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Abstract

Evolutionary information derived from the large number of available protein sequences and structures could 

powerfully guide both analysis and prediction of protein-protein interfaces. Three questions are addressed. 

First, can residue conservation be quantified? Second, are protein-protein interfaces conserved? Third, can 

the conservation o f protein-protein interfaces be useful in their prediction?

To answer the first question, this work reviews 17 methods to quantify positional residue conservation 

in multiple alignments. It proposes two new measures: one a concrete score, which is then used throughout 

the remainder o f the work, and the other a generalized formula for scoring conservation.

To answer the second question, the conservation of residues at protein-protein interfaces is compared 

with other residues on the protein surface in six homodimer families. A probabilistic evaluation shows that 

interface conservation is higher than expected by chance and usually statistically significant at the 5% level 

or better.

To answer the third question, the utility of conservation in the discrimination of biological from non­

bio logical crystal contacts is assessed. Conservation and size information is calculated for contacts in 53 

families o f homodimers and 65 families o f monomers. Biological contacts are shown to be usually con­

served and typically the largest contact in the crystal. Neural networks are then applied to the problem of 

using size and conservation alone or in combination to predict whether or not a given contact is biologi­

cally relevant. The best neural networks combine the two measures and achieve accuracies o f over 98%. 

It is concluded that although size is the most powerful single discriminant, conservation adds important 

predictive value.
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Chapter 1

Introduction

1.1 Protein-protein interactions

Protein-protein interactions are ubiquitous in biology. Transient associations between proteins underpin 

a broad range o f biological processes, which includes hormone-receptor binding, nuclease inhibition, the 

action of antibody against antigen, signal transduction, correction o f misfolding by chaperones and enzyme 

allostery. Associations that are more permanent are essential for proteins whose stability or function is 

defined by a multimeric state. Such proteins range from those in grand assemblies, eg, muscle fibres and 

viral capsids, to those in humbler ones, eg, oligomeric enzymes and oxygen carriers.

The following section (1.1.1) describes five biological systems. Each system relies on protein-protein 

interactions in one form or another. These examples illustrate the importance of protein-protein interactions 

and show that such interactions vary considerably, both in kind and function.

1.1.1 The range and importance of protein-protein interactions

1.1.1.1 Inhibition: bamase and barstar

Bamase is an enzyme secreted by Bacillus amyloliquefaciens. It helps provide food for the microorganism 

by degrading extracellular RNA for ingestion. Although an extracellular enzyme, occasional mistargeting 

and intracellular folding means some bamase ends up in the cytoplasm. In this compartment, the ribonu- 

clease would destroy the bacterium if were not for the action of barstar, bam ase's intracellular inhibitor.

Barstar forms a tight and permanent complex with bam ase (K j =  1 0 " (Figure 1.1). It forms salt 

bridges and hydrogen bonds with the enzyme’s catalytic residues, blocking the active site completely and 

preventing further hydrolysis o f RNA. During formation o f this enzyme-inhibitor complex, bam ase re­

mains relatively rigid. Meanwhile barstar imdergoes a conformational change, opening itself up to bind the 

enzyme (Kleanthous & Pommer, 2000, and refs therein).

1.1.1.2 Signalling: G protein-coupled receptors

Guanine-nucleotide-binding proteins (G proteins) can act as signal transducers. Upon binding guanine nu­

cleotides, such as GTP, a G protein changes its conformation. This in tum alters its ability to interact with 

different proteins and results in the G protein leaving one protein-protein complex to join another, which 

propagates a signal. G proteins are implicated in a variety of “information” systems within cells, includ-
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Figure 1.1: Bamase-barstar inhibitor complex.
Barstar (bottom, semitransparent) binds bamase (top, solid dark grey), blocking the enzyme’s active site 
(overlap region). Atom coordinates belong to PDB structure Ibrs (Buckle et al, 1994). This picture was 
generated using MolScript and RasterSD.

ing protein synthesis, cytoskeletal organization, visual transduction and intracellular messenger generation 
(Morgan, 1994).

G protein-coupled receptors (GPCRs) represent one example of G proteins as signal transducers. In a 
typical GPCR, such as the |3-adrenergic receptor (Figure 1.2), the G protein sits next to the intracellular 
portion of a hormone receptor. This G protein is heterotrimeric, comprising two tightly associated subunits, 
Gp and Gy, and a GTP-binding subunit, Ga- When an agonist hormone, such as adrenaline, binds to the ex­
tracellular portion of the GPCR, the intracellular portion changes conformation. This change induces G a to 
swap bound GDP for GTP, which in tum causes this subunit to dissociate from the other two. Now “active”, 
Ga may stimulate (or inhibit) a range of downstream targets. Its stimulation of one such target, adenylyl
cyclase, promotes the production of cyclic AMP (cAMP) (Hyvonen et al, 2000, and refs therein). The
rise in c AMP in tum may stimulate cAMP-dependent kinase and precipitate a cascade of further reactions, 

which eventually lead to, say, an increase in heart rate.

1.1.1.3 Oligomerization: hydroxylamine oxidoreductase

Nitrification is the bacterial process by which organic nitrogen, in the form of ammonia, is oxidized to 
nitrite and nitrate. It is part of the biogeochemical nitrogen cycle, which facilitates the exchange of nitrogen 
between the air, soil and organisms. Hydroxylamine oxidoreductase (HAO) is an important enzyme in 
nitrification. Once ammonia monooxygenase (AMO) has oxidized ammonia to hydroxylamine (Equation 

l.I) , HAO oxidizes hydroxylamine to nitrite (Equation 1.2).

NH3-h02 +  2 H + -h 2 e --^ N H 2 0 H  +  H20 (I.I)

NH2 OH +  H2 O ^  HNO2 +  4H+ A 4e" (1.2)
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Figure 1.2: Signal transduction in the ^-adrenergic G protein-coupled receptor (GPCR).
Diagrams (a) to (i) show the order o f events when an agonist binds to a (3-adrenoceptor that is linked to 
an adenylyl cyclase-stimulating G protein (Gs). (a) Before agonist-binding, Gas has GDP bound and is 
inactive, (b) The agonist binds, inducing a conformation change in the GPCR; this causes G as to exchange 
GDP (c) for GTP (d) and become active, (e) Now active. Gas has less affinity for the y  and P subunits 
and dissociates from them, (f) Gas binds allosterically to adenylyl cyclase, promoting cAMP-production. 
This in tum invokes a chain of further intracellular signals, (g) G as’s low intrinsic GTPase activity means 
it eventually hydrolyses bound GTP to GDP and returns to an inactive state (h). (i) The now inactive G as 
rejoins the y  and P subunits o f the GPCR. Adapted from Morgan (M organ, 1994).
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c)

Figure 1.3: Trimeric hydroxylamine oxidoreductase (HAO) from N. europaea.
The arrangement of peptide chains is shown from the side (a) and top (b). Each subunit is in a different 
colour: red, green or blue. The 24 haem groups (8 per subunit) are shown separately (c) from the top view. 
Iron atoms are highlighted in yellow. Trimerization allows the haems to form a ring, which stabilizes elec­
tron transfer. Atom coordinates belong to the PDB structure Ifgj (Igarashi et al, 1997) and were obtained 
from the PQS (Henrick & Thornton, 1998). The figure was created using MOLSCRIPT (Kraulis, 1991 ).

These two reactions occur in the autotrophic bacterium Nhrosomonas europaea and, by donating 

electrons to its respiratory electron transfer chain, provide energy for this microorganism’s growth 

(Richardson & Watmough, 1999, and refs therein).

HAO is a homotrimer (Figure 1.3). Each subunit contains eight haem groups. Haem groups are useful 

for redox reactions such as 1.2 because, typically, a single haem can bind and transfer one electron at a time. 

The haem groups of HAO are not typical. Their sophisticated arrangement supports an electron transfer 

network that can bind and transfer two electrons simultaneously. This so-called “dielectron transfer” allows 

HAO to oxidize NHiOH (reaction 1.3) in a more efficient two steps (reactions 1.3 and 1.4).

NHiOH ^  (HNO) +  2H+ +  2e" , 

(HNO) +  HiO  -4. HNOi +  2H+ +  2e'

(1.3)

(1.4)

Trimerization benefits HAO in a number of ways. First, the extensive interfaces between the subunits 

provide a stable hydrophobic environment for electron transfer. Second, the association of the subunits, 

which resembles a head of garlic, creates clefts and cavities believed to bind cytochrome c-554, the recipient 

of this electron transfer. Third, trimerization allows one haem per subunit, known as P460, to crosslink to 

another subunit. This positioning of P460 is believed central to HAO’s catalysis of the two-step reaction 

activity (Igarashi et al, 1997) (Hendrich et al, 2001).

1.1.1.4 Structural proteins: tubulin, microtubules and dynamic instability

The cytoskeleton is a network of protein filaments that spatially organizes the cytoplasm of eukaryotic 

cells. It comprises three main types of filaments: actin filaments, microtubules and intermediate filaments. 

Microtubules are stiff, tube-like polymers of tubulin. These are highly dynamic structures, alternately 

growing and shrinking by the gain and loss of tubulin subunits. The cell exploits their dynamic behaviour 

in a number of processes. Among other things, it uses microtubules to position organelles in the cytoplasm, 

to align chromosomes on the spindle during mitosis and meiosis, and to change its shape in morphogenesis. 

The repeated unit that makes up a microtubule is a heterodimer of homologues a-tubulin and P-tubulin
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a)

a

GTP/GDP

tubulin
heterodim er

b)

polymerization

c)

+ end

protofilament microtubule

Figure 1.4; Polymerization of tubulin heterodimers into microtubules.
(a) Tubulin heterodimer: a-subunit (dark grey, bottom), |3-subunit (semitransparent light grey, top) and 
site of GTP or GDP binding, (b) Polymerization: the a-subunit of a new unit binds to the p-subunit of 
an existing unit, (c) Tubulin units polymerize to form protohlaments, (d) Protofilaments assemble into 
hollow polymers (microtubules), 13 protofilaments in cross-section, (a) and (b) depict PDB structure Iffx 
(Gigant et al, 2000). Images were created using MolScript and Raster3D.

(Figure 1.4). These heterodimers associate end-to-end to form protofilaments, which combine laterally to 
make tubes. Because heterodimers are asymmetric, microtubules are polar: a-tubulin sits at one terminus; 
P-tubulin sits at the other. This polarity is key to how microtubules grow and how their growth is regulated.

The terminus crowned by P-tubulin is known as the “plus end” of the microtubule because it elongates 
much faster than the other terminus (the “minus end”). When a new dimer is added to the plus end, its a- 
subunit interacts with the existing terminal P-subunit. The site of interaction is special for both protomers: 

it is where the P-subunit normally binds GTP or GDP, and where the a-subunit normally catalyses the 

hydrolysis of GTP. The rate of polymerization depends on the affinity of the new a-subunit for the existing 
P-subunit. This in tum depends on whether the P-subunit is currently accommodating a GTP, which acts as 

bait to the a-subunit, or GDP, which does not. If GTP, the a-subunit binds strongly and microtubule growth 
is quick. If GDP, the a-subunit binds weakly and no elongation occurs. Meanwhile, a-subunits of dimers 

already incorporated into the microtubule slowly hydrolyse bound GTP to GDP. This gradually destabilizes 
the associations between units and can result in depolymerization of the microtubule.

Depending on whether their plus end is capped with GTP or not, microtubules can thus alternate between 
periods of net growth and net disassembly, a phenomenon called “dynamic instability” ( Alberts et al, 1994, 

and refs therein) (Nogales, 2000, and refs therein).

1.1.1.5 Allostery: haemoglobin and the two-state model

Haemoglobin resides in red blood cells and carries oxygen, as well as C O 2 and H+, around the bodies of 
bony vertebrates. Haemoglobin A, the predominant isoform in adults, is a tetramer with the structure a  iPz- 
The a  and P subunits are not identical but are homologous and function similarly. Each one contains a 
single haem prosthetic group, which is responsible for binding O 2 . Tetrameric haemoglobin thus carries 

between zero and four molecules of O 2 .
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Example interaction
Obligate / 

non-obligate
Permanent / 

transient
Specific /  

multispecific /  
nonspecific

Bamase-barstar non-obligate permanent specific
G a-G ^  complex in GPCR non-obligate transient specific

HAO trimer obligate permanent specific
a-P  subunits in tubulin dimer obligate permanent specific
Tubulin units in protofilament non-obligate transient specific

Haemoglobin A tetramer obligate permanent specific
SH3 domain o f Abl tyrosine 

with a range of partners^
non-obligate transient multispecific

Aggregation of casein non-obligate permanent nonspecific

Table 1.1: Some protein-protein interactions classified.
All interactions shown here are biological.
“ For example, see Musacchio et al (Musacchio et al, 1994).

Haemoglobin exists in two conformational states: tense (the T-state) and relaxed (the R-state). When 

haemoglobin is in the R-state, its subunits have a high affinity for 0%. When in the T-state, their affinity 

is low. Haemoglobin is in continuous equilibrium between these two states, and so the affinity of any one 

molecule is constantly changing. However, the position of this equilibrium depends on how many O 2  are 

already bound: the more ligands bound, the further the R-state is favoured and the higher the affinity.

This is an example of “homotropic allostery”, ie, when allostery and activity are at equivalent sites in a 

multimer, and “positive cooperativity” , which is illustrated by Equations 1.5 and 1.6:

T n ^ R n ,  where 0 <  n <  4

^equilibrium  — ÔtTT — ^

(1.5)

( 1.6)

where T„ is the T-state with n O 2 ligands bound, c is an affinity factor, and L  is the equilibrium constant 

at To and Rq. The first equation (1.5) shows the equilibrium between the T- and R-states. The second 

(Equation 1.6) shows how the equilibrium constant for this interconversion is modulated by the value of 

n. The positive cooperativity of haemoglobin plays an important physiological role, complementing the 

opposing effects of CO 2  and other heterotropic (ie, binding somewhere other than the active site) allosteric 

molecules. It helps ensure O 2  tends to be picked up by haemoglobin when it is abundant and tends to be 

released when it is scarce (Creighton, 1996, and refs therein).

1.1.2 Classifying protein-protein interactions

A particular protein-protein interaction complex may belong to one or more of the following categories: 

obligate or non-obligate; permanent or transient; biological or cry stallographic; specific, multispecific or 

nonspecific. These classes are defined below and illustrated in Table 1.1.

1.1.2.1 Obligate vs non-obligate

The subunits o f an obligate complex are stable and functional within the multimeric state but not outside it. 

A non-obligate complex is one composed of protomers that are each independently stable and functional in 

their own right.
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1.1.2.2 Permanent vs transient

Transient complexes are those that form temporarily. These are common in signalling pathways and in 

hormone-receptor binding, and are a type of non-obligate interaction. Permanent complexes can also be 

non-obligate, but once formed are unlikely to dissociate under normal physiological conditions (eg, enzyme- 

inhibitor). Obligate complexes are by definition permanent.

1.1.2.3 Biological vs crystallographic

A biological complex is one that exists under normal physiological conditions. A crystallographic complex 

is one observed in a crystal structure. The interfaces defined in a crystallographic complex are known as 

“crystal contacts” .

Some crystal contacts correspond to real biological interactions. M ost do not. Rather, they are artifacts 

o f crystal packing and have no biological relevance. Crystal contacts therefore come in two types:

1. biological crystal contacts, ie, crystal contacts that belong to real biological complexes;

2. nonbiological crystal contacts, ie, those that do not.

In some literature, although not here, “crystal contact” is taken to mean nonbiological crystal contact and 

“crystallographic complex” is used to describe a crystallographic complex that does not correspond to a 
biological interaction.

1.1.2.4 Specific, multispecific and nonspecific

The interaction of a protein A with another protein B is specific if both of the following are true:

1. the interaction always occurs at the same site;

2. only B and its analogues bind at this site.

Binding surfaces involved in specific interactions usually exhibit high complementarity. As a result, the 

complexes formed often have high affinity. All the interactions described in section 1.1.1 are specific. In 

some literature, although not here, “multispecific” describes a family o f homologous proteins that contains 

members forming different specific interactions. Herein, that version of multispecificity will be termed 

“familial multispecificity” .

The interactions o f a protein A with a set of proteins X are multispecific if all o f the following are true:

1. the interactions always occur at the same site;

2. only members of X and their analogues bind at this site;

3. X is plural but finite.

Multispecific interactions are not arbitrary; they follow a particular theme. For instance, a typical Src 

homology 3 (SH3) domain binds a variety of different proteins with low affinity. Nevertheless, it does show 

some selectivity: it restricts its interactions to targets with a Pro-X-X-Pro binding motif ( Mayer, 2001, and 

refs therein).

The interactions o f a protein A are nonspecific if  either o f the following are true:

1. the interactions occur at random positions A;
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2. any protein is a suitable partner.

Aggregation is an example of nonspecific binding: proteins bind to random partners in random orientations.

1.2 Characteristics of interactions and interfaces

Protein-protein interactions occur at the surface of a protein and are biophysical phenomena, governed by 

the shape, chemical complementarity and flexibility o f the molecules involved. Towards the common goal 

o f understanding how proteins interact, a number of studies have characterized the properties of interfaces 

between polypeptide chains.

A large number o f studies of theoretical studies have examined the physical and chemical aspects of 

protein-protein interfaces. Their findings are described below.

1.2.1 Geometry

1.2.1.1 Size

M ost studies define the size of a protein-protein interface with respect to one protomer as the accessible 

surface area (ASA) lost upon complexation. Estimates o f the average size of an interface vary with the type 

of complex and the dataset used. According to one study by Argos ( Argos, 1988), dimers contribute, on 

average, 12% o f their ASA to the contact interface, trimers 17.4% and tetramers 20.9%. These averages 

conceal great variation. For instance, the interface of dimeric superoxide dismutase is 670 Â ^, 9% of its 

total ASA; that o f tetrameric catalase is 10 570 Â^, 40% of the surface (Jones & Thornton, 2000, and refs 

therein). Jones & Thornton (Jones & Thornton, 1996) showed that among homodimers interface ASA is 

roughly linearly related to molecular weight.

1.2.1.2 Planarity

The planarity o f an interface is usually measured as the root-mean-square deviation of its best-fit plane. 

Most interfaces are relatively flat compared with the rest o f the surface. This is particularly the case for 

homooligomers, partly thanks to packing constraints, and less so for more heterogeneous complexes, eg, 

antibody-antigen complexes [Thomas Kabir, personal correspondence] (Jones & Thornton, 1997a). There 

are exceptions. In some obligate complexes, such as the homodimer gamma interferon, subunits interlock 

in a sprawling, convoluted embrace.

1.2.1.3 Shape

Most interfaces are roughly circular. Jones & Thornton showed that the set o f residues in a homodimer 

interface could be approximated by the set o f as many residues in a circular patch. In their dataset, 

the residue overlap between the theoretical patch and biological interface ranged between 54% and 87% 

(Jones & Thornton, 1997a).

1.2.1.4 Symmetry

Almost all homooligomeric complexes are symmetrical. There are a number o f conjectures as to why this 

should be. One is that symmetry allows so-called “finite assembly”, where the shape and interaction of 

subunits precludes imwanted aggregation. Blundell & Srinivasan suggest that highly symmetric assemblies
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are more energetically stable than asymmetric aggregates (Blundell & Srinivasan, 1996). Wolynes has 

speculated that the folding landscape for symmetric proteins has fewer kinetic barriers ( Wolynes, 1996).

Symmetric interfaces may be categorized as isologous or heterologous. Isologous interfaces are those 

where identical surfaces on two subunits interact. These interfaces have a two-fold axis o f symmetry and 

can occur only in dimers. Heterologous interfaces describe interactions between different surfaces on two 

subunits. Monod et al have suggested isologous interfaces are easier to evolve from  monomers than het­

erologous ones: a mutation that strengthens the inter-subunit association is acquired doubly if the interface 

is isologous (Goodsell & Olson, 2000, and refs therein).

1.2.1.5 Complementarity

Geometric complementarity describes the physical fit between two surfaces. Several methods exist 

to measure geometric complementarity within an interface. Among those used in modem studies are 

the shape correlation index (Lawrence & Colman, 1993), based on distance and the angle of the nor­

mal vectors to the molecular surface, the gap index (Jones & Thornton, 1996), which measures the 

volume of cavities between the interacting surfaces and normalizes by the interface area, and pack­

ing density (Gerstein et al, 1995), measured using Voronoi polyhedra. A study by Lo Conte et al 

(Lo Conte et al, 1999), which using all three methods, showed that shape complementarity was marginally 

higher in oligomers and inhibitor complexes than in antibody-antigen complexes, and that packing density 

at the centre o f interfaces resembles that o f the protein interior.

1.2.2 Chemistry

1.2.2.1 Hydrophobicity

Hydrophobic interaction is considered a driving force stabilizing associations within proteins (D ill, 1990, 

and refs therein). However, the hydrophobic effect is thought less influential in associations between pro­

teins (Sheinerman et al, 2000, and refs therein).

In transient complexes, the proportion o f hydrophobic groups differs only slightly between the interface 

and the surface (Lo Conte et al, 1999). In obligate and permanent complexes the interfaces tend to be 

significantly more hydrophobic (Chothia & Janin, 1975) (Young et al, 1994) (Jones & Thornton, 1995). 

Studies examining the dispersion of hydrophobicity in interfaces show that, in obligate complexes at least, 

hydrophobic groups tend to scatter rather than concentrate in a single large patch ( Larsen et al, 1997).

1.2.2.2 Amino acid composition

The amino acid composition found at interfaces lies between that of the protein interior and the protein 

surface but is much closer to the surface. Compared with the rest o f the surface, interfaces are typically 

richer in the aromatic residues His, Tyr, Phe and Trp; somewhat richer in the aliphatic residues Leu, lie, Val 

and Met, and depleted in the charged residues Asp, Glu and Lys. M ost abundant is the charged residue Arg. 

This may be because Arg is a prolific hydrogen-bond former and is able to form water-mediated hydrogen 

bonds with other Args (Magalhaes et al, 1994) (D’Alessio, 1999). Composition varies with the class of 

interface. Protease-inhibitor complexes are richer in Cys; antibody-antigen interfaces are richer in Tyr. But 

the preponderance of Arg and depletion of Lys are common (L o  Conte et al, 1999). Figure 1.5 shows the 

distances between the amino acid compositions of the surface, interior and interface in different classes of 

complex.
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Non-obligate Obligate
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surface
surface
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interface interface

Figure 1.5: Distance between amino acid compositions.
Pairwise distances are calculated by projecting the fractional compositions of amino acids into 20-

dimensional space and measuring the Euclidean distance between them, ie, d = \ J ^  [si — tiŸ ,  where 
Si and ti are the percentage areas contributed by residue type i to surfaces s and t . Distance is in units of 
percentage area (Lo Conte et al, 1999, and Joel Janin, personal correspondence). Note that in this diagram 
“interface” is defined conservatively and includes only those atoms that are completely buried on complex­
ation. Other studies, such as that o f Jones & Thornton (Jones & Thornton, 1995), which tend to define 
the interface more loosely, show obligate interfaces as being closer in composition to the surface than the 
interior.

1.2.2.3 Electrostatics

Non-obligate protein-protein interfaces are often quite polar. Polar groups can help make interactions spe­

cific: a prospective partner must complement the existing pattern and direction of positive and negative 

charge. This is an advantage if, as is the case with most non-obligate interactions, subunits must find each 

other in the cytoplasmic soup. However, polar groups can also oppose complex formation, owing to des­

olvation effects. A protein-protein interaction must therefore balance the thermodynamic cost o f burying 

polar groups from water with the kinetic benefit o f electrostatic interactions at the interface, ie, hydrogen 

bonds and salt bridges (McCoy et al, 1997) (Sheinerman et al, 2000, and refs therein).

Hydrogen bonds are more common in non-obligate complexes than in obligate or permanent com­

plexes. Average frequencies o f hydrogen bonds per 100 A ̂  of buried surface have been calculated as 0.88 

for obligate homodimers, 1.4 for permanent non-obligate complexes and 1.1 for antibody-antigen com­

plexes (Jones & Thornton, 2000, and refs therein). However, these averages hide great variation: among 

non-obligate complexes studying by Lo Conte et al, the number o f hydrogen bonds ranged from  3 to 50 

(Lo Conte et al, 1999). This study also found the majority o f bonds formed were most often mediated by 

water.

Salt bridges are rarer than hydrogen bonds, occurring in only half the homodimers analysed by Jones 

& Thornton (Jones & Thornton, 1996). This is unsurprising because ionic interactions, which represent an 

extreme form electrostatic interaction, can occur between only a subset o f hydrogen bonding residues.
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Complex Kd (mol dm “ ^) range

Ribonuclease inhibitor with angiogenin 10-16

Bamase with barstar 10-14

Caspase-activated DNase (CAD) 
with inhibitor (ICAD)

10-y

Activated Gou with adenylyl cyclase 10-*
a-tubulin with P-tubulin 

(in tubulin dimer)
10-G

aP-haemoglobin with aP-haemoglobin 
(in aiPz-haem oglobin)

10-G

Table 1.2: Dissociation constants for some example protein-protein complexes

1.2.3 Prediction of protein-protein interfaces based on physical and chemical char­
acteristics

The consistency apparent in observations of oligomeric interfaces has led some groups to suggest the 

location of a putative interface may be predictable from protomer structure alone (Young et al, 1994) 

(Lijnzaad & Argos, 1997) (Jones & Thornton, 1997b). Jones & Thornton (Jones & Thornton, 1997b) de­

veloped a predictive method in which, for each protomer in a dataset o f dimers, they defined roughly 

circular patches on the molecular surface, then assessed and ranked each patch according to its chemical 

and physical properties. Because the properties that make a good interface depend on the type of complex, 

patches on protomers from homodimer, heterodimer and antigen-antibody complexes were ranked by dif­

ferent criteria. Their method proved most powerful when applied to simple homodimers and weakest when 

applied to transient dimers, mirroring the degrees of physico-chemical consistency observed for these types 

of complexes.

The geometric and electrostatic complementarity observed within interfaces has been the basis o f many 

studies that dock two proteins of known structure (Sternberg et al, 1998, and references therein). These 

algorithms usually begin by treating the two proteins as rigid bodies that are docked to produce a tight 

complex. Putative complexes are then assessed and refined according to electrostatic or chemical criteria to 

predict the “best” complex.

1.2.4 Kinetics and energetics of binding

1.2.4.1 Affinity and dissociation constants

The affinity between two protomers in a protein-protein interaction is most often expressed as their dis­

sociation constant at thermodynamic equilibrium, K^. For the interaction between protomers A and B, 

ie,

A -b B # :  A B,

Kd is given by

Kd =
|A][B]
[AB]

This scheme also accommodates interactions involving more than two protomers, provided those interac­

tions are first broken down into successive bimolecular steps.

Values o f Kd in biological systems range from 10 denoting loose association, to 10” ^ ,̂ denoting tight 

associations. Table 1.2 gives the dissociation constants of some example complexes.
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The dissociation constant can be determined experimentally by measuring equilibrium concentrations 

of A, B and AB. The range of dictates the choice o f experimental technique. Available techniques for the 

micromolar range and above are fluorescence quenching, equilibrium ultracentrifugation or microcalorime­

try. For the nanomolar range: enzyme-linked immuno-absorbant assay (ELISA). Below the nanomolar 

range, direct measurement is unreliable. In this case, kinetic measurements, ie, measurements of associa­

tion and dissociation rates, are used in preference to equilibrium methods ( Janin, 2000, and refs therein).

