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A bstract

Singly-tagged two-photon collisions are studied in the OPAL detector at LEP 
using 45.9 pb“  ̂ of data taken during the years 1990-1992 at and near a beam 
energy of 45.6 GeV. The energy and angle of the scattered electron or positron 
are measured by the OPAL Forward Detector, resulting in a range of 4-30 
GeV^. The data  distributions are compared with Monte Carlo distributions from 
F2GEN and HERWIG. Distributions of energy flow relative to the tag dem onstrate 
th a t F2GEN and HERWIG do not model the hadronic flnal state well. Unfolded 
results for the photon structure function F^ix)  on a log^g x  scale are presented for 
two ranges, with mean values of 6.4 GeV^ and 15.1 GeV^. The measurement 
of F 2 {x) is shown to be dominated by system atic errors in the low-a; region.
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Chapter 1

Introduction

This thesis is a study of singly-tagged two-photon collisions using data from 
the OPAL (O m ni-Purpose A pparatus for LEP) detector [1] at the LEP (Large 
Electron-Positron) collider [2] at CERN near Geneva. The aim of such a study is 
to obtain a measurement of the hadronic photon structure function, E^(T, Q^).

The data  used in this analysis were taken in the years 1990-1992 and correspond 
to 45.93 pb“  ̂ of e'*'e“ integrated luminosity.

As an introduction it is acknowledged th a t the photon has a hadronic structure. 
A simple picture for this structure is presented, followed by the m ethod used to 
study this structure at an e+e" collider. The photon structure function is then 
introduced and the m otivation for measuring it is given.

C hapter 2 is a theoretical presentation of the photon structure function. An 
outline of the OPAL detector follows, in Chapter 3, and an account of the selection 

of singly-tagged tw o-photon events is given in C hapter 4. The Monte Carlo 

simulation in this analysis is described in Chapter 5 and a comparison of Monte 
Carlo with data is presented in Chapter 6 . In C hapter 7, the unfolding procedure 
is described and tested. The data  are then unfolded. C hapter 8 is the summary 

and conclusion to this thesis.
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1.1 Two-Photon Interactions

In classical electrodynamics the photon is described by the linear Maxwell equa
tions. However, in quantum  mechanics, the photon is not a photon all of the time. 
A photon of energy can fluctuate into a virtual state  of a charged particle pair, 

by the uncertainty principle. If nipair is the mass of the charged particle pair, then 
the lifetime of the state is given by

2E
( 1 .1 )

TOp«.V

assuming <K E^ and h = c = 1. This tim e increases as the photon energy
increases. Therefore, an interaction of two photons becomes possible because one 
photon can interact with one of the charged particles in the state  the other photon 
has fluctuated into.

1.2 The Photon P icture

The virtual state  of the charged particle pair can be either a charged lepton- 
antilepton pair (/"'■/“ ), a quark-antiquark pair {qq ) or a massive pair (e.g. W '^W~) .  
A cut-off param eter po may be introduced to separate the range of 7  —>• çç fluctu
ations into low- and high-virtuality states. Such a separation is necessary because 
the low-virtuality state is in the regime of non-perturbative QCD physics. The 
vector meson dominance (VMD) model approximates the range of 7  —> gq fluc

tuations below Po by a sum over low-mass vector meson states. Each meson state 
can be w ritten as |V). po sets the minimum transverse m om entum  of the qq 

pair in the high-virtuality perturbative part of 7 —>■ çg fluctuations (the so-called 
‘point-like’ component). This state  can be written as \qq). The complete photon 

wave-function for low-mass states [3] is then

b )  = Cbarellbare) A  ^  | V) -f ^  C, -f ^  Q |/+/ ). (1.2)
V=p° 9 I
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1.3 The 87 Vertex

By the uncertainty principle an electron of energy Eb can fluctuate into a virtual 
electron-photon state. This is illustrated in the top vertex of Figure 1.1. If the 

electron is scattered with energy E[ into a solid angle element dfl, at angle 6i to 

the initial electron direction, after producing a photon of energy zEb then the flux 

for such a process is given by [4]

( U )

aem is the electromagnetic coupling constant and which is by deflnition the 
negative of the four-momentum squared of the photon, is given by

=  _ g 2 ^  4EbE[ sin^ (1.4)

where the mass of the electron has been neglected. It should be noted th a t the 
above flux factor peaks at small values of and small photon energies.

1.4 77 Collisions at an e^e Collider

The only way of studying photon structure at current e'^'e" colliders is to  use an 
e7  vertex from one electron (positron) to produce a nearly-real photon th a t will 
display the structure described in Section 1.2 . A second photon of high virtuality 
from the eq vertex of the opposing positron (electron) can be used to probe the 

structure of the nearly-real photon. The m ulti-peripheral two-photon process is 
illustrated in Figure 1.1. It is custom ary to label the four-vector of the virtual 

probe photon as q and the four-vector of the nearly-real photon as p. The invariant 

kinem atic variables

 91_____  (15)
2 p - q  Q^ + P^ + W^   ̂ ^

and
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Figure 1.1: The m ulti-peripheral two-photon process labelled with four-vectors, 

z and r  are the energies of the probing and probed photon respectively, expressed 

as a fraction of the beam energy.
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can be defined with reference to the four-vectors in Figure 1.1. VF is the invariant 
mass of the two-photon system. Two-photon collisions where one photon is virtual 
and one is real will be called ‘7*7 collisions’. The * marks the highly v irtual 
photon.

1.5 D eep Inelastic e j  Scattering

W hen ^  4 GeV^ and ~  0 the two-photon collision can be regarded as 
deep-inelastic electron-photon scattering, where the bare probe photon couples to 
a quark inside the nearly-real photon resulting in an hadronic final state. Experi
mentally, deep inelastic e j  scattering is observed with singly-tagged events, where 
the probe photon has its determ ined from the energy (E[) and angle (^1) of the 
scattered electron (called the ‘tag’) and ~  0 is ensured by requiring th a t the 
positron is not seen in the detector (called the ‘anti-tag’ condition). Therefore, 
from now on, E[ and 9i will be called Etag and Otag respectively.

In the single-tag regime. Equation 1.5 simplifies to

and X, called ‘Bjorken x ’ or ‘x g /  to differentiate it from the Feynman x variable, 
can be interpreted as the fraction of the four-m om entum  of the nearly-real photon 
carried by the struck quark. From the an ti-tag  condition, the nearly-real photon 

is approxim ately collinear with the beam (p • pi 2:: 2P ^ r where r  is the energy of 
the probed photon as a fraction of the beam  energy) and

=  (1.8)

Total Differential C ross-Section

The am plitude for e'*'e“ —>-e‘*'e“ X  shown in Figure 1.1 can be w ritten as

T =  ^  f l - .  (1.9)
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The j ’s are the electromagnetic currents of the leptons. The R^°‘ term  relates to 
the coupling of the two photons to the final state  X .  For leptonic final states the 
cross-section can be obtained from Equation 1.9 by an exact QED calculation. 

The cross-section for a hadronic final state cannot be calculated so exactly because 
it involves the theory of QCD which is not as predictively powerful as QED.

The photons radiated from the incoming leptons are in either a transverse (T) 
or longitudinal (L) polarisation state. The to tal differential cross-section will 
therefore contain four sub cross-sections (Tt t , <̂ll and two interference
terms, ttt and t t l - The subscripts refer to the polarisations of the first and 
second photon respectively. The to tal differential cross-section for unpolarised 

lepton beams is [5]

da ,
—  =  L t T {O'TT +  1̂ <^LT +  ^2 ^TL +  ^1^2d r

where

+  2 ^1̂ 2 t~t t  cos2</> +  2‘\JCi(l +  (2(1 4- C2) ttl cos(j) (1.10)

= I f .  ( . . n )

which uses the variables defined in Figure 1.1. ^  is the angle between the scat
tering planes of the electron and positron in the 77  centre-of-m ass frame. The 
terms L tti  1̂ and cg are calculable in QED. The interference term s vanish after 
integration over (j). In the lim it when the second photon is real {P^ = —p^ = 0) 
the only cross-section term s to survive are a jT  and aiT- One can now relate 
these terms to the usual construction of the cross-section in term s of structure 
functions.

Structure Functions

The transverse and longitudinal photon structure functions are defined as

"'"I
and

= (1.13)
47T Oùem
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The more commonly used structure functions are F i{x ,  Q^) and T7(a;, Q‘̂) which
are defined as

=  (1.14)

and

(a;, (1.15)

The e7  cross-section can now be w ritten as 

dcr^  ̂ 167ra^_E?TS7   em b
dxdy Q"

[(1 -  y)F^{x,  Q^) + xy-^FJ{x, <3=>)] . (1.16)

Events are strongly peaked towards small tag angles and high tag energies, as was 
discussed in Section 1.3. Therefore y is small (see Equation 1.8) and (1 — y). 
It can be seen from Equations 1.15 and 1.12 tha t T^(a;, Q^) >  xFi[x,Q'^)  so tha t 
(1 -  y)F 2 {x,Q^)  >  xy^Fi(x,Q'^)  and

d(Te'y ^  Id w a l^E ^r  
dxdy

( l - y ) f ? ( 2:,Q:^). (1.17)

The structure functions defined above can either be QED structure functions, from 
reactions of the type 77  -4- /■*■/“ , or hadronic structure functions from reactions of 
the type 77  -4- hadrons . The muonic F^ix ,  Q^) has been measured by OPAL [6], 
CELLO [7] and DELPHI [8]. All of these measurements agree well with QED 
predictions. This work is only concerned with the hadronic photon structure 
function.

1.6 Interest in

The theory behind the photon structure function will be given in more detail 
in C hapter 2. To m otivate the measurement of the hadronic photon structure 

function, its interesting features are summarised below.

High Q2

As a consequence of the running coupling constant in QCD, rises linearly with 
log in leading order of The slope of this rise is predicted by QCD. Looking
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for this behaviour in F2  is therefore a test of perturbative QCD. If the coupling 

constant is frozen at an initial value of then F 2  bends asymptotically to a 
constant tha t is independent of [9]. This is illustrated in Figure 1.2, which 

has been adapted from [10]. The difference between a fixed coupling and a running 
coupling becomes greater a t larger .

Low

The evolution of the photon structure function from 1 GeV^ to ~  5 GeV^ 
is not well understood. There is no apparent need for a point-like component 
of F 2  for smaller than  ~  1 GeV^, but the transition between the hadronic 
shape and the point-like shape of F 2  appears to be complete at ~  5 GeV^. 
This transition region contains a significant non-perturbative component and is 
therefore difficult to calculate. Some theorists argue th a t one can start evolving 
F 2  from values of less than  1 GeV^ [11, 12] and correctly predict F 2  for 
> 5 GeV^. Others argue th a t this is not possible [13]. Some data  do exist, but 
there is controversy on the validity of this data. Clearly, new m easurements in 
this region are valuable.

Low X

Photon and proton structure function models based on the BFKL equation [14, 15] 

predict tha t ^ 2(0:) rises approxim ately as x~^  for x < 0.1. This is not a unique 
prediction since the DGLAP [16, 17, 18, 19, 20] evolution of parton distributions 

(eg GRV [11]) predicts a similar rise. The process th a t might be associated with 

such a rise is illustrated in Figure 1.3. The fact tha t the proton structure function 

has been observed to rise as x  decreases [21, 22] (see Figure 1.4) adds weight to the 
question of whether or not the hadronic photon structure function does the same. 

This is unknown because photon structure function data  do not extend to as low 

an X  as proton structure function data, due to the kinem atical differences between 
electron-photon and electron-proton deep inelastic scattering experiments.
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A s y m p to t ic  value fo r  f ixed  cou p l ing

0.25 Fixed coup l ing

QCD

0.2

0.15

0.1
,3.2 410' 1010 10'

(GeV^)

Figure 1.2; Comparison of evolution of the second moment of in QCD 

(solid line) with a theory in which the coupling constant is frozen at an initial 

value of Qo ^ GeV^ (dot-dashed line).
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Figure 1.3; Feynman diagram used in some QCD models of the low-æ part of the 

photon structure function.
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Figure 1.4: Rise in the proton structure function measured by the ZEUS Collab

oration (circles) and the HI Collaboration (triangles).
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1.7 F2 M easurements at LEP

As the beam energy of an e+e" collider increases, greater values of W  can be 

reached, so the minimum value of x  for a given decreases (see Equation 1.7). 
Although the event rate for a given tagging range would decrease with increasing 
beam energy, the accessible values within th a t tagging range increases (see 
Equations 1.3 and 1.4).

Table 1.1 shows mean values and a:-ranges of singly-tagged hadronic tw o-

Collider Coll. {Q‘ XGeV'O 
(and range)

x-rcinge 
(and No. bins)

Ref.

PETRA PLUTO 2.4 (1.5-3) 0.016-0.700 (3) [24]
4.3 (3-6) 0.03-0.80 (3) [24]
9.2 (6-16) 0.06-0.90 (3) [24]
5.3 (1.5-16) 0.035-0.840 (6) [24]
45.0 (10-100) 0.1-0.9 (4) [25]

TASSO 23.0 (7-70) 0,02-0.98 (5) [26]
JADE 24.0 (10-55) 0.10-0.90 (4) [27]

100.0 (30-220) 0.1-0.9 (3) [27]
PEP T P C /2 7 0.7 (0.5-1.0) (4) [28]

1.3 (1.0-1.6) (4) [28]
5.1 (4-7) 0.02-0.74 (3) [28]
20.0 0.196-0.963 (3) [29]

TRISTAN AMY 73.0 (30.0-110.0) 0.125-0.875 (3) [30]
TOPAZ 5.1 (3-10) 0 .010- 0.20 (2) [31]

16.0 (10-30) 0.20-0.78 (3) [31]
80.0 (45-130) 0.06-0.98 (3) [31]

VENUS 40.0 (20-75) 0.09-0.81 (4) [32]
90.0 (45-240) 0.19-0.91 (4) [32]

LEP OPAL 5.9 (4-8) 0.001-0.649 (3) [33, 34]
14.7 (8-30) 0.006-0.836 (4) [33, 34, 35]

DELPHI 12.0 (4-30) 0.001-0.847 (4) [36]
0.001-0.350 (3) [36]

Table 1.1: Published hadronic F7 data  as a function of x.

photon events a t various e+e“ centre-of-m ass energies. L E Pl, having a beam 
energy of 45.6 GeV, can clearly access the interesting high and low-x regions 

tha t lower energy experiments cannot reach. LEP2 (Ebeam — 90 GeV) and a future
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linear e+e" collider {Ebeam = 250 GeV) will achieve even lower-a: and higher 
values [23].

An x-Q^  kinem atic plot of Monte Carlo tagged tw o-photon events at LE Pl is 
shown in Figure 1.5. It clearly shows the effect of certain necessary cuts, such as 

minim um  77  mass, m inimum tag energy and m inim um  tag angle, on the distri
bution of events.

It will become clear in the next chapter th a t there are theoretical uncertainties 

in the low-a; behaviour of the photon structure function. Since a m easurement 
of F 2  at LEP extends to  lower x  than any previous F 2  m easurem ent, this thesis 
concentrates on the low-a: region.
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Figure 1.5: Scatter plot of Monte Carlo tagged two-photon events from the 

F2GEN generator (see Section 5.3) at E b e a m  =  45.6 GeV. The minimum 7 7  mass 

is 2 GeV, the minimum tag angle is 30 mrad and the minimum tag energy is 20 

GeV. The photonic parton distribution functions from GRV (see Section 2.7.1) 

have been used in the event generation.
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Chapter 2

Theory of the Photon Structure  

Function

This chapter begins by considering how can be constructed from parton distri
bution functions. Various forms of these distributions will be presented. The 
determ ination of the hadronic and point-like components of F7 , using Vec
tor Meson Dominance (VMD), the Quark Parton Model (QPM ) and quantum- 
chromodynamics (QCD) calculations will then be discussed. Both DGLAP and 
BFKL evolution are considered. The charm quark contribution to F7 is consid
ered, followed by a review of all of the available param eterisations and models.

2.1 Parton D istributions of the Photon

In the introduction the photon structure function was presented as part of the 
67 cross-section, which is related to the m ulti-peripheral e'*‘e~—)■ e + e ' -f hadrons 

cross-section by a simple flux-factor. We know, however, th a t the photon some

tim es consists of partons, so it is natural to consider F^ as a sum of distributions 

of partons in the photon. This is central to the theory th a t follows. In Leading 
Order (LO),

F^{x, Q )̂ = x J2 k7(a;, 0^) + ql{x, Q^)]. (2.1)
2 =  1
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The qi{x ,Q^) = 'ÿ (x ,Q ^ )  condition is assumed to hold and so Equation 2.1
simplifies to

F {̂x,Q )̂ = 2xf^e^qy{x,Q^). (2.2 )
2 =  1

It is often more convenient to work with the singlet and non-singlet quark distri

butions, qs{xj Q^) and Q^) respectively. These are the quark distributions
tha t are used to  determ ine F2  param eterisations (see Section 2.7).

ql{x,Q^) =  2 ^ q ]  (2.3)
1 =  1

U f

t=l

where

(e^) =  — (2. 5)
i= i

The construction of F 2  in next-to-leading order (NLO) [37, 11] from the pho
tonic parton distribution functions is more complicated. It involves the gluon 
distribution, of the photon, unlike the LO case.

2.2 The Components of

It is usual to  separate the photon structure function into a hadronic and a point

like part

Fq(x, Q^) = F[^{x ,  Q^) +  Q2). (2.6)

Such a division is well supported by the experim ental data  (see e.g. TASSO [38]). 
The hadronic part, which is assumed to  be approxim ated by VMD, appears to be 

dominant at low-æ and low . The point-like component, which is most simply 
described by the QPM, plays a more im portant part for approximately æ >  0.1 
and > 4 GeV^ . VMD and the QPM are discussed in the next two sections.
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2.3 Vector M eson Dom inance

Photons are known to behave like hadrons when interacting with other hadrons [39]. 
In the Vector Meson Dominance (VMD) picture, at low 4-m om entum -squared 

transfers, the interaction of a photon with hadrons is dom inated by the exchange 
of vector mesons which have the same quantum  numbers as the photon. There

fore, the hadronic part of is usually chosen according to VMD. The photon 
couples to the vector mesons p, w, cj) and J/'tp resulting in

FHAD _  pVMD _  Ç  p v  (2.7)

where / y / 47r are determined from data  to be 2.20 for p°, 23.6 for w, 18.4 for (j) 
and 11.5 for J / ^  [39]. f v  from Equation 2.7 is related to cv from Equation 1.2 by 
Cy = Anaeml f v '  This hadronic part is completely analogous to hadron behaviour, 
as there is no increase with log (it exhibits Bjorken scaling) and the æ-shape 
is not calculable in perturbation theory.

The parton distributions in the p meson are experimentally unknown, so it is 
assumed that the p distributions are the same as those in the pion. The pion 
structure function for approximately x >  0.2 is known from experim ental results 
from the Drell-Yan [40] production of p-pairs in pion-nucleon scattering.

The simplest VMD estim ate [5, 9] th a t can be derived from pion structure function 
m easurements is

= 0.2 c«e„(l -  x).  (2 .8)

One might alternatively construct the photonic parton distributions as

P { x ,  p^) = K j  A (z , /i^) (2.9)

where p  = q^{= 'p) ot 1 <  k, < 2 and is a very low resolution scale 

(~  0.3 GeV^). The K param eter is introduced [5] to deal with theoretical ambi
guities, especially higher order gluonic corrections.

Alternatively, one can fit to  the low-Q^ data. T P C /2 7  fitted their data  at =  
iGeV^ [28] with

F ^ ^ ^ { x )  = a A x \ l  -  +  B{1 -  x f  (2.10)



34 CHAPTER  2. THEORY OF THE PHOTON STRUCTURE FUNCTION

and obtained A = 0.22, B  =  0.06, a = 0.31 and 6 =  2.5. This is illustrated on a 
linear-a; scale in Figure 2.1, with the simple VMD estim ate of Equation 2.8, and 

on a logjo X scale in Figure 2.2.

