictly conserved, then Cyyjgeny = (1 —0) x (1 —0) x (1 —0) = 1. As position x
becomes more afflicted with gaps, stereochemical diversity or symbol diversity, C; igen; drops towards zero.
The relative impacts of these three elements on the conservation score were rigidly prescribed in C yg4gar-
In Ciridens, however, the sharpness of each prong may be adjusted freely to suit the purpose of the user.
For example, if Cyrigens With oo = =y =1 is too lenient on gaps and too strict on stereochemistry for a
particular application, one could instead try o = 1,3 =1/2 and y = 2.

Ciridens 18 s0 far more a convenient division of labour than a score, since it is open how any particular
prong is defined. To make the score more concrete, we can start by specifying ¢ as Shannon’s entropy:

K
t(x) = )‘-Zpa log; pa,
a

where K, the alphabet size, is 21 (20 amino acids plus one gap symbol) and p , is the probability of observing
the ath symbol type. A, scales the entropy to range [0,1] and is defined as

A =log, (min (N, X)) ,

where N is the number of sequences in the alignment, so that #(x) can reach its maximum of one even when
there are fewer that K amino acids in the column. Sequence weighting can be incorporated into Shannon’s
entropy by normalizing each p, thus
Pa= 2 Wi,
ie{i:si(x)=a}
where w; is the weight of the ith sequence and s; (x) is the symbol type at position x in that sequence.
In words, the probability of observing symbol type a is the summed weight of sequences manifesting a.
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Ideally, the sum of all weights should be one. The most apposite weighting scheme, which is related to an
entropy model, is therefore that of Henikoff & Henikoff ( Henikoff & Henikoff, 1994):

1

kxnxi ’

w; =

>

=

where L is the length of the alignment, k, is the number of symbol types present at the xth position and n
is the number of times the symbol type manifested by the ith sequence occurs at that position (see section
2.2.6.1 for a fuller explanation).

The second prong of C;iz.ny measures stereochemical diversity but does not need to take account of
symbol frequency or gaps. One candidate for this is Vzpi described in section 2.2.3. The one employed
here uses a substitution matrix and is related to the model used in Crpompson (Page 46). Let amino acid a be
represented by a point X, in 20-dimensional space such that

M (a,a;)

M(a,a;)
X, = .

M (a,az)

where q; is the ith amino acid type. For example, the position of Cys in this space is defined by its mu-
tational proximity to all other amino acids. M(a,b) is the similarity between amino acids a and b judged
by a normalized substitution matrix. One consistent normalization would be that of Karlin & Brocchieri
(Karlin & Brocchieri, 1996) (equation 2.5). For a position x, the consensus amino acid type is calculated as

point X (x):
1 &

X(x) = szay

where k; is the number of amino acid types present in the column. The stereochemical diversity may be
calculated as the average distance of observed amino acids from the consensus point:

1 &
r(x) :}"rgzp((x)_xa' )

where the scalar A, = \/20 (max (M) — min (M))? ensures r < 1.

The third prong of Ci igerns, the gap cost, is more straightforward. The more gaps, the less selective
pressure is assumed to have acted at the position. Thus, g(x) can be defined simply as the fraction of
symbols in column x that are gaps.

Ciridens 1S DOt so much one score but a framework in which many different conservation scores can
be imitated. For instance, if o =1, =0 and ¥ = 0, Cyigen; resembles Csepneiger (minus the weighting).
However, because C 4y raises more questions than it answers, it is better deployed in the analysis of
conservation scores than in scoring conservation as such. After all, such a versatile framework can imitate
uninformative scores as well as useful ones. An intriguing question is whether C,;geny can imitate Cyggqr-
To investigate this, scores from Cygq, Were compared with scores from C;rigene for different values of
o, B and y. Specifically, Cyggar and Crigens Were used to score all positions in six multiple sequence
alignments. The similarity of the two scores was measured as Pearson’s correlation coefficient of the two
outputs. This was done for one thousand different sets of a, § and y. To avoid unnecessary confounding
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‘trident 0.98

correlation
with C™idar

0.38

maximum

correlation

0.2 0.2

Figure 2.10: Similarity of Cvaidar to Qrident under varying parameters a, Gand y.

Orident 1S a flexible score for measuring residue conservation. It is parameterized by a, (3 and y, which
weight the relative importance of symbol diversity, stereochemistry and gap penalties respectively. Altering
these parameters allows C,rident to imitate a variety of inflexible conservation scores. The central cube rep-
resents the three-dimensional parameter space of C,rident - Colour is used to indicate the similarity, measured
by the correlation coefficient of output (see text), of Qrident to the concrete score Cveddar ut a particular point
in this space (ie, for particular values of a, (3 and y). Red areas indicate C,rident is highly similar (has a
correlation approaching 1) to Cvaidar at these values of a, 3and y. Blue areas indicate low similarity. The
area of parameter space corresponding to the maximum correlation between the two scores (correlation
coefficient=0.98 ata = 1, 3= 0.5, y = 3) is approximately indicated on the diagram by an oblong box.
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variables, the similarity matrix used for Cyy;zene Was the same as that used for Cygyq,,. The alignments used
were those belonging to the six homodimer families discussed in chapter 3. This dataset comprised 1595
residue positions in all and contained data from 195 sequences. Figure 2.10 shows how the correlation
between the two scores varied over the three-dimensional parameter space of o, § and y. In this cursory
investigation, the maximum correlation reached was 0.98 when oo = 1, § = 0.5 and y = 3. This correlation
seems high. However, because the dataset used is small and may not uniformly exercise all aspects of
Cvaldar, this result should be considered only as a rough estimate. In particular, Figure 2.10 shows that
when o and P are optimal, varying vy has little effect on the correlation. This reflects the small number
of gaps in the six carefully compiled alignments. A gappier set of alignments might raise the profile of
this third parameter. Acknowledging these caveats, it is nevertheless interesting to contrast the parameter
set necessary to simulate Cygq,r With that required to simulate Cgpyeiqer. For both concrete scores, o = 1.
This reflects the fact that Cyggar and Csppeiger both account for the relative frequencies of amino acids. The
two scores differ on . For Cyg4,, P is nonzero, indicating this score is sensitive towards stereochemistry
whereas for Csppeider, B = 0, indicating stereochemistry is ignored. Cy,;qq- penalizes gaps whereas Cspneider
does not. Similarly, y =3 for Cyy44r, indicating this score’s acknowledgement of gaps, whereas for C sppneider
which does not penalize gaps,y = 0.

2.5 Conclusions

This chapter has reviewed seventeen scores (not including Cygigar OF Ciridernt ) and several distinct approaches
for quantifying evolutionary conservation at an aligned position. No score achieved both biological and
statistical rigour. The most meaningful scores were relatively ad hoc. However, given the success of
probabilistic sequence profiles (Eddy, 1996) (Mott, 2000), which are a different but related emprise, it
seems likely that a statistically robust score is possible.

Ciridens combines the strengths of previously disparate approaches. Although its flexibility undermines
any authority it has as a concrete score (and for this reason it is not considered outside chapter 2), it does
provides a framework for dissecting the character of other scores. This kind of meta-analysis is interesting
from an abstract theoretical point of view. It may also be useful in a more practical sense. Given a dataset
of multiple alignments with “correct” scores — these scores might be inferred from orthogonal information
relating to the importance of particular residues in structure or function — the parameters of o, § and y could
be optimized so that C;,;4.n imitates these scores. At present, however, such datasets are not available and
even somewhat difficult to conceive.

The score that satisfies the requirements of a conservation measure better than any other surveyed here
is Cvaidar- Cvaidar Will therefore be used to quantify residue conservation in the remainder of this work.
Although more sophisticated scores could be conceived, Cygidqr accords with intuition and it will be used
to answer the fundamental questions addressed in the following chapters about the utility of conservation
in protein-protein interface prediction. The extent to which Cygq,- achieves this aim will be judged in the
Conclusions (Chapter 5).
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Chapter 3

Analysis of conservation in

homodimeric interfaces

3.1 Introduction

Being able to predict protein-protein interfaces is desirable. But to make such a prediction, one must first
know something about protein-protein interfaces that distinguishes them from other parts of the protein
surface. The commonality of physical and chemical properties among some interfaces has led at least
two groups to propose prediction methods on a purely physical and chemical basis ( Young et al, 1994)
(Jones & Thornton, 1997b). However, it is likely that evolutionary information derived from the large num-
ber of available protein sequences could be at least as useful. After all, protein-protein interactions are not
merely biophysical phenomena; they are phenotypes, ultimately answerable to natural selection.

This chapter investigates the extent to which inferred evolutionary conservation can guide the analy-
sis of protein-protein interfaces. If, following the neutralist view of evolution, residues under functional
constraints tend to resist substitution (because substitution is usually for the worse, according to that view)
rather than embrace it, one would expect residues in a biologically important interface to be conserved.
If this is so, then identifying an interface could be as straightforward as locating a conserved cluster of
residues on the surface. In order to establish whether conservation can be used this way, the work presented
here tests the following premise: that residues in interfaces are significantly more conserved than those on
the rest of the surface.

Grishin & Phillips (Grishin & Phillips, 1994) tested a similar premise, that interface residues are sig-
nificantly conserved with respect to all other residues in a protein, and concluded it to be false. They anal-
ysed five oligomeric enzymes. For each enzyme sequence, they identified which positions corresponded to
residues in the structural core, the active site and the subunit interface. Then, for every pair of sequences in
a multiple alignment of the oligomer, they compare the rate of evolution, which they define as the fractional
sequence identity, at these positions with that over all positions in the protein. This comparison gives them
a measure of how much slower mutations occur in active site, core or interface positions than on average
over the whole sequence. They found active site residues were by far the most conserved, evolving 50 times
slower than average, whereas core and interface residues were only slightly conserved, evolving 2 and 1.5
times slower respectively. Thus, although the interfaces were much less conserved than the active sites, they
were still more conserved than the surface.

Grishin & Phillips’s definition of conservation precludes substitutions of any kind. But such a strict
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definition misses more subtle patterns of conservation: those in which substitutions conserve physico-
chemical characteristics. Complete invariance at active sites positions is common because these motifs
frequently rely on precise arrangements of specific amino acids. In contrast, residues at the structural core
do tolerate mutations but within only a limited range (Branden & Tooze, 1998). A more sensitive measure
of the rate of evolution, one that accounts for conservative substitutions, might have brought the scores for
active site, core and, possibly, interface positions closer together.

Herein, we investigate whether oligomer interfaces are significantly conserved with respect to the pro-
tein surface by studying in depth a small but strictly defined dataset of six homodimer families, each of
which form two-chain complexes. To address this problem meaningfully, we determine the probability
that a randomly chosen group of residues from the protein surface will be more or less conserved than the
interface group. We estimate this probability for all six oligomer complexes in our dataset by simulation,
performing a large number of trials to obtain the fraction of random selections that equal or better interface
conservation. The trials are performed in two ways: “picking”, in which groups of residues are chosen
entirely at random from the surface, and “walking”, in which randomly chosen groups may contain only
residues that are structurally contiguous.

3.2 Materials and Methods

The following protocol was followed to test whether the interface residues of a component chain in a
protein-protein complex are significantly conserved with respect to all residues on the surface of that chain.
First, functionally equivalent homologues of the protomer are identified and aligned multiply. Second, each
position in the protomer is given a score that measures the degree to which it is conserved in evolution
as inferred from the multiple alignment. Third, each residue in the protomer is classified according to the
extent it lies in the surface and the extent it participates in the interface. Last, the average conservation
score for residues in the interface is compared with the distribution of average conservation scores for
the same number of surface residues in randomly selected groups. This comparison allows us to estimate
the probability that a randomly selected group will have an equal or better average conservation than the
interface, and hence assess whether the conservation of an interface is statistically significant.

To put this work in the context of previous analyses of protein-protein interfaces, the interface
conservation of each protomer is also examined using “surface patches”, after Jones & Thomton
(Jones & Thornton, 1997a).

3.2.1 Ciriteria for dataset

Component chains from oligomer complexes were chosen to fulfill the following criteria. The protomer to
be studied must form a stable, symmetric complex with one other protomer to which it is identical or nearly
identical such that the oligomer is homodimeric and the conservation of only one chain need be considered.
The complex must be shown by its associated literature to be essential to the stability and correct function
of the protein. The full wild-type complex must be available as a structure determined by X-ray crystallog-
raphy in either the Protein Data Bank (PDB) (Bernstein et al, 1977) (Berman et al, 2000) or its derivative,
the Protein Quaternary Structure File Server (Henrick & Thornton, 1998) (PQS; http://pgs.ebi.ac.uk/). Of
all structures available for the complex, the structure chosen must have the best combination of the follow-
ing properties: high resolution, inclusion of any bound cofactors that occur naturally; and, if applicable,
the inclusion of a ligand similar in size and shape to that of the natural substrate. To enable the robust
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Family Representative Protomer Structure
Resolution Data
Name Abbreviation Description References ArchitF old (C'l;s S/l ) Name (in IH ete‘rioatom/ bank Organism
OPOI0gY. Angstroms) | BT EOUPS | gource
Alkaline Widely distributed non-specific ([DuBose & Hartl, 1990; |Mainly beta/ sandwich/ 1xMg Escherichia coli
phosphatase phosphomonoesterase. Hulett et al, 1991; immunoglobulin-like 2x7Zn
AP Kim & Wyckoff, 1991; lalk 2 1xPO4 PDB
Knowles, 1991 chain A
Enolase Glycolytic enzyme that Babbitt & Gerlt, 1997, |domain 1: alpha beta/ 2- 1xPEP Saccharomyces
catalyzes the dehydration of 2- [Babbitt et al, 1996; layer sandwich/ enolase- 1xMg cerevisiae (baker's
Enolase  [phospho-D-glycerate (PGP) to |Larsen et al, 1996; like; lqne 1.8 PDB |yeast)
phosphoenolpyruvate (PEP).  |Zhang et al, 1997 domain 2: alpha beta/ | haiD A
barrel/ TIM barrel
Glutathione S- Catalyzes conjugation of Board et al, 1995; domain 1: alpha beta/ 3- 1xGTB (s~(p- Mus musculus
transferase glutathione to a variety of Board et al, 1997; layer(aba) sandwich/ nitrobenzyl) (house mouse) liver
electrophilic substrates Neuefeind et al, 1997; |glutaredoxin; glutathione)
(including carcinogens and anti-|Rossjohn et al, 1997 domain 2: mainly alpha/ 1glq
GST cancer drugs) and makes the non-bundle/ glutathione | 1.0 A 18 PDB
latter easier for the host to S-transferase (subunit A,
metabolise. domain 2)
Copper, zinc Neutralizes superoxide radicals. |Banci et al, 1998; mainly beta/ sandwich/ 1xCu Xenopus laevis
superoxide Consistent homodimers only in [Bordo et al, 1994, 1999; |immunoglobulin-like 1xZn (African clawed
dismutase SOD [cytoplasmic eukaryotic Getzoff et al, 1989 1xso 1.49 PDB [frog)
proteins. chain A
Streptomyces Serine proteinase inhibitor that |Hirono et al, 1984; alpha beta/ 2-layer 1xStreptomyces bacillus
subtilisin inhibits subtilisin strongly and [Kojima, et al, 1993; sandwich/ subtilisin subtilisin (2sic amyloliquefaciens
inhibitor other proteinases, including Laskowski & Kato, inhibitor chain E)
sSI trypsin and chymotrypsin, to a |1980; 23?‘3 1.8 PQS
lesser extent. Protomers inhibit |Taguchi et al, 1997 chain I
one proteinase each to form
E212 complex.
Triose Catalyzes interconversion of D- |[Borchert et al, 1994; alpha beta/ barrel/ TIM 2- gallus gallus
phosphate glyceraldehyde 3-phosphate and|Garza-Ramos et al, barrel Ltoh phosphoglycoloh (chicken) muscle
isomerase TIM dihydroxy acetone phosphate. |1998; chaqun 1 1.8 ydroxamate PDB