1.2.4.2 Energetics

The Gibbs free energy o f dissociation may be calculated from the using the equation

AG5 = - f i r i n g ,

where T  is temperature, R  is the gas constant, and c° = \  mol dm “  ̂ under standard conditions. Although 

not an energy as such, AG^ is often referred to as the “binding energy”. The higher its value binding energy 

the more favourable the interaction. In biological systems, AG^ ranges from 6 to 19 kcal m ol“ ^

The binding energy is a balance o f two components, entropy and enthalpy. These are related to AG ^ by 

the equation

AGg =  A J /j -r A ^ ,

where and AS^ are the changes in enthalpy and entropy respectively. The interaction is “enthalpy 

driven” when AH^ is positive (favourable) and AS^ negative (unfavourable). If  the converse is true, the 

interaction is “entropy driven” . Determining the relative contributions o f enthalpy and entropy to the inter­

action is not as easy as it might seem. In principle, AH ^  could be estimated from van't H off’s law:

AH! = -R d(i /r)

However, this works poorly in practice. Rather, AH ^  is best measured directly by isothermal titration 

calorimetry (ITC). In this technique, sensitive microcalorimeters are used to measure the heat evolved on 

mixing protomers A and B. This heat corresponds to —AH^.

The heat capacity change, AC^, can be calculated by measuring AH^ at different temperatures, thanks 

to the relationship

The heat capacity change is useful because it can indicate how much the hydrophobic effect contributes 

to stabilizing the AB complex. Some groups have postulated a direct relationship between AC^ and the 

amount o f buried hydrophobic surface area o f the form

AC^ — ^AASAfionpolar "b bAASApglar i

where a and b are constants, and AASAnonpoiar and AASApoiar are the changes in ASA for nonpolar and 

polar surfaces respectively. However, there is evidence to suggest the true relationship is less straightforward 

(Janin, 2000, and refs therein) (Henriques et al, 2000, and refs therein).
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1.2.4.3 Anatomy of interface thermodynamics

Some residues at a protein-protein interface contribute more to the binding energy than others. The energetic 

importance of a residue can be measured by first mutating it to a reference amino acid type, such as Ala, 

then recording the consequent change in the free energy of binding as

AAGd = AG7 + AG 7‘ ,

where A G ^ and AG™“‘ are values of AGd for the wild-type and mutant respectively. This so-called “alanine- 

scanning mutagenesis” has been used to map the thermodynamic properties of dimer interfaces and re­

vealed that important residues are not necessarily distributed evenly. Rather, residues with high AAG^ 

often concentrate in “hot-spots” of binding energy (Bogan & Thom, 1998). There is also evidence from 

other thermodynamic studies that residues distant from the interface can play a critical role in stabiliz­

ing protein-protein interactions (Hedstrom, 1996). Such residues are believed to be energetically coupled 

with those directly involved in binding and allow binding energy to propagate through tertiary structure 

(Lockless & Ranganathan, 1999).

1.3 Experimental technologies for detecting and measuring protein- 
protein interactions

Protein-protein interactions have been subject to just about every possible form o f experimental analysis. 

Table 1.3 summarizes some of the main experimental methods currently used to study protein-protein in­

teractions.

1.3.1 Classifying experimental methods

Experimental methods for analysing protein-protein interactions are here divided into two classes; presence 

methods and characterization methods. Presence methods can detect unknown protein-protein interactions. 

These seek to find out whether proteins interact. Characterization methods characterize interactions. They 

seek to discover how  proteins interact.

Presence methods provide only general information but can often be performed on a large scale, such 

as in high-throughput screening. They may be subdivided into three further categories: pairwise methods, 

which detect whether two proteins interact; fishing experiments, which detect all proteins that interact with 

a given “bait” protein; and all vs all methods, which detect all interactions among a group of proteins.

Characterization methods provide more detailed information about protein-protein interactions but are 

usually performed on only a small scale. These are mainly applied to known interactions and illuminate 

specific aspects o f a complex such as binding energy, structure, conformational changes, kinetics and so 

forth.

1.4 Evolution of oligomers

It is usually assumed that, in evolution, single protomers came first and oligomers later. This can be justified 

by the intuition that simplicity usually precedes complexity and not the other way around. Some workers 

have even cited the amino acid composition of oligomeric interfaces as supporting evidence. Specifically, if 

oligomers came first, then why should oligomeric interfaces be midway in composition between the interior
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Experimental technique

Cell-nuq> proteomics

Chemical cross-liridng

Circular dichroism (CD)

Co-crystallography
Electron microscopy (EM)
Isothermal calorimetry (TTC)

Microarrays

Nuclear magnetic resonance (NMR)

Protein chips

Resonance energy transfer (FRET/BRET)

Surface plasmon resonance (SCR)

Yeast two-hybrid (Y2H)

Characterization

Description

Performed on whole cell or chosen compartments. First isolate protein fraction. 
Then identify r ^ c h  proteins are present using any of immunoprécipitation, afBnity 
chromatography, sedimentation equilibrium and ID or 2D gel electrophoresis. 
Analyse complexes by ID native gel electrophoresis and mass spectrometry 
(MALDI-TOForES)__________________________________________________
Covalently link any peptide terminii that are close during complexation________
Detect changes in secondary structure and thereby show whether conformational 
changes occur on complexation________________________________________
Perform X-ray crystallography on intact complex to give 3D structure of interaction 
Visualize multimers at a coarse grain level_______________________________
Measure heat change on complexation

A microarray is a small chip that contains a matrix of bound cDNA bait. When cell 
lysate is washed over the chip, mRNA sticks to its complementary bound cDNA. A 
microarray therefore measures mRNA levels in a cell. Correlated levels of mRNA 
expression are used as a rough guide as to whether two proteins might interact

Isotope labelling: identify close-together atoms in a conplex from their NOE 
transfers
Immobilize arrays o f protein bait on a chip. Wash solution of (eg, photo-) labelled 
prey proteins over the chip. Interacting prey protein remain stuck to bait and are 
detectable by their label
Tag subject protein tagged with a fluorescent (FRET) or bioluminescent (BRET) 
probe. If subject binds to another protein, the probe noticeably changes its 
wavelength_________________________________________________________
Immobilize bait protein on activated optical metallic surface. Interaction between 
the bait and prey alters the di fractional properties of the plate, causing an optical 
change_____________________________________________________________
In addition to bait and prey, this method involves a reporter gene and two protein 
domains that bind to it: B, %frich binds at the promoter, and A, which activates 
transcription. The bait is fused to B, the prey to A. If the prey and bait interact, so 
do A and B, which causes expression of the reporter and leads to a colour change 
or other noticeable phenotype___________________________________________
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and exterior (D ’Alessio, 1999, and refs therein)? Accepting this supposition prompts at least two further

questions:

1. Does oligomerization confer biological, and therefore evolutionary, advantages?

2. By what mechanisms could oligomeric complexes have arisen from monomers?

This section explores possible answers to the above questions.

1.4.1 Advantages of being an oligomer

Oligomers possess a number of talents not shared by monomers ( Goodsell & Olson, 1993, and refs therein)

(D’Alessio, 1999, and refs therein). These are summarized below.

1. Subunit interfaces. In some multimeric enzymes (eg, E. coli aspartate transcarbamoylase) the active 

site is formed at the junction of two subunits. This arrangement can bestow several advantages, 

including improved specificity through substrate channeling and assisted catalysis through subtle 

intersubunit motions.

2. Interaction of subunits. Subunit interaction can be dynamic. It can endow a complex with coop- 

erativity (eg, in haemoglobin) or substrate feedback inhibition. In the extreme case of bovine mi­

tochondrial Fl-ATPase, catalysis is aided by a continuous cycling of the enzym e’s oligomeric state 

(Abrahams et al, 1994).

3. Reduced surface area. Combining several functional proteins into one aggregate reduces the total 

surface area accessible to solvent. This is easier on the host: fewer ions and ordered water molecules 

are needed to neutralize and hydrate the protein surface.

4. Multiple active sites. Some multimeric enzymes (eg, dimeric superoxide dismutase) have an active 

site on each subunit. This reduction of surface area has a kinetic advantage in that productive colli­

sions between enzyme and substrate are more likely.

5. Structural frameworks. Oligomerization enables the cell to form structural frameworks. These can 

used for protection, scaffolding (eg, tubulin) or mechanical transduction (eg, in muscle contraction).

6. Coding efficiency. Building a range o f large structures out o f identical bricks, or groups o f identical 

bricks, makes more use of less genetic information.

7. M odular architecture vs one long polypeptide. It is more robust to build a necessarily large and 

complex structure such as HAO (see 1.1.1.3) from separate modules than from a single polypeptide 

chain. First, a single chain version o f the HAO homotrimer would require a longer gene, which, 

assuming a constant mutation rate, would acciunulate a deleterious mutation more quickly. However, 

as has been noted by Monod et al (M onod et al, 1965), the effect o f a single deleterious mutation in 

a repeated module would be multiplied throughout the oligomer. Second, if  the single chain version 

of HAO develops a fault during transcription, translation or folding, the whole structure is lost; in the 

modular scheme, only the faulty module is lost, and this may be replaced.

Points 1 , 2 , 3  and 4 could also apply to the advantages of having multiple domains in a multidomain protein.
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1.4.2 Mechanisms of oligomeric evolution

The most general models of oligomer evolution describe the transition from monomer to dimer 

(D’Alessio, 1999). This is a reasonable simplification because it can be applied iteratively to explain higher 

order oligomers. The models described below all assume the following starting condition: the availability 

of expendable genetic material. This redundancy, which probably entered the hypothetical genome through 

a duplication event, provides a relatively safe arena for evolutionary experimentation.

1.4.2.1 The mutation model

The mutation model starts with one aloof monomer. This monomer acquires a primary mutation that makes 

its surface adhesive enough to bind another protein. The site o f the mutation need not be the only source of 

adhesion -  it may complement existing “preprimary” mutations -  but it tips the balance. The new protein- 

protein interaction is stable or metastable, which means the complex corresponds to only one of many 

possible kinetic paths. After this, two things can happen. If the interaction is detrimental to the host organ­

ism, it is removed from the gene pool (negative selection). If  the interaction is tolerated (neutal survival) 

or advantageous (positive selection) it stays and continues to evolve. Secondary mutations then make the 

complex fully stable if it was not so already. Over time, genetic drift leads to the evolved dimer, which is the 

one observed today. By this point the primary mutation is no longer readily detectable (D ’Alessio, 1999, 

and refs therein).

1.4.2.2 The domain-swap model

The domain-swap model (also impenetrably known as the Rosetta Stone model) starts with two monomers 

A and B, as shown in Figure 1.6. Fusion of the genes for A and B leads to expression of the fused two- 

domain protein AB. Relatively few mutations then produce a primitive binding site between the two do­

mains. Successive point mutations optimize this domain-domain interface and result in a stronger associ­

ation. One of two things may happen next. In the first scenario, recombination separates the genes for A 

and B, the two domains will once again be separate proteins. However, because of the optimized bind­

ing site, monomers A and B will interact as a heterodimer. In the second scenario, a deletion in the loop 

between the two domains restricts relative positioning of A and B, disrupting the interdomain interface. 

However, the A and B domains of two AB proteins can interact, forming a domain-swapped homodimer 

(Marcotte et al, 1999).

The domain-swap model is believed to explain some but not all protein-protein interactions, and con­

sidered to be subsumed by the more general mutation model (D ’Alessio, 1999).

1.5 The use of sequence data to infer molecular interactions

Sequence-based computational approaches to predicting molecular interactions have become popular in 

recent years, thanks largely to the rapid growth of available protein and DNA sequence data and related re­

sources. Sequence-based approaches contrast with patch analysis, docking and other computational meth­

ods described in section 1.2.3 because they consider the genetic provenance o f the interacting proteins or 

molecules and usually assume some kind o f evolutionary model. These methods can be roughly divided 

into comparative genomic methods, which generally seek to detect potential interacting pairs o f proteins, 

and structure-level methods, which seek to locate or characterize the site of an interaction on a protein 

structure and the residues involved.
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B r  A j B

sin g le  m utations
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A’ B’

loop deletion

heterod im er hom odim er

Figure 1.6: domain-swap model of dimer evolution.
Circle A and square B are domains. Lines above shapes represent the genes for A and B. See text for 
explanation. Adapted from (Marcotte et al, 1999).
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1.5.1 Comparative genomics

1.5.1.1 Gene order

The tenet of gene order methods is simple: if two genes are close together, their products are likely to 

interact. In fact, the closer, the more likely. A study by Huynen et al ( Huynen et al, 2000) showed that if 

the adjacency o f two genes was conserved among phylogenetically distant genomes, there is a 63% chance 

their products are part o f the same multimer and a 30% chance they have a direct physical interaction. If 

one considers only those genes involved in the metabolic pathway of E. coli, this likelihood rises to 90%. 

One explanation for why proteins from adjacent genes should interact is convenience: adjacent genes can 

share regulation and expression systems, which can be an evolutionary advantage if their products interact 

(Teichmann et al, 2001, and refs therein).

In a similar vein, Enright et al and Marcotte et al have both published methods that infer protein-protein 

interactions from gene fusion events (Enright et al, 1999) (Marcotte et al, 1999). These methods rely on 

the domain-swap model o f evolution (section 1.4.2.2). They predict that if domains A and B are fused in 

one protein, then whenever orthologues (ie, homologues of the same function) o f A and B are on separate 

proteins, these proteins will interact. Although these methods have enjoyed some success, in their current 

form they inevitably suffer from high rates o f overprediction.

1.5.1.2 Phylogenetic profiles

Phylogenetic profiles are based on the following hypothesis: if  two proteins A and B are functionally 

linked, then a given genome will have either both A and B or neither one. In the method of Pellegrini et al 

(Pellegrini et al, 1999), two proteins are predicted to interact, directly or indirectly, if  their pattern o f occur­

rence among genomes is similar. This method is better at detecting pairs o f proteins that share a function or 

metabolic pathway than those that interact directly. In an assessment by Huynen e ta l ( Huynen et al, 2000), 

34% of pairs predicted for Mycoplasma genitalium  were functionally linked. Because phylogenetic profiles 

draw their strength from the sequencing of whole genomes and the ability to detect orthologues across them, 

it is likely to become more powerful with time.

1.5.2 Structure-level methods

All sequence-based methods to localize molecular interactions are relatively new. Prior to the beginning of 

this work, only a handful o f methods for analysis or prediction had been described. Four are summarized 

below. All rely on the general premise that restricted evolutionary variability of residues reflects their 

functional importance. Or more specifically, if a protein-protein interaction plays an important functional 

role, it is interesting to study how patterns of evolutionary conservation in the protomer sequences relate to 

the maintenance of the interaction. M ost also benefit from the fact that residues usually involved in binding 

are on the molecular surface and surface conservation is generally low. This potentially high signal to noise 

ratio arises because changes in surface residues do not generally influence folding and overall stability as 

much as changes in residues at the structural core, so any mutational intolerance that does exist can be 

detected more easily.

1.5.2.1 Correlated mutations

Consider a pair o f residues whose interaction (or non-interaction) is essential for the host’s survival. If 

one residue mutates, that interaction may be lost and the host’s fitness severely impaired. However, if
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the other residue undergoes a compensatory mutation, either at the same time or a few generations later, 

the interaction, and the host’s fimess, could be preserved. Compensatory mutations, usually detected as 

correlated mutations, are thus considered evidence that two residues are functionally linked. Correlated 

mutations within a protein sequence have been shown to be important in maintaining stability and function 

(Serrano et al, 1990) (Shindyalov et al, 1994) (Taylor & Hatrick, 1994) (G obe le ta l, 1994).

Pazos et al (Pazos et al, 1997) took this further. They proposed correlated mutations should occur at 

domain-domain interfaces and, if they did, they should also occur at protein-protein interfaces. Identifying 

correlations within a single domain sequence is more straightforward than in either a multidomain sequence 

or between different proteins. In order to identify correlated residue pairs, the residues involved must 

have a long and intimately linked evolutionary history. Ideally, they should also have been subject to a 

similar rate o f evolution. Residues from different proteins rarely meet these criteria. Even in multidomain 

sequences, which have often arisen from recent domain-insertion, splicing or recombination events, a linked 

evolutionary history between residues is not guaranteed. Moreover, it is unwise to assume domain-domain 

interfaces are under the same kind of evolutionary pressure borne by protein-protein interfaces. After all, 

two proteins can have the choice not to interact.

Pazos et al performed their analysis on 21 two-domain proteins and one dimer. For each protein, they 

calculated correlations of amino acid substitutions for all residue pairs in a multiple sequence alignment. 

Then, to test the hypothesis that correlated mutations identified residues in contact, they compared the 

pairwise correlations with pairwise residue distances in the crystal structure. Unfortunately, their results 

only weakly supported their hypothesis and their method as it stood was not obviously useful for predicting 

protein-protein interactions.

Lockless & Ranganathan (Lockless & Ranganathan, 1999) used correlated mutations, calculated differ­

ently from Pazos et al, to test their hypothesis that residues at protein-protein binding sites are energetically 

coupled with residues distant from the interface. These distal residues support binding indirectly, stabiliz­

ing association by allowing binding energy to propagate through the structure rather than being localized at 

the interface. Their results, performed on just one complex but corroborated by mutagenesis experiments, 

showed that correlated mutations can correspond well to energetic couplings.

1.5.2.2 Evolutionary tracing at binding site

Lichtarge et al (Lichtarge et al, 1996) described a method for defining functional residues at binding sites. 

They start with the multiple alignment and associated phylogenetic tree for a protein o f interest. Their 

“evolutionary trace” method then defines a series o f cross sections o f the tree. A cross section near the root 

defines a few major branches, each of which represents a low-resolution division o f the families. Moving 

the cross section away from the root and towards the leaves, subfamilies are defined that are progressively 

smaller and more numerous. This is done in discrete stages to produce a subfamily grouping for each level 

of sequence identity. At each stage, aligned residues are classified as “conserved”, ie, invariant through the 

entire alignment, “class-specific” , ie, invariant within a clade, or “neutral”, ie, variable within the clade. 

As the families become smaller, so does the sequence variation they describe, resulting in the number of 

class-specific residues increasing with resolution.

Lichtarge et al used an interactive molecular graphics program to view the protein o f interest, colouring- 

in conserved and class-specific residues identified for increasing levels o f sequence identity resolution. They 

found the patterns of clade-specific residue conservation correlated well with observed patterns of relative 

binding energy. Their method was not, however, particularly automatic. Nor was it predictive. Rather it was 

a form of exploratory data analysis; after all, considering residue conservation at multiple cross-sections of
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the family tree is a complex business whose interpretation is ultimately subjective.

1.5.2.3 Searching for 3D binding motifs

De Rinaldis et al (de Rinaldis et al, 1998) developed a search tool that uses evolutionary information to 

compare binding motifs on protein surfaces. Given a query structiu-e and its sequence aligmnent, their 

method maps amino acid substitution patterns of surface residues onto a three-dimensional grid. The grid, 

which corresponds to a coarse grain model o f the structure, is filtered to remove unconserved positions and 

acts as a profile o f the surface. For each protein in a database of structures, they then compare the amino 

acids on its surface with distributions in the profile and assess the similarity of any aligned residues using 

amino acid exchange probabilities from a mutation data matrix. Their method could be used to identify 

homologous surface patches involved in interfaces.

1.6 Conservation at protein-protein interfaces

Intuitively, protein-protein interfaces should be conserved among similarly interacting orthologues. After 

all, if  a protein’s function is common within a homologous family and essential or advantageous for the 

survival o f the host organism, the maintenance of that function describes the limits to which mutational 

variation in the sequence may be tolerated. Moreover, if protein-protein interfaces are conserved, then 

conservation could be used predictively, discriminating spurious interfaces from true biological ones.

This thesis explores the above themes. It breaks down into three main work chapters. Chapter 2 ex­

amines the challenges involved in extracting quantitative evolutionary information from multiple sequence 

aligmnents. It surveys the range of strategies that have been used to score residue conservation and develops 

a new conservation score. Chapter 3 tests the premise that protein-protein interfaces are conserved. Rigor­

ous statistics and the conservation score of chapter 2  are used in this analysis o f a small data set o f manually 

validated homodimers. Chapter 4 develops the analysis methods o f chapter 3 into a predictive method. This 

chapter assesses the utility o f conservation and size in discriminating biological from nonbiological crystal 

contacts.

Chapter 5 concludes this work, consolidating the results and suggests new directions for this fertile area.
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Chapter 2

Scoring residue conservation

2.1 Introduction

A multiple sequence alignment is a historical record. The patterns o f amino acid variability in its columns 

tell a story of evolutionary pressure, mutation, recombination and genetic drift that often spans many mil­

lions of years. This story can be read in different ways, depending on which model o f evolution is deemed 

most appropriate.

According to the neutral model o f molecular evolution (Page & Holmes, 1998, and refs therein), once 

a protein has evolved to a useful level o f functionality, most new mutations are either deleterious, in which 

case they are removed by negative selection, or neutral, in which case they are kept. M ost of the substi­

tutions observed in an alignment are therefore neutral; rather than representing improvements in a protein, 

they indicate how tolerant the protein is to change at that position. In an already optimized protein, the rate 

o f substitution will be inversely correlated with the functional constraints acting on that protein. Fibrinopep- 

tides are under fewer functional constraints than ubiquitin; they also evolve about 900 times faster. The most 

functionally important residues of haemoglobin (see Figure 2.1), those that secure the haem group, show a 

much lower rate o f substitution than others do in ± e  protein.

The selectionist model o f molecular evolution offers a different perspective (Page & Holmes, 1998, and 

refs therein) (see Figure 2.2). It agrees with the neutralist model that most mutations are deleterious and 

removed by negative selection, but disagrees about those mutations that are kept. According to this model, 

the majority of accepted mutations confer a selective advantage whereas neutral mutations are rare. The 

relative merits o f the two models, or their compromise (the “nearly neutral” model), are not considered here. 

Rather, we consider alignments from the perspective of the neutral model only. This model accords better 

with the idea of conservation among orthologous sequences and is arguably the more evident in alignments 

from structural biology.

So if the degree o f functional constraint dictates how conserved a position is, then the converse must also 

be tme, ie, the degree of conservation must indicate the functional importance of that position. Identifying 

conserved regions of a protein can be tremendously useful. Residues involved in an active site or a structural 

core can sometimes be identified with little prior knowledge o f the protein structure.

In the past, patterns of conservation in multiple alignments were identified by inspection alone. How­

ever, the rapid increase o f available sequences and published analyses has emphasized the need for objec­

tive, automated methods, and in the last decade or so this has been the subject o f considerable research. 

Much of that work has focused on extracting global patterns and motifs from multiple alignments, often
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Figure 2.1; Multiple sequence alignment of adult a -  and ^-haemoglobin (Hb) and myoglobin (Mb) from 
four vertebrate species.
Amino acids are coloured by their physical and chemical properties according to the scheme of CLUSTALX 
(Thompson et al, 1997). Stars on the top ruler indicate invariant positions. Note the invariant F at position 
50 and H at position 101. These residues both bind the haem group and so are functionally constrained. 
After ref (Page & Holmes, 1998).

Neutralist model Selectionist model

Deleterious

Neutral

Advantageous

Figure 2.2: Neutralist and selectionist models of molecular evolution.
The pie represents the total number of mutations arising in a gene. The .size of each slice represents its 
contribution to the total according to the neutralist or selectionist model. The slice size is not exact; it 
merely serves to illustrate the contrasting emphases of the two models. See text for details. After ref 
(Page & Holmes, 1998).
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(a ) (b ) (c) (d ) (e ) ( f) (g ) (h ) ( i) (i) (k )

1 D D D D D D I P D L L

2 D D D D D D I P V L L

3 D D D D D D I P Y L L

4 D D D D D D I P A L L

5 D D D D D D L w T -
6 D D E D E E L w K -
7 D D E D E E L w P -
8 D D E D E E L w C -
9 D D E D E F V s R -
10 D E E F F F V s H -

Figure 2.3: Some example columns from different multiple alignments.
Each labelled column represents a residue position in a multiple sequence alignment. The rows denote the 
sequence number of a particular amino acid. Amino acids are identified by their one-letter code, gaps by 
a dash (“-”)• Note that column (k) comes from an alignment of ten sequences whereas column (j) comes 
from an alignment of only four.

with a view to exploring the relationships between homologues and developing diagnostic tests for func­

tions of newly discovered sequences. For instance, statistically robust profile methods, such as PSI-BLAST 

(Altschul et al, 1997) and those based on hidden Markov models (Eddy, 1996), have become increasingly 

popular.

Despite these advances there have been few recent insights into the derivation of a quantitative conser­

vation measure for a single aligned position, and there certainly is no standard method. Ask a life scientist 

how similar two sequences are and he will probably quote a percentage identity or an E-value. Ask him 

how conserved a position is in a family and the reply is most likely to be qualitative. This chapter discusses 

what a quantitative measure of conservation should actually measure, and, by surveying almost than twenty 

scores, examines some o f the problems inherent in developing such a score.

2.1.1 Exercises for a conservation score

There is no rigorous mathematical test for judging a conservation measure; if  there were, one would use 

the test and not bother with an additional score. Rather than accuracy then, a conservation score may be 

judged on its verisimilitude: its ability to depict realism and its concordance with biochemical intuition. 

Figure 2.3 is part o f an attempt to make these abstract notions more concrete. It shows columns of amino 

acids taken from hypothetical multiple sequence alignments o f orthologues. Applying basic biochemical 

knowledge to this collection of columns reveals some concrete qualitative comparisons. Specifically, from 

most conserved to least conserved, the following orders seems reasonable: (a) > (b) > (c) > (d) > (e) > ( f ) , 

then (g) > (h) > (i), and lastly (j) > (k).

Column (a) contains only D and is therefore the most obviously conserved. Column (b) also contains E, 

so (b) is more variable than (a). Column (c) contains D and E but is less dominated by any one than (b), so 

(c) more variable than (b). Column (d) contains nine D and one F; it is clearly more variable than column 

(a), but is it more variable than column (b)? Phenylalanine is large and non-polar whereas aspartate and 

glutamate are both smaller and polar. Because the amount of stereochemical variability in column (d) is 

greater than in column (b) it seems likely a mutation from D to E glutamate would be more tolerable than 

one from D to F (a conclusion supported by the exchange probabilities in a mutation data matrix; see later). 

Column (e) implies both conservative substitutions (between D and E) and non-conservative ones (between 

the acids and phenylalanine). Column (e) is thus the least conserved so far. Column (f) contains the same
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amino acid types as (e). However, because it is less skewed towards an abundance of D and E, ie, more 

evenly mixed, (f) is more variable.

Columns (g) and (h) are equivalent in terms o f the number and frequency o f their amino acids. However, 

because (g) contains only branch-chain amino acids whereas (h) encompasses a broader mix o f stereochem­

ical characteristics, (g) is more suggestive of conservative substitutions in response to negative selective 

pressure. Column (i) is the most variable column encountered so far, as judged by biochemistry or amino 

acid frequency.

Columns (j) and (k) illustrate the importance of gaps. Column (j) is taken from  an alignment of four 

sequences. In each sequence, a leucine is present at that position. Column (k) also contains four leucines 

but, because it comes from an alignment o f ten sequences, it also contains six gaps. For column (k), then, 

there is strong evidence that leucine is not functionally constrained. After all, this amino acid has been 

shed from six other orthologues with apparent impunity. There is no such evidence for column (j), the 

conservation of which remains untarnished. The comparison between columns (j) and (k) also highlights 

the dangers o f having too small an alignment. The alignment of (j) could be the same as that o f (k) but with 

six sequences missing; an example of lack of data producing completely different conclusions about the 

same site.

Figure 2.3 will be used here as a testing ground for some o f the scores surveyed in the forthcoming 

section 2 .2 .

2.1.2 Requirements of a conservation score

A score that quantifies the degree of conservation at an aligned position should fulfil the following criteria.

1. Mathematical properties. The score should be a function that maps a set o f arguments (the input 

space), which includes the aligned column and possibly other information, to a number (the output 

space). Convenient scores will have an output space that is continuous and bounded.

2. Amino acid frequency. The score should take account o f the relative frequencies o f amino acids in a 

column. For instance, using the columns from Figure 2.3, it should reproduce the ranking (a) > (b) > 

(c) > (e) > (f).

