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Abstract

The transformation of uroporphyrinogen III into cobalamin (vitamin B,,)
requires about 25 enzymes and can be performed by either aerobic or
anaerobic pathways. The aerobic route is dependent upon molecular oxygen,
and cobalt is inserted after the ring contraction process. The anaerobic route
occurs in the absence of oxygen and cobalt is inserted into precorrin-2, several
steps prior to the ring contraction. A study of the biosynthesis in both S.
typhimurium and B. megaterium reveals that two genes, cbiD and cbiG, are
essential components of the pathway and constitute genetic hallmarks of the
anaerobic pathway. The genes responsible for the cobalt chelation, the S.
typhimurium CbiK and the B. megaterium CbiX, were identified within cob
operons and were characterised. Moreover, the activity of the multifunctional
iron chelatase/dehydrogenase enzymes (E. coli CysG and S. cerevisiae Met8p)
involved in sirohaem biosynthesis have been investigated for their ability to act
as a cobalt chelatase in corrin biosynthesis. Cobalamin can be produced from
the S. typhimurium cob operon with any of these chelatases whereas precorrin-2
dehydrogenase activity is required with the B. megaterium cob operon. The X-
ray structure of CbiK has been solved at 2.4A and is highly similar to the
structure of the B. subtilis protoporphyrin IX ferrochelatase suggesting a
common mechanism. Unlike the P. denitrificans cobalt chelatase complex, which
requires three proteins and ATP (similar to the protoporphyrin IX magnesium
chelatase), CbiK belongs to the unique protein-ATP independent chelatase
family. Conserved amino acids have been characterised as key residues within
the CbiK active site. Genomic comparisons of B,,-producing organisms
highlight divergences between the methyltransferases, which separate into
aerobic and anaerobic pathway subgroups. Further insights into the
methyltransferases have been gained from the X-ray structure of the B.
megaterium CbiF (solved at 2.4A resolution). Finally, the molecular structure of
cobyric acid produced from the S. typhimurium cob operon in E. coli has been
deduced from a number of spectrometric studies, an approach which could be
used in the future to characterise other intermediates along the anaerobic
cobalamin pathway. From the results obtained in this thesis, it becomes
apparent that the terms “aerobic” and “anaerobic” pathways are misleading
and should be replaced by “late-cobalt insertion” and “early-cobalt insertion”

pathways respectively.
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Abbreviations

ALA
ATP

CoA

Da

DEAE
DNA
EDTA

EPR

fplc

G

IPTG

kb

LB

MCS
NAD*/NADH
NADP*/NADPH
NMR

OD

PAGE

PBG

PCR

PLP

SAM

SDS

T

TEMED
Tris
Uro’gen III
uv

Adenine

5-aminolaevulinic acid

Adenosine triphosphate
Aminopropanol

Cytosine

Coenzyme A

Dalton

Diethylaminoethyl

Deoxyribonucleic acid
Ethylenediaminetetra-acetic acid
Electron paramagnetic resonance
Fast protein liquid chromatography
Guanine
Isopropyl-B-D-thiogalactopyranoside
Kilobase pair

Luria-Bertani

Multi cloning site

Nicotinamide adenine dinucleotide
Nicotinamide adenine dinucleotide phosphate
Nuclear magnetic resonance

Optical density

Polyacrylamide gel electrophoresis
Porphobilinogen

Polymerase chain reaction

Pyridoxal phosphate

S-adenosyl L methionine

Sodium dodecyl sulfate

Thymine

N, N, N', N' -tetramethylenediamine
Tris (hydroxymethyl)aminomethane
Uroporphyrinogen III

Ultra violet
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Amino acids and their abbreviations

Amino acid Three letter | Single letter Side chain
code code
Alanine Ala A non-polar
Arginine Arg R basic
Asparagine Asn N polar
Aspartate Asp D acid
Cysteine Cys C polar
Glutamate Glu E acid
Glutamine Gln Q polar
Glycine Gly G non-polar
Histidine His H basic
Isoleucine Ile I non-polar
Leucine Leu L non-polar
Lysine Lys K basic
Methionine Met M non-polar
Phenylalanine Phe F non-polar
Proline Pro P non-polar
Serine Ser S polar
Threonine Thr T polar
Tryptophan Trp W polar
Tyrosine Tyr Y polar
Valine Val \% non-polar
Selenocysteine Sec U polar
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Genetic code

A R N D C Q E G H I
Ala Arg Asn Asp Cys Gln Glu Gly His Ile
GCA| CGA| AAC| GAC| UGC| CAA| GAA| GGA| CAC| AUA
C C U U 8) G G C U C
G G G U
U 8] 8)
AGA
G
L K M F P S T W Y \
Leu Lys Met Phe Pro Ser Thr Trp Tyr Val
CUA[ AAA| AUG| UUC| CCA| UCA| ACA| UGG| UAC| GUA
C G U C C C U C
G G G G G
U U U U U
UUA AGC
G U

Termination Signals

UAA (Ochre)
UAG (Amber)
UGA (Opal)




Cobalamin biosynthetic protein names.

