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Abstract

The thesis proposes a new method of obtaining molecular structural data from
resonance Raman spectroscopy; the experimental, theoretical and numerical

aspects of the method are presented, and some of the results are included.

The first chapter describes Raman and resonance Raman scattering and
introduces the instrumentation, methods and procedures used in obtaining
Raman data. The sources of error in measuring band intensities and excitation
profiles are analysed, and corrections to the errors are -proposed. Some
original experimental results are presented in Appendix 2 for the purpose of

illustrating the technique and the sources of errors.

Chapter 2 describes an advanced theoretical model of secondary radiation, and
its interpretation in terms of Raman and fluorescence radiation; in Chapter 3 the
model is applied to relating resonance Raman data to molecular structure, by
using the physical assumptions of the model and the corresponding
mathematical approximations. The result is a set of equations relating
microscopic parameters describing the molecular structure to the macroscopic

quantities to be measured experimentally.

A new mathematical procedure for solving the equation set obtained at the end
of Chapter 3 is proposed in Chapter 4; the numerical and computational
implementation are described in this chapter and the computer programs used

in practical applications are presented in appendices 4 and 5.

The results of applying the new method are presented in Chapter 5 in the form
of tables containing the calculated parameters and of graphs comparing the
experimental and the simulated excitation profiles; chemical systems belonging

to three different geometries have been investigated.
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l. Introduction to Resonance Raman Spectroscopy

Raman Scattering

The Raman effect was discovered in India in 1928 by C. V. Raman and, almost
simultaneously, by G. Landsberg and L. Mandelstam in the Soviet Union.
There was significant initial interest in the new discovery because its
experimental observation happened at around the same time as its theoretical
prediction [1,2], thus providing an early success for the young field of quantum

physics.

The Raman effect gives rise to satellite lines, equidistant on each side of the
exciting line in the spectrum of light scattered by a sample; as these satellite
lines are produced by the interaction between light and the sample, they can
provide a useful insight into the nature of the sample. The lines on the lower
and higher energy side of the spectrum are called, respectively, "Stokes" and
“anti-Stokes". The different positions of the satellite lines from that of the
incident light means that the scattering undergone by the photons is inelastic;
the intensity of the satellites is much lower than that of the incident beam,

which means that the inelastic scattering has very low probability of occurring.

In fact, examining the interaction processes between light and matter, light can
be transmitted, reflected or absorbed with much higher probability than it is
scattered and most of the scattering takes place elastically; the transition
probability for inelastic scattering of light is of the order of one in 10° photons.
This low transition probability explains the complexity of the experiments

designed to measure the intensity of Raman scattered light.

Inelastic scattering involves two different photons, one incident and one
scattered; depending on the "collision" time and the degree of coherence

between the two associated wave functions, two-photon processes have been
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divided into Raman scattering and fluorescence. |If the process can be
considered instantaneous, in practice with a duration < 102 s, then it is called
"Raman scattering"; otherwise, it is called "fluorescence". This aspect will be
studied in detail in Chapter 2, where it will become obvious that the
nomenclature is arbitrary, both processes being idealised parts of the same

two-photon process.

The introduction will begin with the simplified picture in order to show the
inadequacies of this nomenclature and to prepare the ground for the
applications presented in the later chapters, which refer to the simultaneous
part of the two-photon scattering. Figure 1.1 shows a basic diagram, based on
quantum energy levels, of the infrared absorption (IR), Rayleigh (elastic)
scattering, and Stokes and anti-Stokes Raman scattering processes, neglecting
other processes such as visible and ultraviolet absorption, reflection,
transmission or fluorescence. The diagram also ignores the relative intensities
of the Stokes and anti-Stokes transitions, which depend on the relative thermal

population of the starting levels (given by the Boltzmann statistical distribution).

Virtual _—— Y — — - - 9 — 7T — — —
States ____7_ I N P _[___
Stokes Anti-

Stokes
IR T )
Rayleigh

Figure 1.1 - Energy level diagram of vibrational scattering and absorption.

From Fig. 1.1 it can be seen that, after being excited to a virtual upper state by

13



an incident photon of energy hv,, the system has the choice of relaxing back
either to the initial level with the re-emission of a photon of the same energy

hv, (Rayleigh scattering), or to another one, depending on the initial level, with
the emission of a photon of a different energy: h(v,-v,) (Stokes) orh(v,+v,)
(anti-Stokes). Here h represents Planck’s constant, v, the frequency of the

incident photon, and hv, the energy difference between the two initial levels.

In the case of infrared absorption and Raman (and resonance Raman)
scattering, the initial levels correspond to the vibrational substates of the ground

electronic state.

The Raman effect can be predicted by classical electrodynamics applied to

polarisation and the argument has been transposed into quantum mechanical
terms; the classical treatment starts with a beam of light of frequencyv,
associated with a time-dependent electric field E of magnitude

E = E,cos(2nv,l), (1.1)
where E, is the amplitude of the wave. When this field interacts with an

isotropically polarisable medium, it induces a dipole moment

p = aE’ (1.2)
where the polarizability depends on the n normal coordinates Q, k=1,2,...,n as:
oo
o=0®+ 2 Q +.., k=12,.,n; (1.3)
[ao“L‘“’ ‘

here o is the polarizability in the equilibrium position, i.e. in the absence of
molecular deformation. The normal coordinates depend on time

Q, = QPcos(2nv,f, k=1,2,...,n (1.4)
and substituting it back into Eqn (1.2) yields the expression for magnitude of the
induced dipole

M= a‘°’Eoc08(2nvot)+E{%l QPlcos2n(v, +v)t+cos2n(v,-vt] +... . (1.5)
k (0)
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The first term represents the Rayleigh scattering, with the same frequency as
the incident field, while the next two terms represent the anti-Stokes and Stokes
terms, respectively. Equation (1.2) assumes that the polarizability is isotropic,
which is not always the case in practice; taking its anisotropy into account leads

to the following relations for the induced moment:

W, = 0B ro E 0 E, (1.6a)
u, = o,k o E 0, E, (1.6b)
b, = 0,5+ 0+ 0, (1.60)
or, in matrix form,

el (O O O ||E,

w|=|o, o, o,||E| <=> p=4E (1.7)
H, 0, O, O, )| E,

In an experiment conducted in an anisotropic medium the components of the
polarizability intervene directly, while in an isotropic medium only average

quantities can be measured. For such an isotropic medium, the intensity / of
the scattered Raman radiation in terms of the wavenumber ¥,' and the

irradiance [, of the incident radiation are related by the formula

/

fi Tz

e o +3 )4 2
=— (Vo Vy)* oy (1.8)

where 1/2 refers to light collected along a direction perpendicular to that of the

incident beam and ’f and '/ to the final and initial states (Fig. 1.1) of the

scattering system, respectively; a, is the polarizability associated with the

inelastic scattering process and ¢, is the permittivity of free space.

An important factor in determining the number of bands in a Raman spectrum

- The wavenumber is linearly connected to the frequency v by V=v/v,
where v is the velocity of light in that medium.
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is the selection rules imposed by the symmetry of the wave functions involved
in a transition. These rules arise from the requirement that the transition
probability per unit of time, given by Fermi’s Golden Rule, be different from zero

W, = 2yl Ay # 0 <=> [wmPhwme 20, (1.9)

where y; and vy, are the wave functions of the initial and final states of the

transition, FlT is the Hamiltonian operator of the transition, T is the cartesian

time-space continuum and h is Planck’s constant. The integral is different from
zero only when the integrand is non-zero, that is when the group theoretical
product in the integrand contains a totally symmetric representation; the product
of the three symmetries involved (initial state, final state and transition operator)
has to be totally symmetric. This condition will remain in force under resonance
Raman conditions as well, as it is valid for any transition between two states
i and £, the transform method developed in chapter three will take it into
account by concerning itself only with totally symmetric modes of vibration and

symmetry-preserving transitions.
Resonance Raman Scattering

Raman scattering brings significant information about the structure of the
ground electronic state, through vibrational data complementary to that obtained
from infrared absorption spectroscopy. A subtle difference in the nature of the
intermediate states (Fig. 1.1) produces very different data, characteristic of the
excited electronic state and complementary to data obtained from visible and
ultraviolet absorption spectroscopy. The effect occurring when the intermediate
states are real instead of virtual is called resonance Raman scattering and
gives rise to strongly enhanced bands at the same positions as regular Raman
bands (v,, v,, v, etc), and also as overtones - bands occurring at regular
intervals throughout the spectrum (2v,, 3v,, etc) - and as combinations (e.g. v,
+v,, v, + 2v,, etc). Overtone and combination bands can be detected on both

the Stokes and the anti-Stokes side of the Rayleigh line, with the same thermal
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distribution as the Raman bands.

Resonance Raman spectra can be predicted by the time-dependent
perturbative methods and a derivation of the transition probability will be given
here in order to illustrate this approach and expose its shortcomings. The
evolution of the wave function with respect to the time, ¢, is given by the time-

dependent Schrédinger equation [3-5]

N . aw

Hy=it—L , 1.10
V=ih—r (1.10)

where it is assumed that the time-dependent Hamiltonian can be written as a

sum between a stationary part I:I0 and a small time-dependent perturbation V
H=FA,~AV , (1.11)
with A denoting the perturbation parameter. It is also assumed that the

unperturbed wave functions ' satisfy the Schrodinger equations

. oyl
Ay =in "
oV ot

n=1,2,3,... (1.12)

and represent a product between a stationary part and a time-dependent
exponential part

v —y e EN (1.13)

where vy, (n = 1,2,3,...) are the eigenfunctions and E, the eigenvalues of the

time-independent equations

Hyv,=Evw,, n=123,.. . (1.14)

n

The wave function of the system, y, can be expanded in terms of the

unperturbed basis set

y=Y C, (v (1.15)

and substituting it into Eqn (1.10) gives [3-5]:
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i’haact" =AY C <y |V|yDs . (1.16)

The coefficients C, are set according to the usual practice of perturbation
theory [4,5]:

c,=c? +ac" - 22cP ~.. (1.18)
and substituting them into Eqn (1.16) gives, for the first three orders,
0)
dc, _ 0, (1.18a)
dt
dc?
iHoCn Cr(r?)< f?)V (£)>’ (1.18b)
5 ; yn [V
and
dc?
in— " = Y CO<yP VWD) . (1.18c)
- ; v [VIY

Equations (1.18a-c) can be solved successively, assuming a time-independent
perturbation V and the initial state i ; thus Eqn (1.18a) yields

c =1 C,=0. (1.19a)

Substituting the above results into Egn (1.18b) makes all but one term vanish

¢
i = <y Vv

and yields the first order coefficient as

Vni

cl" = {1 -exp(itw,)] (1.19b)

ni

Now substituting C!" in Eqn (1.18c) yields the second order coefficient as

C(Z) - E Vnmvmi 1 —exp(it(o,,,,,) _ 1 —exp(itm,,,.) (1 19C)
’ m l.h(omi 1-‘0) :h(,l) '

nm

ni

In using Eqgn (1.19c¢) for obtaining the transition probability, it is assumed that
only the second term of the right-hand side, containing the initial state, makes

a contribution in the long time limit. Hence

18



2
|C(2)|2 - 2‘2C0$((Dnit) E Vanm,. (120)
’ (?’(oni)2 m %mmi
and by using the long-time limit for Dirac’s function
1-cos(w,;
8(w,) = llim{l_ﬂ} (1.21)
T toe mﬁi

the probability per unit time for a n «i second order transition is

2
V_V |
nm”= mi 8 ) . ! (1.22)
;Hmm (@)

Similarly, the absorption probability per unit time is

W(2) - ilC(Z)Iz = ﬂt_
nei at " 2

WLy = SIC = 221V (e, (1.23)

In the quantum treatment of radiation [6,7] the electromagnetic field is

considered to be an ensemble of non-interacting harmonic oscillator modes,

with n, photons in the k-th mode; each photon has the energy tw,, the
polarisation &,, and the propagation vector t+k,, of magnitude

|k,|=0,/c (1.24)
(where c is the velocity of light) and perpendicular to the polarisation vector:
é,k.=0. (1.25)

This description of the radiation field, which neglects nuclear polarisation, leads
to the following expression for the second-order transition probability (e,and m,

being the electric charge and the mass of the electron):

8n’e, nn,
ViR uaiad 3) yid

——J(w, -+ )
24 . ,
WMo o O . (1.26a)
% E (é,-P,)&, P.) . e, P,)& P,)
m O~ 0, @+ Op

By using the relationship between the total linear momentum of the electrons
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P and the total dipole transition moment p, P,=(im,wn,/e,)H,, and restricting the

scope of Eqn (1.26a) to Raman scattering excited by a single-mode,
monochromatic laser beam, the transition probability per unit time and unit

volume becomes

2

(1.26b)

> [<f|m><m|i> . <i|m><m|f>J

O~ 056, Wi+ Oy,

In the equation above, the transition moment has been assumed constant and
the medium isotropic, such that |&,-p,|2=(|p,|%)/3; o, represents the circular

frequency of the incident laser light beam.

Equation (1.26b) is very similar to the Kramers-Heisenberg dispersion formula
[6]; a damping constant can be added on a "phenomenological" basis, and in
the fast modulation limit it is insensitive to the different mechanisms for

coherence loss encountered in experiments. It is, however, a good illustration
for the idea of resonance; when o, — ®, the denominator of the first term

becomes infinitely small, the ratio becomes infinitely large, and that term
dominates the sum, leading to a very intense band in the Raman spectrum.

Experimental Techniques for Resonance Raman Spectroscopy

As mentioned eatrlier in this chapter the Raman effect is weak, requiring special
detection systems to separate Raman-scattered light from other effects, mainly
Rayleigh scattering. In fact, Raman spectroscopy appears as a low signal-to-
noise, high intensity range technique; the experimental setup consists of the
following subsystems: a light source (usually a laser), a sampling subsystem,
the optical analyzer (a monochromator and its collection optics), a detector, an
electronic subsystem, and a computer which collects, processes and displays
the data. Figure 1.2 shows the block diagram of such a spectroscopic system;
the details of each subsystem will be discussed in the following paragraphs and
are not included in the block diagram.
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Sampling | | Collection

system 2 optics Monochromator | Detector j
A
]

Computer

A

Laser Control electronics (=

Figure 1.2 - Block diagram of a Raman spectroscopic system.

Lasers

The introduction of the laser as a light source for Raman spectroscopy is one
of the factors credited with relaunching this technique in its use for collecting
vibrational data, long dominated by infrared absorption spectroscopy, and it was
based on the characteristic features of the laser radiation: monochromaticity,

coherence and high intensity.

As the intensity of the scattered radiation is directly proportional to that of the
incident beam (Eqn (1.8)) and the transition probability of the Raman effect is
very low, a more intense incident beam is the most obvious way to boost the
intensity of the signal to be collected. Even the low-power He-Ne laser,
producing less than 10 mW output at 632.8 nm, was a significant improvement
over high-pressure mercury lamps because it could be focused better and
because all that low power was emitted in a very narrow spectral region; in fact,
for conventional and resonance Raman spectroscopy the spectral bandwidth
of gas lasers is considered infinitely narrow and the radiaiion they emit is

considered to be monochromatic.
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The introduction of other noble gases as lasing media, the most common of
which are argon and krypton in the Ar*, Kr* and mixed Ar* + Kr* ion lasers, has
increased greatly the amount of power available; the lasers employed in the
collection of data used in Chapter 5 can deliver routinely 100 mW of power and
up to 10 W for certain experiments. The significantly increased output power
is coupled with the availability of over 20 different output wavelengths between
the two gases (as compared with only one for He-Ne), spanning the whole
visible spectrum (406 - 799 nm).

The choice of exciting lines offered by the Ar* and Kr* lasers provided the first
opportunity to investigate the frequency dependence of Raman scattering
intensity, leading to Raman excitation profiles (REPs); resonance Raman
spectra could be obtained as well, when the frequency of the incident beam
matches the gap between the ground state and an upper electronic band (Eqn
(1.25)). For full tunability, allowing the investigation of resonance Raman
spectra with structured absorption bands (e.g. KMnO, [8], K,MnO, [9], [WS,]*

[10]), dye lasers pumped by high power Ar* or Kr* lasers can be used.

Another advantage of using the output of Ar* and Kr* lasers, especially the
green and blue lines (530 - 458 nm), is the intensity gain produced by the
proportionality of the intensity of the scattered radiation to the fourth power of
the frequency (Eqn (1.8)). Increasing the frequency of the incident light by
about 30 % (by using 488.0 nm excitation instead of 632.8 nm) leads to an
almost three-fold increase in the intensity of the scattered light, in otherwise

similar conditions.

However, when a higher incident frequency coincides with an absorption band
of the sample, several effects which are normally neglected start to influence
the intensity and sometimes the spectral composition of the scattered radiation;
these effects will be dealt with in the next section, dedicated to sampling
techniques and the interaction between the sample and the incoming laser

radiation.
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Samples and their interaction with the incident radiation

Sampling arrangements have the role of holding the sample in the optimal
position for exposure to the laser beam and collection of the scattered radiation,
while providing a controlled environment during the experiment. The most
common requirement is low temperature for solid state samples, although
sometimes the requirement is a very high pressure (> 1 MPa) for the study of

minerals and other solid samples, or variable pressure for the study of gases.

As mentioned in the previous section there are several competing effects
generated by irradiating a sample of material with high intensity laser light; the
resonance Raman effect, while providing valuable information about the
geometry of a molecule in a resonant electronic state, can obscure other
vibrational features of the spectrum through the strong enhancement of the
fundamental and overtone bands of only one mode. When the obtaining of
conventional Raman data is the goal of the experiment, resonance can be

avoided by choosing an exciting frequency away from the absorption bands of

the sample; a higher frequency would take advantage of the v* factor and

decrease the self-absorption, but if a higher frequency is not available or leads
to increased absorption, a lower frequency would need to be chosen.

Relaxed and resonance fluorescence are effects which compete with the
resonance Raman effect in relaxing the system from its excited state by
dissipating some or all of the extra energy absorbed with the incident photon.
They provide mechanisms for radiative energy dissipation that do not preserve
the phase coherence with the incident field, leading to a high level of scattering
radiation which arises from neither conventional nor resonance Raman effects
and hence obscures the vibrational information. A common solution to this
problem is to excite the Raman scattering with photons of a lower frequency

than the energy gap between the ground and excited electronic states.

Self-absorption of the scattered radiation can reduce some of the gain obtained
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by using higher incident frequencies, leading in extreme cases to thermal- or
photo-decomposition of the sample; the Beer-Lambert law applies as for normal

absorption

I=l,e " (1.27)
where [ is the intensity of a light beam with the initial intensity /, after having
passed through a layer of thickness x of material with the absorption coefficient
n. One possible solution to counter self-absorption is to decrease the
thickness x by arranging the scattering geometry such that the scattered light
travels as little as possible through the sample before exiting towards the
collection optics [11,12]. Another solution is to decrease the intensity of the
incident light /, decreasing both the absorbed intensity (Eqn (1.27)) and the
intensity of the Raman scattered light (Eqgn (1.8)); the signal-to-noise ratio of the
Raman spectrum can then be improved by a longer integration time in the

detection stage.

The most common sampling arrangement for liquids is a capillary tube,
although the high intensity of the laser beam interacting with the sample can
degrade the latter rapidly through photo- and thermal decomposition; the use
of the rotating cell [13-16] and of the flow-through cell [17-19] solves this
problem by providing a continuously fresh sample at the point of scattering.

A widely employed sampling condition is low temperature, which narrows the
bandwidth and improves signal-to-noise and resolution, while at the same time
protects the sample from thermal decomposition. Low-temperature sampling
cells (cryostats) can be used for investigating various readily prepared samples,
such as films, pellets and single crystals; these devices have been widely
described in the literature and work by keeping the sample in thermal contact
with liquid nitrogen, which is readily available, non-toxic, and has a very low

boiling point - approximately 80 K.

More sophisticated cryostats may include temperature control through a heater
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with variable output, and may replace liquid nitrogen with liquid helium in order
to achieve temperatures in the range of 5 - 10 K. However complicated their
design, all cryostats operating by keeping the sample in thermal contact with
a cold liquid (at boiling point) are just sophisticated Dewar cells. A basic design
for such a cryostat, essentially a Dewar recipient similar to the ones employed

in our laboratory, is given in Fig. 1.3 for illustrative purposes.

The sample is positioned at the

impact point, where only a very

small volume is irradiated by = lid =

the focused laser beam; the o ?ﬁ’:—! —~— vacuum

rest of the sample does not Dewar—| | "_ nitrogen_

participate in the experiment _ ——_‘ =

and hence is not shown in Fig. copper = scn:t::::d

1.3. >~ light
RN

A different principle used in scaue’,/ing

achieving low temperatures is e

that of adiabatic expansion of laser

gases, used in the construction e

of domestic and Ilaboratory

refrigerators. Such a device
(like the Air Products Displex)

uses helium in a closed thermodynamic cycle and can achieve temperatures

Figure 1.3 - Simple Dewar cryostat.

as low as 10 - 15 K; when fitted with a programable, variable output heater,
closed-cycle helium refrigerators can be programmed to provide stable
temperatures of between 10 and 350 K. Appendix 2 describes experiments
that involve the preparation and spectroscopic analysis of a mixture of small,
unstable sulphur clusters, isolated and trapped in a matrix of frozen argon

obtained by using such a low-temperature sampling arrangement.
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Collection of scattered light

After being scattered by the sample through various processes, light has to be
spectrally analysed in order to separate the useful information from the very
intense background; this requires a system that collects as much of the
scattered light as possible without altering its spectral distribution, rejects very
efficiently the background radiation (stray light and Rayleigh-scattered), and

detects light at very low intensity levels.

The collection lens is usually a photographic camera lens, achromatic between
400 and 550 nm, and transmitting more than 70% of the incident light
throughout the spectral range of interest for Raman scattering from
chromophores (400 to 800 nm). Figure 1.4 shows the spectral transmittance
curve for a typical such lens. The accurate positioning of the collection lens
along the optical axis of the system is crucial, as more than 80% of the
detected signal can be lost through a 5 pm misalignment of this very important

optical element.

spectrum transmittance

ape 460 5“ G?N 700
wave length(nm)

Figure 1.4 - Spectral transmittance of a typical photographic camera lens.
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A particularly disturbing effect for resonance Raman scattering of high order
overtones - leading to an overall Stokes shift of more than 1500 - 2000 cm™ -
is chromatic aberration; the lenses usually employed for light collection are
corrected against this aberration only for blue and green light, between 400 and
550 nm. This aberration, affecting all lenses, produces differently sized focal
"points" for different wavelengths, 1 and 2 in Fig. 1.5; if the collected light is
focused onto the entrance aperture of the spectrometer, this aperture - usually
a slit - will "cut" the focal disk to an extent dependant on the wavelength of the

incident light, distorting the relative spectral distribution of the collected light.

