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Abstract

This thesis concerns the development and validation of a technique to measure the
microwave emissivity of the Earth's surface from space. The dependence of
microwave emissivity upon various surface geophysical parameters is discussed. The
role of these geophysical parameters in the global climate system together with the
importance of satellite remote sensing are also discussed. The physics of microwave
emission and the models used to predict the microwave emission of the Earth's
surface are described, including the assumptions made and constraints that apply. The
atmospheric contribution to the microwave signal from space is investigated and
found to be a major source of errors.

A new technique is developed to correct the apparent microwave emissivity as seen
by the radiometer from space for both atmospheric absorption and direct and reflected
emission due to water vapour using radiometer data in both the microwave and
infrared regions. Validation study of this new technique over the ocean surface is
performed using simultaneous data from the Along Track Scanning Radiometer
(ATSR) and the Microwave sounder (ATSR/M). The technique is applied to the soil
moisture retrieval from space by performing a case study over the Simpson Desert in
Australia using near-contemporaneous data from the Advanced Very High Resolution
Radiometer (AVHRR) and TOPEX microwave sounder. Results obtained from the
satellite data are compared with contemporaneous ground data. Analysis of errors and
error sources is discussed. Constraints on the accuracy of emissivity measurement are
set out and recommendations are suggested for future application.
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Chapter 1

Climate and Satellite Remote Sensing

In recent years, international concern has arisen regarding the impact of human
activities, principally the increase in carbon dioxide (CO2) and other greenhouse gases
on global temperatures. Other human activities have caused desertification and
deforestation which affect climate by changing the albedo (reflectivity) of land. An
increase in sulphate aerosols as a consequence of fossil fuel combustion, can modify
cloud characteristics which in turn may influence the climate. Depletion of ozone in the
stratosphere due to Chlorofluorocarbons (CFCs) may also influence the climate.

Thus human activities may cause significant changes to the climate system, and
consequently international programs such as the World Climate Research Programme
(WCRP) and the International Geosphere-Biosphere Programme (IGBP) were
established to study the likely consequences. The WCRP and IGBP are two of the
largest co-ordinated scientific enterprises man has tackled this century. The objectives
of the WCRP are to determine: (a) to what extent the climate can be predicted and (b) the
extent of man’s influence on climate. Three streams of research in the WCRP have been
identified, namely (1) long-range weather predictions over periods of several weeks, (2)
interannual variability of the global atmosphere and the tropical oceans over periods of
several years, (3) longer-term variations. The IGBP is a major project that is attempting
to integrate a wide variety of disciplines and areas of study within a global
environmental research programme. Particular emphasis is placed on the need for
development of an adequate global data and information system (Barrett and Curtis,
1992). The IGBP and WCRP each have a number of ongoing research programmes
(IPCC, 1990). For these, modelling efforts and global observations, especially from
satellites, of all components of the climate system are required (Houghton and Morel,
1984).
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1.1 The Earth’s Climate

A simple definition of climate is an average of appropriate components of the weather
over a period from a few years to a few centuries (IPCC, 1990). For example, a
description of the climate over any period involves the average of appropriate
components of the weather over that period, together with the statistical variations of
those components. Historically, fluctuations of climate have occurred over many time
scales due to natural processes. In recent years, much concern has been caused by the
change in climate due to human activities.

Commonly, the variables which are used to determine climate fluctuations are
concerned mainly with the atmosphere. Actually, processes in the atmosphere are
strongly coupled to the land surface, ocean, cryosphere, and biosphere. These
components together form the climate system.

1.1.1 The Climate System

The climate system is complex and consists of many components. These components
are the following, see figure 1.1:

® Atmosphere

This is the most variable component. The lower atmosphere possesses a
characteristic thermal response time to imposed changes of hours up to about one
month.

® Oceans

The oceans represent a large heat reservoir as they absorb most of the incident
solar radiation. The upper layers of the oceans interact with the overlaying
atmosphere or ice on time scales of months to years while the deeper oceans have
thermal adjustment times of the order of centuries.

® Cryosphere
The cryosphere consists of continental ice, mountain glaciers, surface snow and

sea ice. Sea ice and snow show large seasonal variations from days to years
while land ice change is much slower, between 100 to 10000 years.