Function cob | P. denitrificans | S. typhimurium|B. megaterium| E. coli
C2/C7 methylations | I CobA CysG CysG* CysG
amidation (a & c) I CobB CbiA CbiA -
AP-P synthase CobC CobD - -
AP attachment I CobD CbiB - -

? CobE - - -
C1 methylation I CobF - - -
Mono oxygenase 1 CobG - - -
methyl migration I CobH CbiC CbiC -
C20 methylation I Cobl CbiL CbiL -
C17 methylation I Cob] CbiH CbiH, -
macrocycle reduction | 1 CobK Cbi] Cbi] -
C5/C15 methylation | I CobL CbiE and CbiT CbiET -
and decarboxylation

C11 methylation CobM CbiF CbiF -
cobalt chelation I CobN - - -
adenosylation I CobO CobA BtuR BtuR
GTP-cobinamide I1I CobP CobU - CobU
synthase

amidation (b, d, e, g) I CobQ CbiP - -
cobalt chelation I CobS - - -
cobalt chelation I CobT - - -
o-ribazole-P II CobU CobT - CobT
synthase

cobalamin synthase | III CobV CobS - CobS
? CobW - - -

? I - CbiD CbiD -

? I - CbiG CbiG -
cobalt chelatase I - CbiK - -
cobalt transport - CbiM - -
cobalt transport - CbiN - -
cobalt transport - CbiO - -
cobalt transport - CbiQ - -
o-ribazole-P Pase II - CobC - -

? - - CbiW -
cobalt chelatase I - - CbiX -

? - - CbiY -

P means phosphate; Pase, phosphatase and AP, aminopropanol.
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Tetrapyrrole numbering system and nomenclature.

Bacteriochlorin

Chlorin

Corphin

Corrin

Isobacteriochlorin

Phlorin

Porphyrin

B3 amesoa 7'3

4 3 6
B2 8B
al 9 a
meso 20 10 meso
al9 11a
p18 12
16 15 14
B17 o 15 “a 13B
meso

two reduced double bonds oppositely. ‘

for example: between the C-17 and C-18 and
between C-7 and C-8. Tetrahydroporphyrin (9
C=0).

one double bond is reduced creating two carbon
atoms fully saturated.

for example: between the C-17 and C-18.
Dihydroporphyrin (10 C=C).

only saturated carbon at B positions (8 C=C).

carbon 20 is missing, all carbons at position B are

reduced. One meso carbon is also reduced (5 C=C).
two reduced double bonds on adjacent pyrroles.
for example: between the C-2 and C-3 and between

C-7 and C-8. Tetrahydroporphyrin (9 C=C).

one saturated carbon bond at meso position.
Dihydroporphyrin. (10 C=C).

only unsaturated carbon bonds (11 C=C).
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Meeting/Conferences
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Chapter 1, introduction to tetrapyrroles and cobalamin in particular

1-1- General introduction to Nature’s tetrapyrroles.

Biological modified tetrapyrrole molecules act as prosthetic groups to many
fundamental processes in living organisms. They are commonly referred to as
the “pigments of life”, a denomination which illustrates their essential biological

role as well as their chromophoric properties.

Figure 1-1- Uroporphyrinogen III.

COOH
COOH

HOOC COOH

COOH COOH

COOH COOH

All modified tetrapyrroles are derived from uroporphyrinogen III, the
ubiquitous primogenitor which consist of four pyrrole rings joined by carbon
bridges to form a larger macrocyclic system (Figure 1-1). Enzymatic
modifications of uro’gen III yield the six main types of modified tetrapyrrole
found in Nature: haem, chlorophyll and bacteriochlorophyll, bilin,

isobacteriochlorin, coenzyme F,;, and vitamin B,, (Figure 1-2).
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Chapter 1, introduction to tetrapyrroles and cobalamin in particular

Figure 1-2- Qutline of pathways for modified tetrapyrrole biosynthesis.