This spectral distortion of the
collected light before it is analysed
propagates into a distortion of the
band intensities in the measured
spectrum; the study presented in
Appendix 1 will show the extent of

this aberration in a typical lens.

The chromatic aberration cannot be entrance
corrected satisfactorily throughout

the whole spectral range, so its

Figure 1.5 - The effect of chromatic
aberration on the focusing of the
minimising the spectral range to be collected light.

impact has to be minimised by

analysed; thus, using more

efficiently the information contained in the intensity of the first two or first four
harmonics becomes even more important. The chromatic aberration can be
eliminated completely by replacing the collection optics based on lenses by
mirror-based optics but this experimental solution is very costly; by contrast, the
transform method (to be discussed in Chapter 3) aims to provide an

inexpensive tool, accessible to most laboratories.
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Analysis of the scattered light

Typical single-channel Raman and resonance Raman spectrometers used are
double monochromators, with the Czerny-Turner design shown in Fig. 1.6; a
motorised precision mechanism positions the coordinated diffraction gratings
G1 and G2 at a particular angle, allowing only light of a particular wavelength
to pass through the entrance slit S*, the middle slit Sg and the exit slit Ss, and

hit the detector.

Figure 1.6 - Schematic diagram of a Czerny-Turner double monochromator.

The detector has a high sensitivity to light of low intensity, over a wide spectral
range; typically, thermoelectrically-cooled photomultiplier tubes are used for
single channel detection, while thermoelectrically-cooled photodiode arrays and

charge-coupled detectors have become common for multichannel detection.
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The photomultiplier tube is based on the photoelectric effect and on secondary
electronic emission and transforms photon energy into the energy of electric
pulses with an efficiency of around 15 %; pulses are collected at the anode and
the signal is collected and processed by associated electronic circuitry which
also provides stable high-voltage power for the cathode of the photomultiplier
tubes. After being collected pulses are amplified, filtered against thermal and
radioactive noise, formatted to a standard 5 V voltage and counted; modern
counters are embedded in personal computers that process the resulting count
into a spectrum, while controlling the mechanical parts of the monochromator
as well. The computer software controlling modern spectrometers, most of
which are fitted with multichannel detectors, also corrects the spectra collected
for the spectral response of the instrument; the following section will be

dedicated to the subject of spectral response.

Appendix 2 illustrates most of the experimental techniques described in this
section through a series of spectroscopic experiments performed as a research
project separate from the main body of the present work. This present work
owes a number of ideas and a good amount of impetus to that project and

other preliminary work.

Spectral response of the spectroscopic system

Light travelling between the laser and the detector interacts with many different
systems including the sample, each with its own response to the incident
radiation; the purpose of spectroscopy is to separate the response of the
sample from the response of all other systems. The monochromator and the
detector are the only two systems with a significant influence on the measured
spectrum apart from the sample itself; the monochromator is designed to
discriminate between different wavelengths and the detector will have a
frequency-dependent efficiency from the quantum nature of the detection

process.
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It is usually assumed that the response of basic optical components (mirrors,
lenses, prisms) is constant throughout near-infrared, visible and near ultraviolet;
the spectral response of the collection optics, monochromator and detector is
determined by replacing the sample and the laser source (Fig.1.2) with a
standard calibration lamp with known spectral emissivity, calibrated by the
National Physical Laboratory.

The calculation of the spectral response of an instrument starts with the
assumption that the response of that system is linear in intensity and therefore
responds to an oscillatory input of intensity

Lol ®) = I,.,,pu,oe"‘” (1.28a)
in a linear manner [20], producing an output of intensity

bl ®) = Lo @™ (1.28b)

related to the input through the response function of the system, R, in the
following relationship

Ioutput(m) = %}R(CO -X) I,npur(X) dx. (1 29)
T -

Recognising that Eqn (1.29) represents a convolution of the input intensity

function, Egn (1.29) can be written in a compact form as
/ lo.* R (1.30)

output = inpu

or as a relationship between the corresponding inverse Fourier transforms

I;Jtpur(x) = R-1(X) ’I;I;JUI(X) . (131)

Writing the previous equation for the Raman scattered radiation R and for the

standard source S gives
Loutput,(X) = B0l (%) (1.32a)

Tooput, () = R (X) b (X) (1.32b)
and the response of the system can be calculated from Eqgn (1.32b) by

performing the inverse Fourier transforms
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4 flou,pms(v) e dv
R(x) = 2% = = (1.33)

[y y ,
Inpulg f Iinput (V) e -lvxdv

and so the real input of the system can be calculated as a function of the

known response of the system and of the measured output

-ixv v/
- J;Iou,pu,n(v)e dv (1.34)

1 e "™dx .

@—f BT

The spectral response of the instrument is calculated in practice from the

/ inputﬁ(v) =

emissivity of the source and the measured spectrum of the lamp, by using fast

Fourier algorithms in Eqn (1.34).

A method of estimating the result of the previous procedure would be very
helpful for saving development and computer calculation time; by considering

any spectral structure as a sum of an infinity of monochromatic lines of spectral
width dv’', Egn (1.29) can be written in its differential form
Al ppuV) = L (V) Rlv=V)dv'. (1.35)

The standard source S has a broad spectral emissivity function that can be

taken to be Gaussian for illustrative purposes:

/ 2
oo, = /,‘n‘;zutseXp[-("_"_S)_] , (1.36)

as

where vy is the maximum point and a; = FWHH/(2yIn2) (where FWHH is the

full-width at half-height of the Gaussian). The response of the instrument to

monochromatic light of frequency Vv’ is taken to be also a Gaussian, centred

on the frequency of the incident light

R(v) = Rmaxexpl—_\é] (1.37)
ag

and with a; defined in the same way as a.
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Thus Eqgn (1.35) becomes

dloulput(v) = /inputeXpii_((V/ _Vs)2 - (V -V )2 Hdv/ (1 38)

2 2
as ar

by taking into account that the maximum response can only be R, = 1. After

integration and rearranging the resulting expression, Eqn (1.38) becomes

0 ( (v-vg)?
Ioatputs(v) = I,-f,gu,sx const.xexp|-

a
aS 1 +[_RI
- as

As the Raman spectrometers are designed to have a narrow response function

(1.39)

to incident monochromatic light, a; << a5 and Egn (1.39) becomes

V-V.)?
) = Bgeonro- L2 (.40
ag

)

Comparing Eqn (1.40) with Eqns (1.36) and (1.30) shows that, in Raman and
resonance Raman practice, the convolution can be approximated with the
multiplication of the input function by the response function at every frequency
point; thus, the determination of the spectral response reduces to collecting the
digital spectrum of a standard calibrated lamp and dividing each data point by
the emissivity given in the calibration table of the lamp. Correcting a spectrum
for the spectral response of the instrument consists then in dividing each data

point in the spectrum by the value of the response function of the instrument.

The resulting spectral response curves of three typical spectrometers are
shown in Fig. 1.7: two SPEX double monochromators operated in single-
channel mode, fitted with 1800 mm™ (for model R6) and 1200 mm"™' (for model
1401) holographic gratings and RCA GaAs photomultiplier tubes (type C-
31034), and a DILOR triple monochromator operated in multichannel mode,
fitted with three 1800 mm™ gratings and a diode array detector.
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Raman spectral efficiency of spectrometers
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Figure 1.7 - Spectral response curves of different spectrometers.

It can be seen in Fig. 1.7 that even for a 1000 cm™ scan the relative intensity
of peaks will be altered by the non-linear spectral response; in the case of the
resonance Raman spectrum of the 846 cm'* vibration of KIVINO*, produced by
excitation with light of 514.5 nm wavelength (19453 cm'?) and collected by a
SPEX 1401 instrument configured [8] as in the paragraph above, the relative
change in the intensity of the third overtone is approximately 80 %. As shown
in later chapters, using the transform method requires correcting the collected

resonance Raman data for the spectral response of the instrumentation.
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Il. Density Matrix Formalism for Multiphoton Molecular
Spectroscopies

Introduction

Chapter 1 has presented very briefly the traditional approach to optical
spectroscopy - the second-order perturbation theory and the Kramers-
Heisenberg formula - for both optical absorption and Raman scattering. While
the Kramers-Heisenberg formula is correct in the case when all states of the
chromophore and of its environment are included, in practice the latter are not
known explicitly and have to be taken into account statistically. This approach
introduces band shapes and widths on a strictly phenomenological basis,
without taking into account the difference between different broadening
mechanisms. For this reason, it is impossible for the Kramers-Heisenberg
formula to discriminate between resonance Raman and resonance fluorescence

and indeed, to predict any resonance fluorescence at all.

Theoretical studies [21-30] have shown that the mechanisms generating the
loss of coherence between states control the nature of the secondary emission
and the occurrence of resonance Raman scattering and resonance
fluorescence. A recent study [31] has confirmed the theoretical results of [26-
30,32] through experiments where either resonance Raman scattering or
resonance fluorescence have been found to dominate the total intensity of

secondary emission, depending on the dominant mechanism of coherence loss.

This chapter will show that resonance Raman scattering represents only a part
of the laser-induced resonance secondary emission from electronically excited
states, and is usually accompanied by a certain amount of resonance
fluorescence. This is why the study of resonance Raman scattering has to start
with a broader view of the two-photon processes, followed by an examination

of the conditions under which resonance two-photon processes can occur and
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resonance secondary radiation can be separated into resonance Raman

scattering and resonance fluorescence.

The separation between resonance Raman scattering and resonance
fluorescence will be based on the separation of the damping constant, and of
its corresponding quantum operator, into terms of distinct phenomenological
origin. The mathematical formalism required to achieve this separation is
based on the density matrix of a multilevel system in interaction with a
dissipative system (a "heat bath") [27]. The formalism thus developed will be
extended to include the interaction with a radiation field [28-30,32] and then
applied to the calculation of the transition probability for one- and two-photon

processes.

This chapter will continue by separating the formulae for the transition
probabilities into terms corresponding to one-photon absorption and emission,
Raman scattering, and fluorescence. The role of different mechanisms will be
discussed and conditions for the occurrence of various processes will be
established. At the end of the chapter the experimental results of [31] will be
examined in more depth , providing the ground for the approximation adopted
in chapter 3 with regard to resonance fluorescence. Only then the theoretical
basis for the transform relation between resonance Raman scattering and
optical absorption spectra will be fully in place and the discussion can proceed

towards establishing this transform relation, the aim of Chapter 3.
The Density Matrix Formalism

The starting point of this review of the formalism is the physical meaning of the
density matrix, best illustrated by the case of a system with two levels, {1, 2},

the wave function [32]
y(rf) = C(hwy,(nN + Cyhw,(n (2.1)

and the Hamiltonian operator
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A=f V. (2.2)
Here y,(r) and w,(r) are the eigenfunctions of the unperturbed Hamiltonian

Flo, V is the interaction Hamiltonian, and the coefficients C,(t) and C,(t) can be

obtained from the solution of the time-dependent Schrédinger equation

~ . aw
Hy = ih—L . 2.3
¥ o= i (2.3)

It is found that the coefficients C,(t) and C,(t) satisfy the relations
dC, iE iV,,

1 =-__¢c-_"¢,, (2.4a)
dt h h

and

46 _ _Bpg NMag (2.4b)
dt h 2 h !

The density matrix of a system with the wave function above is then defined as

P = C.Cf, piy = Gy, pyy = GCF = pla,y Py = GG (2.5)

and the density operator corresponding to the matrix can be written then as

p = ly><yl . (2.6)

The density matrix can be used to calculate the expectation value of an

operator M, starting with the definition of its expectation value

(K1) = <y(r.d [N y(r.0> ; 2.7)
from the expression for the wave function (Egn (2.1)) and the definition of the

density matrix (Egn (2.5)), it follows that
(M) = C/CM,,+C;CM,,+C;CM,,+C;CM,, (2.8)
or, in matrix form, the expectation value of M will be the trace of the product

between M and p

(M) = Tr(pM1) = Tr(Mp) . (2.9)
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The time dependence of the density matrix of an isolated system is given by
its equation of motion, which can be obtained by differentiating the density

matrix with respect to time (Egn (2.5))

B, dC7 .90, 01(% e ﬂ;m C] C[; ¢ s % C;]; (2.10)

dt ' dt dt

cancelling the like terms yields
dp i i »
—l= _%(V12p21 = P1aVay) = ‘¥[V,P]11 - (2.11a)

The other terms can be obtained similarly

dp,,

i i ovy A
ar = _¥(V21P12 = PaVia) = _-:g[v-plzz , (2.11b)
Prz o I, - Eoyg + Vil - P2 @110
dt % 1 2/F12 % 12V 11 22
and
Lo I, - EJpy + Voo - i) (211d)
dt Y 2 1/7¥21 % 21\IF22 "
and the equation of motion for the density matrix can be written in operator
form as
dp i [y a &
=+ =-_|[H,p| = -iLp . (2.12)
&= -<lRpl=-ip

Equation (2.12) is called also the Liouville equation and the Liouville operator

is defined as

;o ey
L g[H,]. (2.13)

The above treatment for a pure-state, two-level system, is not very useful in
practical terms because real systems are collections of multi-level systems.
The extension of the previous approach to a mixed-state, multi-level system will

start also with the wave function of a system in the state .
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vt =Y ClHwn . (2.14)

Defining P, as the probability of the system to be in the state with the wave
function y¥ gives the following expression for the density matrix

P = X P,C2(0[CE0)] (2.15)

in this case of a mixed-state, multi-level system, the density matrix elementp,

is a measure of the probability density that the state m mixes with the state n.

The density operator is to be written as

=Y F’,-l\l!“)><W®f (2.16)
j

and the corresponding Liouville equation is

dp,,,

dt - _%E (HMkpkn - pMkan) = _IEE mem’n'pm’n’ ; (217)
k m n'

the matrix element of the Liouville operator is given by

Lmn:m'n’ = %(Hmm'ann’ - 8mm’Hnn’) ' (218)

where §_, and 3., are ordinary Kronecker symbols. In operator form the

Liouville equation and operator are, respectively

b aa
L 2.19
ai P (219)
and

(- %[FI,-] . (2.20)

Density Matrix Formalism for a Molecular System in Interaction with a
Heat Bath

The review of the basis of the density matrix formalism establishes the
terminology to be used in later work throughout this chapter and provides a
connection between the physical reality to be modelled and the mathematical

equations describing that model. However, a useful model needs to represent
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an interesting problem in the simplest possible terms, so the next step of the
present treatment is to separate the "reality”, considered to be an isolated
system, into two interacting parts: the system of interest - the "system" - and
the rest -the "reservoir" or the "heat bath". Specifically, the "system" would
represent the molecular system and the "bath" would represent all mechanisms
through which the "system" interacts with its environment. This would account
for all energy transfers, radiative or not, between the system and its
environment, e.g. intermolecular collisions and low-frequency, internal modes

of vibration.

The purpose of the separation between the "system" and the "bath" is to
eliminate the "bath" part of the density matrix, so as to obtain a simpler
equation of motion, involving only the reduced density matrix of the system of
interest. Microscopic variables of the reservoir would not occur in this reduced
equation, the effect of the reservoir on the "system" would be described
conveniently through rate constants, and only a statistical assumption at the
initial time would be required. The expressions for the rate constants will be
derived and a phenomenological interpretation of the rate constants will be

given.

For practical applications the "system" itself will be separated into another

"system" and the radiation field but for the start there will be only a "system",

with the Hamiltonian I:ls , and a "bath", with the Hamiltonian Flb; the interaction

between the system and the bath has the Hamiltonian H,. The Hamiltonian of
the total system will be then

A=, +A,+A =A A, | (2.21)
and similarly for the corresponding Liouville operator
L=C,+C,+0,=C,+L,. (2.22)
Applying the Laplace transform, defined by
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oo

B(p) = [e podt , (2.23)

0
to the Liouville equation for a mixed-state, multi-level system (Eqn (2.19)),

yields [27,33]

p(p) = pO)_ (2.24)
p +iL

A transition operator M(p) will be defined as [27,28,33]

LI B PR 17 S B (2.25)
p-iL p-i, p - i,

which is to be substituted into the expression for the Laplace transform of the

density operator (Eqn (2.24)), yielding

p(p) = PO {1 . M(p)——‘f}. (2.26)
p + il p + i,

The density matrix of the "system" at time t can be found by calculating the

trace of the total density matrix over the quantum states of the "bath”

Pl = Tr p(h) , (2.27a)
p(p) = Tr,p(p) - (2.27b)
To eliminate the "bath" variables, it is assumed [27] that at t =0

p(0) = p(0)p(0) ; (2.28)

using this initial condition in the Laplace transform of the density matrix of the

"system" yields

5¢(p) = Mf - (f(p)) — } (2.29)
p +iL, p +iL,

with the trace of the transition operator expressed as

(M) = Tr [N(p)p®(0)] . (2.30)
By introducing the memory function (or memory kernel) [28,34]
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(M (p)) = - A<M(p)> ., (2.31)
1+ (ME)p + L)
the Laplace transform of the density matrix of the "system" can also be

expressed as [27]

5(9
pe(p) = —P © (2.32)
p+iLg+ (Mc(p)>
or rewritten as [27]
PS(p) - 69(0) = ~iL 5%p) - (M(P)5(P) - (2.33)
The Liouville equation of motion for the density matrix of the "system" can now

be obtained by performing the inverse Laplace transform of Eqn (2.33)

t
3 " -
dpdt(t) = ~iL p@(f) - fd‘c<Mc(’t)>ﬁ(s)(t—‘c) ’ (2.34)
0
with
(M(r)) = f dp(N(p)) exp(pr) . (2.35)
By using the ldentlty
exp| - p(s) (f = E (-1)" d"p(t) _ pe(t-1) | (2.36)
n=0 n' dtn
the Laplace transform of the density matrix of the "system" can also be written
as
t
5(s) . -
P - i g - de<Mc(t)>exp[-T%Jﬁ‘s’(t) . (2.37)
0

Approximating the time derivative operator by —iLs under the exponential in

Eqn (2.37) yields the generalised master equation for the density matrix of a

system in contact with a heat bath

59 -
dpdt(t) = -iL p@(f fdt exp (itl ) p(D) . (2.38)

It is to be noted that the generalised master equation achieves the separation
between the variables of the system of interest and those of the heat bath and

depends only on the density matrix and the Liouville operator of the "system".
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This equation provides the starting point for the treatment of any optical
spectroscopy, as no assumption has been made about either the character or
the magnitude of the interaction between the system of interest and its
environment. The diagonal elements of the density matrix describe the time
evolution of the population of the system, while the off-diagonal elements
provide the information about the phase, bandwidth and band positions in the

optical spectra.

In order to obtain relations applicable to spectroscopic problems, damping will
be introduced through the Markov approximation: the duration of the interaction
between the system and its environment is infinitely small compared with the
time required by the density matrix to change, such that the time integral in the
generalised master equation can be extended from zero to infinity. Thus the

damping operator can be defined as

£ = fae(¥,(0) exp(icl) (2.39)
J .
and the equation of motion becomes
5(s) A ..
dpdt(t) = —il gy - TpO(Y) (2.40)

The damping operator can be defined by correspondence with the time-
independent damping constant only in the Markov approximation; when this
approximation does not hold, one has to deal directly with the memory function.
The physical quantity corresponding to the damping operator is the damping
constant, to be derived in the following discussion; this will lead to the
separation of the damping constant in two parts, of distinct phenomenological

origins.

Applying the physical interpretation of the elements of the density matrix of the
"system" leads, in the second order of approximation with respect to FI1 [27],

to the following equation for the diagonal matrix element
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(s
dprn,

ar - _Z: l_‘nsnszn,'n;p(ns,')n; (2413)
and for the 'off-diagonal matrix element
dpmn, .

dts - = (o, + Fm,n;m,n,)pffs’z"s ' (2.41b)

It can be seen in the previous equations that the time evolution of the diagonal
elements of the density matrix depends only on the rate constants (I),
characterising changes in the population of the state n, ; the evolution of the
off-diagonal elements between different states m, and n, depends on the band
shifts (w) as well as the rate constants (I') describing the population changes

in both states involved.

The definition of the damping operator shows that calculating the matrix

elements of this operator requires the calculation of the matrix elements of the

memory function <MC(T)> (or equivalently <I\7Ic(p)> ). Thus, the Laplace transform

of the memory function can be written as

- 2 ~ N Py
(M (p))" = ~(N(e)® = <L1 L L1> (2.42)
p + il
or, for its diagonal matrix element
- @ - .
<MC(P)>,,’,,,:,,’,,,,, D3> p‘n‘:?,,,,(O)[L, L L1J . (2.43)
ny 0y P+ Ik, INN-N' N

In the previous equation n, n’; are quantum numbers corresponding to

"system" states, n,, n’, are quantum numbers corresponding to "bath" states

and the shorthand notation N=nn,, N'=n/n, has been used.

