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Abstract

Cyclic nucleotide phosphodiesterase Type 1A belongs to a family of intracellular enzymes involved in the
modulation of the key second messengers cAMP and cGMP. There are eleven members in the superfamily
of PDE enzymes (PDE1 - PDEI 1), all exhibiting tissue-specific distribution. The PDE1 enzymes are found
mainly in the brain, lungs, heart and vascular smooth muscle with smaller amounts present in inflammatory

B lymphocytes and macrophages.

In this study, the expression of dog heart PDE1A1 was investigated using cDNA previously produced by
Clapham and Wilderspin (2001). This cDNA had not been explored for the expression of a functional protein
so it formed the starting point of the present work. The experimental work comprised of expression studies
to identify suitable host/vector combinations followed by detailed biochemical characterisation of the
recombinant enzyme for comparison with the native enzyme. The dog has been used extensively as a model
for the investigation of cardiovascular function in the pharmacological analysis of PDE inhibitors but there
is littleinformation regarding the characterisation of PDE enzymes in this species so the present study extends

the information regarding characterisation of PDE1A enzymes in the dog.

For the first part of the work, the full-length dog heart PDE1A1 cDNA was cloned into pPICZ«C for secreted
expression in the Pichia pastoris expression system. Culture media from P. pastoris cells transformed with
the construct pPICZaC-PDE1A1 showed no PDE activity. Full-length and N-terminal truncated PDE1 A1
enzymes were then expressed in E. coli using the expression vectors pGEX-3X and pTrcHisA to generate the
enzymes GST-PDE1 Al and Hisg-PDE1A 1, respectively. The majority of the recombinant protein was
sequestered into insoluble inclusion bodies and exhibited extensive proteolytic degradation in both cases. The
full-length as well as the N- and/or C-terminal truncated dog heart PDE1 A1 enzymes were then produced

using the Semliki Forest virus (SFV) system.

Recombinant dog heart PDE 1A1 was successfully produced in a soluble, active form using the SFV system.
The results of the present study revealed that only the full-length and the N—terminal truncated constructs had
PDE activity. The successful expression of dog heart PDE1A1 enzymes in the SFV system represents the first
report of the expression of PDEI enzymes in this expression system. The K (1.99uM) for the full length
enzyme, for cAMP, was comparable to the native enzyme (1.2puM), while the K for cGMP was higher for
the recombinant enzyme (12.55uM) compared to the native enzyme (0.53pM). Inhibitor studies on the
recombinant enzymes showed that the enzymes were sensitive to the PDE1 -selective inhibitor vinpocetine as
well as the PDE1/5-selective inhibitor zaprinast while being insensitive to the PDE2- and PDE3-inhibitors
EHNA and amrinone respectively. However, the sensitivity of the recombinant enzymes to the selective
inhibitors, vinpocetine and zaprinast, was reduced compared to the native enzyme with sensitivity to zaprinast
reduced by approximately 18-fold. There was also a particularly notable difference between the recombinant
enzymes produced in the present study and the native enzyme. This was the unexpected sensitivity that the
recombinant enzymes had to the archetypical PDE4 inhibitor, rolipram, with the full-length PDE1A1 having
an IC5, of 0.2pM. The findings of the present study have implications in the interpretation of data obtained
for recombinant PDE1 enzymes particularly with regards to evaluation of PDE1 as well as PDE4 inhibitors
for clinical use since PDE1 enzymes are often found in tissues having PDE4 enzymes. The results also

indicate that rolipram may not be as selective as first reported.
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Chapter One

1 Introduction

1.1 The intracellular signalling process

Intracellular processes are coordinated by a series of events which are initiated by the
interaction of extracellular molecules (first messengers) with cell surface receptors.
Extracellular signalling molecules include hormones, neurotransmitters, growth factors,
odour and light. Cell surface receptors include G-protein coupled receptors (e.g. a- and f3-
adrenergic receptors, rhodopsin receptors), ion-channel receptors (e.g. nicotinic
acetylcholine receptors) and enzyme receptors (e.g. tyrosine kinase receptors). The
triggering of receptors by first messengers causes a cascade of reactions within the cell
involving a number of intracellular molecules such as the second messengers cAMP, cGMP
and calcium ions which in turn lead to a chain of events culminating in the cellular
response. This particular response is terminated by a combination of the removal of the
extracellular signal from the receptor and degradation of intracellular messengers by
enzymes, specifically cyclic nucleotide phosphodiesterases. Termination of the signal is

crucial for the proper functioning of a cell.