2.4 The Quark Pcirton M odel

Before QCD was developed, a ttem pts at trying to determine the properties of 

F2  and F2 came from calculations based on the free quark-parton model and 
light-cone algebra. In the quark-parton model (QPM ) the structure functions are 
calculated by treating the quarks as free particles without strong interactions. 
In the lim it of light quark masses {mf/Q"^ 1) the structure functions can be
w ritten [41, 42]

3a U f

{x -h ( l -  a:) )log
(mf 4- P^x{l  — æ))

— 2(1 — 3â  -j- 3cr ) -f-
m ^(l -f 2ar — 2x'^)
{mf  — P^{x^ — a;))

(2 .11)

=  — E  ef x^(l -  X). (2.12)
^  i=l

W hen P^ = 0, Equation 2.11 reduces to  the P^ independent formula

( I  -  X3a

2 =  1

-f- 8a;(l — (t) — 1]. (2.13)

The presence of the log term  in Equation 2.13 breaks the scaling of F ^ ^ ^ ,  but 
pQPM jg scale invariant. This P^ independent formula is illustrated in Figure 2.1. 

One should note th a t the x  and behaviour of the QPM is rather different from 
th a t of the VMD model. The quark-parton model is not a complete model for a 

description of F j  because we know th a t quarks are not free objects. They can 
couple to  gluons. To improve the calculation of F^  quantum  chromodynamics 
must be used.
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Figure 2.1: QPM and VMD predictions for . The simple VMD and T P C /27  

VMD predictions are from Equations 2,8 and 2.10 respectively. The QPM predic

tion (Equation 2.13) are for 3 flavours, with =  rrid =  =  300 MeV.
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0.6

FKP (p" = 0.3) + TPC/2y VMD 

FKP (p* = 0.5) + TPC/2y VMD 

TPC/2yVMD

0.5

0.4

0.3

0.2

0.1

Figure 2.2: The T P C /2 7  VMD prediction is shown by the dotted line. The solid 

lines represent the FKP(pJ =  0.3 GeV)+VMD curves for Q^=5.9 GeV^ (lower 

solid line) and Q^=14.7 GeV^ (upper solid line). The dashed lines represent the 

FKP(pJ =  0.5 GeV)+VM D curves for (5^=5.9 GeV^ (lower dashed line) and 

Q^=14.7 GeV^ (upper dashed line).
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2.5 QCD Calculations

Quarks can radiate gluons and gluons can produce quark-antiquark pairs, so the 
QPM calculation must be modified. If a valence quark (one of the quarks from the 

7 —>• çg vertex) is struck and it has not radiated a gluon then the kinematics of 
the hard scattering are not affected. W hen one or more gluons are radiated from 

the valence quark, they carry away some of the four-m om entum  from th a t quark. 
If the valence quark is still struck it will then be seen to have a smaller four- 
m om entum  than it had initially. If a sea quark (one of the quarks from a gluon 

—>■ qq vertex) has been struck it will be seen to  have a smaller four-m om entum  
than  the gluon it was produced from.

QCD predictions for F 2  can take several different approaches. One can proceed by 
using the operator product expansion and renormalisation group equations (O P E - 
RGE) [43, 44], evolution equations [45] or Feynman diagrams in the leading log 
approxim ation [46, 47, 48, 49].

2.5.1 The DG LAP Evolution Equations

The cross-section for the hard scattering process will depend on the scale of 
the virtual probe photon and on the m om entum  fraction distribution, D ( x , Q ‘̂ ), 
of the partons in the real photon at this scale. The evolution equation for the 
parton density D (x , t )  may be w ritten as

t — D{x.,i) = —  P{x)  0  D{x.,t). (2.14)

The convolution integral is defined as

a { x ) ® h [ x ) =  [  - a ( - \ b { y ) .  (2.15)3̂  y \yj

t is equal to (minus) the virtual m ass-squared of the parton after the branching 
and P{x)  is the relevant parton splitting function. Equation 2.14 is called the 

D okshitzer-G ribov-Lipatov-A ltarelli-Parisi (DGLAP) equation [16, 17, 18, 19, 

20]. D{x.,t) represents the distribution of parton m om entum  fractions inside the 
incoming hadron probed at scale t. W hen there are several different types of
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partons in the branching process, Equation 2,14 has to  be generalised to a coupled 
set of evolution equations of the form

(2.16)

The parton splitting functions P i j { x )  have the physical interpretation, to first order 

in CKg, of being the probability of finding parton % in a parton j  with a fraction x  

of the m om entum  of the parent parton. The lowest order approximation to the 
splitting functions [16] are

P q q { z )  =  C f

P q g { ^ )  =  C f  [ I  — z Y  

1 +  (1 - ^ ) 2

Pggi^^^f) = +  ( k i i )  +  , ( i  _ +  - { n C A ~ 4 n j T R ) S ( l - z )

(2.17)

where C f  = 4 /3 , T r  = 1 / 2  and Ca = 3. The plus prescription on the singular 
parts of these splitting functions is defined under the integral sign as

f  dx f { x )  [g{x)]+ = f  dx ( f {x )  -  f { l ) ) g { x ) .  (2.18)
•/ 0 V 0

This removes the singularity of the integrand in the evolution equations at z =  1, 
corresponding to  the emission of a soft gluon. The remaining singularities at z =  0 
are outside the range of the integration, so all of the integrals are finite.

2.5.2 Parton Distributions at Low-x

The HERA data  [21, 22] show tha t the proton structure function increases as 

a: —>• 0 , implying th a t the sea quark distribution grows rapidly with decreasing x. 
For the param eterisations of the parton distributions at low , an increase in 

the sea quark density is driven by the much larger and increasing gluon density 
at small x { P g g { z )  ^  6/z  as z 0). For the 7*7 low-a; region, one would expect 
the gluon ladder diagram, illustrated in Figure 1.3, to be the dominant process.
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The DGLAP equations are derived keeping only the leading log term s in Q^. The 
log(l/a;) term s are neglected. In the æ —>■ 0 lim it the log(l/a:) term s become im

portant. One can still use the DGLAP evolution equations for low-a:, provided 
log log(l/æ ). The treatm ent of the low-a; region corresponds to a resum 
m ation of term s proportional to log to  all orders in perturbation theory. 

Considering the gluon distribution only, G{x,t) ,  such a scenario yields [50]

where

( - )

However, the values may not be large (especially at low-æ), so it is more useful 
to resum term s proportional to Og log(l/a;) to all orders. This is done by the 
Balitsky-Fadin-K uraev-Lipatov (BFKL) equation [14, 15]. A simple derivation 
of the BFKL equation and the low-a: behaviour is given by Mueller [51]. Mueller 
actually calculates the low-z behaviour of the wave function of a hadron rather 
than in term s of structure functions. The inclusive gluon distribution g at small-a; 
in a quarkonium wave function is

g{x,b'^) oc bx~^ (2 .21)

where A =  4 log 2 Nas/' ïï.  N is the number of colours. The A number is about 0.5 
for Ofg ~  0.2, leading to an approximate divergence at low-a:. The param eter 
b is related to the scale by a Fourier transform ation.

2.6 Charm—Quark Contributions

It is im portant to  consider how the charm quark contribution to can be the

oretically dealt with, since it cannot be incorporated into the massless DGLAP 
equations in the  m oderate region [Q^< 100 GeV^). This is, however, the re
gion with the most data. The effect of quark mass is accounted for by using the 

massive quark DGLAP equations [52] or even more accurately by incorporating 
the full next-to-leading order corrections [53]. It has been found [54] th a t a good
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approximation to the charm quark contribution to the photon structure function 
for Q^< 100 GeV^ is m ade by summing the contributions from the QPM processes 

of 7 *7 —)■ cc (direct) and >y*g -> cc (resolved).

D irect QPM  process

Since the QPM direct process is commonly used when including charm in F^ 
param eterisations (see Section 2.7), it is briefly described. It is calculated via the 
lowest order Bethe-H eitler process [55, 56] and is given by

Q^)\direct =  ^  ^ (2.22)

where ec=2/3 is the charm -quark electric charge and

w{z, r) = z [/){—! +  8z (l — z) — Arz{l — z)}

2 I _ \ 2  I o _ 2 _ 24-{z^ +  (1 -  +  4 rz (l -  3z) -  log 7- ^
i — p

(2.23)

with

The charm contribution is added for (3 > 0 {W^ > 4ml)  and is zero for ^  < 0 
(W^ < 4m^), and therefore incorporates the charm mass threshold. The effect of 
adding in this charm contribution to F^(a;) is visible in Figure 2.3.

R esolved QPM  process

The expression for the QPM contribution to F^ from the resolved process j*g cc 
is given by [54]

F2,ci^^Q^)\resolved =  ^   ̂ j  ^  (2.25)

where a =  1 -\-4m‘l / Q ‘̂ and the gluon distribution g{x, Q^) is given by solving the 
massless nj  = 3 DGLAP equations.
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Figure 2.3: The GRV Leading Order param eterisation for four flavours (solid 

lines) and three flavours (dashed lines). The lower curve of each pair is calculated 

at Q^=6.9 GeV^ and the upper curve of each pair is calculated at Ç^=14.7 GeV^.
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2.7 F2 Parameterisations and M odels

The formulation of the DGLAP equations is convenient for obtaining analytical 
solutions [54] for the evolution of parton distributions. No prediction is made 

for the size and shape of the functions themselves. A common method of making 
a theoretical prediction of the photon structure function is to choose a reference 
scale Ql  , param eterise the parton distributions at tha t scale and then evolve 

those distributions numerically using the DGLAP equations. Q^) can then
be constructed at a given and a global numerical fit to the data performed to 
determ ine the best values for param eters.

This section presents some of the basic features of the available theoretical pre

dictions of F 2  .

2.7.1 Gluck, Reya and Vogt (GRV)

These authors have produced parton distributions of the proton [57] and the 
pion [58] tha t have been generated from a valence-like structure at a common, very 
low resolution scale. The deep-inelastic scattering data have been reproduced, in 
particular the HERA results on F 2  [21, 22] are in excellent agreement with the 
GRV prediction. This success provides motivation for using a low starting scale 
in the case of the photon.

The GRV photonic parton distributions [11] are in LO and NLO {DIS^  factorisa
tion scheme). The evolution starts at Ql = 0.25 GeV^ (LO) and Ql = 0.3 GeV^ 
(NLO). The photonic input distributions are purely from VMD. They are taken 

to be those from Equation 2.9, w ith /F) ~  x^{l — x Y  being the valence-like
(i.e. a >  0) inputs from [58] and [5]. Only one param eter, k, is left to be fixed 

from a least squares fit to the F 2  data  [24, 25, 26, 27, 28, 30]. The best k, values 

were found to be /«lo = 2  and /«atlo =  1.6 , with good agreement of the resulting 
param eterisations with the data.

The charm contribution has been calculated by the direct QPM process, with 

nic =  1.5 GeV. The controversial [59] low-Q^ large-x T P C /2 7  data points [28], 
which are close to the resonance region, were not used in the determ ination of k .
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This param eterisation is used to generate some of the Monte Carlo samples used 
in this thesis (see C hapter 5). The three and four flavour param eterisations are 
illustrated in Figure 2.3 for two different values.

2.7.2 Hagiwara et al. (W HIT)

These are a set of six LO photonic parton distributions (W H ITl to W H IT6) [54] 

which have systematically different gluon contents. The evolution starts at Ql = 
4 GeV^ The data  [24, 25, 26, 27, 28, 29, 30, 31, 32, 34] at 4 <  Q^< 100 
GeV^ are fitted to determ ine the free param eters. Not all of the experimental 
da ta  points are used. Firstly, the data  at ) lower than  4 GeV^ are omited. 
Secondly, bins are accepted only if

( g 2 ^
Xlower bin edge >   ̂ _j_ ^ l|^ m a x p ’ (2.26)

where is the experim ental cut on the visible invariant mass of the hadronic
final state. This is on the grounds tha t the bins tha t fail this condition might 
suffer from large system atic uncertainties in the unfolding procedure (see Chapter

7)-

The charm quark contributions to F 2  are calculated by the QPM (with rric = 
1.5 GeV) at Q^< 100 GeV^, with contributions from both the direct and resolved 
processes (see Section 2.6).

2.7.3 Gordon and Storrow (GS)

These are LO and NLO [ M S  factorisation scheme) param eterisations [37]. The 

evolution starts at Qq =  5.3 GeV^, which is the average of the low-Q^ PLUTO 

data  [24]. The data  [24, 25, 26, 27, 30, 60] are partially used to flt the 5 free 

param eters given below. The high data [30, 27, 60] were fitted for n / =  4 
flavours. Two sets of param eterisations are given, corresponding to  two different 

assumptions on . The param etric form of the LO distributions are

gZ(:c, Ql)  =  q f^[x ,  ruu, rUs) +  q f ^ ^ [ x ,  «, B , C)  (2.27)
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for the singlet and non-singlet sectors and

Ql) = C) (2.28)

or

Qo) = gi^^ O) -f ^ P g q (x )  0  m^, m^). (2.29)
Po

The quark masses m ^(=  m^) and are treated as bounded free parameters. 
The VMD part is treated as in Equation 2.9 and hence incorporates a k. factor. 
The param eters B and C are associated with the sea and gluon sectors of the pion 
respectively, which are of the form given by [61]. For the PL part, the lowest 
order Bethe-H eitler form [55, 56] is used. Charm is treated  with the same way 
as for light flavours, with rric =  1.5 GeV. The second term  in Equation 2.29 
represents a component to the gluon distribution estim ated from Bremsstrahlung 
off the singlet quarks.

The NLO distributions have been constructed without a new flt to the data by 
enforcing the same E^(a;, Qq) as in the LO case, together with assumptions on 
flavour decomposition.

2.7.4 Drees and Grassie (DG )

This is a LO param eterisation [62] th a t avoids the two-component decomposition 
of Equation 2.6. Param eterisations for the singlet, non-singlet and gluon distri
butions are obtained using the full solution of the LO inhomogeneous evolution 
equations [45] which are free of divergences [63]. The input distributions are cho
sen at (Jo =  1 GeV^ such th a t the only data  tha t was available at the tim e [64], 
a t = 5.9 GeV^ , are reproduced. The weakness of this param eterisation is tha t 

only 7 data  points were available a t one value, so they were a poor constraint 
to the assumed 13 free param eters. A =  0.4 GeV throughout.

A 3-flavour evolution is used to  evolve the input distributions up to  = 50 

GeV^. A charm contribution can be determ ined from the direct QPM process. 
To obtain the parton distribution functions for 4 and 5 flavours the 3-flavour input 

at (Jq= 1 GeV^ is used to evolve up to  Q^= 500 GeV^ and Q^= 10000 GeV^ with 
a 4 - and 5-flavour evolution respectively. The 13 param eters are determined for 
each of the three evolutions.
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2.7.5 Levy, Abramowicz and Charcula (LAC)

The aim of these LO param eterisations [65] was to apply the approach of Drees 

and Grassie to further available measurements of the photon structure function. 
The evolution starts at Qq =  4 GeV^ for sets 1 and 2 and Qq = 1  GeV^ for 

set 3. The evolution was carried out for 4 flavours, but the charm contribution 

to the photon structure function was only taken into account when >  4m^, 

with rric =  T5 GeV. This threshold appears as a discontinuity in the F^ix )  
distributions (see Figure 2.4). The x dependence of the input quark distributions 

at Qq is assumed to be

xq{x) = (2.30)

for each of the four flavours and the gluon distribution at is assumed to have 
the form

xG{x) = CgX^^{l — x)^^. (2.31)

There are a to tal of 12 free param eters. No attem pt is made to flt the QCD scale 
param eter A which is assumed to be A =  0.2 GeV. The two term s in the quark 
distributions are intended to reflect the point-like and hadronic parts of photon 
structure. This was the first a ttem pt to determine the gluon distribution in the 
photon. No physical constraints are placed on the quark flavour decomposition 
and on the gluon density. Vogt points out [66] how this approach leads to un
physical results (e.g. s(æ, Q^) > d{x, Q^) in some regions) and wild reactions of 
the fitted gluon density on fluctuations and offsets in the data. This dem onstrates 
how the present data do not provide useful constraints on g' .̂

This param eterisation is used to generate some of the Monte Carlo samples used 
in this thesis (see Chapter 5).

2.7.6 Aurenche et al. (ACFGP)

These distributions are only in NLO [67] (with the M S  factorisation scheme). 
A pure VMD input was used at Qq = 0.25 GeV^. The param eterisation of the 
parton distributions in the vector mesons at Ql are chosen such th a t after an
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Figure 2.4: The LACl param eterisation for four flavours (solid lines) and three 

flavours (dashed lines). The lower curve of each pair is calculated at Q^=5.9 GeV^ 

and the upper curve of each pair is calculated at Q‘̂ =14.7 GeV^.



2.7. f ;  PARAMETERISATIONS AND MODELS 47

evolution between Qq = 0.25 GeV^ and Ql = 2 GeV^, they exactly correspond 
to  the distributions in the pion determined [68] at 2 GeV^. No fit to the 
data  is performed, and no a ttem pt is made to explain the data  at ~  1 GeV^, 
where higher twist contributions may be non negligible.

At =  2 GeV^ an rz/ =  4 evolution begins which generates a charm distribution, 

but in the calculation of this distribution is not used. Instead the expression 
of [69] is used which correctly accounts for the charm mass threshold. AjYs{n/  =  4) 

is fixed to 200 MeV.

2.7.7 Field, K apusta and Poggioli (FK P)

A different approach to calculating F^ is by the direct sum m ation of Feynman 
diagrams [46, 47], where leading log ladder diagrams are summed to all orders 
in as{Q^). FK P used this m ethod [48, 49] to calculate F^ they introduced 
a phenomenological cut-off (pj) in the pt of the quarks at the ^  qq vertex. 
This separates the hadronic and point-like components of the photon structure 
function. Furtherm ore, K apusta [70] detailed a derivation of various contributions 
to the photon structure function in the perturbative region. This all-order QCD 
approach by FK P was param eterised in an AMY paper [30] and is assumed to 
apply for all Pt > Pt- A separate part for the hadronic component must be 
added to the cross-section for pt <  p?, which is not provided in the FKP model. 
The hadronic component is usually assumed to be param eterised by the T P C /2 7  

formula of Equation 2.10. The ‘FK P +  T P C /2 7  VM D’ construction is illustrated 

in Figure 2.2, for two values of Q^ and two values of p°.

The FK P model has been shown to have lim itations [71]. In particular, it has 
been pointed out th a t the FK P result does not reproduce the correct small-æ 
behaviour of F^ (for x < 0.5). Also, the ‘FKP 4- T P C /2 7  VM D’ construction has 

been shown to be inconsistent, since the FK P F^/ is already large at Q^ = 0.71 
GeV^, where the T P C /2 7  param eterisation alone is supposed to describe the data.
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2.7.8 Schuler and Sjostrand (SaS)

This is the most recent set of param eterisations of the photonic parton distribution 
functions [71]. Schuler and Sjostrand point out the problems of the FK P model 

and then provide a solution to these problems with their own parton distribution 
functions.

The photon structure function is separated into perturbative (‘anomolous’) and 

non-perturbative (hadronic) contributions. The anomolous part is fully calculable 
and depends on x, Qq, A and P^.

The shapes of the hadronic distributions are obtained by fitting to the available 
F^(æ, Q^) data. This is to  be contrasted with the GRV and ACFGP param eteri
sations which approxim ate the hadronic input distributions by using distributions 
in the pion. The charm contribution to  F^ uses the leading order Bethe-H eitler 
cross-section, with rric = 1.3 GeV. Four different sets of hadronic parton distribu
tion functions are provided, corresponding to different starting scales and differ
ent factorisation schemes. These are SaSlD (DIS, Qo =  0.6 GeV), SaSlM  { MS ,  

Qo = 0.6 GeV), SaS2D (DIS, Qo = 2.0 GeV) and SaS2M {W S , Qo = 2.0 GeV).