Gopal et al, 1999;
Williams et al, 1999
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identification of a diverse set of homologues, the protomer should be represented in the CATH classi-
fication (Orengo et al, 1997) and according to that classification have only one structural domain. The
protomer sequence must have non-fragment homologues in the SWISS-PROT protein sequence database
(Bairoch & Apweiler, 2000) that are numerous (>10) and diverse (<70% mean pairwise sequence identity),
and, by their annotation, share its function and multimeric state (see also Identification and alignment of
homologues). Applying these criteria gave rise to six homodimer families (see Table 3.1).

3.2.2 Identification and alignment of homologues

Homologues for a given protomer are identified and aligned in two stages. At both stages, a homologue is
included only if its annotation and associated references show unambiguously that it shares the protomer’s
function and precise multimeric state, and that it is a wild type protein and not a fragment. First, the
sequence family of the protomer is identified in the CATH classification (Orengo et al, 1997). If there are
at least three suitable representatives of that family, a multiple structural alignment of the protomer and
these representatives is built using the CORA suite of programs (Orengo, 1999). Otherwise, a multiple
sequence alignment from the ALIGN resource associated with the PRINTS database ( Attwood et al, 1999)
or one from the Pfam database (Bateman et al, 2000) is edited and used. This seed alignment is used to
build a profile hidden Markov model (Eddy, 1996, and references therein), which in turn is used both to find
more homologues in the SWISS-PROT sequence database and to align multiply the final set of homologues
to the protomer sequence. This final alignment, referred to here as the “full alignment” for the family, is
edited for high redundancy by removing the less well characterized or shorter of any two sequences that
are more than 90% identical. Searching for homologous structures in CATH was performed with reference
to the CATH Dictionary of Homologous Superfamilies (Bray et al, 2000). The construction of the profile
and its application in searching for and aligning homologues were both performed with the HMMER?2
software package (see http://hmmer.wustl.edu/). The filtering of large numbers of sequences by annotation
was performed using the Sequence Retrieval System (Etzold et al, 1996). The removal of redundancy in
the alignment was performed with the help of JalView (Clamp et al, 1998).

3.2.3 Scoring residue conservation

Each residue in the protomer of interest is assigned a numerical value Cons (ranging from 0 to 1) cor-
responding to the conservation of residue similarities at its position in the multiple sequence alignment.
A value of 0 indicates the position is not conserved; a value of 1 indicates it is highly conserved. Cons
corresponds the Cygq,r conservation score defined in section 2.3.

Here the terms “conservation score” and “residue conservation” will be used to denote either the value
returned by Cons for a given residue, or, when applied to a set of residues, the average value of Cons for all
residues in that set. These definitions are vital because they underpin the whole analysis of conservation.

3.2.4 Interface definition

Each residue in a protomer is assigned to one of the following disjoint sets: Core, Exposed, Partially Buried,
or Buried. Qualitatively, Core residues are those in the structural core of the protein, Exposed residues are
on the surface but do not participate in an interface, and Partially Buried and Buried describe residues that
are on the surface of the protomer and participate in a multimer interface. Two further sets are referred to
here: the Surface set, which is the union of the Exposed, Partially Buried and Buried sets, and contains all
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residues on the surface of the protomer; and the Interface set, which is used as a generic term for either the
Buried set or the union of the Buried and Partially Buried sets. For clarity, Buried residues are said to form
the “central zone” of the interface whereas Partially Buried residues form its “outer zone”. Together, these
sets define the “total interface”.

The classes are assigned on the basis of solvent accessibility, which is calculated using NACCESS
(Hubbard & Thornton, 1993), an implementation of the Lee & Richards (Lee & Richards, 1971) algorithm,
with a probe sphere of radius 1.4 A. A residue is deemed accessible if its relative accessible surface area
(RSA) is > 5%, a cut-off devised and optimized by Miller et al (Miller et al, 1987). If a residue is accessible
in the protomer it is in the Surface set, otherwise it is Core. If a residue in the Surface set loses RSA upon
complexation it is in the Interface set, otherwise it is Exposed. If a residue in the Interface set is inaccessible
(ie, < 5% RSA) in the multimer complex, it is in the Buried set, else it is Partially Buried.

3.2.5 Ligand-buried residues

Ligand-buried residues are defined here as residues that become inaccessible in the protomer upon inclusion
of ligand groups. Together they comprise the ligand-buried site for a protomer. Because residues that
participate in an active or allosteric site (referred to here generically as a “binding site”) are typically both
accessible and highly conserved, the inclusion of ligand-buried residues, which are usually a subset of
the binding site residues, in the Surface set will clearly affect any calculation that compares conservation of
interface and surface. To investigate the effect of conserved ligand-buried residues, all tests described below
are carried out twice, once with these residues included, or “unmasked”, and once with them excluded, or
“masked”.

3.2.6 Patch analysis of interface conservation

The conservation of the total interface of each unmasked protomer was examined using a variant of the
“patch analysis” method of Jones & Thornton (Jones & Thornton, 1997a). In the original procedure, a
set of roughly circular overlapping patches, each covering as many residues as the interface, is defined on
the surface of the protomer. Quantitative properties of patches and their constituent residues can then be
described in terms of their distributions over all patches and related to the extent those patches overlap with
the interface. Herein, the average conservation of residues in a patch is the only property considered and
this quantity is termed the “patch score”.

3.2.7 Testing the significance of interface conservation

In order to assess the significance of conservation at a given interface the following null hypothesis, H g, is
tested: the average conservation of the Interface set is no higher than that obtained from an equal number
of residues drawn without replacement from the Surface set by a random process. The negation of H g is the
alternative hypothesis, H;, which states that the Interface set has a higher average conservation than that
of a set randomly selected in this way. A simulation experiment is performed to estimate the probability
that Hy is true. If the value of this probability (P value) falls below a certain threshold, customarily defined
at 0.05, then Hy is rejected in favour of H; and the conservation of the interface is considered statistically
significant at the 5% level.

The P value expresses the probability that a selection of residues drawn from the surface by a random
process will have an average conservation equal to or greater than that of the interface. This P value
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depends not only on the distribution of conservation over the surface and in the interface but also on the
nature of the random process employed to make the selections. To ensure the test of H¢ is meaningful, it
is a minimum requirement of any random process used that it is able to draw from the surface the set of
residues corresponding to the interface. Two distinct random selection processes, “picking” and “walking”,
are employed here and these are described below.

For a given protomer surface, defined interface and random process, it is often computationally infeasi-
ble to enumerate all possible selections, compare the conservation of each to that of the interface, and hence
evaluate p, the true P value. However, p can be estimated reliably enough by random sampling.

A trial is devised in which the random process selects n(Interface) residues from surface set and their
average conservation is compared with that of the residues in the interface set. If ¢ such trials are performed
and each trial is independent of any other, then p can be estimated as p = ¢ /¢, where ¢, is the number of
trials in which the selection was at least as conserved as the interface. The greater the number of trials,
more reliable the estimate, and when # is large, the expected accuracy of p can be described formally
by a confidence interval. A confidence interval is defined by a range, symmetric about the estimate and
an associated probability that p, the true value, is contained somewhere within this range. The “99%
confidence interval” for the unknown value of p is thus the margin of error expected for p 99% of the
time. This interval is given by (p —2.580, p+2.580), where o, the standard deviation of p, is equal to
\/,B’\_(_l_——m . To ensure a high degree of accuracy, the number of trials performed for a given a estimate is
constant at 10 million, resulting in a margin of error of at most ~0.04% at least 99% of the time.

The P value for interface conservation is estimated stochastically as described above for each of the six
protomers in the dataset. For each protomer, trials are performed under three variable conditions, giving
rise to eight experiments per protomer. First, trials are performed using one of the two random selection
processes, “picking” and “walking”. Second, residues participating in an active or allosteric site are either
included in the Surface set or masked out. Third, the Interface set is taken as either the Buried set (central
zone) or the union Partially Buried U Buried (total interface).

3.2.7.1 Picking: unconstrained selection of residues

“Picking” is the first of the two random processes used here for selecting a group of residues from the
Surface set of a protomer. For a given protomer, residues are drawn at random and without replace-
ment from the Surface set until the number drawn is equal to n(Inter face), the number of residues in the
Inter face set. In picking, all selections occur with equal probability.

3.2.7.2 Walking: structurally constrained selection of residues

“Walking” is the second of the two random processes used here for selecting a group of residues from
the Surface set of a protomer. Walking selects groups of residues from the surface of a protomer by
successively stepping from one residue to any residue in contact with it chosen at random. A walk starts
at any residue chosen from the entire Surface set. The walk is allowed to revisit residues any number of
times, otherwise it could become trapped, but any particular residue is counted only once towards the final
selection. The walk ends when the number of distinct residues visited is equal to the number of residues
in the Interface set. In this scheme, two residues, A and B, are considered “in contact” if the distance
between the van der Waals spheres of at least one of A’s atoms and at least one of B’s atoms is no more than
1 A. All walks are equiprobable but many walks may produce the same selection.
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3.3 Results

We investigated interface conservation in six homodimer families (abbreviations in brackets): alkaline
phosphatase (AP), enolase (Enolase), glutathione S-transferase (GST), copper-zinc superoxide dismutase
(SOD), Streptomyces subtilisin inhibitor (SSI), and triose phosphate isomerase (TIM) (see Table 3.1).

Table 3.2 lists the number of residues in the central zone and total interface of each protomer represen-
tative, and Figure 3.1 shows graphically the residues that make up the total interface. The total interface
for a family was typically contiguous and compact, though not particularly circular. Only the total interface
of SSI was non-contiguous, in which one residue, Pro37, was separated from the closest of the others by
3A (Figure 3.1(SSI,a), (SSL,c)). An approximately linear relationship was observed both between the size
of the central zone and total interface and between the size of the total interface and the number of surface
residues. The largest total interface was that of AP and covered a third of that protomer’s surface residues
(Figure 3.1(AP,a) & Table 3.2). The smallest total interface, which covered barely a fifth of surface residues,
belonged to GST (Figure 3.1(GST,a) & Table 3.2). The central zone was between 20% (GST) and ~40%
(AP) of the size of the total interface.

Ligand-buried residues were identified in AP, Enolase, SSI and TIM (Table 3.3 & Figure 3.1). The
ligand-buried sites of AP and Enolase both comprise two highly conserved residues situated in pockets near
the interface (Figures 3.1(AP,a), (Enolase,a)).

SST’s ligand-buried site is on the opposite side of the protomer to that of the interface (Table 3.3 & Figure
3.1(SS1,b)) and consists of three residues, Met70, Cys71 and Pro72, which protrude into and block the active
site of serine proteinase. These residues are centrally located within an inhibitory region SSI shares with
other serine proteinase inhibitors (serpins). This region, the so-called “reactive site”, stretches from Gly66
to Tyr75 and, between Met73 and Val74, contains the peptide bond used as bait for the catalytic triads of
proteinase enzymes. In contrast with the other protomers, SSI’s ligand-buried residues are not unanimously
conserved (Laskowski & Kato, 1980) (Hill & Hastie, 1987) (Takeuchi et al, 1992) (Kojima et al, 1993).
Phylogenetic analysis by Taguchi et al (Taguchi et al, 1997) suggests variability in this region may result
from diversifying selection driven by the advantages of multi-specific inhibitors in the regulation of intrinsic
proteases.

TIM’s ligand-buried site was the largest of those studied and contains five highly conserved residues
(Table 3.3 & Figures 3.1(TIM,a), (TIM,c)). TIM binds its substrate in a pocket created by the inside edge
of its barrel topology. Although this pocket lies just outside the total interface, two ligand-buried residues,
Asnll and His95, belong to the central zone. This surprising observation results from the convoluted
geometry of the interface in which the two component chains protrude so deeply into one another that one
affects the solvent accessibility of residues that form the inside of the other’s barrel.

Although GST and SOD are both enzymes and their representative structures included ligand groups
(see Table 3.1 & Figures 3.1(GST.a), (SOD,a), (SOD,b)), no ligand-buried residues were detected in either.
This reflects the strict definition of the ligand-buried site (see Methods) in which ligand-buried residues
must lose all accessibility upon binding ligands. For example, Lys13 of TIM, which is known to play
an important role in catalysis (Williams et al, 1999) and is highly conserved, touches TIM’s substrate.
However, because it is not completely buried by the substrate it does not qualify here as a ligand-buried
residue.