Using the definition of the Liouville operator and the assumption that the

thermal average of the Liouville operator of the interaction is zero, <I:1> =0, and

replacing for convenience the notation for the interaction HamiltonianF'= A,
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in the previous equation yields

(b) (0)

(EVSIII 3) i

m (2.44)
/ /
% 8,3 IH",WVI2 . IHfWNI2 B IH.NN|2 _ If‘{,(zwlz ’
W | POy PHi®y, | POy  Prioy,

which reduces for the case of nzn; to

(Mc(p>(2) —_EE per ()| H;, |2[ L } (2.45)

nsnsnsns +
n, n P I(Dnﬁn,,n,'n; p+ Imnjn{nn,,

or, by reversing the Laplace transform, to

<M ( )>nn :n'n! E E pi;b)n,,(O)IHn n,nsn; IZCOS (O)nsn ,n:n,:T) . (246)

n, ni

The matrix element form of the definition of the damping operator now gives,

in the case of n_zn,,

l_‘n,n,:n,’ E E pin,n,, (O) | Hn N W l25(('On My n,n,,) - kn;—m, . (247)

n, ny

The case for n,=n; yields similarly

(YT 35 35 IR0 AN | SR R

}2 +im +im
n, m, m, p m,m,,n,n, p nn,mym,

——zzp;,,,,,,wn H, ol (2.48)

+i +
n P ©p i nin, P I(Dn;n,,n nl

X
__E E Zpgb,)n, I mm,,nsn‘,l2 : L + - 1

+ +
h2 n, mgn, m, p I(om‘m,,,n,n,, P I(")n,n,,,ml,m,,

or, by reversing the Laplace transform,

. @
(M), E 3 (O Hy i 12(€0S @ 7T) (2.49)

m;en n, m,

The matrix element form of the definition of the damping operator now gives,

in the case of n,=n_,
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nn :n,n, = E Ez pg‘:Lb(o)lH;?,m,ﬂ,n,, mm.nn)
m:en n, m, (250)
= - Ermmnn = Ern,nsnn _E nn,
mg#n, n;tn n¢n

Combining the results for n_#n, and n =n,, the master equation for the
diagonal elements of the density matrix of the "system" now becomes

(s)
o - s Koo (2.51)

The calculation of the off-diagonal matrix element of the damping operator is
analogous to that of the diagonal element and starts with calculating the

corresponding matrix element of the Laplace transform of the memory function

~ 6] .
<M°( >mn :m,n, = E E p;‘:)n,, [ L = L1L ) (252)
IN:M’ N’

”an, p+l0

where the shorthand notation M=m_n,, N'=n_n,, N=n_n,, M’'=m_n, has been

utilised. Again, as for the diagonal matrix element, using the definition of the
Liouville operator and the assumption that the thermal average of the Liouville

operator of the interaction is zero, <I:1> =0, and setting for convenience H'=H,

in the previous equation yields

(b)
n n (O)
(XTSI 3) i
ny, n,, (2-53)
/ / / / / /
HMM”HM”M'5 . HN’M”HM”N§ B Hyv nHamr _ Hy nHime
M” p+i(oM”N NN p+i(0MM” MM p+i0)M/N p+i(DM,N

which, after expanding the sums over the Kronecker symbols and grouping the

resultant terms, becomes
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! 2 / 2
((p)),, 0@ ( |Hm,n.,,m:mf,| He i
m,nmn ZZ ”n”b +io * +io
n m; my p mmy,m,n, P nn,mym (254)
/ /

H, . H n,,m.n,
___EE pg:)nb(o) ","m’jsnb mgny,mn, )

2 +
h Ny, n, P IO‘)mé,n,,,msn‘7

Performing the inverse Laplace transform of the previous equation and

substituting the result in the definition of the damping operator yields

(b)

n,n, /
mn :myn, _Z E E _b_—_[l Hmn ,m. m,, (Dm'm’ m n,,) * |Hn,n,,,m,’m,’, lzn(mn,nb,m;m,’,):l
n, m, ,, (2.55)
(b) (O)
n n /
_Z E — n yol anm,n,,m,n;n(mn;.nb) !
ny n,,

where the complex function 1 is defmed as

M@t ) = fdrexp( 1Tt 1) (2.56)

and can also be written as n(x) =nd(x) -iP(1/x), where P(1/x) is the principal
value of 1/x. Thus the matrix element of the damping operator can be

separated into its real and imaginary parts

r = Re[l"

m,nzm,n,

m,n':msn,] * ilrn[l_m,n’:m,n,] . (257)

The real part is called the dephasing rate constant and consists of the inelastic

part (I'_ . +T

mym;m,m, nng n,n,)

/2 and the elastic part l“fgz,,,:m’,,,; the matrix element of

the damping operator is written now

r  =Re[(T (2.58)

m,n;m,n,

m,m_.mym, nn nn)/2 rsg)n mn,] * IIrn[l-‘mnﬁ:msn,] *

The elastic term ngf,,’:ma,,, is called pure dephasing because it does not

accompany a population change and is written as

(d) (b)
Lo pm KA __E E p"b"b n e H:n,n,:,m,n,,)2 8((’)n,ﬁ,n,,) . (2.59)

N, ny

The imaginary part represents the energy level shift due to the interaction

between the system and the heat bath and can be written as
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J2HD ]2
-+

(b) IH:nn m.m nn,,mym,
Ny Ms My WMy
Im Fm,n,:m,n = s”; - _PZ E n,,n,, T - —
n, m; m, p+ I(")m;m,',,m,n, p+|0‘)n,n,,.m: my (260)
/ /
52580 o
E p nbn,,( i .
Ny ny p m.n,.m,n,

The equation of motion for the off-diagonal element of the density matrix is now
obtained by replacing the real and imaginary part of the corresponding matrix

element of the damping operator in Eqn (2.41b)

(s)
Prmn, . © 1 @ €] 2.61
I = - I((D m,n, +A® m’,,’)P;,n,’ I:E(Fmsm,:m,m"" Fn,";”s",) + rm,n,:m,n pr; n, ( )

The above equation shows that the spectral position of each band, through the
energy level shift, is temperature-dependent. As the phase information about
the system is contained in the off-diagonal element of its density matrix, the
above equation also shows that the Lorentzian spectral bandwidth of a
molecular system depends not only on the total decay rate of each molecular
state, but also on the pure dephasing characterising each pair of molecular
states. This fact is not captured by any other method of treating molecular
spectroscopy and represents the key advantage of the density matrix method

over all the others.

Density Matrix Formalism for a Molecular System in Interaction with a
Radiation Field and a Heat Bath

The formalism developed in the previous section will be extended now by
including the interaction between the system and the radiation field. The results
will then be applied to the specific cases of one- and two-photon spectroscopy,
leading to expressions of the transition probability for optical absorption and
resonant secondary radiation. These expressions are the two components of

the transform relation, to be established in Chapter 3.
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The starting point of this application is the definition of the probability rate for
a j-photon transition of a multilevel molecular system from the initial state
belonging to the manifold {a} to all possible final states belonging to manifold

{n}, in the Markov approximation [29]

WO = lim ¥ d(p) (8 (2.62)

o p dt
requiring the derivation of the master equation for one- and two-photon

processes involving the system, the radiation field and the heat bath.

The derivation will proceed as in the earlier discussion of a system in contact

with a heat bath, starting with the equation of motion for the whole system

op o
— == —|L 2-63)
of P (

with the Liouville operator defined as

T, (2.64)

L=_
h

and the Hamiltonian of the total system

A=0 A (2.65)
The total unperturbed and interaction Hamiltonians are, respectively,
H,=H,+~H, +H, (2.66a)
and

A=A -, (2.66b)

The Hamiltonians and the corresponding Liouville operators of the molecular
system, the heat bath, the radiation field, the system-radiation field interaction
and system-heat bath interaction are denoted by the subscripts s, b, r, srand

sb, respectively.

The derivation will seek to isolate the density matrix of the system by
eliminating both the bath and the radiation field variables; this will be achieved

by applying the appropriate projection operator to both sides of the Laplace
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transform of the Liouville equation (Eqn (2.63))

(p + iL)p(p) = p(0). (2.67)
Applying the projection operator A=p®(0)Tr, to both sides of Eqn (2.67), and
assuming that p(0) = p9(0)p*(0)p(0), yields [32]

[p+iL,+iL, (X () Jp*(P) = p*(0) , (2.68)
where p*=Tr,p and

(X (p),=Tr il +il (1 -A)(p+iL) (1 -A)L,15©(0). (2.69)
A second projection operator &.=p"(0)Tr, is applied to the intermediate result

(Egn (2.68)) in order to obtain the reduced density matrix of the molecular

system

[p+iL,+M(p)1p(p) = p(0). (2.70)

In the previous equation {..}=Tr...5"(0) and

ME) = iLy = (P, - [Ly (X () J(1-0) 271)
xp+iL +iL L, (3 (p) ] (1 - )i, (3 ()] -

Applying the inverse Laplace transform to the reduced density matrix (Eqn

(2.70)) yields the equation of motion of the molecular system

~ S n t "
_dP;;(’) =il ,59(0) - [deli(e po(t-1) | (2.72)
0
where
M) = ZL fdp{M(p)}exp(pt). (2.73)
i

~jootC

In the Markov approximation - when changes in the density matrix of the
system happen in an infinitely short time - the time integral in Eqn (2.72) can
be extended to infinity and the equation of motion can be written as

dﬁc(:;(t) - (_"“_s_/})ﬁ(s)(t) , (2.74)

where
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t
k = lim f duif(z) exp(iL ). (2.75)
0

t—>oo

Equation (2.74) is the master equation for multiphoton processes involving a
multilevel molecular system coupled to a heat bath; it is the starting point for
applying the density matrix formalism to processes involving any number of

photons. The transition operator can be expanded as
M(p) = M) + Vo) + M) = M) - ..., (2.76)
where the superscripts correspond to the number of photons involved in the

process. The transition operators for one-, two- and three-photon processes

are, respectively,

M) =L Gp)L,) , (2.77a)
M9p) = L, GEL,GPL,GPL) (2.77b)
and

9p) = L,GELGELEELEPLEPL) (2.77c)

where the resolvent operator G(p) is

G(p) = [p+il +iL,~(3 (0)) )" (2.78)
For an arbitrary number k=2 of photons, the transition operators are connected

through the following recurrence relationship

M(k)(p) - _[-/sré(k-ﬂ(p)f_;r , (2.79)
where
E“"p) = G(p)M“ () (o). (2:80)

Using these relationships, the matrix element of the k-th order transition
operator between the initial state A and the final state N of the system in the

presence of the radiation field is

~

1 A (k- A (k-
MO man = =3 3 IHaHLC  (0)imeia+ HinHa C (0 apas

WG (2.81)
~HuHaC " (Ohumear * HavH aC" " (O)ppeial »

where A =H., N=nn,, M=mm,, A=aa_and L=/l and the subscript s for the

sr?
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molecular system has been omitted; the matrix element of the Liouville operator

is
" 1. R
(L/sr NNLM = ?[(H/sr NL6NM—(Hlsr)MN§NL] . (2.82)

Taking the trace of the matrix element of the transition operator over the

radiation field variables, Eqn (2.81) can be written as

MO 1 -Ezp (0L (=)) I, —Ezp L (OM (D) s - (2.83)

Any application of the matrix density formalism to the spectroscopy of optical
processes involving an arbitrary number of photons will be a particular case of
the system of equations (2.74, 75, 77a-c). The number of photons involved in
the process to be studied will determine the order of the transition moment
(Eqgn (2.76)) to be employed, while the nature of the states A, N, M and L will
determine the shape of its matrix element. The nature of the molecule-field and
molecule-heat bath interaction will determine the shape of the trace operators
and of the Hamiltonians and hence, through the dephasing rate constants and

the spectral positions, the final form of the transition probability.
One-Photon Processes: Absorption and Emission

Regardless of the nature of the initial and final states (absorption or emission),
the derivation of the formula of the transition probability rate for a one-photon
process starts with its definition, in the Markov approximation [29,30,32]

(s)
W = fim Y p"”(t) -EZ lim fdr{M‘” p2(0) , (2.84)

nnaa aa
t oo n n ! oo

where the trace of the transmon operator (Egn 2.77a) over the field variables

is

={L  G(p)L) .. - (2.85)

nn.aa

(o)

By neglecting in the resolvent operator the effect of the interaction between the

nn.aa

molecule and the radiation field, G(p) can be written as

51



G(p) = G(O)(p) = [p+iLs+iLr+<Z(0) <p)>bJ_1 , (286)
where
(xo (p)>,, = (U (p+iL ~il )LL) - (2.87)

With this approximation for the resolvent operator, the trace of the transition

operator (Egn (2.85)) can be written as
) [/ (o - ©/ (!
{M (p )}nn aa = sr nn:aa E E p O)[L G (p )Lsr]nn,nn,:aa,aa,

(2.88)
= EZp (0>[M “><p>]NNAA :

and its matrix element between the initial state A and the final state N as

Mieas(p) = ——EE[{HNMHLAG‘” (P) + HumH Gt B (2.89)

- {HuH ALG N(P) +HwH G Gh Na(P)By 0]
where the matrix element of the resolvent operator is [29,30,32]

GRA(P) = GRenalP) = (P+i®0,, o0+ T o) (2.90)
and the dephasing rate constant between the a and n molecular states,

calculated in the previous section, is T, = <E‘°’ (0)>na:na.

For a one-photon process A and N are different states, so the matrix element

of the one-photon transition operator is
M) nan = —IHNAIZRe[G“’)( )] (2.91)

Performing the inverse Laplace transform on the previous equation, with Eqn

(2.90) for the matrix element of the resolvent operator, yields
(1) p))nrraa = _Z E p Re |Hnn -aa, lzexp[—T( nn aa'+ iA(")na-+-l_‘na):| * (2'92)

This leads to the following expression for the transition probability rate of a one-

photon process:
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win = E X X 00020 Hul’ Rep 'T(m"""“"m"'ir“‘)dt} (2.93)

or, by using the identity ifdre[’”‘a‘“’” = (a-ib)"', b>0:
0

wo = zzzzps;(mp ()| HalP——_m . (2.94)

(mNA + A(Dna)z + ria

The expression above will be used in the next chapter towards a transform
relation between the one- and the two-photon transition probability rates.
Further assumptions on the actual shape of the interaction Hamiltonian and of
the density matrix of the radiation field will lead to a more detailed formula for
the one-photon transition probability rate, to be derived in the following

paragraphs.

In the dipole approximation for the quantized field description (Eqns (1.24-27)),

the Hamiltonian of the molecule-radiation field interaction is [29,30,32]

=Y @R [2"*’] (4-4) . (2.95)

L3

This leads to the following expression for the trace of the Laplace transform of

the transition operator:

M), a0 = R E E pi: (0)exp[t(i®,, ,, +iAw,,~T,,)]

mohL , (2.96)
aa e-P n nn|(4, +4,)&,P
XEZ < r| i (a/+al )l nr>< 1/Zr'( / + I)el laar>
o (w0,)
where the subscript / is associated with the photon mode and the polarisation

and 4 and 47 are the photon creation and annihilation operators which satisfy
the commutation relation [4,41]=1. Expanding the matrix elements and using
the relations 4{n>=n"?|n-1>, 4%|n>=(n+1)"?|n+1> and <n|n’>=3_, in the

equation above yields
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MOy

nmaa R Z Z Pa (O) exp[ T(Imnn aa,+iAmna+rna)]
m

[al n,a-1 +(al+1)8n ,a,+1]|él.Pna|2
xy ’ ’
i 0)/

(2.97)

and, after performing the summation over the Kronecker tensor elements,

1 _ 2ne} 18/Pyl"

x{a,exp[- I‘C((Dna (n,)] (a,+1)exp[-it(o,,+0)] .

Using the relationship between the fi-th matrix element of the total linear
momentum operator of the electrons P and that of the total dipole moment y,
P,=(imyw,/e,)u,, in Eqn (2.98) gives the final form of the one-photon transition

operator:

{M(”(p)}nn:aa = Rez ”ale pna|2z pa,a,(o eXp[-‘C(lA(O +Fna)] (299)

x{a,exp[ |‘c(co,,a m,)] (a,+1)exp[-it(w,,+®)]} .

The first and second terms represent one-photon absorption and one-photon
emission processes, respectively. By using the first term of the previous
equation for the trace of the transition operator, the formula of the transition
probability rate for one-photon absorption becomes

o r
wi =4 EZZEP” 0)p0)w,, 181,28 —0©"m (2.100)

B2 ((0 _(D/) +I—f1a

- 2
where o,, = ®,,+Aw,, and w,/0, = ®,, have been used.

Considering the statistical nature of the radiation field, the density matrix for the
thermal excitation of photons in a single mode at temperature T is (kg is

Boltzmann’s constant)

p“(0) = [1-exp(-hw/ksT)IY_ exp(-apw /k;T)|a><a, (2.101)
with the diagonal matrix element
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pes(0) = [1-exp(-hw /ksT)]exp(-aha/kyT) - (2.102)

By using the identities

f: ke ® = i -_a_e*’“ = ‘ixi (e™Mk —> i(e‘xq)-‘ -__ ¢~ (2.103)
K K oox 0X"% ox (1-e "2

and the mean photon number a_,=1/[exp(?xoo,/kBT) -1], the transition probability

for one-photon absorption becomes’

4ma n r.
Wi = —ZXp5(0)0,,18, 1, I*— : (2.104)
"hL na (("“)na—_(’)r)2 +r‘ia

The absorption cross-section can be obtained, in units of cm?, by using the
formula for the intensity of light, /=hw,ac/L? in units of erg s' cm? (c is the
velocity of light):

r

() _ 4n () 2. |2 na
Olas Tc%gpaa(o)wnale,una! RSO (2.105)

For randomly oriented systems, the average over all orientations of the dipole

vector has to be carried out, yielding

T
o, = A 3yo0)0,, 0P : (2.106)
3hCn a (0) _mr)z +r‘ia

na

Two-Photon Processes: Secondary Radiation, Raman Scattering and

Fluorescence

As it has been seen already in the case of one-photon processes, the density
matrix formalism yields the transition probability for all processes involving the
same number of photons. In the case of two-photon processes this means that
the distinction between Raman and fluorescence scattering does not exist a
priori and, depending on the experimental circumstances, these two aspects of

secondary radiation may or may not be separated.

The derivation of the two-photon transition probability rate starts with its
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definition

p‘S’(t)
we = lim 33— = 3 im fdr{M”(r ),..p0) (2.107)

t oo n n t e

where the trace of the matnx element of the transition operator (Eqn (2.77b))

over the field variables is

MNP, = - LGP GEL,GOL) pa - (2.108)

nn.aa

By neglecting in the resolvent operator the effect of the interaction between the

molecule and the radiation field, G(p) can be written as

G(p) = G(O)(p) = [p+iLs+iLr+<z(0) (p)>b]_1 ' (2.109)
where
<E(O) (p)>b = <£/sb(p+iLs+i’Lb)_1l:/.sb> . (2.110)

From the recurrence relation between the transition operators corresponding to
consecutive numbers of photons (Eqgn (2.81)) the two-photon operator can be

expressed as a combination of the appropriate one-photon operators:

Mgl)VAA = —ZE NM"{/LAG(O)N(P) (°)(P)M%LA(P)
+ HiH 0. GRAP)GEL (oYM 4. (P) (2.111)

-H NMH ALG(O) (P)G(O) (P)M%\ML(P)
- HinH LG (R)GEA ()M La(P)]

or, by using M{),.. = Mi.4 and GR(p) = Gin(p) [29,30,32],

Mneaa(p) = —ReE Z [HwH LG P) G AP M 4(P)

- HNNHALG(O)N(P) (0)( pM wV:AL(p)] .

(2.112)

With H',y # 0 the two matrix elements of the one-photon transition operator in

the equation above are, respectively

1
Mina(p) = ?E HAHAGWP)8,0 (2.113)
/
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and
M (p) = ~ E [85 HuH UGN (D) + 8, HAHLGR(P)]

- —H waH MG (p)+ G! N(P)

(2.114)

Replacing these two matrix elements in Eqn (2.112) yields the matrix element

of the two-photon operator [27,29-31]

Mian(p) = —h—ReZZ HaHoaHwHiua [GEMPIG(PIGIM) 2115
GIMPIGHL(P) GH(P) ~GR(PN] -

It has been shown [32,35] that, by using the relation

G9.G2GY, = GYGAGY, ~ GYGYUGY, - G%(p) 2.116)
- G(O) GOGY, G(O)NG(O) GO[-1+ “(Typ =T+ AN)G(O) ’

where p has been omltted for simplicity, the transition operator can be

separated into three parts, corresponding to three different processes -

simultaneous, sequential and mixed - according to the timing between their

component one-photon processes. The terms are described, respectively, by:

[IME(P)Inean = %—ReG lZ HnG (P Hal? (2.117)
2 V) /
MEeaP)lwan = ?Rez 3 HaHinH i ua(Tyus =T+ T 2.118)
GinP)GAP)GHL(P)GTAP)
and
[M(le(P)]NNAA = —Rez E HALH LNH NMH MA(FMA AN) (2.119)

GEMP)GinP)Giua(P)G ‘°’(p) :
By inserting Eqn (2.115) into the relation of definition (Egn (2.107)) and

performing the direct and inverse Laplace transforms involved, the two-photon

transition probability rate is given by the formula
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H ALH LNH NMH MA

W = ZReY T3 3 X 0200
a N

e WL Dya* L (2.120)

1 1 ( 1 1
+ + .
(i +Tp)i0gy+Tap) 00y + Ty k i@y, +Tyy 10, +Ty H
The transition probability rates for simultaneous, sequential and mixed two-

photon processes are, respectively,

roae 12
Ws(lzn), - —EZ p(s)(O p E I'na E .HNMHMA , (2.121a)
N @+ Taal M 10ys + Ty
W, = —Rez E p‘S’(O)paﬁ,(O)Z > E HiaH o s
(2.121b)
Dpa— FML+FAL
(10 + T )i, + T ) (i@ + Ty )iy, + 1)
and
W,(nzg( = —Rez E Z P(s) O)P (0) Z z HALH LNH NMH MA
@+ Dan ¥ (2.121¢)

Upa=TnTan
(i0ya + Typa) (i@, + T g ) (i00py + Tppp)

Separating the elastic and inelastic terms in the damping constants (Eqn (2.58))
in the denominators in Egns (2.122) and (2.123) yields

Ppa~ Tt T = rAA+r$L—F(d F(d) (2.122a)
and
Coa~Ton*Tan = Taat T -Tim+T6N (2.122b)

If the initial state of the system is stable (most common case) then I"',,— 0 and

Ty, -Ty +T, — Tom-T T ' (2.123a)
and
T~ Tyt Tay = Do -Tin+Thn . (2.123b)

This result shows the extent to which pure-dephasing, the origin of the elastic

part of the damping constant, controls the intensity of the sequential and mixed
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two-photon processes. It can be seen that the separation of secondary
radiation (all two-photon scattering processes) into pure Raman, pure
stimulated emission and mixed processes cannot be achieved except for the
special case of no pure-dephasing present, when only the value of the pure

Raman scattering term is different from zero.

This is the most important conclusion of this chapter, as the need for separation
between pure Raman scattering and pure stimulated emission intensities has
occurred during some of my early experimental work (Appendix 2). The
interpretation of the results will not be possible on the basis of the transform

theory, used in interpreting the rest of the experimental data (chapter 5).
Pure-dephasing and Secondary Radiation: an experimental view

Examining the three terms (Eqns (2.121a-c)) of the two-photon transition

probability, it can be noticed that W2, leads to a spectrum with resonances at

the ground electronic state vibrational frequencies ®,,, while W2 leads to
resonances at frequencies corresponding to the spacing between vibrational

levels of the excited and ground electronic states ®,,, ®, and ,,; W

shows resonances of both types, hence its "mixed" character. Ws(,"‘,’,’1 (Eqgn
(2.121a)) is very similar to the Kramers-Heisenberg formula and corresponds
to the Raman part of a two-photon process. Ws(ﬁf, and W2 exist only in the

presence of pure-dephasing and it is generally accepted [31,35-37] that the

mixed term can be neglected.

Experimental studies [31] have confirmed this conclusion and identified two
main mechanisms for pure-dephasing: quasi-elastic collisions of the "system"
molecules, undergoing resonance scattering, with the molecules of the "solvent"
(material-induced pure-dephasing) and stochastic fluctuations of the exciting

radiation field interacting with the "system" (radiation-induced pure-dephasing).

59



Quasi-elastic collisions can make a noticeable contribution to the coherence
loss (damping) between two states involved in a transition when the mean
collision time is comparable with the lifetime of the states involved. This
contribution will not be noticeable in low density or low temperature samples,
when the mean collision time is relatively long. Experiments presented in Part
| of [31] show that material-induced pure-dephasing is negligible in the absence
of collisions - the mean time between collisions is much longer than the lifetime
of the excited state decay. For solid state samples, this means that this pure-
dephasing mechanism can be neglected, which is particularly relevant for the

experimental cases studied in chapter 5.

