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Abstract

Starburst galaxies are defined as those galaxies undergoing violent star formation over
relatively short periods of time (10 to 100 Myr). These objects may form stellar popula-
tions of greater than 10¢ Mg, containing massive stars with masses > 100 M. Although
most starburst galaxies are observed at relatively low redshift, recent evidence suggests
that these types of galaxies were far more important in the high redshift past. It is believed
that the chemical evolution of the Universe has been strongly influenced by this mode of
star formation through the dense winds from massive stars and supernovae ejecta. Qur
understanding of starbursts is still relatively poor, since most are too distant to be re-
solved. We can gain some understanding of starbursts indirectly through the modelling of
associated nebulae via the calculation of theoretical spectral energy distributions (SEDs)
and photoionization modelling. This technique heavily relies upon the accuracy of the
predicted far UV continuum of the massive star population. This thesis presents a new
grid of SEDs for O stars, early B supergiants and Wolf-Rayet stars which have been in-
corporated into the evolutionary synthesis code Starburst99 (Leitherer et al. 1999). A
total of 285 expanding, non-LTE, line-blanketed model atmospheres have been calculated
to replace old, inaccurate LTE models for O stars, and pure helium, unblanketed mod-
els for W-R stars. These new grids cover five metallicities and the wind parameters are
scaled with metallicity. We find that the new models yield significantly less ionizing flux
below the He® ionizing edge at early phases and as a consequence, nebular He 11 A4686
will not be observable in young starbursts. We use the photoionization code CLOUDY to
test the accuracy of the predicted ionizing fluxes from our new models. We find that they
are in much better agreement with observed optical and IR nebular line diagnostics than
any previous models. The new W-R atmospheres are used in conjunction with 40 new
O supergiant CMFGEN atmospheres to generate optical synthetic spectra of a starburst in
its W-R phase. We demonstrate the use of this new spectral synthesis tool by modelling
the observed spectra of five WR galaxies. We show for the first time that it is possible to
derive consistent ages directly from the W-R stellar features and indirectly via the ionizing

fluxes from the nebular line ratios.
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Chapter 1

Introduction

1.1 Starbursts and Star Formation in the Universe

The chemical composition of our Universe is continually evolving due to the effects of
star formation. Star formation exists in two different modes: the quiescent creation of
stars in a host galaxy over long periods of time, and the violent gravitational collapse of
starbursts where millions of stars form over very short time scales. A large number of
galaxies at high redshift have been found to be undergoing intense star formation (Steidel
et al. 1996; Lowenthal 1997) which suggests that starbursts were dominant in the early
phases of the Universe. These starbursts still occur in the vicinity of our local Universe

so can easily be studied in a variety of environments (e.g. Figure 1.1).

1.1.1 The Starburst Phenomenon

It has now been nearly thirty years since the discovery that some nearby galaxies contain
regions of intense star formation. Early photometric and spectroscopic studies showed that
some local galaxies have blue luminous regions which could only be attributed to hot young
stars (Weedman 1973). The merger galaxy, NGC 7714 was the first object to be classified
with the term “starburst” to describe its intense on-going star-forming activity (Weedman
et al. 1980). A starburst may be formed when giant molecular hydrogen gas clouds of more
than 10° Mg undergo gravitational collapse, triggered by some external mechanism (e.g.
galaxy mergers), forming stars at rates of up to 50 Mg yr~! or greater (Izotova et al. 2000).
Evidence now suggests that starbursts are an important part of our local Universe, where

they contribute a very significant fraction of the total star formation. In fact about 25
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CHAPTER 1. INTRODUCTION 3

percent (Heckman 1998) of the massive star formation within a radius of 10 Mpc occurs in
just four starburst galaxies. Massive stars, although far less common than their low mass
counterparts, dominate the appearance of the starburst. The luminosity of a massive star
(M > 5Mg) may be up to 10° times greater than that of a 1 Mg star. In fact it is these
rare stars, always associated with the starburst phenomenon, which are responsible for the
chemical enrichment of the surrounding gas and its host galaxy through powerful stellar

winds and core collapse.

1.1.2 Quantifying Star Formation Rates

It is important to quantify the rate at which stars can be formed in a starburst. Deter-
mination of star formation rates (SFRs) in starburst galaxies can be measured via several
different methods. Most of these use the fact that the most massive stars only exist in de-
tectable concentrations in regions of recent star formation due to the bursts comparatively
short lifetime, which is of the order ~ 10-100 Myr (Coziol 1996).

At optical wavelengths, there are many narrow nebular lines that are only excited by
the strong ionizing ultraviolet (UV) field radiated by O stars and their evolved descendants,
the Wolf-Rayet (W-R) stars. Nebulae are always associated with populations of massive
stars due to their high mass—loss rates and high UV output, coupled with the fact that
these stars are so young that they have not had time to depart from their birth place. The
most popular method for quantifying the SFR of a region is via the luminosity of the Ha
X 6563 A line (Thronson & Telesco 1986). This can be shown to be directly proportional
to the SFR of the starburst region (Kennicutt 1998a).