Defining which amino acid types are conserved in interfaces is complex and beyond the scope of this
paper. Residues in the representative protomer of AP (Figure 3.1(c)(d)) map directly to positions in AP’s
multiple alignment and so may host a number of amino acid types in varying proportions. Moreover, the
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Interface Conservation
Family
(a) front (b) back (c) front (d) back
AP
Enolase a
GST
SOD
SSI
TIM
Actual bindin interface Interface ~ Conserved
. siti ligand-buried I
both a Variable

Figure 3.1: A table to show the location of interface and ligand-buried residues ((a),(b)), and residue con-
servation ((c),(d)) for six families of homodimers.

Protomer structures are elevated to show the interface head on in columns (a) and (c), and at a rotation of
180° about the y-axis in columns (b) and (d). In columns (a) and (b), ligand buried residues and residues
belonging to the total interface are indicated (see Methods for how these classes are defined). Arrows
indicate the approximate location of the actual binding site as it is defined in the literature. Ligand-buried
residues, typically a subset of residues in the actual binding site, are detected in AP, Enolase, SSI and TIM.
In the elevations presented here these residues are out of view for AP and Enolase, partially visible for TIM,
and conspicuous in SSI. In columns (c) and (d), each residue is coloured by the rank of its conservation score
among all other conservation scores in the protomer. Rank Cons is used instead of absolute Cons so that
dispersion of conservation over the surface can be more easily visualized. A steel wire effect delineates the
perimeter of the total interface. The table shows conservation is not distributed uniformly on the surface
but in clusters, and that the interface, although it includes both highly and poorly conserved residues, is on
average more conserved than not. Atom coordinates were obtained from the PDB (Bernstein et al, 1977)
(Berman et al, 2()()0) and the PQS (Henrick & Thornton, 1998). Images were created using MOLSCRIPT
(Kraulis, 1991) and Raster3D (Merritt & Bacon, 1997).
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Acti Number Mean S.D. Interface Nuz;lfber Mean Experiment P-value
Family ACUVE 1 of surface | surface surface i . interface P for Error (+/-)
site state X definition' | interface type s
residues Cons Cons " Cons interface?
residues
icki 86E-5 | 6.76E-6
central 37 0.71 picking | 686E-5 | 6.76
walking | 6.83E-3 | 6.72E—5
unmasked 289 0.59 0.21 —
total 9% 0.63 picking 4.52E-3 | 5.47E-5
AP ° ' walking | 7.02E-2 | 2.08E-4
central 17 071 plclu.ng 3.87E-5 | 5.08E~6
walking | 3.12E-3 | 4.55E-5
masked | 287 0.58 021 —
total 9% 0.63 picking 2.36E-3 | 3.96E-5
° ' walking | 5.00E-2 | 1.78E—4
picking | 3.55E-5 | 4.86E—6
central 2 089 I alking | 3.745-2 | 15564
unmasked 263 0.72 0.22 —
ol o 082 picking | 3.02E-5 | 4.48E-6
Enol ‘ walking | 3.78E-2 | 1.56E—4
nowase picking | 2.57E-5 | 4.14E-6
central 20 0.89 -
walking | 3.186-2 | 1.43E-4
masked | 261 0.72 0.22 —
ol o 0 picking | 2.18E-5 | 3.81E—6
° : walking | 3.13B-2 | 1.42E—4
picking 1.06E-4 | 8.40E-6
central 6 0.71 walking | 1.77E-3 | 343E-5
unmasked | 158 045 0.16 —
total 130 0.52 picking 3.72E-3 | 4.96E-5
ST : walking | 7.09E-2 | 2.09E-4
picking | 1.10E-4 | 8.54E—6
central 6 07 "walking | 1.74E-3 | 34065
masked 158 045 0.16 =
total 20 052 picking 3.72E-3 | 4.96E-5
o ' walking | 7.11E-2 | 2.10E—4
picking | 8.73E-3 | 7.59E-5
central 5 09 [“walking | 27552 | 13364
unmasked 105 0.70 0.23 —
total 20 078 picking 3.60E-2 | 1.52E-4
oD ' walking | 202E-1 | 32764
" S 093 picking | 8.73E-3 | 7.59E-5
een ' walking | 2.75E-2 | 134E-4
masked 105 0.70 0.23 —
total 20 078 picking 3.60E-2 | 1.52E-4
° ' walking | 2.02E-1 | 3.27E-4
picking 4.50E-2 | 1.69E-4
contral | 7 085 I “walking | 159E-1 | 29864
unmasked | 91 071 0.3 -
ol - ™ picking | 1.50E—4 | 9.99E-6
ssi ' walking | 1.30E-2 | 9.25E-5
picking 4.53E-2 | 1.70E-4
central 7 085 I aling | 1L64E-1 | 3.02E-4
masked 88 0.71 022 —
total 27 0.84 picking 1.43E-4 | 9.75E-6
: walking | 1.35E-2 | 9.41E-5
picking | 1.30E-2 | 9.25E-5
central ? 076 I alking | 1.65E-1 | 3.03E-4
unmasked | 168 059 0.22 e
otal 18 0.68 picking 1.92E-3 | 3.57E-5
™ : walking | 171E-1 | 30764
central 8 073 picking 2.61E-2 | 1.30E-4
' walking | L63E-1 | 3.02E—4
masked 163 0.58 021 2
total 16 0.66 picking 2.90E-3 | 4.39E-5
° ' walking | 1.43E-1 | 2.86E-4

'central = "central zone", total = "total interface"
2p 2 0.05 in bold

Table 3.2: P values and associated information calculated for the six homodimer families.
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[ Family | Ligand-buried residues ]
AP Thr102, Asp327
Enolase Ser39, Lys345
GST None
SOD None
SSI Met70, Cys71, Pro72
TIM | Asnll, His95, Glu6s, Gly210, Gly232

Table 3.3: Ligand buried residues detected in the six homodimer families.

notion of conservation as a continuous quantity suggests no obvious cutoff at which "conserved" residues
could be distinguished. However, for completely conserved positions, ie, those with a conservation score
of 1, such an analysis is simple. By far the most common amino acid invariant at the interfaces of the six
homodimers was glycine. This is probably because glycine does not have a side chain and so substituting it
with an amino acid that does causes sterically unacceptable disruption of the interface. Arginine and valine
were next most common but their numbers are low and so cannot be interpreted with confidence.

For each family, the statistical significance of residue conservation at the oligomeric interface was as-
sessed by computing the probability (P value) that this conservation could have occurred by chance (see
Methods). If the P value was less than the predefined cutoff 0.05, the associated interface was considered
significantly conserved. P value calculations were performed under three variable conditions (described
in Methods), giving rise to eight distinct P values per family. In addition to the significance tests, patch
analysis was performed on each family whereby the conservation of residues at a homodimeric interface is
compared with that of roughly circular overlapping patches defined on the surface of a constituent protomer.

3.3.1 Conservation in patches

The protomer dataset was analysed using surface patches. For each family, patches containing as many
residues as the total interface were defined on the surface of the representative protomer and the average
residue conservation of each patch, ie, its patch score, was calculated (see Methods). The number of patches
defined, which related linearly to the size of the protomer, ranged from 87 in SSI to 235 in AP.

Figure 3.2 shows distributions of the patch scores for each family and reveals that, for all families, the
average conservation of residues in the observed interface lies within the top quarter of the distribution.
Specifically, the score of the interface coincides with the following percentiles: 77% (ie, lying just within
the top 23% of the distribution) (TIM), 80% (SOD), 82% (GST), 84% (Enolase), 91% (AP), and 92% (SSI).
It is more meaningful to compare the interfaces of different families based on relative patch rank in this way
than by absolute conservation score because the latter depends on the extent and diversity of the underlying
multiple sequence alignments.

The mean of a patch score distribution tends towards the mean conservation of surface residues in the
corresponding protomer. The higher moments (eg, standard deviation, skewness and kurtosis) depend not
only on the shape of the distribution of conservation scores for individual residues but also on the patch
size and how conservation is dispersed about the surface. As expected, larger patches tend to give narrower
distributions. For example, the variance of residue conservation for AP is similar to that of the other families
(see Table 3.2) but, owing partly to the large number of residues in its total interface, its distribution of patch
scores is markedly narrower (Figure 3.2(a)). The less uniformly the extremes of residue conservation are
dispersed over the surface of a protomer, the greater the difference between the highest and lowest patch
scores. Dispersion therefore affects not only the width of the distribution, causing it to be spread out if
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Figure 3.2: Distributions of patch scores for six families of homodimers.
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The patch score, defined as the mean conservation score for all residues in a patch, is given in bins of width

0.02 along the x-axis. The number of patches that fall into a given patch score bin is presented on the y-axis.

Stacking within histogram bars indicates the proportion of patches falling into a given bin that overlapped

the interface, overlapped the ligand buried site, overlapped neither region and overlapped both (see Results
for overlap criteria). A dashed line indicates the interface conservation, defined as the mean conservation
score for all residues in the interface. The graphs show that patches overlapping the interface tend to score
highly and that interface conservation consistently lies within the top quarter of the patch score distribution.
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residues with high and low conservation cluster in space, but also the skewness and kurtosis. For example,
if residues with high and low conservation cluster heavily at opposite sides of a protomer, most patches
will contain many more residues from one extreme than from the other, with few patches straddling both
poles equally to achieve the mean score. The resulting distribution will have a sunken appearance (negative
kurtosis) such as that seen for SSI (Figure 3.2(e)). If the degree of concentration is greater at one pole than
the other, the distribution will be correspondingly asymmetric (skewed) as seen for TIM (Figure 3.2(f)).

3.3.1.1 Overlap of the interface and ligand-buried site

Patches are deemed to overlap with the interface if they contain at least half of the interface residues,
and overlap with the ligand-buried site if they contain all the ligand-buried residues. Overlap is defined
differently to take account of the difference in size between these two regions and how much of each a
patch can reasonably cover, ie, most patches that overlap some ligand-buried residues will overlap all of
them whereas only one patch can cover all interface residues.

In fact, no patch overlapped any interface completely. The greatest percentage overlap achieved by a
patch for a particular family ranged from 67% (AP and SSI) to 80% (SOD). Patches that overlapped the
interface tended to be at least moderately and often highly conserved relative to other patches.

The stacked histogram for AP shows that patches that overlap with either the interface or the ligand-
buried site occur throughout the distribution, but patches that overlap with both regions occur only among
the higher ranks (Figure 3.2(a)). Patches that overlap the interface score variably despite the apparent high
percentile ranking of AP’s true interface because any one patch owes at least a third of its score to residues
outside the interface. Patches that overlap both interface and ligand-buried site score highly because they
include not only conserved interface and ligand-buried residues but also some of the conserved binding site
residues that surround the ligand-buried site. The narrowness and symmetry of the AP distribution is, as
mentioned above, partly explained by the large size of each patch but also reflects the unclustered dispersion
of high and low conservation over the surface observed in Figures 3.1(AP,c), (AP,d).

The histogram for Enolase shows that overlaps with either the interface or the ligand-buried site occur
almost exclusively at the top end of the distribution, with patches that overlap both taking the highest
ranks (Figure 3.2(b)). Examining conservation at the surface of Enolase reveals a concentration of highly
conserved residues around the ligand-buried site and in the region of the interface nearest to it (Figure
3.1(Enolase,c), (Enolase,d)). As for AP, optimally scoring patches tend to be those that cover both regions.
The width and positive skewness of the Enolase distribution reflects the clustering of high conservation at
the surface in the absence of any poorly conserved clusters.

Patches that overlap the interface are found at only the top end of GST’s patch score distribution and all
the highest scoring patches have interface overlap (Figure 3.2(c)). GST has smaller patches than Enolase,
and, because the sequences that contribute to its alignment are more divergent, there is greater variance in
the conservation of its surface residues (Table 3.2). Yet GST has the narrower distribution. This is because
the dispersion of conserved residues over the surface of GST is far less clustered than for Enolase, so its
patch scores tend to deviate less from the distribution mean (see Figures 3.1(GST,c), (GST,d)).

In SOD, overlap with the interface is split between the middle and top end of the distribution of patch
scores (Figure 3.2(d)). This dichotomy results from a slight clustering of poorly conserved residues on
one side of the interface along with a slight clustering of highly conserved residues on the other (Figures
3.1(SOD,c), (SOD,d)). Patches that overlap the side of the interface near the unconserved cluster have
moderate conservation whereas those that overlap the other side have high conservation.

The histogram for SSI shows a striking separation of interface overlap, which is confined to the upper
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end of the distribution, from ligand-buried site overlap, which is found exclusively at the lower end. This
separation arises because conservation over the surface of SSI is polarized, with a majority of highly con-
served residues around the interface and a majority of poorly conserved residues around the hypervariable
ligand-buried site.

In TIM, there is a smooth progression from those patches that overlap the interface, which are moder-
ately conserved, to patches that overlap the interface and the ligand-buried site, which are well conserved,
to patches that overlap the ligand-buried site, which are confined to the highest ranks. The surface of TIM
is marked by a gash of high conservation, which covers half the interface and spreads over and around the
ligand-buried site (Figure 3.1(TIM,c)). The remaining half of the interface is only moderately conserved
and touches a nearby cluster of poor conservation. The progression described above is consistent with these
observations and indicates that whereas patches that overlap the interface may score moderately, thanks to
the intersection of the interface and the conserved gash, patches that cover the ligand-buried site and avoid
the poorly conserved clusters score higher.

3.3.2 Significance of interface conservation

For a given protomer, the significance of interface conservation was assessed as follows. A set of residues
equal in number to that of the interface was drawn at random from the surface 10 million times. The fraction
of times this random set was at least as well conserved as the interface set was taken as the P value for the
interface. If and only if the P value was less than the predefined cutoff 0.05, ie, such that the probability of
interface conservation being random was <5%, the interface was considered significantly conserved. Two
distinct random processes, picking and walking, were used to draw residues from the surface. P values
were generated using both processes for both definitions of the interface in each family. Moreover, for
each combination, P values were estimated in both the absence and presence of ligand-buried residues (see
Methods for details). P values, being a relative measure, transcend absolute residues conservation. The use
of P values therefore allows the meaningful comparison of conservation across families whose alignments
may differ in the extent of their sequence diversity. Results of the P value estimations are presented in Table
3.2 and Figures 3.3 and 3.4; distributions of conservation for random selection are shown in Figure 3.5.

The picking simulations showed that all the interfaces studied, regardless of which interface definition
was used or whether or not ligand-buried residues were excluded, were significantly conserved. Enolase
consistently gave the lowest, ie, most significant, P values whereas the family with the highest P values
depended on interface definition, SOD having the highest among total interfaces and SSI scraping just
below the 5% cutoff among central zones (Table 3.2 and Figure 3.3).