A selection of 3-flavour F]^(a;) param eterisations are shown in Figure 2.5. The 
figure highlights tha t much of the theoretical uncertainty in F^ix)  lies in the 
æ < 0.1 region. The rest of this thesis is now concerned with the low-a; data  from 
OPAL, which extend into this region.
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Figure 2.5: A selection of three-flavour F ^ ix )  param eterisations from Section 2.7. 

All of these curves are calculated at Q^=14.7 GeV^.
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Chapter 3

LEP and the OPAL D etector

A brief description of LEP is given, followed by a more detailed account of the 
OPAL detector. Particular attention is given to the Forward Detector, where the 
two-photon collisions are tagged.

3.1 LEP

The LEP collider, at CERN near Geneva, is almost 27 km in circumference and 
100 m below the surface. Since July 1989 it has accelerated electrons and positrons 

in opposite directions around the ring, bringing them  into collision at the centre 
of mass energy of the resonance (approximately 91 GeV). This was the LEPl 

phase of LEP operation. In October 1995 the centre of mass energy was increased 

to  130 GeV and 136 GeV, as a first step towards reaching the W '^W ~  pair thresh

old of 160 GeV.

The data analysed in this thesis are taken from the OPAL [1] detector, which is 
one of four large detectors built around LEP (the other three are ALEPH, L3 and 
DELPHI).
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3.2 The OPAL D etector

OPAL is a m ultipurpose apparatus designed to have efficient detection, with accu

rate  and unambiguous event reconstruction of all possible interactions occuring in 

e+e" collisions. The general layout of the detector is shown in Figures 3.1 and 3.2.
The main features of OPAL are:

•  Tracking of the trajectories of charged particles in the central region of a 
magnetic field with measurements of their direction and m om entum , particle 
identification using dE/dx ,  and reconstruction of prim ary and secondary 
vertices using the central tracking detectors.

•  M easurement of energy and direction of photons and electrons using elec
trom agnetic calorimeters.

• M easurement of hadronic energy by to tal absorption in the instrum ented 
magnetic return  yoke (the hadron calorimeter).

• Identification of muons by measuring, with the muon chambers, the position 
and direction of particles which have passed through the hadron calorimeter.

•  M easurement of the absolute machine luminosity using Bhabha scattering 
events in the forward direction with respect to the beam line using the 
forward detector or the silicon-tungsten luminometer. The forward detector 
also measures the energy and angle of the tagged electrons for events used 
in the tw o-photon analysis.

The OPAL C oordinate System

The z-direction is along the beam direction and in OPAL this coincides with 
the direction of the electrons (which is anti-clockwise when LEP is viewed from 

above). The a:-direction points towards the centre of the LEP ring. The y -  

direction is normal to the x - z  plane, such th a t the three directions form a righ t- 
handed coordinate system. The z-direction is inclined by 1.39° w ith respect to 
the horizontal and therefore the ^-direction is inclined by 1.39° w ith respect to 

the vertical. It is common for a m ixture of cylindrical and spherical coordinates 

to be used, where the z-direction is the same as defined above, the ^-direction
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Figure 3.2: Side and end views of the OPAL detector, sectioned to show the main subdetector systems: central vertex chamber, 

jet chamber and z-chambers (CV, CJ and CZ), electromagnetic calorimeters (EB and EE), hadron calorimeters (HE and HE) 
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is the polar angle with respect to  the positive z-direction and ÿ  is the azimuthal 
angle which is 0 rad along the a:-direction and tt/ 2  rad along the ^/-direction.

The OPAL M agnet

The m agnet consists of a solenoidal coil and an iron return yoke. The yoke is 
made of soft steel plates and can be split into five parts; a central part, two ‘C’-  
shaped parts and two poletips. In the central cylindrical volume, which is used 
for tracking, the magnetic field is approximately 0.435 Tesla.

3.2.1 Central Tracking D etectors

The OPAL central tracking system consists of a silicon microvertex detector (yuv), 
a vertex detector, a large volume je t chamber, and Z-chambers. The gas used 
in the central tracking detectors is common to CJ, CV and CZ and is under a 
pressure of 4 bar. The tracking system is within the solenoid of the magnet. The 
inner wall of the pressure vessel is at a radius of 7.8 cm from the interaction 
point. This formed the original beam pipe, which consists of 0.13 cm thick carbon 
fibre with a 100 fim alum inium  inner lining. The silicon microvertex detector was 
added to OPAL in the 1991/92 winter shutdown, inbet ween the original beam pipe 
and a new 0.11 cm thick beryllium  beam pipe at a radius of 5.35 cm.

Silicon M icrovertex D etector

This is a solid-state detector which was designed to measure and identify particles 
with small decay lengths (<  1 cm) such as heavy hadrons and the r-lepton. It is 

also used to search for new particles with similar decay lengths.

The detector was constructed from rectangular shaped ladders which form a two- 
layer cylindrical configuration w ith an intrinsic resolution of 5 fj,m in r-</>. In the 
1992 shutdown the ladders were replaced with orthogonal pairs of single sided 
silicon detectors to give z information. This sub-detector is not used in this 
analysis.
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V e rte x  D e te c to r  (C V )

The vertex detector is a 1 m long and 0.47 m diam eter cylindrical drift chamber 

th a t is located between the outer beam pipe and the je t chamber. It is used to 
determ ine the position of decay vertices of short-lived particles and to improve 
m om entum  resolution. It is segmented radially and has an inner layer of 36 axial 
cells with axial wires and an outer layer of 36 stereo cells w ith wires strung at a 

stereo angle of 4°.

Each axial cell contains 12 anode wires with a radial spacing of 5.3 mm and the 
stereo cells have 6 anode wires with a 5 mm spacing. These anode wires are 
staggered by ±41 //m to resolve left right ambiguities. The axial cells provide 
a precise measurement of position in the r — (j) plane with a resolution of about 
50 fim. An approxim ate -^-coordinate of a wire hit is found by measuring the tim e 
difference of the signal from each end of anode wire. This coarse m easurement is 
used in the fast track trigger and for offline track finding. The combination of the 
stereo and axial cell information gives a more precise z-coordinate measurement 
for charged particles close to interaction region.

J e t  C h a m b e r  (C J )

The je t chamber records the tracks of charged particles and determines their 
m om enta by measuring their curvature in the magnetic field. It assists in the 

particle identification by measuring dE/dx .

The sensitive volume of the je t chamber is cylindrical w ith a length of about 
4 m, inner diam eter 0.5 m and outer diam eter 3.7 m. It surrounds the beampipe 
and the vertex detector. The chamber is divided in (f> into 24 identical sectors 

each containing a plane of 159 sense wires, all of which are parallel to  the beam 

direction. The wire planes are radial. Cathode wire planes form the boundaries 

between adjacent sectors. The maximum drift distance varies from 3 cm at the 
innermost sense wire to 25 cm at the outerm ost wire. 159 points are measured in 
the polar angle range 43° < 6 < 137° and at least 20 points on a track are obtained 

over 98% of the 47t solid angle. The average resolution in r  — is 135 //m and the 
average z resolution is 6 cm. The m om entum  in the r — (f) plane (pt in GeV) is
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measured with a resolution given by

^ ^  =  [0.02  ̂ +  (0 .0015p ,)¥- (3.1)
Pt

Z-Chambers (CZ)

The Z-chambers make precise measurements of the z-coordinates of charged par

ticles as they leave the je t chamber, thus improving polar angle resolutions. They 
are arranged to form a barrel layer around the je t chamber and have a polar angle 
acceptance of 44° < 0 < 136°. They consist of 24 drift chambers, 4 m  long, 50 cm 
wide and 59 m m  deep. Each chamber is divided across z into eight 50 cm x50 cm 
cells so tha t the m axim um  drift distance is 25 cm in the z direction. Each cell has 
6 anode wires strung along the ÿ  direction, with 4 mm spacing and a ±  250 f im 
staggering to resolve the left-right ambiguity. The z resolution is around 300 fxm 
and the r — ^  resolution, from charge division, is about 1.5 cm.

3.2.2 Tim e-of-Flight

The time-of-flight (TOE) system covers |cos0| <  0.82. It generates trigger signals, 
helps in particle identification and aids in the  rejection of background particles 
such as cosmic rays. The TOE system consists of 160 scintillation counters, each 
6.84 m long, forming a barrel of mean radius 2.36 m.

3.2.3 E lectrom agnetic Calorimetry

The electromagnetic calorimeter system measures the energies and positions of 
electrons, positrons and photons, ranging from tens of MeV up to beam energy. 
It is a to tal absorption calorimeter for electrom agnetic showers and is m ounted 

between the coil and the return  yoke of the magnet. It consists of three large 

assemblies of lead-glass blocks, the barrel and two endcaps. These cover 98% of 
the solid angle. Particles m ust traverse about 2Xo of m aterial, mostly due to  the 

magnet coil and pressure vessel, before reaching the calorimeters. Therefore, most 
electromagnetic showers are initiated before the lead glass itself. Presampling de
vices are installed in both the barrel and endcap regions, immediately in front
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of the lead glass, to measure the position and sample the energy of these show
ers. The lead-glass system coupled with the presampler system provides some 
7T°-photon discrimination and, in conjunction with the central tracking system, 

electron-hadron discrimination. Lead-glass was chosen for its excellent intrinsic 
energy resolution {cte/ E  ~  5 % /y /Ê  where E  is the electrom agnetic energy in 

GeV). The angular resolution of electromagnetic clusters is ~ 4  m rad both in 0 

and <j) for energies above 10 GeV.

Barrel Presam pler (P B )

The barrel presampler consists of a cylinder of lim ited stream er mode wire cham
bers between the time-of-flight system and the barrel lead-glass calorimeter. There 
are 16 chambers covering the surface of a cylinder of radius 2.4 m and length 
6.62 m. Each chamber is 3 cm thick and consists of two layers of lim ited stream er 
mode tubes with sense wires running axially. Readout is obtained from 1 cm wide 
cathode strips located on both  sides of each layer of tubes and oriented at 45° 
to  the wire direction. The strips on opposite sides of a layer are orthogonal. In 
addition, the charge collected on each wire is measured at both ends to provide a 
z position.

The resolution for the position of electromagnetic showers, in the plane perpen
dicular to the shower direction, varies from about 6 to 4 m m  as the energy changes 
from 6 to  50 GeV. This corresponds to an angular resolution for photon trajecto
ries of ~ 2  mrad. The resolution in z from current division is ~10 cm for a single 
charged particle.

Endcap Presam pler (PE)

The endcap presampler is an umbrella shaped arrangem ent of 32 chambers in 
16 sectors located between the pressure bell of the central tracking system and 

the endcap calorimeter. They cover the full azim uthal angle and the polar angu

lar region defined by O.83<|cos0|<O.95. The endcap presam pler has an angular 
resolution of crpg ^  4.6 m rad.
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B a rre l  L e a d -G la ss  C a lo r im e te r  (E B )

The barrel lead glass calorimeter consists of a cylindrical array of 9440 lead-glass 
blocks of 24.6 Xo,  located at a radius of 2455 mm, outside the magnet coil, covering 
the full azim uthal angle and the polar angular region defined by |cos^|<0.82. The 
longitudinal axes of the blocks are arranged such tha t each block points not at, 

but near to (~30 mm) the interaction point. This prevents neutral particles from 
escaping through the gaps between the blocks. In the z direction the calorimeter is 
segmented into 59 blocks. In the </> direction the calorimeter is segmented equally 

into 160 blocks.

The blocks are instrum ented with magnetic field tolerant phototubes. Each lead- 
glass block is ~10 cm xlO  cm in cross-section and 37 cm in depth. For optical 
isolation each is wrapped in a black sheet of vinyl fiuoride, the inner surface of 
which is coated with aluminium for efficient light reflection.

The typical energy resolution of the combined presampler and lead-glass system, 
without any m aterial in front, was found to be (j£;/E ~  0.2% +  6 .3% /\/Ê .

E n d c a p  L e a d -G la ss  C a lo r im e te r

The endcap electrom agnetic calorimeter (EE) consists of two dome-shaped arrays, 
each of 1132 lead glass blocks, located between the pressure bell of the central 

tracking system and the pole tip hadron calorimeter. It covers the full azim uthal 
angle and the polar angular range of 0.81<|cos^|<0.98. The lead-glass blocks are 

mounted with their axes coaxial with the beam  line, because of tight geometrical 

constraints, and the phototubes were developed to operate in the full axial field 

of the m agnet. The detector follows the curve of the pressure bell, and thus the 
blocks come in three lengths, typically of 22 X q.

The spatial resolution was found to  be 8-14 mm for a 6 GeV electron beam 
incident at 15° to  the longitudinal block axes.
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3.2.4 Hadron Calorimeter

The hadron calorimeter measures the energy of hadrons th a t emerge from the 
electrom agnetic calorimeter and assists in muon identification. The iron of the 
return  yoke provides at least 4 interaction lengths of absorber over 97% of the 

47t solid angle. The yoke is segmented into layers, with planes of wire chambers 

between each layer, and forms a cylindrical sampling calorimeter about 1 m  thick. 
To achieve the high solid angle coverage, the hadron calorimeter is constructed 
in three sections: the barrel, the endcap and the poletip. Most hadronic inter

actions are initiated in the 2.2 interaction lengths of m aterial before the hadron 
calorim eter, so the total hadronic energy is determined by combining signals from 
both the electrom agnetic and hadron calorimeters. The hadron calorimeters are 
not used in this analysis.

3.2.5 M uon D etector

The m uon detector is a system of large-area drift chambers constructed as a barrel 
and two endcaps. It covers the iron yoke almost completely. 93% of the 47t solid 
angle is covered by at least one layer of detector. The amount of m aterial th a t a 
particle has to traverse before reaching the muon detector exceeds the equivalent 
of 1.4 m  of iron (over 7 interaction lengths for pions). This reduces the probability 
of a pion not interacting, thus faking a muon, to less than 0.001. The elficiency 
for detecting isolated muons above 3 GeV is essentially 100%.

The barrel part of the detector covers |cos0| < 0.68 with four layers of drift 
chambers and |cos0| < 0.72 with one or more layers. The endcap part of the 

detector covers the range 0.67 <  |cos0| <  0.98 with four layers of lim ited stream er 
tubes th a t are perpendicular to the beam  axis.

Muon identification relies on extrapolating the track seen in the central tracking 

system through the iron absorber, allowing for energy loss and m ultiple coulomb 
scattering, and looking for a track in the muon detector which matches in position 

and angle in two views. The positional and angular accuracies required for the 

track m easurem ent are determined by the m ultiple scattering of the highest energy 
muons of interest and are about 2 m m  and 3 m rad respectively.
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3.3 OPAL Forward Detectors

These detectors are essential to  the present analysis. They are used to measure 

the luminosity of LEP by detecting small-angle Bhabha scattering events and to 
measure the energy and position of tags from photon-photon interactions. The 

forward region consists of the forward detector system and, from 1993 onwards, 
the silicon-tungsten calorimeter. The outer physical edge of the forward calorime

te r was 165 m rad before 1993 and 154 m rad from 1993 onwards. The pre-1993 
geometry of the forward region is illustrated in Figure 3.3.

3.3.1 Silicon Tungsten Calorimeter (SW )

The silicon-tungsten detector consists of two cylindrical small-angle calorimeters 
encircling the beam pipe at ±2389 mm in z from the interaction point. They have 
an angular acceptance of 25 m rad to 59 mrad. The radial position resolution on 
electron showers is approxim ately 10 fim  and the energy resolution is œeI E  ~  
2 8 % /\/Ë . Each calorimeter is built up from 19 layers of silicon sampling wafers 
and 18 layers of tungsten, corresponding to a total of 22 radiation lengths.

A silicon layer consists of 16 wedge shaped detectors, where each wedge covers 
22.5° in (f) with an inner radius of 62 mm and an outer radius of 142 mm. A wedge 
is divided into 64 pads, 32 in r and 2 in so in the entire system there are 38912 
channels tha t are read out individually. Adjacent wedges in a layer are offset by 
800 /im in z and positioned in such a way th a t there is no gap in the active area 
of the silicon. Consecutive layers in the detector are offset in </> by half a wedge 
(11.25°). This sub-detector is not used in this analysis, since this data sample is 
taken from 1990-1992 LEP running.

3.3.2 Forward D etector (FD)

Before the SW detector was installed in 1993, there was a clean acceptance for 
particles from the intersection region between 47 and 120 m rad from the beam 

line. In this range the only obstructions were 2 mm of carbon fibre in the beam 

pipe (traversed obliquely, so up to  0.2 Xo thick) and 2 m m  of aluminium in the thin
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1 0 cm

Figure 3.3: Cross section through the forward region (pre-1993) between 2 and 3 

metres from the intersection region (which is to the left of this diagram). BP = 

Beam Pipe, FT =  Drift Chambers, FL =  Fine Luminosity Monitor, FE =  Gamma 

Catcher, FP =  Presampler Calorimeter, FB =  Tube Chambers and FK =  Main 

Calorimeter.
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window of the central tracking system pressure vessel, with aluminium webs in the 
horizontal and vertical planes to support the beam pipe. The front drift chambers 

and the “acceptance” counters of the fine luminosity monitor were mounted on the 
front of a light stiff honeycomb plate which has a thickness equivalent to 1 m m  of 
aluminium. The inner part of the acceptance of the calorimeter, down to 39 m rad, 

was obstructed by a thick aluminium ring and by the bellows and flanges joining 
the beam pipe to  the pressure window. Beyond 120 m rad there are obstructions 

inside the pressure vessel, including optics for the laser beams used to calibrate 
the je t chamber. The space which they occupy between the forward calorimeter 
and the endcap lead glass causes a gap in the calorimetric acceptance in the polar 
angle region 142-200 m rad which is covered by the gam m a catcher.

Calorim eter (FK )

The forward calorim eter has 35 sampling layers of lead-scintillator sandwich (24 Xo), 
read out with wavelength shifter to vacuum phototetrodes. It is divided into a 
presampler of 4 Xo and the main calorimeter of 20 X o . The presampler has wave
length shifter at the outside only, but the m ain calorimeter is read out on both the 
inner and outer edges to  provide a 9 m easurement. There are sixteen azim uthal 
segments. The energy resolution has been measured as (Te / E  ~  18% /\Æ . The 
polar angle resolution on electron showers is ± 4  m rad near the inner edge, but 
degrades to ±10 m rad at the outer edge. The azim uthal resolution, from the 
ratios of signals in adjacent segments, is approxim ately ± 2°.

Tube Chambers (FB)

Between the presampler and main sections of the calorimeter there are three planes 

of brass-walled proportional tube chambers [72]. Individual shower positions have 
a polar angle resolution of ±  2 mrad. W ithin the tube chamber acceptance the 

tube chambers and the calorimeter provide combined cluster information. The 

energy m easurement comes from the calorimeter which also provides 9 and cj) for 
showers falling outside the tube chamber acceptance.
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Drift Cham bers (FT)

The drift chambers [73] were used up until the end of 1994. Each has two gas 
gaps with two sense wires per gap. Drift directions are approximately radial. The 
ambiguity between inward and outward drifts is resolved by displacing the sense 

wires in the first gap of each chamber outwards by 2 mm from those in the second 
gap. The position of a hit along a wire is measured by charge division and by a 

pattern  of intersecting diamond pads on the faces close to the wires. These have 
been used to accurately survey the positions of the tubes within the calorimeter. 
In 1992 the small-angle reference chambers (SARCs) were inserted.

Fine Lum inosity M onitor (FL)

The fine luminosity m onitor consisted of four pairs of precisely positioned 6 mm 
thick scintillators at each end, on the 45° diagonals to avoid showers from the 
beam pipe support webs. They covered the angular region 50-109 m rad from the 
beam axis, with an azim uthal coverage of about 36%. The front “acceptance” 
counters were 10 mm smaller on all sides than  the rear “coincidence” counters. 
They provided a luminosity m easurement used to check the main calorim eter/tube 
based m easurement. The monitor was removed when the SARCs were inserted.

