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Abstract

Singly-tagged two—photon collisions are studied in the OPAL detector at LEP
using 45.9 pb~! of data taken during the years 1990-1992 at and near a beam
energy of 45.6 GeV. The energy and angle of the scattered electron or positron
are measured by the OPAL Forward Detector, resulting in a Q2 range of 4-30
GeV?2. The data distributions are compared with Monte Carlo distributions from
F2GEN and HERWIG. Distributions of energy flow relative to the tag demonstrate
that F2GEN and HERWIG do not model the hadronic final state well. Unfolded
results for the photon structure function F3'(z) on a log,, « scale are presented for
two Q? ranges, with mean values of 6.4 GeV? and 15.1 GeV?. The measurement

of F7(z) is shown to be dominated by systematic errors in the low-z region.
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Chapter 1

Introduction

This thesis is a study of singly-tagged two—photon collisions using data from
the OPAL (Omni-Purpose Apparatus for LEP) detector [1] at the LEP (Large
Electron-Positron) collider [2] at CERN near Geneva. The aim of such a study is

to obtain a measurement of the hadronic photon structure function, Fy'(z, @?).

The data used in this analysis were taken in the years 1990-1992 and correspond
to 45.93 pb~! of ete™ integrated luminosity.

As an introduction it is acknowledged that the photon has a hadronic structure.
A simple picture for this structure is presented, followed by the method used to
study this structure at an ete™ collider. The photon structure function is then

introduced and the motivation for measuring it is given.

Chapter 2 is a theoretical presentation of the photon structure function. An
outline of the OPAL detector follows, in Chapter 3, and an account of the selection
of singly-tagged two—photon events is given in Chapter 4. The Monte Carlo
simulation in this analysis is described in Chapter 5 and a comparison of Monte
Carlo with data is presented in Chapter 6. In Chapter 7, the unfolding procedure
is described and tested. The data are then unfolded. Chapter 8 is the summary

and conclusion to this thesis.
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1.1 Two-Photon Interactions

In classical electrodynamics the photon is described by the linear Maxwell equa-
tions. However, in quantum mechanics, the photon is not a photon all of the time.
A photon of energy E., can fluctuate into a virtual state of a charged particle pair,
by the uncertainty principle. If my,;, is the mass of the charged particle pair, then

the lifetime of the state is given by

2F.
— (L1)

mpair

At ~

assuming m?2,, < E? and h = ¢ = 1. This time increases as the photon energy
increases. Therefore, an interaction of two photons becomes possible because one
photon can interact with one of the charged particles in the state the other photon

has fluctuated into.

1.2 The Photon Picture

The virtual state of the charged particle pair can be either a charged lepton-
antilepton pair ({*{~), a quark-antiquark pair (¢g ) or a massive pair (e.g. WW ™).
A cut-off parameter py may be introduced to separate the range of v — ¢g fluctu-
ations into low- and high-virtuality states. Such a separation is necessary because
the low-virtuality state is in the regime of non-perturbative QCD physics. The
vector meson dominance (VMD) model approximates the range of v — ¢g fluc-
tuations below py by a sum over low—mass vector meson states. Each meson state
can be written as |V). po sets the minimum transverse momentum of the ¢g
pair in the high-virtuality perturbative part of v — ¢g fluctuations (the so-called
‘point-like’ component). This state can be written as |¢g). The complete photon

wave-function for low—mass states [3] is then

|7> = Cbarel')'bare> + Z CVIV> + Z cql‘]ﬁ) + Z cl|l+l—)' (1.2)
q 1

V=p0w,é...
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1.3 The ey Vertex

By the uncertainty principle an electron of energy Ej, can fluctuate into a virtual
electron-photon state. This is illustrated in the top vertex of Figure 1.1. If the
electron is scattered with energy Ej into a solid angle element d(2, at angle 8, to
the initial electron direction, after producing a photon of energy z £, then the flux

for such a process is given by [4]

aem Ej 14 (1 —2)?

[ Q%) = 55 2 ————. (13)

Qerm is the electromagnetic coupling constant and Q?, which is by definition the

negative of the four-momentum squared of the photon, is given by

Q? = —¢* ~ 4E,E sin? (02—1) (1.4)

where the mass of the electron has been neglected. It should be noted that the

above flux factor peaks at small values of Q? and small photon energies.

1.4 v Collisions at an ete~ Collider

The only way of studying photon structure at current ete™ colliders is to use an
ey vertex from one electron (positron) to produce a nearly-real photon that will
display the structure described in Section 1.2. A second photon of high virtuality
from the ey vertex of the opposing positron (electron) can be used to probe the
structure of the nearly-real photon. The multi-peripheral two-photon process is
illustrated in Figure 1.1. It is customary to label the four-vector of the virtual
probe photon as g and the four-vector of the nearly-real photon as p. The invariant

kinematic variables

Q* _ Q?
2p-q Q+ P+ W’ (1.5)

=

and
y=L21 (1.6)
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p1,:(E1,’b1’>
p1:(Eb7b1)
D .....................
q=(ZEb»a|)
p:(TEbrb)
<1
<
pZZ(Ebvb2>

Figure 1.1: The multi-peripheral two-photon process labelled with four-vectors.

z and 7 are the energies of the probing and probed photon respectively, expressed

as a fraction of the beam energy.
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can be defined with reference to the four-vectors in Figure 1.1. W is the invariant
mass of the two-photon system. T'wo—photon collisions where one photon is virtual
and one is real will be called ‘y*v collisions’. The * marks the highly virtual
photon.