P values determined by walking were consistently higher than those determined by picking (Figure
3.4(a)), and in some cases were outside the top 5% of conserved walks. However, in every family except
TIM the interface was significantly conserved by at least one of its two definitions (Table 3.2 and Figure
3.3).

The exclusion of ligand-buried residues (masking) affected P values by a small and usually negligible
amount (Table 3.2). Its most conspicuous effect was seen in the walking P values for AP, and in particular
those corresponding to the total interface, where masking promoted conservation of the interface from just
outside the top 7% of walks to barely within the top 5%. Masking made only a small difference because,
in most cases, the residues of a protomer’s ligand-buried site numbered far fewer than those of its interface.
The effect of their presence or absence in a pick or walk was therefore small. -

Although absolute P values varied between picking and walking in a protomer, the rank order between
one definition of the interface and the other did not (Figure 3.3). The central zone was unequivocally more
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Figure 3.3: P values for residue conservation of the interface obtained by picking and walking for six
families of homodimers.

Interfaces with P values smaller than 5%, ie, above the dashed line, are considered significantly conserved.
P values are shown for two interface definitions: (a) central zone and (b) total interface. The graphs show P
values from picking are significant for both definitions of the interface in all families, and that P values from
walking are higher and significant less often. Note that P values are shown for the unmasked simulations
only, since masking made negligible difference to these results.



CHAPTER 3. ANALYSIS OF CONSERVATION IN HOMODIMERIC INTERFACES 72

0.25
0.2 o)
) > o
0.15+
[
3
© i
>
* 0.1 —
2 <O Central zone
§ 1 o O Total interface
0.05 -E) ___________
] O T
[ —6 ===o" T T T T T T T T |
-0.01 0.01 0.02 0.03 0.04 0.05
—0.05 Picking P value
(a) Picking vs walking
L
0251 P
L O ”’06\:)'&\\*
0.2 ,/O/
3 | o e
g (o) ,,,/
Q0.5 P
= e
I r -
o o
0.1 o e
L O //"
0.05 - //’/ O Total interface
0 Pl | ) ] o 1 . 1 \ ]
0 0.05 0.1 0.15 0.2 0.25

Walking P value

(b) Patch analysis vs walking

Figure 3.4: Comparison of P values obtained by different methods.

In graph (a) P values calculated by picking (x-axis) are plotted against P values calculated by walking (y-
axis) for the same group of interface residues. The graph shows walking P values are consistently higher,
ie, denote less significant conservation, than those calculated by picking and that there is little correlation
between P values from the two methods. In graph (b), P values computed by walking (x-axis) are plotted
against those generated from the patch analysis (y-axis) for the same interface. The graph shows walking P
values typically give lower, ie, more significant, P values than from patch analysis and that P values from
the two methods correlate reasonably. Note that P values are shown for the unmasked simulations only,
since masking made negligible difference to these results.
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Each graph shows the distribution of conservation for 10 million picks (smooth line) and 10 million walks
(dashed line) for one definition of the interface in one homodimer family. Graphs in (a) show distributions
used to find P values for the central zone; graphs in (b) show distributions used to find P values for total
interface. In each graph, conservation, defined as the mean conservation score of residues in a selection,
is presented in bins of width 0.01 along the x-axis. The number of selections that fall into a given bin
is presented on the y-axis. A dotted line intersecting with the x-axis indicates the mean conservation of
residues in the true interface. The P value determined by a given simulation is the fractional area of its
curve that falls to the right of the dashed line. The graphs show picking tends to give regular, normal
curves whereas walking gives irregular and often highly skewed curves. The implications of these findings
is discussed in the Results section. Note that distributions are shown for the unmasked simulations only,

since masking made negligible difference to these results.
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conserved than the total interface in AP, GST and SOD families. In Enolase and TIM, P values were similar
between the two interface definitions. Only in SSI was the total interface clearly more conserved than the
central zone.

3.3.2.1 Conservation in picks

Figure 3.5 shows distributions of the conservation scores achieved by picks and walks. As with the patch
distributions, the mean of a picking distribution estimates the mean conservation of surface residues. The
higher moments relate only to the shape of the underlying distribution of conservation for individual surface
residues and the number of residues chosen. They say nothing about how conservation is dispersed over the
surface since picking is blind to where residues are located in space.

Picks the size of the total interface fell into distributions that were narrower and more symmetric than
picks the size of the central zone because they represent larger samples of the surface population and so show
greater convergence toward the mean. Such properties are manifest in Figures 3.5(a,iv) and 3.5(b,iv): SOD’s
central zone, which comprises a mere five residues, has an wide and irregular picking distribution (Figure
3.5(a,iv)) whereas its total interface, which comprises 20 residues, has a distribution that is symmetric and
regular (Figure 3.5(b,iv)). Owing to the greater spread of the distribution in Figure 3.5(a,iv), the absolute
level of interface conservation required to reach significance is far higher for the central zone than for the
total interface. Despite this, the central zone, which has absolute interface conservation at 0.93, achieves
a more significant P value than the total interface (Table 3.2 & Figure 3.3), suggesting that evolutionary
pressure to conserve residue type concentrates at the centre of the interface. In SSI, the converse is true:
SSI’s total interface achieves not only greater significance than its central zone but also a higher absolute
conservation score (Table 3.2). Tamura et al (Tamura et al, 1995) have demonstrated the importance of
Vall3, a central zone residue, to dimer formation and overall stability in SSI. The results presented here
suggest residues in the outer zone also play crucial roles in this regard.

The picking results for the total interface complement the results of the patch analysis, both giving an
indication of the relative conservation of the interface. Patch analysis did not provide P values as such, but
the probabilities of a patch chosen at random being more conserved than the interface were 0.09 (AP), 0.16
(Enolase), 0.18 (GST), 0.20 (SOD), 0.08 (SSI), and 0.23 (TIM). None of these patch P values are less than
0.05 and they correlate poorly (with a Pearson’s correlation coefficient of 0.34) with the P values generated
by picking. Some differences are particularly striking. For example, TIM achieved significant P values by
picking but relatively high, ie, random, P values according to patch analysis. This is because picking is
geometry-free and so escaped the effects of clustering that prevented TIM’s interface from achieving a high
patch score.

3.3.2.2 Conservation in walks

The walking distribution for a particular protomer and its interface was always more spread out than the
corresponding picking distribution, indicating that the dispersion of surface conservation in all families was
more clustered than random to varying degrees (Figure 3.5). This increase in distribution width marginal-
ized the absolute conservation score of all the interfaces studied, pushing, in each case, a greater proportion
of selections beyond the interface score. Thus the P values for walking were consistently higher that those
for picking.

Figure 3.5 shows the walking distributions for each family. These are similar in shape to the distributions
of patch scores shown in Figure 3.2 and corroborate inferences based on the patch data made above. The
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walking data give particularly strong support to these inferences because walking, unlike patch analysis,
samples the space of every possible set of contiguous surface residues, which includes the interface set.
The walking P values also correlate reasonably (with a Pearson’s correlation coefficient of 0.77) with P
values from the patch analysis, although they are significant more often (Figure 3.4(b)).

For TIM, the similarities between walking and patch data are conspicuous (Figures 3.2(f) and 3.5(b,vi)).
TIM, the only protomer that failed to achieve a significant walking score for either definition of its inter-
face, had walking distributions more positively skewed than those for any other family (Figures 3.5(a,vi),
(b,vi)). Most skewed of all was its distribution for the central zone (Figure 3.5(a,vi)), where so many walks
contained a majority of highly conserved residues that the resulting curve resembles an extreme value dis-
tribution. This resemblance, far from being coincidental, is a direct result of the surface composition of
TIM, in which the gash of conservation (described above) relegates most walks that are outside it to the
lower ranks of the distribution and promotes walks that overlap it to higher and higher ranks in diminishing
numbers. TIM’s walking results are thus consonant with its patch results and it is no surprise that its P
values from both methods are the highest, ie, most random, among all families.

3.4 Discussion

The results show that the interfaces of all proteins studied here are more conserved than expected for a ran-
dom distribution and that in most cases this conservation is statistically significant at the 5% level. In some
cases, the selective pressure to remain invariant concentrates in the central zone; in others, conservation is
about evenly matched across the complete interface; in one (SSI), selection against change may be strongest
at the periphery of the interface.

Of the two methods used to select groups of surface residues, picking is the simplest and its results
are the most straightforward to interpret. However, walking reveals more about the difficulties that would
be inherent in predicting the location of interface using conservation alone. The strict definition of the
ligand-buried site meant that many highly conserved residues that play a role in binding were ignored. If
ligand-buried residues were defined as residues that lose merely some accessibility rather than those that
become totally inaccessible on addition of ligand groups, the masked results would be different, probably
giving lower P values in all cases except SSI, where the P values would be higher. However, it was felt that
to exclude so many residues from the analysis would be misleading.

The results suggest the analysis methods described here could be usefully applied to the problem of
differentiating crystalline contacts from biologically relevant interfaces (Ponstingl et al, 2000). Proteins
crystallize as multimers that may contain both biological contacts, which are subject to evolutionary con-
straints, and non-biological contacts, which are not. If family information is available, picking or walking
P values could be used to detect interactions in a crystal structure that are biologically relevant.

In this analysis we test whether conservation of an interaction is reflected in conservation of amino acid
type at the site of that interaction. To ensure reliability, unusually stringent criteria were observed when
compiling the dataset. For instance, it was compulsory that all sequences used in assessing conservation
for a protomer share that protomer’s multimeric states as explicitly recorded in their annotation. Further, in
the interests of consistency, only homodimers were included: their annotation and nature of binding tend to
be well documented, thus less likely to introduce confounding factors, than for other types of complexes.
Such patterns may not be so distinct or be so readily detected for heterodimers or transient complexes.
However, if the interfaces are functionally important, we expect them to be conserved. The challenge now
is to use this information to help develop a method that can predict the location of an interface given only
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the structure of the protomer and its sequence alignment.
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Chapter 4

Using conservation to identify
biologically relevant crystal contacts

4.1 Introduction

Most crystal contacts are artifacts of crystallization that would not occur in solution or in the physiological
state. But some of the observed contacts may be biologically relevant. Determining which contacts are
biological and which are not is often difficult, particularly when, as frequently seems to be the case for
entries in the Protein Data Bank (PDB) (Berman et al, 2000), the oligomeric state of the protein is uncertain
or unknown (Henrick & Thornton, 1998, http://pgs.ebi.ac.uk/).

4.1.1 Biological contacts

Biological contacts, which here refer to any site of in vivo recognition between macromolecules, have
received more attention than nonbiological contacts or comparisons of the two. Biological interfaces
have been characterized in terms of their geometric features, such as planarity, shape-complementarity
and circularity, in terms of their chemistry, such as hydrophobicity, preference for certain amino acids,
and in terms of residue conservation (Chothia & Janin, 1975) (Janin et al, 1988) (Jones & Thornton, 1995)
(Lijnzaad & Argos, 1997) (Lo Conte et al, 1999) (Valdar & Thomton, 2001).  Although a number of
studies have sought to predict the location of biological interfaces based on some of these pa-
rameters (Younget al, 1994) (Jones & Thornton, 1997b) or to dock partners (Sternberg et al, 1998,
and refs therein), few have attempted to discriminate between biological and nonbiological contacts
(Ponstingl et al, 2000), a problem faced by anyone who interprets X-ray data.

4.1.2 Nonbiological contacts

Most proteins solved by X-ray analysis and deposited in the PDB have three or more crystal contacts, and
some have over 20. The sum of these contacts typically buries around 30% of the protein surface to ensure
crystal stability (Carugo & Argos, 1997).
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4.1.3 Comparing biological and nonbiological contacts

A number of features distinguish biological from nonbiological contacts. Biologically relevant interac-
tions tend to be more specific than nonbiological ones, although this can be hard to detect in the crystal
(Janin, 1997). The promiscuity of nonbiological contacts in pancreatic ribonuclease has been demon-
strated by Crosio et al (Crosio et al, 1992). They showed that almost any residue on the surface of the
protomer can be part of a crystal contact and that the same residue involved in two alternative contacts
may interact with a different set of partners. Biological contacts tend to be larger than nonbiological ones
and usually constitute the biggest contact in the crystal (Janin & Rodier, 1995) (Carugo & Argos, 1997)
(Janin, 1997) (Dasgupta et al, 1997). The amino acid composition of nonbiological contacts is much like
that of the surface as a whole (Carugo & Argos, 1997), although observed distributions vary slightly with
ionic strength of solvent (Iyer et al, 2000). Biological contacts are split on the issue of composition. Tran-
sient contacts, such as those formed in signal transduction are composed similarly to the rest of the surface,
whereas oligomeric contacts have a composition intermediate between the surface and the protein core
(Jones & Thornton, 1997a) (Lo Conte et al, 1999). Some groups have mutated residues on the surface in
order to engineer nonbiological contacts and so improve crystal stability (McElroy et al, 1992, for exam-
ple).

4.1.4 Automatic discrimination of nonbiological from biological contacts

Automatic discrimination of biological from nonbiological contacts is desirable, and is attempted in the
Protein Quaternary Structure database (PQS) (Henrick & Thornton, 1998). Because the contact size is such
a powerful discriminant, the PQS uses accessible surface area (ASA) of the buried contact area to distin-
guish biological from nonbiological contacts, along with a number of other physical measures, which are
not rigorously optimized. The method developed for PQS, when assessed against solution data for a non-
redundant subset of proteins, distinguished correctly between true and false homodimers 78% of the time
(Hannes Ponstingl private correspondence).

Ponstingl et al rigorously tested the utility of ASA and statistical “pair potentials” as discriminants
(Ponstingl et al, 2000). Pair potentials are putative energies derived from a statistical analysis of observed
frequencies of atom-pairs at a given separation. These have been used before for predicting the location of
putative biological contacts (Robert & Janin, 1998) and for discriminating between computer-docked pro-
tein complexes (Moont et al, 1999). Ponstingl et al analysed a dataset of 172 proteins, with 76 homodimers
and 96 monomers. Straight ASA produced a correct classification 84.6% of the time. Their pair potential
correctly classified proteins in their dataset 87.5% of the time. A modified ASA score that considered the
difference in size between the two largest contacts gave an accuracy of 88.9%.