Random fluctuations in the exciting radiation field can contribute to the line
broadening when the linewidth of the exciting radiation is comparable with the
reciprocal of the lifetime of the states involved in the transition. Experiments
presented in Part Il of [31] show that pure-dephasing of transitions with
corresponding bandwidths of 1 cm™ is negligible for excitation with lines
narrower than 1 cm™ - both single-mode dye lasers and noble gas ion lasers
(Ar*, Kr*) fall into this category. This is particularly relevant to the experimental
cases studied in chapter 5, as the Raman linewidths observed there are much
greater than the linewidths of the laser light producing the excitation and so the

radiation-induced pure-dephasing can be neglected.

The work will proceed towards a transform relation by assuming that both main
mechanisms of pure-dephasing produce negligible contributions to damping.
Hence, the resonance secondary radiation observed experimentally is assumed

to contain only resonance Raman radiation, with a transition probability being
given by st,f,’, Experimental cases which do not fit this assumption can be

studied as in [36] by employing a multimode, "total simulation" approach, based
on the equations derived in [37]; this approach requires ample computing

resources and it will not be pursued here.
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lil. Transform Relation between Resonance Raman and
Absorption Spectra

Introduction

H. A. Kramers and R. de L. Kronig [38,39] have shown that the real and
imaginary parts of the complex electric susceptibility are related through a pair
of simple mathematical relations, called dispersion relations, analogous to the
transform relation between a Hilbert pair. As a consequence, the complex
polarizability is fully determined when the absorption coefficient is known at all
frequencies and it has been shown [40-52] that, under certain assumptions, the
absorption and resonance Raman scattering cross-sections can be related

through a Kramers-Kronig dispersion (or transform) relation.

Resonance Raman scattering intensity and cross-section are usually calculated
under certain "standard assumptions": resonance Raman scattering involves
only one excited electronic state and one vibrational mode; the vibrational
Hamiltonian is quadratic in the normal coordinate of the mode in resonance (the
mode is not coupled with any others and its vibrational frequency is the same
in the ground and excited electronic states); the electronic transition moment
does not depend on the normal coordinate of the mode undergoing resonance
(the Condon approximation); the electronic and vibronic (nuclear) variables are

independent of each other (the Bom-Oppenheimer approximation).

The aim of this chapter is to establish a transform relation between resonance
Raman scattering and optical absorption cross-sections, in the least restrictive
model possible. The assumptions of a single electronic state (Albrecht’s A-term
[53] scattering only) and a single, uncoupled mode involved in resonance
Raman scattering will be preserved. Beyond that, the Born-Oppenheimer
approximation will be relaxed to a very large extent, the electronic transition
moment will be allowed to depend in the first order on the normal coordinate

of the mode undergoing resonance (/inear non-Condon contributions) and the
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vibrational force constant will be allowed to depend /inearly on the same normal
coordinate (the vibrational frequency will be allowed to change by up to 20%

between the ground and excited electronic states).

The transform relation will be established here for an arbitrary order of
scattering, employing the time-correlator formalism developed by Hizhnyakov
and Tehver [41] according to the assumptions listed in the previous paragraph.
The result will be a multivariable, non-linear, non-analytic equation which will
be solved numerically, using the method to be developed in Chapter 4, and the

results will be given in Chapter 5 for a number of experimental cases.

The Kramers-Kronig Dispersion Relations

In the linear approximation of the electromagnetic theory, the polarisation P(f)

of a physical system is related linearly to an applied electric field E(f) through

P()=(2m) " [x(t-t')E(t')dt. (3.1)
By using the convolution theorem [20] between Fourier transforms, Eqgn (3.1)
becomes

P(w) =x(w) * E(0) , (3.2)

where x() is the complex linear polarizability. H. D. Kramers and R. L. Kronig

have shown [38,39] that the real and imaginary parts of x(w) form a Hilbert pair

Re [x(m)]=%Pmllx[_X§DL)]dx (3.3a)
lm[x(m)]=-%P”Rf([+g‘)]dx , (3.3b)

where P represents the principal value of the integral; for experimentally viable

frequencies (real and positive), Eqns (3.3a) and (3.3b) become

Re[x()]= f X 'm[X X)]d (3.4)

0
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Im[x(w)]=- 20 PfRe [X(X)] dx . (3.4b)
Equations (3.4a) and (3. 4b) represent the Kramers-Kronig dispersion relations;
in conjunction with the relationship between the absorption coefficientp(w)
(from the Beer-Lambert law, Eqn (1.27)) and the complex linear polarizability,
w(w) =(w/c)Im[1+4ny(w)]"?, they yield the following relationship between the
complex polarizability x(w) and the absorption cross-section ABS(w) [40-42,55]:

(@) = B(w) = _P f ABS(X) dx + ABE(“’) . (3.5)

Obtaining the detalled relatlonship between the resonance Raman scattering

cross-section and the absorption cross-section will be the scope of the time

correlator formalism described in the following sections.
The Resonance Raman and Absorption Time-Correlators

The calculation of the time correlators starts by considering the Raman
scattering from a sample of randomly oriented molecules, between an initial
molecular eigenstate /, and a final molecular eigenstate f, the incident laser
frequency is o, and all the light scattered in all polarizations over 4r steradians
at o _-o, (integrated over the linewidth) is measured. The scattering cross-

section per molecule is given as [53]

i 8n(w, ~0,)*
on@) = — = E l[oto(@)T4l? (3:6)
in which [ocp(,(wl_)],, is just the f,i-th matrix element of the molecule-based po-th
Cartesian tensor element of the complex molecular electrical susceptibility (the
"molecular polarizability") and the circular Bohr frequency corresponding to the

f,ith energy gap is w; = AE4/h. The frequency domain expression for [or,(e )],
is the anisotropic version of the transition probability rate w2 (Egn (2.121a))

expressed as cross-section, in which the incident field has been assumed to be

monochromatic and the thermal population of all other molecular levels apart

from a=i, is taken to be negligible at equilibrium:
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o (@), = 3 <f|p|e><e|cs|i>+<f|c|e><e_|pli> ; (3.7)
P ' B ;= ~ 1Y, Wr+ W 1Y

the sum is over all molecular eigenstates e, v, represents the dephasing rate
constant for an e,/ coherence, and p and ¢ are molecule-based Cartesian

components of the macroscopic electric dipole operator.

When near- or in-resonance with an electronic transition, the principal
contribution to [or ()] will be from the resonance that arises in the first term
of Eqn (3.7). To arrive at general transform expressions for the resonant
scattering of fundamentals and overtones, including non-Condon effects, by
employing the recursion relations developed by Hizhnyakov and Tehver [52],
the terms of Eqn (3.7) that are near resonant are placed in the time-domain by

writing the complex denominator through its half-Fourier transform:

[ ()], = ifdte "N < flp|e><e|o|i>expl-it(o,-iy,)] - (3.8)
0 e

The sum on e in Egn (3.8) can be closed provided that the dephasing rate
constant, v, is algebraically separable (y,;= v, +v), as already is the frequency
difference (o, = o, — ). In the most general case, when the pure-dephasing

constant ¥ depends on both indices e and i, the separation is made

impossible by the very notion of pure-dephasing (Eqns (2.58), (2.61)). The
separation is achieved only in the assumption of negligible pure-dephasing, as

discussed at the end of Chapter 2.
A non-Hermitian Hamiltonian is introduced, H, which consists of the full

(Hermitian) molecular Hamiltonian, H, and an anti-Hermitian damping operator,

D, such that (in circular frequency):
Hle> = o,e>, Dle> = iyle>; or Hles = (o,+iy)|e> . (3.9)

Introducing H defined in this way into Eqn (3.8) and closing on the complete
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molecular eigenstate basis set {|e>}, yields

[%o(mn.)],,. = ifdte"‘%f|pe"‘”’oe"’"|i> . (3.10)
0

By defining the time correlator [Apc,]fi as [40-42,55,56] (see also [52] for

conjugate form)

(A io(t)<flpe ™'ce™|i> , (3.11)

podfi =
where 0(t) is the Heaviside step function, the matrix element of the molecular

susceptibility (Egn (3.6)) for the two photon f « j transition can be written as

[o‘po(mL)]ﬁ = ].dteitmL[Apo]ﬁ . (3.12)

Within the same assumptions as for resonance Raman scattering, and using
Eqgn (2.94), the matrix element of the molecular susceptibility for a one-photon
transition from the i-th molecular level into all reasonably excited states in an

isotropic medium can be written as

[ p(@)]; = f dre"[A,); , (3.13)
with the absorption correlator being given by
[A,l; = i6(t)<ilpe™pe"H|i> . (3.14)

With the relations above, the task of connecting the resonance Raman and
absorption scattering cross-sections has been reduced to expressing the
resonance Raman correlator as a function of the absorption correlator. This will
be achieved by letting the exponential operators in the correlators to operate
on the i and f eigenstates, which will require the consideration of two issues:
the nature of the molecular states i and f- and hence the need for some form
of Born-Oppenheimer approximation - and the particular shape of the
Hamiltonians, i.e. the nature of the vibronic coupling. Before proceeding with
these two issues, a brief look at the temperature and ensemble effects is
needed, for it may affect the relationship between the absorption and resonance

Raman scattering cross-sections.
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The Limited Born-Openheimer Approximation

Considering the 3N-6 nuclear coordinates of a polyatomic molecule, electronic
absorption and Raman scattering are multimode in essence, often involving a
significant part of this 3N-6 dimensional space. On the other hand, Raman
scattering can focus on the scattering of a single mode at a time, the remaining
3N-7 space participating in the REP much as it does in ABS. This can be
formalised [55] in a most general form by requiring that the molecular
Hamiltonian be parameterized only in the normal coordinate of the scattered
vibration, the remaining 3N-7 nuclear coordinates and all electronic coordinates

serving as true variables.

This limited Born-Oppenheimer approximation rests upon the assumption that
mode-mixing (Duschinsky rotation) between the mode of interest and the 3N-7
space is negligible; when this not the case, the Born-Oppenheimer
approximation limited to one coordinate must be relieved and extended to
include the full sub-space of the mixing modes. In fact the present one-
dimensional adiabatic approximation might be thought of as the usual complete
(BN-6 space) parameterization of the electronic Hamiltonian, followed by
perturbative corrections of the eigenstates and eigenvalues to all orders in the
3N-7 displacement coordinates. The molecular eigenstates can be separated

now between the mode of interest and the 3N-7 space:

li> - |g’)}i>, (3.15a)
> = |g')|f> (3.15b)
and

le> — |e')|e> . (3.15¢c)

This limited adiabatic approach [55,59] allows considerable generality in the
(BN-7) non-Raman space, including variable damping parameters as well as
non-adiabatic effects to all orders. The usual potential energy hypersurfaces

are formally absent, leaving only one-dimensional potential energy curves in the
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scattered coordinate. The molecular eigenenergies are parametric only in Q,
(the normal coordinate of the scattered mode) and are expanded in Q, around
equilibrium positions. The molecular eigenstates will cluster in groups {€}, {g'}
to produce (normally) nearly harmonic potential curves V_(Q,) and Vg,(Qa) with
well-defined equilibrium positions and second derivatives (force constants).
This grouping corresponds to the conventional concept of a resonant and a

ground electronic state each with well defined vibrational levels.
The Effect of Temperature and Ensemble Averaging

In the laboratory, an observed linear absorption cross-section, ABS(w),
represents an ensemble-averaged cross-section over all initial states
recognizing both the thermal distribution of molecules over initial states as well
as a possible site distribution, or inhomogeneity of vibronic frequencies. Thus
for Qg representing the weighting of thermal and other broadening effects of

the initial state {|g’) |/>}, the observable absorption cross-section is [55]
ABS(w) = _2 Q. o,(w) (8.15d)

and similarly for the observed resonance Raman spectrum or Raman excitation
profile (REP(w)):

REP(w) = EQ @) . (3.15¢)

In both cases the g label on the cross-sections is suppressed for convenience.

As the absorption cross-section (Eqn (3.13)) is linear in the correlator while the
resonance Raman scattering cross-section is quadratic in the correlator (Eqns
(3.6) and (3.14)), Eqns (3.15) and (3.16) represent ensemble averaging of the
correlator on the linear and quaderatic level, respectively. The link between ABS
and REP is formally ensemble and temperature dependent; this problem has
been addressed by the early studies of the transform relation [41,55], where
sample cases have been explored. Further work by Chan and Page [57,58]

has found that the temperature averaging implied in ABS represents a good
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approximation for the REP, for systems with many thermally-populated low-
frequency modes which lead to absorption spectra with overlapping vibronic
structures . This conclusion has been accepted here, and the systems studied

in Chapter 5 are deemed suitable from this point of view.

It has to be pointed out that temperature averaging is implicitly present at
amplitude level in the 3N-7 space, in the limited adiabatic treatment used here.
It is expected that for the systems treated here — scattering from modes whose
frequencies are considerably larger than kT (see Chapter 5) — this approach

to temperature and ensemble averaging is satisfactory.
The Correlators in the Limited Born-Oppenheimer Approximation
For resonance Raman scattering, two potential energy curves are involved

[62,60], V,(Q,) (upper) and V,(Q,) (lower), with the Hermitian nuclear

Hamiltonians H, and H,. For harmonic potentials these operators are

H, = T,=V, = mz(éga‘f%J (3.16a)
H1 = T1 +V1 = (01(‘1Té1+%); (316b)

having eigenkets {lj,>} and {lj,>}, respectively.

Furthermore, for the n-th overtone transition of a given mode in the ground

electronic state the molecular states can be written as (Egn (3.15a,b)):
li> = 1g")j> = 19")j> (3.17a)
[f> = g = n>=1g")lj = n>, (3.17b)

in which the subscripts 1 for the ground state are henceforth removed for
simplicity. For the molecular eigenstate associated with resonances, Eqn

(3.15¢c) becomes:
le> — |e’)]j> . (8.17¢)

Equations (3.17a,b) recognize the partitioning of the molecular Hamiltonian, H:
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H— H, +H , withH,|g') =w,lg"), (3.18a)
and Eqn (3.17c) the partitioning of H:

H-H, +H,, withH,le)=a,le), (3.18b)
in which H, and H,, are not just the electronic Hamiltonians evaluated at

ground and excited state equilibrium positions of the Raman-active normal
coordinate, but also include the full 3N-7 nuclear coordinates of the non-Raman
space without further approximation. The sum over molecular eigenstates also

recognizes this factoring of state space with:

Y- X, (3.19a)

e

in which the states {€’} are those that carry transition dipole strength between
the ground state and the resonant electronic band. Furthermore, whenever the
damping parameter appears, it, too, is partitioned into the two spaces (in the
limit of negligible pure-dephasing):

Yoi = Yerr * Vi, = Yerr * 7 (3.19b)
in which vy,y;, represents the damping contribution from the Raman sub-space

only and it is conventionally taken to be a constant, v, for all relevant {j,/,}. For
many applications at ordinary temperature j, is often a Raman mode with
negligible thermal excitation, whose Y, = 0. In that case Y, =Y and the decay
parameter of the Raman mode in the excited ‘electronic’ state does not change
with its degree of excitation; however, the v, contribution to the damping can
vary with the energy of excitation in an unconstrained manner. Li and
Champion have explored a model that relieves the constant y assumption as

applied to transform theory [61].

The limited Born-Oppenheimer approximation leads now to the relabelling of the

scattering cross-section:

on — od'" . (3.19¢)

With this limited adiabatic point of view (Eqgns (3.15, 3.17-3.19)) and the

harmonic oscillator Hamiltonians (Eqns (3.16, 3.18)), closing the sum on j,, but
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not on €' in Eqn (3.8) gives

(046 (@] 2y, = ifd'ce e
0

xY <j+nl(g’'ple’)e (e’ |o]g’ )e

(3.20)

| > exp[-it(®y g ~ Wy g)] -

Writing the Cartesian components of the electric transition moment in the non-
Raman space as (M,),...=(g’|ple’), (M,),,=(e’|c|g’), the Raman correlator
(Egn (3.11)) becomes:

e'g’

(A0, = 18(0)e T @ M <jen|(M) e M), e™ > (321)
el
and the matrix element of the molecular polarisability (Egn (3.6)) becomes now

[oto(@)]in,; = ]d’c e A (Dun, - (3.22)

Equation (3.21) is close to the expression given by [52] except for the use of
the limited Born-Oppenheimer approximation and a more conventional
expression for the Raman polarizability (Eqn (3.7)). Throughout this work the
development is consistently the (negative) conjugate of that presented in [52];
wherever the phase of the representation of correlators and polarisabilities is
¢ in [52], here it is m — ¢. This remark will allow the use of the recursion
relations developed in [52], although formally their starting equation is the

complex conjugate form of the more conventional form employed in Eqn (3.7).

At the same time the absorption correlator (Eqn (3.14)) becomes

AR, = 1B T e " (M) e M), e f> (3.23)
and the corresponding matrix element (Eqn (3.13)) can be written as

[0, ()], = f dre™A_ (1], - (3.24)
This is just the diagonal matrix element of the pp-th Cartesian tensor
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component of the vibronic absorption correlator. The crucial point of the
derivation of a transform relation is to link the pp-th Cartesian tensor component
of the diagonal [(j,j)] vibronic absorption correlator (Eqn (3.23)) to the off-
diagonal version [(j+n,j)] (Eqn (3.21)). In the present case, the next step will be
to establish a relationship between the resonance Raman and absorption
correlators in the non-Condon approximation (Eqn (3.23), (3.21)) and the
correlators written in the Condon approximation, for which recurrence relations
exist in all orders [52]. Recognizing that the ladder operators of two different
harmonic oscillators are linearly related, Hizhnyakov and Tehver have

presented a particularly succinct algebra for accomplishing this task [52].
The Relationship between Non-Condon and Condon Correlators

The n-th order Raman correlator (Eqn (3.21)) will be examined while
considering only the resonance with a uniquely polarized transition (p = ¢) and
a linear dependence of the molecular transition moment (M,),, on the

coordinate of the Raman- active vibration - a linear non-Condon coupling. Thus

(M)go = (M)S[1+m(4,+4))] , (3.25)
in which m is the dimensionless vibronically induced transition moment in units
of the allowed transition moment and &, and a“;‘ are the raising and lowering
(ket side) operators in the space of the ground state oscillator. The parameter
m is a dimensionless average parameter representing the linear non-Condon
coupling of the transition moment to the Raman-active mode (whose ground
state harmonic potential is characterized by the raising and lowering operators
é,* and 4&,). This non-Condon coupling parameter, m, can be read also as the
fractional change of the transition moment caused by one rms displacement

(0)

along the Raman mode coordinate in the ground state [55]. (M) continues

to contain implicitly all of the nuclear coordinates of the (3N-7) non-Raman
space including their unconstrained ‘Condon’ and ‘non-Condon’ role [55,62].
It is only the Raman active coordinate that has been treated explicitly at the

linear non-Condon level.
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In considering a specific molecule-based Cartesian transition moment (p), the
possibility of a rotating moment with (€', g') has been excluded; also, to
maintain the separability of the Raman space from the non-Raman space the
dimensionless non-Condon coupling constant, m, has to be assumed
independent of the 3N-7 variables (€, g'), being therefore an "average" non-
Condon coupling parameter in (e’, g’). These constraints, however, are

standard in the usual full Born-Oppenheimer approach to the problem.

The derivation will proceed with the introduction of a simplified notation:

a

=[1+m(4,+4))], B=e™, C=e™. (3.26)
The matrix element in the correlator (Eqn (3.21)) can be written now as

(3.27)

<j=n|(M,) e ™ (M,) 0™ |j> =
and then the n-th order resonance Raman correlator (Eqn (3.21)) becomes

ANC() = i6(t)e -vfze‘*“‘*W‘”-'ﬂl(Mp)g‘;’e,|2<j+n MBMC|j> (3.28)
el

=~ AN(1) for the single polarisation considered in the present

jjn

where [A (1),

linear non-Condon approximation.

Given that <n| =<0|(4,)"(n!) ", the powers of the ladder operators are written

for convenience as (é1)"EA,,(1); by taking j = 0 to dominate the correlator for

the j part of the thermal average in Egs. (3.15), (3.16) (hw,>>kzT) the

resonance Raman correlator in the present model becomes
A() ~ i0()(nl) e TY 6 s | (MO, <0 ]A (VIBRCI0>  (3.29)

and the absorption correlator (n = 0)

A() = i0()e Y e s | (M)O) <0 MBRIC| 0> . (3.30)

The approximate thermal averaging achieved at the correlator level [52,63],
remains in effect here as well, as far as the 3N-7 non-Raman space (the

averaging over g') is concerned; it is only the Raman space (the j space) that
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has been truncated to the unexcited level.

The derivation will proceed now by first transforming M into a function only of &,
and &/, the raising and lowering operators for the harmonic potential of the

excited electronic state. The second M in the non-Condon matrix element is
passed through B by using a commutation relation, the result is reconverted

to a function of 4, and 4!, then together with the remaining M the net

operation is performed on the left upon A (1).

The general linear relationship between the two sets of raising and lowering
operators of two harmonic potential energy curves 1 and 2 is [52,60]

al = p+ qal + ra, (3.31a)
and its complex conjugate

4 =p+q4 + réa; (3.31b)
where {p, g, 1} are dimensionless constants fixed by the Manneback equations
(Appendix 3); p relates to the displacement for the two potential energy curves,

g and r to the changes in their characteristic frequencies. Combining Egns
(3.31a,b) in Egn (3.25) yields

M=1-2MP . M (a1.4). (3.32)
q+r  q-r

Using the completeness relation Y |n><n|=1 and the effect of operators on

molecular eigenstates it follows that
de ™ =Y 4|n,><n,|e™ = ¥ n%e"*|n,-1><n,|
"z
=e ™Y e ™n2n,-15<n,| = e " 4" |n,><n,| (3.33)

n, n

=e ~|tmzev|tHZan2 ,

which can be used to prove the identity
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<i|BA (1)C|i>=e ™ <i|BEA (1)|i>=<i|CA(1)B|i>=e"™<i|AT(1)CB|i> (3-34)

and consequently

BN - 3[1 - Zij - (ale e+ 40™)8 (3.35)
q+

Reverting now to the 4, and 4! operators by using Egns (3.31a,b) yields

BN - [1 - 2mp+me-w+efwz)]e

q+r q+r (3.36)
+m{__q_e—i1m2+_r_ei‘rmz)a~1'fé+m[_r_e»i1m2+_q_eira)2)an1é .
q+r q+r q+r q+r

With Eqn (3.36) for BM, <0|A_(1)MBMC|0> is constructed as

<0|An(1)MBMCIO> = [1 + Z_p':(eim’z + e’i’“ﬂz - 2):] <0|An(1)BClO>

+m(1 +ieime+_fe-fwz] <0lA_(nBClo>  (3.37)
q+r q+r

mn(‘] +_q_e_it°’2+__r__ei1m’J <O|An_1(1)BC|O>
q-r q-r

in which all terms of order n? have been neglected .