G am m a Catcher (FE)

The gam m a catcher is a small electrom agnetic calorimeter physically extending 
in 9 from 143 m rad to 193 mrad. It thus covers the annular region between 

the outer physical edge of the forward calorimeter and the inner EE lead-glass 
calorimeter. It comprises eight independent azim uthal segments at each end, 
which provide a coarse determ ination of the cf> angle. Each segment consists of a 

lead-scintillator sandwich which is read out along the outer edge with a wavelength 

shifter bar and two 1 cm^ silicon photodiodes. The calorimeter is non-containing, 

with approximately 7 X q of active m aterial and 3 Xo of m aterial in front of it. A 
high energy electromagnetic shower will thus be shared either with the forward 
calorimeter or the inner EE blocks depending on the 9 angle of the interacting 

particle. The energy resolution for Bhabhas is ~  20%. More technical details on 
FE can be found in [74].
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Far Forward M onitor (FF)

The far forward luminosity m onitor counters are small lead-scintillator calorime

ters (50 mm X 150 mm x 20 Xo) m ounted on either side of the beam pipe 7.85 m 
from the intersection region, beyond the low-beta quadrupoles. They are used 

for a high statistics “online” luminosity and to monitor beam  backgrounds. They 

may in the future be used for double-tags of 77  events with 0.1 <  <  1.0 .

3.4 OPAL Triggers and Data Stream

OPAL only records events if they satisfy certain trigger conditions. These condi
tions allow us to separate interesting physics processes from uninteresting back
ground processes, detector noise and beam-crossings where no interactions occur.

It must be ensured tha t the trigger can respond to tagged two-photon events. 
This section describes the trigger with emphasis on the tagging triggers. The flow 
of information away from the detector is followed to the point where a selection 
of events for analysis can be made. A general description of the OPAL trigger 
system can be found in [75].

Triggers

Subdetector trigger signals are of two types, ‘stand-alone’ signals (high thresholds) 

and signals from a 0~4> binning (low thresholds). The high threshold trigger signals 
are typically multiplicity counts or energy sums. The low threshold trigger signals 
are formed from one of the 6(0) x 24(</>) overlapping bins th a t cover the 47t 

solid angle of the detector. The trigger processor makes a decision, which is 
programmable, by forming spatial correlations between subdetectors in O-cj) and 

stand-alone signals.
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T agg ing  T rig g e rs

A list of relevant OPAL triggers used for tagged two-photon events and their 
descriptions are given in Table 3.1. A ‘coincidence’ is where a track hit coincides 

with an energy deposit in a calorimeter in the same 9-(f) bin. A TO F hit is a hit 
in the Time Of Flight counter.

A tagged two-photon event will be read out by OPAL if one of the stand-alone 
trigger conditions (from either tag or hadronic activity) in Table 3.1 is satisfied, 
or if one of the program m able conditions (combining both tag and hadronic in

formation) in Table 3.2 is satisfied. All such conditions are chosen to ensure tha t 
the tagging trigger efficiency is high and does not include too much background.

D a ta  S tre a m

The central trigger logic is installed in a dedicated Eurocrate with a special ‘trig
ger bus’ in addition to the standard VM E/VSB bus. Logical combinations of 
signals on the trigger bus (i.e. subdetector stand-alone signals and 9-<f) m atrix 
outputs) are formed by the ‘pattern  arrangem ent m odule’ (PAM), which uses 
look-up memories to derive the trigger decision from the 120 possible outputs.

The global trigger unit (GTU) sends its trigger decision to the local trigger units 
(LTUs) of each sub-detector. If the trigger decision is negative a reset pulse is 
distributed 6 /zs before the next bunch crossing. If the decision is positive the GTU 
transfers a central event number and other information to  the LTUs. Each LTU 
inhibits further triggers when sub-detector readout is in progress. The amount of 
tim e during the readout when no new triggers can be taken is called deadtime.

Each sub-detector is read out separately by its own front-end electronics to the 

local system crate (LSC). This digitised information is collected and merged into 

a single data structure by the event builder (EVB) VME system. Each complete 
event is passed to the filter where events are checked, analysed, monitored and 

compressed before being w ritten to disk. Obvious background events are rejected 

at this stage. Information generated from each event is copied from the filter disk 

to the ROPE farm, where the full OPAL reconstruction code ROPE [76] is run 
and where the calibration constants are applied.
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Trigger Name

For tags:

L(R)CALLO
FDHIOR^
FDGCL(R)T
SWHIOR
SWSEGL(R)

For particles 
from 7*7 collision:

T B M l^
TBM2^
TM2

EBTOTLO^
EBW EDGE
EEL(R)LO^
EBTPHI^
EEL(R)TPH^
TPTT TO ^^
TPTTEM ^^
TPTO EM ^^

Description

>  15 GeV deposited in left (right) FK
> 35 GeV deposited in either end of FK
> 20 GeV in left (right) Gam m a Catchers
>  34 GeV deposited in either end of SW 
Left (right) segment trigger (9 GeV )

>  1 barrel track
>  2 barrel tracks
>  2 tracks in the central detector
>  3 tracks in the central detector
> 1 .8  GeV in the electromagnetic barrel (EB) 
Sum ‘wedge’ of EB > 2 GeV
>  1.6 GeV in EE
> 1 .8  GeV in one EB O-cj) bin
> 1.6 GeV in one EE 6-(j) bin
TO F hit and track coincidence
EB or EE deposit and track coincidence
EB or EE deposit and TO F hit coincidence

Table 3.1: Summary of triggers used in triggering tagged two-photon events, with 

typical threshold values. The superscript S indicates a standalone trigger and 

the superscript C indicates th a t the trigger forms part of the CENTRL trigger 

described in Section 4.3.2. The notation L(R) refers to the Left (Right) sides of 

OPAL.
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All da ta L(R)CALL0.AND.TBM 1
L(R)CALLO.AND.EBTOTLO

Added in 1992 
(Run 3566)

FDGCL(R)T.AND.TBM 1
FDGCL(R)T.AND.EBTOTLO
FDGCLT.AND.FDGCRT

Added in 1993 
(Run 4210)

SW HI0R.AND.TBM 1

Added in 1994 
(Run 5128)

SW HIOR.AND.EBW EDGE
SW HIOR.AND.TPEM L(R)
SW SEGL(R).AND.EBTOTLO
L(R)CALLO.AND.EEL(R)LO
FDGCL(R)T.AND.EEL(R)LO
SW SEGL(R).AND.EEL(R)LO
SW HI0R.AND.TM 2

Table 3.2: Program m ed trigger conditions combining triggers from tag and

hadronic activity in tagged two-photon events.
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Chapter 4

Event Selection

This chapter describes the three-stage selection of singly-tagged two-photon events. 
Once a final set of events has been chosen, the remaining backgrounds are esti
m ated. The trigger efficiency is measured using the final data sample. As a 
consistency check, the data taken in each of the years 1990, 1991 and 1992 are 
compared to each other. The 1993-1995 data  are not used in this thesis because 
the tagging acceptance had changed with the inclusion of the silicon-tungsten 
detector.

4.1 Event Selection

The aim of the following event selection is to obtain a final sample of singly- 

tagged two-photon events tha t has as little  contam ination of other event types as 
possible. This is a three-step process. A very loose selection of events, called the 

preselection is applied, followed by a further selection  which is made from 

running the gamma-gam ma analysis routine (GG106) on every preselected event. 
The final selection produces the final sample of events.
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4.1.1 Preselection

RO PE (version 408) calls a very loose preselection routine called RTW OPH that 

is designed to flag events th a t might be tagged two-photon collisions. These events 
are subset of events tha t are w ritten to disk on the SHIFT [77] processor farm 

where they can be accessed using the OPAL analysis framework called MAW [78, 

79].

The RTW OPH preselection flags events th a t have a cluster energy greater than 

20 GeV in either forward detector and a minimum of two good tracks. The cuts 
th a t are made on track quantities th a t identify a track as being ‘good’ are given 
in Table 4.1 and the track quantités are described in Section 4.1.2.

Q uantity Condition 
in CC106

Tracks N c j
1 cos 6 t r k \

P T t r k

P tr k

|do|
ko|
d E / d x  and N c v

>  20 
<  0.95

> 0.1 CeV
> 0.3 CeV
< 2.5 cm

< 50.0 cm 
d E /d x  >  0 and N c v  > 0

All Neutral 
Clusters

Efdxu >  0.17 CeV

Cluster is not “ho t”

Cluster not associated 
with a track

EE Clusters ^ b lo c k s  
p m a x  
 ̂ r

>  2 
99 %

Track-Cluster
matching

P < 0.1 rad

Table 4.1: Quality cuts applied to the tracks, neutral clusters and the track-cluster 

association cone. The quantities are described in Section 4.1.2.
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4.1.2 Further Selection

Each pre-selected event is examined in greater detail to improve the selection of 

tagged two-photon collisions. This will be discussed in detail below. We begin by 
requiring th a t relevant subdetectors are working well. Cuts on track quantities 

and electrom agnetic cluster quantities are then applied, followed by track-cluster 
matching. The analysis uses only good quality tracks and clusters. Once this 
selection has been made, useful quantités are calculated tha t can be used in the 

physics analysis package PAW for the final selection.

Subdetector Status

Each subdetector provides a status num ber for every recorded event. The status 
numbers provided, and their meanings, are listed in Table 4.2. For this analysis 
we require th a t the status numbers of FD, EB, EE and CJ are each at least 2, 
and the Track Trigger status num ber is 3.

Status Interpretation
0 Detector is dead
1 Detector is unreliable
2 Detector has small problems
3 Detector is 100 %

Table 4.2: Detector status num ber and interpretation.

Track Q uality

The values of the track quality cuts are shown in Table 4.1.

Only tracks which satisfy a quality selection are used in this analysis. Each track 

m ust be well measured to determ ine its energy and momentum. A minimum 
num ber of Je t Cham ber hits (N c j )  on each track is demanded and the track 

m ust have a minimum angle (corresponding to a maximum | cos Otrk\)<> a minimum 

m om entum  (ptrk) and a minimum transverse m om entum  (prtrk) w ith respect to 
the beam.
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Each track should come from the interaction point. Those th a t appear not to come 
from the interaction point may be artefacts due to je t cham ber sparking, or come 
from such sources as beam  wall interactions, beam gas interactions or backscatter 

in the solenoid from particles tha t have already left the je t chamber. Therefore, 
cuts are made on zo, the apparent z-coordinate from which the track originated, 

and do, the apparent perpendicular distance from the interaction point in the 

X — y plane from which the track originated. Some falsely reconstructed tracks 

have zero d E /d x  and no CV hits, so any track with d E / d x  =  0 and N c v  =  0 is 
not accepted as a good quality track.

E lectrom agnetic C luster Q uality

The values of the electromagnetic cluster quality cuts are shown in Table 4.1.

Clusters used for this analysis should not be due to either badly calibrated blocks 
or noisy electronics. Each cluster is compared to a list of noisy ( “hot” ) blocks. 
A cluster associated with a noisy block and which has an energy close to the 
estim ated noise is not used in this analysis. The energy of a cluster has to be 
corrected to account for energy deposited in the m aterial in front of the lead-glass. 
This is a large correction for clusters with a small deposited energy, Eraw, so a 
minim um  cut is made on Eraw For a cluster in the electrom agnetic endcap, which 
has its blocks mounted w ith their axes coaxial with the beamline, a minimum 

num ber of blocks {Nbiocks) in the cluster is required, w ith no single block having 
more than  of the raw cluster energy.

Track-Cluster M atching

To avoid double-counting of energy from a good quality track th a t has produced a 

good quality cluster, track-cluster m atching must be performed. If a good quality 
cluster is within a cone of half-angle rj radians around the track then it is matched 

with the track. If there are two clusters within the cone, the cluster closest in 

angle to the track endpoint is chosen, so one track is associated with a maximum 
of one cluster. The track and cluster energies are not used in the matching.
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C a lc u la tio n  o f x  a n d  W .

To calculate x  (Equation 1.7) we need to measure the invariant mass W  of the 
photon pair, as well as Q^. In the single-tagging case this m ust be measured 
from the detected particles from the 7*7 collision. Instead of m easuring the true 

invariant mass, Wtme^ we measure the visible invariant mass of the charged tracks 
and unassociated electromagnetic clusters in the lead-glass barrel and endcap. 

Wyis is given by

(4.1)

Wyis is different from Wtme because some particles may be lost, their energy and 
m om entum  mismeasured, and some tracks may be incorrectly m atched to neutral 
clusters. Charged tracks are assumed to have the pion mass and the unassociated 
clusters are assumed to be photons. Xyis is the x value calculated using and 
Wyis. W hen x and W  are calculated using only tracks in the selected event, the 

corresponding variables are called Xtrk and Wtrk-

Since the unassociated clusters have been included in the Wyis calculation, which 
were not in the Wtrk calculation, the Wyis distribution tends to have higher W  and 
should be closer to the true W.  Correspondingly, Xyis shifts to lower values than 
Xtrk and is closer to the true x. W hen Forward Detector calorimeter clusters other 
than  the tag cluster are included in the calculation, the resulting x  distribution is 

called XyisFD- No cluster energy correction is made to account for the FD response 
to  hadrons. Such a correction [80] has little  effect on XyisFD-

4.1.3 Final Selection

The final selection cuts are given in Table 4.3. The variables used for the cuts are 

described in the following text.

The highest energy cluster in the Forward Detector is taken to  be the tag. The 
energy of this cluster is called Etag. The polar angular range of this cluster is 
confined to the well-understood region of the Forward Detector. The minimum 

Etag requirement is effective in removing backgrounds from off-momentum beam 
particles, decays and untagged two-photon events.
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Tag 50 m rad <  Qtag < 1 2 0  m rad 
E ta g  ! E\)^a.Tn ^  0.75

Antitag E an ti tag  1 <  0.25

M ultiplicity N tr k  ^  3
{ N t r k  — N e  — Nfj,) > 1

Kinematics \PT^^ +  <  6 GeV
p^vout <  4 Q g Y

2.5 <  Wyis < 40 GeV

Mean Vertex <10  cm from the interaction point

Table 4.3: Final selection cuts. The quantities are described in Section 4.1.3.
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The value of is determ ined from the measured tag energy and tag polar angle 
(Equation 1.4). Assuming a 45.6 GeV electron is tagged at 50 m rad, with reso
lution in energy of (Je / E  ~  1 8 % /V ^  and an angular resolution of 2 m rad, one 

obtains a value of 5.2 db 0.4 GeV^.

To observe deep inelastic scattering we require singly-tagged events with no 

candidate for a second tag at the opposite end (the an ti-tag  condition). The 
highest energy electomagnetic cluster (including the Forward Detector calorime
ter) in the hemisphere opposite to the tag is called Eantitag and is required to be 
no greater than  a quarter of the beam energy. This removes most of the double
tag events from the sample and reduces the background from radiative Bhabha 

scattering.

Cutting on the charged m ultiplicity {Ntrk) of the event removes backgrounds from 
tagged 77  —>■ e+e" and 77  — events.  Tagged 77  -4- T+T" events are not 
easily identified and many of them  look like hadronic events. Their contribution 
is estim ated from the Vermaseren Monte Carlo (see Chapter 5).

Since we are interested in hadronic events, at least one of the tracks is required to 
not be positively identified as a electron or muon. Electrons are identified by using 
d E /d x  information from the je t chamber. Muons are identified by the track being 
associated with hits in the muon chambers. The num ber of positively identified 
electrons and muons are Ne and respectively.

To further reduce such backgrounds, cuts are made on the pt  of the events and 
on the maxim um  Wyis. Pt  ̂ is the transverse m om entum  of the tag and is defined 
such tha t it is always positive. The capital le tter in the superscript of other 
transverse m om entum  variables calculated from the final state refers to what the 
Pt  has been calculated from. ‘K ’ refers to the charged tracK s only, ‘V ’ refers 
to the central Visible system (tracks and unassociated neutral clusters from the 
electromagnetic endcap and barrel only), ‘H ’ refers to the Highest m om entum  
track and ‘FD ’ refers to Forward D etector calorimeter clusters only (excluding 

the tag). The subsequent lower case letters ‘in ’ or ‘o u t’ in the superscript indicate 

tha t the component of p j  being examined is either in or out of the plane defined 
by the tag and the beam.

A minimum value of Wyis is required to ensure events are not in the poorly known 
low-mass resonance region. Remaining beam-gas background is reduced by de-
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m anding th a t the prim ary track vertex is reconstructed near the interaction point 
in the z direction.

4.2 Estim ation of Backgrounds

4.2.1 e+e —> hadrons

This clearly could be a large background, since there are many more events 
than  tagged two-photon events. However, the activity from a event is less 
peaked in the forward direction than a tagged two-photon event, and the chance 
of a Z^  event producing a cluster in the Forward Detector th a t might be mistaken 
for a tw o-photon tag is small. The distribution of the highest energy cluster 
in the Forward Detector from Monte Carlo Z^  events is shown in Figure 4.1(a). 
Clearly, the minimum tag energy requirement is very effective in reducing the 
m ultihadronic background.

4.2.2 e+e~->r+r“

The possibility th a t tau  pairs from Z°  decays could fake tagged two-photon events 
has been investigated. 300000 on-peak events have been produced with the 
KORALZ generator [81] and 3 of these events have passed the selection cuts. 
Since the to tal cross-section for e‘̂ e“ — is approximately 1.5 nb [82], the 

actual background is negligible.

4.2.3 N on—multiperipheral e^e —> e^e -f hadrons

Some processes other than the m ultiperipheral diagram of Figure 4.2(a) can give 

rise to  the same final state. These background processes, illustrated in Fig

ure 4.2(b-d), have been studied using the Monte Carlo generator FERM ISV [83], 
which incorporates both exchange diagrams and interference term s. The

brem sstrahlung diagrams with a 7  ra ther than a Z^ exchange are often referred 
to as “inelastic Compton scattering”diagrams [84].
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Figure 4.1: Estim ate of background events, (a) Distribution in Etag/Ebeam- 

The vertical dot-dashed line shows where the minimum tag energy cut is. (b) 

The distribution in Xyis after all of the selection cuts have been applied. The 

background estim ate in this histogram is enhanced by a factor of 10.
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Figure 4.2: The four main diagrams contributing in the lowest order to the process 

77  -4- /■*■/“ . These processes are included in FERM ISV. Unlabelled boson lines 

represent photons only.
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The following background estim ates are taken from [85]. The annihilation and con
version channels do not contribute more than 0 .1% to the m ultiperipheral cross- 
section. The largest background contribution comes from the brem sstrahlung pro

cess. It has been estim ated at (0.4 ±  0.2)% of the m ultiperipheral cross-section. 
Nearly all of these events are uniformly distributed in x  from 0.2 to 0.7.

The effect of interference between the m ultiperipheral and inelastic Compton scat

tering diagrams has been found to be negligibly small [85].

4.2.4 B eam -gas events

Background events th a t originate from interactions with residual gas in the beam 
pipe would have their vertex position uniformly distributed along the beam axis. 
By extending the prim ary vertex cut from ±10 cm to ±50 cm from the interaction 
point there are 24 more events in the sample. We therefore estim ate tha t the 
final sample contains 6.0 ± 1 . 2  such events. Events where an off-momentum 
electron simulates a Forward Detector tag have been studied as part of the OPAL 
luminosity determ ination [82, 86 , 87]. These events are clustered at low ‘tag’ 
energies and can be neglected, since a high tag energy cut is applied.

4.3 Trigger Efficiency

Before the data can be compared with itself (Section 4.4) or with the Monte Carlo 
(see Chapter 6) the trigger efficiency must be calculated. The relevant triggers 
for tagged two-photon events and their meanings have been given in Tables 3.2 
and 3.1 respectively.