Conservation has been used successfully to explore patterns of energy and define functional residues
at protein binding sites (Lichtarge et al, 1996) (Lichtarge et al, 1997) (Lockless & Ranganathan, 1999)
(Armon et al, 2001). Recently we reported that, within a small and extensively researched dataset,
oligomeric interfaces exhibit significant residue conservation compared with comparable-sized regions of
the protein surface (Valdar & Thomton, 2001). There is a clear rationale for why biological interfaces
should be conserved: the amount by which they vary is circumscribed by the importance and specificity of
their physiological role, and the degree of variability required to disrupt them. Conversely, we would expect
no such selective evolutionary pressure on nonbiological contacts, which are the result of human experi-
ments and not the product of evolution (Durbin & Feher, 1996). The above suggests conservation may be

useful in discriminating between biological contacts, which we assume will be conserved, and nonbiologi-
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cal ones, which we assume will not. Moreover, since the measures of conservation and size are orthogonal,
it is possible that combining them will provide a truly powerful discriminator.
We assess the utility of size and conservation in addressing the following two questions:

1. Is a given crystal contact biological?

2. Given all contacts in the crystal of a homodimer, which is the biological one?

These questions are different from those posed in earlier studies that have attempted to distinguish between
homodimers and monomers. They more directly test the utility of conservation in identifying biological
relevance of a contact. We develop algorithms that use one or both measures to answer each of the questions
above. We compare efficacy of these algorithms, as well as the relative contribution of size and conservation

to their predictive power.

4.2 Methods

4.2.1 Dataset

The dataset of Ponstingl et al (Ponstingl et al, 2000) was used to provide a starting point for further filtering.
This comprised 172 non-homologous protein crystal structures of which 76 were homodimers and 96 were
monomers. Atom coordinates were taken from the PDB. A program written by Hannes Ponstingl was
used to generate hypothetical contacts for each structure. It works by applying crystallographic symmetry
operations to a given protomer chain to recreate all contacts in the crystal. The term “protomer” is used
here to denote a component chain of a multimeric complex.

In order to calculate residue conservation meaningfully, each protein must have a sufficiently large and
diverse set of homologues. Because insufficient sequence information was available for some of the proteins
in the initial dataset, the final dataset was smaller, comprising 118 proteins of which 53 were homodimers
(1a3c, 1ad3, lafw, lajs, lalk, lalo, lamk, laom, laor, 1ag6, lauo, 1bif, 1bsr, 1cg2, 1chm, 1cmb, lcp2,
lesh, 1ctt, 1daa, 1fro, 1hjr, limb, lisa, liso, 1kpf, llyn, 1mjl, Imka, 1moq, Insy, loac, lotp, 1pgt, 1pre,
1rfb, 1ses, 1slt, 1sox, 1tox, 1trk, 1tys, luby, 1wgj, 1xso, 2ilk, 2tct, 2tgi, 3grs, 3pgh, 3ssi, 4kbp, Scsm) and
65 were monomers (16pk, 1a0k, 1a6q, laay, 1af7, lafk, 1ah7, lako, lakz, lam6, lamj, laoh, laua, laun,
lavp, layl, 1bc2, 1be0, 1bg0, 1bgc, 1bkz, 1bn8, 1bpl, 1bry, 1bwz, 1¢3d, 1cki, 1dff, 1djx, 1dmr, lesf, leso,
1fdr, 1feh, 1fsu, 1gci, linp, lips, 1kfs, Imdt, Imh1, 1mpg, 1pda, 1pjr, 1pmi, 1ppo, lrgp, 1rhs, 1ton, luch,
luro, 1xgs, lyge, 1zin, 2321, 2atj, 2bls, 2fgf, 2ihl, 2mbr, 2pth, 2m2, 3cms, 3sil, 8paz).

4.2.2 Definition of a contact

We consider only surface residues in our dataset. A residue is considered to be on the surface if its relative
accessible surface area (RSA; (Lee & Richards, 1971)) in the isolated protomer is greater than 5% of the
maximum for an extended tripeptide in which that amino acid is flanked by alanines. If the residue’s RSA
is less than 5%, it is considered part of the structural core of the protein. Solvent accessibility was deter-
mined using NACCESS (Hubbard & Thornton, 1993), an implementation of the Lee & Richards algorithm
(Lee & Richards, 1971), with a probe sphere of radius 1.4A. The surface cutoff used follows that devised
by Miller et al (Miller et al, 1987).

A given protomer in the dataset is surrounded by a number of partners. Each partner touches the
protomer surface, defining a different crystal contact. A contact is described by the set of residues on the
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surface of the protomer that each lose at least 1 A2 of ASA when complexed with the relevant partner.
Crystal contacts that fail to bury any residues by this amount are excluded from the dataset. A given
surface residue may therefore be classified as one of the following: part of a biological contact, part of a
nonbiological contact or belonging to the rest of the surface.

4.2.3 Assessing conservation
4.2.3.1 Identification and alignment of homologues

Homologues were identified for each protomer from the Non-Redundant DataBase (NRDB, a database
of protein sequences maintained by the NCBI) using the iterative profile search program PSI-BLAST
(Altschul et al, 1997). PSI-BLAST was allowed a maximum of 20 iterations to reach convergence. The
E-value threshold for inclusion of new homologues at each iteration was set at 10 ~#. This cutoff was strict
enough to guard against profile drift but sensitive enough to allow detection of remote homologues, with the
sequence identity of a match to the query falling as low as 5%. The profile alignment used in a protomer’s
final PSI-BLAST run was taken as the multiple alignment for that protomer. Multiple alignments compris-
ing fewer than four sequences, including that of the protomer query sequence, were regarded as containing

insufficient evolutionary information and were excluded.

4.2.3.2 Scoring residue conservation from an alignment

A score of evolutionary conservation, ranging continuously between O for unconserved and 1 for strictly
conserved, was assigned to each residue in the protomer from its multiple alignment using the Cons sum of
pairs score described by Valdar & Thornton (Valdar & Thornton, 2001). Cons uses amino acid similarities
inferred from PET (Jones et al, 1992), a Dayhoff-like mutation data matrix (Dayhoff et al, 1978), to assess
the diversity of amino acids at an aligned position. In this score, contributions from individual sequences

are weighted inversely with their redundancy in the alignment.

4.2.3.3 Probabilistic scoring of contact conservation

Contact conservation was scored probabilistically after the “picking” measure described in chapter 3 (sec-
tion 3.2.7.1). In this scheme, the conservation of a contact of size m is described by Pc,ns(Cons,m), the
probability that a group of m residues drawn at random without replacement from the surface of the pro-
tomer has an average Cons score greater than or equal to that of the m residues in the contact. This prob-
ability is computed by simulation: m residues are chosen at random from the surface and their mean Cons
recorded. This is repeated 1 million times to give a probability estimate with an expected error of at most
1073 at least 95% percent of the time. Similar P values could have been computed using simpler statistical
tests that do not require simulation, eg, the Z-test. However, the small size of some contacts was felt to
undermine the assumptions made by such tests, making simulation the more robust alternative.

Low values of Pc,ps denote highly conserved patches, reflecting that such high average residue conser-
vation would be unlikely from a chance draw. High values of Pc,,s denote poor conservation, likely to be

bettered in a chance draw.

4.2.3.4 Filtering the dataset for uninformative cases

If sequences in a family are too similar, conservation becomes uninformative. For instance, consider a

protomer with 100 surface residues; 99 have a Cons of 1 and one has a Cons of 0.5. A ten-residue contact
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on that surface could achieve one of only two possible Pc,ys scores: 1 if it contained the less conserved
residue and ~ 0.57 otherwise. This kind of granularity is undesirable; after all, it is grossly misleading for
a contact of maximal conservation to receive a P value above 0.5. To filter out cases in which the diversity
of surface scores is not sufficient to support a meaningful P value, we apply to each protomer surface a
function Doss (Diversity of surface scores) and reject cases that fall below a cutoff for this metric.

Although the actual diversity of Pc,ys scores is complex to work out, varying both with protomer and
contact size, a simple count of the number of distinct permutations of residue scores indicates this property
well enough. A natural measure is thus the multinomial coefficient, conveniently expressed in Shannon’s
entropy (Shannon, 1948). For a given protomer, let All be the set of Cons scores belonging to all surface
residues and Unique be the non-redundant set of these scores. Then the diversity of surface scores, Doss, is
given by

n; n; 100%
Doss=|- 3, n(AlD) & nall) | > Togn(all) ’

i€Unique

where n; is the number of instances of score i, and n(All) is the number of surface residues. Doss ranges
between maximal diversity at 100% and uniformity at 0%.

Applying Doss to the original dataset resulted in a distribution of three parts: a minority of protomers
occupied the ranges 0-25% and 35-65%, whereas the majority sat in the range 70-100%. Because align-
ments in the lowest range were perceptibly redundant, a cutoff of 30% Doss was chosen and all protomers
with alignments falling below this threshold were excluded.

4.2.3.5 Testing whether conservation of biological contacts is significant

To test whether biological interfaces are usually more conserved than nonbiological contacts, we first count
how many times the most conserved contact around a protomer is biological. Second, we compute the
probability (Pmosicon) Of Observing such a result with a null model in which all contacts, regardless of type,
are equally likely to be the most conserved. Last, the value of Pyoscon i used to assess how well the
null model accommodates the observed results and to infer whether the frequency with which biological
contacts are most conserved is statistically significant.

A null model is proposed that assumes biological contacts are no more or less conserved than nonbi-
ological ones. According to this model, the most conserved contact of the ith protomer is a random draw
on the n; contacts that surround it. Let “success” describe an event in which the most conserved contact is
biological. The probability of a success in protomer i is then given by the Bernoulli distribution f;:

1 v .
0= 13 ey

ni

Across N = 53 homodimers, the total number of successes depends on all N distributions and has a prob-
ability mass function h = f1 x fo ... x fiy, where f; x f; is the convolution of distributions f; and f;. If the
most conserved contact is observed to be biological m times, then probability of the null model achieving
at least m successes is given by

N
Prostcon (m) = Z h(l) .

i=m
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| Absolute measures

Relative measures

Size

number of residues in the contact

fraction of surface residuesburied
by the contact

ranked size among a pro-
tomer’scontacts  (measured  as
thefractional rank?, such that the-
biggest contact has a rank of1.0 and
smaller contacts haveranks of <1)
size difference from thelargest con-
tact in the protomer(eg, if the
biggest contactburied 20 residues, a
contactthat covered only 15 would-
have a size difference of 20 — 15 =
5)

Conservation

Pcons for the contact(ranges from
0, meaning highlyconserved, to 1,
meaningpoorly conserved)

ranked Pcons among aprotomer’s
contacts (measuredas the fractional
rank?, such thatthe most conserved

82

contact hasa rank of 1.0, and less-
conserved contacts have ranksof
<1)

Table 4.1: Measures available to predictors
2 Fractional rank is the rank of an item divided by the maximum rank for that set of items. Fractional rank
takes values in the range (0,1].

4.2.4 Discriminating biological from nonbiological contacts

We examine the discrimination problem from two viewpoints, addressing the following questions:
1. Absolute assessment: is a given contact biological?

2. Relative assessment: given the set of contacts associated with a protomer that is known to be homod-
imeric, which contact among this set is biological?

We devise a number of predictors to answer these questions using the size and conservation data available.
The absolute assessment pools crystal contacts from a set of protomers. A predictor attempts to classify
each contact as biological or nonbiological. This assessment is performed on two sets of contacts: the
homodimer set, which comprises both types of contact, and the monomer set, which contains only non-
biological contacts. The relative assessment is performed on the homodimers. Predictors consider each
protomer in turn, deciding which of its contacts is biological. A prediction is correct if the true biological
contact only is classified as biological. If other contacts are classified as biological in addition to or instead
of this contact, the prediction is deemed incorrect.

Table 4.1 shows the measures available to the predictors. Predictors in the absolute assessment may use

only absolute measures whereas predictors in the relative assessment may use absolute or relative measures.

4.2.4.1 Neural network predictors

Neural networks can provide an elegant and convenient framework for classifying new data based on pat-
terns extracted from old data. Herein, we use two types of feed-forward neural network: the single layer
perceptron (SLP) and the two-layer multilayer perceptron (MLP) ( Wu & McLarty, 2000, and refs therein).
The inputs are a selection of the measures listed in Table 4.1 and the output corresponds to the predicted
class: biological or nonbiological. Multilayer perceptrons may contain different numbers of hidden units,
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so for notational convenience if an MLP has x hidden units, it is referred as MLPx (eg, MLP2 denotes an
MLP with two hidden units).

The neural networks employed here are trained using the scaled conjugate gradient algorithm
(Mgler, 1993), which is usually faster than the more traditional backpropagation. The number of train-
ing iterations was set constant at 100. ’

4.2.5 Assessing discriminator performance
4.2.5.1 Cross-validation

‘We assess the performance of the neural network predictors using a “leave-one-out” form of cross-validation
(jackknifing). In this scheme, for a dataset of n protomers, a predictor is trained on data from n-1 protomers
and tested on data for the single remaining protomer. This is then repeated for each protomer in turn.

Neural network predictors are jackknifed for the absolute and relative assessments on the homodimers.
In the absolute assessment on the monomers, which contains no positive examples, networks train on the
whole homodimer set.

4.2.5.2 Performance measures

Performance of predictors in the absolute assessment is measured in three ways: by accuracy, error rate and
a comparison with random. All three scores can be derived from the following quantities:

)4 = number of correctly classified biological contacts

n = number of correctly classified nonbiological contacts

o = number of nonbiological contacts classified as biological (overpredictions)
u = number of biological contacts classified as nonbiological (underpredictions)
t =p+n+o+u

The most straightforward score, “accuracy” measures the percentage of correctly classified contacts:

+n

accuracy = L x 100% .

The “error rate” measures the percentage of incorrectly classified contacts and is simply 100% minus the
accuracy.

Accuracy and error rate can be misleading when the dataset contains many more instances of one class
than another. For instance, consider a predictor that has no discriminatory power and just predicts everything
to be nonbiological. Because the vast majority of contacts in the homodimer dataset are nonbiological, this
predictor would automatically give high accuracy. To penalize such spurious achievements, we include a
third score, the phi-coefficient (hereinafter referred to simply as “phi”).