Setting n = 0 in Egn (3.37) leads to the non-Condon expression for the

absorption (with <0|A ,(1)BC|0> = 0):

<O|MBMC|0> = |1+ P (gt g 170 _ 2)]<0|A0(1)BC|0>

o (3.38)
+ml 1+ q ei’:m2+ r e-i1m2J<0|A1(1)BCIO> .
qr  ger

Using the definition of the correlator (Eqn (3.210) in Eqn (3.37) leads to the
relation expressing the n-th order non-Condon correlator in terms of the n-th

order Condon correlator for which recurrence relations exist [52]:
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AY(1) = [1 + P (e”“’f+e““’2—2)}‘\5(1)

q+r
+m(n+1)"2 1+ 9 g, I gimen S (3.39)
q+r  qr
~mn"1+_9 g os T gl |aC (1) |
q-r q-r

Equation (3.39) coincides, for n = 1, with that obtained by Hizhnyakov and
Tehver for A]°(t), the first-order Raman correlator with non-Condon effects

[52]; however, they have not obtained the general expression, for an arbitrary
order, presented here and in [60]. Setting n = 0 in Egn (3.40) gives the non-

Condon absorption correlator

AONC(T) ___[1 . mpr(ei-rm,_‘_e-irmz_z)ileC(T)

+

(3.40)

+m(1 9 ei“"?+_r_e”“’2)A1c(fc) .
q+r q-+r

From Appendix 3 the parameters {p, g, i} in Egns (3.31) - (3.40) are given by
\1/2 Y] Y] YRR,
nc ~1/2 Vo +V, V-V,
= _A = 1/2\’ ’ = — r= —m—m—, (341)
P [m) WVe o 9% S 2,7
in which A is the displacement of the equilibrium position of the excited-state

one-dimensional potential energy curve, R, , with respect to that of the ground
state curve, A,, along the Raman mode coordinate (A=R, -R, ), p is the

reduced mass of the Raman oscillator, and v, and v, are the wavenumbers of

the Raman mode in the excited and ground states respectively, in cm™.

Equations (3.39) and (3.40) establish the desired relationship between non-
Condon and Condon correlators for n-th order RRS, preparing the ground for
the introduction of the recursion relations among the Condon Raman correlators
developed in [52] and finally to link the non-Condon Raman correlators at any
order to the non-Condon absorption correlator. Using the result in conjunction
with Eqns (3.20) - (3.23) will then yield the transform relation between the
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respective cross-sections, which constitute the goal of this chapter.
The Transform Relation

Hizhnyakov and Tehver have given recursion formulae for the Condon

correlators derived from the (a,), polarizability component. As mentioned

earlier in this chapter, a more conventional choice of phase, the (o), matrix

element, is used here instead. Hence it is the complex conjugates of the HT

correlators which are required; thus for n even (n = 2k):

Croy _ 112 - g>g e c 3.42a)
A = (R AT (3.42a

and for nodd (n =2k + 1)

k
c = [(2k+1)IT2 geghe ) . 3.42b)
Azen(®) = 1KY, oz (

Because the present treatment is consistently conjugate to that of [52], the
parameters in Egns (3.42a,b) must be the conjugates of those found in [52]:

— e —i‘m)z_1 -2i1(1)2_1

£ =t ~  and ¢ =82 " | (3.43a)
1 -86 -itw, 1 —829 -2i1w,
with
t=P and 5=1. (3.43b)
q q

The parameters {p, g, 1} are given in Eqns (3.41). The other two parameters,g

and § in Eqgns (3.43a,b), become:

- 2. \1/2 v v
3 =?P’ = _(BT;CJ (W¥,)"PA—2_ = -2.43557x10°3(uv,)"2A Y2 (3.44a)

Vi+V, Vy+V,
with [n]=1amu, [V]=1cm™, [A]=1pm, and

=2V (3.44b)

=L =_2_
q V,+V,

The expression of the non-Condon absorption correlator (Eqn (3.23)) can be
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greatly simplified. For n=1 (k= 0) Eqn (3.42b) becomes:
A(r) = EAG(T) - (3.45a)

Rearranging the terms in Eqn (3.40) and using the approximations

?<<1, d<<1 =(d% ¥ »0), md<<1, m?<<1, (3.45b)

the non-Condon absorption correlator in terms of the Condon one (Egn 3.40)

becomes

A = (1 +2mE)As() (3.45¢)
or, to order mg,

AS(t) = (1 - 2mE)AN(r). (3.45d)

For a wide range of real cases (Chapter 5), where the approximations

formulated in Eqn (3.45b) are valid, the parameters & and { can be written as:

£ ~ Ele ™-1)(1+8e ™) (3.46a)
and
¢ = 8(e®-1). (3.46b)

Thus, Egn (3.39) becomes for n = n, (even):

z 12 12
e +1
AR =3 {’; ¢ WO |\ qyieg, . n;’ZC}
s=0

(2s+1) 2s
(3.47a)
s-17 2
x (1-2me)((n,- 1)z A()
Do _sh 27 “es-1)
2
and for n = n, (odd):
n,-1
=z 1/2 . 12
ASC(T)=E n_o__C + [(no 1)”0] (no+1)1/20, + n;/ZC_
’ so [2s+1 (25+2)(25+1)
L (3.47b)

ézscT -

x(1-2mg)[(n,-1)1]" Ac(1)

n,-1

n,-1 -
° -s]! 277 " (29)!

where the coefficients C, C, and C. are given by:
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+

C = gl}l + mE (e irmz_'_eitmz_z)} ’ (348a)
1+9

0 5o T (3.48b)
C =¢&2 1+ e + ,
=& m{ 15 1-0 J
and
e §e (3.48c)
cC =m1+2__- .
: m[ 155 145 ]

Replacing the coefficients C, C, and C. (Egns (3.48a-c)) in the non-Condon
correlators (Eqns (3.47a,b)), expanding all terms, cancelling the small terms by

using the approximations formulated in Egn (3.45b) and introducing the

notations B =e ™, k,=n/2, k, = (n,-1)/2, X, = 2mé(k,-s)/(2s+1) and

x, = mg(k,-s)/(s+1), Eqns (3.47a,b) become, respectively, for n = n, (even):

o

A":'.C(x) = (ne!)wzg Ayc(T)z' §25—1Ck,-s §
7 (k912 "2s)

(3.49a)
[(6+xe) p*-{1-5-2s —xe}ﬁ +[2sf'- -1 -Xe}(xe) B‘}
3 g
and for n = n, (odd):
- ks sy ko~s
ANS(T) = (n))2EACC(D)Y 5 % X
=0 (k,-s)12%°(2s+1)! (3.49b)

[(SJ’XO)BZ{1 -8+(2s+1 )%n- —xo}? +[(23+1 )%7. -1 —xomE]‘ xﬁﬂ} _

Using Eqns (3.46a,b) for £ and (, expanding &%, and (" (k = k,, k) and
approximating (1+8B)Y as 1+j3f3, yields the final form of the relationship

between the resonance Raman and absorption correlators, respectively, for n

=n, (even):

78



o Ezsﬁk"s(ke+s-1 ) ks (-1 )r ks 1

AL @) = ()Y > D

=0 2k*(29)! w0 H(k,+s-1-! 5 ul(k,-s-u)!

X{(285+Xe)Bn'_t_u” +[1 "23(8"%—) _Xe]Bn.ftfu (3.503)
+2sM_4 )BT X BT A (T)
and for n = n, (odd):
Kk, g2sekosep L k,ts k,-s
A = (yey, 2 O WSl g 5y
’ w0 25%(2s+1)l im0 f(krs-!u ul(k,-s-u)!
(3.50b)

x{[(2s+1)8+xJB™ "+ [1 —(23+1)(5_%7') -x ™"

+[(23+1)L2__1 _Xo]Bna—!fu—1 +XOBno't~u-2}AglC(T) )

This is the desired link between the n-th order Raman correlator and the
absorption correlator at the non-Condon level (in its linear approximation). The
transform relation for n-th Raman excitation profiles, developed by using the
Fourier transform (Eqgn (3.12)) of the non-Condon n-th order Raman correlator
(Eqgn (8.39)), produces the n-th order non-Condon polarizability (pp-th tensor

element) (with ®_ = )
(w) = f dreA (1) . (3.51)

The frequency displacement operator fi=e " appears in A\°(t) as various

powers through Eqns (3.50a,b) and it simply shifts the frequency of the Fourier
kernel (Eqn (3.51)); thus [60]

fdte”“’ﬁs... = fdw”‘“”smz) (3.52)
and the Fourier transform of the Raman correlator (Eqn (3.51)) in the presence

of a term containing #° (Eqns (3.50a,b)) will produce a Raman polarizability

-whose frequency argument has been down-shifted by sw, from the incident
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laser frequency, ®. The Fourier transform of Eqns (3.50a,b) yields for n = n,:

e (R R S

) D

RS2 o H(krs-1-014% ul(k,-s-U)!

(@) = (n,) "22

X {(258 +X,)®[w-(n,-t-u+1)w,] (3.53a)
+[1-2s(8 —Lnli) =X P[0 -(n,~t-U)w,]
+(2smlE -1 -x )Plo-(n,~-t-u-1)w,]
+x,®lo-(n,-t-u-2)n,)}
and for n = n,;

k. g2stick-s ks k-s

NC = 1/2 ~ g 80 (ko+S)! - (—1)t C 1

o, (@) = (n,) SX; 225 ) ﬂ(ko+s_t)!§ ul (k-s-u)!

X {[(23+118 + X JP[w-(n,-t-u+1)w,] (3.53b)

+[1-(2s+1)(8 —r_n/&) - X JP[w-(n,-t-u)w,]

+[(2s+1)m/E -1 -x JP[w-(n,-t-u-1)w,]
+x,@lw-(n,-t-u-2)w,]} .

Finally, the n-th order Raman excitation profile, REP (w), as the measured

value of the scattering cross-section relative to frequency, is obtained by using
Eqgns (3.53a,b) in Eqn (3.6):

REP (0) = const|op (w)]2. (3.54)

The proportionality constant depends on many different factors involved in the
detection process used and is difficult to calculate in practice. Also, although
it is assumed to be a constant, frequency-dependent effects like the self-
absorption of the scattered resonance Raman radiation in the sample or the
spectral response of the detection system can invalidate this assumption.
Carefully designed and executed experiments, including various corrections
(Chapter 1, Appendix 1), alleviate this problem to the extent that the
proportionality constant in Eqn (3.54) is indeed a constant in most cases; also,
it is an essential requirement only for absolute REP measurements and it will

be shown in Chapter 4 how this can be circumvented at no loss of generality.
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The polarizability function in Eqgns (3.53a,b), ®(w), is available from the
experimental absorption spectrum (Egn (3.5)); it can be seen from Eqns
(3.53a,b) that the n-th order complex polarizability, and hence the resonance
Raman scattering cross-section in the n-th order, depends on four different zero
order quantities, each of them to be calculated at a different frequency. This
imposes certain requirements on the absorption data employed in the
calculation of the n-th order resonance Raman scattering cross-sections and

of the excited state parameters, as it will be seen in chapters 4 and 5.

It can be seen also from Egns (3.53a,b) that the leading term is the one
corresponding to s=0, with no frequency shift; this observation shows that the
result obtained here is consistent with previously published work [40-52,55],
where the change of the vibrational frequency between the ground and the
excited electronic state has been neglected. A comparison between the
magnitude of the variously shifted polarisabilities would show however (Chapter
5), that the other terms cannot always be neglected; the reason is the
frequency shift, which leads to the calculation of the polarizability in points of
higher or lower intensity on the absorption curve. Especially for spectra
exhibiting overlapping vibronic structure, this effect can be significant and has
a bearing on the extent and the resolution of the absorption spectra to be

collected and used in the calculations.

81



IV. Numerical Implementation of the Transform Method

The mathematical problem as a system of equations in several variables

Practical applications of the transform method in resonance Raman
spectroscopy are based around Eqns (3.53a,b) and (3.54); they establish the
relationship between the measured value of the scattering cross-section of a
resonance Raman transition as a function of molecular parameters and the
value of the absorption coefficient measured across the visible spectrum. The
instrumental parameters involved in this relationship are contained in the

constant appearing in Eqn (3.54) and will be taken into account here.

The interpretation of resonance Raman spectra in terms of the molecular
geometry and force constants in the excited electronic state involves the values
of three parameters, controlling the intensity distribution between different

harmonics of the spectrum and the overall intensity of the resonance Raman

scattering: the bond length change A between the ground and the excited
electronic states, the force constant as reflected in the vibrational wavenumberv,

in the excited electronic state and the non-Condon factor m. Thus, treating
these three parameters and the instrumental constant as unknowns of a system
of simultaneous equations, a minimum of four equations is required in order to
have a fully, albeit minimally, determined solution. The four equations
represent four different instances of Eqn (3.54), corresponding to four different
values of the measured scattering cross-section; they can be obtained by using

two different approaches, depending on the experimental situation.
In the first approach the resonance Raman spectrum exhibits at least four

harmonics, measurable with a sufficient degree of accuracy, and Eqn (3.54) can

be written in turn for each harmonic of order one to four:
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const |} “(w,, ¥, A, m)2 = REP(0_-0) (4.12)
const | (o, ¥, A, m)2 = REP(0_-20,) (4.1b)
const |0l %(w,, 9, A,m) = REP(w,-30,) (4.1c)
const |o°(w,, 9,,A,m)| = REP(w -40)) , (4.1d)

where o, is the circular frequency of the exciting radiation, REP(o, -jo,) is the

Raman excitation profile and @, is the circular Raman frequency corresponding

to the vibrational energy gap in the ground state. The instrumental constant
(which must be independent of the scattering order) can be eliminated by
dividing Eqns (4.1b,c,d) by Egn (4.1a); the system (4.1a-d) can be written as:

2
05 (0, ¥, A, m)| _ REP(o -20,) (4.2a)
(XTC((DL, i”’ev A, m) : REP((DL ) mg)
NC, . = 2
oy (0, V,A,m) _ REP(o -3w) (4.2b)
o0, T amf  FEPO-0)
NC ~ 2
a4 (O‘)L’ Ve: A» m) - REP((DL _40‘)9) (420)
@, Tpamf  REPO)

The second approach is suitable to the situations in which several resonance
Raman spectra can be collected, corresponding to several different
wavelengths for the exciting light, but in which no spectrum exhibits at least four
well defined harmonics; this is a very common experimental situation,therefore
making the second approach very useful for practical applications. For
example, if only the fundamental and the first overtone are observed in the

spectrum, the system of simultaneous equations (4.2a-c) can be written as:

%o, V,am|  REP(w -20) 4.32)
%o, I am|  REP@ -0)

~ 2
agc(mLa,ve,A, m) ) REP(o_-20,) (4.3b)
%o, 7,am  REPO,-0)
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and

%o, 9,Amf  REP(a_-20)
" "REP(0_-0,)

(4.3c)

. 2
OL?'C((,)LG,Ve, A, m)l

The nature of Egns (4.2a-c) and (4.3a-c) will determine the choice of method
for solving them; examining the expressions of oy° for n=1- 4 (Eqn (3.53a,b))

reveals that some of the unknowns appear at powers higher than three, making
an analytic solution impossible to obtain. With the aid of the Mathematica(R)

computer program?, Eqns (3.50a,b) - the precursors of Eqns (3.53a,b) - yield:

A =m - xi + (d*x1i) / b*2 + [m + (1 - d) * xi] / b;

AN = {-d - 2*m*xi + xi%2 + (2*d*xi~2) / b3 + [(-2 +
2*d) * xi”~2] / b + [d + 2*m*xi + (1 - 4*d) * xi~2] / b"2}
/ 27(1/2);

AN = {3*d*xi + 3*m*xi®2 - xi®3 + (3*d*xi~3) / b"4 +
[3*d*xi + 3*m*xi”*2 + (1 - 9*d) * xi~3] / b"3 + [-3*d*xi
- 3*m*xi”2 + (3 - 3*d) * xi”3] / b + [-3*d*xi - 3*m*xi”"2
+ (-3 + 9*d) * xi~3] / b*2} / 67(1/2);

AN = {-6*a*x172 - 4*m*xi”3 + xi™4 + [(6 - 16*d) * xi~4]
/ b*2 + (4*d*xi~4) / b5 + [6*dA*xi”2 + 4*m*xi~3 + (1 -
16*d) * xi~4] / b + [12*d*xi”2 + 8*m*xi”3 + (-4 + 4*d)
* xi®d] / b + [-12*d*xi"2 - 8*m*xi”®3 + (-4 + 24*d) *
xi~4] / b*3 } / 247~(1/2) ,

where d = & of Eqns (3.43b, 3.44b), xi = & of Eqns (3.43b, 3.44a), b =

~

B = e ™ of Eqns (3.49a,b) and m = m is the non-Condon factor. It can be

seen from the Mathematica output and from Eqns (3.53a,b), (3.54) and (4.2a-c)

2 . Mathematica(R) has the capability of manipulating mathematical expressions
and performing algebraic calculations in symbolic (as opposed to numeric) form [52].
Mathematica textual output included here is highlighted by being presented in a
different font (lighter and fixed-spaced) from that of the main text.
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that none of the three unknowns can be eliminated analytically, while one of the

~

unknowns, V_, appears both explicitly, in & and in E and implicitly in the

e

expression of Re[®(w)] (Eqgns (3.5), (3.53a,b)).
Converting a system to a single equation in several variables

The previous section has shown that the systems (4.2a-c) and (4.3a-c) can be
solved only numerically so the next step will be to adapt the problem to a
numerical treatment and to assess the problem from a numerical point of view;
only the system (4.2a-c) will be considered in this section, as all the
conclusions and procedures developed here will apply equally to both systems
(Egns 4.2a-c and 4.3a-c).

There are no established methods for solving non-linear systems of
simultaneous equations similar to (4.2a-c) [64,65]; however, there are several
general methods for solving one non-linear equation in several variables, e.g.
Newton’'s method and its derivations. The system (4.2a-c) will be converted
into a single equation in several variables by moving both terms of each Eqn

(4.2) onto the same side of the equals sign:

2
o (0, 9,4,m) _ REP(o -20) _ (4.4a)
OLTC((‘)L, i'}el A, m) : REP((DL ) (og)
NC, . o 2
O3 ((DL,VE, ’ m) _ REP((DL _3mg) - (44b)
(XI‘I\IC((DLsVe! A, m)2 REP((DL_(DQ)
NC, . 2
Oy ((D[_s Ves A! m) _ REP((DL _4(Dg) - O (44C)
a?C(O‘)L!Ve’ A, m)2 REP((OL_O)Q)

It is known from classical algebra that three quantities A, B, C are null
simultaneously when and only when the sum of their squares A? + B? + C?is

also null and therefore Eqns (4.4a-c) are equivalent to:
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B 2 B
oc';C(mL,\”ze, A, m) _ REP(o -2w,)
REP(o -®,)

N

NC ~
o (0, V,, A, m)

NC, . = 2 1
o5 (0,V,A,m) ~ REP(o_-3w,)

. (4.5)
a%, v am O |
r 2 ]
O‘,TC(‘DUV «Am)  REP(a -40,) | 0
L a:‘C(mL: Vei A’ m) : REP((DL _O)g)

By defining the function X(v,,A,m) as

:
%, ¥, Am)|  REP(w -20,)

XV, A, =
(Ve A m) REP(0, -0,

NC ~ 2
oy (o ,V,A, m)l

-

NC ~ 2
VA (w,_,ve,A,m)| _ REP(0_-3w,)

+ (4.6)
2 -
(@, 7, A, m)l REP(o, -®,)
[ ne - 2
(0, 9,Am)  REP(w_-40,)
o9, am]  FEPOLO)
Eqgn (4.5) can be written simply as:
X®,A,m) =0, (4.7)

with @, o, as given parameters. As a numerical solution to the Eqn (4.7)
implies a finite resolution for the values of the unknowns, the problem becomes
to find the set (V_,A, m) that minimises X rather than makes it exactly null; thus,

the problem of solving a system of three simultaneous equations in three

unknowns is reduced to minimising a function of three independent variables.

At this point it would be useful to inspect the four-dimensional space where the

minimum of X lies. This will be accomplished by assigning to each point in a
three-dimensional space (v, A, m) a shade of grey from a palette corresponding

to the logarithmic scale of values for (X/X,,,) and plotting all the points so

ax
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defined. The logarithmic scale has the advantage of preserving the monotony
(trend) of the function and increasing the resolution at small values of the
argument (around the minimum) while "compressing" the range of larger,
uninteresting values. The palette has been chosen with black corresponding
to the minimum and white to values larger than a certain threshold and up to
the maximum value of X. Figure 4.1 illustrates the procedure by plotting X for
KIVInO* (see also chapter 5) across the region of space containing the minimum
of X® with a low resolution for the three coordinates: 12 cm™ for the vibrational
wavenumber in the excited electronic state, 1.2 pm for the bond length change

and 0.05 for the non-Condon factor.

10

b ocid stretch, /pm

700
750

800

Figure 4.1 - General view of a low-resolution plot of X (Eqn (4.6)) for KIVInOA.

The Mathematica(R) script used to produce Fig. 4.1 is based on the graphics
objectGraphics3D [list {primitives, directives} ,list (options}],

constructed of Point [{x,y, z) ] primitives with the GrayLevel [i] graphics

A - Early work has tried to extend the search for negative A and Vg>Vg, for several
of the cases presented in chapter 5; the results have always been consistent with the
conventional view of bond length increase and vibrational wavenumber decrease
between the ground and excited electronic states. The plot of the search space has
thus been restricted to its meaningful part, for the sake of clarity.
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directive and some graphics options [66]; the coordinates (x, y, z) correspond
to M, A, m) and the grey shade i, a number between 0 and 1, to log(AyXAJ.
The script is computer-generated by a program written in the C programming

language; only a sample is shown bellow, the full script containing 880 lines;

Graphics3D [{

Axes->True, BoxRatios->{1,1.2 ,1} , ViewPoint->Automatic 1}

The region of the solution space depicted in Fig. 4.1 can be vieveed from
different angles in order to facilitate the visual inspection and the location of the
minimum of X; Figs. 4.2a-c show the same region, viewed along each of the
three independent axes. It should be stressed at this point that the viewing
angles shown here are not necessarily the most suitable and that the choice

of view depends on the case studied and on the preference of the observer.

NC £*ctcr <m)

75

80

Figure 4.2a - View along the wavenumber axis of the plot in Fig. 4.1
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10

300 700

wavenumtei: /cm -1

Figure 4.2b - View along the bond-stretch axis of the plot in Fig. 4.1

10

b sticet.cli /pn

700 750 800

ivAvenuiaber /cm.“lI

Figure 4.2c - View along the m axis of the plot in Fig. 4.1.