3. Stereochemical properties. The score should recognize conservative replacements and that some 

substitutions incur more chemical and physical change than others. For instance, it should score 

column (g) as more conserved than column (h).

4. Gaps. A preponderance of gaps suggests a position can be deleted without significant loss o f protein 

function. The score should therefore penalize such positions and should rank column (j) as more 

conserved than column (k). An ideal score might also recognize that, in terms of protein structure, 

the difference between a small residue, eg, glycine, and a gap is less than between a large residue, eg, 

tryptophan, and a gap.

5. Sequence weighting. Sometimes a position appears conserved among a number of sequences not 

because of functional constraint but because those sequences have not had sufficient evolutionary 

time to diverge. A typical alignment often includes some sequences that are very closely related to 

each other. These clusters of highly similar sequences may reflect bias in the sequence databases 

or result from nature’s irregular sampling of the space of acceptable mutations. Either way, such 

clusters can monopolize alignments, masking important information about allowed variability from
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more sparsely represented sequences. For instance, the high frequency of aspartate in column (b) 

may owe more to the tight homology of sequences 1 to 9 than aspartate being stereochemically 

preferable in that position. A good conservation score should therefore find some way to normalize 

against redundancy and bias in the alignment. A facile solution would be simply to remove sequences 

at a certain level of similarity. However, this is wasteful o f what little information these removed 

sequences could contribute. A good conservation score should therefore find some way to normalize 

against redundancy and bias in the alignment without loss o f evolutionary information.

6 . Simplicity (de Bono, 1999). Most scoring methods, from E-values that describe sequence similarity 

to A-level grades, have their limitations. Understanding the shortcomings o f these methods is key 

to employing them wisely and interpreting their results meaningfully. Therefore, on the reasonable 

assumption that no method is perfect, a good conservation score should be no more complex than 

it needs to be so its deficits can be understood. To quote Einstein, “everything should be made as 

simple as possible, but no simpler” .

2.2 A survey of conservation scores

Over the last thirty years a number of methods have been proposed to score residue conservation. The 

scores surveyed here, which number more than fifteen, are presented in approximately increasing order 

of sophistication in terms of what they try to achieve. For clarity, the names given to each score by its 

authors are ignored in favour of the following convention. Scores whose values increase with increasing 

conservation are denoted Cname, where the subscript identifies the author. Scores that do the converse are 

denoted V n a m e -

2.2.1 Symbol frequency scores

Scores in this category consider amino acids as symbols in a uniformly diverse alphabet. They focus on their 

relative frequency of these symbols and do not account for sequence redundancy in the alignment. Because, 

by definition, none model stereochemical properties (criterion 3) or weight their sequences (criterion 5) the 

discussion instead concentrates on how well they fulfil the remaining criteria.

In 1970, Wu & Kabat (Wu & Kabat, 1970) introduced the first widely accepted measure of conserva­

tion. Their score, which they used to identify the variable regions on antibodies, was defined as

k
^Kabca ~  ^  ^  )n\

where k  is the number of amino types present at the aligned position, n \  is the number of times the most 

commonly occurring amino acid appears there and N  is the number of sequences in the alignment. The 

variable N  acts as a scaling factor and is constant for a given alignment. For clarity, this survey will tend to 

set such constants apart from the main equation.

Applying the score to Figure 2.3, VKabat correctly reproduces the ranks (a) > (b) > (c) > (e) but fails to 

distinguish (e) from (f). This is because it cares only about the frequency of the most commonly occurring 

symbol and ignores the frequencies o f the rest. VKabat has other problems; for one, it is discontinuous along 

its output space. A strictly conserved column, such as column (a), always scores 1. A column that is strictly 

conserved except for one aberrant amino acid is 2  > 2 , regardless o f how many sequences are in the



CHAPTER 2. SCORING RESIDUE CONSERVATION 36

alignment. This discontinuity is biologically meaningless (Shenkin et al, 1991). The score also fails to 

consider gaps, and so fulfils only the criterion of simplicity.

lores et al (lores et al, 1990) recognized the Kabat score’s inability to distinguish (e) from (f) and in

response proposed a modified version:

V j o „ s  =  —  x i j V( W- l ) ,
^pair\ ^

where 1 ) is the number of possible pairs of amino acids in the column, kpair is the number of distinct

pairs and npair^ is the number times the most frequently distinct pair occurs. By considering pairs rather than 

singlets, this score improves upon VKabat- However, all the other deficits remain. It is still discontinuous: 

whereas complete conservation scores one, the next most conserved value possible is 2 > 2. It does

not account for gaps. Even its simplicity is questionable: Vjores does the same job, but is significantly more

awkward to compute, than the symbol entropy scores discussed later.

Lockless & Ranganathan (Lockless & Ranganathan, 1999) propose a different type of symbol fre­

quency score. They measure the conservation at an aligned position as the extent to which amino acid 

frequencies at that position deviate from frequencies over the whole alignment. To model this deviation, 

they employ binomial probabilities. If  an amino acid a occurs in the sequence databases at fractional fre­

quency Qa, then the probability of a occurring ria times in a column of N  residues is P{X = no) where 

X  ~  Bin{N ,qa). For example, if half the amino acids in SWISSPROT (Bairoch & Apweiler, 2000) were 

D s, then the probability of D occurring nine times in column of ten residues is the same as the probability 

o f getting nine heads from ten coin tosses. This probability compared with the probability for the overall 

frequency o f a in the alignment to give a measure o f deviation

d{na,na) =  In ^
P {X = n g )  
P {X  = na)

where ria is the average frequency of a in the whole alignment. The distance d  describes how much the 

frequency a at the position differs from that o f a across the alignment. When these frequencies are the 

same, d =  when they are different d  may be positive or negative. The conservation for the column, 

CiockiessK is taken as the root mean square deviation over all 2 0  amino acids, ie.

^Lockless — j ^ ^ j d  i n a ,n g )  .

If a single column can be represented by a point in 20-dimensional space of binomial probabilities, then 

Ciockiess measures the Euclidean distance between that point and the point representing the “average” col­

umn.

In a typically diverse alignment, Lockless & Ranganathan’s score identifies columns dominated by only 

a few amino acids, since the binomial probabilities of these columns would be small. Some strictly con­

served columns score higher than others. For instance, if  cysteine occurs least frequently in the alignment, 

a strictly conserved column of cysteine will score higher than a strictly conserved column of histidine. Al­

though this has some intuitive appeal -  strictly conserved columns of rare amino acids are visually more 

striking in an alignment -  the authors do not argue its case. But this arbitrariness is symptomatic o f a deeper 

malaise: that Clockless is complex. Its purpose is to measure how different a column is from the rest o f the

' In their original paper, Lockless & Ranganathan presented their score as =  kT* ̂ X a  )  • Por clarity, gratuitous

references to thermodynamics are removed to give QockUss-
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alignment. However, d  could be calculated far more simply, say, as the Euclidean distance between the two 

sets of amino acid frequencies. Instead Ciockiess uses a binomial model that brings in further data, namely 

the frequencies o f amino acids from a sequence database. This extra information adds considerably com­

plexity to the score, but is this complexity worth it? Considering that (arguably) more important information 

about stereochemistry, gaps, and the like is omitted, it seems not.

2.2.2 Symbol entropy scores

Symbol entropy scores are a specialization of symbol frequency scores (section 2.2.1). Scores in this 

category all account for the relative frequencies of symbols using Shannon’s entropy or variations thereof.

2.2.2.1 Background

Shannon’s information theoretic entropy (Shannon, 1948) (hereafter referred to as “Shannon’s entropy”) is 

an often-used measure of diversity (Baczkowski et al, 1997) (Durbin et al, 1998). It can be derived from 

two roots, one combinatoric and one information theoretic. The combinatoric derivation goes as follows. 

Given 10 coloured balls, of which 5 are red, 2 green and 3 yellow, the number of distinct sequences you can 

make is 10! / ( 5  !2!3 !) =  2520. More generally, given N  objects that fall into K  types, the number o f distinct 

ways they can be permuted is given by the multinomial coefficient,

" - n S ’

where n, is the frequency of the ith type. As N  becomes large, N \ can be calculated using Sterling’s 

approximation. In V! ~  N ln N  — N, such that

K
In IT =  —N ^ p i X n p i ,

i

where pi =  n, / V ,  the fractional frequency of type i. Transforming linearly gives the Shannon entropy:

K
- J ^ p / lo g z P / .  (2 .2 )

i

The quantities S  and W  monotonically increase with each other. S  ranges from zero, when objects of only 

one type are present, to Smax =  log2  K > 0 ,  when all types are present in equal proportion. It has been shown 

that Shannon’s entropy belongs to a general class of diversity index ( Good, 1953),

= ' ^ p f  { - \ o g p i f  .

i

O f ± is  class, both Shannon’s entropy (D (l, 1) ) and Simpson’s index (D(2,0) =  S f  p j)  have been used in 

ecology for measuring species diversity (Baczkowski et al, 1997, and refs therein). Note that the base of 

the logarithm affects only the unit of measurement, not the score itself since, for any a and b, log log^x.

The original use o f Shannon’s entropy was in information theory, a branch o f electronic engineering that 

examines communication and the handling of information (Gregory & Zangwill, 1987, and refs therein) 

(Durbin et al, 1998). In many older telecommunication systems, such as radio, the signal constructs the 

output. In more modem systems, such as teleprinting and many digital systems, the range of possible
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outputs is small and known in advance. This allows a much more economical approach called encoding, 

in which the signal selects output from a finite list. The selective information content o f an encoded signal 

depends not on the size or complexity o f the output as such, but on the number of alternative forms it might 

have taken, and on the relative likelihood of each. The simplest selective operation is one that chooses 

between two equally likely possibilities, eg, the symbols A and B. This is a binary decision and the gain in 

information when it is made is one binary digit (bit). Choosing between four symbols requires two bits, eg, 

to identify one of {A l, A2, B l, B2}, you must make two binary decisions: “A or B ?” and “ 1 or 2?” . More 

generally, the number of binary decisions needed to choose between K  equiprobable symbols is log 2  K. 

Rearranging gives

S  =  log2  K  — — log2  — = -  log2  p ,

where p  is the probability o f selecting any one symbol. In this context, S  is the information required to 

make the selection and hence is a measure of uncertainty. If  symbol A is far more likely to be selected than 

B, then the outcome of the selection is more certain. This can be accommodated by partitioning the — logp  

with prior probabilities:

5 =  p ^ ( - lo g 2 P A )+ P B (- lo g 2 Pfl) ,

where pA and pB are the probabilities o f selecting A and B respectively. Generalizing for K  symbols gives 

the Shannon entropy (equation 2.2). The total selective information content o f a signal is defined as the 

amount o f uncertainty it resolves:

f  — 'S'before "^after j ( 2 .3 )

ie, the difference between the information entropy before the signal and after it.

2.2.2.2 Scores

In 1991, two groups proposed residue conservation scores based on Shannon’s entropy. Until then, entropy 

had been used for scoring positional conservation, but only in nucleotide sequences ( Schneider, 1997, 

and refs therein). Sander & Schneider (Sander & Schneider, 1991) defined their score as a normalized 

Shannon’s entropy:
K 1

^Schneider — ~ ^ ^ P i ^ P i  X ,

where K  =  20, representing the 20 amino acid types. Shenkin et al (Shenkin et al, 1991) proposed the 

related score

^Shenkin  — 2  X  6 ,

where S  is Shannon’s entropy 2.2 and K  in that equation is also 20. These scores are transformations of each 

other and so are trivially different. Both purport to have conveniently bounded ranges: 0 <  V schneider <  1 

and 6  <  Vshenkin <  120. However, neither would score column (i) in Figure 2.3 as maximally variable. This 

is more a minor artifact than a serious deficit. Shannon scores treat columns of residues as if they were 

rows of coloured balls. Maximal diversity occurs when all colours are represented evenly. But if there are 

more colours than there are balls to represent them, this limit can never be reached. Similarly, V sckm ider  and 

^Shenkin  Can reach their top value only when there are at least 20 sequences in the alignment.

Gerstein & Altman (Gerstein & Altman, 1995) present another variation on this theme. To compare 

sequence conservation with structural conservation in a multiple alignment of protein structures, they define
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y  Gerstein̂  which mcasures the entropy of a position relative to that if  the sequences were aligned randomly:

K K

y  Gerstein ~  P i iog?  P i ~  ;
i i

where p, is the average frequency o f amino acid i in the alignment and K  =  20. This score, which is in the 

same form as equation 2.3, measures the information content of the position in bits. Not that this bestows 

any particular advantage; like the other entropy scores, y  Gerstein delivers nothing grander than a conveniently 

expressed multinomial coefficient (equation 2 .1 ).

Like yjores. Shannon-based scores rank (a), (b), (c), (e) and (f) correctly. Unlike yjores, they are con­

tinuous. In a column strictly conserved but for one aberrant residue, the entropy decreases to the score’s 

minimum with an increasing number of sequences. Shannon’s entropy is also much simpler to calculate: 

whereas yjores requires information about pair frequencies, which itself requires combinatoric calculations, 

entropy requires only fractional frequencies of the symbol types; the entropy equation does the combina­

torics.

So the symbol entropy scores fulfil criteria of mathematical properties and amino acid frequency, and, 

with their straightforward calculation, acquit themselves of complexity. But as well as being simple, these 

scores are simplistic. Amino acids are not coloured balls, no matter how mathematically convenient it is 

to think otherwise. None o f these scores could distinguish column (g) from (h) in Figure 2.3. When Ger­

stein & Altman compare structural conservation, using an atom coordinates-based scheme, with sequence 

conservation, using yoerstein, they find the two have little in common (Gerstein & Altman, 1995). Perhaps 

a sequence conservation score that considered stereochemistry would have led them to a different conclu­

sion.^

More worryingly, none of these scores account for gaps. This is a problem. In the Shannon scheme, 

it is most natural to consider a gap as another symbol type, the “21st” amino acid. Doing this, however, 

has absurd consequences. For instance, column (k), which is predominantly gapped, would score as more 

conserved than columns (c) or (g).

2.2.3 Stereochemical property scores

Scores in this category consider only the stereochemical properties of the amino acids in a column. These 

scores typify a view orthogonal to that o f the symbol frequency and symbol entropy scores described above.

In 1986, Taylor (Taylor, 1986) classified amino acid types according to their stereochemical properties 

and their patterns of conservation in the Dayhoff mutation data matrix ( Dayhoff et al, 1978). He embodied 

this consolidation of mutational and physical data in a Venn diagram (Figure 2.4), in which each overlapping 

set represents a distinct physical or chemical property. Taylor then devised a set theoretic method based on 

this diagram to score positional conservation. His method finds the smallest set or subset that describes 

the amino acid types observed at an aligned position. The variability of the column is taken as the total 

number of residue types belonging to that set. The number of possible subsets o f the Venn diagram is large 

and many of these sets have little physical meaning. To reduce the possibility o f high conservation being 

ascribed to meaningless subsets, Taylor compiled a list o f 70 sets and subsets that might reasonably be

^Interestingly, an almost identical criticism has recently been leveled by Mirny & Sbakbnovicb Mimy & Sbakbnovicb, 2001) at 
a comparison of structure and sequence conservation by Plaxco et al (Plaxco et al, 2000). Plaxco et al used a score much like Vcentein 
and formed similarly heretical conclusions.
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Figure 2.4: Taylor’s Venn diagram of amino acid properties.
Taylor argues Cys should appear twice because although the reduced form ( C s - h )  has similar prop­
erties to Ser, the oxidized form (C s-s) is more like Val. Adapted from refs (Taylor, 1986) and 
(Livingstone & Barton, 1993).

conserved, and suggested only these “valid” sets should be considered. Taylor’s score can be expressed as

Vray/or =  min (n({% : Aligned Ç X andX G Valid))) ,

where Aligned is the set of amino acids at the aligned position. Valid is Taylor’s set of 70 valid sets and 

n (X) is the number of elements in set X. Vjayior ranges from I to 20.
Taylor’s score accomplishes some things the symbol scores could not. It recognizes that column (b) 

from Figure 2.3 is more conserved than (d) and that (g) is more conserved than (i). It does not explicitly 

model gaps but there is a natural way these could be incorporated into the scheme: a gap could belong only 
to the largest superset. But Taylor’s score is clumsy. The ad hoc clause of reducing the number of valid 

sets to 70 makes the score more computationally tractable but diminishes its simplicity and elegance. To 
interpret the score properly one must accept that some subsets in the Venn diagram are forbidden. This 

introduces a degree of subjectivity on top of that supplied by the Venn diagram itself.
Taylor’s score has more conspicuous problems. First, the score of strictly conserved columns depends 

on the amino acid: a column of Ps scores I, Hs score 3, Ws score 4. Similarly, column (g) in Figure 2.3 would 

score the same as a strictly conserved column of I. Second, it fails to account for amino acid frequencies 
and cannot distinguish column (b) from (c) or (e) from (f).

Clearly, a Venn diagram is picturesque but unwieldy. Could it be abridged to something more conve­
nient? Zvelibil et al (Zvelibil et al, 1987) reduce Taylor’s diagram to a truth table of amino acids vs ten 
property descriptors (Figure 2.5). They define their score as

V zvelib il — ^^const X J q  ;

where ticonst is the number of properties whose state (ie, truth or falsehood) is constant for all amino acids 
in the column. For example, column (b) in Figure 2.3 contains D and E, which share 9 properties, and
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ILVCAGMFYWHKREQDNSTPBZXA

1 # # # # # # # # # # # # 0 0 0 0 0 0 * 0 0 0 # # Hydrophobic
2 o o o o o o o o # # # # # # # # # # # o # # # # Polar
3 O O # # # # 0 0 0 0 0 0 0 0 0 # # # # #  oo## Small
4 o o o o o o o o o o o o o o o o o o o #  oo## Proline
5 O O O O # # 0 0 0 0 0 0 0 0 0 0 0 # o o o o # # Tiny
6 # # # 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 # # Aliphatic
7 O O O O O O O # # # # 0 0 0 0 0 0 0 0 0 0 0 # # Aromatic
8 O O O O O O O O O O # # # 0 0 0 0 0 0 0 0 0 # # Positive
9 0000000000000* 0# o o o o o o # # Negative
10 O O O O O O O O O O # # # # 0 * 0 0 0 0 0 0 # # Charged

Figure 2.5: Truth table profile of amino acid properties.
Amino acid (across) are each described in terms of ten properties (down). A filled circle means the amino 
acid above it possesses that property. The symbol “A” represents a gap, which is considered to have all 
properties. Adapted from ref (Livingstone & Barton, 1993).

scores 0.9. Although it has a less erratic output space, Vzveim  retains Vrayio/^ failure to account for amino 

acid frequency. In their program AMAS (Analysis o f Multiply Aligned Sequences), Livingstone & Barton 

(Livingstone & Barton, 1993) turn this weakness into a strength. AMAS uses VzveiibU to split sequences into 

subgroups and thus infer an evolutionary or functional hierarchy from the aligmnent. For example, given 

column (f) o f Figure 2.3 AMAS may decide sequences {9,10} are in a different subfamily from sequences 

{1..8} because the VzveUbn score within these sets is much higher than in their superset {1..10}. The success 

o f AMAS demonstrates Vzveimi is better suited to this kind of selectionist analysis. In particular, Vzveim  

could add welcome sophistication to the evolutionary trace method of Lichtarge et al ( Lichtarge et al, 1996) 

(see chapter 1.5.2.2).

2.2.4 Mutation data scores

Scores in this category use mutation data from a substitution matrix to quantify stereochemical variability 

in an aligned column. No scores in this category normalize against sequence redundancy in the alignment.

2.2.4.1 Background

Substitution matrices provide a quantitative and reasonably objective measure of amino acid similar­

ity. A substitution matrix is a table of amino acid exchange probabilities derived from an analysis 

o f the evolutionary changes seen in a group of homologous proteins. Figure 2.6 shows BLOSUM62 

(Henikoff & Henikoff, 1992), a popular substitution matrix. Others well known matrices include the 

Dayhoff Mutation Data Matrix (MDM) (Dayhoff et al, 1978) and the Pairwise Exchange Table (PET) 

(Jones et al, 1992). The non-diagonal pairwise scores indicate how likely one amino acid is to be sub­

stituted by another in a homologous protein. The diagonal scores, which pitch an amino acid against itself, 

indicate how likely an amino acid is to substituted at all, ie, its “mutability” . Because the chance of a substi­

tution increases with evolutionary time, any particular matrix is parameterized by some kind of evolutionary 

distance. For instance, BLOSUM62 captures the rates of exchange one would expect in homologues that 

were 62% identical. Evolutionary distance not only affects the likelihood of a mutation but also its nature. 

Mutations that differentiate close homologues are mostly influenced by the genetic code, whereas those 

separating divergent sequences are dominated by stereochemistry (Benner et al, 1994).
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A R N D C Q E G H 1 L K M F P S T W Y V

A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0
R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3
N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3
C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1
Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3
H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3
1 -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3

L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0

W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4

Figure 2.6: The BLOSUM62 substitution matrix.
BLOSUM62 (Henikoff & Henikoff, 1992), which stands for BLOcks Substitution Matrices from se­
quences clustered at 62% identity, is constructed from BLOCKS (Henikoff & Henikoff, 1991) version 5.0 
and SWISSPROT (Bairoch & Apweiler, 2000) version 22. Entries for identical residue are on the diagonal 
and highlighted in bold.

The primary purpose o f substitution matrices is to help evaluate whether an observed alignment o f two 

sequences, or two residues, is biologically correct or an artifact o f the alignment algorithm. This purpose is 

evident in their construction. The non-diagonal elements o f the matrix describe the likelihood o f a protein 

substituting amino acid a for 6  as a ratio of two probabilities

R {a,b) =
P {a ,b \M atch)

(2.4)
P {a,b\Random ) ’

where P {a,b \M atch)  is the probability o f a substituting for b under the assumption their positions are 

biologically equivalent in the protein, and P {a,b\Random) is the probability o f observing a and b aligned 

randomly, which is a function of their respective overall frequencies in the database. Popular pairwise 

alignment algorithms score a given alignment by accumulating R {a ,b )  over every position in the sequence, 

typically in conjunction with a length-dependent gap penalty. This accumulation is awkward with raw 

R {a,b) because it involves many slow floating-point multiplications. For computational convenience then, 

R {a,b) is instead expressed as its logarithm, scaled and rounded to the nearest integer:

m {a,b) =  int[Àlog/?(a,fr)] ,

where À is a scaling constant. Probabilities may now be accumulated by simply summing m {a,b) 

(Durbin et al, 1998). The likelihood ratio 2.4 may or may not be used to calculate diagonal elements, 

depending on the matrix. If not, as is the case for the PET, then m {a, a) is derived from the observed muta­

bility of a in the dataset used to compile the matrix. Simplistically, the observed mutability of a  in a trusted
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alignment of two sequences is the number of times a is seen to change divided by the number of times a 

occurs. This mutability, calculated over the whole dataset, is typically normalized in several ways before 

it reaches the substitution matrix. M ost significantly, it is inverted such that a large m (a, a) indicates a is 

unlikely to mutate within the prescribed evolutionary time.

But if the diagonal scores in the matrix measure the inertia of an amino acid against mutation, then 

this is where the analogy between a substitution matrix and a similarity matrix breaks down. The diagonal 

of a substitution matrix helps an alignment algorithm decide whether two amino acids should be aligned. 

Its use is normative concerning the alignment. A similarity matrix used by a conservation score must 

assess the similarity o f the amino acids in a column. Its use is descriptive concerning the alignment. The 

conservation score does not seek to question the validity of the alignment; rather, it assumes the alignment 

is correct and seeks to describe its features. These two motives are fundamentally different. For instance, 

the diagonal in a substitution matrix tells you that Trp is rarely substituted whereas Arg is substituted more 

readily. This makes sense; Trp is unique among amino acids whereas Arg has more obvious replacements. 

A conservation score that used the substitution matrix to measure similarity would therefore rate a column 

containing only Trp as more conserved than one containing only Arg. This is would be wrong. Given that 

we trust the alignment, strict conservation o f a more replaceable amino acid suggests a greater evolutionary 

constraint on that position. The functional constraint could be such that, although other amino acids are 

similar, because they differ even slightly in their geometry and chemistry, being similar is not enough. 

Therefore, a measure of replaceability is not just different from a measure o f similarity, it is actually at odds 

with a descriptive measure o f conservation.

How can this be resolved? The simplest answer is to redefine the diagonal, hence explicitly converting 

the substitution matrix into a similarity matrix, ideally in a way that minimally disturbs the off-diagonal 

values. For example, all diagonal values could be constant, set to the highest diagonal or off-diagonal 

value. Alternatively, the entire matrix could be normalized to take into account diagonal values -  though 

this would count as perturbation of perfectly good off-diagonal values. If the similarity matrix is explicitly 

for measuring conservation, there is even a case for scaling diagonal values inversely to their values in 

the substitution matrix; ie, the more replaceable an amino acid is, the more significant an event is its 

conservation and so the higher its self-similarity score.

2.2.4.2 Scores

Karlin & Brocchieri (Karlin & Brocchieri, 1996) propose the following score, which they use to study 

conserved positions in DNA-binding proteins;

N  N  2

^K a rlin  W  — ^  ^ W  > W )  ^  ) v ( N ^ - T )  ’

where Si (x) is the amino acid at column x  in the ith sequence, and M  {a, b) is the similarity between amino 

acids a and b. The similarity matrix M  is defined such that

M ( a »  =  ^ ^ 4 £ )  , (2 .5 )
y /m {a ,a )m {b ,b )

where m is BLOSUM62 or a similar substitution matrix. The normalization 2.5 ensures that M {a,a) =  I 

always and that, provided m  has a typical range, - 1 <  M{a, b) < 1 . This in turn means C Karlin ranges from 

-1 to 1. CKariin is a so-called “sum of pairs” (SP) score. It describes conservation by calculating the sum of
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all possible pairwise similarities between residues in an aligned column. For example, column (e) in Figure

2.3 contains five Ds, four Es and one F. This would be described by the number

_  10M(D, D) +  6 M(E, E) +  20M(D, E) +  5M(D, F) +  4M(E, F)
10 +  6  +  20 +  5 + 4

From the above calculation, it is clear that this score reflects not only stereochemical variation in a column 

but also the relative frequencies of the amino acids present. If  the distribution of D, E and F was even more 

dominated by D, there would be more high scoring M(D, D) terms and fewer low scoring terms.

One criticism leveled at SP scores is that they do not make sense in terms o f what the statistic m{a,b) 

means (Durbin et al, 1998). Nature is parsimonious and it is improbable that the diversity observed in 

column (e) o f Figure 2.3 truly results from 20 +  5 +  4 =  29 amino acid substitutions among 10 homologues. 

However, if one treats the substitution matrix as no more than a quantitative guide to pairwise amino acid 

similarity, the SP score is no less than a convenient way to consolidate this two-dimensional information 

into a single number. Besides, the perceived over-counting of amino acid substitutions in the SP scores 

is assuaged somewhat by its over-counting of self-similarity terms. In fact, SP scores can be seen as a 

tug-of-war between self-similarity and substitution, ie:

I  a = b - 4

a b>a ^   ̂ (û, b)

where K  is the number of amino acid types and Wa is the number o f occurrence of amino acid type a. The 

upper term (a = b) bestows high-scoring M {a,a) values whereas the lower term provides predominantly 

low-scoring M (a, 6 ) values. But even if it escapes this criticism, CKariin deserves a further reproach: it does 
not account for gaps.

The score of Armon et al (Armon et al, 2001) does account for gaps. Armon et al present “C onS urf’, 

an implementation and extension of the evolutionary trace method of Lichtarge et al ( Lichtarge et al, 1996). 