1.2 ¢AMP and adenylyl cyclase

1.2.1 Discovery of cAMP and adenylyl cyclase

The best studied example of a first messenger response is that of the hormone adrenaline
which interacts with a G-protein coupled cell surface receptor. The interaction of
adrenaline with the receptor leads to a cascade of intracellular reactions resulting in the
breakdown of glycogen to glucose. This happens to a larger extent in the muscle than the
liver. Early experiments carried out in the 1950s by Sutherland and Rall showed that there
was an increase in the formation of the enzyme phosphorylase in liver homogenates caused
by the presence of adrenaline, and mediated by a heat-stable factor identified as cyclic

adenosine monophosphate or cAMP (Rall and Sutherland, 1958).
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The cellular response to adrenaline was thought to occur in two stages. In the first stage,
the particulate fraction of the liver homogenates produced the heat-stable factor (cAMP)
in the presence of adrenaline while in the second stage, this heat-stable factor stimulated
the formation of active phosphorylase in the supernatant fractions in which the hormone
itself did not have any effect. In a key experiment, Rall and co-workers (Rall et al., 1957)
carried out phosphorylase activity assays on whole liverhomogenates as well as centrifuged
homogenates which removed the particulate fractions. These workers showed that when
whole liver homogenates were incubated for ten minutes at 30°C with ATP plus the
hormone, there was an increase in the phosphorylase activity in the homogenate
preparation. However, when the centrifuged homogenates were incubated under the same
conditions there was virtually no phosphorylase activity in the supernatant sample. When
they added the particulate fraction remaining after centrifugation to the supernatant sample,
the response to the hormone was restored. These results indicated that there was a
particulate component involved in the formation of active phosphorylase. This particulate

component was later identified as the enzyme adenylyl cyclase.

1.2.2 Particulate and soluble adenylyl cyclase enzymes

1.2.2.1 Particulate adenylyl cyclase enzymes

Membrane-bound adenylyl cyclases are considered to be the main generators of
intracellular cAMP in mammals. There are thought to be nine isoforms of adenylyl cyclase
enzymes which show tissue-specific expression, and while all isoforms are expressed in the
brain, there are substantial differences in the isoforms present in the peripheral tissues
(Taussigand Gilman, 1995). These are further characterised into those that are calmodulin-
sensitive and those that are calmodulin-insensitive (Brostrom et al., 1977; Westcott et al.,
1979; Rosenberg and Storm, 1987). Rosenberg and Storm (1987) showed that 40-60% of
the rat brain, and 15% of the rat heart and lung adenylyl cyclases were calmodulin-sensitive.
The rat liver and testes showed no detectable calmodulin-sensitive adenylyl cyclase.
Adenylyl cyclase purified from the bovine brain was shown to be stimulated by the addition

of forskolin and also calcium-calmodulin (Smigel, 1986)

Particulate adenylyl cyclases are sensitive to regulation by the heterotrimeric G-proteins and
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the non-physiological compound forskolin (Pfeuffer and Metzger, 1982; Seamon et al.,
1981). The enzymes are characterised by the presence of six tandem repeat membrane-
spanning domains. There is a short amino-terminal cytoplasmic domain followed by six-
transmembrane domains (M, ), then a large cytoplasmic domain (C,). This motif is then
repeated with a second set of six-transmembrane domains (M,) followed by a carboxy-
terminal cytoplasmic domain (C,). The cytoplasmic domains (C, and C,) are highly
conserved and show a high degree of homology with the catalytic domains of the
membrane-bound guanylyl cyclase enzymes so are considered to be the catalytic sites

involved in the generation of cyclic nucleotides (Taussig and Gilman, 1995).