14
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Figure 1.1 Schematic illustration showing the components of the climate system (coupled

atmosphere-ocean-ice-land) (from Houghton and Morel, 1984)
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® Geosphere

The land surface consists of the lakes, rivers, soil (i.e. soil moisture), and ground
water. All of these are of importance to the hydrological cycle. The time for
changes varies from days up to months.

® Biosphere

The vegetation and other living systems on the land and in the ocean control the
magnitude of the fluxes of several greenhouse gases including CO7 and methane.
The biosphere reacts on time scales of hours (e.g. plankton growth) up to
centuries (tree-growth).

The various components of the climate system interact principally through:

¢  Exchange of heat. This occurs through different physical processes including
absorption and emission of radiation, convection and conduction, and exchange of
latent heat via evaporation and condensation.

¢ Exchanges of water and minor chemical constituents (e.g. CO2) between land, ice
or ocean surface which occur continuously.

1.1.2 Factors Affecting Climate

About one third of the incoming solar energy is reflected by the Earth, the rest being
absorbed by different Earth components (e.g. atmosphere, ocean, ice, land). When the
earth is in thermal equilibrium, the energy received by the Earth from the sun (in short
wavelengths) is balanced by outgoing radiation at thermal (long wavelengths). The
effective temperature of the Earth is chiefly determined by the amount of outgoing
terrestrial radiation into space and is described by Stefan-Boltzmann law (see chapter 2).
The effective temperature of the Earth 253 K, while the actual averaged surface
temperature is 288 K. One of the most important factors which affect the outgoing
thermal energy from earth to space is the greenhouse effect. Naturally, greenhouse
gases are necessary to keep the Earth’s warm. Figure 1.2 shows the fundamental
process which the global climate system is heated by incoming short-wave solar
radiation and cooled by long-wave infrared radiation into space. But by adding more of
these gases (e.g. CO2 | CFCs), mankind is capable of raising the global-averaged

annual mean surface-air temperature. This is known as global warming.
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1. Ice-albedo positive feedback. As the global warming occurs, ice melts. As ice
reflects away nearly all solar radiation incident on it, any decrease in ice cover will
lead to greater absorption of solar radiation as a result of the less reflective planet.
The resultant warming of the surface will lead to further melting.

2. Water-vapour-radiation positive feedback. An increase in atmospheric
temperature will lead to an increase in water vapour emission. The increased
water vapour will act as a radiation blanket over the surface because of its opacity
to thermal infrared energy. Thus result with a further increase of the surface
temperature.

3. Cloud-radiation positive and negative feedbacks. The feedbacks related to clouds
are extremely complex (e.g. IPCC, 1990; IPCC, 1992) and a full demonstration
of cloud feedback is beyond the scope of this thesis. In summary, clouds may
contribute to the greenhouse warming of the climate system, but also to cooling
through the reflection and reduction in solar radiation due to their high albedo.
For example when global warming occurs, clouds may be displaced to higher
altitudes. As higher clouds are colder than lower clouds, they will emit less
radiation and so they serve to enhance the greenhouse effect. Clouds in this case
will act as a positive feedback. Clouds also contribute a negative feedback
through the reflection of incoming solar radiation and consequent reduction in
absorption of solar radiation at the surface.

1.1.4 Climate Modelling

In order to forecast changes in the climate system, numerical models have been
developed. These models simulate different feedback mechanisms and the interactions
between different components of the climate system.

Global prediction models concentrate on the circulation of the atmosphere. Therefore
these models are called Atmospheric General Circulation Models (AGCMs). AGCMs
were originally derived from weather forecast models and are generally run coupled
with simple representations of the thermal behaviour of the upper ocean. A
comprehensive representation of all main components in the climate system has been

developed by very few models due to lack of computer resources.

18



The validation of climate models requires the availability of appropriate observed data,
in particular those obtained from satellites. In the mean time the validation of a number
of atmospheric model variables is handicapped by limitations in the available observed
and model data (e.g. precipitation , evaporation, soil moisture, snow depth).

1.1.5 Global Climate Change

All models show substantial changes in climate when CO2 concentrations are doubled.
However, in their current state of development, there are considerable uncertainties in
the predictions of global climate change. Improved prediction of global climate change
requires better treatment of processes affecting the distribution and properties of clouds,
ocean-atmosphere interactions, convection, sea ice and transfer of heat and moisture
from surface (IPCC 1990). Increased model resolution will allow more realistic
predictions of global and regional climate change.