4.3.1 Calculation o f Efficiency

The efficiency of a trigger is determ ined by comparing it to  another independent 

trigger. Two independent triggers, F  and C, are examined. Here, ‘independent’ 
means tha t the chance of F  firing is unaffected by whether C  has fired or not. 
There are four classes of events; neither trigger has fired, F  only has fired, C
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only has fired and both have fired. If F  only has triggered N f  events, C  only 

has triggered N c  events and both F  and C  have triggered Npc  events then the 

efficiency, c f, of trigger F  is

N pc€f  =

and the efficiency, cc, of trigger C is

N fc +  N c  ’

N f c  
N f c  +  N f

(4.2)

(4.3)

If every event fires at least one of the two triggers, and assuming th a t those events 
tha t fire neither are not recorded, then the to ta l trigger efficiency is estim ated to 
be

^total =  [1 ~  (1 ~  ^f)(1 — Cc)] ' (4.4)

4.3.2 Estim ation o f Efficiency from the D ata

Year N even ts N c N f c N f ec(%) CF (%)
1990
1991
1992

368
764
1341

306
155
374

48
576
947

5
32
13

90.6 ±  4.0
94.7 ±  0.9 
98.6 ±  0.4

13.6 ±  1.8 
78.8 ±  1.5
71.7 ±  1.2

91.8 ±  1.4
98.9 ±  0.4 
99.6 ±  0.2

Total - - - - - - 98.2 ±  0.3

Table 4.4: Measured trigger efficiencies.

Tagged tw o-photon collisions can be trigger-selected by

• an FDHIOR trigger from a tag in the Forward Detector,

• a central track and /or calorimeter trigger 
(such as the standalone triggers, see Table 3.1)

• a coincidence of triggers:

(TBM l.OR.EBTOTLO).AND.(LCALLO.OR.RCALLO).

Independent triggers are required to calculate the trigger efficiency, so the logical 
.OR. of the central triggers is formed. This is called the CENTRL trigger. The
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logical .OR. is used because some of the central triggers are not necessarily phys
ically independent. The triggers tha t contribute to this logical .OR. are listed in 
Table 3.1 and have the superscript ‘C ’.

For each year the num ber of events tha t only fired the CENTRL trigger is called 

Nc,  the number of events th a t fired the CENTRL and FDHIOR triggers is called 

N fc and the number of events where only FDHIOR fired is called N f - The 
resulting efficiencies are given in Table 4.4. The FDHIOR trigger was installed 
late in 1990 (run num ber 1839). Hence the estim ated trigger efficiency for 1990 is 
lower than those efficiencies for 1991 and 1992.

4.4 Data Self Consistency

Distributions from 1990 (solid lines), 1991 (dashed lines) and 1992 (dotted lines) 
are shown in Figures 4.3 -  4.10. In each plot the data is normalised to the 1990 
integrated luminosity. Each distribution has all of the analysis cuts applied except 
cuts on the quantités being plotted. In those cases, the cuts are represented by 
vertical dot-dashed lines.

Year No. of 
Events

Luminosity
(p b -i)

^cuts (pfi) 
(Corrected)

1990
1991
1992

368 (220 4- 148) 
764 (433 +  331) 
1341 (730 -f 611)

6.90 ±  0.06 
14.34 ±  0.10 
24.69 ±  0.13

58.1 ±  3.2 
53.9 ±  2.0 
54.5 ±  1.5

Total 2473 (1383 -f 1090) 45.93 ±  0.17 54.8 ±  1.1

Table 4.5: Comparison of num ber of events, integrated luminosities and cross- 

sections for the selection cuts in 1990, 1991 and 1992. The numbers in brackets 

indicate the numbers of events for the Otag regions of 50-70 m rad and 70-120 

m rad respectively. The trigger efficiency is accounted for in the calculation of the 

cross-section for the cuts.

Figure 4.3 shows the tag distributions of Etag/Ebeam, Otag, and EtaglEbeam 
versus Ofag. The three cuts on Otag in Figure 4.3(b) define the two Otag regions of
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50-70 mrad and 70-120 m rad. The cuts on Etag/Ebeam and 9tag lim it a range in 
to about 4-30 GeV^ (see Figure 4.3(c)). The 6tag cut at 70 m rad divides the 

data  sample into two. For the Otag range of 50-70 m rad the m ean of the data 

is 6.4 GeV^ and for the Otag range of 70-120 m rad the mean of the data  is 15.1 

GeV^

The X and W  distributions are shown in Figures 4.4 and 4.5. The calculation of x  
and VF, with a description of the subscript labels, has been given in Section 4.1.2.

The distribution of Eantitag/ Ebeam is shown in Figures 4.6 (a) and (b). The neutral 
energy distribution is shown in Figures 4.6 (c) and (d). The neutral energy is the 
sum of energies of the unassociated clusters in each event.

All transverse m om enta are m easured with respect to the beam. In each transverse 
m om entum  figure (Figures 4.7 -  4.9) the plots on the left are on a linear scale and 
the plots on the right are the same variable with a logarithmic scale.

The sum of and p p ” is shown in Figure 4.7(c) and (d). Since the an ti-tag  
condition limits the transverse m om entum  of the an ti-tag  and since the unob
served particles from the tw o-photon collision are forward going, then the total 
missing transverse m om entum  should be small. Therefore p^*”' should balance 
p^^ and adding these two variables should result in a distribution peaked close 
to zero. The fact tha t the peak is offset from zero indicates th a t the unmeasured 
system is carrying away some of the p^. W hen only tracks are considered, as in 
Figure 4.7(a) and (b), the peak becomes more offset from zero since not all of the 

final state  has been included in the pT sum. The remaining pT distributions of 
Figures 4.8 -  4.9 are taken normal to the plane of the tag and the beam.

The pseudorapidity distribution of individual tracks is considered. The pseudora

pidity of a particle is defined as

T) = -  log tan ^ 0  (4.5)

where 0 is the polar angle of the particle in the detector measured from the 

direction of the beam th a t has produced the target photon. Therefore the tag is 
always at the negative side of the pseudorapidity plot.

Figure 4.10(c) shows the pseudorapidity for charged tracks only. Since the tracks 

are only accepted for | cos 0\ <0.95 the track pseudorapidity lim its are approxi
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m ately ±1.83. In the pseudorapidity plots there is one entry per track.

An energy flow distribution determ ined from tracks alone is shown in Figure 4.10(d). 
It has been produced by weighting each entry of the pseudorapidity distribution 
by the track energy.

All of the distributions are in good agreement with each other. The solid line 

corresponds to the 1990 dataset, which is has the lowest statistics of the three 
years, and therefore shows some of the biggest statistical fluctuations of the three 

samples.
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Figure 4.3: Comparison of 1990 (solid), 1991 (dashed) and 1992 (dotted) tag 

distributions. Final selection cuts are represented by vertical dot-dashed lines.
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a  300
0

1 10

10

1

0 0.1 0.2 0.3 0.40 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
®^antitag^beam ^antitag^beam

> 120

a  100

-V-» F~

(c) Neutral Energy (GeV)

0

1
10

10

0 5 10 15
(d) Neutral Energy (GeV)

Figure 4.6: Comparison of 1990 (solid), 1991 (dashed) and 1992 (dotted) anti-tag

and neutral energy distributions. Final selection cuts are represented by vertical

dot-dashed lines.
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1990/1991/1992 DATA (50 < 0̂ ^̂  < 120 mrad)
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verse m om entum  distributions (defined in Section 4.1.3) out of the plane of the 

beam and the tag.
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1990/1991/1992 DATA (50 < < 120 mrad)
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Chapter 5

M onte Carlo Sim ulation

Two-photon events generated from Monte Carlo programs are used for a number 
of purposes. W hen passed through the OPAL detector simulation, GOPAL [88], 
Monte Carlo events have the same event selection applied to  them  as is applied to 
the OPAL data. D ata and Monte Carlo distributions can be compared and Monte 
Carlo can be used in the unfolding procedure to correct for the effects of finite 
detector acceptance and resolution. Monte Carlo samples can also be treated as 
data  to test the unfolding algorithm.

Three Monte Carlo programs are used to generate events. These are:

Vermaseren [89, 90, 91], a QED matrix-element program (see Section 5.2).

F2GEN [92], which generates a qq pair in the two-photon centre of mass 
with a to tal cross-section according to a chosen form ula for or

(see Section 5.3).

HERWIG [93], which generates events in the deep inelastic 67 scattering 
mode according to  a chosen set of photonic parton distribution functions. It 
accurately describes the perturbative phase of parton evolution, whilst also 
including the rem nant of the struck photon in the final state  (see Section 5.4).
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5.1 7*7 Fragmentation

Much use will be made of the phrase ‘7*7 fragm entation’, so it is defined here. 
The phrase describes the complete process of producing particles from the two 

incoming photons, one virtual (7 *) and one real (7 ). It includes the production 

of partons from the two photons, their spatial and momentum distributions, and 
the parton fragm entation to produce the final state  particles.

5.2 Vermaseren

This is a QED m atrix  element Monte Carlo program th a t calculates exactly the 
m ultiperipheral process of Figure 4.2(a) and the s-channel bremsstrahlung process 
of Figure 4.2(c) (photon exchange only). W hen given quark masses, charges and 
colour factors it can be run as a QPM generator. It is used to generate singly- 
tagged r+ r~  and cc events for background and unfolding studies.

5.3 F 2GEN

This is a Monte Carlo program tha t generates events according to a chosen for
mula for F 2 {x, Q^). It is a modification of TW OGFN [92] which is based on the 
transverse-transverse tw o-photon luminosity generator developed by Lange veld [94]. 

F2GFN separates the two-photon interaction into two parts. It generates the lu
minosity function of the two photons and then constructs the final state  X  
of the tw o-photon collision. This is made possible from the assumption th a t the 
cross section for the production of a state  X  can be factorised [95, 96, 97] as

cr(e+e“ —̂ -e+e'X) =  T.y.y(e+e"—>-e+e"7 ]'72) <7(7^7^—>-X). (5.1)

The electron, positron and the two photons are generated using the luminosity 
generator. Events are accepted if they are within defined kinematic lim its, such 

as minimum and m aximum tag angle, m inim um  and maximum invariant mass of 

the tw o-photon system W  and minimum tag energy. A quark-antiquark state  of 
invariant mass W  is then generated according to a chosen angular distribution
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in the two-photon centre-of-m ass. The quark flavour is chosen by a (charge^  
weighting. The to tal cross section is approximated using only the transverse- 

transverse {(Tt t ) term  with

<ttt  = ^ F 7 { x , Q \ P ^ ) .  (5.2)

P oin t-lik e M ode of 7*7  Fragm entation

For the point-like mode, the final state  is simulated as 7*7 -> çç, where the quarks 
have the same angular distribution as the leptons in 77  —> /■*■/“ . The differential 
cross-section for the production of from the two real photons is given [98] by

d(7(77 /+ /-)  a" +  1 -
dn* "  (1 -   ̂ ^

where 6* is the angle tha t one of the leptons makes with respect to the 7 7  direction
in the 7 7  centre-of-m ass, is the invariant mass of the photon pair, and

1 -  (5-4)
7 7

is the velocity of the leptons. The * in /?*, 9* and Ft* denotes a 7 7  centre-of-m ass 
quantity  and mi is the mass of one of the produced leptons. W hen a quark pair is 
produced, mi is replaced by the mass of the quark produced. The quark-antiquark 

state  is allowed to shower using the parton shower model [99] and fragment using 
the Lund string model [100, 101].

Peripheral M ode of 7*7 Fragm entation

Not all two-photon interactions are expected to be point-like, because of the Iow-æ 

and VMD processes. These result in particles having lim ited transverse mom enta 
in the two-photon centre-of-m ass frame. This effect is modelled in F2GEN by 

generating a quark-antiquark pair such th a t the quark px  w ith respect to the 77 

axis has a gaussian distribution with a half-w idth of 300 MeV. This scale was 
chosen to represent the average transverse momentum of a quark in a meson.
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‘P e r im is s ’ M o d e  o f 7*7 F ra g m e n ta tio n

This mode is a m ixture of the point-like mode and peripheral mode, where one 
of these two modes is chosen based on the x and of the generated event.

If the generated x  is less than a certain small value â o then the event is made 
peripheral. This is intended to sim ulate the low-a; behaviour of the final state. 
The value Xq is chosen to coincide approxim ately with the onset of the low-a; rise 

in the GRV F 2  param eterisation. In this work the values â o =  0.1 and xq =  0.05 
are used.

If the generated x  is larger than  Xq then a h it-and-m iss decision is m ade using 
the ratio F^ix ,  Q^) /  F 2 ^ ^ { x )  where Fj{x^ is the structure function being 
used in the F2GEN generator. The purpose of this is to make the VMD portion 
of F^{x^ Q^) peripheral and the remaining portion point-like. The formula used 
for F 2 ^ ^ { x )  in the hit-and-m iss is th a t of Equation 2.10. Since all of the events 
for X  <  X q are peripheral, the h it-and-m iss is not active in this region.

The use of two different values of xq actually makes little  difference to the overall 
degree of peripherality of the sample. This is due to the fact the the value 
is closer to the value of a t æo than  at higher x and therefore shifting
the value of Xq down to 0.05 from 0.1 does not make many more of the events 
point-like.

For the comparison of data with Monte Carlo, and for unfolding, a purely point
like sample and a ‘perim iss’ sample with Xq =  0.1 are used. These will be referred 
to as ‘100% point-like’ and ‘perim iss(O .l)’ respectively.

5.4 HERWIG

The HERWIG event generator simulates Hadron Emission Reactions W ith In

terfering Gluons. It includes any combination of lepton, hadron or photon scat
tering [93]. It is intended to be the best possible implementation of perturba
tive QCD [102, 103] tha t also includes a simple model of non-perturbative ef

fects [104, 105], covering as many processes as possible. It gives a good description 
of high energy data, with few adjustable param eters, so when it is extended to
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two-photon collisions [106] at lower energies it should predict the data  distribu
tions well, once a few free param eters have been tuned.

Production of the Two Photons

The first step in generating a tw o-photon event with HERWIG is to em it a photon 
from each of the electron and positron beams. The Equivalent Photon Approxi
m ation (EPA) [107] is used. The lim its on the photon transverse m om entum  and 
v irtuality  are set by the user. All of the event is then boosted to  the two-photon 

centre-of-m ass frame.

D eep Inelastic Scattering

The deep inelastic e"y interaction as modelled in HERWIG is schematically pre
sented in Figure 5.1 and is dealt with in the following way. Incoming and outgoing 
partons are evolved into jets by generating initial- and final-state parton showers. 
This is the perturbative phase of the 7*7 fragmentation. Once cut-offs in the per
turbative evolution have been reached, non-perturbative confinement effects set 
in and QCD calculations switch over to the hadronisation model. The hadronisa- 
tion also includes the rem nant of the struck photon. Although HERWIG strongly 
emphasises the accurate description of the perturbative phase of parton evolution, 
there are theoretical ambiguities in dealing with the photon rem nant.

Parton Showers in HERW IG

For both the initial and final state  parton showers (ISPS and FSPS) the evolution 
is downwards in scale. The evolution of the final state parton shower moves 

outwards from the hard process towards the outgoing hadrons and stops when 

the generated transverse m om entum  is less than a global cut-off. The evolution 

of the initial state  parton shower is backwards towards the incoming photons and 
stops when the evolution scale reaches a cut-off related to the structure function 

being used. The backward evolution algorithm [108] ensures th a t at each stage 
of branching, the parton distributions agree with the input parton distribution 

functions.
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HARD 
SUB PROCESS

S P S

REMNANT

Figure 5.1: A representation of the deep inelastic e-y scattering process in the 

HERWIG Monte Carlo. ISPS and FSPS are the initial and final state  parton 

showers respectively.
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T h e  S oft U n d e r ly in g  E v e n t (S U E )

In a 'yp collision, one parton from the photon interacts with one parton from the 
proton. This leaves two hadron rem nants, one from the photon and the other from 

the proton. The generation of a soft underlying event is an option, and models 

a soft hadron-hadron collision between a pair of colourless clusters th a t contain 
the hadron rem nants. In DIS events th a t are considered in this thesis, there is 

only one hadron rem nant. W hen the soft underlying event option is chosen in 

the DIS case, the breakup of the rem nant is modelled as a soft underlying event 
between the rem nant and its nearest neighbour. There is no physical basis for a 
soft underlying event in DIS, but the option is never-the-less exploited in some 
tests of the unfolding in Chapter 7.

5.5 Comparison of Generators

To ensure th a t the F 2GEN and HERWIG generators give the correct normalisa
tion, they have been compared with each other, and F2GEN has been compared 
with the Vermaseren generator. Each sample has been generated with 100 000 

events satisfying the loose cuts Etag > 20 GeV and 40 < ôtag < 1 3 0  m rad. The 
beam energy in each case was 45.6 GeV.

The following tighter cuts have been applied to the generated samples to ensure 
tha t each has accessed the same phase space, and a phase space th a t is similar to 
the one defined by the cuts made on the data:

• E ta g /E b e a m  > 0.75

• 40 <  Otag < 130 m rad

• W tru e  > 2.5 GeV

• Oantitag < 50 mrad.



98 CHAPTER 5. MONTE CARLO SIMULATION

F 2 G EN and Verm aseren

In this comparison, F2GEN has been run with the dependent Quark Parton 

Model formula for F 2  in Equation 2 .11. Both generators in this comparison have 
been restricted to producing uv, in the final state. The light quark mass is taken 
to be 0.35 GeV. Each sample contains 100000 events th a t satisfy the loose cuts.

F2G EN  and HERW IG

These two generators have been run with the leading order GRV (see Sec
tion 2.7.1) for four flavours. 100000 events satisfying the loose cuts have been
generated for each sample.

Comparison R esults

The cross-section results are presented in table 5.1. Ngen is the number of events 
generated with a cross-section cr̂ en to give 100 000 events satisfying the loose cuts. 
Ncuts is the number of events th a t pass the tighter cuts. The cross-section Œcuta 
is determined from the equation

 ̂̂  N cuts  / r
^cu ts  — ^gen ^ ly- • (5.5)

gen

The quoted error on acuta is the fraction {Ncuta)~^^^ of acuta-

It is usual to assume th a t the Vermaseren generator produces the correct cross- 

section, since the program uses the QED m atrix  element to calculate exactly 
the m ultiperipheral cross-section. The F2GEN cross-section is lower than  the 

Vermaseren cross-section by 5.4 ±  0.7 %. F2GEN has been found to have a 

cross-section th a t is 2.3 ±  0.8 % lower than  the corresponding HERWIG cross- 

section. HERWIG has not been compared directly to  Vermaseren, because of 
difficulties in running both of them  with similar conditions. The cross-section 

shifts should be one of the system atic errors in a final result. However, for the 

purpose of this thesis, the agreement between the cross-sections of the generators 
is good.
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Generator Ngen (̂ gen (pb) Ncuts ^cuts (p6 )

Vermaseren
F2GEN F f ™ ( T ,Q ^ f 2 )

2058 864 
189197

1805.24
159.2

40449
39978

35.47 ±  0.18 
33.64 ±  0.17

F2GEN = 4) 
HERWIG = 4)

210 301 
399573 (/2)

487.7
410.0

33363
38557

77.37 ±  0.42 
79.13 ±  0.40

Table 5.1: Results of the comparison of Vermaseren, F2GEN and HERWIG.

5.6 M onte Carlo Samples Generated

Details of the Monte Carlo samples generated for use in the comparison of data  
with Monte Carlo (see Chapter 6) and for unfolding tests (see Chapter 7) are 
given in Table 5.2. There are several points to note concerning this table:

•  N q o p a l  is the num ber of generated events th a t have been passed through 
GOPAL (the OPAL detector simulation program). It is equivalent to  the 
number of generated events tha t have passed the loose generator cuts. The 
same version of RO PE (the OPAL event reconstruction program) is applied 
to both the output of GOPAL and the data.

• All of the samples have > 1 GeV^ and 40 <  $tag < 1 3 0  m rad at generator 
level.

• In addition to the and Otag cuts, the Vermaseren cc events have passed

the loose generator cuts of Etag > 20 GeV and Wtme > 4.3 GeV.

• In addition to the and Otag cuts, the Vermaseren events have passed 

the loose generator cuts of Etag > 20 GeV and Wtme > 3.6 GeV.

• In addition to the and Otag cuts, the remaining F2GEN and HERWIG

samples have passed the loose generator cuts of Etag > 20 GeV and Wtme > 
2.0 GeV, with the exception of F2GEN Perimiss (0.05) and HERWIG GRV 

without the SUE, which both have Etag > 28 GeV.
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• The integrated luminosity corresponds to the num ber of events tha t have 
passed through GOPAL.