It can be seen in Figs. 4.2a,b that the scale along the m coordinate is not well

chosen and the points appear to cluster around the plane defined by m = 0;
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Fig. 4.3 and Figs. 4.4a-c provide a more detailed view of the solution space

than Figs. 4.1, 4.2a-c, by focusing on a smaller range of values for m.

0. 005

WC factor (m)

-0.005 10

-0 .01 bond stretch /pw

700

800

Figure 4.3 - Full view of a high resolution plot of X (Eqn (4.6)) for KMnO*

800v
7aks

0. 005 Wavtn-wnhe qri-1

nc factor (m)

-0.005

bond stretch /pm

Figure 4.4a - View along the wavenumber axis of the plot in Fig. 4.3.
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0. 005

HC factor (rti)

-0 005

tdft.d strltch /pwi

700 800

Figure 4.4b - View along the bond-stretch axis of the plot in Fig. 4.3.

0. 005

10

bond, stretch /pn

700 750 800

wavenumJDer /cra-1

Figure 4.4c - View along the m axis of the plot in Fig. 4.3.

The three-dimensional diagrams in Figs. 4.1 - 4.4 suggest another useful way
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of inspecting the solution space: representing each point in a two-dimensional
space by considering m to be a fixed parameter, and associating a grey palette
to the scale of values of log(X/X ). This procedure would be equivalent to
'slicing’ a three-dimensional representation across the m coordinate with planes
of a fixed value for m, the resulting series of density plots being entirely

equivalent to the original three-dimensional representation.

The main advantage of two-dimensional relative to three-dimensional images
is that they are much easier to inspect visually; the price to be paid for this

facility is the large number of such plots needed to cover an equivalent region
of the (V,,A,m) space. As will be shown in later sections, dealing with such

large number of similar objects is a job computers are most suited to, and this

will be the approach that will eventually emerge.

Another advantage of the two-dimensional relative to three-dimensional images
is that the former require fewer resources than the later, allowing a higher
resolution and a wider range of values for each coordinate: 550.0 to 800.0, in
steps of 5.0 cm™, for the vibrational wavenumber in the excited electronic state,

and 0.0 to 40.0, in steps of 0.5 pm, for the bond length change upon excitation.

The Mathematica(R) script used to produce Figs. 4.5a-e is computer-generated

by a program written in C and is shown below in an abbreviated form:

Graphics3D[{
{ GrayLevel[1.0], Point[{550.0, 0.03}1 1},
{ GrayLevel[1.0], Point[{550.0, 0.5}] 1},

{ GrayLevel[1l.0], Point[{555.0, 0.0}]1 1},
{ GrayLevel[0.9], Point[{550.0, 0.5}1 3},

{ GrayLevel[l.0], Point[{800.0, 40.0}] } 1},

Axes->False, Frame->True }]
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The script is based on the graphic object Graphics [list {primitives,
directives}, list{options}], constructed of Point [{x, y} ] primitives

with the GrayLevel [i] graphic directive and some graphic options [66]; the
coordinates (x,y) correspond to *.3) and the grey shade i, a number

between 0 and 1, to log(>X7X"J.

Figures 4.5a-e will show five two-dimensional diagrams with the corresponding
non-Condon factor displayed in the top right corner of each frame; these
diagrams illustrate the important point that the non-Condon factor can have a
significant influence on the resonance Raman spectrum, by visualising the
changing position of the minima of X with the changing non-Condon factor m

Also, another important observation to be drawn from Figs. 4.5a-e is that
sometimes the minimum of X(vA,A,m) is not unique, a fact that will be further

discussed in this chapter.

40

30

10

550 700 750 800

wAvenuiftier /cm -1

Figure 4.5a - 2D plot of X (Eqn (4.6)) for KMnO*, m = -0.040.
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30
10
0

550 GOO 650 700 750 800

wAveitumber /cm-1
Figure 4.5b - 2D plot of X (Eqn (4.6)) for KIVInO*, m = -0.020.
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Figure 4.5c - 2D plot of X (Eqn (4.6)) for KIMnO”*, m = -0.000.
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Figure 4.5d - 2D plot of X (Eqn (4.6)) for KIXInO*, m = 0.020.
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Figure 4.5e - 2D plot of X (Eqn (4.6)) for KIMnO*, m = 0.040.

Having inspected the solution space, the next step would be to choose a
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numerical method for minimising X(V_,A,m), or for solving X = 0; the next

section is a brief review of some established methods, all of them iterative, that

could be employed for this task.
Numerical methods for solving equations in several variables

The original problem of solving a system of three simultaneous equations in
three unknowns (Egns (4.2a-c), (4.3a-c)) has been converted first into solving
a single equation in three unknowns (Eqn (4.5)) and then into minimising a
function of three independent variables (Eqn (4.6)); as the minimum value of
this function is zero, the methods used to find its minimum and its zeros will be

completely equivalent.

Thus, the review of the numerical methods will refer to the equation

ix) =0, X=(X,%,..,X,) (4.8)

n

or to the minimisation of f(x), f: DcR®*—-R; D is the domain where the
function f is defined, positive when defined by Eqn (4.6), assumed to be
continuous, and its first derivative assumed to exist and to be continuous.
Normally the domain can be larger than the actual region of interest so it will
be chosen such as to contain at least one minimum of f{x); in applications it will
be restricted also by the conditions imposed on individual components of x,

such as the approximations formulated in Eqn (3.45b).

All numerical methods employed in solving equations or in minimising functions
improve an assumed solution into a new assumed solution iteratively, starting
with an initial guess for the solution of the problem, and testing against a
convergence criterium and the number of iterations. An iterative process is said
to converge when the difference between two successive iterations becomes

smaller than a preset value, within fewer iterations than a preset number.

In view of this definition of convergence, there are no methods with a good
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global convergence in several variables; when a good initial guess is available,
as provided by the visual inspection procedure outlined in the previous section,
the first method to be considered is Newton-Raphson [64,65], based on the

Taylor expansion of a function f{x) in the neighbourhood of x:

fx+5%) = ) + 3 gs)(j + O(Bx?). (4.9)

J=1 i
By identifying the partial derivatives matrix in Eqn (4.9) as the Jacobian row

matrix J of f{x)

J=9f (4.10)
ox;

and by neglecting higher order terms O(3x?), Eqn (4.9) becomes:

fx+8x) = fix) ~ J-dx (4.11)
In a converging process x-+dx is much closer to the solution than x so that
fix+6x) = 0 (f(x..,) << f(x,4)) and thus Eqn (4.10) becomes an equation for the
correction to x, ox:

J-8x = -f(x) (4.12)
and the new assumed solution becomes:

X, = Xoq*0X . (4.13)

new

The Newton-Raphson method works very well for smooth functions with well-
defined solutions for which a good initial guess exists; however, it can be seen
from Figs. 4.4 and 4.5 that f(x) = X(V_, A, m) is not a smooth function and that
there can be several solutions (minima) close to each other. Under such
circumstances the Newton-Raphson method would have a significant chance
of failing and there would be no indication of this happening; clearly, more
refined versions of the method would be required to improve the level of

confidence in its results.

A quasi-Newton method proposed in [65] checks at every iteration that some

progress towards the solution is being made i.e. fix ) << f(x,,) and whenever
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this is not the case the full correction to x, dx, is replaced with a smaller step

in the same direction A-6x, 0<A<1. Finding the appropriate A becomes then
a sub-task to be performed at every iteration, thus increasing the computational
load per iteration and the number of iterations required to reach a solution and
eventually cancelling the advantage of the fast convergence of the original

Newton-Raphson method.

Another method for solving equations in several variables is Broyden’s method,
which reduces to the secant method in the one-dimensional case [64,65]; it is
more robust than Newton-Raphson’s method and offers better, but slower,
global convergence. It is not significantly better than Newton-Raphson because
it cannot cope with noisy functions and thus it does not provide a method
suitable for the variety of equations that the transform method produces. The
compromise between global convergence, robustness and speed is a recurrent
problem of all established methods of solving equations in several variables,
caused by the complexity of calculating a gradient (or equivalently the Jacobian

matrix) and then correcting the existing vector x_, into another vector x,,,.

The nature of the problem can be changed by replacing the search for a
solution of Eqn (4.8) with the search for a minimum of f(x); there are several
established minimisation methods in several variables and in principle any
function has a minimum over a given interval. The restriction still to be
observed is that the minimum be zero and well within the boundaries of the
domain; in the case of several minima, all null within the preset precision, visual
inspection of the solution space will sort out singularities from real minima, to

be further sorted along physical considerations.

One common problem of all established minimisation methods is that the
search for a minimum ends on local as well as on true, domain-wide minima;
the method of the steepest descent will be reviewed briefly for illustrative
purposes, its failure in the early stages of my work having been the main

reason for proposing a new method in the next section.
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The Steepest Descent method for minimising f{x) calculates the local gradient
of fat x; for the i-th iteration and finds the new solution x,,, corresponding to the
minimum value of f along the local gradient; then a new local gradient is
calculated at x,, and the procedure is reiterated until the local gradient is less
than a preset value, i.e. a minimum has been found. As with other methods,
the Steepest Descent ends on a minimum regardless of its being local or

domain-wide, or of the number and position of other minima in the domain.

Proposed grid method for minimising multidimensional functions

Having reviewed the numerical methods considered for the solution of Eqn
(4.7), either directly or as a minimisation problem, it becomes clear that a
suitable numerical method has to:

1. - find and list all local minima within the domain;

2. - be able to cope with noisy functions;

3. - be fast enough for implementation as an independent program on personal

computers.

As no method could be found to fulfil all of the above criteria, a new method is

proposed [67], consisting of high resolution calculation and sorting of the values
of X(V,,A, m) across a {V,,A,m grid of suitable step size along each coordinate,

spanning a sub-domain chosen by visually inspecting a low-resolution three-

dimensional image of the whole domain.

The starting point of the method is the inspection of figures analogous to Figs.
4.1 and 4.2a-c; in the case chosen as example, KMnO,, this eliminates a
sizeable portion of the domain, towards larger absolute values of the non-
Condon factor m and wavenumbers larger than 800 cm”. It would be
premature to draw any conclusions from the visual inspection of a low-
resolution image with regard to the position of the minima within the chosen
sub-domain; the noise in the data is such that only a high-resolution computer

search can find the minima with any degree of confidence. The visual
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inspection and the computer search complement each other, none of these two

procedures being reliable enough when used individually.

The grid method is very fast, as it calculates only the value of the function
X(v,,A, m) along the nodes of the grid and the small program required is very

sensitive to optimisation as will be shown in a later section dedicated to the
computer program. However, the search for ever better precision can cancel
the benefits of simplicity and speed of the method; halving the step size along
each of the three coordinates increases the computing time roughly by a factor
of eight and there can be no program optimisation that could keep pace with
such an increase in workload. A balance has to be maintained between
precision, performance and intrinsic data noise, by use of the visual inspection
before and after each computer search; at the end, when a number of possible
minima have been identified, a significance test based on physical arguments

will decide the solution.

The robustness of the method with respect to experimental uncertainty has
been tested at an early stage, by comparing two calculated Raman Excitation
Profiles, corresponding to two different data sets. The sets differed by the
estimated experimental error in measuring the band intensities of Eqns (3.54)
and (4.1a-d). The tests have been performed for every set of results presented
in chapter 5; there always was a visible difference between the two plots and

hence the method was deemed to be able to cope with experimental error.

The grid method compares well with the established minimisation methods,
being more thorough than any other method and therefore fulfilling the first
criterion listed at the beginning of this section. lIts ability to cope with data-
induced noise is good, as the grid can always be shifted by an amount smaller
than the step size along any one of or even all coordinates and the new set of
results compared with the previous set; thus, the method fulfils the second

criterion formulated above.
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Finally, the calculation and sorting program runs on any personal computer of
the IBM PC type, under any DOS compatible operating system, and after
recompilation on any computer with a C compiler - virtually any computer in use
today. Obviously, the faster the computer the faster the program will run and
Appendix 4 contains test data which show the significant effect a faster
computer can have on the execution speed of the program. However, all of the
practical applications shown in Chapter 5 have been run on a less powerful
machine, no run taking more than 2 -3 hours. As regards the visual inspection
part of the method, the Mathematica package has been ported also on most
computers in use today, running at an acceptable speed even on less powerful

machines, like the one employed for the applications in Chapter 5.

Having defined the problem, in Eqns (4.1) to (4.7), and a numerical method to
solve it, one last but important mathematical point needs to be addressed
before describing the actual computer program: the Kramers-Kronig transform
itself, relating the experimental absorption to the real and imaginary parts of the

complex electronic polarizability (Eqn (3.5)).

Numerical Kramers-Kronig transform of the absorption spectrum

The absorption spectrum is a tabulated function, with values measured at
regular intervals along either a frequency or a wavelength scale; the standard
Kramers-Kronig transform relation (Eqn (3.5)) needs to be modified by taking
into account that electronic absorption is significant only across some region of
the frequency spectrum and virtually zero everywhere else. Thus, the real part

of Egn (3.5) can be written as

Re[®(w)] = P ABS(X; dx

(4.14)
_ T ABS(¥) ABS(¥) 4, “‘ " ABS(x)
2 o™ f o) f Frar

as any part of a defmlte integral wnth a zero mtegrand is null; here N is the

number of data points in the absorption file and X, <O<X,.
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The integrals under the summation signs of Eqn (4.14) can be calculated

analytically, assuming that the data points are sufficiently close to each other

ABS(X)
X

such that

can be approximated by a straight line between any two

adjacent data points. The remaining integral will be calculated also analytically,

but assuming a quadratic fit for ABS() across the integration domain; now
X
Eqgn (4.14) can be written as
j‘1 x/n Xlo'3 N-1 x/ﬂ
— (ax+b ax2+bx+c ax+b,
Re[®(w)] = Idx + | 222" dx + idx , (4.15)
[(w)] ,zo: { -0 J X-® ,;3 I X-0

o

where the coefficients a, b, come from the linear interpolation

ABS(x;
ax, + b, = 9 ;
AB’éf(X ) (4.16)
ax . +b =___“ 1
/(#1 J X,n
and a, b, ¢ from the quadratic interpolation
ABS(x;
ax; + bx, +c=____(’°)
0 on
ABS(x,
ax;+ bx, + ¢ = __(_"_) (4.17)
] on‘1
ABS(x,
axi.,z*z"' ijo*2+ c= -%-21 .

hr2

At the time of reading the absorption data file, the program defines and
populates two arrays, x; = V; and y; = [ABS(x))/x;; with this notation and after

performing the integrals in Eqn (4.15), the real part of the complex polarizability
becomes
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Re[®(0)] = yy-Yor¥,s7Y, *
j‘f: Yin(0-X) -y{@-X;,) In[m—xjﬂ] *

=0 Xji1 ™% 0=X;

0-x,, (4.18)
;(X‘ifxif)+(am+b)(x,-o+3—xjo)+(am2+M+c)|n[ % ] +
Jo

Jio*3 X1 7X; 0-X;

E Yii(0-X)-y(0-X,,) | n{w—xjﬂ] _

Equation (4.18) is similar to that obtained by Chan and Page in [57], apart from
two different points: their interpolation across the asymptote x=w is linear

rather than quadratic and their extrapolation of the absorption spectrum at the

“tails’ is linear rather than quadratic. The difference between a linear and a
quadratic interpolation can be up to 10 % of the value of Re[®(w)], so the

quadratic solution has been adopted in this work in spite of the extra

computational time required.
Computer programming of the Transform Method

The implementation of the transform method and its application to the
calculation of excited state parameters consists of several programs, each
performing a specific task; these programs have been designed, written and
maintained separately, as required by their different functionality. Throughout
this section, programs written in the C programming language will be referred
to as 'C programs’ in the same way that the 'Mathematica scripts’ are programs
written in the language of the Mathematica(R) interpreter. The Mathematica
scripts have been shown in earlier sections; they have not been integrated with

C programs in order to avoid problems associated with increased complexity.

C has been chosen as the programming language of this work after
performance tests involving different languages and different types of computer
(Appendix 4), simulating the kinds of calculation deriving from the transform

method; although the availability of technology has been a restrictive factor, it
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was the speed and portability of C that has recommended it for this work.

The main C program calculates and sorts the values of X(V_,A, m) at the nodes

ofa {V_, A, m} grid, listing the local minima encountered and writing their position

to a file for later inspection; as mentioned in an earlier section, the program is
organised such as to maximise its execution speed by minimising the number
of operations needed to scan the whole grid and a few optimisation techniques

will be described in the following paragraphs.

The order of nesting the loops corresponding to each of the three parameters
can change the execution time by a large factor, especially the position of the v,
loop; the Kramers-Kronig transform needs to be performed at every step along
the v, coordinate and it is very time-consuming. Positioning it as the outermost

loop ensures that it is not performed unnecessarily; the calculated values of the
real and imaginary part of the complex polarizability are stored in two arrays,
part of a structure that can be accessed by calculations performed within the

inner loops.

The speed of access to this structure is optimised by passing the pointer to the
structure, and then pointers to the array elements within, rather than the
elements themselves; it is significantly more efficient to pass a pointer of two
or four bytes long than several hundred elements eight bytes each; earlier
versions of the program, prior to the use of this technique, were considerably

slower.

The program has a command line interface where it receives the name of the
system to process and all the information required and produced by the
program is read from, and written to, data files tagged with the name of the
system, e.g. KMN.ABS, KMN41.DAT and KMN41.0UT for KMnO,. The domain
is defined in the file KMN.SRC, that can be edited very easily with any text

editor; the absorption and the resonance Raman data files are never changed,
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except in case of reassessment of the experimental data they contain.

As mentioned in an earlier section, a calculation can run over a period of two
to three hours, the machine being unable to perform other tasks during this
time or interact with its operator. A more efficient way of operation has been
employed, by grouping several calculations in a batch, often run overnight
without the intervention of the operator; the results are saved during each

calculation in separate output data files, tagged with the name of each system.

Four other programs have been designed and written to provide feed-back on

the results of the calculations of the main program but, as the main program,
all calculate the values of X(v,,A,m). Two programs closely related to each
other have been mentioned already, in the section describing the solution space
and the Mathematica scripts; they generate the scripts by calculating X(v,, A, m)
at every point {V_,A,m throughout the specified domain. One other program

generates the Raman excitation profile for a given set of {V_,A, m} parameters

and order of scattering by calculating X(V,, A, m) at different frequencies and
another program generates resonance Raman intensities for the first four
harmonics in the RRS spectrum, again for a given set of parameters {V_,A, m};

the data sets generated by these two programs are then plotted out by using
a commercial graphics package. The complete listing of the main program is
given in Appendix 5.
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V. Applications of the Transform Method

Introduction

The purpose of this chapter is to apply the transform method developed in
chapters 3 and 4 to real chemical systems. There are two main applications
proposed: first, to calculate the changes in bond length and vibrational
wavenumber upon excitation and second, to check on the extent to which the

assumptions of the model hold, for each of the systems studied.

It was thought previously [40,43] that the transform method would be suitable
only as a supplementary check on the assumptions used in multimode
simulation models, based on the sum-over-states [36,37] or on the time
evolution of the wave packet [59,68,69] approaches. It will be shown here (as
in [60,68]) that the applications of the transform relation extend to the direct

calculation of the excited state parameters.

Also, the assumptions will be tested by simulating the band intensities of the
first, second, third and fourth order harmonics and the RRS excitation profiles
of the fundamental and first overtone, and by comparing them with the
experimental values. The availability of published data will be a limiting factor
in the latter comparison, excitation profiles being usually recorded only up to the

second overtone.
Data Requirements and Methodology

All transform calculations require the absorption spectrum (in digital form), the
value of the reduced mass of the oscillator representing the mode of interest,
and the vibrational wavenumber of that mode in the ground electronic state.
The choice of procedure for the multidimensional fit determines what additional

data may be required. Minimal requirements for the procedures used here are
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either:

a) - intensity data at one excitation wavelength and the intensities of the first
three overtones of the resonance Raman spectrum relative to that of the
fundamental, or

b) - intensity data at three excitation wavelengths and the intensity of the first

overtone relative to that of the fundamental for each of the three wavelengths.

Data can be obtained either from papers already published, subject to some
restrictions and corrections, or directly from experiment. While for testing
purposes both possibilities can be considered, only the latter is open for new

systems.

The choice of data already published over those freshly recorded balances two
criteria, convenience versus data quality. The quality of the data already
published cannot be improved upon, but it can determine which cases will be
selected for testing. Proper choice of systems and well executed experiments
should offer excellent testing grounds; however, after being rigorously tested
and where appropriate, corrected as necessary, published data offered the
desired balance between convenience and reliability. The fact that all data
have been produced in the same laboratory, using the same well known and

understood standards, increases confidence in its quality.

The suitability of published data is assessed by calculating the real and
imaginary parts of the complex polarizability from the optical absorption data
and by examining the change of their value when changing the number of data
points employed (i.e. the resolution of the data). The example presented in
Table 5.1 shows that, past an optimum value, increasing the number of data
points will not increase the precision of the calculation, limited by the
approximations of the model (Chapter 3, Eqn (3.45b)). Each system has been
tested individually for the optimum number of data points, as a structured

absorption spectrum will require a higher resolution than a featureless one.
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The effect of the number of data points on the precision of Re(a) and Im(a)

Table 5.1

Number of data points Re(a) /(er)® s Im(oy) /(er)® s
10 9.985 x 10° 2.083 x 10°®

20 8.012 x 10° 1.676 x 10°®

30 8.107 x 10° 1.681 x 10°®

40 8.093 x 107 1.680 x 108

50 8.095 x 10° 1.680 x 10°®

100 8.095 x 10° 1.680 x 10°®

2000 8.095 x 10° 1.680 x 10°®

Excitation wavenumber: 20000 cm.

Excited state vibrational wavenumber: 400 cm’

Re(a), Im(o) - the real and imaginary parts of the calculated complex
polarizability, for [NBu,],[MoS,]

Corrections have been made, where appropriate, for two factors influencing the
measured band intensity in the resonance Raman spectrum and in excitation
profiles: the spectral response (efficiency) of the spectrometer and the v* factor
(Eqn (3.6)). As published data have been corrected already for one or both of

these factors, care has been exercised in handling the data.

The smallest value accepted in the literature for the relative error in the band
intensity is £ 5 %; on bands of lower intensity, as in the wings of an excitation
profile or for higher order overtones, the error can be + 10 % and even up to
* 20 %, depending on the signal-to-noise ratio. This means that fitting the
more intense bands in the spectrum or the points of higher relative intensity in
the excitation profile becomes relatively more important. As no quantitative

measure exists for the relative error of the data employed, no estimate has
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replaced it in the graphs displayed at the end of each section.