1.5 Deep Inelastic ey Scattering

When Q% > 4 GeV? and P? ~ 0 the two-photon collision can be regarded as
deep-inelastic electron-photon scattering, where the bare probe photon couples to
a quark inside the nearly-real photon resulting in an hadronic final state. Experi-
mentally, deep inelastic ey scattering is observed with singly-tagged events, where
the probe photon has its @* determined from the energy (Ej) and angle (6;) of the
scattered electron (called the ‘tag’) and P? ~ 0 is ensured by requiring that the
positron is not seen in the detector (called the ‘anti-tag’ condition). Therefore,

from now on, Ej and 6, will be called E;,, and 6,,, respectively.

In the single-tag regime, Equation 1.5 simplifies to

Q2

Y (L.7)

T

and z, called ‘Bjorken 2’ or ‘zp;’ to differentiate it from the Feynman z variable,
can be interpreted as the fraction of the four-momentum of the nearly-real photon
carried by the struck quark. From the anti-tag condition, the nearly-real photon
is approximately collinear with the beam (p - py ~ 2E?r where 7 is the energy of

the probed photon as a fraction of the beam energy) and
E., 6.
y=1-— E%bgcos2 (—;—g) . (1.8)

Total Differential Cross—Section

The amplitude for ete~—ete™X shown in Figure 1.1 can be written as

62

T = s o Jo R (1.9)
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The j’s are the electromagnetic currents of the leptons. The R*® term relates to
the coupling of the two photons to the final state X. For leptonic final states the
cross—section can be obtained from Equation 1.9 by an exact QED calculation.
The cross—section for a hadronic final state cannot be calculated so exactly because

it involves the theory of QCD which is not as predictively powerful as QED.

The photons radiated from the incoming leptons are in either a transverse (T)
or longitudinal (L) polarisation state. The total differential cross—section will
therefore contain four sub cross—sections orr, o1, 011, 0L and two interference
terms, 777 and 7rr. The subscripts refer to the polarisations of the first and
second photon respectively. The total differential cross—section for unpolarised

lepton beams is [5]

do
T = Lrr{orr + €1 oLt + €2 o7 + €162 OLL
1
+§6162 77T COS2¢ + 2\/61(1 + e1)v/e2(l + €2) 77 cos ¢ }, (1.10)
where o do!
P14P;
dl’ = . 1.11
E|E} (1.11)

which uses the variables defined in Figure 1.1. ¢ is the angle between the scat-
tering planes of the electron and positron in the 4y centre-of-mass frame. The
terms L17, €1 and €, are calculable in QED. The interference terms vanish after
integration over ¢. In the limit when the second photon is real (P? = —p? = 0)
the only cross—section terms to survive are orr and orr. One can now relate
these terms to the usual construction of the cross—section in terms of structure

functions.

Structure Functions

The transverse and longitudinal photon structure functions are defined as

Fle, @)= -2 1, (1.12)
LR 4n2a,, 2¢ T ’
and
Q2
FZ(:L‘,Q2) = orLT. (113)

4120,
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The more commonly used structure functions are F7(z,@?) and FJ(z,Q?) which

are defined as
F'(z,Q%) = Fi(z,Q%) (1.14)
and

F7 (2, Q%) = 20F(z, Q%) + F(2,Q?). (1.15)

The ey cross-section can now be written as

doo, 16mal EfT [(

dedy ~ @ Y)F7(2,Q%) + 2y’ F{(2,Q%)].  (1.16)

Events are strongly peaked towards small tag angles and high tag energies, as was
discussed in Section 1.3. Therefore y is small (see Equation 1.8) and y% < (1 — y).
It can be seen from Equations 1.15 and 1.12 that F3(z,Q?) > zF{(z,Q?) so that
(1 - y)F3(z,Q%) > zy’F (z,Q%) and
doey 167ra§mEgT(1 B
dzdy — Q4

y)F7 (2, Q%). (1.17)

The structure functions defined above can either be QED structure functions, from
reactions of the type vy — [*t{™ , or hadronic structure functions from reactions of
the type vy — hadrons . The muonic F7 (z,Q?) has been measured by OPAL [6],
CELLO [7] and DELPHI [8]. All of these measurements agree well with QED
predictions. This work is only concerned with the hadronic photon structure

function.

1.6 Interest in F)

The theory behind the photon structure function will be given in more detail
in Chapter 2. To motivate the measurement of the hadronic photon structure

function, its interesting features are summarised below.

High Q?

As a consequence of the running coupling constant in QCD, FY rises linearly with

log @? in leading order of c,. The slope of this rise is predicted by QCD. Looking
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for this behaviour in F3 is therefore a test of perturbative QCD. If the coupling
constant is frozen at an initial value of Q% then F} bends asymptotically to a
constant that is independent of @* [9]. This is illustrated in Figure 1.2, which
has been adapted from [10]. The difference between a fixed coupling and a running

coupling becomes greater at larger Q2 .