1.2.2.2 Soluble adenylyl cyclase enzymes

A manganese ion-sensitive soluble form of adenylyl cyclase (sAC) was first shown to be
present in cytosolic fractions of rat testis and it was said to be present in the cytoplasm
either unattached or loosely bound to intracellular membranes before it became firmly
attached to sperm membranes in later development (Braun and Dods, 1975). Soluble
adenylyl cyclase has been detected subsequently and shown to be preferentially expressed
in mammalian germ cells (Buck et al., 1999; Jaiswal and Conti, 2001). The sACs are
thought to be involved in completing a bicarbonate-induced process involving cAMP and
leading to fertilisation of an egg (Okamura et al., 1985, 1991; Gartyet al., 1987). Chen and
co-workers (2000) used anti-sera raised against the sAC to show the presence of SACs in

rat testes, sperm and kidney.

The soluble adenylyl cyclase is structurally and biochemically distinct from the particulate
form. The sAC has no membrane domains, is not regulated by G-proteins and is insensitive
to forskolin (Forte et al., 1983; Buck et al., 1999; Wuttke et al., 2001). Structurally, the
enzyme has two catalytic domains located at the amino terminal, followed by a P-loop and
then a Leucine Zipper sequence (Buck et al., 1999). Buck and co-workers (1999) produced
the full-length and C-terminal truncated (comprising mainly the catalytic domains)
recombinant SAC enzymes and showed that the truncated enzyme exhibited 10-20 fold
higher activity compared to the full-length construct suggesting possible autoregulatory
processes present in the full-length enzyme. The truncated enzyme was stimulated by

bicarbonate suggesting modulation occurs directly via the two catalytic domains. This
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sensitivity to bicarbonate has been shown to be present in SAC enzymes of several
mammalian species (Garber et al., 1982; Okamura ef al., 1985; Chen ef al., 2000). The
catalytic domains of mammalian SAC are homologous to the catalytic domains of
cyanobacterial cyclases and are evolutionarily conserved indicating their importance.
Cyanobacterial adenylyl cyclases are stimulated by carbon dioxide to generate cAMP which
is involved in processes leading to cell growth and metabolism. Cyanobacteria are thought
to have been the predominant life forms present in the pre-Cambrian environment and it has
been hypothesised that these bacteria transformed the carbon dioxide-rich atmosphere into
an oxygen atmosphere before the emergence of the animal phyla (Ohno, 1997; Kasahara
et al.,2001).

1.2.3 Signal transduction mechanism for the G-protein coupled receptorsinvolving

cAMP

G-protein coupled receptors belong to a family of membrane receptor proteins characterised
by the presence of a seven-helix transmembrane motif together with an extracellular amino-
terminal portion and an intracellular carboxy-terminal portion. Members of the G-protein

coupled receptors include the «- and B-adrenergic receptors.

The G-proteins are heterotrimeric membrane proteins which bind guanosine diphosphate
(GDP) in the unstimulated state. These proteins can be stimulatory (G, for B-adrenergic
receptors) so that when they are stimulated they go on to activate adenylyl cyclase, or

inhibitory G-proteins (G, for a- adrenergic receptors) which will inhibit adenylyl cyclase.

Hormones such as adrenaline bind to the B-adrenergic receptor triggering events leading
to the formation of cAMP and the target cellular response. Stimulation of the receptor leads
to a conformation change in the receptor which then interacts with the G-protein (G,)
located nearby. This stimulates the G-protein leading to the bound GDP to be replaced with
GTP giving the active G,-GTP complex which inturn activates adenylyl cyclase. Activated
adenylyl cyclase forms cAMP from ATP, which activates protein kinase A (PKA) initiating
a cascade of intracellular events involving the phosphorylation of proteins leading to the
ultimate cellular response (Figure 1.1). G-proteins contain inherent GTPase activity which

will slowly hydrolyse the bound GTP thus regulating the hormonal response. The hormonal
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