ConSurf measures conservation using a variation on the SP theme, defining its score as

20
^Armon — ^  /ai>D(a,è), 

a>b

where

fa b  —
1 if amino acids a  and Z? present 

0  otherwise

and D is a dissimilarity matrix^. In the tug-of-war notation of equation 2.6, this can be expressed as

r ia > l  -+ naD{a,a)K K

^Armon ~  ^
a b>a

I /îfl <  1 —> 0  , (2.7)

 ̂ a ^ b  -+ {na + nb)D{a,b)

where the upper terms contribute conserved scores and the lower terms contribute variability. Rather than

basing their similarities on a substitution matrix, Armon et al use a physico-chemical distance matrix

^Technically, fab is the number of times a  and b are seen to exchange in a phylogenetic tree of the sequences. However, the 
definition above is a fair approximation (Nir Ben-Tal, personal correspondence).
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(Miyata et al, 1979)'^. The physico-chemical distance is defined as

where A pol^ and Avolab are the differences in polarity and volume between amino acids a  and b, and a  poi 

and CTvoi are ± e  standard deviations for these properties. D  is zero for all D (a, a ), as much as 4.88 (=D(D, W)) 

for comparisons between real amino acids, 6  for D(a, - )  and 0.5 for D ( - ,  —). Distances for gaps are set 

heuristically.

Gaps aside, VArmon and CKariin are only subtly different. CKariin emphasizes self-similarity more than 

VArmon- This is evident from their self-similar terms in equations 2.6 and 2.7: in CKariin, the coefficient 

o f M{a, a) grows quadratically with respect for VArmon, the coefficient o f D {a,a) grows linearly. Their 

substitutions terms also differ, but do not correct the imbalance. For instance, applying VArmon to column 

(e) o f Figure 2.3 produces the number

5D (D , D) +  4(E .E ) +  9D (D ,E ) +  6 D (D ,F ) +  5D (E , F)

--s  +  4  +  9 +  6  +  5-----------------------------------------------------■

Comparing this with calculation 2.8 underlines this difference in emphasis: in CKariin 16/29 =  0.55 of the 

terms are self-similar whereas in VArmon this fraction is lower at 9 /2 0  =  0.45. The scores are also different 

in that VArmon employs a physico-chemical distance matrix. But to what advantage? Armon et al argue that 

polarity and volume are the most important factors governing conservation o f amino acid type. The most 

obvious way to check this would be to see if these factors dominate a substitution matrix. If  volume and 

polarity do dominate, Armon et al might as well have used a substitution matrix instead. If volume and 

polarity do not dominate, this challenges their assertion and needs to be explained.

Thompson et al (Thompson et al, 1997) do not use an SP score; they prefer instead a vectorial measure. 

Their program CLUSTALX, a graphical user interface to the CLUSTALW multiple alignment package 

(Higgins et al, 1996), plots a graph of positional conservation beneath a visual display of a multiple align­

ment. In the column at position x  in the alignment, Thompson et al consider the residue o f the ith sequence, 

Si{x), to be a point X, in X-dimensional space:

X ,=

/  M (ai,5 /(x )) 

M {a2,Si{x))

\  M { a K , S i { x ) )  J

where a„ is the nth symbol in an alphabet o f K  possible amino acids and M {a, b) is similarity as judged by 

a substitution matrix. The consensus amino acid, which for columns that are not strictly conserved will be 

a hypothetical construct, is the centre of gravity o f all points from the column, X, ie,

_ 1 N

The degree of conservation among these points is then related to the average Euclidean distance o f all points 

^But their score is included in this section because the effect is much the same.
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from the consensus point:
I —

^Thom pson — Pamino ^ ^  |X — X/| , (2.9)

where pam ino  is the fraction o f symbols that are not gaps.

All three of C K a r i i n ,  V A rm o n  and C r h o m p s o n  coiTectly order columns (a) to (f) and (g) to (i) in Figure

2.3 and have mathematically continuous output spaces. C r h o m p s o n  has the aesthetic advantage of defining 

a consensus point in amino acid space. Although this may not correspond to a particular amino acid, the 

closest amino acid could easily be found.

Pilpel & Lancet (Pilpel & Lancet, 1999) use a mutation data score to help analyse amino acid variability 

in olfactory receptor sequences. They define their score as

where p a  is the fractional frequency of amino acid a in the aligned column, the alphabet of amino acids 

is =  20 and M {a,b) is a BLOSUM62 or similar substitution matrix. Although this score is not directly 

comparable to those above, the following alteration makes it extremely similar to the tug-of-war definition 

o f CKariin  (equation 2.6):
K K

C M o tL a n c e l —  •
a  b

This intermediate score now has properties almost identical to that of C K a r i i n , so further discussion is best 

focused on how C N o tL a n c e t differs from V i a n c e t ,  ie, the placing of the term M {a,b). Having M {a,b) as a 

denominator blights V ia n c e t with an idiosyncratic output space. For instance, if a column contains a and 

b such that M{a, b) =  0, then Vumcet for this column will be infinity. This will certainly happen if M  

corresponds to a raw BLOSUM62 matrix (Figure 2.6). But it is also difficult to imagine a reasonable matrix 

normalization that would avoid this problem. Thus, V L a n c e t fails on at least two counts: its mathematical 

properties make it awkward to use and it fails to account for gaps.

2.2.5 Stereochemically sensitive entropy scores

The entropy scores discussed in section 2.2.2 quantified symbol diversity in an elegant and intuitive way. 

Their problem was they failed to account for stereochemistry. Scores in this section represent attempts to 

build stereochemical sensitivity into the entropy model.

Entropy measures the diversity o f N  symbols from an alphabet k comprising K  types. The difference 

between a symbol of one type and that of another is ineluctably uniform. W hat can be changed is how k 
partitions amino acid space. Recognizing the deficiencies of symbol entropy scores, Mirny & Shakhnovich 

(Mirny & Shakhnovich, 1999) use the following stereochemically sensitive entropy score to analyse con­

servation at protein structure cores:
K

VMimy — IHP; i

ie. Shannon’s entropy, where K  = 6 and k is the set (eligible amino acids in square brackets): aliphatic 

[AVLIMC], aromatic [FWYH], polar [STNQ], positive [KR], negative [DE] and special conformations [GP]. 

Williamson (Williamson, 1995) provides a similar score, which he uses to look at sequence variability
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Figure 2.7: Amino acid class hierarchy used in PIMA.
Upper case characters are amino acids, lower case characters are amino acid classes. X is a wild-card 
character o f any type, including a gap. In its original use, which was pairwise alignment, the match score 
between two aligned amino acids is the cardinality of the smallest class that includes both elements. This 
use has been extended by Vcoidstein (see text). Adapted from ref (Smith & Smith, 1992).

in transporter proteins:

^W illiamson — ^ P i  Itl ^  ,

where p, is the fractional frequency o f type i in the whole alignment, K  = 9 and k  is the set: [VLIM], [FWY], 

[ST ], [NQ], [HKR], [DE], [AG], [P] and [C]. An improvement over the scores discussed in section 2.2.2, VMimy 

and V w ii i ia m s o n  coiTCCtly order columns (a), (b) and (c) from Figure 2.3 as more conserved than columns (d), 

(e) and (f). They also order columns (g) to (i) correctly. However, unlike the scores in section 2.2.2, neither 

can distinguish among (a), (b) and (c) or among (d), (e) and (f). So grouping residues in this way has its 

price. Moreover, neither score accounts for gaps. In their analysis, Mirny & Shakhnovich acquit themselves 

of this charge by choosing to ignore columns that contain gaps. But the problem of how to model gaps in 

the entropy score (see section 2.2.2) remains. One solution, which has not been implemented, might be to 

factor in gaps at the end using a scalar such as in equation 2.9.

Incorporating stereochemistry into an entropy score involves compromise. But does the choice have to 

be so stark: between, on the one hand, a robust but stereochemically insensitive description o f relative amino 

acid frequencies (eg, V Schneider)', on the other, a clumsy partitioning of the 2 0  amino acids that accounts for 

some stereochemistry but ignores relative frequencies within a partition (eg, VMimy)^ There is a third way. In 

their pattern-induced multi-sequence aligmnent (PIMA) algorithm. Smith & Smith ( Smith & Smith, 1992) 

use a hierarchical clustering of amino acids to extract sequence profiles from multiple alignments (Figure 

2.7). Given the set amino acid types from an aligned column, PIMA finds the smallest possible “covering 

class” in the hierarchy that includes them all. For instance, the amino acids F, W and H are subsumed by 

the covering class [FWYH] (superset “e” in Figure 2.7). A conservation score has been suggested (although 

not implemented) that uses Shannon’s entropy to assess the diversity o f symbols in a column, then fac­

tors in the exclusivity of the smallest subset to which those symbols belong (Richard Goldstein, personal 

communication), eg,

V c o ld s t e in  — /  ^  ̂  P; I n , 

where K  = 2 \  (ie, 20 amino acids plus one gap symbol), y is the cardinality o f the smallest covering class
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(see Figure 2.7) and /  is some combining function. Gaps are penalized because they belong to only the 

largest superset and so have low cardinality (y =  0). This is much like a synthesis o f VTaylor and Vschneider- 
But because the PIMA hierarchy is ad hoc, and /  is likely to be so, any statistical rigour potentially conferred 

by the use of entropy is lost.

2.2.6 Weighted scores

Scores in this category attempt to normalize against sequence redundancy in the alignment.

2.2.6.1 Background

Normalizing against redundancy is a concern not only for scoring conservation but also for building se­

quence profiles. Sequence weighting has thus received attention from exponents of both fields and there are 

a large number of methods to choose from. A selection of these methods is reviewed here.

The weight o f a sequence is inversely related to its genetic distance from other sequences in the align­

ment. The simplest formulation is that given by Vingron & Argos ( Vingron & Argos, 1989), where the 

weight o f a sequence is equal to its average distance from all other sequences, ie,

1 ^
w, =  rr—  X d ( s i ,s j )  , (2.10)

^   ̂Mi

where w, is the weight o f the ith sequence, s,, and d {si,Sj) is the genetic distance between the ith and yth 

sequences, measured as their percentage identity or some more sophisticated measure. Sander & Schneider 

incorporate a variation of this into their HSSP database ( Sander & Schneider, 1991 ). They define the weight 

of a sequence in terms not only o f sequence distance but also of the weights of all other sequences:

N

Xwi = Y ,W jd{si,S j)  ,

Mi

where À is a scaling constant. Expressed in the above form, this apparently circular definition can be solved 

as an eigenvalue problem. This self-consistency is aesthetically appealing but, because it makes the weight 

calculation more complex and since Sander & Schneider do not justify it, an unnecessary mathematical 

flourish.

Another formulation attempts to maximize the spread o f data in aligned columns using a metric related 

to symbol entropy (Henikoff & Henikoff, 1994). This method first weights sequences at individual po­

sitions in an alignment, then combines position weights to give sequence weights. The weight of the ith 

sequence at position x  is

w,- =

where kx is the number of amino acid types present in column x  and rixi is the frequency of the ith sequence’s 

amino acid at that position. For example, position (b) in Figure 2.3 contains two amino acid types, D and 

E. The entropy at this position would be maximal if these two types were evenly distributed, ie, if  half the 

column was D and the other half E. To accomplish this, one can weight sequences {1..10} such that the 

proportions of D and E are equal, ie, let sequence 10 have weight 1 /(2  x 1) =  0.5 and let sequences {1..9} 

each has weight 1 /(2  x 9) =  0.056. Averaging along all positions in an alignment, each sequence then has
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►

Voronoi polygonspoints in 2D space

Eigure 2.8: Voronoi diagram 
Neighbouring points in a two-dimensional space are separated by a network of planes. Each plane is defined 
by the perpendicular to the bisector of two neighbouring points. Sibbald & Argos liken each sequence to a 
point and the volume of the surrounding Voronoi polygon to the weight of that sequence.

weight

where L is the length of the alignment.

Sibbald & Argos apply Voronoi diagrams to the problem of sequence weighting. A Voronoi diagram 
is a geometric structure that divides space around a set of points or objects. Given a set of points in 
two-dimensional space, the perpendicular bisector between each pair of neighbouring points is calculated. 
These bisectors are then extended until they all join up, forming polygons around the points as in Eigure 
2.8. Analogously, Sibbald & Argos consider sequences in an alignment to be a cloud of points in high 
dimensional space. They then apply the Voronoi procedure, defining polyhedra around each point, and take 
the weight of a sequence as the volume of its surrounding polyhedron. The more isolated a sequence is, 
the larger its polyhedron and the greater its weight. Sibbald & Argos estimate volumes of the polyhedra 
by filling the high dimensional space with random sequences. They show their method calculates more 

intuitive weights than the earlier method of Vingron & Argos in equation 2.10. However, the margin of 

difference is small and the Voronoi method is inconsistent, producing inexplicably different weights for 
equally redundant sequences.

Weighting methods popular in the construction of sequence profiles tend to rely on a phylogenetic tree 
of the multiple alignment. Thompson et al (Thompson et al, 1994) propose a weighting scheme based 
on Kirchhoff’s laws, which describe how charge and voltage are distributed in an electrical circuit. They 

view the tree as a system of wires and nodes, and apply a voltage to the root. Kirchhoff’s Current Law 

enforces conservation of charge: moving from the root to the leaves, it distributes current at each node so 

that the amount of charge entering at the root equals the amount exiting from the leaves. The current exiting 
at a leaf is taken as the weight of the corresponding sequence. So far so good. But the current entering 
a node is not necessarily distributed equitably among the outputs (branches). Rather, this distribution is 

governed by Kirchhoff’s Voltage Law, which apportions greater current to the branch with more leaves. 
This inequitable distribution may be sensible for electric currents or water systems but it acts contrary to 
the motives of sequence weighting. Given a node that bifurcates into a highly populated subfamily and a 
sparsely populated one, the highly populated subfamily will receive the larger share of current and thus be
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upweighted.

Gerstein et al (Gerstein et al, 1994) approach the tree from the opposite direction: they start with 

the leaves and work up to the root, each sequence accumulating a share of the branch length as its 

weight. More sophisticated methods include those of Altschul et al ( Altschul et al, 1989) and Eddy et al 

(Eddy et al, 1995) and are discussed at length in Durbin et al (Durbin et al, 1998). Tree-based weighting 

schemes are more assumptive than those based only on the alignment. After all, many plausible trees can 

describe a single alignment. Choosing one, even if it is the most probable, introduces additional uncertainty 

and thus hidden complexity.

2.26.2 Scores

Sequence weighting can be more easily incorporated into some scoring models than others. The sum-of- 

pairs model (page 43) accumulates contributions on a per sequence-pair basis. This provides an obvious 

placing for sequence weights. For entropy scores, which bundle amino acids according to type and disregard 

which sequence each came from, the placing is less obvious. Perhaps for this reason, weighted scores have 

tended to follow the SP model.

Landgraf et al (Landgraf et al, 1999) use the following score to extend the evolutionary trace method 

of Lichtarge et al (Lichtarge et al, 1996),

^ N  N

VLandgraf i^) =  W  W ) +  W  W  , (%))) , (2.11)
^  /• j>i

where Si{x) is the amino acid at position x  of the ith sequence and w, is the weight o f sequence 5 , as 

calculated by the Voronoi scheme of Sibbald & Argos (section 2.2.6.1). D {a,b) measures the dissimilarity 

o f the amino acids a and b and is calculated as

m[a,a)

where m  is the Goimet substitution matrix (Benner et al, 1994). One of the first things to notice about D 

is its asymmetry. Intuitively, the difference between two amino acids is commutative such that D{a,b) = 

D {b,a). However, because, as in most matrices, the diagonal scores in the Gonnet matrix differ depending 

on the amino acid, there are many cases when m{a,a) /  m{b,b) and therefore D {a,b) 7  ̂D {b,a). Landgraf 

et al recognize this inconsistency and hedge their bets in equation 2.11, with a sum of the form w,D(n, b) -I- 

WjD{b, a ) . However, because this may give a different result from w jD {a, b) -f- W iD{b,a), their handling of 

D ’s asymmetry is somewhat arbitrary.

Sander & Schneider do not use sequence weights as such ( Sander & Schneider, 1991). Rather, they 

modify pairwise comparisons by the genetic distance between the sequences being compared:

N  N

Csander W  =  ̂X  S  ̂  W  W ) ,
/• j>i

where c?(5 /, 5^) is the distance between sequence s, and Sj measured as 1 0 0 % minus their percentage identity 

in the alignment, m  is the Dayhoff substitution matrix (Dayhoff et al, 1978), and X scales Csander to range 

[0 , 1 ], ie.
/  N  N  \

- 1
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Sequence Column X
w

^2 Q
^3i R

S-in R

Figure 2.9: Column from a redundant sequence alignment. 
Sequence 5 3 ,. is the ith copy of sequence 5 3 . See text for details.

There are three obvious ways an SP score can incorporate a notion of sequence weighting. Csander 

uses one, Vi^dgm f uses another. The remainder o f this section will show the choice of how to incorporate 

weighting into the score may be more important than the choice of weighting metric. It will also show the 

strategies of Csander and Vumdgraf are surprisingly inferior to a strategy that looks only slightly different.

Consider an alignment o f three sequences that are all equally different from one another. The column 

at position x  in the alignment contains three different amino acids. The first sequence, s 1, has a W at this 

position, sequence S2 has a Q and 53  an R. Because the sequences are uniformly different, this alignment is 

“ideal” and requires no sequence weighting. Applying a simple unweighted sum-of-pairs score gives the 

result
K  JL

(2 .12)Csimpie (%M/) = % W W) =A^(W,Q)+M(W,R)+M(q,R),
i j> i

where M  is a symmetric similarity measure. Now add duplicates o f sequence 5 3  to the alignment to make it 

redundant and in need of sequence weighting. Figure 2.9 shows column x, which now contains one W, one 

Q and n Rs, corresponding to the n duplicates of 5 3 . Applying Csimple to the new alignment gives the result

C sim ple(x) =  M(W, Q) +  n (M(W,R) +  M(Q,R)) +  (R, R) . (2.13)

Clearly, as n increases two undesirable things happen. First, the M(W, Q) term vanishes out o f existence. 

Second, the spurious A/(R, R) term dominates. A good weighted SP score applied to the redundant alignment 

should at best reproduce the result in equation 2 .1 2 , at least moderate the affects o f increasing «, and at worst 

reproduce the result in equation 2.13.

Let the distance between sequences d{si,Sj) be 0 if 5 , =  sj and 1 otherwise. A C^awfer-hke modification 

to CSimple §iveS
N  N

CDistmceix) = {si,Sj) M  {si {x) ,Sj (x)) , 
i j< i

which, when applied to the redundant position x  gives

Cdistanceix) = M {\},Q )+ n{M {\i,R )  +M (Q,R)) . (2.14)

This is certainly an improvement on Csimple because M  (R, R) has been factored out. However, it still has 

the problem that as n increases, M(W, Q) disappears and the only effective comparisons are those involving 

f 3 - A Viandgraf-^i^^ modification (ignoring inconsistencies) to Csimple gives

N  N

Csum {x ) = Y , Y j +  ̂ j )  ^  W 1 -î; (%)) 
i j> i
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For simplicity, we calculate w, similarly to Vingron & Argos (equation 2.10) as

N

i

This is reasonable because comparisons of this method with other weighting methods by Gerstein et al and 

Sibbald & Argos showed it was only slightly inferior. According to this scheme, w i =  W2  =  n + 1 ,  whereas 

the weight o f a single duplicate o f 5 3  is W3 =  2. Applying Csum to the redundant column gives

Csum =  (2n +  2)M(W, Q) +  (n^ +  3n) (M(W, R) +  M(Q,R)) +  (2%% -  2n)M  (R,R) . (2.15)

This result is better than 2.13 but worse than 2.14. M(W,Q) will still disappear because it increases with 

linearly with n whereas the other terms increase geometrically. M  (R, R) is also present. A third simple 

strategy is
N  N

Cproduct (^) =  S  S  {si W  , Sj (x)) ,
i j> i

which, when applied to the column in Figure 2.9 gives

Cproduct = {n^ + 2n+ l)M {\),Q ) + {2n^ + 2n){M {\},R)+M {Q,R)) + i2n^-2n)M {'R ,B .) • (2.16)

All terms are now on an equal footing with respect to n. Result 2.16 is clearly better than result 2.15 or 

2.13. It is arguably more desirable than result 2.14 in that, although the spurious M  (R, R) features, no term 

disappears with increasing n.

2.3 Score used herein: C v a id a r

In this work, we use a sequence-weighted sum-of-pairs score. It is defined as follows;

N  N

Cvaldar W = 2  {Si (%) ,f;(%)) ,
i j> i

where N  is the number of sequences, Si{x) is the amino acid of ith sequence at position x  in the alignment, 

Wi is the weight o f sequence S i,M {a ,b )  is the similarity of the amino acids a and b, and X scales Cvaidar so 

that it ranges between 0 (maximally variable) to 1 (maximally conserved), ie,

/  N  N  ^

x =
V ' j> i

The weight of a sequence is calculated according the scheme of Vingron & Argos 

(Vingron & Argos, 1989):
1 ^

^ j ^ i

In this equation d  {si,sj) is the distance between sequences 5, and sj, and is calculated as
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where Alignedjj is the set of all positions that manifest an amino acid in one or both of 5 , and sj, and 

n{Alignedij) is the size of this set. The comparison matrix M is a linear transformation of the substitution 

matrix m  such that M  takes values in the range [0,1] and all exchanges involving a gap score 0, ie,

M(a,b) = [  ifoT^gapandi^gap
I  0 otherwise

The matrix m is a modified version of the pairwise exchange table (PET) (Jones et al, 1992), itself an 

updated version of the Dayhoff matrix (Dayhoff et al, 1978). The modified PET differs from the original 

in that all diagonal elements are set to a constant score, that score being the rounded average of diagonal 

elements in the unmodified matrix.

Cvaidar correctly orders columns (a) to (f), (g) to (i), and (j) and (k) in Figure 2.3. It fulfils or partially 

fulfils all criteria laid out in section 2.1.2; its output space is continuous and bounded; it accounts for amino 

acid frequency, like other SP scores, using the tug-of-war scheme (ie, self-similarity vs substitution); it 

quantifies stereochemical diversity uncompromisingly with a full substitution matrix; gaps incur a constant 

penalty; and it uses sequence weighting to normalize against redundancy in the alignment. C vaidar weights 

its sequences using one of the simplest schemes available. Although there are other schemes that give 

marginally superior results, the Vingron & Argos weighting is simpler, makes fewer assumptions and at least 

gives consistent answers. Cvaidar incorporates its sequence weights shrewdly. By using the multiplicative 

scheme of Cproduct (see page 52), its scores resist the distorting effect of many duplicate sequences in the 

alignment.

Cvaidar is not as simple as, say, the entropy score VMimy or the SP score CKarlin, but it trades simplicity for 

sophistication in an economical way. Cvaidar attempts far more than these measures, but beyond adjustments 

specifically pertaining to gaps, stereochemistry and weighting, it incorporates no additional variables or 

transformations.

The normalization of m, the substitution matrix o f Cvaidar is crude. That o f CKaritn is mathematically 

more elegant. However, Cvaida/^ normalization is more respectful of off-diagonal scores. These precious 

substitution probabilities are untouched and only the diagonal scores, which are anyway antithetical to the 

scoring of conservation, are affected.

2.4 A generalized formula for scoring conservation

No score is perfect. But some scores are less perfect than others. Scores discussed later in the survey tended 

to satisfy more of the criteria outlined in sections 2.1.1 and 2.1.2 than those discussed earlier. Shannon’s 

entropy offered an elegant way to measure diversity among uniformly different symbols, but faltered when 

accounting for stereochemistry. Property-based scores (section 2.2.3) respected stereochemistry but failed 

to register symbol diversity. The most successful compromises were seen in the sum-of-pairs scores, al­

though they exposed some limitations of using substitution matrices. Sum-of-pairs scores also seemed to 

be the most amenable to sequence weighting, although the review above is unlikely to be comprehensive.

Cvaidar IS a Compromise. In opting for a sum-of-pairs architecture it trades the mathematical elegance 

of Shannon’s entropy for the rich stereochemical sensitivity bestowed by a substitution matrix. Gaps are 

incorporated in an ad hoc fashion, grafted on to the matrix. Any clumsiness of C vaidar can be justified post 

hoc: it works, giving results consistent with intuition.

So far this chapter has mainly discussed scores following either the entropy or the substitution matrix



CHAPTER 2. SCORING RESIDUE CONSERVATION 54

model. But is this dichotomy inevitable? One could devise a score that plays entropy and mutation data 

to their relative strengths by keeping the assessment o f relative symbol frequencies and the assessment of 

stereochemistry separate. An example of such a score is considered here.

Positional variability may be seen to have three elements:

1. symbol diversity, normalized to take account o f sequence redundancy;

2. stereochemical diversity;

3. gaps.

For a given position, each element can be assigned a score that measures the extent to which it describes 

that column. Let t be the normalized symbol diversity (diversity), let r be the stereochemical diversity 

(stereochemistry) and let g be the gap cost (gap). For convenience, all measures are continuous and bounded 

in the range 0 to 1, where 0 means that element is not present and 1 means that element is at its maximum. 

For instance, r  =  0 means there is no stereochemical diversity at the position whereas r = \  means the 

position could not be any more stereochemically diverse. Conservation is a function o f these three variables. 

More intuitively, an assessment o f conservation can be seen as a three pronged attack: a position is criticized 

on its symbol diversity, its stereochemical diversity and its gappyness. For a position x, we can write

Qridm (x) = (1 . (2.17)

The exponents a ,  P and y  weight the importance of each element. For the moment, suppose they are all 

equal to one. If position x  is strictly conserved, then C trident =  ( 1 — 0 ) x ( l - 0 ) x ( l - 0 )  =  l . A s  position x  

becomes more afflicted with gaps, stereochemical diversity or symbol diversity, Ctrident drops towards zero. 

The relative impacts of these three elements on the conservation score were rigidly prescribed in C vaidar- 

In Qrident, however, the sharpness of each prong may be adjusted freely to suit the purpose of the user. 

For example, if Qrident with a  =  p =  y =  1 is too lenient on gaps and too strict on stereochemistry for a 

particular application, one could instead try a  =  1, P =  1/2  and y = 2.

Qrident is  SO far more a convenient division of labour than a score, since it is open how any particular 

prong is defined. To make the score more concrete, we can start by specifying t as Shannon’s entropy:

K

r(x) J )p a l0 g 2 P a ,
a

where K, the alphabet size, is 21 (20 amino acids plus one gap symbol) and p  g is the probability o f observing 

the ath symbol type. Xt scales the entropy to range [0,1] and is defined as

X = \og2{m m {N ,K )) ,

where N  is the number o f sequences in the alignment, so that t{x) can reach its maximum of one even when 

there are fewer that K  amino acids in the column. Sequence weighting can be incorporated into Shannon’s 

entropy by normalizing each p a thus

P a=  2  w ,,
i£{i:si(x)=a)

where w, is the weight o f the ith sequence and si (x) is the symbol type at position x  in that sequence. 

In words, the probability o f observing symbol type a is the summed weight o f sequences manifesting a.
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Ideally, the sum of all weights should be one. The most apposite weighting scheme, which is related to an 

entropy model, is therefore that of Henikoff & Henikoff ( Henikoff & Henikoff, 1994):

1 ^  1
w/ =  - X -

Xn =

L X ^X^Xi

where L  is the length o f the alignment, kx is the number of symbol types present at the xth position and rix, 

is the number o f times the symbol type manifested by the ith sequence occurs at that position (see section

2.2.6.1 for a fuller explanation).