Low Q?

The evolution of the photon structure function from Q? ~ 1 GeV? to Q? ~ 5 GeV?
is not well understood. There is no apparent need for a point-like component
of F; for Q? smaller than ~ 1 GeV?, but the transition between the hadronic
shape and the point-like shape of F, appears to be complete at Q% ~ 5 GeV?Z.
This transition region contains a significant non-perturbative component and is
therefore difficult to calculate. Some theorists argue that one can start evolving
Fy from @Q? values of less than 1 GeV? [11, 12] and correctly predict F3 for Q?
> 5 GeV2. Others argue that this is not possible [13]. Some data do exist, but
there is controversy on the validity of this data. Clearly, new measurements in

this region are valuable.

Low z

Photon and proton structure function models based on the BFKL equation [14, 15]
predict that F5(z) rises approximately as 277 for z < 0.1. This is not a unique
prediction since the DGLAP [16, 17, 18, 19, 20] evolution of parton distributions
(eg GRV [11]) predicts a similar rise. The process that might be associated with
such a rise is illustrated in Figure 1.3. The fact that the proton structure function
has been observed to rise as = decreases [21, 22] (see Figure 1.4) adds weight to the
question of whether or not the hadronic photon structure function does the same.
This is unknown because photon structure function data do not extend to as low
an z as proton structure function data, due to the kinematical differences between

electron-photon and electron—proton deep inelastic scattering experiments.
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Figure 1.2: Comparison of Q? evolution of the second moment of F; in QCD

(solid line) with a theory in which the coupling constant is frozen at an initial

value of Q% = 5 GeV? (dot-dashed line).
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gluon

IRRRERAS
ladder YAV Y
JYTTTVY

wvv\/é):@ PHOTON REMNANT
Y

Figure 1.3: Feynman diagram used in some QCD models of the low—z part of the

photon structure function.
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1.7 F) Measurements at LEP

As the beam energy of an ete™ collider increases, greater values of W can be
reached, so the minimum value of z for a given @Q? decreases (see Equation 1.7).
Although the event rate for a given tagging range would decrease with increasing
beam energy, the accessible @? values within that tagging range increases (see
Equations 1.3 and 1.4).

Table 1.1 shows mean @? values and z-tanges of singly-tagged hadronic two—

Collider | Coll. (Q* )(GeV?) z-range Ref.
(and @? range) | (and No. bins)
PETRA | PLUTO | 2.4 (1.5-3) 0.016-0.700 (3) | [24]
4.3 (3-6) 0.03-0.80 (3) | [24]
9.2 (6-16) 0.06-0.90 (3) | [24]
5.3 (1.5-16) 0.035-0.840 (6) | [24]
45.0 (10-100) | 0.1-0.9 (4) [25]
TASSO | 23.0 (7-70) 0.02-0.98 (5) | [26]
JADE | 24.0 (10-55) 0.10-0.90 (4) | [27]
100.0 (30-220) | 0.1-0.9 (3) [27]
PEP TPC/27 | 0.7 (0.5-1.0) @ 28]
1.3 (1.0-1.6) (4) [28]
5.1 (4-7) 0.02-0.74 (3) | [28]
20.0 0.196-0.963 (3) | [29]
TRISTAN | AMY | 73.0 (30.0-110.0) | 0.125-0.875 (3) | [30]
TOPAZ | 5.1 (3-10) 0.010-0.20 (2) | [31]
16.0 (10-30) 0.20-0.78 (3) | [31]
80.0 (45-130) | 0.06-0.98 (3) | [31]
VENUS | 40.0 (20-75) 0.09-0.81 (4) | [32]
90.0 (45-240) | 0.19-0.91 (4) | [32]
LEP OPAL | 5.9 (4-8) 0.001-0.649 (3) | [33, 34]
14.7 (8-30) 0.006-0.836 (4) | [33, 34, 35]
DELPHI | 12.0 (4-30) 0.001-0.847 (4) | [36]
0.001-0.350 (3) | [36]

Table 1.1: Published hadronic F; data as a function of z.

photon events at various ete~ centre—of-mass energies. LEP1, having a beam
energy of 45.6 GeV, can clearly access the interesting high Q% and low-z regions

that lower energy experiments cannot reach. LEP2 (Epeam ~ 90 GeV) and a future
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linear e*e™ collider (Epeam = 250 GeV) will achieve even lower-z and higher Q2
values [23].

An z-Q? kinematic plot of Monte Carlo tagged two-photon events at LEP1 is
shown in Figure 1.5. It clearly shows the effect of certain necessary cuts, such as
minimum 7y mass, minimum tag energy and minimum tag angle, on the distri-

bution of events.

It will become clear in the next chapter that there are theoretical uncertainties
in the low-z behaviour of the photon structure function. Since a measurement
of F} at LEP extends to lower z than any previous F; measurement, this thesis

concentrates on the low-z region.



























































































































































































































































































































































































