Different scenarios for predicting the climate have been developed under the IPCC
working group. Under the IPCC Business-as-Usual (Scenario A), the energy supply is
coal and only modest efficiency (improvements in energy use) are achieved. Carbon
dioxide controls are modest and deforestation continues until the tropical forests are
depleted. In scenario B, the energy supply mix shifts toward lower carbon fuels (e.g.
natural gas). Large efficiency increases are achieved, and deforestation is reversed. In
Scenario C, a shift towards renewable and nuclear energy takes place in the second half
of the next century while in Scenario D the shift takes place in the first half.
Observations and predictions of the increase of global mean temperature from 1850 to
2100 for all Scenario are shown in figure 1.3. Model estimates of sea level rise due to
thermal expansion of the oceans and melting of the glaciers are shown in figure 1.4.
Although some climate change is unavoidable, much uncertainty exists in the prediction
of global climate properties such as temperature and rainfall. Greater uncertainties exist
in predictions of regional climate change and in sea level and ecosystem. International
co-ordinated research in which the goal is to improve our capability to observe, model,
and understand the global climate system is necessary in order to reduce the current
scientific uncertainties.

1.1.6 Observational Requirements
In addition to observations from ground measurements such as ships, buoys, and

meteorological stations, satellite observations in particular are needed for global climate
studies. The general specification of the observational requirements of the three streams
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of the WCRP mentioned at the beginning of this chapter are the following (Houghton
and Morel 1984):

A. For the long-range forecasting (the first stream):

1  Global network of meteorological observations, including complete coverage
around the equator by geostationary satellites and continuous observations from
polar orbiting satellite. Sea surface temperature is an important requirement for
describing the surface forcing anomalies which may account for the predictable
variability of weather on time scales of several weeks. Very high accuracy of sea
surface temperature (better than 0.5K) is needed in monitoring the ocean surface
by satellite.

2 More refined interpretation of observations of clouds from satellite images.

3  More refined interpretation of satellite observations of the land surface in terms of
quantities that describe the surface fluxes of heat and water vapour.

B. For the second stream, adequate coverage over the tropical ocean can be made by
satellite observations. For example: satellite passive microwave radiometers can
provide coverage of sea ice and radar altimetery to determine surface topography.

C. For the third stream, global observation of the ocean surface are required (same as
the second stream). A further requirement is accurate measurement from satellites
to determine the net energy input and its distribution at the top of the atmosphere,
and to provide information required for the estimation of energy fluxes at the
ocean surface and of heat transport within the oceans.

All these satellite measurements for the three streams need to be made not only with
good coverage but also with high accuracy.

1.2 The role of Satellite Remote Sensing in Climate Studies

Historically, the capability of satellites to provide important information about the
climate has been recognised since 1959 when Explorer 7 (a meteorological satellite) was
launched. Since then satellites operated by United States, Soviet Union, Europe,
China, Japan, and India have grown in numbers. Many of these satellites provide
valuable information about the atmosphere, land and ocean components of the climate

21



system. Table 1.1 shows the current and planned satellite systems that provide critical
data for the climate system from 1990-2010.

The increasing complexity of climate models and their global character means that many
of the data needs can only be met comprehensively using remote sensing from satellites
(Rowntree, 1993). The reasons are: their ability to sample the globe with high spatial
and temporal resolution, the ability of satellites to measure critical climate variables, and
an operational system that will ensure long term measurements which is a crucial
condition for observing and understanding the climate (Gruber and Arkin, 1992).

Satellite observations contribute to our understanding of the Earth’s climate by
improving initial and boundary conditions for climate models, validation of climate
models, and detecting changes in the global climate. Rowntree (1993) has categorised
the role of satellite data for global climate studies under three main headings:

A. Data to define those characteristics of land surface which are not predicted.

B. Datato:

1. validate climate simulations,
2. initialise forecast models,

3. develop parameterization.

C. Data to define environmental changes (e.g. tropical deforestation). These are
needed as input data for model experiments to estimate the response of climate to

such changes.

Group A includes those features of land surface which are not predicted and so must be
prescribed. For example, some early climate models specified soil moisture and how it
affects evaporation, whereas today’s models usually simulate it (Rowntree, 1993).

The variables in group B combine validation of climate models and initialisation of
forecast models. For example, winds, temperatures, humidity in the atmosphere, snow
cover, and soil moisture are simulated by climate models but short-period forecast
models should use such data as are available in the initialisation stage (Rowntree, 1993).
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