The second prong of Ctridem measures stereochemical diversity but does not need to take account of 

symbol frequency or gaps. One candidate for this is Vzveiibii described in section 2.2.3. The one employed 

here uses a substitution matrix and is related to the model used in C Thompson (page 46). Let amino acid a be 

represented by a point in 20-dimensional space such that

(  M {a ,a \)  \

M {a,a2)

V M { a , a 2o )  J

where a, is the ith amino acid type. For example, the position o f Cys in this space is defined by its mu­

tational proximity to all other amino acids. M {a,b) is the similarity between amino acids a  and 6 judged 

by a normalized substitution matrix. One consistent normalization would be that o f Karlin & Brocchieri 

(Karlin & Brocchieri, 1996) (equation 2.5). For a position x, the consensus amino acid type is calculated as 

point X (x) :
_ 1 kx
x w  =  - 2 x „ ,

a

where kx is the number of amino acid types present in the column. The stereochemical diversity may be 

calculated as the average distance of observed amino acids from the consensus point:

r{x) = Xr— X  I^ W  “  Xa| ) 
a

where the scalar Xr =  \ J 20 (max (A/) — min {M )Ÿ  ensures r  <  1.

The third prong of Ctridem^ the gap cost, is more straightforward. The more gaps, the less selective 

pressure is assumed to have acted at the position. Thus, g(x) can be defined simply as the fraction of 

symbols in column x  that are gaps.

Qrident ts not SO much One score but a framework in which many different conservation scores can 

be imitated. For instance, if a  =  1, |3 =  0 and y =  0, Ctrident resembles Cschnetder (minus the weighting). 

However, because Qrident raises more questions than it answers, it is better deployed in the analysis of 

conservation scores than in scoring conservation as such. After all, such a versatile framework can imitate 

uninformative scores as well as useful ones. An intriguing question is whether Ctrident can imitate Cvaidar- 

To investigate this, scores from Cvaidar were compared with scores from Ctrident for different values of 

a ,  3 and y. Specifically, Cvaidar and Qrident were used to score all positions in six multiple sequence 

alignments. The similarity of the two scores was measured as Pearson’s correlation coefficient o f the two 

outputs. This was done for one thousand different sets o f a ,  3 and y. To avoid unnecessary confounding
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'trident

m a x im u m
co rre la tio n

0.98

c o rr e la tio n  

with C^^idar

0.38

0.2 0.2

Figure 2.10: Similarity of Cvaidar to Qrident under varying parameters a , (3 and y.
Qrident ÎS a flexible score for measuring residue conservation. It is parameterized by a , (3 and y, which 
weight the relative importance of symbol diversity, stereochemistry and gap penalties respectively. Altering 
these parameters allows C,rident to imitate a variety of inflexible conservation scores. The central cube rep­
resents the three-dimensional parameter space of C ,rident - Colour is used to indicate the similarity, measured 
by the correlation coefficient of output (see text), of Qrident to the concrete score Cvcddar ut a particular point 
in this space (ie, for particular values of a ,  (3 and y). Red areas indicate C,rident is highly similar (has a 
correlation approaching 1) to Cvaidar at these values of a , (3 and y. Blue areas indicate low similarity. The 
area of parameter space corresponding to the maximum correlation between the two scores (correlation 
coefficient=0.98 at a  =  1, (3 =  0.5, y =  3) is approximately indicated on the diagram by an oblong box.



CHAPTER 2. SCORING RESIDUE CONSERVATION 57

variables, the similarity matrix used for Ctrident was the same as that used for Cvaidar- The alignments used 

were those belonging to the six homodimer families discussed in chapter 3. This dataset comprised 1595 

residue positions in all and contained data from 195 sequences. Figure 2.10 shows how the correlation 

between the two scores varied over the three-dimensional parameter space o f a ,  P and y. In this cursory 

investigation, the maximum correlation reached was 0.98 when a  =  1, P =  0.5 and y = 3. This correlation 

seems high. However, because the dataset used is small and may not uniformly exercise all aspects of 

Cvaidar, this result should be considered only as a rough estimate. In particular. Figure 2.10 shows that 

when a  and P are optimal, varying y  has little effect on the correlation. This reflects the small number 

o f gaps in the six carefully compiled alignments. A gappier set o f alignments might raise the profile of 

this third parameter. Acknowledging these caveats, it is nevertheless interesting to contrast the parameter 

set necessary to simulate Cvaidar with that required to simulate Cshneider- For both concrete scores, a  =  1. 

This reflects the fact that Cvaidar and Cshmider both account for the relative frequencies o f amino acids. The 

two scores differ on p. For Cvaidar, P is nonzero, indicating this score is sensitive towards stereochemistry 

whereas for Cshnetder, P =  0, indicating stereochemistry is ignored. Cvaidar penalizes gaps whereas Cshneider 
does not. Similarly, y =  3 for Cvaidar, indicating this score’s acknowledgement of gaps, whereas for C shneider, 

which does not penalize gaps, y =  0.

2.5 Conclusions

This chapter has reviewed seventeen scores (not including or Ctrident) and several distinct approaches
for quantifying evolutionary conservation at an aligned position. No score achieved both biological and 

statistical rigour. The most meaningful scores were relatively ad hoc. However, given the success of 

probabilistic sequence profiles (Eddy, 1996) (Mott, 2000), which are a different but related emprise, it 

seems likely that a statistically robust score is possible.

C tr id e n t  Combines the strengths of previously disparate approaches. Although its flexibility undermines 

any authority it has as a concrete score (and for this reason it is not considered outside chapter 2), it does 

provides a framework for dissecting the character o f other scores. This kind of meta-analysis is interesting 

from an abstract theoretical point of view. It may also be useful in a more practical sense. Given a dataset 

of multiple alignments with “correct” scores -  these scores might be inferred from orthogonal information 

relating to the importance of particular residues in structure or function -  the parameters o f a , P and y could 

be optimized so that Ctrident imitates these scores. At present, however, such datasets are not available and 

even somewhat difficult to conceive.

The score that satisfies the requirements o f a conservation measure better than any other surveyed here 

is Cvaidar- Cvaidar will therefore be used to quantify residue conservation in the remainder o f this work. 

Although more sophisticated scores could be conceived, Cvaidar accords with intuition and it will be used 

to answer the fundamental questions addressed in the following chapters about the utility of conservation 

in protein-protein interface prediction. The extent to which Cvaidar achieves this aim will be judged in the 

Conclusions (Chapter 5).
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Chapter 3

Analysis of conservation in 
homodimeric interfaces

3.1 Introduction

Being able to predict protein-protein interfaces is desirable. But to make such a prediction, one must first 

know something about protein-protein interfaces that distinguishes them from other parts o f the protein 

surface. The commonality o f physical and chemical properties among some interfaces has led at least 

two groups to propose prediction methods on a purely physical and chemical basis ( Young et al, 1994) 

(Jones & Thornton, 1997b). However, it is likely that evolutionary information derived from the large num­

ber o f available protein sequences could be at least as useful. After all, protein-protein interactions are not 

merely biophysical phenomena; they are phenotypes, ultimately answerable to natural selection.

This chapter investigates the extent to which inferred evolutionary conservation can guide the analy­

sis o f protein-protein interfaces. If, following the neutralist view of evolution, residues under functional 

constraints tend to resist substitution (because substitution is usually for the worse, according to that view) 

rather than embrace it, one would expect residues in a biologically important interface to be conserved. 

If  this is so, then identifying an interface could be as straightforward as locating a conserved cluster of 

residues on the surface. In order to establish whether conservation can be used this way, the work presented 

here tests the following premise: that residues in interfaces are significantly more conserved than those on 

the rest of the surface.

Grishin & Phillips (Grishin & Phillips, 1994) tested a similar premise, that interface residues are sig­

nificantly conserved with respect to all other residues in a protein, and concluded it to be false. They anal­

ysed five oligomeric enzymes. For each enzyme sequence, they identified which positions corresponded to 

residues in the structural core, the active site and the subunit interface. Then, for every pair of sequences in 

a multiple alignment o f the oligomer, they compare the rate o f evolution, which they define as the fractional 

sequence identity, at these positions with that over all positions in the protein. This comparison gives them 

a measure of how much slower mutations occur in active site, core or interface positions than on average 

over the whole sequence. They found active site residues were by far the most conserved, evolving 50 times 

slower than average, whereas core and interface residues were only slightly conserved, evolving 2 and 1.5 

times slower respectively. Thus, although the interfaces were much less conserved than the active sites, they 

were still more conserved than the surface.

Grishin & Phillips’s definition of conservation precludes substitutions of any kind. But such a strict



CHAPTER 3. ANALYSIS OF CONSERVATION IN HOMODIMERIC INTERFACES 59

definition misses more subtle patterns of conservation: those in which substitutions conserve physico­

chemical characteristics. Complete invariance at active sites positions is common because these motifs 

frequently rely on precise arrangements of specific amino acids. In contrast, residues at the structural core 

do tolerate mutations but within only a limited range (Branden & Tooze, 1998). A more sensitive measure 

of the rate of evolution, one that accounts for conservative substitutions, might have brought the scores for 

active site, core and, possibly, interface positions closer together.

Herein, we investigate whether oligomer interfaces are significantly conserved with respect to the pro­

tein surface by studying in depth a small but strictly defined dataset o f six homodimer families, each of 

which form two-chain complexes. To address this problem meaningfully, we determine the probability 

that a randomly chosen group of residues from the protein surface will be more or less conserved than the 

interface group. We estimate this probability for all six oligomer complexes in our dataset by simulation, 

performing a large number of trials to obtain the fraction of random selections that equal or better interface 

conservation. The trials are performed in two ways: “picking”, in which groups of residues are chosen 

entirely at random from the surface, and “walking” , in which randomly chosen groups may contain only 

residues that are structurally contiguous.

3.2 Materials and Methods

The following protocol was followed to test whether the interface residues of a component chain in a 

protein-protein complex are significantly conserved with respect to all residues on the surface of that chain. 

First, functionally equivalent homologues of the protomer are identified and aligned multiply. Second, each 

position in the protomer is given a score that measures the degree to which it is conserved in evolution 

as inferred from the multiple alignment. Third, each residue in the protomer is classified according to the 

extent it lies in the surface and the extent it participates in the interface. Last, the average conservation 

score for residues in the interface is compared with the distribution of average conservation scores for 

the same number of surface residues in randomly selected groups. This comparison allows us to estimate 

the probability that a randomly selected group will have an equal or better average conservation than the 

interface, and hence assess whether the conservation of an interface is statistically significant.

To put this work in the context of previous analyses of protein-protein interfaces, the interface 

conservation of each protomer is also examined using “surface patches”, after Jones & Thornton 

(Jones & Thornton, 1997a).

3.2.1 Criteria for dataset

Component chains from oligomer complexes were chosen to fulfill the following criteria. The protomer to 

be studied must form a stable, symmetric complex with one other protomer to which it is identical or nearly 

identical such that the oligomer is homodimeric and the conservation o f only one chain need be considered. 

The complex must be shown by its associated literature to be essential to the stability and correct function 

of the protein. The full wild-type complex must be available as a structure determined by X-ray crystallog­

raphy in either the Protein Data Bank (PDB) (Bernstein et al, 1977) (Berman et al, 2000) or its derivative, 

the Protein Quaternary Structure File Server (Henrick & Thornton, 1998) (PQS; http://pqs.ebi.ac.uk/). Of 

all structures available for the complex, the structure chosen must have the best combination o f the follow­

ing properties: high resolution, inclusion of any bound cofactors that occur naturally; and, if applicable, 

the inclusion of a ligand similar in size and shape to that o f the natural substrate. To enable the robust

http://pqs.ebi.ac.uk/
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identification of a diverse set o f homologues, the protomer should be represented in the CATH classi­

fication (Orengo et al, 1997) and according to that classification have only one structural domain. The 

protomer sequence must have non-fragment homologues in the SWISS-PROT protein sequence database 

(Bairoch & Apweiler, 2000) that are numerous (>10) and diverse (<70% mean pairwise sequence identity), 

and, by their annotation, share its function and multimeric state (see also Identification and alignment of 

homologues). Applying these criteria gave rise to six homodimer families (see Table 3.1).

3.2.2 Identification and alignment of homologues

Homologues for a given protomer are identified and aligned in two stages. At both stages, a homologue is 

included only if its annotation and associated references show unambiguously that it shares the protomer’s 

function and precise multimeric state, and that it is a wild type protein and not a fragment. First, the 

sequence family of the protomer is identified in the CATH classification (Orengo et al, 1997). If there are 

at least three suitable representatives of that family, a multiple structural alignment o f the protomer and 

these representatives is built using the CORA suite o f programs (Orengo, 1999). Otherwise, a multiple 

sequence alignment from the ALIGN resource associated with the PRINTS database ( Attwood et al, 1999) 

or one from the Pfam database (Bateman et al, 2000) is edited and used. This seed alignment is used to 

build a profile hidden Markov model (Eddy, 1996, and references therein), which in turn is used both to find 

more homologues in the SWISS-PROT sequence database and to align multiply the final set of homologues 

to the protomer sequence. This final alignment, referred to here as the “full alignment” for the family, is 

edited for high redundancy by removing the less well characterized or shorter o f any two sequences that 

are more than 90% identical. Searching for homologous structures in CATH was performed with reference 

to the CATH Dictionary of Homologous Superfamilies (Bray et al, 2000). The construction o f the profile 

and its application in searching for and aligning homologues were both performed with the HMMER2 

software package (see http://hmmer.wustl.edu/). The filtering of large numbers of sequences by annotation 

was performed using the Sequence Retrieval System (Etzold et al, 1996). The removal o f redundancy in 

the alignment was performed with the help of JalView (Clamp et al, 1998).

3.2.3 Scoring residue conservation

Each residue in the protomer of interest is assigned a numerical value Cons (ranging from 0 to 1) cor­

responding to the conservation o f residue similarities at its position in the multiple sequence alignment. 

A value of 0 indicates the position is not conserved; a value of 1 indicates it is highly conserved. Cons 

corresponds the Cvaidar conservation score defined in section 2.3.

Here the terms “conservation score” and “residue conservation” will be used to denote either the value 

returned by Cons for a given residue, or, when applied to a set o f residues, the average value of Cons for all 

residues in that set. These definitions are vital because they underpin the whole analysis o f conservation.

3.2.4 Interface definition

Each residue in a protomer is assigned to one of the following disjoint sets: Core, Exposed, Partially Buried, 

or Buried. Qualitatively, Core residues are those in the structural core of the protein. Exposed  residues are 

on the surface but do not participate in an interface, and Partially Buried and Buried  describe residues that 

are on the surface o f the protomer and participate in a multimer interface. Two further sets are referred to 

here: the Surface set, which is the union of the Exposed, Partially Buried  and Buried  sets, and contains all

http://hmmer.wustl.edu/
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residues on the surface of the protomer; and the Interface set, which is used as a generic term  for either the 

Buried  set or the union of the Buried and Partially Buried sets. For clarity, Buried residues are said to form 

the “central zone” of the interface whereas Partially Buried residues form  its “outer zone” . Together, these 

sets define the “total interface” .

The classes are assigned on the basis o f solvent accessibility, which is calculated using NACCESS 

(Hubbard & Thornton, 1993), an implementation of the Lee & Richards (Lee & Richards, 1971) algorithm, 

with a probe sphere of radius 1.4 A. A residue is deemed accessible if  its relative accessible surface area 

(RSA) is > 5%, a cut-off devised and optimized by M iller et al (M iller et al, 1987). If a residue is accessible 

in the protomer it is in the Surface set, otherwise it is Core. If  a residue in the Surface set loses RSA upon 

complexation it is in the Interface set, otherwise it is Exposed. If  a residue in the Interface set is inaccessible 

(ie, < 5 %  RSA) in the multimer complex, it is in the Buried  set, else it is Partially Buried.

3.2.5 Ligand-buried residues

Ligand-buried residues are defined here as residues that become inaccessible in the protomer upon inclusion 

of ligand groups. Together they comprise the ligand-buried site for a protomer. Because residues that 

participate in an active or allosteric site (referred to here generically as a “binding site”) are typically both 

accessible and highly conserved, the inclusion of ligand-buried residues, which are usually a subset of 

the binding site residues, in the Surface set will clearly affect any calculation that compares conservation of 

interface and surface. To investigate the effect of conserved ligand-buried residues, all tests described below 

are carried out twice, once with these residues included, or “unmasked”, and once with them excluded, or 

“masked” .

3.2.6 Patch analysis of interface conservation

The conservation of the total interface of each unmasked protomer was examined using a variant of the 

“patch analysis” method of Jones & Thornton (Jones & Thornton, 1997a). In the original procedure, a 

set of roughly circular overlapping patches, each covering as many residues as the interface, is defined on 

the surface of the protomer. Quantitative properties of patches and their constituent residues can then be 

described in terms of their distributions over all patches and related to the extent those patches overlap with 

the interface. Herein, the average conservation of residues in a patch is the only property considered and 

this quantity is termed the “patch score” .

3.2.7 Testing the significance of interface conservation

In order to assess the significance of conservation at a given interface the following null hypothesis, 7/o, is 

tested: the average conservation of the Interface set is no higher than that obtained from an equal number 

of residues drawn without replacement from the Surface set by a random process. The negation of H o is the 

alternative hypothesis, H \, which states that the Interface set has a higher average conservation than that 

o f a set randomly selected in this way. A simulation experiment is performed to estimate the probability 

that Hq is true. If the value of this probability (JP value) falls below a certain threshold, customarily defined 

at 0.05, then H q is rejected in favour of H \ and the conservation o f the interface is considered statistically 

significant at the 5% level.

The P  value expresses the probability that a selection of residues drawn from the surface by a random 

process will have an average conservation equal to or greater than that o f the interface. This P  value
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depends not only on the distribution of conservation over the surface and in the interface but also on the 

nature of the random process employed to make the selections. To ensure the test o f H q is meaningful, it 

is a minimum requirement o f any random process used that it is able to draw from the surface the set of 

residues corresponding to the interface. Two distinct random selection processes, “picking” and “walking” , 

are employed here and these are described below.

For a given protomer surface, defined interface and random process, it is often computationally infeasi­

ble to enumerate all possible selections, compare the conservation of each to that o f the interface, and hence 

evaluate p, the true P  value. However, p  can be estimated reliably enough by random sampling.

A trial is devised in which the random process selects n(Interface) residues from surface set and their 

average conservation is compared with that o f the residues in the interface set. If t such trials are performed 

and each trial is independent o f any other, then p  can be estimated as p  = tc / t ,  where tc is the number of 

trials in which the selection was at least as conserved as the interface. The greater the number of trials, 

more reliable the estimate, and when t is large, the expected accuracy of p  can be described formally 

by a confidence interval. A confidence interval is defined by a range, symmetric about the estimate and 

an associated probability that p, the true value, is contained somewhere within this range. The “99% 

confidence interval” for the unknown value of p  is thus the margin of error expected for p  99%  o f the 

time. This interval is given by (p —2.58a, p - f  2 .58a), where a , the standard deviation of p, is equal to 

> /p ( l  - p ) / r . To ensure a high degree o f accuracy, the number of trials performed for a given a estimate is 

constant at 10 million, resulting in a margin of error o f at most ~0.04%  at least 99% of the time.

The P  value for interface conservation is estimated stochastically as described above for each of the six 

protomers in the dataset. For each protomer, trials are performed under three variable conditions, giving 

rise to eight experiments per protomer. First, trials are performed using one of the two random selection 

processes, “picking” and “walking” . Second, residues participating in an active or allosteric site are either 

included in the Surface set or masked out. Third, the Interface set is taken as either the Buried  set (central 

zone) or the union P artiallyBuriedU Buried  (total interface).

3.2.7.1 Picking: unconstrained selection of residues

“Picking” is the first o f the two random processes used here for selecting a group of residues from the 

Surface  set o f a protomer. For a given protomer, residues are drawn at random and without replace­

ment from the Surface  set until the number drawn is equal to n{In terface), the number o f residues in the 

In terfa ce  set. In picking, all selections occur with equal probability.

3.2.T.2 Walking: structurally constrained selection of residues

“Walking” is the second of the two random processes used here for selecting a group of residues from 

the S urface  set o f a protomer. Walking selects groups of residues from the surface o f a protomer by 

successively stepping from one residue to any residue in contact with it chosen at random. A walk starts 

at any residue chosen from the entire Surface  set. The walk is allowed to revisit residues any number of 

times, otherwise it could become trapped, but any particular residue is counted only once towards the final 

selection. The walk ends when the number of distinct residues visited is equal to the number of residues 

in the In terface  set. In this scheme, two residues, A and B, are considered “in contact” if the distance 

between the van der Waals spheres of at least one of A’s atoms and at least one o f B ’s atoms is no more than 

1 Â. All walks are equiprobable but many walks may produce the same selection.
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3.3 Results

We investigated interface conservation in six homodimer families (abbreviations in brackets): alkaline 

phosphatase (AP), enolase (Enolase), glutathione S-transferase (GST), copper-zinc superoxide dismutase 

(SOD), Streptomyces subtilisin inhibitor (SSI), and triose phosphate isomerase (TIM) (see Table 3.1).

Table 3.2 lists the number of residues in the central zone and total interface o f each protomer represen­

tative, and Figure 3.1 shows graphically the residues that make up the total interface. The total interface 

for a family was typically contiguous and compact, though not particularly circular. Only the total interface 

of SSI was non-contiguous, in which one residue, Pro37, was separated from the closest o f the others by 

3 Â (Figure 3.1(SSI,a), (SSI,c)). An approximately linear relationship was observed both between the size 

of the central zone and total interface and between the size o f the total interface and the number o f surface 

residues. The largest total interface was that o f AP and covered a third of that protomer’s surface residues 

(Figure 3.1(AP,a) & Table 3.2). The smallest total interface, which covered barely a fifth o f surface residues, 

belonged to GST (Figure 3.I(GST,a) & Table 3.2). The central zone was between 20% (GST) and ~40%  

(AP) of the size of the total interface.

Ligand-buried residues were identified in AP, Enolase, SSI and TIM  (Table 3.3 & Figure 3.1). The 

ligand-buried sites o f AP and Enolase both comprise two highly conserved residues situated in pockets near 

the interface (Figures 3.1(AP,a), (Enolase,a)).

SSI’s ligand-buried site is on the opposite side of the protomer to that of the interface (Table 3.3 & Figure

3.1 (SSI,b)) and consists o f three residues, Met70, Cys71 and Pro72, which protrude into and block the active 

site o f serine proteinase. These residues are centrally located within an inhibitory region SSI shares with 

other serine proteinase inhibitors (serpins). This region, the so-called “reactive site” , stretches from  Gly6 6  

to Tyr75 and, between Met73 and Val74, contains the peptide bond used as bait for the catalytic triads of 

proteinase enzymes. In contrast with the other protomers, SSI’s ligand-buried residues are not unanimously 

conserved (Laskowski & Kato, 1980) (Hill & Hastie, 1987) (Takeuchi et al, 1992) (Kojima et al, 1993). 

Phylogenetic analysis by Taguchi et al (Taguchi et al, 1997) suggests variability in this region may result 

from diversifying selection driven by the advantages of multi-specific inhibitors in the regulation of intrinsic 

proteases.

TIM ’s ligand-buried site was the largest o f those studied and contains five highly conserved residues 

(Table 3.3 & Figures 3.1(TIM,a), (TIM,c)). TIM binds its substrate in a pocket created by the inside edge 

of its barrel topology. Although this pocket lies just outside the total interface, two ligand-buried residues, 

A sn ll  and His95, belong to the central zone. This surprising observation results from the convoluted 

geometry o f the interface in which the two component chains protrude so deeply into one another that one 

affects the solvent accessibility of residues that form the inside of the other’s barrel.

Although GST and SOD are both enzymes and their representative structures included ligand groups 

(see Table 3.1 & Figures 3.I(GST,a), (SOD,a), (SOD,b)), no ligand-buried residues were detected in either. 

This reflects the strict definition of the ligand-buried site (see Methods) in which ligand-buried residues 

must lose all accessibility upon binding ligands. For example, Lysl3  of TIM, which is known to play 

an important role in catalysis (Williams et al, 1999) and is highly conserved, touches TIM ’s substrate. 

However, because it is not completely buried by the substrate it does not qualify here as a ligand-buried 

residue.

Defining which amino acid types are conserved in interfaces is complex and beyond the scope of this 

paper. Residues in the representative protomer o f AP (Figure 3 .1(c)(d)) map directly to positions in AP’s 

multiple alignment and so may host a number of amino acid types in varying proportions. Moreover, the



CHAPTER 3. ANALYSIS OF CONSERVATION IN HOMODIMERIC INTERFACES 65

F a m ily

AP

I n te r f a c e  

(a )  f r o n t  (b )  b a c k

C o n s e r v a t i o n  

(c )  f r o n t  (d )  b a c k

E n olase  a

G ST

SO D

SSI

TIM

Actual binding 
^  site I interface

ligand-buried
both

Interface ^  Conserved

a IVariable

Figure 3.1: A table to show the location of interface and ligand-buried residues ((a),(b)), and residue con­
servation ((c),(d)) for six families of homodimers.
Protomer structures are elevated to show the interface head on in columns (a) and (c), and at a rotation of 
180° about the y-axis in columns (b) and (d). In columns (a) and (b), ligand buried residues and residues 
belonging to the total interface are indicated (see Methods for how these classes are defined). Arrows 
indicate the approximate location of the actual binding site as it is defined in the literature. Ligand-buried 
residues, typically a subset of residues in the actual binding site, are detected in AP, Enolase, SSI and TIM. 
In the elevations presented here these residues are out of view for AP and Enolase, partially visible for TIM, 
and conspicuous in SSI. In columns (c) and (d), each residue is coloured by the rank of its conservation score 
among all other conservation scores in the protomer. Rank Cons is used instead of absolute Cons so that 
dispersion of conservation over the surface can be more easily visualized. A steel wire effect delineates the 
perimeter of the total interface. The table shows conservation is not distributed uniformly on the surface 
but in clusters, and that the interface, although it includes both highly and poorly conserved residues, is on 
average more conserved than not. Atom coordinates were obtained from the PDB (Bernstein et al, 1977) 
(Berman et al, 2()()0) and the PQS (Henrick & Thornton, 1998). Images were created using MOLSCRIPT 
(Kraulis, 1991) and Raster3D (Merritt & Bacon, 1997).
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Family Active 
site state

Number 
of surface 
residues

Mean
surface

Cons

S.D.
siuface
Cons

Interface
definition’

Niunber
of

interface
residues

Mean
interface

Cons

Experiment
type

P-value
for

interface^
Error (+/-)

AP

unmasked 289 0.59 0.21
central 37 0.71

picking 6.86E-5 6.76E-6
walking 6.83E-3 6.72E-5

total 96 0.63
picking 4.52E-3 5.47E-5
walking 7.02E-2 2.08E-4

masked 287 0.58 0.21
central 37 0.71

picking 3.87E-5 5.08E-6
walking 3.12E-3 4.55E-5

total 96 0.63
picking 2.36E-3 3.96E-5
walking 5.00E-2 1.78E-4

Enolase

unmasked 263 0.72 0.22
central 20 0.89

picking 3.55E-5 4.86E-6
walking 3.74E-2 1.55E-4

total 52 0.82
picking 3.02E-5 4.48E-6
walking 3.78E-2 1.56E-4

masked 261 0.72 0.22
central 20 0.89

picking 2.57E-5 4.14E-6
walking 3.18E-2 1.43E-4

total 52 0.82
picking 2.18E-5 3.81E-6
walking 3.13E-2 1.42E-4

GST

unmasked 158 0.45 0.16
central 6 0.71

picking 1.06E-4 8.40E-6
walking 1.77E-3 3.43E-5

total 30 0.52
picking 3.72E-3 4.96E-5
walking 7.09E-2 2.09E-4

masked 158 0.45 0.16
central 6 0.71

picking l.lO E-4 8.54E-6
walking 1.74E-3 3.40E-5

total 30 0.52
picking 3.72E-3 4.96E-5
walking 7.11E-2 2.10E-4

SOD

utunasked 105 0.70 0.23
centra] 5 0.93

picking 8.73E-3 7.59E-5
walking 2.75E-2 1.33E-4

total 20 0.78
picking 3.60E-2 1.52E-4
walking 2.02E-1 3.27E-4

masked 105 0.70 0.23
central 5 0.93

picking 8.73E-3 7.59E-5
walking 2.75E-2 1.34E-4

total 20 0.78
picking 3.60E-2 1.52E-4
walking 2.02E-1 3.27E-4

SSI

unmasked 91 0.71 0.23
central 7 0.85

picking 4.50E-2 1.69E-4
walking 1.59E-1 2.98E-4

total 27 0.84
picking 1.50E-4 9.99E-6
walking 1.30E-2 9.25E-5

masked 88 0.71 0.22
central 7 0.85

picking 4.53E-2 1.70E-4
walking 1.64E-1 3.02E-4

total 27 0.84
picking 1.43E-4 9.75E-6
walking 1.35E-2 9.41E-5

TIM

utunasked 168 0.59 0.22
central 9 0.76

picking 1.30E-2 9.25E-5
walking 1.65E-1 3.03E-4

total 38 0.68
picking 1.92E-3 3.57E-5
walking 1.71E-1 3.07E-4

masked 163 0.58 0.21
central 8 0.73

picking 2.61E-2 1.30E-4
walking 1.63E-1 3.02E-4

total 36 0.66
picking 2.90E-3 4.39E-5
walking 1.43E-1 2.86E-4

’central = "central zone", total = "total interface" 
> 0.05 in bold

Table 3.2: P  values and associated information calculated for the six homodimer families.
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Family Ligand-buried residues
AP Thrl02, Asp327

Enolase Ser39, Lys345
GST None
SOD None
SSI Met70, Cys7I, Pro72
TIM A sn ll, His95, Glu65, Gly210, Gly232

Table 3.3; Ligand buried residues detected in the six homodimer families.

notion of conservation as a continuous quantity suggests no obvious cutoff at which "conserved" residues 

could be distinguished. However, for completely conserved positions, ie, those with a conservation score 

of 1, such an analysis is simple. By far the most common amino acid invariant at the interfaces o f the six 

homodimers was glycine. This is probably because glycine does not have a side chain and so substituting it 

with an amino acid that does causes sterically unacceptable disruption of the interface. Arginine and valine 

were next most common but their numbers are low and so cannot be interpreted with confidence.