• Ncuts is the num ber of events tha t have passed the full selection cuts de
scribed in Chapter 4. The cross-sections for these cuts, called acuts^ are 
given in the fourth column. The number outside the brackets corresponds 

to the cross-section for the cuts with the whole 6tag range of 50-120 mrad. It 
is the sum of the two numbers in the brackets, which show the cross-sections 

for the low (50-70 m rad) and high (70-120 m rad) 9tag ranges respectively.
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Sample N gopal Integrated 
Lumi (p b ri)

No. passing 
final cuts

^cuts (pb)

Vermaseren

cc
T+r-

9000
10000

493.70
333.88

3249
743

6.6 ±  0.1 (3.2 +  3.4) 
2.2 ±  0.1 (1.0 +  1.2)

F2GEN

G R V (n / =  3)

100% Point-like 
Perimiss (0.1) 
Perimiss (0.05)

49000 
50000 
39 000

243.73
246.28
22L 6

9675
9313
8099

39.7 ±  0.4 (23.4 +  16.3)
37.8 ±  0.4 (22.0 +  15.8) 
36.1 ±  0.4 (21.0 +  15.1)

HERWIG

GRV { n j = 4 )

W ith SUE 
No SUE

25 000 
55 000

123.6
290.3

6088
13 042

49.3 ±  0.6 (28.1 +  21.2) 
44.9 ±  0.4 (24.7 +  20.3)

LACl {uf  = 4)

W ith SUE 
No SUE

29 000 
23000

128.2
98.7

8055
5792

62.8 ±  0.7 (35.4 +  27.5) 
58.7 ±  0.8 (32.0 +  26.7)

DATA

- 4&93 2518 54.8 ±  1.1 (30.7 +  24.2)

Table 5.2: Monte Carlo generated samples th a t have had the full OPAL detector 

simulation (GOPAL) applied to them . The d a ta  have been included at the bottom  

of the table for comparison with the Monte Carlo. The numbers in brackets 

indicate the cross-sections for the 6tag regions of 50-70 m rad and 70-120 m rad 

respectively.
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Chapter 6

Comparison o f D ata w ith  M onte 

Carlo

In this chapter the central problem in measuring the photon structure function will 
become apparent. The m ethod of determining from the data is to compare
the Xyis distribution of the da ta  with the Xyis distribution of the Monte Carlo 
where the F2 {x) used to generate the events is known. It will be dem onstrated 
tha t the Monte Carlo Xyis distribution is also affected by the choice of model used 
to describe the 7*7 fragm entation in the generator (see Sections 5.3 and 5.4 for a 
description of the different 7*7 fragm entation models used in this chapter). Thus, 
conclusions concerning F^^x)  from the data  are model dependent.

To begin with, the Monte Carlo models used in the comparison are commented on. 
Some variables associated with the tag are then examined. These are, to some 

extent, independent of the final state  and should be described well by Monte 
Carlo. Further variables, such as invariant masses, cluster energies, transverse 

momenta, track multiplicities and track energies are compared to  see if the data 

can distinguish between the 7*7 fragm entation models used.
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6.1 M onte Carlo M odels in the Comparison

Monte Carlo samples from F2GEN and HERWIG are compared in two ranges of 

Otag’ Since there is also an Etag cut, this is effectively a comparison in two bands 
of Except for the tag variables, the comparison is made separately in each 

Otag region. For the samples generated by F2GEN the data  are compared with 

the Monte Carlo sum of

G R V { u f  = 3) [F2GEN]  +  cc [ V E R M A S E R E N ]  +  r + r "  [ V E R M A S E R E N ] .

For the samples generated by HERWIG, the data  are compared with the Monte 
Carlo sum of

G R V [ n f  = 4) [H E RW IG ]  +  r + r "  [ V E R M A S E R E N ] .

Each contribution to  the Monte Carlo sum is individually normalised to the exper
im ental integrated luminosity. Each distribution is plotted with all of the analysis 
cuts applied both to  the data  and the Monte Carlo, except for cuts made on the 
quantity being plotted. These cuts are represented by vertical dot-dashed lines on 
the plots. A total of four Monte Carlo samples appear in Figures 6.1-6.17. The 
3-flavour GRV structure function has been used to  generate a sample of events 
where the qq in the final state  has a 100% point-like angular distribution. W hen 
this is added to the r '^r~ and cc contributions from Vermaseren, this forms the 
solid line. The dashed line differs from this only in th a t the qq system in F2GEN 
is partly peripheral (‘perim iss’ where all events with z < O T  are peripheral). The 
HERWIG samples are generated for four flavours, so only the Vermaseren 
contribution is added to  these samples. Both HERWIG samples are without the 
soft underlying event (SUE). The dotted line is the HERW IG/Vermaseren sum 

when the GRV structure function is used and the dot-dashed line is the HER
W IG/Verm aseren sum when the LACl structure function is used.

None of the Monte Carlo samples have had param eters fixed by fitting to this data 

sample, unlike in [34]. The aim of this comparison is to  see how well the shape 

of data distributions are described by the Monte Carlo models and to see if any 

differences can be seen between the Monte Carlo models after detector simulation 
and analysis cuts.

All variables used in the comparison are defined in C hapter 4. In all of the plots the 
dot-dashed distribution is higher than all of the other Monte Carlo distributions.
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This is because it has been produced with the LACl structure function, which 
has a bigger cross section than  the GRV structure function. (This can be seen 

from Œcuts for LACl in Table 5.2).

6.2 D ata and M onte Carlo D istributions

Tag D istributions

Distributions for the tag are shown in Figure 6.1. Unlike the other distributions 
in the comparisons, these plots are for the complete Otag range of 50-120 mrad. 
The distributions in Etag/Ebeam-, ^tag and shown in Figure 6 .1(a), (b) and (c) 
show th a t the tagged leptons are reasonably well described within the range of 
these models. The disagreement between the data and the simulation at low tag 
energy in Figure 6 .1(a) are caused by backgrounds in the data (see Section 4.2). 
Below the 50 m rad cut there is a large discrepancy between the data  and all of 
the Monte Carlo models, which is the motivation for placing the minim um  Otag 
cut at 50 mrad. The source of this discrepancy is unknown, although it might 
be because the detector response has been tuned to m atch the sample of Bhabha 
events which have a different 0 distribution. Figure 6.1(d) shows th a t the Monte 
Carlo and the data  have similar forward detector calibration.

X and W  D istributions

The comparison of the x  distributions of the data and Monte Carlo should reveal 
the actual photon structure function of the data. Distributions of x  (Figures 6.2 

and 6.3) and W  (Figures 6.4 and 6.5) are shown for the low and high Otag regions 
respectively.

Although the visible x is not the true x,  one should be able to anticipate the shape 

and size of F^(a;) from the data  when the visible x distribution is compared with 
Monte Carlo. Strictly, such a conclusion about the data F^(æ) should be made 
by applying an unfolding algorithm  (see Chapter 7). In doing such a comparison 

one assumes th a t the differences in shape of the x distributions are due only to 
different photon structure functions in the data and the Monte Carlo models.
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F2GEN/HERWIG/DATA (50 < 8^  ̂< 120 mrad)
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Figure 6.1: Tag distributions for the data  (dots) and the Monte Carlo mo'dels in 

the whole 9tag range. The different samples are from F2GEN GRV 100% point

like (solid), F 2GEN GRV ‘perim iss(O .l)’ (dashed), HERWIG GRV without the 

SUE (dotted) and HERWIG LACl without the SUE (dot-dashed).
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F2GEN/HERWIG/DATA (50 < < 70 mrad)
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Figure 6 .2 : Xtrk, ^vis and XyisFU distributions (each defined in Section 4.1.2) 

for the data  (dots) and the Monte Carlo models in the low Otag range. The 

different samples are from F2GEN GRV 100% point-like (solid), F 2GEN GRV 

‘perimiss(O.l)’ (dashed), HERWIG GRV w ithout the SUE (dotted) and HERWIG 

LAGl without the SUE (dot-dashed).
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F2GEN/HERWIG/DATA (70 < 0^  ̂< 120 mrad)
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Figure 6.3: Xtrk^ Xyis and XyisFD distributions (each defined in Section 4.1.2) 

for the data  (dots) and the Monte Carlo models in the high Otag range. The 

different samples are from F2GEN GRV 100% point-like (solid), F2GEN GRV 

‘perim iss(O.l)’ (dashed), HERWIG GRV w ithout the SUE (dotted) and HERWIG 

LACl without the SUE (dot-dashed).
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F2GEN/HERWIG/DATA (50 < 8^  ̂< 70 mrad)
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Figure 6.4: Invariant mass distributions for the data  (dots) and the Monte Carlo 

models in the low Otag range. The different samples are from F2GEN GRV 100% 

point-like (solid), F 2GEN GRV ‘perimiss(O.l)’ (dashed), HERWIG GRV without 

the SUE (dotted) and HERWIG LACl without the SUE (dot-dashed).
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F2GEN/HERWIG/DATA (70 < 0^  ̂< 120 mrad)
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Figure 6.5: Invariant mass distributions for the data  (dots) and the Monte Carlo 

models in the high 6tag range. The different samples are from F2GEN GRV 100% 

point-like (solid), F 2GEN GRV ‘perim iss(O .l)’ (dashed), HERWIG GRV without 

the SUE (dotted) and HERWIG LACl without the SUE (dot-dashed).
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However, the solid, dashed and dotted lines in Figures 6.2 and 6.3 show tha t the 

resulting Monte Carlo visible x  distributions differ when the same F!7(^) has been 
used to generate events with different 7*7 fragm entation models. Therefore, part 
of the systematic error in a final unfolded result will be due to the choice of the 
7*7 fragmentation model.

A shape comparison of the GRV 100% point-like XyisFD distributions (solid lines) 
with the data distributions show tha t there are more Monte Carlo events than 

data  events at low XyisFD and fewer at high XyisFD- If this was used as an un
folding Monte Carlo one would expect an F^ix )  result which is below the GRV 
expectation at low x  and above it at higher x. The unfolded result would also 

reflect the fact th a t there are more events in the da ta  than in the Monte Carlo 
by having an unfolded F^ix )  tha t represents a bigger cross section than the GRV 
param eterisation of F^ix ).  The same trends are visible in the Xyis and Xtrk dis
tributions.

The GRV ‘perim iss’ XyisFD distributions (dashed lines) show the opposite effect. 
There are fewer Monte Carlo events than data events at low XyisFD and more at 
high XyisFD' Using this as an unfolding Monte Carlo one would expect an F^(a;) 
result which is above the GRV expectation at low x  and below it at higher z, 
before the effects of normalisation.

HERWIG should have a more realistic 7*7 fragm entation model than F2GEN, so 
one may wish to  use HERWIG as an unfolding Monte Carlo instead of F 2GEN. 
The GRV sample w ithout the SUE (dotted lines) is quite similar in shape to the 

data  XyisFD distributions and one might therefore expect an unfolded E 7 (^) to be 
very similar to the GRV F^(a;). The HERWIG LACl sample lies above the data 

at low XyisFD^ so relative to this sample, F^ix)  from the data would not rise as 
much as LACl at low x  which is consistent with the result expected if the data  is 

unfolded with the HERWIG GRV sample.

Since the use of the same F^(a;) (i.e. the same Xtme distribution) has produced 
three different visible x  distributions corresponding to  three different 7*7 fragmen

tation models, another way of thinking about the 7*7 fragm entation modelling is 

in terms of the Xyis/xtme correlation profile histograms. If all of the final state  
particles were observed with perfect detector acceptance and resolution, events 

would lie on the diagonal of an Xyis/xtme plot. Different 7*7 fragmentation mod
els, combined with effects of finite detector acceptance and resolution, lie on dif
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ferent ‘lines’ in an Xyis/xtrue profile histogram. Such profile histograms are shown 
in Figures 6.6 and 6.7. The 100% point-like process (solid line, closed circles) 
produces the most activity in the detector, because this type of 7 * 7  fragm entation 

produces higher pr  particles than the other types of 7 * 7  fragm entation models. 
W ith the 100% point-like process, relatively little  is lost outside the acceptance 

region. This 7 * 7  fragm entation model therefore lies closest to  the diagonal line. 
The ‘perim iss’ model (dashed line, open circles) produces the extrem e opposite 

effect where x  smears the most. HERWIG with the SUE (dot-dashed line, open 
squares) and w ithout the SUE (dotted line, closed squares) lie in between these 

extrem e E2GEN models. (Note tha t in the Xyis/xtrue correlation plots the d o t- 
dashed lines represent HERWIG GRV with the SUE whereas in all of the other 
distributions in this chapter the dot-dashed lines represent HERWIG LACl with
out the SUE).

Progress must now be made with some caution, as one can very easily arrive at a 
conclusion about th a t is biased in some way. The Xyis distributions show
tha t the source of the shape differences between the da ta  and the Monte Carlo are 
ambiguous. A shape difference can arise from either the Monte Carlo incorrectly 
modelling the 7 * 7  fragm entation or the F^(a;) in the Monte Carlo being different 
from tha t of the real 1^ ( 2;). Clearly the data  has to  be compared with Monte 
Carlo to find which of the 7 * 7  fragmentation models best describes the data.

This is a difficult problem, as all distributions are affected both by the E7(^) 
and the 7 * 7  fragm entation model. It now becomes apparent why one of the 7 * 7  

fragm entation models used in the comparison is purely point-like in nature. We 
know tha t this should be unphysical, since the low x  and hadronic components of 
photon structure result in non point-like final states. Therefore one should be able 
to rule out the pure point-like sample by comparison w ith the data. Yet, from the 

Xyis distribution alone, the possibility tha t the data  is purely point-like cannot be 

ruled out, as the difference in the shape of the data  and the  100% point-like Monte 
Carlo may be due to different photon structure functions only. Similar arguments 

apply to the other Monte Carlo samples. All distributions to  be considered suffer 

from the same problem. However, since it is known how the Monte Carlos model 
the 7 * 7  fragm entation, one can at least search for the  variables which show the 

greatest sensitivity to different 7 * 7  fragm entation models.

The W  distributions for the data and the Monte Carlos not surprisingly reflect
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F2GEN and HERWIG (50 < 8^  ̂< 70 mrad)
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Figure 6 .6 : Xyis/xtme correlation plots from the F 2GEN and HERWIG Monte 

Carlo models in the low Otag range. The different samples are from E2GEN GRV 

100% point-like (solid lines, closed circles), E2GEN GRV ‘perimiss(O.l)’ (dashed 

lines, open circles), HERWIG GRV w ithout the SUE (dotted lines, closed squares) 

and HERWIG GRV with the SUE (dot-dashed lines, open squares).
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F2GEN and HERWIG (70 < 6^g < 120 mrad)
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Figure 6.7: Xyis/xtme correlation plots from the F 2GEN and HERWIG Monte 

Carlo models in the high 6tag range. The different samples are from F2GEN GRV 

100% point-like (solid lines, closed circles), F2GEN GRV ‘perim iss(O .l)’ (dashed 

lines, open circles), HERWIG GRV without the SUE (dotted lines, closed squares) 

and HERWIG GRV with the SUE (dot-dashed lines, open squares).
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the trends in the x distributions, since W  is so closely related to x  (Equation 1,7), 
Different 7*7 fragm entation models mostly effect low x  and high W.

Cluster Energy D istributions

The Eantitag/ Ebeam distributions are shown in Figure 6 ,8(a) and (b) and Fig

ure 6 ,9(a) and (b). The cut on events with Eantitag I  Ebeam > 0.25 is designed 
to  remove double-tagged events which would appear as a small peak in the 

E a n t i ta g !  Ebeam  at E  antitag j  Ebeam  — F  In addition to the electromagnetic
endcap and barrel clusters, Eantitag also uses cluster information from the For
ward Detector calorimeter (FK) and the gamma catcher (FF). The shapes of the 
distributions of Eantitag j  Ebeam at low values are mostly affected by the final state, 
since every event has some activity in the hemisphere opposite to the tag, but few 
of them  have a true anti-tag .

The neutral energy distribution is the to ta l energy of all unassociated electromag
netic clusters in the barrel and endcap regions only. The distribution is shown in 
Figure 6 .8(c) and (d) and Figure 6.9(c) and (d).

Transverse M om entum  D istributions

The transverse momentum variables are defined in Section 4.4. Figures 6.10- 
6.15 show various transverse m om entum  distributions. The pt  distributions of 
Figures 6.12- 6.15 are taken normal to  the plane of the tag and the beam. This 
component of pT should be more sensitive to different final states than  the pt 
distributions in the plane of the tag and the beam (Figures 6.10- 6.11) because 

the component normal to the plane is independent of the m om entum  im parted to 

the hadronic system by the probe photon.

All of the transverse m om entum  distributions are consistent in their behaviour. 

The 100% point-like sample (solid line) is separated from the other three sam

ples. It is very difficult to distinguish any separation in the remaining models. 
This behaviour comes through most clearly in the tails of the track distributions 

(Figures 6.10(b) -  6.14(b)). The separation is less prominent in the high Otag 
track distributions than in the low Otag track distributions. For both Otag ranges 
the  switch to using charged and neutral particles rather than just charged parti-
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Figure 6 .8 : A nti-tag  and neutral energy distributions for the data (dots) and the 

Monte Carlo models in the low Otag range. The different samples are from F2GEN 

GRV 100% point-like (solid), F 2GEN GRV ‘perimiss(O.l)’ (dashed), HERWIG 

GRV w ithout the SUE (dotted) and HERWIG LACl without the SUE (do t- 

dashed).
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Figure 6.9: Anti-tag and neutral energy distributions for the data (dots) and the 

Monte Carlo models in the high Otag range. The different samples are from F2GEN 

GRV 100% point-like (solid), F 2GEN GRV ‘perimiss(O.l)’ (dashed), HERWIG 

GRV without the SUE (dotted) and HERWIG LACl without the SUE (do t- 
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Figure 6.10: Transverse m om entum  distributions (defined in Section 4.1.3) in the 

plane of the beam and the tag for the data  (dots) and the Monte Carlo models in 

the low Otag range. The different samples are from F 2GEN GRV 100% point-like 

(solid), F2GEN GRV ‘perimiss(O.l)’ (dashed), HERWIG GRV without the SUE 

(dotted) and HERWIG LACl without the SUE (dot-dashed).
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Figure 6.11: Transverse m om entum  distributions (defined in Section 4.1.3) in the 

plane of the beam  and the tag for the data  (dots) and the Monte Carlo models in 

the high Otag range. The different samples are from F2GEN GRV 100% point-like 

(solid), F 2GEN GRV ‘perimiss(O.l)’ (dashed), HERWIG GRV without the SUE 

(dotted) and HERWIG LACl without the SUE (dot-dashed).
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Figure 6 .12: Transverse m om entum  distributions (defined in Section 4.1.3) out 

of the plane of the beam  and the tag for the data (dots) and the Monte Carlo 

models in the low Otag range. The different samples are from F2GEN GRV 100% 

point-like (solid), F 2GEN GRV ‘perimiss(O.l)’ (dashed), HERWIG GRV without 

the SUE (dotted) and HERWIG LACl without the SUE (dot-dashed).
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Figure 6.13: Transverse m om entum  distributions (defined in Section 4.1.3) out 

of the plane of the beam  and the tag for the data  (dots) and the Monte Carlo 

models in the high Otag range. The different samples are from F2GEN GRV 100% 

point-like (solid), F 2GEN GRV ‘perimiss(O.l)’ (dashed), HERWIG GRV without 

the SUE (dotted) and HERWIG LACl without the SUE (dot-dashed).
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Figure 6.14: Transverse m om entum  distributions (defined in Section 4.1.3) out 

of the plane of the beam and the tag for the data  (dots) and the Monte Carlo 

models in the low Otag range. The different samples are from F2GEN GRV 100% 

point-like (solid), F 2GEN GRV ‘perimiss(O.l)’ (dashed), HERWIG GRV without 

the SUE (dotted) and HERWIG LACl w ithout the SUE (dot-dashed).