Uro’gen III
Precorrin-2 Protoporphyrin IX ~ Other haems
Fez+/\coz+ Mg2+ Fe?* T
Sirohaem | VitaminB ,, Mg-Protoporphyrin IX ~ Protohaem
haem d1 l
v Ni** .
Protochlorophyllide

Coenzyme F,;,

Chlorophyll ¢ ‘/1 BiliverdinIX 4

Chlorophyll a

Phycobilins
Chlorophyll b

Bacteriochlorophyll ¢, d,e Bacteriochlorophyll a,b, g

This is a modified version of the figure from Friedmann et al. 1991.
1-1-1- Haem.

Haem is involved in oxygen and electron transport. It is a porphyrin that
contains a central ferrous ion. Three main types of haem are commonly
observed which differ only in their side chains. The a-type haem is the
prosthetic group of cytochrome oxidase which is the terminal reaction of the
respiratory chain (cytochromes b to cI to c to a+a3). The b-type haem (Figure 1-
3) is the cofactor of haemoglobin, cytochromes b, P, catalase and peroxidase.
The c-type haem is a component of cytochrome ¢ (mitochondria) and
cytochrome f (plastids) [Beale and Weinstein, 1991]. Finally, other types of
haem can be found in bacteria, haem d1 (presumably derived from precorrin-
2) and o, which are associated with terminal cytochrome oxidases [Chang et al.
1993]. Haem biosynthesis has been determined in Desulfovibrio vulgaris by
Ishida et al. 1998. Protohaem, in this bacterium, is synthesised via a precorrin-2
intermediate, which is subsequently decarboxylated (C-12 & C-18) and
deacetylated (C-2 & C-7) to give coproporphyrinogen III, the common

intermediate to any haem biosynthetic pathway.
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Chapter 1, introduction to tetrapyrroles and cobalamin in particular

Figure 1-3- Haem b (iron protoporphyrin IX).

= CH,
CH, \
CH2
CH; CH,
COOH COOH
Haem

1-1-2- Chlorophyll and bacteriochlorophyll.

Chlorophyll and bacteriochlorophyll catalyse the conversion of solar energy to
chemical energy by the process of photosynthesis. These pigments not only

contain a centrally chelated magnesium ion but they also possess a fifth ring.

Chlorophylls are mainly divided into three classes, 4, b and c. Higher plants and
green algae contain chlorophyll a (Figure 1-4) and a small proportion of
chlorophyll b. The major structural difference between the two forms is a
formyl group (Chl b) instead of a methyl group (Chl a) on ring B (carbon 7) of
the macrocycle. Chlorophyll ¢ is found in eukaryotic algae that do not contain
chlorophyll b (except one species). None of its pyrrole rings are reduced [Beale
and Weinstein, 1991].

There are seven different bacteriochlorophylls, a, b, ¢, d, e, f and g.
Bacteriochlorophyll a4 (Figure 1-4) and b are purple pigments produced by
photosynthetic bacteria (for example, Rhodobacter sphaeroides (Bchl a) and
Rhodopseudomonas viridis (BChl b)). Bacteriochlorophyll ¢ was isolated from
Heliobacterium chlorum. Bacteriochlorophyll ¢, d and e are pigments of green and
brown sulfur bacteria (for example Prosthecochloris aestuarii (BChl c), Chlorobium
vibrioforme (BChl d) and Chlorobium pheovibrioides (BChl e) [Smith, 1991].
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Figure 1-4- Chlorophyll 2 and bacteriochlorophyll 4.

Chlorophyll a Bacteriochlorophyll a

1-1-3- Phycobilins and phytochrome.

Phycobilins and phytochrome consist of open-chain modified tetrapyrroles.
They function as accessory pigments and act as the main photosynthetic light-
harvesting pigments when attached with appropriate apoproteins by a
covalent thioester bond linkage (phycobiliproteins).

The two main classes of phycobilins are either a blue pigment, phycocyanin
(Figure 1-5) and allophycocyanin, or a red pigment, phycoerythrin. They are
found in cyanobacteria and red algae. These accessory pigments allow the
organisms to capture more of the available light.

The phytochrome chromophore is found in higher plants and some green
algae [Beale and Weinstein, 1991].

Figure 1-5- Phycocyanin.

COOH COOH
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1-1-4- Isobacteriochlorins.

The most common isobacteriochlorin is sirohaem, the prosthetic group of
nitrite and sulfite reductases, which convert nitrite to ammonia and sulfite to

sulfide respectively. The central metal of sirohaem is ferrous iron (Figure 1-6).

Figure 1-6- Sirohaem.

COOH

As shown in Figure 1-7, sulfite reductase produces sulfide which then reacts
with O-acetylserine to form cysteine. The absence of sirohaem from the sulfite
reductase leads to the failure to reduce sulfite and therefore to a cysteine
auxotrophy [Kredich, 1987].

Figure 1-7- Role of sirohaem in cysteine biosynthesis.