For each family, the statistical significance of residue conservation at the oligomeric interface was as­

sessed by computing the probability (P value) that this conservation could have occurred by chance (see 

Methods). If the P value was less than the predefined cutoff 0.05, the associated interface was considered 

significantly conserved. P value calculations were performed under three variable conditions (described 

in Methods), giving rise to eight distinct P  values per family. In addition to the significance tests, patch 

analysis was performed on each family whereby the conservation of residues at a homodimeric interface is 

compared with that of roughly circular overlapping patches defined on the surface o f a constituent protomer.

3.3.1 Conservation in patches

The protomer dataset was analysed using surface patches. For each family, patches containing as many 

residues as the total interface were defined on the surface of the representative protomer and the average 

residue conservation of each patch, ie, its patch score, was calculated (see Methods). The number of patches 

defined, which related linearly to the size of the protomer, ranged from 87 in SSI to 235 in AP.

Figure 3.2 shows distributions of the patch scores for each family and reveals that, for all families, the 

average conservation of residues in the observed interface lies within the top quarter o f the distribution. 

Specifically, the score of the interface coincides with the following percentiles: 77% (ie, lying just within 

the top 23% of the distribution) (TIM), 80% (SOD), 82% (GST), 84% (Enolase), 91% (AP), and 92% (SSI). 

It is more meaningful to compare the interfaces of different families based on relative patch rank in this way 

than by absolute conservation score because the latter depends on the extent and diversity o f the underlying 

multiple sequence alignments.

The mean of a patch score distribution tends towards the mean conservation o f surface residues in the 

corresponding protomer. The higher moments (eg, standard deviation, skewness and kurtosis) depend not 

only on the shape of the distribution of conservation scores for individual residues but also on the patch 

size and how conservation is dispersed about the surface. As expected, larger patches tend to give narrower 

distributions. For example, the variance of residue conservation for AP is similar to that o f the other families 

(see Table 3.2) but, owing partly to the large number of residues in its total interface, its distribution o f patch 

scores is markedly narrower (Figure 3.2(a)). The less uniformly the extremes of residue conservation are 

dispersed over the surface of a protomer, the greater the difference between the highest and lowest patch 

scores. Dispersion therefore affects not only the width of the distribution, causing it to be spread out if
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Figure 3.2: Distributions of patch scores for six families of homodimers.
The patch score, defined as the mean conservation score for all residues in a patch, is given in bins of width
0.02 along the x-axis. The number of patches that fall into a given patch score bin is presented on the y-axis. 
Stacking within histogram bars indicates the proportion of patches falling into a given bin that overlapped 
the interface, overlapped the ligand buried site, overlapped neither region and overlapped both (see Results 
for overlap criteria). A dashed line indicates the interface conservation, defined as the mean conservation 
score for all residues in the interface. The graphs show that patches overlapping the interface tend to score 
highly and that interface conservation consistently lies within the top quarter of the patch score distribution.
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residues with high and low conservation cluster in space, but also the skewness and kurtosis. For example, 

if residues with high and low conservation cluster heavily at opposite sides of a protomer, most patches 

will contain many more residues from one extreme than from  the other, with few patches straddling both 

poles equally to achieve the mean score. The resulting distribution will have a sunken appearance (negative 

kurtosis) such as that seen for SSI (Figure 3.2(e)). If the degree o f concentration is greater at one pole than 

the other, the distribution will be correspondingly asymmetric (skewed) as seen for TIM  (Figure 3.2(f)).

3.3.1.1 Overlap of the interface and ligand-buried site

Patches are deemed to overlap with the interface if they contain at least half o f the interface residues, 

and overlap with the ligand-buried site if they contain all the ligand-buried residues. Overlap is defined 

differently to take account of the difference in size between these two regions and how much of each a 

patch can reasonably cover, ie, most patches that overlap some ligand-buried residues will overlap all of 

them whereas only one patch can cover all interface residues.

In fact, no patch overlapped any interface completely. The greatest percentage overlap achieved by a 

patch for a particular family ranged from 67% (AP and SSI) to 80% (SOD). Patches that overlapped the 

interface tended to be at least moderately and often highly conserved relative to other patches.

The stacked histogram for AP shows that patches that overlap with either the interface or the ligand- 

buried site occur throughout the distribution, but patches that overlap with both regions occur only among 

the higher ranks (Figure 3.2(a)). Patches that overlap the interface score variably despite the apparent high 

percentile ranking of AP’s true interface because any one patch owes at least a third of its score to residues 

outside the interface. Patches that overlap both interface and ligand-buried site score highly because they 

include not only conserved interface and ligand-buried residues but also some of the conserved binding site 

residues that surround the ligand-buried site. The narrowness and symmetry of the AP distribution is, as 

mentioned above, partly explained by the large size of each patch but also reflects the unclustered dispersion 

of high and low conservation over the surface observed in Figures 3.1(AP,c), (AP,d).

The histogram for Enolase shows that overlaps with either the interface or the ligand-buried site occur 

almost exclusively at the top end of the distribution, with patches that overlap both taking the highest 

ranks (Figure 3.2(b)). Examining conservation at the surface of Enolase reveals a concentration o f highly 

conserved residues around the ligand-buried site and in the region of the interface nearest to it (Figure 

3.1(Enolase,c), (Enolase,d)). As for AP, optimally scoring patches tend to be those that cover both regions. 

The width and positive skewness of the Enolase distribution reflects the clustering of high conservation at 

the surface in the absence of any poorly conserved clusters.

Patches that overlap the interface are found at only the top end o f GST’s patch score distribution and all 

the highest scoring patches have interface overlap (Figure 3.2(c)). GST has smaller patches than Enolase, 

and, because the sequences that contribute to its alignment are more divergent, there is greater variance in 

the conservation of its surface residues (Table 3.2). Yet GST has the narrower distribution. This is because 

the dispersion of conserved residues over the surface of GST is far less clustered than for Enolase, so its 

patch scores tend to deviate less from the distribution mean (see Figures 3.I(GST,c), (GST,d)).

In SOD, overlap with the interface is split between the middle and top end of the distribution of patch 

scores (Figure 3.2(d)). This dichotomy results from a slight clustering of poorly conserved residues on 

one side of the interface along with a slight clustering of highly conserved residues on the other (Figures

3.1 (SOD,c), (SOD,d)). Patches that overlap the side of the interface near the unconserved cluster have 

moderate conservation whereas those that overlap the other side have high conservation.

The histogram for SSI shows a striking separation of interface overlap, which is confined to the upper
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end of the distribution, from ligand-buried site overlap, which is found exclusively at the lower end. This 

separation arises because conservation over the surface of SSI is polarized, with a majority of highly con­

served residues around the interface and a majority o f poorly conserved residues around the hypervariable 

ligand-buried site.

In TIM, there is a smooth progression from those patches that overlap the interface, which are moder­

ately conserved, to patches that overlap the interface and the ligand-buried site, which are well conserved, 

to patches that overlap the ligand-buried site, which are confined to the highest ranks. The surface of TIM 

is marked by a gash of high conservation, which covers half the interface and spreads over and around the 

ligand-buried site (Figure 3.1(TIM,c)). The remaining half o f the interface is only moderately conserved 

and touches a nearby cluster o f poor conservation. The progression described above is consistent with these 

observations and indicates that whereas patches that overlap the interface may score moderately, thanks to 

the intersection of the interface and the conserved gash, patches that cover the ligand-buried site and avoid 

the poorly conserved clusters score higher.

3.3.2 Significance of interface conservation

For a given protomer, the significance of interface conservation was assessed as follows. A set o f residues 

equal in number to that of the interface was drawn at random from the surface 10 million times. The fraction 

of times this random set was at least as well conserved as the interface set was taken as the P  value for the 

interface. If and only if the P value was less than the predefined cutoff 0.05, ie, such that the probability of 

interface conservation being random was <5%, the interface was considered significantly conserved. Two 

distinct random processes, picking and walking, were used to draw residues from the surface. P  values 

were generated using both processes for both definitions of the interface in each family. Moreover, for 

each combination, P  values were estimated in both the absence and presence of ligand-buried residues (see 

Methods for details). P  values, being a relative measure, transcend absolute residues conservation. The use 

of P values therefore allows the meaningful comparison of conservation across families whose alignments 

may differ in the extent o f their sequence diversity. Results of the P  value estimations are presented in Table

3.2 and Figures 3.3 and 3.4; distributions of conservation for random selection are shown in Figure 3.5.

The picking simulations showed that all the interfaces studied, regardless o f which interface definition

was used or whether or not ligand-buried residues were excluded, were significantly conserved. Enolase 

consistently gave the lowest, ie, most significant, P  values whereas the family with the highest P  values 

depended on interface definition, SOD having the highest among total interfaces and SSI scraping just 

below the 5% cutoff among central zones (Table 3.2 and Figure 3.3).

P  values determined by walking were consistently higher than those determined by picking (Figure 

3.4(a)), and in some cases were outside the top 5% of conserved walks. However, in every family except 

TIM  the interface was significantly conserved by at least one of its two definitions (Table 3.2 and Figure 

3.3).

The exclusion of ligand-buried residues (masking) affected P  values by a small and usually negligible 

amount (Table 3.2). Its most conspicuous effect was seen in the walking P values for AP, and in particular 

those corresponding to the total interface, where masking promoted conservation o f the interface from just 

outside the top 7% of walks to barely within the top 5%. Masking made only a small difference because, 

in most cases, the residues of a protomer’s ligand-buried site numbered far fewer than those o f its interface. 

The effect o f their presence or absence in a pick or walk was therefore small.

Although absolute P values varied between picking and walking in a protomer, the rank order between 

one definition of the interface and the other did not (Figure 3.3). The central zone was unequivocally more
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Figure 3.3: P  values for residue conservation of the interface obtained by picking and walking for six 
families o f homodimers.
Interfaces with P  values smaller than 5%, ie, above the dashed line, are considered significantly conserved. 
P  values are shown for two interface definitions: (a) central zone and (b) total interface. The graphs show P 
values from picking are significant for both definitions o f the interface in all families, and that P  values from 
walking are higher and significant less often. Note that P values are shown for the unmasked simulations 
only, since masking made negligible difference to these results.
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Figure 3.4: Comparison of P values obtained by different methods.
In graph (a) P values calculated by picking (x-axis) are plotted against P  values calculated by walking (y- 
axis) for the same group of interface residues. The graph shows walking P  values are consistently higher, 
ie, denote less significant conservation, than those calculated by picking and that there is little correlation 
between P  values from the two methods. In graph (b), P values computed by walking (x-axis) are plotted 
against those generated from the patch analysis (y-axis) for the same interface. The graph shows walking P 
values typically give lower, ie, more significant, P values than from patch analysis and that P values from 
the two methods correlate reasonably. Note that P  values are shown for the unmasked simulations only, 
since masking made negligible difference to these results.
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Figure 3.5: Distributions of conservation for the picking and walking selection procedures.
Each graph shows the distribution of conservation for 10 million picks (smooth line) and 10 million walks 
(dashed line) for one definition of the interface in one homodimer family. Graphs in (a) show distributions 
used to find P  values for the central zone; graphs in (b) show distributions used to find P  values for total 
interface. In each graph, conservation, defined as the mean conservation score o f residues in a selection, 
is presented in bins of width 0.01 along the x-axis. The number of selections that fall into a given bin 
is presented on the y-axis. A dotted line intersecting with the x-axis indicates the mean conservation of 
residues in the true interface. The P value determined by a given simulation is the fractional area of its 
curve that falls to the right o f the dashed line. The graphs show picking tends to give regular, normal 
curves whereas walking gives irregular and often highly skewed curves. The implications of these findings 
is discussed in the Results section. Note that distributions are shown for the unmasked simulations only, 
since masking made negligible difference to these results.
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conserved than the total interface in AP, GST and SOD families. In Enolase and TIM, P  values were similar 

between the two interface definitions. Only in SSI was the total interface clearly more conserved than the 

central zone.

3.3.2.1 Conservation in picks

Figure 3.5 shows distributions of the conservation scores achieved by picks and walks. As with the patch 

distributions, the mean of a picking distribution estimates the mean conservation o f surface residues. The 

higher moments relate only to the shape of the underlying distribution of conservation for individual surface 

residues and the number of residues chosen. They say nothing about how conservation is dispersed over the 

surface since picking is blind to where residues are located in space.

Picks the size of the total interface fell into distributions that were narrower and more symmetric than 

picks the size of the central zone because they represent larger samples of the surface population and so show 

greater convergence toward the mean. Such properties are manifest in Figures 3.5(a,iv) and 3.5(b,iv): SOD’s 

central zone, which comprises a mere five residues, has an wide and irregular picking distribution (Figure 

3.5(a,iv)) whereas its total interface, which comprises 20 residues, has a distribution that is symmetric and 

regular (Figure 3.5(b,iv)). Owing to the greater spread of the distribution in Figure 3.5(a,iv), the absolute 

level o f interface conservation required to reach significance is far higher for the central zone than for the 

total interface. Despite this, the central zone, which has absolute interface conservation at 0.93, achieves 

a more significant P  value than the total interface (Table 3.2 & Figure 3.3), suggesting that evolutionary 

pressure to conserve residue type concentrates at the centre of the interface. In SSI, the converse is true: 

SSI’s total interface achieves not only greater significance than its central zone but also a higher absolute 

conservation score (Table 3.2). Tamura et al (Tam uraet al, 1995) have demonstrated the importance of 

Vall3, a central zone residue, to dimer formation and overall stability in SSI. The results presented here 

suggest residues in the outer zone also play crucial roles in this regard.

The picking results for the total interface complement the results of the patch analysis, both giving an 

indication of the relative conservation of the interface. Patch analysis did not provide P  values as such, but 

the probabilities o f a patch chosen at random being more conserved than the interface were 0.09 (AP), 0.16 

(Enolase), 0.18 (GST), 0.20 (SOD), 0.08 (SSI), and 0.23 (TIM). None o f these patch P  values are less than

0.05 and they correlate poorly (with a Pearson’s correlation coefficient o f 0.34) with the P  values generated 

by picking. Some differences are particularly striking. For example, TIM achieved significant P  values by 

picking but relatively high, ie, random, P values according to patch analysis. This is because picking is 

geometry-free and so escaped the effects o f clustering that prevented TIM ’s interface from  achieving a high 

patch score.

3.3.2.2 Conservation in walks

The walking distribution for a particular protomer and its interface was always more spread out than the 

corresponding picking distribution, indicating that the dispersion o f surface conservation in all families was 

more clustered than random to varying degrees (Figure 3.5). This increase in distribution width marginal­

ized the absolute conservation score o f all the interfaces studied, pushing, in each case, a greater proportion 

of selections beyond the interface score. Thus the P values for walking were consistently higher that those 

for picking.

Figure 3.5 shows the walking distributions for each family. These are similar in shape to the distributions 

of patch scores shown in Figure 3.2 and corroborate inferences based on the patch data made above. The
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walking data give particularly strong support to these inferences because walking, unlike patch analysis, 

samples the space of every possible set of contiguous surface residues, which includes the interface set. 

The walking P  values also correlate reasonably (with a Pearson’s correlation coefficient o f 0.77) with P  

values from the patch analysis, although they are significant more often (Figure 3.4(b)).

For TIM, the similarities between walking and patch data are conspicuous (Figures 3.2(f) and 3.5(b,vi)). 

TIM, the only protomer that failed to achieve a significant walking score for either definition of its inter­

face, had walking distributions more positively skewed than those for any other family (Figures 3.5(a,vi), 

(b,vi)). M ost skewed of all was its distribution for the central zone (Figure 3.5(a,vi)), where so many walks 

contained a majority of highly conserved residues that the resulting curve resembles an extreme value dis­

tribution. This resemblance, far from being coincidental, is a direct result o f the surface composition of 

TIM, in which the gash of conservation (described above) relegates most walks that are outside it to the 

lower ranks of the distribution and promotes walks that overlap it to higher and higher ranks in diminishing 

numbers. TIM ’s walking results are thus consonant with its patch results and it is no surprise that its P

values from both methods are the highest, ie, most random, among all families.

3.4 Discussion

The results show that the interfaces of all proteins studied here are more conserved than expected for a ran­

dom distribution and that in most cases this conservation is statistically significant at the 5% level. In some 

cases, the selective pressure to remain invariant concentrates in the central zone; in others, conservation is 

about evenly matched across the complete interface; in one (SSI), selection against change may be strongest 

at the periphery of the interface.

O f the two methods used to select groups of surface residues, picking is the simplest and its results 

are the most straightforward to interpret. However, walking reveals more about the difficulties that would 

be inherent in predicting the location of interface using conservation alone. The strict definition of the 

ligand-buried site meant that many highly conserved residues that play a role in binding were ignored. If 

ligand-buried residues were defined as residues that lose merely some accessibility rather than those that 

become totally inaccessible on addition of ligand groups, the masked results would be different, probably 

giving lower P  values in all cases except SSI, where the P  values would be higher. However, it was felt that 

to exclude so many residues from the analysis would be misleading.

The results suggest the analysis methods described here could be usefully applied to the problem of

differentiating crystalline contacts from biologically relevant interfaces (Ponstingl et al, 2000). Proteins 

crystallize as multimers that may contain both biological contacts, which are subject to evolutionary con­

straints, and non-biological contacts, which are not. If  family information is available, picking or walking 

P  values could be used to detect interactions in a crystal structure that are biologically relevant.

In this analysis we test whether conservation of an interaction is reflected in conservation of amino acid 

type at the site of that interaction. To ensure reliability, unusually stringent criteria were observed when 

compiling the dataset. For instance, it was compulsory that all sequences used in assessing conservation 

for a protomer share that protomer’s multimeric states as explicitly recorded in their annotation. Further, in 

the interests of consistency, only homodimers were included: their annotation and nature o f binding tend to 

be well documented, thus less likely to introduce confounding factors, than for other types of complexes. 

Such patterns may not be so distinct or be so readily detected for heterodimers or transient complexes. 

However, if the interfaces are functionally important, we expect them to be conserved. The challenge now 

is to use this information to help develop a method that can predict the location o f an interface given only
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the structure of the protomer and its sequence alignment.
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Chapter 4

Using conservation to identify 
biologically relevant crystal contacts

4.1 Introduction

M ost crystal contacts are artifacts o f crystallization that would not occur in solution or in the physiological 

state. But some of the observed contacts may be biologically relevant. Determining which contacts are 

biological and which are not is often difficult, particularly when, as frequently seems to be the case for 

entries in the Protein Data Bank (PDB) (Berman et al, 2000), the oligomeric state o f the protein is uncertain 

or unknown (Henrick & Thornton, 1998, http://pqs.ebi.ac.uk/).

4.1.1 Biological contacts

Biological contacts, which here refer to any site of in vivo recognition between macromolecules, have 

received more attention than nonbiological contacts or comparisons of the two. Biological interfaces 

have been characterized in terms of their geometric features, such as planarity, shape-complementarity 

and circularity, in terms of their chemistry, such as hydrophobicity, preference for certain amino acids, 

and in terms of residue conservation (Chothia & Janin, 1975) (Janin et al, 1988) (Jones & Thornton, 1995) 

(Lijnzaad & Argos, 1997) (Lo Conte et al, 1999) (Valdar & Thomton, 2001). Although a number of 

studies have sought to predict the location of biological interfaces based on some of these pa­

rameters (Young et al, 1994) (Jones & Thornton, 1997b) or to dock partners (Sternberg et al, 1998, 

and refs therein), few have attempted to discriminate between biological and nonbiological contacts 

(Ponstingl et al, 2000), a problem faced by anyone who interprets X-ray data.

4.1.2 Nonbiological contacts

M ost proteins solved by X-ray analysis and deposited in the PDB have three or more crystal contacts, and 

some have over 20. The sum of these contacts typically buries around 30% of the protein surface to ensure 

crystal stability (Carugo & Argos, 1997).

http://pqs.ebi.ac.uk/
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4.1.3 Comparing biological and nonbiological contacts

A number of features distinguish biological from nonbiological contacts. Biologically relevant interac­

tions tend to be more specific than nonbiological ones, although this can be hard to detect in the crystal 

(Janin, 1997). The promiscuity of nonbiological contacts in pancreatic ribonuclease has been demon­

strated by Crosio et al (Crosio et al, 1992). They showed that almost any residue on the surface of the 

protomer can be part o f a crystal contact and that the same residue involved in two alternative contacts 

may interact with a different set of partners. Biological contacts tend to be larger than nonbiological ones 

and usually constitute the biggest contact in the crystal (Janin & Rodier, 1995) (Carugo & Argos, 1997) 

(Janin, 1997) (Dasgupta et al, 1997). The amino acid composition of nonbiological contacts is much like 

that of the surface as a whole (Carugo & Argos, 1997), although observed distributions vary slightly with 

ionic strength of solvent (Iyer et al, 2000). Biological contacts are split on the issue of composition. Tran­

sient contacts, such as those formed in signal transduction are composed similarly to the rest of the surface, 

whereas oligomeric contacts have a composition intermediate between the surface and the protein core 

(Jones & Thomton, 1997a) (Lo Conte et al, 1999). Some groups have mutated residues on the surface in 

order to engineer nonbiological contacts and so improve crystal stability ( McElroy et al, 1992, for exam­

ple).

4.1.4 Automatic discrimination of nonbiological from biological contacts

Automatic discrimination of biological from nonbiological contacts is desirable, and is attempted in the 

Protein Quaternary Stmcture database (PQS) (Heruick & Thomton, 1998). Because the contact size is such 

a powerful discriminant, the PQS uses accessible surface area (ASA) of the buried contact area to distin­

guish biological from nonbiological contacts, along with a number of other physical measures, which are 

not rigorously optimized. The method developed for PQS, when assessed against solution data for a non- 

redundant subset o f proteins, distinguished correctly between tme and false homodimers 78% of the time 

(Hannes Ponstingl private correspondence).

Ponstingl et al rigorously tested the utility o f ASA and statistical “pair potentials” as discriminants 

(Ponstingl et al, 2000). Pair potentials are putative energies derived from a statistical analysis o f observed 

frequencies o f atom-pairs at a given separation. These have been used before for predicting the location of 

putative biological contacts (Robert & Janin, 1998) and for discriminating between computer-docked pro­

tein complexes (Moont et al, 1999). Ponstingl et al analysed a dataset o f 172 proteins, with 76 homodimers 

and 96 monomers. Straight ASA produced a correct classification 84.6% of the time. Their pair potential 

correctly classified proteins in their dataset 87.5% of the time. A modified ASA score that considered the 

difference in size between the two largest contacts gave an accuracy of 88.9%.

Conservation has been used successfully to explore pattems of energy and define functional residues 

at protein binding sites (Lichtarge et al, 1996) (Lichtarge et al, 1997) (Lockless & Ranganathan, 1999) 

(Armon et al, 2001). Recently we reported that, within a small and extensively researched dataset, 

oligomeric interfaces exhibit significant residue conservation compared with comparable-sized regions of 

the protein surface (Valdar & Thomton, 2001). There is a clear rationale for why biological interfaces 

should be conserved: the amount by which they vary is circumscribed by the importance and specificity of 

their physiological role, and the degree of variability required to dism pt them. Conversely, we would expect 

no such selective evolutionary pressure on nonbiological contacts, which are the result o f human experi­

ments and not the product of evolution (Durbin & Feher, 1996). The above suggests conservation may be 

useful in discriminating between biological contacts, which we assume will be conserved, and nonbiologi-
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cal ones, which we assume will not. Moreover, since the measures of conservation and size are orthogonal, 

it is possible that combining them will provide a truly powerful discriminator.

We assess the utility o f size and conservation in addressing the following two questions:

1. Is a given crystal contact biological?

2. Given all contacts in the crystal o f a homodimer, which is the biological one?

These questions are different from those posed in earlier studies that have attempted to distinguish between 

homodimers and monomers. They more directly test the utility o f conservation in identifying biological 

relevance of a contact. We develop algorithms that use one or both measures to answer each o f the questions 

above. We compare efficacy of these algorithms, as well as the relative contribution of size and conservation 

to their predictive power.

4.2 Methods

4.2.1 Dataset

The dataset of Ponstingl et al (Ponstingl et al, 2000) was used to provide a starting point for further filtering. 

This comprised 172 non-homologous protein crystal structures o f which 76 were homodimers and 96 were 

monomers. Atom coordinates were taken from the PDB. A program written by Hannes Ponstingl was 

used to generate hypothetical contacts for each structure. It works by applying crystallographic symmetry 

operations to a given protomer chain to recreate all contacts in the crystal. The term “protomer” is used 

here to denote a component chain of a multimeric complex.

In order to calculate residue conservation meaningfully, each protein must have a sufficiently large and 

diverse set of homologues. Because insufficient sequence information was available for some of the proteins 

in the initial dataset, the final dataset was smaller, comprising 118 proteins o f which 53 were homodimers 

(Ia3c, Iad3, lafw, lajs, lalk, lalo, lam k, laom , laor, Iaq 6 , lauo, Ibif, Ibsr, Icg2, Ichm, Icmb, Icp2, 

Icsh, Ictt, Idaa, I fro, Ihjr, lim b, lisa, liso, Ikpf, llyn, Imjl, Imka, Imoq, Insy, loac, lotp, Ipgt, Ipre, 

Irfb, Ises, Islt, I sox, Itox, Itrk, Itys, luby, Iwgj, Ixso, 2ilk, 2tct, 2tgi, 3grs, 3pgh, 3ssi, 4kbp, 5csm) and 

65 were monomers ( I 6 pk, laOk, Ia 6 q, laay, Iaf7, lafk, lah7, lako, lakz, Iam 6 , lam j, laoh, laua, laun, 

lavp, layl, Ibc2, IbeO, IbgO, Ibgc, Ibkz, IbnS, Ibp I, Ibry, Ibwz, Ic3d, Icki, Idff, Idjx, Idmr, lesf, leso, 

Ifdr, Ifeh, Ifsu, Igci, linp, lips, Ikfs, Imdt, Im h l, Impg, I pda, Ipjr, Ipmi, Ippo, Irgp, Irhs, I ton. Inch, 

luro, Ixgs, lyge, Izin, 2321, 2atj, 2bls, 2fgf, 2ihl, 2mbr, 2pth, 2m2, 3cms, 3sil, Spaz).