122 CHAPTER 6. COMPARISON OF DATA WITH MONTE CARLO

F2GEN/HERWIG/DATA (70 < 0^  ̂< 120 mrad)

o
600

500

§ 400 

300 t

200

100

0 J  I I I I

I

0
(a) p“°"*(GeV)

>  450

V) 400

350

300

250

200

150

100

p^”"‘ + p ^ “"‘ (GeV)FDout(c)

10

10

1

0 1 2 3
(b) Pt®"‘ (GeV)

10

10

0 1 2 3
(d) p^”“‘ + p™°"‘ (GeV)

Figure 6.15: Transverse momentum distributions (defined in Section 4.1.3) out 

of the plane of the beam and the tag for the data (dots) and the Monte Carlo 

models in the high Otag range. The different samples are from F 2GEN GRV 100% 

point-like (solid), F 2GEN GRV ‘perim iss(O.l)’ (dashed), HERWIG GRV w ithout 

the SUE (dotted) and HERWIG LACl without the SUE (dot-dashed).
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cles in the pr  calculations reduces the separation between the different final state 

samples.

Track M ultip licity  and Energy D istributions

Figures 6.16(a) and 6.17(a) plot the track multiplicity, ntrk, of good quality tracks. 
The analysis requires at least three good charged tracks and each figure shows a 

large difference between data  and Monte Carlo models in the ritrk = 2 bin. The 
excess in the data  is partly  due to  muon pairs being produced from two photons. 
Above the cut there is generally good agreement between data  and all of the 
Monte Carlo models, showing th a t this distribution is not ideal for distinguishing 
7*7 fragm entation models. The energy of individual tracks, Etrk^ is plotted in 
Figures 6.16(b) and 6.17(b). There is not a very good agreement between the 
shapes of the Etrk distributions, and this becomes apparent in the energy flow 
distributions considered next.

Pseudorapidity and Energy Flow

The pseudorapidity of a particle is defined as

T] = -  log tan  (6 .1)

where 9 is the polar angle of the particle in the detector m easured from the 
direction of the beam th a t has produced the target photon. Therefore the tag is 
always at the negative side of the pseudorapidity plot. An energy flow distribution 
is obtained by weighting each entry of the pseudorapidity plot by the energy of 

the object at th a t pseudorapidity.

The pseudorapidity and energy flow distributions of tracks in the low Otag region 
are shown in Figures 6.16(c) and 6.16(d) respectively. They are im portant because 

they each show a difference between the 100% point-like model and the data. In 

particular, the double-peak feature in energy flow in the da ta  does not exist in 
the 100% point-like model. The other three Monte Carlo models in the low $tag 
region, apart from normalisation, look more like the data  in term s of shape.

The pseudorapidity and energy distributions of tracks in the high Otag region are
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Figure 6.16: Track multiplicity, energy and energy flow distributions for the data 

(dots) and the Monte Carlo models in the low 6tag range. The different samples are 

from F2GEN GRV 100% point-like (solid), F2GEN GRV ‘perimiss(O.l)’ (dashed), 

HERWIG GRV w ithout the SUE (dotted) and HERWIG LACl without the SUE 

(dot-dashed).
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Figure 6.17: Track multiplicity, energy and energy flow distributions for the data  

(dots) and the Monte Carlo models in the high Stag range. The different sam

ples are from F 2GEN GRV 100% point-like (solid), F2GEN GRV ‘perimiss(O.l)’ 

(dashed), HERWIG GRV w ithout the SUE (dotted) and HERWIG LACl without 
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shown in Figures 6 .17(c) and 6.17(d) respectively. The data now have a track 
energy distribution that is double-peaked, asymmetric and more pronounced in 
the hemisphere opposite to the tag. None of the Monte Carlo models have this 

feature. There are two conclusions to be made from this observation. Firstly, the 
Monte Carlo models must have their 7*7 fragmentation model adjusted to provide 
a better description of the data. Secondly, if these models are used for unfolding, 
one has to make an estimate of the systematic error on the unfolded result due to 

uncertainties in the 7*7 fragmentation.

6.3 Summary

This chapter is summarised with the following points:

•  The separation of different 7*7 fragmentation models is less prominent in 
the high 9tag region than in the low $tag region. This is most clearly seen 
by comparing the Xyisjxtrue correlation plots of Figures 6.6 and 6 .7 , but can 
also be seen from the tails of the transverse momentum, neutral energy and 
Wyis distributions.

• Both the photon structure function and the 7*7 fragmentation affect the 
shape of the visible x  distribution.

•  The track pseudorapidity and energy flow distributions, with the tag at 
one side of the plot, show that different 7*7 fragmentation models can be 

distinguished, even when only considering the central detector region.

•  From the energy flow distributions of Figures 6 .16(d) and 6 .17(d), one can 
see that none of the Monte Carlo models correctly describe the 7*7 frag
mentation. If the present 7*7 fragmentation models are to be used for the 

determination of F^^x)  (see the next Chapter), one must estimate a sys
tematic error on the result due to uncertainties in the 7*7 fragmentation 

models.
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Chapter 7

Unfolding

The m easurem ent of with the OPAL detector is an example of the classic
problem in experim ental physics of how to find a true distribution given a detected 
signal and knowledge of the experimental apparatus.

In this chapter we shall first see why we cannot obtain directly from our
data. Unfolding is the process by which we recover from our data  distri
butions. The general problem of unfolding is discussed, followed by a summary 
of the unfolding procedure used for this work. Finally, and most im portantly, 
we test our unfolding procedure on Monte Carlo samples generated from various 
F^^x)  param eterisations th a t have different features, to see if those features are 

resolved.

7.1 The Problem  of M easuring

The aim of our work is to measure by taking measurements from events

where the particle reaction 7*7 -4- hadrons occurs. W ith an ideal detector we 

could ju st obtain F7 (x) from a simple histogram  of x  but with our detector this 
determ ination is complicated by a num ber of effects:

1) Limited acceptance
The probability to observe a given event is less than one.
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2) Backgrounds
We do observe some events th a t look like —>■ hadrons events, but are

not.

3) Transformation
Instead of measuring the quantity x from the event of interest, we measure 
the related quantity  x'. In this thesis such a quantity is XBj (see Equa
tion 1.7). Here, x ^ j  diifers from XBj because the measured invariant mass, 

Wyis, of particles from the 7*7 collision is less than  the true invariant mass, 
Wtrue’ This is due to some of the particles from the 7*7 collision being lost 
in the forward direction or being discarded for not having good track or 
neutral cluster quality. A Monte Carlo example of the difference between 

Xgj and XBj (called Xyis and Xtme respectively elsewhere in this thesis) is 
shown in Figure 7.1.

4) Resolution
The measured quantities are smeared out due to  the finite resolution of the 
detector.

The general problem can be summarised as follows: Suppose we have a true 
distribution f { x ) .  The expected distribution from the experiment, g{x'), can be 
written as the convolution

g(x') = J  A { x \ x ) f { x ) d x b ( x ' )  (7.1)

where A[x ' , æ) is a known function tha t describes the response of the detector and 
h{x') represents the known background. The data, d{x'), will differ from g{x') by 
statistical errors e{x'). The determ ination of f { x )  from d[x') is the well-known 
problem of unfolding.

7.2 The Forward M ethod

One can assume a true distribution f { x ) .  The resulting distribution g{x') can be 
calculated using Equation 7.1. The param eters in f [ x )  can be adjusted in such a 

way tha t the set of param eters th a t gives a minimum between g{x') and d[x') 
is taken to be the solution. This has the advantage th a t the model may be simple.
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Figure 7.1: Histogram and profile plot of Xyis and Xtme- The HERWIG Monte 
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m rad). The vertical error bars on the profile plot represent the error on the mean.
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with only a few param eters to  vary, and th a t these param eters and their errors 
may be estim ated. One should, however, be aware tha t a perfectly acceptable set 
of param eters may result in a poor model fitting the data well.

7.3 The Inverse M ethod

The classical solution to Equation 7.1 would be to assume no prior information 
and deconvolve it directly. Such methods are problematic for the following three 
reasons.

1) Some possible true distributions exist where the convolution of the true dis
tribution f { x )  with the detector response function is zero. Thus the data, 
d(x'), contain no information about these signals and solving Equation 7.1 
for f [ x )  does not have a unique solution. This lack of unique solutions 
occurs because the smearing effect of A  removes information about finely 
structured signals.

2) The presence of the statistical error e(x') in the data increases the number 
of possible solutions because some true distributions f { x )  exist such that 
the convolution of f { x )  with the detector response function is small com
pared to the expected statistical error. Such a solution can be added to any 
other possible solution to give yet another solution. This is why instabilities 
occur when trying to directly invert Equation 7.1; small changes in the data 
correspond to large changes in the estim ate of f {x ) .

3) The data are discrete and finite in number and the true distribution, f {x ) ,  
is continuous.

W ithout prior information, there is no way to favour one solution over another. 
The m ethod of unfolding used for this work is one of régularisation which will 

be described in Section 7.5. The m ethod has been implemented by Blobel in 
a package called R U N  [109]. Our data  is binned, so before unfolding, we must 
consider the discretized version of Equation 7.1.
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7.4 Discretization

Discretization is done in two steps. In the first step, f ( x )  is param eterised by the 
sum m

/( ^ )  =  (7-2)
j=i

where the basis functions Pj(x) are taken to be cubic B-splines. Using cubic B - 

splines enables f ( x )  to be a smooth curve param eterised by m coefficients. Then 
Equation 7.2 can be w ritten as

m
(7.3)

i=i
with

Aj(x')  = J  A{x ' ,x )p j{x)dx .  (7.4)

The expected distribution g(x') has therefore been expressed as a superposition 
of functions Aj(a;'), which each represent one of the basis functions Pj{x) in Equa
tion 7.2.

In the second discretization step, all of the ar'-dependent functions of Equation 7.3 
are represented by histograms;

gi =  J  g{x') dx' Aij =  J  Aj{x')  dx' hi =  J  b{x') dx'  (7.5)

where the integral is over the zth bin. The discretized version of Equation 7.1 is 
therefore

g = A a A h  (7.6)

where g and b are n-vectors, a is an m -vector containing the aj coefficients and 
A is an n X m m atrix  of elements Aij. The elements of the A  m atrix  are defined 

by Monte Carlo events. The data d is also an n-vector.

7.5 Unfolding

The unfolding can now proceed by fitting the linear expression of Equation 7.6 to 
the data  d. For the m atrix inversion m ethod (in the case m  = n)

a = A ~ \ d - b )  (7.7)
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and the resulting distribution f { x )  from Equation 7.2 can show oscillating be
haviour, with fluctuations larger than anything th a t is physically motivated.

D e te rm in a t io n  o f a.

By the maximum likelihood m ethod, the best estim ate of a is given by a, for which 

the likelihood function takes on its largest value. It is usual in the maximum 
likelihood m ethod to  search for the minimum of the negative logarithm of the 
likelihood function

(7.8)
i= l

where P{di\gi) is the probability of observing di events if gi events are expected. 
The number of entries in a histogram bin will follow the Poisson distribution

P(di\gi) = e ~ ^ ' ' ^ .  (7.9)

Inserting this expression into Equation 7.8, and disregarding constant term s, one 
obtains

= 1 ]  {gi -  di log^Ti). (7.10)
i= \

S{a)  can be approxim ated by a quadratic function. The motivation for this ap
proximation is th a t the minimum can be determined by standard m atrix methods. 
The quadratic approxim ation is, in m atrix notation,

S{a) — S{d) — {a — a)^h  -f- - { a  — a)^H{a — à) (7.11)

where the derivatives of S{a)  with respect to the param eters at an approximate
solution à are given by

(7-12)

and
 ̂ A--A-U

The minimum condition is V 5  =  0. The resulting approxim ation to the true a is

üapp = à H~^h  (7.14)
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and is based on the approximation of the true function S{a) a t a. The process is 
iterated, taking the result of the previous iteration for d, until both the expected 

change of S{a) in one iteration

(A5)exp =  ~  h (7.15)

and the actual change of S{a) are small compared to 1. Convergence is usually 
achieved, resulting in d, within a few iterations.

U nfolding w ithout R égularisation

The m ethod described in the previous section does not remove the inherent insta
bilities. Consider one step of the iteration process described above. The m atrix 
H  is symmetric, so it can be transform ed to a diagonal m atrix  D by

D = U[HUi ,  (7.16)

where D contains in its diagonal the real and positive eigenvalues Djj of H.  
The m atrix  Ui is orthogonal with the property UiU\ = I  mm and it contains the 
eigenvectors u corresponding to the eigenvalues in its columns. The eigenvalues 
can be arranged in decreasing order D u  >  D 2 2  >  -••Dmm- A diagonal m atrix 

with the property D^^^D^^^ = D can be defined, which has the positive 
square roots of Djj in the diagonal. The param eter vector a can be related to 
another vector «i by

a =  (7.17)

Inserting this into Equation 7.11 and applying the minimum condition V 5  =  0, 
the solution

âi = D -^ /^U f{H à  + h) (7.18)

is obtained.

The im portance of this transform ation is th a t the vector di has the property tha t 

the covariance m atrix V (di) is equal to the unit m atrix / ,  so th a t each of the 
components of d% are statistically independent and have a variance of 1. Since 

these components are independent, the significance of every component can be 

tested. If all (di)j with j  > m o  are compatible with zero, then they can be
ignored. The result can be expressed as a linear combination of the first mo
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eigenvectors. Equation 7.17 can be re-w ritten  as

m /  1 \
à = Y l  (7.19)

It is clear th a t insignificant components get a large weight factor in the full so

lution, because of the {1/ fact or in Equation 7.19. Setting all {ài)j = 0 
where j  > mo also introduces some fiuctuations in the solution (known as the 
“Gibbs phenomenon” in Fourier analysis theory). A smooth cut off reducing 
these oscillations is provided by the m ethod of régularisation.

U nfolding w ith  R égularisation

The régularisation technique introduces a smooth cut-off in the [ài)j coefficients, 
whilst also introducing a bias much less than  the statistical error. The regularised 
result is m

/ ( ^ )  = (7.20)
j = i

where the bar indicates tha t the régularisation weight has been included.

Final U nfolded R esult

The final unfolded results are represented by histograms with error bars. The 
data  values fk  are obtained by integration of f ( x )  over regions in x;

/ f c = ( /  f { x ) d x ^ / { x k  -  Xk-i).  (7.21)

The bin limits are chosen in such a way th a t the bin-to-bin correlations are min
imised.

7.6 Unfolding Examples

The Monte Carlo events tha t have been generated (see Table 5.2) can be used 

to verify th a t the unfolding algorithm  correctly determines the known E 7 (a;) of a 
Monte Carlo sample tha t is treated  as mock data. In the examples presented in 
this chapter, the following information has been given to  the unfolding program:
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• logio(a;^,is) of each “da ta” event tha t passes the selection cuts;

•  logio(a;vîs) and logio(a:fr^e) of each Monte Carlo event th a t passes the same 
selection cuts;

• the integrated luminosity of the “data” sample and the Monte Carlo sample;

•  F2 {x) of the param eterisation used in the generation of the unfolding Monte 
Carlo sample. Implicit in this information are the num ber of flavours used 
in the generation of the Monte Carlo and some information about the 

scale involved.

7.6.1 Unfolding in a Q ‘̂ Bin

Ideally, should be determ ined at one scale. However, the data and the
unfolding Monte Carlo have events with various values where the of each 
event is determ ined from the tag energy and the tag angle. By requiring a tag 
angle range and a minim um  tag energy, a flnite range is defined.

As outlined above, the unfolding program needs to know the used in the
event generation so tha t it may be re-weighted to give the unfolded result. This 
re-weighting occurs only in the x variable, so the scale has to be set in the 
unfolding. The value chosen is usually tha t of the mean of data events th a t 
have passed the selection cuts.

One should be aware th a t events contributing to the lowest a:-point in an unfolding 
will have a mean less than  the mean of the whole sample. Since the la tte r 
value is used to represent the scale tha t the Monte Carlo events were generated 

at, the to be re-weighted will be too big (due to the increase of F^i^x) with
Q^) and consequently the unfolded value for the low-a; bin will be too big.
The converse is true  for the highest x point in the unfolding. One could correct 

for this, but for a comparison of an unfolded result with a theoretical expectation, 

it is unnecessary if the theoretical expectation for the a:-bin is derived from the 

theory curve as a function of x with set to the mean of the “data” events. 
Essentially, so long as one is consistent in both the unfolding and in the comparison 

to  theory, then the comparison is a fair one.

The comparison of an unfolded result with a theoretical expectation has been
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reduced to being with a variation of x  alone. Since the bins of the unfolded result 
have width in T, one has to decide where within a wide bin in x  one can correctly 
compare the unfolded value to the theoretical expectation. Neither the central 
value of each unfolded bin nor the weighted mean value (the barycentre) of the 
abscissa within the bin is the appropriate place to make the comparison, as has 
been dem onstrated in [110]. Instead, the correct value of the predicted function is 

equal to its mean value over the whole wide bin. This is especially im portant at 
low-a: where some theories have th a t vary rapidly and non-linearly across
th a t bin.

A goodness of fit of a theoretical model to  an unfolded result can be determined
using the expression

where A* =  in each bin i, and V  is the statistical covariance m atrix
th a t is also an output of the unfolding.

All unfoldings presented in this thesis use a horizontal solid line for each a:-bin to 
indicate the unfolded value for th a t bin. I t ’s width represents the bin range 
rather than a horizontal error bar. The vertical lines represent the errors on the 
unfolded for tha t bin. They are positioned in the middle of the bin on the 
chosen scale of x. No im portance is attached to the a:-values at which these 
vertical error bars appear at. Any other labelled horizontal line refers to a theory 
expectation for the (a:, Q^) bin of the data  determined by the m ethod described 
above.

7.6.2 The Unfolding Tests

Table 7.1 shows the HERWIG Monte Carlo samples used in the unfolding tests.

The Xyis column refers to whether or not the FD neutral clusters have been in

cluded in the evaluation of Xyis. W hen they have been included, only the raw 

cluster energies have been used as opposed to the corrected [80] ones. Also, only 
clusters with an energy of at least 2 GeV are used, so as to  be consistent with the 

readout threshold of FD in the years 1990-1992. The Fj' column indicates which 

photon structure function has been used to generate the unfolding Monte Carlo 
(top line of each entry) and the  mock data  set (bottom  line of each entry). The
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Figure Otag
(m rad)

Xyis F3 ^ c u t s 1 * 1
fragm entation

P XV4 DoF

7.2(a) 50-70 no FD GRV 7160 no sue 0.70 -
GRV 1000 no sue - 1.2

7.2(b) 70-120 no FD GRV 5882 no sue 0.72 -
GRV 1000 no sue - 0.9

7.2(c) 50-70 no FD GRV 7160 no sue 0.70 -
GRV 2615 with sue - 78.7

7.2(d) 70-120 no FD GRV 5882 no sue 0.72 -
GRV 3473 with sue - 15.0

7.3(a) 50-70 no FD GRV 7160 no sue 0.70 -

LACl 3000 no sue - 73.4
7.3(b) 70-120 no FD GRV 5882 no sue 0.72 -

LACl 2632 no sue - 3.96
7.3(c) 50-70 with FD GRV 7287 no sue 0.81 -

LACl 3000 no sue - 130.0
7.3(d) 70-120 with FD GRV 5940 no sue 0.82 -

LACl 2655 no sue - 30.9

Table 7.1: M onte Carlo samples generated by HERWIG for unfolding tests. In 

each entry, the first line is the unfolding Monte Carlo and the second line is the 

mock data. Further explanation of this table is given in Section 7.6.2.
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Ncuts column shows how many events have passed the selection cuts. The ‘final 
state’ column refers to whether or not the soft underlying event has been included. 
p is the Xyis/xtrue correlation and so an entry only exists for the unfolding Monte 
Carlo. Each unfolding has four bins in the final unfolded result. The between 
the unfolded result and the that generated the mock data sample is given
in the final column.

The purpose of the unfolding tests is to determine if the process of unfolding 
correctly recovers the photon structure function used to produce a mock data 
sample. Tests have been performed where the unfolding Monte Carlo and the 
mock data have

• the same F ^ i x )  and the same 7*7 fragmentation;

• the same F ^ i x )  and a different 7*7 fragmentation;

• a different F^^x)  and the same 7*7 fragmentation.