SFRy, =179 x 102 L(Ha)Mgyr™! (1.1)

This star formation rate determinant must be applied carefully, however, as the heavy
dust obscuration found in some objects can lead to large uncertainties. Furthermore,
some galaxies may not be detected at all at optical wavelengths because of high dust
densities.

Another method for SFR quantification is to use longer wavelengths such as the far
infra-red (FIR) luminosity of the parent galaxy (Hunter & Gallagher 1986). It is well
known that dust converts UV and optical light to FIR wavelengths. Using the assumption
that dust is converting the UV from massive stars to longer wavelengths it is possible to

infer their number from the FIR luminosity of the parent galaxy. The SFR in the FIR
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can be determined using the following equation (Izotova et al. 2000):

L(FIR
SFRpIg = 6.5 x 10"10—(L——)M@yr—1 (1.2)
B
This is obtained using the assumption that all emission from OB stars is absorbed by
dust and re-emitted into the FIR, and validated via the correlation found between Lp
and Lpzg in the Second Byurakan survey of blue compact galaxies (Izotova et al. 2000)
However, different methods for determining the SFR may not agree. It is also possible to

infer the star formation rate from the 21cm luminosity using the following relation (Izotova

et al. 2000);

08 L(21cm)

SFRyem =2.5x 1 Mgyr™? (1.3)

This equality uses the black-body radiation emitted from gas surrounding a starburst as a
signature of star formation, using the assumption that ongoing star formation is heating
the surrounding gas. A comparison of the FIR and 21cm star formation rates is presented

in Table 1.1 This shows that the SFR rate derived from the 21cm luminosity can be up to ~

Table 1.1: Star formation rates in a sample of galaxies from (Izotova et al. 2000)

derived from the FIR luminosity and 21cm luminosity.

Name log Lg log Lrir log Laicm SFRrir  SFRyicn SFRoiem
(Mayr™') (Mgyr™')  SFRpigr

1533+-574A  42.05 42.71 28.01 0.85 6.59 7.76
1538+-574 43.76 44.69 29.62 81.68 266.81 3.27
15564583 44.00 44.08 29.03 19.82 62.52 3.49
1559+585 42.24 43.25 28.07 2.98 7.57 2.54
16294205 43.45 43.76 28.69 9.59 31.32 3.27

8 times larger than the FIR value, although on average they tend to be ~ 3.5 times larger.
(Izotova et al. 2000) discuss this difference and suggest that the FIR star formation rate
assumes 100 percent re-emission of UV to FIR, which is unlikely. The 21cm luminosity
assumes that the radiation originates from the thermal nebular gas around a star forming
region. Supernovae, however, can add significantly to the emission. These rates should be

regarded as upper and lower limits to the star forming rate of a region.
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CHAPTER 1. INTRODUCTION 7

1.1.3 The Star Formation History of the Universe

Recent studies of high redshift galaxies have shown that star formation in the past far
exceeds that which can be measured in the local Universe. Studies of the Hubble Deep
Field (HDF) taken at optical wavelengths, led to the creation of the Madau plot shown
in Figure 1.2, primarily attributed to Madau et al. (1996, 1998) who showed that the star
formation rate peaks at around a redshift of z ~ 1.5, (or 40 percent of the current age of
the Universe). Madau used the fact that UV light from massive stars ionises surrounding
hydrogen gas to create nebular emission lines such as Lya or Ha which are only found
in areas of recent star formation activity. However, others have recently realised that at
high redshifts, dust obscuration can lead to significant reddening, and so may bias results
to lower redshift. Other methods for determining SFRs have been developed to avoid this
possible selection effect.

For example, recent work has focused on using infrared and submillimeter observa-
tions to search for re-emission of the absorbed UV light by the surrounding dust clouds
associated with star formation. The absorbed light from the massive star population is
re-radiated in the far-infrared at rest frame wavelengths of 60 - 100um. This means that
this emission at high redshifts is converted to the submillimeter domain of 175 - 1850
pm. Recently submillimetre (Blain & Natarajan 2000) measurements from the Submil-
limetre Common User Bolometer Array (SCUBA) and far-infrared measurements of the
background extragalactic counts have been independently used to determine the star for-
mation activity as a function of red shift. These alternative studies suggest that dust may
obscure starbursting regions at higher redshift and star formation can be detectable via
longer wavelength studies such as submillimetre which look at the dust re-emission of hot
star fluxes. To this end a submillimetre Madau plot has been constructed. The SCUBA
measurements suggest that the SFR is far higher and reaches back to a much earlier epoch
of the Universe. Fig. 1.3 which shows the Madau plot (Chapman et al. 2001), including
selected submillimetre and radio data, suggests a flattening of the star formation rate
perhaps peaking beyond about z ~ 3, or 10 percent of the age of the Universe. This
implies that star formation is more important to the early evolution of the Universe than

previously thought.













































































































































































































































































































































































































































































































































































































