4.2.2 Definition of a contact

We consider only surface residues in our dataset. A residue is considered to be on the surface if its relative 

accessible surface area (RSA; (Lee & Richards, 1971)) in the isolated protomer is greater than 5% of the 

maximum for an extended tripeptide in which that amino acid is flanked by alanines. If the residue’s RSA 

is less than 5%, it is considered part of the structural core of the protein. Solvent accessibility was deter­

mined using NACCESS (Hubbard & Thomton, 1993), an implementation o f the Lee & Richards algorithm 

(Lee & Richards, 1971), with a probe sphere of radius I.4Â. The surface cutoff used follows that devised 

by M iller et al (Miller et al, 1987).

A given protomer in the dataset is surrounded by a number o f partners. Each partner touches the 

protomer surface, defining a different crystal contact. A contact is described by the set o f residues on the
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surface of the protomer that each lose at least 1 of ASA when complexed with the relevant partner. 

Crystal contacts that fail to bury any residues by this amount are excluded from  the dataset. A given 

surface residue may therefore be classified as one of the following: part o f a biological contact, part o f a 

nonbiological contact or belonging to the rest o f the surface.

4.2.3 Assessing conservation

4.2.3.1 Identification and alignment of homologues

Homologues were identified for each protomer from the Non-Redundant DataBase (NRDB, a database 

of protein sequences maintained by the NCBI) using the iterative profile search program PSI-BLAST 

(Altschul et al, 1997). PSI-BLAST was allowed a maximum of 20 iterations to reach convergence. The 

E-value threshold for inclusion of new homologues at each iteration was set at 10 This cutoff was strict

enough to guard against profile drift but sensitive enough to allow detection of remote homologues, with the 

sequence identity of a match to the query falling as low as 5%. The profile alignment used in a protomer’s 

final PSI-BLAST run was taken as the multiple alignment for that protomer. M ultiple alignments compris­

ing fewer than four sequences, including that o f the protomer query sequence, were regarded as containing 

insufficient evolutionary information and were excluded.

4.2.3.2 Scoring residue conservation from an alignment

A score of evolutionary conservation, ranging continuously between 0 for unconserved and 1 for strictly 

conserved, was assigned to each residue in the protomer from its multiple alignment using the Cons sum of 

pairs score described by Valdar & Thomton (Valdar & Thomton, 2001). Cons uses amino acid similarities 

inferred from PET (Jones et al, 1992), a Dayhoff-like mutation data matrix (Dayhoff et al, 1978), to assess 

the diversity of amino acids at an aligned position. In this score, contributions from  individual sequences 

are weighted inversely with their redundancy in the alignment.

4.2.3.3 Probabilistic scoring of contact conservation

Contact conservation was scored probabilistically after the “picking” measure described in chapter 3 (sec­

tion 3.2.7.1). In this scheme, the conservation of a contact o f size m is described by Pcons{Cons,m), the 

probability that a group of m residues drawn at random without replacement from the surface of the pro­

tomer has an average Cons score greater than or equal to that of the m residues in the contact. This prob­

ability is computed by simulation: m residues are chosen at random from the surface and their mean Cons 
recorded. This is repeated 1 million times to give a probability estimate with an expected error of at most 

10“  ̂ at least 95% percent o f the time. Similar P values could have been computed using simpler statistical 

tests that do not require simulation, eg, the Z-test. However, the small size of some contacts was felt to 

undermine the assumptions made by such tests, making simulation the more robust alternative.

Low values o f Pcons denote highly conserved patches, reflecting that such high average residue conser­

vation would be unlikely from a chance draw. High values of Pcons denote poor conservation, likely to be 

bettered in a chance draw.

4.2.3.4 Filtering the dataset for uninformative cases

If  sequences in a family are too similar, conservation becomes uninformative. For instance, consider a 

protomer with 100 surface residues; 99 have a Cons of 1 and one has a Cons of 0.5. A ten-residue contact
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on that surface could achieve one of only two possible Pcons scores: 1 if it contained the less conserved 

residue and ~  0.57 otherwise. This kind of granularity is undesirable; after all, it is grossly misleading for 

a contact o f maximal conservation to receive a P value above 0.5. To filter out cases in which the diversity 

o f surface scores is not sufficient to support a meaningful P  value, we apply to each protomer surface a 

function Doss (Diversity o f surface scores) and reject cases that fall below a cutoff for this metric.

Although the actual diversity of Pcons scores is complex to work out, varying both with protomer and 

contact size, a simple count o f the number of distinct permutations of residue scores indicates this property 

well enough. A natural measure is thus the multinomial coefficient, conveniently expressed in Shannon’s 

entropy (Shannon, 1948). For a given protomer, let All be the set of Cons scores belonging to all surface 

residues and Unique be the non-redundant set of these scores. Then the diversity o f surface scores, Doss, is 

given by
100%

Doss = -  y  log '
n{All) \o%n{All)

where n, is the number of instances of score i, and n(All) is the number of surface residues. Doss ranges 

between maximal diversity at 1 0 0 % and uniformity at 0 %.

Applying Doss to the original dataset resulted in a distribution of three parts: a minority of protomers 

occupied the ranges 0-25% and 35-65%, whereas the majority sat in the range 70-100%. Because align­

ments in the lowest range were perceptibly redundant, a cutoff of 30% Doss was chosen and all protomers 

with alignments falling below this threshold were excluded.

4.2.3.S Testing whether conservation of biological contacts is significant

To test whether biological interfaces are usually more conserved than nonbiological contacts, we first count 

how many times the most conserved contact around a protomer is biological. Second, we compute the 

probability ( P m o s tc o n )  of observing such a result with a null model in which all contacts, regardless o f type, 

are equally likely to be the most conserved. Last, the value of P m o s tc o n  is used to assess how well the 

null model accommodates the observed results and to infer whether the frequency with which biological 

contacts are most conserved is statistically significant.

A null model is proposed that assumes biological contacts are no more or less conserved than nonbi­

ological ones. According to this model, the most conserved contact o f the ith protomer is a random draw 

on the n, contacts that surround it. Let “success” describe an event in which the most conserved contact is 

biological. The probability of a success in protomer i is then given by the Bernoulli distribution / ,  :

f m  =  /  ifX  =  0 (failure)
‘ j  ^  if%  =  1 (success)

Across N  = 53 homodimers, the total number of successes depends on all N  distributions and has a prob­

ability mass function h =  where f t  * f j  is the convolution of distributions / ,  and f j .  If the

most conserved contact is observed to be biological m times, then probability o f the null model achieving 

at least m successes is given by

N

P m o s tc o n  ( ^ )  —  ^  ^(0 •
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Absolute measures Relative measures
Size number of residues in the contact

fraction of surface residuesburied 
by the contact

ranked size among a pro- 
tomer’scontacts (measured as 
thefractional rank®, such that the- 
biggest contact has a rank o f 1 . 0  and 
smaller contacts haveranks of < I) 
size difference from thelargest con­
tact in the protomer(eg, if the 
biggest contactburied 2 0  residues, a 
contactthat covered only 15 would- 
have a size difference of 20 -  15 =  
5)

Conservation Pcons for the contact(ranges from 
0 , meaning highlyconserved, to 1 , 
meaningpoorly conserved)

ranked Pcons among aprotomer’s 
contacts (measuredas the fractional 
rank®, such thatthe most conserved 
contact hasa rank of 1 .0 , and less- 
conserved contacts have ranksof 
< 1 )

Table 4.1: Measures available to predictors 
“ Fractional rank is the rank of an item divided by the maximum rank for that set o f items. Fractional rank 
takes values in the range (0 ,1 ].

4.2.4 Discriminating biological from nonbiological contacts

We examine the discrimination problem from two viewpoints, addressing the following questions:

1. Absolute assessment: is a given contact biological?

2. Relative assessment: given the set of contacts associated with a protomer that is known to be homod- 

imeric, which contact among this set is biological?

We devise a number o f predictors to answer these questions using the size and conservation data available. 

The absolute assessment pools crystal contacts from a set o f protomers. A predictor attempts to classify 

each contact as biological or nonbiological. This assessment is performed on two sets o f contacts: the 

homodimer set, which comprises both types of contact, and the monomer set, which contains only non­

biological contacts. The relative assessment is performed on the homodimers. Predictors consider each 

protomer in turn, deciding which of its contacts is biological. A prediction is correct if  the true biological 

contact only is classified as biological. If other contacts are classified as biological in addition to or instead 

of this contact, the prediction is deemed incorrect.

Table 4.1 shows the measures available to the predictors. Predictors in the absolute assessment may use 

only absolute measures whereas predictors in the relative assessment may use absolute or relative measures.

4.2.4.1 Neural network predictors

Neural networks can provide an elegant and convenient framework for classifying new data based on pat­

tems extracted from old data. Herein, we use two types of feed-forward neural network: the single layer 

perceptron (SLP) and the two-layer multilayer perceptron (MLP) ( Wu & McLarty, 2000, and refs therein). 

The inputs are a selection of the measures listed in Table 4.1 and the output corresponds to the predicted 

class: biological or nonbiological. Multilayer perceptrons may contain different numbers o f hidden units.
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so for Rotational convenience if an MLP has x  hidden units, it is referred as MLPx (eg, MLP2 denotes an 

MLP with two hidden units).

The neural networks employed here are trained using the scaled conjugate gradient algorithm 

(M 0 ler, 1993), which is usually faster than the more traditional backpropagation. The number o f train­

ing iterations was set constant at 1 0 0 .

4.2.5 Assessing discriminator performance

4.2.5.1 Cross-validation

We assess the performance of the neural network predictors using a “leave-one-out” form of cross-validation 

(jackknifing). In this scheme, for a dataset o f n protomers, a predictor is trained on data from n-1 protomers 

and tested on data for the single remaining protomer. This is then repeated for each protomer in turn.

Neural network predictors are jackknifed for the absolute and relative assessments on the homodimers. 

In the absolute assessment on the monomers, which contains no positive examples, networks train on the 

whole homodimer set.

4.2.5.2 Performance measures

Performance of predictors in the absolute assessment is measured in three ways: by accuracy, error rate and 

a comparison with random. All three scores can be derived from the following quantities:

p  = number of correctly classified biological contacts

n = number of correctly classified nonbiological contacts

o = number o f nonbiological contacts classified as biological (overpredictions)

u = number of biological contacts classified as nonbiological (underpredictions)

t = p -\-n  + o + u

The most straightforward score, “accuracy” measures the percentage of correctly classified contacts:

accuracy =  x 1 0 0 % .

The “error rate” measures the percentage o f incorrectly classified contacts and is simply 100% minus the 

accuracy.

Accuracy and error rate can be misleading when the dataset contains many more instances of one class 

than another. For instance, consider a predictor that has no discriminatory power and just predicts everything 

to be nonbiological. Because the vast majority of contacts in the homodimer dataset are nonbiological, this 

predictor would automatically give high accuracy. To penalize such spurious achievements, we include a 

third score, the phi-coefficient (hereinafter referred to simply as “phi”).

Phi (also referred to as “M atthew’s correlation coefficient” in neural network literature) measures the 

correlation between observed and predicted results. It is a special case of Pearson’s correlation coefficient, 

computed when the two variables being compared are dichotomous and take values of 0 or 1. Phi ranges 

from - 1 , representing inverse correlation and extremely poor predictive power, to 4-1, representing perfect
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Homodimers Monomers
Number of protomers 53 65

Number of contacts biological 53 0

nonbiological 366 535
total 419 535

Number of contacts per protomer range [3, 14] [4,13]
mean 7.9 8 . 2

Number of sequences in alignment range [4, 251] [6 , 251]
mean 72.4 82.8

Doss score^ mean 82.5% 84.0%
s.d. 17.5% 18.0%

Table 4.2: Summary statistics for the homodimer and monomer datasets 
 ̂Doss measures the diversity of conservation scores on the surface o f the protein. Low percentages indicate 

the alignment may not be diverse enough for meaningful conservation scores to be extracted.

correlation and an ideal prediction. Phi is calculated as

pn — ou
(j) =

^ /{p  + o){p + u) {n + o){n + u)

In addition to possessing a convenient range, phi also has a real probabilistic basis, relating to the chi- 

squared function for 2 x 2 contingency table. Specifically, it can be shown that ({) =  , which means the

likelihood of random assignment producing the observed prediction rate, p  ^2 (the chi-squared probability), 

is one at (() — 0 and decreases with increasing phi (Sheskin, 2000).

Accuracy and phi were used to measure performance of predictors applied to the homodimers. Per­

formance on the monomers was assessed using the error rate. A prediction in the relative assessment is 

either right or wrong: there are no true negative examples. We measure predictor performance by accuracy, 

calculated as the percentage o f correct predictions.

4.3 Results

We investigated size and conservation of crystal contacts in 53 families of homodimers and 65 families of 

monomers. A contact was defined as the set of residues on a protomer that lose their accessibility upon 

complexation with a partner. Contact conservation was measured probabilistically as Pcons- On this scale, 

values close to zero indicate extremely high conservation (ie, improbable by chance) and values close to 

one indicate extreme low conservation (ie, high variability in evolution). Table 4.2 shows the number of 

biological and nonbiological contacts in each dataset, and information about the family alignments. Figure

4.1 plots the size of contacts from each set against their conservation.

4.3.1 Contact size

Biological contacts were typically bigger than nonbiological contacts. The average biological contact was 

53.7 residues in size and accounted for 25.9% of a protomer’s surface residues. In contrast, the average 

nonbiological contact was a mere 7.6 residues and covered only 4.2% of the surface.

Figure 4.2 shows distributions o f contact size in the dataset. These distributions reveal substantial 

variation in size among both types of contact but particularly for biological ones. A significant number of 

biological contacts occupy an area in the lower ranks of the distribution that overlap with high numbers of
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biological contact (dinner) 

nonbiological contact (dinner) 

heunstic boundary

[conserved] C onservation  (P c« m) [variable]

(a) H om odim er biological and nonbiological 
contacts

biological contact (dimer) 

nonbiological contact (monomer) 

tieuristic boundary

Î:

[conserved] C onservation  (P cons) [variable]

(b) H om odim er biological contacts and 
m onom er nonbiological contacts

Figure 4.1 : Size and conservation of crystal contacts in the homodimers and monomers.
Size is plotted as the number of residues. Conservation is plotted on the Pcons scale, where 0 is highly 
conserved and 1 is highly variable (unconserved). Graph (a) plots size against conservation for biological 
(red circles) and nonbiological (black squares) crystal contacts in the homodimers. Graph (b) plots these 
measures for nonbiological contacts in the monomers (black triangles) and, for comparison, plots biological 
contacts in the homodimers (red circles). In each graph, a dotted line represents the decision boundary 
devised for the heuristic predictor H^bs (see Results), which attempts to automatically separate biological 
from nonbiological classes of data based on size and conservation. These graphs show that the two classes 
naturally separate by size and, to a lesser extent, by conservation.
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■  biological (dimer)
□  nonbiological (dimer)

□  nonbiological (monomer)

0.05  0.1 0 .15  0 .2  0 .25  0 .3  More

Contact size  (fraction of surface residues buried by a contact)

Figure 4.2: Size of contacts in the homodimer and monomer crystals.
Contact size, measured as the fraction of surface residues buried in the interface, is presented on the x-axis 
in bins of 0.05 from 0 to 0.3 and by a single aggregate bin, labelled “more”, thereafter. The distributions 
show that biological contacts tend to be larger than nonbiological contacts, but that there is a significant 
region of overlap between these two classes.

nonbiological contacts.
The biological contact was the largest contact made by the protomer in all but one of the 53 homodimer 

crystals. The exception was luby, in which the 48-residue biological contact took second place to a 49- 
residue nonbiological one.

4.3.2 Contact conservation

Biological contacts were usually more conserved than nonbiological ones (Figure 4.3). On average, bio­
logical contacts had a Pcons score of 0.26, whereas nonbiological contacts scored an average of 0.67 in the 

homodimers and 0.63 in the monomers. The biological contact was the most conserved contact surrounding 

the protomer in 36 of the 53 homodimer crystals. The calculated Pmostcon  ̂ which describes the probability 
of this happening in a null model where the most conserved contact is a random draw (see Methods), was 

2.38 X 10-'^.
Despite these figures, biological contacts were not exclusively highly conserved and highly conserved 

contacts were not exclusively biological. Figure 4.3 plots the distribution of conservation for the two con­

tact types in the homodimer and monomer sets. It shows that although biological contacts tend to be 

conserved, these contacts exhibit a full range of conservation, with the second most frequent group at the 
least conserved extreme. The distributions for nonbiological contacts in the homodimers and monomers are 
strikingly similar. In both, the mode coincides with extreme evolutionary variability whereas the remaining 

contacts span the range of Pcons about evenly. Figure 4.4 uses Bayes theorem to combine the distributions 
for homodimers in Figure 4.3. It consolidates the above findings: the likelihood of a contact being biolog­
ical diminishes as its residues become more variable in evolution. Figure 4.5 consolidates the relationship
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Figure 4.3: Conservation of biological and nonbiological contacts in the homodimer and monomer crystals. 
Conservation is measured on the Pcons scale (O=strongly conserved, l=poorly conserved). Conservation is 
presented in bins of width O.I on the x-axis. Frequency, measured as the fraction of data belonging to a 
given class that falls into that conservation bin, is presented on the y-axis. The histograms show biological 
contacts tend to be highly conserved whereas nonbiological contacts tend to be poorly conserved.
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Figure 4.4: Probability of a contact being biological given its conservation in the homodimers. 
Conservation is measured on the Pconx scale (O=strongly conserved, l=poorly conserved). Conservation is 
presented in bins of width 0.1 on the x-axis. The height of each bar represents the probability that a contact 
selected at random is biological given that it has the conservation associated with its x-axis bin. These 
probabilities are computed according to Bayes theorem. To avoid zero probabilities, constant pseudocounts 
of I were added to raw frequencies (according to Laplace’s rule) before Bayes theorem was applied. The 
histogram shows that the probability of a contact being biological sharply decreases with decreasing con­
servation.
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Figure 4.5: Probability of contact being biological given its size and conservation.
Contact conservation, as Pcons (O=strongly conserved, l=poorly conserved), is presented in bins of width 0.2 
on the x-axis. For clarity, each conservation range is depicted in a different colour. Contact size, measured 
as the fraction of surface residues buried by a contact, is presented on the z-axis in bins of 0.05 from 0 to 
0.7. The y-axis (vertical) measures the probability of a contact, randomly selected from the dataset, being 
biological given its size and conservation. Probabilities are calculated according to Bayes theorem after first 
applying constant pseudocounts according to Laplace’s rule. The graph shows that although larger contacts 
are more likely to be biological than smaller ones, high contact conservation makes this even more likely. 
The graph tails off around the higher values of size because there is little data for contacts in this range.
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between size and conservation in Figure 4.1, showing that although highly conserved contacts are likely to 

be biological, poorly conserved contacts may also be biological provided they are large.

Conservation and size did not correlate significantly. Pcons vs the number o f residues in a contact gave 

a Spearman’s rank-order correlation coefficient (Press et al, 1996) o f -0.14. Pcons vs the fraction o f surface 

residues buried in a contact gave a similarly insignificant correlation of -0.17.

4.3.2.1 Poorly conserved biological contacts

Some biological contacts were extremely poorly conserved. At the level o f the alignment, a biological 

interface may achieve a poor conservation score either because residues in the contact vary considerably 

or are subject to deletions. To investigate this we devise a score. Gappyness, that measures the extent to 

which the biological interface coincides with gaps in its multiple sequence alignment. If Interface is the set 

o f positions in the alignment corresponding to residues in the biological contact o f the protomer. G a p s , is 

the set of gaps aligned to the target sequence at position i, and Aminos i is the set of residues aligned at this 

position, then Gappyness is defined as

c =  S  , X 100% .
ielruerface » U A m i n O S i )

where n{A) denotes the number of elements in set A. Gappyness for a protomer ranges from 0%, denoting no 

gaps aligned to the interface, to 100%, denoting that only gaps are aligned to the interface. The homodimers 

had an average Gappyness of 8.4% with a standard deviation of 10.3%. Gappyness is one of many possible 

causes of low interface conservation and so, unsurprisingly. Gappyness showed no significant correlation 

with Pcons scores.

At the level of a homologous family, a biological interface may not be conserved because other members 

of its family are not homodimers, other members o f the family are homodimers but dimerize in a different 

way, or because other members of the family are homodimers but variability at the interface confers multiple 

binding specificity in that family.

For the nine least conserved biological interfaces. Table 4.3 lists Gappyness and evidence for multiple 

multimeric states (MMS) within the family.

Poor interface conservation of lalo  (G =  47.0%) and Itox (G =  38.6%) coincides with high Gap­

pyness. lalo  is the crystal structure of aldehyde oxidoreductase extracted from  Desulfovibrio gigas 

(Româo et al, 1995). lalo, often referred to as MOP, is a member of the molybdenum hydroxylase fam­

ily of enzymes (Hille, 1999). Its 149-sequence alignment contains many other members of this family, 

most o f which, judging by the available annotation, are likely homodimers. Yet despite their common mul­

timeric state, more than half o f these homologues lack M OP’s N-terminal tail, which for MOP constitutes 

a substantial portion of the interface. In the alignment there are at least two subfamilies; the aldehyde 

oxidoreductases (AO), which include a MOP-like N-terminus, and the xanthine dehydrogenases (XDH), 

which do not. Figure 4.6 shows that although XDH and AO are both dimers, the XDH protomer binds its 

paitner in a quite different manner with a different part o f its equivalent surface.

Itox is the crystal structure of diphtheria toxin extracted from Candida albicans 

(Bell & Eisenberg, 1996). Itox comprises three domains, each with a separate function: a catalytic 

domain (C) at the N-terminus, a translocation domain in the middle (T) and a receptor binding domain 

(R) at the C-terminus. The 21 sequences in the Itox alignment fall into three groups: those with all three 

domains, those that possess only domains C and T, and those with domain C only. The missing domains
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Protomer Name Pcons Gappyness^ Multiple Multimeric States 
detected in 

Swissprot sequences^

lad3 Aldehyde dehydro­
genase (rat liver)

1 15.4% 1 8 /2 9

I alo Aldehyde oxidore­
ductase (D. gigas)

0.996 47.0% 0 /  10

laor Aldehyde ferredoxin 
oxidoreductase (P. 
faria sis)

1 7.9% 1 /2

Ibsr Ribonuclease A 
(bovine seminal 
plasma)

0.936 4.3% 0 / 3

Insy NAD synthetase [8. 
subtilis)

0.997 5.4% 0 / 2

Islt Galectin (bovine 
spleen)

1 15.1% 0 / 4

Itox Diphtheria toxin (C  
albicans)

1 38.6% 0 / 2

2tct Tetracycline repres­
sor (E. coli)

0.950 4.6% 0 /  1

5csm Chorismate mutase 
(yeast)

0.909 10.6% 0 /  1

Table 4.3: Gappyness of interface for least conserved biological contacts {Pcons > 0.9)
 ̂ Gappyness measures the extent to which gaps in the alignment coincide with the interface (see Results).
 ̂ Data is in the form n/N, where N is the number of Swissprot sequences in the alignment that have sub­

unit annotation and n is the number of those sequences that are annotated as being something other than 
homodimer.

&
A ld eh y d e  o x id o r ed u c ta se X an th ine  d e h y d r o g e n a s e

Figure 4.6: Comparison of homodimerization in aldehyde oxidoreductase (AO; left), and xanthine dehy­
drogenase (XDH, right).
These two proteins are homologous homodimers. The two protomers coloured red and gold are shown 
in equivalent orientations. The protomer partner of each is coloured in grey. The figure shows that de­
spite homology and identical multimeric states, the mode of binding in these two homodimers is different. 
AO and XDH are represented by PDB (Berman et al, 2000) structures lalo (Romao et al, 1995) and Ifiq 
(Enroth et al, 2000) respectively. Images were created using MOLSCRIPT (Kraulis, 1991) and Raster3D 
(Merritt & Bacon, 1997).
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bestow high Gappyness, but the variability within aligned domains is negligible. The Doss score for Itox 

reflects this. Doss measures the diversity of conservation scores in an alignment (see Methods). A low 

Doss score, such as that o f Itox (Doss = 34.9%), suggests the alignment may not be sufficiently diverse 

to support meaningful analysis o f conservation. Examining the available annotation for sequences in the 

Itox alignment reveals that many of the homologues lacking the R  or T domain are fragments. This in turn 

suggests much of the observed variation in the alignment is indeed spurious.

Moderate Gappyness was seen in lad3 (G =  15.4%) and Islt (G =  15.1%). Iad3 is the crystal structure 

o f aldehyde dehydrogenase extracted from rat liver (L iu et al, 1997). It comprises three domains: one 

NAD-binding, one catalytic and one bridging. The lad3 interface is large and elaborate, and involves all 

three domains. The bridging domain, which is believed to be important for stabilizing the lad3 dimer, is 

absent from the vast majority of the 251 sequences in this protomer’s family. The nine interface residues 

that lie within this domain are, as a result, almost unmatched in the alignment and blight lad3 with its 

Gappyness and diminished overall conservation. The existence of MMS in the family further suggests the 

dimeric nature of lad3 is not important for many other members o f its family.

Islt is the crystal structure of galectin, also known as S-type lectin, extracted from bovine spleen 

(Liao et al, 1994). The alignment of Islt has gaps spread thinly throughout, rather than concentrated in 

a few conspicuous regions. It is likely that 1 sit’s poor conservation results from multiple multimeric states. 

Although the Islt alignment contains few annotated sequences to support this (Table 4.3) preliminary runs 

o f PSI-BLAST at lower inclusion E-values (eg, 0.0005) matched a large number of non-homodimeric se­

quences. Moreover, both dimers and tetramers occur at the level o f 1 sit’s homologous superfamily in CATH 

(2.60.120.60). Lectins are a group of carbohydrate-binding proteins that exhibits a diverse range of struc­

ture and specificity, in which heterogeneity of quaternary structure is common ( Vijayan & Chandra, 1999, 

and refs therein). MMS is also a likely cause of variability at the interface in laor (Table 4.3).

Neither Gappyness nor MMS were present in Ibsr. Ibsr is the crystal structure of ribonuclease A ex­

tracted from bovine seminal plasma. It is often referred to as BS RNase (M azzarella et al, 1993). BS RNase 

is considered something of an outlier among ribonucleases, being the only surviving member of the seminal 

plasma RNases. Seminal plasma RNases are thought to have arisen from the same gene duplication event 

that spawned pancreatic and brain RNases in mammals (Sasso et al, 1999). These three families are par- 

alogues: they are homologous but have diverged in function; and whereas both pancreatic and brain RNases 

have many active orthologues (homologues with equivalent function), BS RNase has none. The alignment 

o f Ibsr thus contains many such paralogues, which are under evolutionary pressures different from  those 

on BS RNase, and the only orthologues are engineered versions o f Ibsr. Little information exists about the 

structure o f brain RNase, but it is clear that the interfaces of pancreatic and BS RNase are different. In both 

cases, protomers intertwine termini to form metastable domain-swapped dimers (Bennett et al, 1995, and 

refs therein). However, whereas in BS RNase the dimer association is obliged by a disulfide bond, in pan­

creatic RNase this constraint is absent and dimer association takes second place to a more stable monomer 

form.

Candidate reasons for poor interface conservation of Insy, 2tct and 5csm were not found.