The systems used throughout this chapter have been selected according to the
likelihood that they will satisfy the assumptions of the model, presented in
Chapter 3; only few of the examples chosen will exhibit features leading to the
conclusion that one or several of the initial assumptions have been invalidated.
Systems likely to fit these assumptions well have either linear or tetrahedral
symmetry and examples analysed here, of tetrahedral (MX,), linear chain or

multiply-bonded (M=M) structure, have such symmetry.

MX, Systems

The systems tested here belong to the T, point group, of tetrahedral symmetry,
and consist of a central metal atom surrounded equidistantly by four identical
atoms belonging to the groups Vla or Vlla (Fig. 5.1). The complexes involving
the metal atom (M) can be neutral, as in titanium and tin tetrahalides, or
negatively charged (all the other systems studied). The counterions are usually

ammonium derivatives (potassium only in KMnO,).

Due to their T, geometry, the MX,
systems analysed here possess only

one totally symmetric mode of vibration

so the assumption that the mode of O =x
interest does not mix with other modes

should hold well. Their geometry also

makes them susceptible to Jahn-Teller Figure 5.1 - T, geometry.

distortions [71] and to splitting of the
excited state into substates, breaking the assumption of a single electronic
state. As long as the Jahn-Teller distortions and induced splittings are small,

resonance with a single electronic state is assumed.

The nature and temperature of the samples are presented in Table 5.2,

109



together with some of the data employed in the calculations.
Table 5.2

Data employed in the calculations on MX, systems

Absorption spectrum

RR spectrum

System h
Sample|T /K| ¥__J/cm '| Sample | T /K| ¥, /em | /amu

KMnO,:KCIO, [71]| solid |293| 17950 | solid |293| 19435 | 16
[NBu,,[WS,] [10] | solid | 14 | 25000 | solid | 80 | 24585 | 32
[NH,IWS,] [10] | solid | 14 | 25000 | solid | 80 | 24585 | 32
[NBu,],[MoS,] [72] | solid | 14 | 21300 solid | 80 [ 20986 32
[NEt,JIFeCL] [73] | sol. |293| 27500 | sol. [293| 27488 | 35.5
[NBu,J[FeBr,] [73] | sol. |293| 21200 | solid | 80 | 20986 | 79.9
TiBr, [74] sol. [293| 28600 sol. |293| 27488 | 79.9
Snl, [75] sol. |293| 27500 sol. |293] N/A | 127

Til, [76] sol. |293| 19400 sol. |293| 19435 | 127

*

- V4o, as the absorption spectrum is highly structured

**%

- several excitation wavelengths and the respective intensity of the first

overtone relative to that of the fundamental have been used.

solid - pressed powder; the sample is mixed with KBr, KCI, Csl, KNO, or K,SO,

sol. - solution in cyclohexane or nitromethane.

W, - the reduced mass of the totally symmetric mode

It can be seen in Table 5.3 that the assumption of linear dependence of the

electronic transition moment on the normal coordinate of the totally symmetric

mode also holds, the linear correction parameter m being less than 0.1 in all

cases. However, some of the examples show a change of more than 18.2 %
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(Appendix 3) in the vibrational wavenumber of the totally symmetric mode,
breaking the assumption that the force constant is linear in the normal
coordinate. The paucity of experimental data points in the respective excitation
profile hinders the comparison between experimental and calculated results,
leaving those cases open to further investigation and discussion.

Table 5.3

Results for MX, systems

V=V, | U, | 189, | AM-X) | A(M-X
System RTe 1091/ | M-X) | AM=X) AT % m
fem™ | /om™ % /A /pm
848.6 | 747.0 4.4 0.00
KMnO,:KCIO, 11.9 1.59 2.7
05| 5.0 +1.0 + 0.01
477.6 | 413.0 11.5 -0.01
[NBu,L]WS,] 135 | 2.32' 4.9
+05 | 5.0 +1.0 + 0.01
488.0 | 417.0 11.2 -0.01
[NH,LIWS,] 145 | 2.32' 4.8
+05 | 5.0 +1.0 + 0.01
451.1 | 395.0 10.0 0.01
[NBu,],[MoS,] 124 | 2.32% 4.3
+05 | +£5.0 +1.0 + 0.01
334.2 | 258.0 * 29.0 0.01
[NEtJ[FeCl,] 227 | 2.30° 12.5
+05 | £5.0 +1.0 + 0.01
203.2 | 142.0 * 33.0 0.00
[NBu,][FeBr,] 30.0 2.35 14.0
+05| 5.0 +1.0 + 0.01
_ 232.7 | 155.0 * 30.5 0.00
TiBr, 33.2 2.31 13.2
05| £50 +1.0 + 0.01
151.2 | 1365 8.3 0.00
Snl, 100 | 264 3.1
+05| £5.0 +1.0 + 0.01
. 161.2 | 142.0 8.0 .01
Til, 11.8 2.72° 2.9 0.0
+05 | £5.0 +1.0 + 0.01
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*

- technically outside the limits of the model, 18.2 % (Appendix 3)

*%

- using the ratio between the intensity of the first overtone and of the

fundamental

Estimates [77,78]:

' - from r(W-Cl) = 2.26 A in WCl,

2 - from r(Mo-Cl) = 2.27 A in MoCl,

® - from r(Fe-Cl) = 2.30 A in [FeCl,J

* - from r(Fe-Cl) = 2.30 A in [FeCl,] and r(Br-Br) = 2.28 A in Br,

§ - from r(Ti-Br) = 2.31 A in TiBr,, r(Br-Br) = 2.28 A in Br, and r(l-) = 2.66 A in

1,

Notes to symboals:

V=V, = vibrational wavenumber in the ground electronic state
v, = vibrational wavenumber in the resonant excited electronic state

oV=(V,-V,)/V, = the relative wavenumber change in the mode of interest

between the ground and excited states

rM-X) = metal-ligand bond length. M = Mn, W, Mo, Fe, Ti or Sn; X: O, S, CI,
Brorl

A(M-X) = metal-ligand bond length change upon excitation

m = linear non-Condon correction parameter (Eqn (3.25))

The results in Table 5.3 compare well with those given in other sources, where
data were available for comparison; unfortunately such data were available for
only few of the systems considered, as the parameters calculated here may not
have been measured directly in any study before. Table 5.4 compares the
results of the present method applied to MX, systems with previously published
results; graphs comparing the simulated and experimental resonance Raman
spectrum and excitation profile for each system are grouped at the end of this
section (Figs. 5.2-5.10,(a,b)).
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Table 5.4

Comparison between present and previously published results for MX, systems

v /em™ A /pm

System present present

other work other work
work work

KMnO,:KCIO, [747.0 +5.0| 740.0 +5.0 [71] | 4.4+ 0.5 | 4.6 + 0.5 [58]

[NBu,L[WS,] [413.0 +5.0/410.0 + 10.0 [10]{11.5 + 1.0{10.0 % 1.0 [59]

[NBu,J,[MoS,] |395.0 +5.0{410.0 + 10.0 [72]|10.0 % 1.0{10.0 + 1.0 [60]

Til, 142.0+ 5.0 145.0' [79] 80+1.0|7.8+1.0[61]

! - assumed in the calculation in [79]

The vibronic structure present in some absorption spectra (KMnO,,
[NBy,,[WS,] and [NBu,],[WS,]) permits the direct measurement of the
vibrational wavenumber of the totally symmetric mode in the excited electronic
state. In all cases mentioned, the results of the present method match, within
the errors, those obtained directly from the absorption spectrum. The results
for the bond length change also match, within the errors, those obtained by
other workers [10,71,72,79] through total simulation using a sum-over-states

approach.

A problem present in some graphs (like those for [NEt,][FeCl,], TiBr, and Snl,),
is the relative error (as discussed in a previous section) of the experimental
data points in the excitation profiles. [NEt,][FeBr,] is also the only system for
which the intensity of the first overtone relative to that of the fundamental
increases monotonously, even beyond 1.0, with the wavenumber of the exciting
radiation. Assuming that the experimental data set is reliable, the [FeBr,] ion
appears to undergo drastic changes upon excitation, which cannot be modelled

within the present approach. This conclusion appears to be confirmed by the
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exceedingly large values obtained for ¥, and for A; the fact that they appear to

parallel those for [NEt,][FeCl,] and TiBr, is not relevant, as the latter have very

few points on the excitation profile to compare with.

Tin tetraiodide has given very different results for each of the two procedures
outlined in Chapter 4 and in an eatrlier section of this chapter. The final result
has been determined by comparison with a similar system (Til,) and between
the experimental and calculated resonance Raman spectrum and excitation
profiles (at the end of the present section). There have been two attempts to

calculate v, and A for Til,; the results of the present method are consistent with

one set of results [79], the other set [80] not being even self consistent (a linear
correction of 30 %, m = -0.3, requires a quadratic rather than the linear model

employed in [80]).

A similar situation appeared for [NBu,],[MoS,], albeit with a smaller discrepancy
between the results of the two procedures. The corresponding graph at the
end of this section shows the difference between the experimental and
calculated resonance Raman spectrum; the non-Condon result is comparable
with the result of a pure Franck-Condon model, but the experimental data
appear far from fitting either model. Comparison with similar systems
(INH,LIWS,], [NBu,[WS,]) indicate that the results obtained solely from the
band intensities of the first four harmonics in the resonance Raman spectrum

are not reliable. The explanation could be that the v, and v, wavenumbers
differ by only 4 %, leading to the overlapping of the main v, v, progression with
the V, + v,V, - or maybe with a v,V, progression - and to unreliable band
intensities. As this overlap disappears when excitation takes place away from
the maximum of the ¥, excitation profile, the band intensities can be measured

more accurately and so the results of the second procedure are definitely the

more reliable.
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M=M Multiply Bonded Systems

The systems tested consist of two triply bonded metal atoms (Os or Rh)
bridged by a ’cage’ of four identical ligands (OgCCH” or OgCCHgCIl) and one
axial ligand attached to each metal atom (either a Cl atom or PPhg). Thus the

systems belong to the point group (Fig. 5.11).

Os, Rh

Figure 5.11 - Geometry of M=M systems.

The angle between the metal-oxygen and the metal-metal bonds is almost 90°,
which should prevent the metal-metal stretching mode from mixing with any of
the ’cage’ modes; however, mixing with the axial metal-ligand stretch should be
expected. The excitation profiles [81-83] show, however, that the intensities of
these other bands are much lower than that of the metal-metal stretch, and so

the present treatment will neglect any mode mixing.

The absorption spectrum shows only one band in the visible region of the

spectrum (with a very weak shoulder in the case of 0 s2(02CCHZCI)*CI2 so
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resonance with a single electronic band is assumed. The nature and
temperature of the samples are described in Table 5.5, together with some of
the data employed in the calculations.

Table 5.5

Data employed in the calculations on metal-metal multiply bonded systems

Absorption spectrum RR spectrum
M,
SyStem Gmax Vlaser /
Sample| T /K| /.= | Sample | T/K| o7 | /@MY

Os,(0,CCH,),Cl, [81] | solid | 20 | 26000| solid | 80 | 24585 | 95.1

Os,(0,CCH,CI),Cl, [82]| solid | 20 | 24500 | solid | 80 | 24070 | 95.1

Rh,(O,CCH.,).(PPh
2Q,COM).(PPR), solid | 20 [27000| solid | 80 | 28056 | 51.5
[83]
Table 5.6
Results for metal-metal multiply bonded systems
V=V | ¥, |6V | Vg | AM=M)| A(M=M) | A/r
System m
fem™ | /fem™| % /A Ipm | %
229.0/205.0 15.0 -0.01
Os,(O,CCH,),Cl, 104 | 2.314 6.5
+05|+£5.0 +1.0 + 0.01
236.0(188.0 . 21.8 0.0
Os,(0,CCH,CI),Cl, 20.3 | 2.32 9.4 0
+05(x5.0 +1.0 + 0.01
289.0/261.0 2450 | 234 0.02
Rh,(O,CCH,),(PPh,), 9.7 9.5
05|50 [66] 1.0 + 0.01

" - technically outside the limits of the model, 18.2 % (Appendix 3); if the
precision margin is taken into account, the result is within the limits.
' - estimated from (M=M) = 2.314 A in Os,(O,CCH,),Cl,.
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Notes to symbols:
Vg, Vo, 8V, m - same as the symbols in Table 5.2

r(M-M) = metal-metal bond length (Os-Os, Rh-Rh)
A(M-M) = metal-metal bond length change upon excitation.

The relative bond length change for the M=M tested here is larger than for the
MX, systems but similar to the values obtained for linear chains (presented in
the next section). It appears that the relative bond stretch upon electronic
excitation is larger in systems with axial symmetry than for centrosymmetric

ones.

The simulations of the resonance Raman spectra and of the excitation profiles
compare well with the experimental data, especially for Os,(O,CCH.CI),Cl, for
which also better defined excitation profiles are available. A comparison
between the experimental resonance Raman spectra and Raman excitation
profiles, and those calculated with the transform method is given in Figs. 5.12-

5.14(a,b), presented at the end of this section.

Unfortunately, there are no results in the literature with which to compare those
of the present section; those of Woodruff et al. [84] have been obtained for
non-bridged multiply-bonded systems ([Re,Br,]*) and thus a direct comparison

between the results is not possible.
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Halogen-Bridged, Mixed-Valence Linear Chain Systems

The systems tested consist of chains of Pt"-Pt'* dimers (Fig. 5.15a) which upon
excitation become chains of -Pt'"-- monomers (Fig. 5.15b), a model proposed
by Piepho, Krausz and Schatz [85] and further extended by Prassides and
Schatz [86,87]. This model has been used successfully by Prassides and
Schatz [87] to calculate the location of the intervalence band and the resonance
secondary radiation (resonance Raman scattering and luminescence) spectrum

for Wolffram’s red salt, [Pt(EtNH2J[Pt(EtNH2,CIjCl, *4HgO.

Pt

Figure 5.15a - Ground state geometry of linear chain systems [85,86].

Pt

Figure 5.15b - Excited state geometry of linear chain systems [85,86].

The totally symmetric mode of interest of the systems studied here is the axial

stretch X-Pt'A-X; the polymeric structure of the molecular chain amplifies the
vibration, leading to long progressions in Vgy*(X-Pt'*-X) which totally dominate

the resonance Raman spectrum. Substitution of the equatorial amines by other
amines [88] does not change the wavenumber of the mode of interest by more

than a few cm'\ so it can be assumed that that mode does not mix with others.
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Table 5.7

Data employed in the calculations on mixed-valence linear chain systems

Absorption spectrum

RR spectrum

[88]

System 5 ¥, &
Sample!| T/K| ™ |Sample?] T/K| = |/amu
/em™ /em™
Pt(pn).][Pt(pn).CL](CIO
[PH(pr).JiPt(pn).CLI(CIO.), solid |293|25000| solid | 80 [21836| 35.5
[88]
{[Pt(en),])[Pt(en),Cl,]}, _ ,
solid [293|19100( solid 80 |17599| 35.5
- [CuCl,], [88]
{[Pt(en),][Pt(en),Br,]}, _ _
solid |293(15870| solid | 80 |15453| 79.9
- [CuBr,], [88]
[Pt((-)-dach),] _ ,
solid |293(15900| solid | 80 [13288| 79.9
- [Pt((-)-dach),Br,]Br, [88]
[Pt((-)-dacp),] _ .
solid |293(14300| solid | 80 [13288| 79.9
* [Pt((-)-dacp),Br,]Br, [88]
Pt(pn).][Pt(pn).Br,]J(CIO
[(PHpr):IIPH(pn),Br(CIO.), solid® | 29319600, solid | 80 [17599| 79.9
(red) [88]
Pt(pn),][Pt(pn),Br,J(CIO
[PHP:IPH(PN) BrLI(CIO.), solid® |293 (16950 solid | 80 |17599 79.9
(blue) [88]
[Pt(NH,),(SCN),] _ ,
solid |293[18200 solid | 80 [17599| 127
‘ [Pt(NHa)z(SCN)zlzl [88]
Pt(pn).][Pt(pn).L,](CIO
[PHPLIPYPn),LICIOL), solid |293(12800| solid | 80 |13288| 127

'~ mixture with alkali halides

2 . mixture with alkali halides and an internal standard (K,SO, or KNO,)
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3 . suspension in chloroform

The absorption spectrum contains only the intervalence band in the visible

region and there is also little evidence of Jahn-Teller distortion of the systems

studied so resonance with a single excited electronic state can be assumed.
Table 5.8

Results for mixed-valence linear chain systems

V=V | Y, ||3V|Vg| (Pt-X) |A(Pt-X
System ROTe 1091%) rPE-X) | A(PEX) Alr%| m
fem™ | fem™| % /A | Ipm
313.2|232.0 * 31.0 0.00
[Pt(pn),][Pt(pn),CL)(CIO,), 05450 25.8 | 2.31 10 13.4 + 0.01
{[Pt(en),][Pt(en),Cl]}; |300.5(230.0 * 25.2 0.00
23. 2.33 10.8
- [CuCl,), +05|+£5.0 3.3 +1.0 + 0.01
{[Pt(en),][Pt(en).,Br,]}, |168.6|133.0 * 16.5 0.00
211 | 2.54 6.5
- [CuBr,], +05[+5.0 +1.0 + 0.01
[Pt((-)-dach),] 161.4|129.0 * \ 21.6 0.00
20.0 | 2.70 8.0
- [Pt((-)-dach),Br,]Br, |* 05(+5.0 +1.0 + 0.01
[Pt((-)-dacp),] 163.1/124.0 * , 18.4 0.00
23. 2.7 .

- [Pt((-)-dacp),Br,]Br, |+0.5/+5.0 3.9 0 +1.0 6.8 + 0.01
Pt(pn),][Pt(pn),Br,]J(CIO,),|174.5|154.0 15.4 0.00
[Pt(pn).][ ((p(;)z 21(CIO,), coslseo 115 | 2712 1o 56 001

re +05|£5. 1. + 0.
Pt(pn),][Pt(pn),Br,]J(CIO,),|174.8|147.6 17.9 0.00
[Pt(pn).Il (::: )2) 21(CIO,), s oslsso 155 | 2.71° 1o 6.6 001

ue +05(%5. 1. + 0.
[Pt(NH,),(SCN),] 120.4| 92.3 * . 25.7 0.00
23.3 | 2.70 9.5
« [Pt(NH,),(SCN),,] +05]1£5.0 +1.0 + 0.01
121.4|109.0 10.9 0.00
[Pt(pn),][Pt(pn),1,](CIO,), 10.2 | 2.77 3.9
+05|£5.0 1.0 + 0.01
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*

- technically outside the limits of the model, 18.2 %; if the precision margin
is taken into account, the result is within the limits.
' . estimated from r(Pt-Br) = 2.42 A in [Pt(etn),][Pt(etn),Br,]Br,-4H,0 [89];
2 _ estimated from r(Pt-Br) = 2.67 A in [Pt(pn),][Pt(pn),Br,]Br, [90];
® - estimated from r(Pt-Br) = 2.42 A in [Pt(en),][Pt(en),Br,}(CIO,), [91] and
4 - estimated from r(Pt-1) = 2.69 A in [Pt(NH,),][Pt(NH,),l,[HSO,J,JOH]-H,0 [88]

Notes to symbols:
Vg, V., 8V, m - same as the symbols in Table 5.2

r(Pt-X) = platinum-halogen bond length (X = CI,Br,l)
A(Pt-X) = platinum-halogen bond length change upon excitation

The values obtained for the vibrational wavenumber of the totally symmetric
mode in the excited electronic state are large, some of them falling just outside
the limits of the model, but consistent with large bond length changes. These
large changes are in broad agreement with a bond length change of 22 pm for
r(PtV-X) obtained by Prassides and Schatz [87] for Wolffram’s red salt. The
good agreement between the results of the two methods should consolidate the
acceptance of a large change in the PtV-X bond length in linear-chain

compounds and, by implication, in other systems.

The simulations based on the transform method fit well the experimental data,
with the exception of [Pt(NH,),(SCN),J[Pt(NH,),(SCN),l,]; the graphs are given
at the end of this section (Figs. 5.16-5.24(a,b)). In that case the experimental
excitation profile appears as if resonance takes place also with a second, 'dark’
electronic state and the values obtained for the (assumed single) excited

electronic state are not consistent with the rest of the results.

The good agreement between the results of Prassides and Schatz [87] and the
experimental data, and the very different nature of their model calculations
provides a good check for the present work. The advantage of the transform

method is that it requires much less computational power than the dynamic
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solution of the vibronic Schrédinger equation and it yields not only the bond
length change, but also the vibrational wavenumber of the mode of interest in

the excited electronic state and the linear non-Condon correction parameter.
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Conclusions

The present work proposes a new method of obtaining molecular structural,
vibrational and vibronic data by linking the resonance Raman excitation profile
to the electronic absorption spectrum of the molecule. The mathematical
formalism is based on the density matrix of the molecule-radiation interaction
and on the Kramers-Kronig transform between the real and imaginary parts of

the electronic polarizability.

The foundations of the work are laid in Chapter 1 and Appendix 1, describing
the experimental technique, and Chapter 2, which describes the theoretical
model employed and its interpretation in terms of Raman and fluorescence
radiation.  Although original data presented in Appendix 2 shows the
importance of resonance fluorescence, only the resonance Raman aspect of

secondary radiation is pursued in this thesis.

The original work begins in Chapter 3, relating resonance Raman data to the
absorption spectrum through a set of equations depending on microscopic
parameters, describing the molecular structure, and macroscopic quantities to
be measured experimentally. Chapter 4 proposes a new mathematical method
for solving the equation set, and Chapter 5 presents the results of applying the

new method to chemical systems belonging to three different geometries.

The transform method proposed here (and introduced in [60]) is the first to
provide three vibronic parameters for fitting Raman excitation profiles of any

order, or the relative intensities of fundamental and overtone scattering excited
at any one wavelength. The potential energy curve displacement parameter A,
the wavenumber of the Raman mode in the upper potential energy curve V,,

and the dependence of the transition moment on nuclear coordinate(s) — the
non-Condon term (parameter m) — have all been used by others [40-52, 54, 55,

57, 58] in more limited ways. The expressions offered here lead to values for
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all three vibronic parameters simultaneously, for scattering of any order.

The formalism also separates the Raman sub-space from the non-Raman
space, thereby including temperature dependence and energy-dependent
damping in the non-Raman space. The Raman space is treated as one-
dimensional in the coordinate of the Raman mode, thus excluding Duschinsky
rotation, and thermal excitation of the Raman mode is neglected; this enhances
the efficiency of the method, but also creates its most significant limitation. The
approximations appear to be realistic for many systems where there is only a
single totally symmetric fundamental and for which the vibrational energy

considerably exceeds kgT.

The present work represents the first systematic attempt to establish the
transform method, within its limitations, as a tool for investigating the geometry
and vibrational and vibronic properties of the excited electronic states. A
substantial body of experience needs to be accumulated before the method will
be fully accepted as a complement to other structural methods used in physical

chemistry.
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Appendix 1 - Chromatic aberration and Resonance Raman

Spectroscopy"?