Phi (also referred to as “Matthew’s correlation coefficient” in neural network literature) measures the
correlation between observed and predicted results. It is a special case of Pearson’s correlation coefficient,
computed when the two variables being compared are dichotomous and take values of 0 or 1. Phi ranges
from -1, representing inverse correlation and extremely poor predictive power, to +1, representing perfect
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I | Homodimers | Monomers |

Number of protomers 53 65
Number of contacts biological 53 0
nonbiological 366 535
total 419 535
Number of contacts per protomer range [3, 14] [4,13]
mean 79 82
Number of sequences in alignment range [4,251] [6, 251]
mean 724 82.8
Doss score? mean 82.5% 84.0%
s.d. 17.5% 18.0%

Table 4.2: Summary statistics for the homodimer and monomer datasets
4 Doss measures the diversity of conservation scores on the surface of the protein. Low percentages indicate
the alignment may not be diverse enough for meaningful conservation scores to be extracted.

correlation and an ideal prediction. Phi is calculated as

pn—ou

V= T an ot

In addition to possessing a convenient range, phi also has a real probabilistic basis, relating to the chi-
squared function for 2 x 2 contingency table. Specifically, it can be shown that ¢ = \/x%—/t , which means the
likelihood of random assignment producing the observed prediction rate, p 2 (the chi-squared probability),
is one at ¢ = 0 and decreases with increasing phi (Sheskin, 2000).

Accuracy and phi were used to measure performance of predictors applied to the homodimers. Per-
formance on the monomers was assessed using the error rate. A prediction in the relative assessment is
either right or wrong: there are no true negative examples. We measure predictor performance by accuracy,
calculated as the percentage of correct predictions.

4.3 Results

We investigated size and conservation of crystal contacts in 53 families of homodimers and 65 families of
monomers. A contact was defined as the set of residues on a protomer that lose their accessibility upon
complexation with a partner. Contact conservation was measured probabilistically as Pcons. On this scale,
values close to zero indicate extremely high conservation (ie, improbable by chance) and values close to
one indicate extreme low conservation (ie, high variability in evolution). Table 4.2 shows the number of
biological and nonbiological contacts in each dataset, and information about the family alignments. Figure
4.1 plots the size of contacts from each set against their conservation.

4.3.1 Contact size

Biological contacts were typically bigger than nonbiological contacts. The average biological contact was
53.7 residues in size and accounted for 25.9% of a protomer’s surface residues. In contrast, the average
nonbiological contact was a mere 7.6 residues and covered only 4.2% of the surface.

Figure 4.2 shows distributions of contact size in the dataset. These distributions reveal substantial
variation in size among both types of contact but particularly for biological ones. A significant number of
biological contacts occupy an area in the lower ranks of the distribution that overlap with high numbers of
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biological contact (dinner)
nonbiological contact (dinner)

heunstic boundary

[conserved] Conservation (Pc«Mm) [variable]

(a) Homodimer biological and nonbiological

contacts

biological contact (dimer)
nonbiological contact (monomer)

ticuristic boundary

ale

[conserved] Conservation (Pcons) [variable]

(b) Homodimer biological contacts and

monomer nonbiological contacts

Figure 4.1 : Size and conservation of crystal contacts in the homodimers and monomers.

Size is plotted as the number of residues. Conservation is plotted on the Pcons scale, where 0 is highly
conserved and 1 is highly variable (unconserved). Graph (a) plots size against conservation for biological
(red circles) and nonbiological (black squares) crystal contacts in the homodimers. Graph (b) plots these
measures for nonbiological contacts in the monomers (black triangles) and, for comparison, plots biological
contacts in the homodimers (red circles). In each graph, a dotted line represents the decision boundary
devised for the heuristic predictor H'bs (see Results), which attempts to automatically separate biological
from nonbiological classes of data based on size and conservation. These graphs show that the two classes
naturally separate by size and, to a lesser extent, by conservation.
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m biological (dimer)
O nonbiological (dimer)

O nonbiological (monomer)

0.05 0.1 0.15 0.2 0.25 0.3 More

Contact size (fraction of surface residues buried by a contact)

Figure 4.2: Size of contacts in the homodimer and monomer crystals.
Contact size, measured as the fraction of surface residues buried in the interface, is presented on the x-axis
in bins of 0.05 from 0 to 0.3 and by a single aggregate bin, labelled “more”, thereafter. The distributions
show that biological contacts tend to be larger than nonbiological contacts, but that there is a significant
region of overlap between these two classes.

nonbiological contacts.
The biological contact was the largest contact made by the protomer in all but one of the 53 homodimer
crystals. The exception was luby, in which the 48-residue biological contact took second place to a 49-

residue nonbiological one.

4.3.2 Contact conservation

Biological contacts were usually more conserved than nonbiological ones (Figure 4.3). On average, bio-
logical contacts had a Pcons score of 0.26, whereas nonbiological contacts scored an average of 0.67 in the
homodimers and 0.63 in the monomers. The biological contact was the most conserved contact surrounding
the protomer in 36 of the 53 homodimer crystals. The calculated Pmostcon™ which describes the probability
of this happening in a null model where the most conserved contact is a random draw (see Methods), was
2.38 X 10-"~.

Despite these figures, biological contacts were not exclusively highly conserved and highly conserved
contacts were not exclusively biological. Figure 4.3 plots the distribution of conservation for the two con-
tact types in the homodimer and monomer sets. It shows that although biological contacts tend to be
conserved, these contacts exhibit a full range of conservation, with the second most frequent group at the
least conserved extreme. The distributions for nonbiological contacts in the homodimers and monomers are
strikingly similar. In both, the mode coincides with extreme evolutionary variability whereas the remaining
contacts span the range of Pcons about evenly. Figure 4.4 uses Bayes theorem to combine the distributions
for homodimers in Figure 4.3. It consolidates the above findings: the likelihood of a contact being biolog-

ical diminishes as its residues become more variable in evolution. Figure 4.5 consolidates the relationship
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Figure 4.3: Conservation of biological and nonbiological contacts in the homodimer and monomer crystals.
Conservation is measured on the Pcons scale (O=strongly conserved, I=poorly conserved). Conservation is
presented in bins of width O.I on the x-axis. Frequency, measured as the fraction of data belonging to a
given class that falls into that conservation bin, is presented on the y-axis. The histograms show biological
contacts tend to be highly conserved whereas nonbiological contacts tend to be poorly conserved.

0.6

0.5

oo

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

[conserved] Conservation (pcons) [variable]

Figure 4.4: Probability of a contact being biological given its conservation in the homodimers.
Conservation is measured on the Pconx scale (O=strongly conserved, 1=poorly conserved). Conservation is
presented in bins of width 0.1 on the x-axis. The height of each bar represents the probability that a contact
selected at random is biological given that it has the conservation associated with its x-axis bin. These
probabilities are computed according to Bayes theorem. To avoid zero probabilities, constant pseudocounts
of I were added to raw frequencies (according to Laplace’s rule) before Bayes theorem was applied. The
histogram shows that the probability of a contact being biological sharply decreases with decreasing con-
servation.
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Contact

[conserved]

0.05— Conservation

[variable]

Figure 4.5: Probability of contact being biological given its size and conservation.

Contact conservation, as Pcons (O=strongly conserved, I=poorly conserved), is presented in bins of width 0.2
on the x-axis. For clarity, each conservation range is depicted in a different colour. Contact size, measured
as the fraction of surface residues buried by a contact, is presented on the z-axis in bins of 0.05 from 0 to
0.7. The y-axis (vertical) measures the probability of a contact, randomly selected from the dataset, being
biological given its size and conservation. Probabilities are calculated according to Bayes theorem after first
applying constant pseudocounts according to Laplace’s rule. The graph shows that although larger contacts
are more likely to be biological than smaller ones, high contact conservation makes this even more likely.
The graph tails off around the higher values of size because there is little data for contacts in this range.
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between size and conservation in Figure 4.1, showing that although highly conserved contacts are likely to
be biological, poorly conserved contacts may also be biological provided they are large.

Conservation and size did not correlate significantly. Pc,ps vs the number of residues in a contact gave
a Spearman’s rank-order correlation coefficient (Press et al, 1996) of -0.14. Pc,,s vs the fraction of surface
residues buried in a contact gave a similarly insignificant correlation of -0.17.

4.3.2.1 Poorly conserved biological contacts

Some biological contacts were extremely poorly conserved. At the level of the alignment, a biological
interface may achieve a poor conservation score either because residues in the contact vary considerably
or are subject to deletions. To investigate this we devise a score, Gappyness, that measures the extent to
which the biological interface coincides with gaps in its multiple sequence alignment. If Interface is the set
of positions in the alignment corresponding to residues in the biological contact of the protomer, Gaps ; is
the set of gaps aligned to the target sequence at position i, and Aminos; is the set of residues aligned at this
position, then Gappyness is defined as

n(Gaps;)

G=
n{Gaps;UAminos;)

iclnterface

x 100% ,

where n(A) denotes the number of elements in set A. Gappyness for a protomer ranges from 0%, denoting no
gaps aligned to the interface, to 100%, denoting that only gaps are aligned to the interface. The homodimers
had an average Gappyness of 8.4% with a standard deviation of 10.3%. Gappyness is one of many possible
causes of low interface conservation and so, unsurprisingly, Gappyness showed no significant correlation
with Pcypns scores.

At the level of a homologous family, a biological interface may not be conserved because other members
of its family are not homodimers, other members of the family are homodimers but dimerize in a different
way, or because other members of the family are homodimers but variability at the interface confers multiple
binding specificity in that family.

For the nine least conserved biological interfaces, Table 4.3 lists Gappyness and evidence for multiple
multimeric states (MMS) within the family.

Poor interface conservation of lalo (G = 47.0%) and 1tox (G = 38.6%) coincides with high Gap-
pyness. lalo is the crystal structure of aldehyde oxidoreductase extracted from Desulfovibrio gigas
(Romio et al, 1995). 1lalo, often referred to as MOP, is a member of the molybdenum hydroxylase fam-
ily of enzymes (Hille, 1999). Its 149-sequence alignment contains many other members of this family,
most of which, judging by the available annotation, are likely homodimers. Yet despite their common mul-
timeric state, more than half of these homologues lack MOP’s N-terminal tail, which for MOP constitutes
a substantial portion of the interface. In the alignment there are at least two subfamilies: the aldehyde
oxidoreductases (AO), which include a MOP-like N-terminus, and the xanthine dehydrogenases (XDH),
which do not. Figure 4.6 shows that although XDH and AO are both dimers, the XDH protomer binds its
partner in a quite different manner with a different part of its equivalent surface.

Itox is the crystal structure of diphtheria toxin extracted from Candida albicans
(Bell & Eisenberg, 1996). 1tox comprises three domains, each with a separate function: a catalytic
domain (C) at the N-terminus, a translocation domain in the middle (T) and a receptor binding domain
(R) at the C-terminus. The 21 sequences in the 1tox alignment fall into three groups: those with all three
domains, those that possess only domains C and T, and those with domain C only. The missing domains
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Protomer Name Pcons  Gappyness™  Multiple Multimeric States
detected in
Swissprot sequences”

lad3 Aldehyde dehydro- 1 15.4% 18/29
genase (rat liver)

Ialo Aldehyde oxidore- 0.996 47.0% 0/ 10
ductase (D. gigas)

laor Aldehyde ferredoxin 1 7.9% 1/2
oxidoreductase  (P.
fariasis)

Ibsr Ribonuclease A 0936 4.3% 0/3
(bovine seminal
plasma)

Insy NAD synthetase /8.  0.997 5.4% 0/2
subtilis)

Islt Galectin (bovine 1 15.1% 0/4
spleen)

ITtox Diphtheria toxin (C 1 38.6% 0/2
albicans)

2tct Tetracycline repres- 0.950 4.6% 0/ 1
sor (E. coli)

Scsm Chorismate mutase 0.909 10.6% 0/ 1
(yeast)

Table 4.3: Gappyness of interface for least conserved biological contacts {Pcons > 0.9)
~ Gappyness measures the extent to which gaps in the alignment coincide with the interface (see Results).
~ Data is in the form n/N, where N is the number of Swissprot sequences in the alignment that have sub-
unit annotation and n is the number of those sequences that are annotated as being something other than
homodimer.

Aldehyde oxidoreductase Xanthine dehydrogenase

Figure 4.6: Comparison of homodimerization in aldehyde oxidoreductase (AO; left), and xanthine dehy-
drogenase (XDH, right).

These two proteins are homologous homodimers. The two protomers coloured red and gold are shown
in equivalent orientations. The protomer partner of each is coloured in grey. The figure shows that de-
spite homology and identical multimeric states, the mode of binding in these two homodimers is different.
AO and XDH are represented by PDB (Berman et al, 2000) structures lalo (Romao et al, 1995) and Ifiq
(Enroth et al, 2000) respectively. Images were created using MOLSCRIPT (Kraulis, 1991) and Raster3D
(Merritt & Bacon, 1997).
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bestow high Gappyness, but the variability within aligned domains is negligible. The Doss score for 1tox
reflects this. Doss measures the diversity of conservation scores in an alignment (see Methods). A low
Doss score, such as that of 1tox (Doss = 34.9%), suggests the alignment may not be sufficiently diverse
to support meaningful analysis of conservation. Examining the available annotation for sequences in the
1tox alignment reveals that many of the homologues lacking the R or T domain are fragments. This in turn
suggests much of the observed variation in the alignment is indeed spurious.

Moderate Gappyness was seen in 1ad3 (G = 15.4%) and 1slt (G = 15.1%). 1ad3 is the crystal structure
of aldehyde dehydrogenase extracted from rat liver (Liu et al, 1997). It comprises three domains: one
NAD-binding, one catalytic and one bridging. The 1ad3 interface is large and elaborate, and involves all
three domains. The bridging domain, which is believed to be important for stabilizing the 1ad3 dimer, is
absent from the vast majority of the 251 sequences in this protomer’s family. The nine interface residues
that lie within this domain are, as a result, almost unmatched in the alignment and blight 1ad3 with its
Gappyness and diminished overall conservation. The existence of MMS in the family further suggests the
dimeric nature of 1ad3 is not important for many other members of its family.