Sam e Sam e 7*7 Fragm entation

These are ideal circumstances for the unfolding procedure. The Xyis/xtrue rela
tionship is identical for the unfolding Monte Carlo and the mock data, since the 
7*7 fragmentation is the same in both. The results for the low and high Otag 

regions are shown in Figure 7.2 (a) and (b).

The comparison shows an exceptionally good agreement between the unfolded 
result and the theoretical expectation. One might think that this result is trivial; 
on the contrary, it demonstrates that unfolding with logio(a;) as the unfolding 
variable does work, placing the lowest x  points where they should be.

Sam e F ^ i x )  and D ifferen t 7*7 Fragm entation

When HERWIG events were generated with the same F^i^x) (GRV) but with 
different methods of treating the 7*7 fragmentation (with and without the soft 

underlying event), (Jcuts was different (see Table 5 .2). One would expect, therefore, 
that if one 7*7 fragmentation model is used in the unfolding Monte Carlo and a 
different one for the mock dataset, the unfolded result must disagree with the
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Figure 7.2: Test unfoldings each using the HERWIG generator with the GRV 

F^(æ) [without the soft underlying event) as the unfolding Monte Carlo, (a) and

(b) use the HERWIG GRV F^ix )  without the soft underlying event as the “data” .

(c) and (d) use the HERWIG GRV F^ix )  with the soft underlying event as the 

“d a ta” . Solid lines represent the unfolded results and the horizontal dotted lines 

represent the GRV expectation values for each unfolded bin.
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Figure 7.3: Test unfoldings each using the HERWIG generator with the GRV 

F 2 (x) as the unfolding Monte Carlo. The “data” in each case come from HERWIG 

with the LAGl Both the unfolding Monte Carlo and the “data” are without

the soft underlying event. Xyig for both “data” and Monte Carlo is calculated 

without FD clusters in (a) and (b); with FD clusters in (c) and (d). Solid lines 

represent the unfolded results and the horizontal dotted lines represent the LACl 

expectation values for each unfolded bin.
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theoretical expectation. Figure 7,2 (c) and (d) dem onstrates th a t this is indeed 
the situation. The values are poor, particularly for the low 9tag (and hence low 
Q^) bin. One should note how the additional events in the “da ta” have changed 

the unfolded points. Alarmingly, in both cases, the low-æ point has been falsely 
boosted. If the differences in 7*7 fragmentation models is ignored, one would 
incorrectly conclude th a t is starting to rise as x  decreases, when clearly the

theoretical expectation shows tha t it should not.

Different F^ix) and Sam e 7*7 Fragm entation

If the same final state  is chosen for the “data” and the unfolding Monte Carlo, 
one can test to see if an F 2  used to make the “da ta” can be reproduced when a 
different F2  is used in the unfolding Monte Carlo.

Since there is particular interest in the low-T behaviour of F2  , a crucial test 
of unfolding would be to  see if an F j  in the “da ta” w ith a steep low-x rise 
(e.g. LACl) is resolved when such a rise is not in the unfolding Monte Carlo. 
Figure 7.3(a) and (b) show unfolded data  points in the low and high 6tag regions 
respectively. The result of the test is th a t the LACl F 2  rise at low-a; in the low 
9tag region cannot be resolved using the GRV F 2  as the unfolding Monte Carlo 
even when the 7*7 fragmentation models are identical. This is an im portant result 
to consider when making a measurem ent of F f  at low . In the high 9tag region 
the LACl F f  rise is clearly resolved, resulting in a good comparison to the 
theoretical expectation.

FD clusters were not used in the calculation of yet we know that tagged 
tw o-photon collisions produce a final state  tha t is peaked in the forward direction. 

One would hope th a t including FD clusters into the x^is evaluation would bring 
the unfolded points nearer to  the theoretical expectation in the low 9tag region. 
The results of Figure 7.3(c) dem onstrates tha t this is not the case. A ttention 

is drawn to the fact th a t this is despite the Xyig/xime correlation coefficient for 
the unfolding Monte Carlo increasing from 0.70 to  0.81. This result should be 

noted if one assumes th a t increasing the Xyis/xtrue correlation coefficient improves 
the unfolding, as in [80] and [111]. The techniques proposed in these two notes 
to estim ate the invariant mass of the final state  are, however, not used in this 

work. Also, the minim um  cluster energy in the FD for the 1990-1992 data is 2
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GeV which is higher than the 1 GeV threshold set for later years. Therefore the 
conclusions drawn from the test of Figure 7.3(c) are likely to be a little  pessimistic, 
but useful in highlighting a potentially serious problem.

It can be seen, by comparing Figure 7.3(a) and (c), tha t including FD clusters 

does have the effect of reducing the size of the statistical error estim ated by the un
folding on each point. The reduction in the size of the errors should therefore not 

be taken to mean tha t the unfolding has produced a more accurate measurement 

of F7(a;).

By comparing Figures 7.3(b) and (d), one sees tha t including FD clusters has 
had an adverse effect on reproducing the sharply rising F^^x) well. The bin 
lim its have changed (because the bins are chosen to minimise the b in -to -b in  
correlations), increasing the theoretical expectation of 77^(j;) in the smallest x 
bin. This test supports the previous comment tha t including FD clusters into 
the visible x  calculation for unfolding does not make the result more accurate. 
Again, the error bars have decreased, reflecting the improvement in the Xyisjxtrue 
correlation. The drop in the lowest x  bin of Figure 7.3(d) seems to have been 
compensated for by the rise in value of the second lowest bin. This result may 
reflect statistical uncertainties in the unfolding and may raise the issue of how 
well the errors of an unfolded result represent the statistical fluctuations in a data 
sample. One feature remains clear; the increase of F ^ix )  in the ‘d a ta ’ sample is 
still observed in the high Stag region.

Different F7(^) înd Different 7*7 Fragmentation

This is the scenario tha t the experim entalist is faced with when trying to obtain 

F ^ix )  from the data. The actual F ^ix )  is most likely to be different from the one 
assumed in the Monte Carlo samples generated. Also, the final state  in the data 

is unlikely to  be properly modelled by the unfolding Monte Carlo. A test is not 
done here, since the tests so far have been sufficient to express the problems of 
unfolding F ^ix )  from the data.
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7.7 D ata Unfoldings

In this section the real data  are unfolded with four Monte Carlo models:

•  G RV(n/ =  4) [HERWIG] (with the SUE)

# GRV(n/ =  4 )[HERWIG] (without the SUE)

e GRV(rz/ =  3)[F2GEN] (Perimiss 0.1) +  cc [VERMASEREN] 

e GRV(ny =  3)[F2GEN] (Point-like) +  cc [VERMASEREN]

In each case the unfolding is told tha t the F ^ix )  used to generate the events 
was the four-flavour GRV leading order param eterisation, properly constructed 
in accordance with the GRV publication [11].

This treatm ent assumes th a t the charm contribution in the param eterisation cor
rectly describes the charm contribution in the unfolding Monte Carlo sets. This 
is not actually true because:

1. HERWIG interfaces to PDFLIB [112], which uses the GRV charm distribu
tion from their evolution, rather than  the Bethe Heitler contribution th a t 
GRV use to  construct their with.

2. The charm  mass in HERWIG (1.8 GeV) is incompatible with the charm mass 
in the GRV param eterisation (1.5 GeV). Consequently the charm threshold 
in HERWIG appears at a lower x  than  it does in the GRV param eterisation.

3. The charm contribution for the F2GEN unfoldings has been generated by 
Vermaseren, rather than with F2GEN.

The Xyis distributions of the data and the unfolding Monte Carlo models used 

in the unfoldings for the low and high Otag regions are shown in Figures 7.4 and 
7.5. The data  and Monte Carlo events have passed the same selection cuts. The 

corresponding Xtme distributions for the unfolding Monte Carlos are also shown 

in the same figures. The Xtme distributions are not identical, even though the 
same E^(T) has been used. This is expected because of the charm problems 
described above and also because the different final state  models have different
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F2GEN/HERWIG/DATA (50 < 8^  ̂< 70 mrad)
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Figure 7.4: x distributions for data  and Monte Carlo in the low Otag region. The 

data  Xyis distributions are represented by the dots. The different Monte Carlo 

samples are from F2GEN GRV 100% point-like (solid line), F2GEN GRV ‘perim- 

iss(O.l)’ (dashed line), HERWIG GRV without the  SUE (dotted line) and HER

WIG GRV with the SUE (dot-dashed line).
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F2GEN/HERWIG/DATA (70 < 8^  ̂< 120 mrad)

42 400 
I  350 
“  300

^  225

w 150

0.2 0.4 0.6 0.8

±

J I I I I I L

-3 -2 -1 0

m 300
o  300

^ 250

200200

150150

100100

0.2 0.4 0.6 0.8
X.true

pn—I—I—I—I—I—I—I—I—I—I—I—I—r=3

[ 1
i I

■I I

J I I I I I I i_

-3 -2 1 0
logio(^true)

Figure 7.5: x  distributions for d a ta  and Monte Carlo in the high $tag region. 

The data  Xyis distributions are represented by the dots. The different Monte 

Carlo samples are from F2GEN GRV 100% point-like (solid line), F 2GEN GRV 

‘perimiss(O.l)’ (dashed line), HERW IG GRV without the SUE (dotted line) and 

HERWIG GRV with the SUE (dot-dashed line).
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acceptances, resulting in different numbers of events passing the selection cuts. It 
is worth noting at this point how extremely similar the Xtme distributions of the 
two F2GEN samples (100% point-like and Perimiss 0.1) look and yet how different 
their distributions are. The Xyis distributions show that the unfolded results 
will be dependent on the Monte Carlo model used for unfolding. The greatest 

differences between Monte Carlo models and the data appear for Xyis < 0 .1  and 
this large uncertainty will propagate through to the lower x  bins in an unfolded 
result.

The data unfoldings for the low and high Otag regions are shown in Figures 7.6 and 
7.7 respectively. In each unfolding the Xyis distribution of the r '^ r "  background 
has been subtracted from the data  Xyis distribution before the unfolding fit takes 
place. The FD clusters are not used for the calculation of Xyis. The bin limits in x 
are different for each unfolding since they are chosen to minimise the b in -to -b in  
correlations. On each unfolded result the GRV param eterisation (dashed line) has 
been overlayed, simply for reference.

The results of the same unfoldings are shown in Table 7.2 (low Otag region) and 
7.3 (high Otag region). In the tables, the bin limits in x  have been fixed, so the 
F2  values for each bin are not the same as those shown in Figures 7.6 and 7.7, 
and the b in -to -b in  correlations are larger. However, this is useful for comparing 
results from unfoldings with different 7*7 fragm entation models within a given 

Otag range.

The combined result for a given Otag region is constructed from the four unfoldings 
within th a t region as follows. The value in one x bin is the mean value of the 
four F 2  values from the same x bin in each unfolding. The combined statistical 
error is the m ean value of the four individual statistical errors. The system atic 

error due to unfolding with different 7*7 fragm entation models is taken to be the 
r.m.s. of the four values in one x  bin.

The combined result for the low Otag region is illustrated in Figure 7.8 and for the 

high Otag region in Figure 7.9.

The inner error bars on each point are statistical only. The outer error bars are 
the statistical and systematic errors added in quadrature. The GRV (dashed) and 

LACl (dotted) curves have been overlayed for reference.
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Data Unfoldings with 50 < 0. < 70 mrad
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Figure 7.6: Four-flavour unfoldings of the data w ith different Monte Carlo models 

in the low Otag region. The dashed line is the four-flavour GRV param eterisation 

calculated at = 5.9 GeV^, which has been included for reference only.
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Data Unfoldings with 70 < 0. „ < 120 mrad
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Figure 7.7: Four-flavour unfoldings of the data with different Monte Carlo models 

in the high Otag region. The dashed line is the four-flavour GRV param eterisation 

calculated at = 14.7 GeV^, which has been included for reference only.
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X range 0.003 -  0.020 0.020 -  0.060 0.060 -  0.200 0.200 -  0.708
(+SU E) 0.317 ±  0.034 0.159 ±  0.020 0.247 ±  0.018 0.485 ±  0.033

7 ? / a  (-SUE) 0.554 ±  0.054 0.180 ±  0.026 0.263 ±  0.025 0.450 ±  0.035
F ^ /a  (Perimiss) 0.886 ±  0.075 0.146 ±  0.032 0.142 ±  0.025 0.508 ±  0.035
F2  / a  (Point-like) 0.076 ±  0.020 0.204 ±  0.013 0.294 ±  0.015 0.543 ±  0.030
Mean 0.458 0.172 0.237 0.497
Mean stat. error 0.046 0.023 0.021 0.033
R.m.s. F 2  /q. 0.299 0.022 0.057 0.034
Total error 0.303 0.032 0.061 0.047

Table 7.2: Four-flavour unfoldings of the  data  with different Monte Carlo models 

in the low 9tag region.

X range 0.003 -  0.030 0.030 -  0.100 0.100 -  0.302 0.302 -  0.871
F ^ /a  (-FSUE) 0.488 ±  0.076 0.282 ±  0.030 0.380 ±  0.029 0.470 ±  0.038
F ^ /a  (-SUE) 0.648 ±  0.080 0.291 ±  0.035 0.367 ±  0.032 0.502 ±  0.041
F^/oi (Perimiss) 0.915 ±  0.136 0.406 ±  0.042 0.211 ±  0.035 0.643 ±  0.047
F ^ /a  (Point-like) 0.126 ±  0.050 0.269 ±  0.022 0.444 ±  0.024 0.597 di 0.040
Mean F ^ /a 0.544 0.312 0.379 0.553
Mean stat. error 0.086 0.032 0.030 0.042
R.m.s. F ^ /a 0.286 0.055 0.086 0.070
Total error 0.299 0.064 0.091 0.082

Table 7.3: Four-flavour unfoldings of the data  with different Monte Carlo models 

in the high Otag region.
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Combined Data Unfoldings (50 < < 70 mrad)
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Figure 7.8: Combined four-flavour unfoldings of the data in the low region. 

The inner error bars are statistical only. The outer error bars are the statistical and 

systematic errors combined in quadrature. The broken lines are the four-flavour 

GRV (dashed) and LACl (dotted) param eterisations calculated at =  5.9 GeV^.
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Combined Data Unfoldings (70 < 6^^ < 120 mrad)
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Figure 7.9: Combined four-flavour unfoldings of the data  in the high 9tag region. 

The inner error bars are statistical only. The outer error bars are the statistical and 

system atic errors combined in quadrature. The broken lines are the four-flavour 

GRV (dashed) and LACl (dotted) param eterisations calculated at =  14.7 

GeV^.
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The combined results are not intended to be final results, as there are many 
caveats to their presentation, the most important of which are listed here:

•  The bin-to-bin correlations are not visible.

•  Systematic errors other than from the 7*7 fragmentation have not been 

included. For example, there should be some contribution from variation of 
charm mass, the minimum Etag cut and the minimum Wyis cut.

• The combined result from the low Otag range should be treated with caution, 
since the unfolding test of Figure 7.3 demonstrated that a low-a: rise could 

not be observed in the low Otag region with the present unfolding conditions.

From the combined results it can be seen that unfolding the data with different 7*7 
fragmentation models contributes significantly to the total error on each unfolded 
point. In the lowest x  point, the variation of the 7*7 fragmentation models is the 
dominant source of error and one that cannot be neglected. With the present data 
sample and 7*7 fragmentation models, it is difficult to make a strong statement 
on the low-a: behaviour of

The final unfolded results have been compared to published unfolded results from 
LEP in Figures 7 .10- 7 .12. A number of points must be noted for this comparison:

• The published OPAL [34] and DELPHI [36] results, shown in Figures 7.10 

and 7 .11, have been unfolded using linear x  as the unfolding variable, rather 
than logiQ T as used in this thesis. The benefit of using loĝ Q a: as the un
folding variable is that it divides the lowest linear x  data point up into 

approximately two points. The published OPAL [35] and DELPHI [36] re
sults in Figure 7.12 have been unfolded to emphasise the low-a: region.

• The published results are three-flavour unfoldings, but the results from this 

thesis are four-flavour unfoldings. Hence, for a fair comparison of results, 
each data point of the published three-flavour results has had an estimate 
of the charm contribution added to it. This has been done by calculating 

the average charm contribution for each x  bin, using Equation 2.22 with 

rric =  1.5 GeV and the mean value of the published unfolded result.

• The published results do not account for the various 7*7 fragmentation 
schemes in the calculation of their systematic error. This is apparent from
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Figure 7.10: Comparison in the low region of the combined four-flavour result 

of this thesis, unfolded on a log^g ^  scale, with the three-flavour OPAL [34] result 

(with an estim ate of the charm contribution added) unfolded on a linear x  scale.
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Figure 7.11: Comparison in the high region of the combined four-flavour 

result of this thesis, unfolded on a log^Q x scale, with three-flavour OPAL [34] and 

DELPHI [36] results (with an estim ate of the charm contribution added) unfolded 

on a linear x  scale.
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added).
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the small error bars on the lowest x  points. All of the error bars give the 
statistical and system atic errors added in quadrature.

It is critical for future measurements tha t try  to determ ine the low-a: behaviour 

of the photon structure function to include in the system atic error the effect of 
using different 7*7 fragm entation models in the unfolding. Secondly, if the error 
from this effect is to  be reduced, attention must be paid to improving the Monte 
Carlo modelling of the 7*7 fragm entation process.
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Chapter 8

Sum m ary and Conclusions

This thesis began with an introduction to photon structure and how the photon 
structure function can be determined from singly-tagged tw o-photon collisions at 
an collider.

In the theoretical presentation of in C hapter 2, it became clear th a t the
interesting region is at low Bjorken-æ, where the differences between F^i^x) pa
ram eterisations differ the most and where the proton structure function is known 
to start rising. The present set of F ^ix , Q^) param eterisations and models was 
reviewed and illustrated.

In Chapter 3 a brief description of LEP was given, followed by a more detailed 
account of the OPAL detector. Emphasis was placed on the Forward Detector 

where the tw o-photon collisions were tagged.

Chapter 4 presented the selection of tagged two-photon events. A comparison of 
the I990 /I99 I/I992  data showed th a t the d a ta  are self consistent. Backgrounds 

in the selected sample are small.

The Monte Carlo simulation of tagged two-photon events by F2GEN, HERWIG 

and Vermaseren was discussed in Chapter 5. A comparison of Vermaseren with 

F2GEN and F 2GEN with HERWIG showed th a t the cross-sections of the gener
ators are in good agreement.

Chapter 6 looked at the comparison of data and Monte Carlo and Chapter 7 was
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a study of unfolding. The following conclusions can be drawn from these two 

chapters:

• The visible cross-section and all final state distributions of the tagged two- 
photon process are influenced by both the photon structure function and 

the complete process by which particles are produced from the two-photon 
collision (the ‘7*7 fragmentation’). Therefore, any analysis to extract F2 

must study the final state as well.

•  Unfolding with a Monte Carlo that has not correctly modelled the 7*7 frag

mentation (i.e. the unfolding Monte Carlo has a different Xyis /x tme relation
ship than the data) will result in an unfolded T^(a:) that is biased towards 
lower or higher x.

The track energy flow distributions (Figures 6 .16(d) and 6 .17(d)) show fea
tures that differ between the Monte Carlo models and the data in the OPAL 
central detector acceptance, indicating that all of these models provide an 
inadequate description of the 7*7 fragmentation process. Conversely, the 
same distribution can be used to tune up the 7*7 fragmentation of the 
Monte Carlo models.

•  Mis-modelling of the 7*7 fragmentation process in an unfolding Monte Carlo 
is at present a large source of error in an unfolded F2 result, especially at 
low-2:.

•  Even with the correct 7*7 fragmentation model, in the low region it has 
been demonstrated that the unfolding procedure does not correctly recover 
a known F^(z) from a mock data set when when using a different F^(a:) to 
unfold with. This remains an outstanding problem.

These conclusions should be accounted for when interpreting the presently avail
able unfolded F ^ i x )  data and when making a new measurement of F^(z).
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