SO

Sulfite reductase
prosthetic group = SIROHAEM

s*

serine —p O-acetyl serine L‘ CYSTEINE

Another example of isobacteriochlorin is the purple pigment Cobalt™-

isobacteriochlorin found in Desulphovibrio gigas and D. desulphuricans which are
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two sulfite reducing microorganisms thought to be primitive on the

evolutionary scale [Battersby and Sheng, 1982].

1-1-5- Coenzyme F,, .

Coenzyme F,;, the prosthetic group of methyl coenzyme M reductase, is
involved in the catalysis of the final step of methane formation in
methanogenic bacteria such as Methanobacterium thermoautotrophicum. This
yellow pigment is a nickel-containing modified tetrapyrrole (Figure 1-8). The
crystal structure of this enzyme containing two molecules of coenzyme F ;, has
been recently resolved at 1.45 A and the coenzyme F,;, role in the reaction has
been described [Ermler ef al. 1997].

Figure 1-8- Coenzyme E,a0

HOOC o

H,NOC

COOH

1-1-6- Vitamin B ,.

Cobalamin, or vitamin B,,, is certainly the most complicated cofactor of all
biopigments. It possesses a contracted macrocycle (rings A and D are directly
bonded together) and contains a central cobalt ion, modified side chains and
various axial ligands (Figure 1-9). The lower ligand is linked from the carbon 17
to the central cobalt by an “arm” constituted of aminopropanol and a
dimethylbenzimidazole derivative. From an evolutionary standpoint, vitamin
B, can be considered the matriarch of the family through its role in
deoxyribonucleotide synthesis despite the fact that this function has been

maintained in only few bacteria like Lactobacillus leichmanii. Vitamin B,, is only

34



Chapter 1, introduction to tetrapyrroles and cobalamin in particular

biosynthesised by some micro-organisms, but most higher animals are capable
of converting the vitamin into the two required forms, methylcobalamin and
adenosylcobalamin. Vitamin B, is involved in methylations and various

intramolecular rearrangement reactions.

Figure 1-9- Vitamin Bu:

Ado-Cobalamin

Vitamin By, is in fact the cyano form of cobalamin.

1-2- Cobalamin dependent enzymes.

Only two enzymes are known to depend on cobalamin in human and animals,
methionine synthase and methylmalonyl-CoA mutase (Figure 1-10). However,
more than ten different B,,-dependent enzymes are now known in micro-

organisms.
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igure 1-10- The two mammalian reactions requiring vitamin Bw

H—?—N%
COOH

homocysteine

Methylene-H4 folate

/
SH
Methyl-H4 folate H4 folate |
CH,
methyl- I
transferase CH,
H —C —NH,
methyl-cobalamin |
COOH
methionine

METHYLATION
Vitamin By,

INTRAMOLECULAR REARRANGEMENTS

H COOH H COCH
I . [
H—Cc—C—H adenosyl-cobalamin H—C—C—H

| - | il
C — S— CoA - CoA—S—C
] mutase I
0] o
L-methyimalonyl-coA succinyl-coA
Odd fatty acids Krebs' cycle

36



Chapter 1, introduction to tetrapyrroles and cobalamin in particular

1-2-1- Reactions catalysed by cobalamin.

The two active forms of cobalamin, adenosyl- and methyl-cobalamin, catalyse

three different types of reactions.

Adenosyl-cobalamin participates in 1, 2 intramolecular rearrangements in
which a hydrogen atom is exchanged with a group on an adjacent carbon, via
radical intermediates created by adenosyl-cobalamin. The reaction is described
in Figure 1-10, which is illustrated with methylmalonyl CoA mutase. All
enzymes involved in this kind of rearrangement (and their exchange group)
are listed in Table 1-1. Adenosyl-cobalamin also participates in reduction of
ribonucleotides to deoxyribonucleotides (ribonucleotide reductase). For this
reason, it has been argued that adenosyl-cobalamin is an evolutionary ancient

coenzyme.

Methyl-cobalamin participates in methyl group transfer. Methionine synthase
catalyses the transfer of the methyl group from methyltetrahydrofolate to
cob(I)alamin, which is transformed in the methylcobalamin form. The methyl
group is then transferred to homocysteine, generating tetrahydrofolate,
cobalamin and methionine (Figure 1-10) [Fenton and Rosenberg, 1989].
Another enzyme which may also require methyl-cobalamin as a cofactor is the
N5-methyltetrahydromethanopterin: coenzyme M methyltransferase (Mtr).
This membrane associated enzyme complex catalyses the methylation of

coenzyme M in the process of methanogenesis [Harms and Thauer, 1996].
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