Islt is the crystal structure of galectin, also known as S-type lectin, extracted from bovine spleen
(Liao et al, 1994). The alignment of 1slt has gaps spread thinly throughout, rather than concentrated in
a few conspicuous regions. It is likely that 1slt’s poor conservation results from multiple multimeric states.
Although the 1slt alignment contains few annotated sequences to support this (Table 4.3) preliminary runs
of PSI-BLAST at lower inclusion E-values (eg, 0.0005) matched a large number of non-homodimeric se-
quences. Moreover, both dimers and tetramers occur at the level of 1slt’s homologous superfamily in CATH
(2.60.120.60). Lectins are a group of carbohydrate-binding proteins that exhibits a diverse range of struc-
ture and specificity, in which heterogeneity of quaternary structure is common ( Vijayan & Chandra, 1999,
and refs therein). MMS is also a likely cause of variability at the interface in l1aor (Table 4.3).

Neither Gappyness nor MMS were present in 1bsr. 1bsr is the crystal structure of ribonuclease A ex-
tracted from bovine seminal plasma. It is often referred to as BS RNase (Mazzarella et al, 1993). BS RNase
is considered something of an outlier among ribonucleases, being the only surviving member of the seminal
plasma RNases. Seminal plasma RNases are thought to have arisen from the same gene duplication event
that spawned pancreatic and brain RNases in mammals (Sasso et al, 1999). These three families are par-
alogues: they are homologous but have diverged in function; and whereas both pancreatic and brain RNases
have many active orthologues (homologues with equivalent function), BS RNase has none. The alignment
of 1bsr thus contains many such paralogues, which are under evolutionary pressures different from those
on BS RNase, and the only orthologues are engineered versions of 1bsr. Little information exists about the
structure of brain RNase, but it is clear that the interfaces of pancreatic and BS RNase are different. In both
cases, protomers intertwine termini to form metastable domain-swapped dimers (Bennett et al, 1995, and
refs therein). However, whereas in BS RNase the dimer association is obliged by a disulfide bond, in pan-
creatic RNase this constraint is absent and dimer association takes second place to a more stable monomer
form.

Candidate reasons for poor interface conservation of 1nsy, 2tct and Scsm were not found.

4.3.2.2 Highly conserved nonbiological contacts

Some nonbiological contacts were extremely highly conserved. Twenty-six (17%) nonbiological contacts
achieved Pc,ns < 0.1. All of these were relatively small, covering less than 10% of the surface of their parent
protomer.

The most obvious explanation for why a small contact that is not a biological oligomeric is conserved
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Figure 4.7: Overlap of biological contacts with ligand-touching residues.
Overlap on the x-axis is defined as the percentage of residues in a biological contact that are designated
as ligand-touching (see Results). Ligand data was available for only 36 of the 53 homodimers. The graph
shows that when overlap with a ligand-binding site occurs, it is usually moderate.

is that it overlaps a site of substrate or cofactor binding (Valdar & Thornton, 2001). For each protomer we
identified “ligand-touching” residues (ie, surface residues that lose more than 1A 2 ASA upon inclusion of
the PDB ligand) and deduced which contacts contained them.

Ligands were present in 36 of the 53 homodimers, providing information for 36 biological and 231
nonbiological contacts. Figure 4.7 shows that for most of the 36 biological contacts, fewer than 10% of
their residues are ligand-touching.

Ligand-touching residues significantly increased the conservation of some nonbiological contacts.
However, they had an insignificant impact on the conservation of biological contacts. This can be shown
from the data in Table 4.4. Among nonbiological contacts, the presence of ligand-touching residues was
rare and high conservation rarer still. Given the frequencies of these two properties, the number of contacts
observed with both (ie, 7) is greater than expected (expected = 19 x 35/231 = 2.9). The converse is true
for biological contacts. Among these contacts both high conservation and the presence of ligand-touching
residues are common. The number of biological contacts with both is 21, which is much as expected by
chance (expected = 25 x 29/36 = 20.1). Fisher’s Exact Test (Fisher, 1990) (see Table 4.4) confirms that the
association between high conservation and the presence of ligand-touching residues is statistically signifi-
cant at the 5% level for nonbiological contacts, but not significant at anywhere near this level for biological
contacts. Therefore, sites of ligand-binding can lead to conservation misclassifying nonbiological contacts
as biological.
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| [ Biological (total 36) | Nonbiological (total 231) |

highly conserved?® 25 19
contains ligand-touching residues 29 35
highly conserved
and 21 7
contains ligand-touching residues
Prisher 0.359 0.0131

Table 4.4: Contacts containing ligand-touching residues and contacts with high conservation in the homod-
imers.

2 Peons < 0.1

b Probability from Fisher’s Exact Test. Low values indicate a statistically significant association between
high conservation and overlap with ligand-touching residues (see text for discussion). For a given type of
contact, the probability of the association is calculated from the hypergeometric distribution as

prao= S (" ) (e ) /(e )Y,
k=npors ligand ligand
where ;44 is the total number of contacts of that type, nqns is the number of these that are highly con-

served, nyjgang is the number of these containing ligand-touching residues and 7y is the number that are
both highly conserved and contain ligand-touching residues.

4.3.3 Discriminatory power of size and conservation
4.3.3.1 Heuristic predictors

We devised the following simple heuristic predictors from a visual inspection of the raw data. The heuristic
predictor for absolute assessment, Hps, traces a straight line on a graph of contact size against Pcops (Such
as in figure 4.1), separating biological from nonbiological contacts. Specifically, a contact is predicted to
be biological if and only if it covers more than 8 x Pc,,s + 19 residues.

The heuristic predictor for relative assessment, H ], uses a hierarchical scheme to choose the most likely
biological contact among a set of contacts. First, a subset of contacts is defined. Each contact in this subset
must cover at least 75% as many residues as the largest contact. From this subset, the contact with the
smallest Pcops, i€, the most conserved, is then predicted to be biological.

The heuristic predictors, having no explicit training element, were not cross-validated.

4.3.3.2 Predictor performance: Absolute assessment

We applied more than 20 different neural network predictors to the absolute assessment. These spanned
a range of single layer perceptron (SLP, a linear network) and multilayer perceptron (MLPx, a nonlinear
network with x hidden units) architectures. We tested all combinations of the three absolute measures listed
in Table 4.1.

Figure 4.8 shows the accuracy of predictors in the absolute assessment, whereas Figure 4.9 shows the
performance against random, measured by phi (see Methods), for the same experiments. These figures
show only a selection of the interesting results, with complex networks omitted if they are outperformed
by simpler ones. For instance, we exclude the SLP with two size-related inputs because simpler SLPs with
only one size-related input perform at least as well.

All predictors listed gave a correct classification in 87% or more of cases (Figure 4.8). Phi (Figure
4.9) provides a more balanced performance metric. By comparing the observed classification against that
expected by random assignment, it accounts for imbalances in the dataset. For example, phi exposes two
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Figure 4.8: Accuracy of predictors in the absolute assessment of homodimer contacts.
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Predictors are presented on the on the vertical axis. For brevity, neural network predictors are given short
names of the form networkfinputl, input!,...}). The prefix network denotes the architecture of the network:

SLP (single layer perceptron) or MLPx (multilayer perceptron with x hidden units). The names in curly
braces refer to the inputs of the network: “numSize” is the number of residues in a contact; “fracSize” is
the fraction of the surface covered by a contact; Pcons is a measure of the conservation for the contact (see
Table 4.1 for fuller definitions). Habs is the heuristic predictor for the absolute assessment and is defined
in the Results.. Accuracy, on the horizontal axis, measures the percentage of contacts a predictor correctly
classified (see Methods). Assessment of neural network performance is cross-validated with respect to

the homodimer dataset. The graph shows that although size alone and conservation alone have predictive

power, combining both measures makes predictions more accurate.
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Figure 4.9: Performance of predictors against random in the absolute assessment of homodimer contacts.
For an explanation of predictors (vertical axis), see Figure 4.8 legend. Performance is measured by phi (();
see Methods) along the x-axis. Phi is more informative, if less intuitive, than accuracy because it normalizes
against imbalances in the dataset. Phi ranges from -1, denoting extremely poor prediction, to 0, denoting
prediction equivalent to random assignment, through to 4-1, denoting a perfect prediction. Assessment of
neural network performance is cross-validated with respect to the homodimer dataset. The graph shows
linear networks using numSize perform no better than random.
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SLPs as poor performers: the SLP with the number of residues in a contact as its sole input, and the SLP
that takes both this input and P¢,,s. Both predictors achieve their apparently high accuracy by predicting all
contacts as nonbiological and the imbalanced nature of the dataset means they are correct most of the time.
However, as phi confirms, this tactic requires no discriminatory power.

Although conservation alone performed well and size alone, measured as the fraction of surface residues
in a contact, performed better, Figures 4.8 and 4.9 show that a combination of size and conservation can
be most powerful. For the inputs Pc,ps and size as a fraction of the surface, the linear network performs
significantly better than any network that takes only one of the two. Adding three hidden units improves
performance further, although a smaller or greater supplement of hidden units does not. The input combi-
nation of Pc,ns and the number of residues in a contact achieves performance better than random only for
MLPs, with architecture MLP3 being optimal.

The best neural network predictor in this category was MLP3 with inputs of Pc,ps and size as a fraction
of the surface. This correctly classified 48 out of the 53 biological contacts and 364 of the 366 nonbio-
logical contacts, giving a combined accuracy of (48 +364) /(53 + 366) = 98.3%. However, even this was
outperformed by the heuristic predictor H,ys, which relies on nothing more than a linear separation.

Figure 4.10 shows the performance of the same set of predictors in the absolute assessment of crystal
contacts in monomers. Because there are no biological contacts in this set, the performance of predictors
is ineligible for phi and most meaningfully interpreted with a pure error rate. Again, the seemingly perfect
performances of the SLP with the number of contact residues as a single input and the SLP with this and
Pcons as dual inputs are specious and owe nothing to discriminatory power. The error rates show SLP with
Pcons as sole input, MLP3 with dual inputs of Pc,,s and the number of contact residues, and H,ps are most
prone to overpredict biological interfaces. In contrast, the SLP with the sole input of size as a fraction of the
surface, and the SLP and MLP3 with both that size input and Pc,,s are most discriminating in this respect.

4.3.3.3 Predictor performance: Relative assessment

We tracked the performance of more than 40 different neural network predictors in the relative assessment.
The networks tested ranged from those with a single input from Table 4.1 to all six inputs, and some MLPs
had as many as four hidden units.

Figure 4.11 shows classification accuracy for a representative selection of the predictors tested. Predic-
tors using relative measures (ie, ranked size, size difference from largest contact or ranked P c,ys) as inputs
typically performed better than those relying on only absolute measures (ie, number of residues in a contact,
contact size as fraction of the surface, and Pc,ns) (see table 4.1 for an explanation of how these inputs are
defined).

Predictors relying on one of ranked size or the size difference from the largest contact achieved correct
classifications for all but one protomer, luby, and attained the maximum accuracy achieved for any neural
network at 98%. luby, as mentioned above, is the only protomer for which the biological contact is not the
largest crystal contact made. Thus, 98% also corresponds to the predictive accuracy associated with simply
designating as biological the largest observed contact. Alone, the relative measure of ranked P c,,s had some
predictive power (68%). Combining ranked Pc,pns With ranked size in a linear network gave performance
intermediate between that of ranked P¢,,s alone and ranked size alone. Successive addition of hidden units
ameliorated performance, with MLLP3 being maximal (data not shown). No such gradient of improvement
was seen when combining ranked Pc,,s With size difference from the largest contact; even with a linear
network, performance equaled the maximal 98%. Neural networks relying on only absolute measures for
inputs showed the same performance relative to each other in the relative assessment as they did in the
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Figure 4.10: Error rate of predictors in the absolute assessment of monomer contacts.
For an explanation of predictors (vertical axis), see Figure 4.8 legend. Error rate (horizontal axis) refers
to the percentage of contacts misclassified by a predictor. In this case, the error rate corresponds to the
rate of overprediction of biological contacts. All neural networks depicted have been trained on the full
homodimer set. The graph shows that the heuristic predictor Habs and the single layer perceptron with only
conservation as its input most often overpredict biological contacts.
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Figure 4.11: Accuracy of predictors in the relative assessment of homodimers.

Predictors are presented on the on the vertical axis. As in earlier figures, neural network predictors are given
a short names of the form nemork{inputl, input!, ...}, where the prefix network denotes the architecture
of the network: SLP (single layer perceptron) or MLPx (multilayer perceptron with x hidden units). The
names in curly braces refer to the inputs of the network: “numSize” is the number of residues in a contact;
“fracSize” is the fraction of the surface covered by a contact; Pcons is a measure of the conservation for
the contact; “rank Pcons” is the ranked conservation of a contact, “rankSize” is the ranked size of a contact,
and “diffSize” is the difference in size between a given contact and the largest contact in the protomer. The
inputs Pcons, numSize and fracSize are “absolute” measures whereas the inputs rank Pcons, rankSize and
diffSize are “relative” measures (see Table 4.1 for fuller definitions ). Hrei is the heuristic predictor for the
relative assessment and is defined in the Results. Accuracy, presented on the horizontal axis, measures the
percentage of protomers for which a predictor unambiguously identified the biological contact. Assessment
of neural network performance is cross-validated with respect to the homodimer dataset. The graph shows
that relative measures have more predictive power than absolute measures, and that size alone allows near-
perfect prediction.



CHAPTER 4. USING CONSERVATION TO IDENTIFY BIOLOGICALLY RELEVANT CRYSTAL
CONTACTS 99

absolute assessment.

The heuristic method H, beat all the neural network predictors, correctly predicting the biological
contact in every case. But the difference between the 98% of choosing the biggest and 100% for H
represents more than simply dealing with one recalcitrant protomer. For six of the 53 protomers, H ; used
conservation to choose which contact was biological.

4.4 Discussion

The results show biological crystal contacts are typically larger and more conserved than nonbiological
ones. Our analysis of contact size agrees with that of previous studies. It finds biological contacts are
invariably large and usually the largest contact made in a crystal. Figure 4.1 suggests there may be some
upper bound on the size of nonbiological contacts. The reason for this could be principally biophysical.
Consider two interacting protomer surfaces. Small sites of interaction that are flat or complementary, either
in a geometric or an electrostatic sense, will be common. But, because most protomers are globular, larger
sites with these properties will be comparatively rare. Thus, unless there has been evolutionary pressure
making a large site advantageous, the probability of a substantial interaction will be low. Another interpre-
tation is that protomers are under selective pressure to avoid forming large interfaces at random. After all,
if large random interactions were to occur, this would typically encumber a protomer’s function.