4.3.1.2 Highly conserved nonbiological contacts

Some nonbiological contacts were extremely highly conserved. Twenty-six (17%) nonbiological contacts 

achieved Pcons < 0.1. All o f these were relatively small, covering less than 10% of the surface o f their parent 

protomer.

The most obvious explanation for why a small contact that is not a biological oligomeric is conserved
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□  ligand data unavailable 

■  with ligand data

5% or less 10% 15% 20% 25% More

Percentage of residues in a biological contact that touch a ligand

Figure 4.7: Overlap o f biological contacts with ligand-touching residues.
Overlap on the x-axis is defined as the percentage of residues in a biological contact that are designated 
as ligand-touching (see Results). Ligand data was available for only 36 of the 53 homodimers. The graph 
shows that when overlap with a ligand-binding site occurs, it is usually moderate.

is that it overlaps a site of substrate or cofactor binding (Valdar & Thomton, 2001). For each protomer we 

identified “ligand-touching” residues (ie, surface residues that lose more than lÂ ^  ASA upon inclusion of 

the PDB ligand) and deduced which contacts contained them.

Ligands were present in 36 o f the 53 homodimers, providing information for 36 biological and 231 

nonbiological contacts. Figure 4.7 shows that for most o f the 36 biological contacts, fewer than 10% of 

their residues are ligand-touching.

Ligand-touching residues significantly increased the conservation o f some nonbiological contacts. 

However, they had an insignificant impact on the conservation of biological contacts. This can be shown 

from the data in Table 4.4. Among nonbiological contacts, the presence of ligand-touching residues was 

rare and high conservation rarer still. Given the frequencies o f these two properties, the number of contacts 

observed with both (ie, 7) is greater than expected (expected = 19 x 35/231 =  2.9). The converse is true 

for biological contacts. Among these contacts both high conservation and the presence o f ligand-touching 

residues are common. The number of biological contacts with both is 21, which is much as expected by 

chance (expected = 25 x 2 9 /3 6 =  20.1). Fisher’s Exact Test (Fisher, 1990) (see Table 4.4) confirms that the 

association between high conservation and the presence of ligand-touching residues is statistically signifi­

cant at the 5% level for nonbiological contacts, but not significant at anywhere near this level for biological 

contacts. Therefore, sites of ligand-binding can lead to conservation misclassifying nonbiological contacts 

as biological.
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Biological (total 36) Nonbiological (total 231)
highly conserved^ 25 19

contains ligand-touching residues 29 35
highly conserved 

and
contains ligand-touching residues

2 1 7

P fish e r  ^ 0.359 0.0131

Table 4.4: Contacts containing ligand-touching residues and contacts with high conservation in the homod­
imers.
^ P C o n s < 0 . \

 ̂ Probability from Fisher’s Exact Test. Low values indicate a statistically significant association between 
high conservation and overlap with ligand-touching residues (see text for discussion). For a given type of 
contact, the probability of the association is calculated from the hypergeometric distribution as

^F isher —
^ —^both

^cons
k

^ to ta l leçons 

f^ligand ~  ^ ^ligand

where ritotai is the total number of contacts o f that type, neons is the number of these that are highly con­
served, niigand is the number of these containing ligand-touching residues and n both is the number that are 
both highly conserved and contain ligand-touching residues.

4.3.3 Discriminatory power of size and conservation

4.3.3.1 Heuristic predictors

We devised the following simple heuristic predictors from a visual inspection of the raw data. The heuristic 

predictor for absolute assessment, Habs, traces a straight line on a graph of contact size against Pcons (such 

as in figure 4.1), separating biological from nonbiological contacts. Specifically, a contact is predicted to 

be biological if  and only if it covers more than 8  x Pcons +  19 residues.

The heuristic predictor for relative assessment, Hrei, uses a hierarchical scheme to choose the most likely 

biological contact among a set of contacts. First, a subset o f contacts is defined. Each contact in this subset 

must cover at least 75% as many residues as the largest contact. From  this subset, the contact with the 

smallest Pcons, ie, the most conserved, is then predicted to be biological.

The heuristic predictors, having no explicit training element, were not cross-validated.

4.3.3.2 Predictor performance: Absolute assessment

We applied more than 20 different neural network predictors to the absolute assessment. These spanned 

a range of single layer perceptron (SLP, a linear network) and multilayer perceptron (MLPjc, a nonlinear 

network with x  hidden units) architectures. We tested all combinations o f the three absolute measures listed 

in Table 4.1.

Figure 4.8 shows the accuracy of predictors in the absolute assessment, whereas Figure 4.9 shows the 

performance against random, measured by phi (see Methods), for the same experiments. These figures 

show only a selection of the interesting results, with complex networks omitted if they are outperformed 

by simpler ones. For instance, we exclude the SLP with two size-related inputs because simpler SLPs with 

only one size-related input perform at least as well.

All predictors listed gave a correct classification in 87% or more o f cases (Figure 4.8). Phi (Figure 

4.9) provides a more balanced performance metric. By comparing the observed classification against that 

expected by random assignment, it accounts for imbalances in the dataset. For example, phi exposes two
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Figure 4.8: Accuracy of predictors in the absolute assessment of homodimer contacts.
Predictors are presented on the on the vertical axis. For brevity, neural network predictors are given short 
names of the form networkf input 1, inpu t!,...}. The prefix network denotes the architecture of the network: 
SLP (single layer perceptron) or MLPx (multilayer perceptron with x hidden units). The names in curly 
braces refer to the inputs of the network: “numSize” is the number of residues in a contact; “fracSize” is 
the fraction of the surface covered by a contact; Pcons is a measure of the conservation for the contact (see 
Table 4.1 for fuller definitions). Habs is the heuristic predictor for the absolute assessment and is defined 
in the Results.. Accuracy, on the horizontal axis, measures the percentage of contacts a predictor correctly 
classified (see Methods). Assessment of neural network performance is cross-validated with respect to 
the homodimer dataset. The graph shows that although size alone and conservation alone have predictive 
power, combining both measures makes predictions more accurate.
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Figure 4.9: Performance of predictors against random in the absolute assessment of homodimer contacts. 
For an explanation of predictors (vertical axis), see Figure 4.8 legend. Performance is measured by phi (([); 
see Methods) along the x-axis. Phi is more informative, if less intuitive, than accuracy because it normalizes 
against imbalances in the dataset. Phi ranges from -1, denoting extremely poor prediction, to 0, denoting 
prediction equivalent to random assignment, through to 4-1, denoting a perfect prediction. Assessment of 
neural network performance is cross-validated with respect to the homodimer dataset. The graph shows 
linear networks using numSize perform no better than random.
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SLPs as poor performers: the SLP with the number of residues in a contact as its sole input, and the SLP 

that takes both this input and Pcons- Both predictors achieve their apparently high accuracy by predicting all 

contacts as nonbiological and the imbalanced nature of the dataset means they are correct most o f the time. 

However, as phi confirms, this tactic requires no discriminatory power.

Although conservation alone performed well and size alone, measured as the fraction of surface residues 

in a contact, performed better. Figures 4.8 and 4.9 show that a combination of size and conservation can 

be most powerful. For the inputs Pcons and size as a fraction of the surface, the linear network performs 

significantly better than any network that takes only one of the two. Adding three hidden units improves 

performance further, although a smaller or greater supplement o f hidden units does not. The input combi­

nation of Pcons and the number of residues in a contact achieves performance better than random only for 

MLPs, with architecture MLP3 being optimal.

The best neural network predictor in this category was MLP3 with inputs of Pcons and size as a fraction 

of the surface. This correctly classified 48 out o f the 53 biological contacts and 364 o f the 366 nonbio­

logical contacts, giving a combined accuracy of (48 4 - 364)/(53  -f 366) =  98.3%. However, even this was 

outperformed by the heuristic predictor Habs. which relies on nothing more than a linear separation.

Figure 4.10 shows the performance of the same set o f predictors in the absolute assessment of crystal 

contacts in monomers. Because there are no biological contacts in this set, the performance o f predictors 

is ineligible for phi and most meaningfully interpreted with a pure error rate. Again, the seemingly perfect 

performances of the SLP with the number of contact residues as a single input and the SLP with this and 

Pcons as dual inputs are specious and owe nothing to discriminatory power. The error rates show SLP with 

Pcons as sole input, MLP3 with dual inputs of Pcons and the number of contact residues, and Habs are most 

prone to overpredict biological interfaces. In contrast, the SLP with the sole input o f size as a fraction of the 

surface, and the SLP and MLP3 with both that size input and Pcons are most discriminating in this respect.

4.3.3.3 Predictor performance: Relative assessment

We tracked the performance of more than 40 different neural network predictors in the relative assessment. 

The networks tested ranged from those with a single input from Table 4.1 to all six inputs, and some MLPs 

had as many as four hidden units.

Figure 4.11 shows classification accuracy for a representative selection of the predictors tested. Predic­

tors using relative measures (ie, ranked size, size difference from largest contact or ranked Pcons) as inputs 

typically performed better than those relying on only absolute measures (ie, number of residues in a contact, 

contact size as fraction of the surface, and Pcons) (see table 4.1 for an explanation of how these inputs are 

defined).

Predictors relying on one of ranked size or the size difference from the largest contact achieved correct 

classifications for all but one protomer, luby, and attained the maximum accuracy achieved for any neural 

network at 98%. luby, as mentioned above, is the only protomer for which the biological contact is not the 

largest crystal contact made. Thus, 98% also corresponds to the predictive accuracy associated with simply 

designating as biological the largest observed contact. Alone, the relative measure of ranked Pcons had some 

predictive power (6 8 %). Combining ranked Pcons with ranked size in a linear network gave performance 

intermediate between that o f ranked Pcons alone and ranked size alone. Successive addition of hidden units 

ameliorated performance, with MLP3 being maximal (data not shown). No such gradient of improvement 

was seen when combining ranked Pcons with size difference from the largest contact; even with a linear 

network, performance equaled the maximal 98%. Neural networks relying on only absolute measures for 

inputs showed the same performance relative to each other in the relative assessment as they did in the
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Figure 4.10: Error rate of predictors in the absolute assessment of monomer contacts.
For an explanation of predictors (vertical axis), see Figure 4.8 legend. Error rate (horizontal axis) refers 
to the percentage of contacts misclassified by a predictor. In this case, the error rate corresponds to the 
rate of overprediction of biological contacts. All neural networks depicted have been trained on the full 
homodimer set. The graph shows that the heuristic predictor Habs and the single layer perceptron with only 
conservation as its input most often overpredict biological contacts.
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Figure 4 .11 : Accuracy o f  predictors in the relative assessm ent o f hom odim ers.
Predictors are presented on the on the vertical axis. As in earlier figures, neural network predictors are given 
a short names o f  the form nemork{input 1, input!, ...}, where the prefix network denotes the architecture 
o f the network: SLP (single layer perceptron) or M LPx (m ultilayer perceptron with x  hidden units). The 
names in curly braces refer to the inputs o f  the network: “num Size” is the number o f residues in a contact; 
“fracSize” is the fraction o f  the surface covered by a contact; Pcons is a measure o f the conservation for 
the contact; “rank Pcons" is the ranked conservation o f  a contact, “rankSize” is the ranked size o f  a contact, 
and “diffS ize” is the difference in size between a given contact and the largest contact in the protomer. The 
inputs Pcons, num Size and fracSize are “absolute” measures whereas the inputs rank Pcons, rankSize and 
diffSize are “relative” measures (see Table 4.1 for fuller definitions ). Hrei is the heuristic predictor for the 
relative assessm ent and is defined in the Results. Accuracy, presented on the horizontal axis, measures the 
percentage o f  protomers for which a predictor unam biguously identified the biological contact. A ssessm ent 
o f  neural network performance is cross-validated with respect to the hom odim er dataset. The graph shows 
that relative measures have more predictive power than absolute m easures, and that size alone allows near­
perfect prediction.
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absolute assessment.

The heuristic method Hrei beat all the neural network predictors, correctly predicting the biological 

contact in every case. But the difference between the 98% of choosing the biggest and 100% for Hrei 

represents more than simply dealing with one recalcitrant protomer. For six of the 53 protomers, H  rei used 

conservation to choose which contact was biological.

4.4 Discussion

The results show biological crystal contacts are typically larger and more conserved than nonbiological 

ones. Our analysis o f contact size agrees with that o f previous studies. It finds biological contacts are 

invariably large and usually the largest contact made in a crystal. Figure 4.1 suggests there may be some 

upper bound on the size of nonbiological contacts. The reason for this could be principally biophysical. 

Consider two interacting protomer surfaces. Small sites of interaction that are flat or complementary, either 

in a geometric or an electrostatic sense, will be common. But, because most protomers are globular, larger 

sites with these properties will be comparatively rare. Thus, unless there has been evolutionary pressure 

making a large site advantageous, the probability o f a substantial interaction will be low. Another interpre­

tation is that protomers are under selective pressure to avoid forming large interfaces at random. After all, 

if large random interactions were to occur, this would typically encumber a protomer’s function.

The biological contact is the most conserved of all contacts in the crystal much more frequently than 

would be expected for a random distribution { P m o s tc o n  =  2.38 x Moreover, the results o f the asso­

ciation tests in Table 4.4 show that the presence of nearby conserved ligand-binding sites is not the chief 

source o f this high conservation.

Where biological contacts are not conserved, two kinds of explanation usually prevail. The first relates 

to the availability o f sequence data. Too little variation in the multiple alignment, caused by either too few 

sequences or too little diversity among them, can render analysis o f conservation meaningless. The diversity 

filter Doss (described in Methods) goes some way to remedy this, but the example o f Itox suggests its cutoff 

could be stricter. Fragmented sequences in the databases can also distort the evolutionary information an 

alignment provides. I f  the residues of the biological interface are concentrated around sequence termini, 

which are often missing in fragments, this problem should be considered (by inspection of component 

sequences). The second kind of explanation is biological. Different dimerization modes (lalo ) and multiple 

multimeric states in a homologous family (lad3, laor, Islt and 2tct) help explain why some biological 

contacts will not be conserved. Given that most aligned sequences lack annotation, it seems likely that the 

prevalence o f these phenomena is underpredicted.

Nonbiological contacts were usually poorly conserved, regardless of whether biological contacts were 

present in the same crystal (Figure 4.3). A rough analysis o f ligand binding sites (Table 4.4) suggested the 

high conservation of some nonbiological contacts owed much to the strict conservation of nearby catalytic 

or cofactor sites.

The results from the absolute assessment show that whereas size and conservation may be independently 

useful for classifying contacts as biological or nonbiological, combining these two orthogonal measures 

provides predictive accuracy greater than either one alone.

The success of multilayer perceptron neural network architectures over single layer ones suggests that 

a single straight line is not the best predictor. Rather, it implies the optimal decision boundary is something 

more sophisticated, such as a number of straight lines or curves. However, the success of the heuristic 

Habs. which is nothing more than a linear discriminant function, belies this suggestion. Two alternative
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Protomer Multimeric 
state (M/H)“

Correct (-/+)^ 
Most accurate neural network^ Habs

lauo D + -
lcp 2 D 4- -f-

I sit D + -
Ixso D - -
lako M 4- 4-

lavp M - -
If  eh M 4- -
Iton M 4- 4-

Table 4.5: Performance of the best predictors from the absolute assessment on the protomers misclassified 
by Ponstingl et al.
 ̂M=monomer, D=dimer
 ̂ A classification is correct (+) only if all contacts in a crystal structure are correctly classified.
 ̂The most accurate neural network was the multilayer perceptron with three hidden units that took the two 

inputs: Pcons and the fraction of the surface residues covered by a contact.

explanations may account for the disagreement. First, Habs was concocted with knowledge of the entire 

dataset whereas its neural network equivalent was privy to all data except that on which it was to make a 

prediction. This may have given Habs an unfair advantage. Second, and more plausible, is a training failure 

on the part of the neural network. Causes of such failure abound and include the network becoming trapped 

in local minima of the error surface; the error function being inappropriately or unfortunately defined, eg, 

it does not sufficiently penalize false negative predictions; one of the input weights has become saturated 

beyond the point it can be usefully modified; and so on (Shepherd, 1997). However, the training and test 

data are probably too limited to assess reliably the relative merits of linear over non-linear discriminants. 

Whereas Habs achieved the best phi for homodimers, it may be that the MLP3 architecture with inputs 

o f Pcons and size as a fraction of the surface is more generally applicable, a postulation supported by its 

superior error rate in the monomer assessment (Figure 4.10). Also, if further parameters not included here 

were added, eg, physical measures (Jones & Thornton, 1997b) or pair-scores (Ponstingl et al, 2000), a 

neural network would provide a more robust framework for mining these higher dimensional data than 

would the heuristic approach.

The performance of predictors in the relative assessment may be usefully compared with the statistical 

potential of Ponstingl et al (Ponstingl et al, 2000). Ponstingl et al applied statistical potentials to the same 

dataset to predict whether a given protomer was a homodimer or monomer. Their pair-score misclassified 

twelve protomers: seven homodimers as monomers and five monomers as homodimers. We found sufficient 

sequence information for eight of the twelve. Table 4.5 lists these eight protomers and reports how the 

MLP3 with inputs o f Pcons and size as a fraction o f the surface, ie, the best performing neural network, 

and Habs classified their contacts. It shows the MLP3 correctly classified all contacts, thereby also correctly 

determining multimeric state, in six o f these protomers, whereas the heuristic predictor classified all contacts 

correctly in only three. This interpretation of the results suggests the consolidating power of the neural 

network may offer advantages over other methods.

The results from the relative assessment show size is an extremely powerful predictor when it comes to 

singling out the biological contact from a group of contacts. So powerful, in fact, that adding information 

about residue conservation produces little benefit if  any. The results also show information about other 

contacts in the same crystal can be more useful than absolute measures for this type o f assessment. The use 

of Pcons and fractional size are deliberate attempts to extend the notion of residue conservation and contact
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size beyond the scope of a single protomer. Conversely, ranked Pcons^ ranked size and difference in size 

from the largest contact represent attempts to do the opposite. Unsurprisingly then, the relative scores are 

better suited to the relative assessment, and the absolute scores better suited to the absolute assessment.

The heuristic predictor Hrei predicted the biological interface with 100% accuracy. It used a hierarchical 

prediction scheme, first choosing potential biological contacts by their size, then using conservation to break 

ties when size delivers ambiguous or plural results. Given the observed power of size alone, this seems a 

more sensible way to use conservation. However, the neural network architectures used here are not well 

adapted to make their decisions in this way. A given network can only look at the information about one 

contact at a time. Although the use of ranked Pcons^ ranked size and size difference from  the largest contact 

provide some context for a contact, they are a poor second to seeing all of the data at once.

As for the absolute measures, a larger dataset or higher dimensional data may more sharply resolve the 

relative strengths and weakness of the neural network paradigm versus the hierarchical approach of H rei-

After the majority of this work had been completed, Elcock & McCammon published a paper on a 

related topic (Elcock & McCammon, 2001). They used conservation to help distinguish between homod- 

imeric and monomeric crystal structures. This is a different question from either o f those posed here. They 

applied their method to the dataset o f Ponstingl et al (Ponstingl et al, 2000) and to a large number of pro­

teins in the PQS (Henrick & Thornton, 1998) database. Because they considered only the largest contact in 

a crystal, their results, which were promising, are not directly comparable with ours. Here we have tried to 

be more statistically rigorous in assessing the value of conservation in determining the biological relevance 

o f a contact.

4.5 Conclusion

Conservation alone provides information, which is orthogonal to that o f size, that is powerful to help pre­

dict the biological relevance o f a crystal contact. Conservation and size provide a potent combination for 

discriminating biological from nonbiological contacts. Ultimately, size remains the most powerful discrim­

inator, but conservation can discriminate between borderline cases.

Neural networks generalize the information from homodimer data well, using it to correctly infer bi­

ological relevance in the vast majority of monomer contacts. In hindsight, these two measures could be 

combined in a simple linear manner to produce a powerful predictor. However, it remains to be seen 

whether the linear separability observed here holds with a larger dataset.

One natural next step is to apply these networks to higher order oligomers. Another is to present 

the predictors with more input data, such as pair-potentials or physical measures, to further improve their 

accuracy. A third is to apply the principles demonstrated in this work to the prediction o f putative interfaces 

in heterodimers or transient multimers. For these types of complexes, it is less likely that the most important 

biological contacts will be seen in the crystal. The challenge then would be to identify potential interaction 

surfaces and then screen them using the criteria applied in this paper.

In some oligomers it is clear why a multimeric state is important for their function. In others, the 

advantage conferred is not obvious. It is particularly interesting to investigate biological contacts that 

are unconserved. These often reflect the existence of multiple multimeric states, which in turn can be 

interpreted in two ways. It either shows the contact has no biological importance and therefore has been 

under no selective pressure to be conserved, or reflects the specialization o f different members o f the family 

to perform different functions.

In distinguishing biological from nonbiological crystal contacts, some categories of proteins are more
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difficult than others. A protomer that participates in multiple interactions, such as a signalling protein or 

a highly regulated enzyme, may have multiple functional surfaces. In this case, although the biological 

partner may not be present in the crystal, the corresponding functional interface may provide a non-natural 

crystal contact that appears conserved. Conservation analysis is therefore useful even when the function of a 

protein is unknown in that it can identify functional residues. However, when function is known it can help 

to elucidate the molecular mechanism of biological function and provide clues to be tested experimentally.
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Chapter 5

Conclusions

This work has sought to answer three questions. First, can residue conservation be quantified? Second, are 

protein-protein interfaces conserved? Third, can the conservation of protein-protein interfaces be useful in 

their prediction? All three questions have been answered in the positive.

Biologically important interfaces are under functional constraints, which in a competitive environment 

translate into selective pressure. Selective pressure usually manifests itself in a protein family as conser­

vation, but not always. After gene duplication, selective pressure can foster innovation, which leads to 

diversity. Multiple specificities and multiple multimeric states within protein families, as found in chapter 

4, are examples of diversity that is advantageous to the host organism. The residues that dictate which 

multimeric state a homologue has or which small molecule a homologue binds are among the most func­

tionally important residues in a protein. But paradoxically, they may also be the least conserved. Any 

analysis o f conservation is therefore subject to the following uncertainty: is the position X unconserved 

because it is unimportant for function or because it dictates function? One way to resolve such uncertainty 

is to examine the literature and ask if the changes in amino acid at a set o f positions correlate with small 

changes in function. Another is to make an assumption about nature’s parsimony. Close homologues, those 

that have sequence identity o f >40%, are likely to have identical functions and have been under identical 

selective pressure since diverging from a common ancestor. Variant residues will tend to represent suscep­

tibility to genetic drift rather than biological innovation. It can thus be confidently inferred such positions 

are unimportant for function. More distant homologues are more likely to have subtly different functions 

or perhaps the same function optimized for a subtly different environment. The significance of positional 

variability among these proteins is less certain, and in this case a literature review may be warranted. So, 

when it comes to choosing homologues for analysis o f conservation, is closer better? No, because the set of 

positions that are truly conserved, ie, the conserved signal, is often drowned out by false conservation from 

positions that have not had time to diverge, ie, conserved noise. To remedy this, a conservation score such 

as Cvaidar downweights the contribution o f highly similar sequences. In doing so it also upweights distant 

homologues, which certainly improves the signal to noise ratio for conservation but may confuse the analy­

sis with genuine biological diversity. In this work, we assume genuine biological diversity in our alignments 

is the exception rather than the rule. This assumption makes the analysis o f conservation tractable and, as 

shown by the utility o f this neutralist position in chapter 4, provides the right answers most o f the time.

The score Cyaidar was proposed to measure conservation. If conservation is isomorphic with functional 

constraint, then the success o f using Cyaidar to discriminate biological from nonbiological contacts in chap­

ter 4 shows this score performs well. It fails sometimes, but most o f these cases can be explained in terms
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of advantageous residue diversity, which is where we would expect it to fail.

Chapter 3 showed that protein-protein interfaces are conserved to a significant degree. That observation 

owes much to the probabilistic scheme used to compare sets o f surface residues. Using raw values o f residue 

conservation, small groups of highly conserved residues that form ligand-binding sites would have seemed 

the most conserved. P  values allowed the comparison of like with like and showed that although small 

clusters with high average conservation are common, large clusters with moderately high conservation 

are rare. But although the picking P  values showed interfaces were conserved, many of the walking P  

values were equivocal and suggested their use in full-scale prediction, ie, locating a interface given only the 

protomer structure and a corresponding sequence alignment, might be more limited.

Full-scale prediction of interfaces was not attempted in chapter 4. Instead, discrimination of biological 

from nonbiological interfaces, the less ambitious cousin of prediction, was. Relatively high conservation 

was shown to be a consistent feature o f biological interfaces; the graph that used Bayes theorem to measure 

P  (biological\Pcons ) (figure 4.4) says it all. But although conservation proved powerful as a discriminator, 

it was no match for contact size. This suggests conservation is not ideally placed as a sole predictor. If  its 

performance in discrimination is less than perfect, then its performance in a full-scale prediction is likely 

to be far worse. However, chapter 4 showed conservation adds significant value to size. In the absolute 

assessment of that chapter, the phi-coefficients of neural networks that combined the two measures were 

significantly higher than the best single-input network. O f course, size is only one o f a number of bio­

physical measures that could be devised to aid discrimination and prediction. For example, hydrophobicity, 

residue interface propensities and charge complementary may all provide helpful additional inputs. Never­

theless, conservation should always be useful in combination because, being derived from a historical study 

of inferred selective pressure, it is orthogonal to all o f these measures.

There is more to life than homodimers. In the interests o f simplicity, the sweep of this study has 

been narrow. Complexes that are arguably more interesting to the biologist, such as hetero-oligomers or 

transient complexes, have been ignored. This was unfortunate but, owing to the current paucity of data for 

these types of complexes, necessary for such a thorough investigation. It could be that residues in these 

types of complexes are more consistently conserved. Of course, the opposite may also be true. Correlated 

mutations, which would confuse our neutralist approach, might be more frequent in such complexes. W hat 

is likely is that biophysical measures would be less useful. Functionally important interfaces in any kind 

of complex are axiomatically under strong selective pressiu'e. However, they are not necessarily flat, large 

or hydrophobic. The analysis o f conservation in other types of complex is thus an exciting and potentially 

fruitful avenue for further research.

Some protein-protein associations are forever whereas others are fleeting trysts. To make this study 

tractable, binding constants were ignored. It is interesting to consider how much the strength of an asso­

ciation can be related to the conservation of residues that secure it. A mutation that causes a small change 

in the binding constant of an interaction might be tolerated by the host organism; some enzymes could be 

up-regulated, the network of interactions could be adjusted. Depending on the importance of the protein and 

the precise nature of its interaction, this might debilitate the host or leave the host unaffected. For instance, 

would a slightly decreased affinity between a G-protein coupled receptor, which could be tolerated by up- 

regulation of GPCR production and the like, be as cataclysmic as a slightly decreased affinity between the 

tubulin subunits of microtubules, which may not be remedied so easily? Questions like these suggest there 

is rich scope for the analysis o f conservation in a greater variety of complexes than is studied here. As 

experimental science continues to elucidate and record the biophysical properties of such complexes, the 

analysis of evolution in these systems can become subtler. This all relates strongly to interface prediction.
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The more the interplay between evolutionary conservation and biophysics is understood, the more sensibly 

measures relating to these orthogonal perspectives can be combined in a predictive scheme.
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Appendix A

Publications arising from this work

The following information was correct as of November 2001:

1. Valdar WSJ (expected 2002) Scoring residue conservation {submitted).

2. Valdar WSJ & Thornton JM (2001) Protein-protein interfaces: analysis o f amino acid conservation 

in homodimers. Proteins: Structure, Function, and Genetics. 42(1): 108-124.

3. Valdar W SJ & Thornton JM (2001) Conservation helps to identify biologically relevant crystal con­

tacts. Journal o f  Molecular Biology. 313(2): 399-416.