The biological contact is the most conserved of all contacts in the crystal much more frequently than
would be expected for a random distribution (Pygstcon = 2.38 % 10~19), Moreover, the results of the asso-
ciation tests in Table 4.4 show that the presence of nearby conserved ligand-binding sites is not the chief
source of this high conservation.

Where biological contacts are not conserved, two kinds of explanation usually prevail. The first relates
to the availability of sequence data. Too little variation in the multiple alignment, caused by either too few
sequences or too little diversity among them, can render analysis of conservation meaningless. The diversity
filter Doss (described in Methods) goes some way to remedy this, but the example of 1tox suggests its cutoff
could be stricter. Fragmented sequences in the databases can also distort the evolutionary information an
alignment provides. If the residues of the biological interface are concentrated around sequence termini,
which are often missing in fragments, this problem should be considered (by inspection of component
sequences). The second kind of explanation is biological. Different dimerization modes (1alo) and multiple
multimeric states in a homologous family (lad3, laor, 1slt and 2tct) help explain why some biological
contacts will not be conserved. Given that most aligned sequences lack annotation, it seems likely that the
prevalence of these phenomena is underpredicted.

Nonbiological contacts were usually poorly conserved, regardless of whether biological contacts were
present in the same crystal (Figure 4.3). A rough analysis of ligand binding sites (Table 4.4) suggested the
high conservation of some nonbiological contacts owed much to the strict conservation of nearby catalytic
or cofactor sites.

The results from the absolute assessment show that whereas size and conservation may be independently
useful for classifying contacts as biological or nonbiological, combining these two orthogonal measures
provides predictive accuracy greater than either one alone.

The success of multilayer perceptron neural network architectures over single layer ones suggests that
a single straight line is not the best predictor. Rather, it implies the optimal decision boundary is something
more sophisticated, such as a number of straight lines or curves. However, the success of the heuristic
Haps, Which is nothing more than a linear discriminant function, belies this suggestion. Two alternative
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Protomer | Multimeric Correct (-/+)°
state (M/H)? | Most accurate neural network® | Haps
lauo D + -
lcp2 D + +
1slt D + -
1xso D - -
lako M + +
lavp M - -
1feh M + -
1ton M + +

Table 4.5: Performance of the best predictors from the absolute assessment on the protomers misclassified
by Ponstingl et al.

2 M=monomer, D=dimer

b A classification is correct (+) only if all contacts in a crystal structure are correctly classified.

¢ The most accurate neural network was the multilayer perceptron with three hidden units that took the two
inputs: Pcons and the fraction of the surface residues covered by a contact.

explanations may account for the disagreement. First, H,,s was concocted with knowledge of the entire
dataset whereas its neural network equivalent was privy to all data except that on which it was to make a
prediction. This may have given H,ps an unfair advantage. Second, and more plausible, is a training failure
on the part of the neural network. Causes of such failure abound and include the network becoming trapped
in local minima of the error surface; the error function being inappropriately or unfortunately defined, eg,
it does not sufficiently penalize false negative predictions; one of the input weights has become saturated
beyond the point it can be usefully modified; and so on (Shepherd, 1997). However, the training and test
data are probably too limited to assess reliably the relative merits of linear over non-linear discriminants.
Whereas H,ps achieved the best phi for homodimers, it may be that the MLP3 architecture with inputs
of Pcons and size as a fraction of the surface is more generally applicable, a postulation supported by its
superior error rate in the monomer assessment (Figure 4.10). Also, if further parameters not included here
were added, eg, physical measures (Jones & Thornton, 1997b) or pair-scores (Ponstingl et al, 2000), a
neural network would provide a more robust framework for mining these higher dimensional data than
would the heuristic approach.

The performance of predictors in the relative assessment may be usefully compared with the statistical
potential of Ponstingl et al (Ponstingl et al, 2000). Ponstingl et al applied statistical potentials to the same
dataset to predict whether a given protomer was a homodimer or monomer. Their pair-score misclassified
twelve protomers: seven homodimers as monomers and five monomers as homodimers. We found sufficient
sequence information for eight of the twelve. Table 4.5 lists these eight protomers and reports how the
MLP3 with inputs of Pc,ns and size as a fraction of the surface, ie, the best performing neural network,
and Hyy classified their contacts. It shows the MLP3 correctly classified all contacts, thereby also correctly
determining multimeric state, in six of these protomers, whereas the heuristic predictor classified all contacts
correctly in only three. This interpretation of the results suggests the consolidating power of the neural
network may offer advantages over other methods.

The results from the relative assessment show size is an extremely powerful predictor when it comes to
singling out the biological contact from a group of contacts. So powerful, in fact, that adding information
about residue conservation produces little benefit if any. The results also show information about other
contacts in the same crystal can be more useful than absolute measures for this type of assessment. The use
of Pcons and fractional size are deliberate attempts to extend the notion of residue conservation and contact
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size beyond the scope of a single protomer. Conversely, ranked Pc,,s, ranked size and difference in size
from the largest contact represent attempts to do the opposite. Unsurprisingly then, the relative scores are
better suited to the relative assessment, and the absolute scores better suited to the absolute assessment.

The heuristic predictor H; predicted the biological interface with 100% accuracy. It used a hierarchical
prediction scheme, first choosing potential biological contacts by their size, then using conservation to break
ties when size delivers ambiguous or plural results. Given the observed power of size alone, this seems a
more sensible way to use conservation. However, the neural network architectures used here are not well
adapted to make their decisions in this way. A given network can only look at the information about one
contact at a time. Although the use of ranked Pc,ps, ranked size and size difference from the largest contact
provide some context for a contact, they are a poor second to seeing all of the data at once.

As for the absolute measures, a larger dataset or higher dimensional data may more sharply resolve the
relative strengths and weakness of the neural network paradigm versus the hierarchical approach of H ().

After the majority of this work had been completed, Elcock & McCammon published a paper on a
related topic (Elcock & McCammon, 2001). They used conservation to help distinguish between homod-
imeric and monomeric crystal structures. This is a different question from either of those posed here. They
applied their method to the dataset of Ponstingl et al (Ponstingl et al, 2000) and to a large number of pro-
teins in the PQS (Henrick & Thomton, 1998) database. Because they considered only the largest contact in
a crystal, their results, which were promising, are not directly comparable with ours. Here we have tried to
be more statistically rigorous in assessing the value of conservation in determining the biological relevance

of a contact.

4.5 Conclusion

Conservation alone provides information, which is orthogonal to that of size, that is powerful to help pre-
dict the biological relevance of a crystal contact. Conservation and size provide a potent combination for
discriminating biological from nonbiological contacts. Ultimately, size remains the most powerful discrim-
inator, but conservation can discriminate between borderline cases.

Neural networks generalize the information from homodimer data well, using it to correctly infer bi-
ological relevance in the vast majority of monomer contacts. In hindsight, these two measures could be
combined in a simple linear manner to produce a powerful predictor. However, it remains to be seen
whether the linear separability observed here holds with a larger dataset.

One natural next step is to apply these networks to higher order oligomers. Another is to present
the predictors with more input data, such as pair-potentials or physical measures, to further improve their
accuracy. A third is to apply the principles demonstrated in this work to the prediction of putative interfaces
in heterodimers or transient multimers. For these types of complexes, it is less likely that the most important
biological contacts will be seen in the crystal. The challenge then would be to identify potential interaction
surfaces and then screen them using the criteria applied in this paper.

In some oligomers it is clear why a multimeric state is important for their function. In others, the
advantage conferred is not obvious. It is particularly interesting to investigate biological contacts that
are unconserved. These often reflect the existence of multiple multimeric states, which in turn can be
interpreted in two ways. It either shows the contact has no biological importance and therefore has been
under no selective pressure to be conserved, or reflects the specialization of different members of the family
to perform different functions.

In distinguishing biological from nonbiological crystal contacts, some categories of proteins are more
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difficult than others. A protomer that participates in multiple interactions, such as a signalling protein or
a highly regulated enzyme, may have multiple functional surfaces. In this case, although the biological
partner may not be present in the crystal, the corresponding functional interface may provide a non-natural
crystal contact that appears conserved. Conservation analysis is therefore useful even when the function of a
protein is unknown in that it can identify functional residues. However, when function is known it can help
to elucidate the molecular mechanism of biological function and provide clues to be tested experimentally.
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Chapter 5

Conclusions

This work has sought to answer three questions. First, can residue conservation be quantified? Second, are
protein-protein interfaces conserved? Third, can the conservation of protein-protein interfaces be useful in
their prediction? All three questions have been answered in the positive.

Biologically important interfaces are under functional constraints, which in a competitive environment
translate into selective pressure. Selective pressure usually manifests itself in a protein family as conser-
vation, but not always. After gene duplication, selective pressure can foster innovation, which leads to
diversity. Multiple specificities and multiple multimeric states within protein families, as found in chapter
4, are examples of diversity that is advantageous to the host organism. The residues that dictate which
multimeric state a homologue has or which small molecule a homologue binds are among the most func-
tionally important residues in a protein. But paradoxically, they may also be the least conserved. Any
analysis of conservation is therefore subject to the following uncertainty: is the position X unconserved
because it is unimportant for function or because it dictates function? One way to resolve such uncertainty
is to examine the literature and ask if the changes in amino acid at a set of positions correlate with small
changes in function. Another is to make an assumption about nature’s parsimony. Close homologues, those
that have sequence identity of >40%, are likely to have identical functions and have been under identical
selective pressure since diverging from a common ancestor. Variant residues will tend to represent suscep-
tibility to genetic drift rather than biological innovation. It can thus be confidently inferred such positions
are unimportant for function. More distant homologues are more likely to have subtly different functions
or perhaps the same function optimized for a subtly different environment. The significance of positional
variability among these proteins is less certain, and in this case a literature review may be warranted. So,
when it comes to choosing homologues for analysis of conservation, is closer better? No, because the set of
positions that are truly conserved, ie, the conserved signal, is often drowned out by false conservation from
positions that have not had time to diverge, ie, conserved noise. To remedy this, a conservation score such
as Cygidqr downweights the contribution of highly similar sequences. In doing so it also upweights distant
homologues, which certainly improves the signal to noise ratio for conservation but may confuse the analy-
sis with genuine biological diversity. In this work, we assume genuine biological diversity in our alignments
is the exception rather than the rule. This assumption makes the analysis of conservation tractable and, as
shown by the utility of this neutralist position in chapter 4, provides the right answers most of the time.

The score Cy, 4, Was proposed to measure conservation. If conservation is isomorphic with functional
constraint, then the success of using Cy,;44r to discriminate biological from nonbiological contacts in chap-
ter 4 shows this score performs well. It fails sometimes, but most of these cases can be explained in terms
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of advantageous residue diversity, which is where we would expect it to fail.

Chapter 3 showed that protein-protein interfaces are conserved to a significant degree. That observation
owes much to the probabilistic scheme used to compare sets of surface residues. Using raw values of residue
conservation, small groups of highly conserved residues that form ligand-binding sites would have seemed
the most conserved. P values allowed the comparison of like with like and showed that although small
clusters with high average conservation are common, large clusters with moderately high conservation
are rare. But although the picking P values showed interfaces were conserved, many of the walking P
values were equivocal and suggested their use in full-scale prediction, ie, locating a interface given only the
protomer structure and a corresponding sequence alignment, might be more limited.

Full-scale prediction of interfaces was not attempted in chapter 4. Instead, discrimination of biological
from nonbiological interfaces, the less ambitious cousin of prediction, was. Relatively high conservation
was shown to be a consistent feature of biological interfaces; the graph that used Bayes theorem to measure
P (biological |Pcoy,s ) (figure 4.4) says it all. But although conservation proved powerful as a discriminator,
it was no match for contact size. This suggests conservation is not ideally placed as a sole predictor. If its
performance in discrimination is less than perfect, then its performance in a full-scale prediction is likely
to be far worse. However, chapter 4 showed conservation adds significant value to size. In the absolute
assessment of that chapter, the phi-coefficients of neural networks that combined the two measures were
significantly higher than the best single-input network. Of course, size is only one of a number of bio-
physical measures that could be devised to aid discrimination and prediction. For example, hydrophobicity,
residue interface propensities and charge complementary may all provide helpful additional inputs. Never-
theless, conservation should always be useful in combination because, being derived from a historical study
of inferred selective pressure, it is orthogonal to all of these measures.

There is more to life than homodimers. In the interests of simplicity, the sweep of this study has
been narrow. Complexes that are arguably more interesting to the biologist, such as hetero-oligomers or
transient complexes, have been ignored. This was unfortunate but, owing to the current paucity of data for
these types of complexes, necessary for such a thorough investigation. It could be that residues in these
types of complexes are more consistently conserved. Of course, the opposite may also be true. Correlated
mutations, which would confuse our neutralist approach, might be more frequent in such complexes. What
is likely is that biophysical measures would be less useful. Functionally important interfaces in any kind
of complex are axiomatically under strong selective pressure. However, they are not necessarily flat, large
or hydrophobic. The analysis of conservation in other types of complex is thus an exciting and potentially
fruitful avenue for further research.

Some protein-protein associations are forever whereas others are fleeting trysts. To make this study
tractable, binding constants were ignored. It is interesting to consider how much the strength of an asso-
ciation can be related to the conservation of residues that secure it. A mutation that causes a small change
in the binding constant of an interaction might be tolerated by the host organism; some enzymes could be
up-regulated, the network of interactions could be adjusted. Depending on the importance of the protein and
the precise nature of its interaction, this might debilitate the host or leave the host unaffected. For instance,
would a slightly decreased affinity between a G-protein coupled receptor, which could be tolerated by up-
regulation of GPCR production and the like, be as cataclysmic as a slightly decreased affinity between the
tubulin subunits of microtubules, which may not be remedied so easily? Questions like these suggest there
is rich scope for the analysis of conservation in a greater variety of complexes than is studied here. As
experimental science continues to elucidate and record the biophysical properties of such complexes, the
analysis of evolution in these systems can become subtler. This all relates strongly to interface prediction.
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The more the interplay between evolutionary conservation and biophysics is understood, the more sensibly
measures relating to these orthogonal perspectives can be combined in a predictive scheme.
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