It has been noticed in our laboratory that the SPEX R6 instrument does not
remain focused throughout a very wide spectral range, suggesting that the
collection lens exhibits pronounced chromatic aberration. Tests assessing the
chromaticity of this instrument have been conducted on a sample of ethanol,
chosen for its wide wavenumber spread between the Raman bands - more than
2000 cm’\ the spectra are shown in Fig. A1.1.

ntensitv /rel. units

Spectrum recorded after signal optimisation

at 2920 cm'
Spectrum recorded after signal optimisation
at 883 cm '

3000 2800 2600 2400 2200 2000 1800 1500 1400 1200 1000

Wavenumber /cm

Figure A1.1 - The effect of chromatic aberration on Raman band intensities.

- from a report on the errors introduced in the collected spectra by the
chromatic aberration of the collection lens of the Raman spectrometer.
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The test procedure is simple, reproducible and unambiguous: the spectrum is
recorded first after the signal has been maximised with the monochromator
selecting one of the bands, and then after moving the monochromator at the

second band and maximising the signal solely by refocusing the collection lens.

If the intensity of the signal remains constant while the lens is refocused, the
lens is achromatic and the system is correctly focused for both wavelengths.
If refocusing the lens increases the intensity of the signal, the lens is chromatic
and the ratio R between the two signal intensities, before and after refocusing,
is a measure of the deviation from a truly achromatic behaviour; this ratio is 1.0
for an achromat, and can only be lower than 1.0 for a chromatic lens. The

results are summarised in Table A1.1.

Table A1.1
Signal intensity loss due to chromatic aberration.
R measured after the system is
Spectrometer Wavelength /nm initially focused on the band at:
883 cm™ 2930 cm”’
406.7 1.000 0.917
530.2 0.884 0.840
SPEX 1401
568.2 0.900 0.793
647.1 0.826 0.588
501.7 0.236 0.250
SPEX R6
363.8 0.160 0.158

The results obtained for the SPEX 1401 instrument have been included
because its construction is very similar to the SPEX R6, but uses a commercial

camera lens (Zeiss Planar T /1.2 - 50 mm) for light collection; the results show
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that such a lens exhibits a small chromatic aberration in the blue and green
regions, increasing moderately towards the red region of the visible spectrum,

as specified by the manufacturer.

The custom-built collection lens employed on the R6 system exhibits a very
large chromatic aberration; as an example of its effects on resonance Raman
spectroscopy, the KMnO, spectrum excited by irradiation with 514.5 nm light
loses more than 80% of the intensity of its second overtone, while the intensity
of the third overtone becomes too low to be measured. However, the published
data [8-10,71-76], as used in Chapter 5, has been recorded in our laboratory
with the SPEX 1401 instrument, which does not suffer from pronounced

chromatic aberration.

The first possibility for correcting the chromatic aberration of a light collection
system is to use a telescope-type objective, built with mirrors, instead of lenses.
The main problem with this solution is that these objectives have a short
operating distance - typically up to 24 mm - while the current generation of
cryostats place the scattering point of the sample at more than 35 mm away
from the window through which the Raman scattered light is collected (Fig. 1.3).
Thus, telescope-type objectives are ruled out for work involving cryostats and,
as low temperature is an important way of improving the signal-to-noise of
Raman and resonance Raman spectra, this solution is not suitable to this

laboratory at the present time.

A second possible solution to the chromatic aberration exhibited by the
collection lens of the SPEX R6 instrument would be to replace its custom-built
lens with a commercial camera l_ens5 with a 360-900 nm spectral transmittance
curve (Fig. 1.4), bringing the model R6 in line with the model 1401 instrument.

Optical theory can be used to calculate the extent of the chromatic aberration

® - Information obtained from the research departments of Carl Zeiss,

Nikon, Canon, Asahi Pentax and Minolta.
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and to write a computer program that would permit a more rigorous correction
than that achieved solely through the manufacturing process of camera lenses.
This correction, used in conjunction with the corrections for the instrumental
spectral response (see the dedicated section in Chapter 1) and v* (Eqn 1.8),

would result in the experimental precision required by the transform method.

The two main disadvantages of replacing the custom-made lens with a
commercially available camera lens would be a frequency-independent
decrease in throughput, by 25-30% for a /1.2 lens as compared with the /0.95
custom-made lens, and the reduced transmittance in ultraviolet of the
commercial lenses, with around 20% at 360 nm (Fig. 1.4). The reduced
transmittance in the ultraviolet region would be partly compensated by the v*

factor (Egn 1.8) and increased quantum efficiency of the photomultiplier tube.

To summarise, the chromatic aberration has been proved to introduce
significant errors in the measurement of band intensity in Raman spectra,
affecting the ability of the transform method to deliver results to its full
capabilities. The implementation of the transform method in calculations of
excited electronic state parameters requires that the experimental procedure of
obtaining resonance Raman spectra should be thoroughly understood, along
with all the possible mechanisms for error and ways for their control. As facts
presented here suggest, the only realistic solution to chromatic aberration in our
experiments is to minimise it by employing commercial camera lenses for
collecting Raman scattered light; software can be employed then to correct data

even further.
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Appendix 2 - Spectroscopy of matrix-trapped molecular
species®

Introduction

The aim of this study is to establish the structure of the S, isomers and to
provide reliable Raman and fluorescence ‘fingerprints‘ of all sulphur species

produced in an argon discharge and isolated in an argon matrix.

Sulphur vapour has been passed with excess of argon through a microwave
discharge and the resulting mixture deposited on a copper plate at a
temperature of 14 K. This doped matrix has been irradiated with 40 mW of
laser power at several wavelengths and the scattered light analysed with a
DILOR XY multichannel spectrometer. Raman and fluorescence spectra of the
matrix have been recorded and assignment of some of the bands to S, and S
species present in the matrix has been carried out. The increased intensity of
fluorescence in the spectral region of an absorption system believed to be due
to S, [92,93], with a maximum at around 530 nm, has been attributed to

resonance fluorescence of the same system.
Small sulphur elemental and heteroatomic molecules

The idea of studying small sulphur elemental molecules occurred during
preparations for the study of S_E, (m,n=2,3,4), where E=O,N,F,Cl, etc. These
binary species are interesting for their possible involvement in the combustion
of sulphur-containing fossil fuels in an atmosphere of N,+O,+small amounts of
halogen derivatives like chloro-fluoro-carbons (CFCs). These combustion
processes can produce many reactive, short-lived species as intermediates and
it has been assumed that similarly rich mixtures can be obtained by passing

N,+S, or O,+S, (1>n>9) in excess of argon through a microwave discharge.

® - from a report on experimental work, preliminary to the present thesis.
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The resulting mixtures will contain measurable amounts of elemental sulphur
species, observable along the binary combinations in any spectroscopic
investigation; hence the investigation of the mixtures containing binary species

requires investigating the small S,O,N elemental molecules.

Gas-phase investigations using Raman spectroscopy [92,93] found all species
of S, (1>n>9) in open-chain and/or ring configuration; not all Raman bands
have been unambiguously assigned, while the Raman and resonance Raman
study of the colour centres in ultramarines [94,95] have identified vibrations
corresponding to the S,, S, and S,. Raman studies conducted on the products
of a discharged SO, stream deposited as a matrix at 80 K [96,97] have
assigned the bands at 442 and 218 cm™ to S, while 3 strong bands at 585,
601 and 688 cm™ have been assumed to belong to smaller sulphur species.
These assignments have been confirmed by infrared spectroscopic studies

carried out in the gas phase and in a variety of matrices [98].

The accepted knowledge about the small sulphur clusters is that fundamental
Raman vibrations for the rings are to be expected below 500 cm™, for the
anions below 600 cm™, and for the open chains above 600 cm™. There is little
information about the fluorescence of sulphur molecules; Lenain et al. [92] have
observed a feature at 559 cm™ from the 514.5 nm excitation line in the Raman
spectrum of overheated sulphur vapour, and assigned it to the resonance

fluorescence of S,.

It is known [99,100] that there are broad electronic absorption bands at 410+15
nm for S; and at 520+15 nm for one of the S, isotopes. While S, is widely
believed to be a bent molecule with C,, symmetry, calculations suggest
[101,102] that several isomers of S, have similar energies; the most stable is
thought to be a 'D,, rectangle-shaped ring close to a (S,), structure, while a C,,
open chain lies 0.4 eV higher in energy. The same calculations found that all

triplet states of S, lie well above the 'D,, ground state.
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The matrix-isolation technique

The preparation of a matrix requires a high vacuum enclosure containing the
substrate - a cold plate maintained at the temperature required by the gas
employed to become a solid. A source of gas mixture sends a stream of
molecules through the microwave discharge in an Evenson-Broida cavity and
the resulting mixture is deposited onto the cold plate. Figures A2.1a,b describe
the experimental setup in the two stages of the experiment, the preparation of

the sample and the spectroscopic analysis of the resulting matrix.

Ar
I
L
Power :
supply ue-_-_——r_-—-r__‘_s;]
s
l
1>
' p———
L-—
High o
vacuum
pump
Closed
cycle He

Figure A2.1a - Preparation of solid argon matrices.
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Figure A2.1b - Spectroscopic analysis of a solid argon matrix.

This study has employed a specially shaped quartz tube (Fig. A2.2) to
evaporate the sulphur in a flow of argon, the flow of sulphur vapour being
controlled through controlling the temperature of the reservoir. The resulting
(Ar + S,) mixture is passed through the microwave discharge and the products
are deposited as an argon matrix doped with various sulphur clusters. At the
end of the deposition process the flow of gas is turned off and the cold plate
is turned towards a window of the high-vacuum enclosure for the spectroscopy

of the matrix, conducted in a 180° geometry.
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Apparatus used for dissociation of sulphur vapor in
matrix isolation experiments

EVENSON-
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Figure A2.2 - Sulphur vapour generator.

Experimental

The matrices have been deposited on a copper plate in the cold enclosure of
an Air Products Displex closed-cycle He refrigerator; the vacuum was better
than 3x10” torr at room temperature and better than 6x10 ®torr at 14 K

Sulphur (flowers) has been heated in the quartz tube (Fig. A2.2) using
cascaded variacs plugged directly into the mains. The temperature of the
micro-oven has been increased by approximately 1.5 °C min™ from 80 °C up to
about 125 °C where it remained stable within 5 °C. The flow of argon was
maintained continuously, at a rate of 2 - 4 mmol h'\ and the microwave

discharge was also maintained, at about 40 W power and optimal tuning.

Up to 115 °C the discharge looked pink, as a discharge in pure argon; above

115 °C the colour turned progressively to sky-blue, because of Sg emission.
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Matrix deposition lasted for about 3 hours; the estimated Ar:S ratio was

between 50:1 and 100:1 and the resulting matrix was coloured light blue.

After the deposition the cold plate carrying the matrix was turned facing the
spectrometer and irradiated with laser light, always 40 mW of power measured
before the focusing and collection lens, and using no interference filter with any
of the laser lines employed. Spectra have been recorded with a DILOR XY

triple monochromator fitted with a multichannel diode-array detector.

The first experiment tested for Raman signal between 266 and 800 cm'\ using
a 676.4 nm excitation line. With no microwave discharge, all sulphur
desublimated on the walls of the tube before reaching the matrix and no signal
was seen. By turning the discharge on, all the sulphur from the quartz tube
was removed in about 5-10 mins and deposited onto the matrix and onto the
walls of the vacuum enclosure. The matrix was then excited with 676.4, 647.1,
568.2 and 530.8 nm and the best spectrum, obtained at 568.2 nm, is shown in

Fig. A2.3.

000 BOO 700 600 fSOO 400

Figure A2.3 - Raman spectrum of a mixture of 8 A clusters embedded in a solid
argon matrix, excited by the 568.2 nm line of a Kr* laser.
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The next experiment suffered from initial temperature overshooting up to about
135 - 140 °C for about one minute and some sulphur has been deposited into
the matrix as in the first experiment. The following series of experiments was
carried out according to the procedure outlined earlier, the resulting matrices
being irradiated with 676.4, 647.1, 568.2, 530.8 and 514.5 nm laser light. Apart
from the Raman spectra (Fig. A2.3), only one other type of spectrum (Fig. A2.4)
has been obtained, for all exciting lines of wavelength shorter than 568.2 nm.

00097

AW

1 { 1 1 1
6000 5000 4000 3000 Wavenumber /cm™?

Figure A2.4 - Resonance fluorescence spectrum of a small sulphur cluster
(assumed to be an S, isomer), trapped in a solid argon matrix excited by the
530.8 nm line of a Kr* laser.

Results and discussion

The first experiment gave a good Raman spectrum (Fig. A2.3), showing the
main bands reported in the literature [92-98]; the intensity ratios of the 474.2
cm” versus the 217.2 and 150.5 cm ' bands changes as the excitation
wavelength decreases, between 1.6 : 1.6 : 1 at 6764 nmto 1.4 : 14 : 1 at
647.1 nm and 5 : 1.3 : 1 at 530.8 nm. This may indicate that the Raman

scattering from S; is resonant, removing previous ambiguity [92] in assigning
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the 474 cm " band to S, or to S,. Similarly, the 150 cm ' band is assigned to
S,, ruling out S, (see [92]).

The Raman spectrum of the first matrix confirms its composition: mainly S;, S,
and S, rings and some S, chains. This composition is due to the way the
matrix has been deposited, with a high density of sulphur preventing the break-
up of the big S, rings (5 < n < 9) and matrix-isolation of the fragments on a
large scale; on the contrary, later matrices obtained with a lower concentration

of sulphur in the discharge show an increased proportion of small species.

The fluorescence signal obtained by irradiating the matrix with light of 530.8 nm
wavelength (Fig. A2.4) consists of 5 different series of peaks from 12830 cm’
to 16990 cm™ (780 to 589 nm), together with a strong feature at about 12550
cm™ (797 nm). The spectra recorded at 514.5, 530.8 and 568.2 nm show a
marked increase in the intensity of the respective bands from 514.5 to 530.8
nm and their complete disappearance at 568.2 nm. The intensity of the 12550
cm™ feature, however, is not sensitive to changing the excitation line. While the
fluorescence producing the progressions appears to be resonant when excited
with 530.8 nm wavelength light, it is clearly not the case with the 797 nm
feature. The first part of the signal could be assigned then to one of the S,
isomers, which absorbs around 530 nm, while the second part remains to be
identified.

Conclusions

There are several different methods of preparing the S (Ar) matrix suitable for
studying small sulphur clusters and both methods used in this study have been
proved to be useful; thus the project has provided valuable experience in the

technique of matrix isolation of small, unstable species.

Some ambiguities persisting in the literature about the assignment of some

Raman bands have been removed by using several excitation lines and
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observing the changes in the relative intensity of different bands; the usefulness
of Raman spectroscopy is limited, though, by the fact that the S (Ar) matrix

contains always a mixture of species.

Resonance Raman and resonance fluorescence spectra have been recorded
but the UV-VIS spectroscopic data available are not entirely satisfactory for the
experiments described here; the UV-VIS spectroscopy of the matrix prior to the
resonance experiments would help with the selection of the excitation lines to
use. Nonetheless Raman, resonance Raman, and resonance fluorescence
have been proven successful in fingerprinting sulphur molecules, as outlined in

the introduction of this study.
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Appendix 3 - The Manneback equations

The parameters {p, q, r} found in the linear relationship between the raising and
lowering operators of two harmonic potential energy curves, the excited state
(2) and the ground state (1), need to be related to the two characteristic circular
frequencies ®,; and , and the relative displacement, A, of the minima of the
two curves (A = R (2) — R,(1)). In 1951 Manneback [103] published key
recurrence equations relating the Franck-Condon amplitudes between two
harmonic potential energy curves that have different characteristic frequencies
o, and ,, and displaced minima. The two fundamental formulae, called | and

Il in [103], are written in the bra/ket notation as

<b+ile> = — [ -prek <b-1|c> + ¢ "kl,<b|c-1> - a,<b|c> ()
(b+1)" ! "

and

<ble-1> - - :)1/2[c"2kM<b|c—1> - b"2Kl;<b-1]c> + by<blc>] . 0]
CcC+

The parameters, following the notation from [103], are in bold face and
subscripted by "M" for Manneback. Equations (2) and (3) of [103] relate these

to a measure of the displacement, M, and the two frequencies, according to:

5 12 5 12
[0
©, +, ©, +,

1/2
M ore, . T Gre,
®, + W, ®, + W,

ay

(A3.1)
0, -0,

The dimensionless displacement parameter M is further defined in terms of the

actual difference in the location of the harmonic oscillator minima A:

/2

/i +

M = 2 wherer = [ o | (A3.2)
A 2np 0,0,

Here p is the reduced mass of the oscillator and the reference distance, A, is
the square root of the average of the mean square displacements of the

oscillators in the two potentials. For practical use the units of A will be chosen

159



to be picometers (pm), those of the wavenumber (V = w/(2rc)) to be cm™ and
those of p to be atomic mass units (amu) to give:
V1V2

\1/2
M = 1.7222115><10‘3u”2A{__J : (A3.3)

V,+V,

Equations | and Il will be generated using Eqns (3.31a,b), thereby linking the
parameters {p, g, 1} to those of [103] and thus relate {p, g, 1} to {®,, ®,, A}.
Given that

& =p+qa - ra,, (A3.4)
4, =p+qa +ra,

with {|b>} the eigenkets of H,:

al|b> = (b+1)"2|b+1>, <bla, = (b+1)"<b+1| , (A3.52)
a,|b> = (b)"?|b-1>, <b|a} = b"<b-1],

and similarly with {|c>} the eigenkets of H,

allc> = (c+1)™|c+1>, <cl|a, = (c+1)"<c+1] , (A3.5b)
a,|c> = (c)"?|c-1>, <c|al = (c-1)"<c-1] ,

the matrix element of 4, between two arbitrary states b and ¢ can be written,

respectively, as

<bla,|c> = (b+1)"2<b+1|c> (A3.6a)
and
<bla,|c> = <b|(p-qa,+ral)|c> (A3.6b)

= p<b|c> + ¢ g<b|c-1> + (c+1)"2r<b|c+1>

or, by eliminating <bla,|c> between Eqns (A3.6a) and (A3.6b), as

(b+1)"2<b+1|c> = p<b|c> + c"g<b|c-1> + (c+1)"2r<blc+1> . (A3.7)

Similarly the matrix element of &, between two arbitrary states b and ¢ can be
written respectively as
<blal|c> = b"2<b-1|c> (A3.8a)

and
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<blaj|c> = <b|(p + q&] + ra)|c> (A3.8b)
= p<b|c> + (c+1)"2q<b|c+1> + c"2r<b|c-1>.

<b|c+1> can be isolated from Eqn (A3.8b) as

<blc+1> = ;[b"z 1 eb-1[e> - ¢ L <blc-1> - [P <b|c>] (Iry
(c+1)2 q q q

and comparing coefficients of like terms in Eqns (Il and II’) yields:

’
bM=_%, K= 2, k,=-

I (A3.9a)
q q

Now <b-+1|c> can be obtained by eliminating <c|b+1> between Eqgn (A3.7) and

Egn (II') as

<b+1]c> = — [pq Fbles + ¢ 9" o> + b2l <b—1|c>]. ()
(b+1)" q q

Comparing coefficients of like terms in Eqns (I) and (I') yields:
— 2_,p2

ay = AL ko= [ ke = |1 (A3.9b)
q q q

Equations (A3.9a,b) are consistent and with Eqn (A3.1) lead, finally, to

1/2

b= -M (@-a) | (@ 0) (0, - ,) (A3.10)

20)1 2(0)20)1)1/2 2(0)2(01)1/2

and, with Eqn (A3.3),
p = -1.2177874 x 103u"23,%A . (A3.11)
Based on the expression for r (Eqn (A3.10)), # can be considered small

(r?<0.01 <=> r?«1) for a relative frequency change (®,-®,)/®, < 18.2%.

Thus, in Eqns (A3.10,A3.11) the parameters {p, g, r}, connecting the raising
and lowering operators of the excited and ground states, have been expressed

in terms of experimentally accessible quantities, ultimately establishing the

relationship between the resonance Raman data (o,,®,) and the molecular

structure (,A).
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Appendix 4 - Performance tests for the numerical
implementation

The performance is an important factor in establishing a new numerical method
and it is one of the aims of the present work to provide an accessible way of
obtaining information about molecular structure. As computer implementation
can deliver results within a wide performance range, simulation tests have been
carried out prior to programming a computer for solving Eqns (3.53a,b, 3.54,
4.2a-c, 4.3a-c, 4.6, 4.7, 4.18), in order to obtain an estimate of the performance

to be expected from the program.

The bulk of the computational effort is represented by the calculation of the
integral (Eqn (4.18)) and of the polarisability o, (o) for each n=1,2,3,4 (Eqns
(3.53a,b)); the test program has been written to include many operations similar

to these tasks, repeated a large number of times through nested loops. The
function to be calculated is

XN: lg Sin[exp(jsi'n(1/j))] ’

i 1 /
where N is the number of outer loops completed in one minute. The program
performing the sum above has been compiled in different programming

languages and a generic, language-independent version is given below for

illustrative purposes:

sum = 0
for i = 1 to 50000
for j = 1 to 100
sum = sum + ( ( sin( j * exp(sin(1/3) )/1i ) /1)
next j
print i

next 1.

The results of running the test program on different machines, after

recompilation and optimisation, are presented in Table A4.1.
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Table A4.1

Performance of different computer systems (in program loops per minute).

IBM PC compatible computers, Intel Sun
Language microprocessors workstation
i286 i386SX25+i387| i486DX33 Sparc 5
BASIC 65 1200 1900 n/a
FORTRAN 75 2400 5200 n/a
C 350 3000 7000 16500

The results show that, apart from a marked increase in performance with the

power of the hardware, the choice of computer programming language makes

a significant difference in the speed of the calculation. Thus, the programs

used in implementing the transform method in this thesis have been written in

C and run on the hardware available then.

As hardware becomes more

powerful, the portability of programs written in C ensures that this

implementation will not be made obsolete prematurely by the technological

progress in computer hardware.
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Appendix 5 - Transform program

The program used in Chapter 5 to solve Egns (4.1a-d) and obtain the
parameters A,V_, m for different chemical systems is included here for reference

purposes; some of its routines have been included in other programs, used in

fitting experimental Raman Excitation Profiles and Resonance Raman spectra.

#include <math.h>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <dos.h>

struct abs {

int n;
double x[3000], vy[3000], ra[8], ial[8], dfr, xi, m;
double xi2, mx, dxi2, step, ni, ne; };

int main(int argc, char *argv][])
{ FILE *stream;
struct abs absorp, *a = &absorp;
struct date d;
struct time t;
int i;
char data[30], absorption[30], search[30], output[30];
char *string;
void trans(struct abs *);
double alphal (struct abs *), alpha2(struct abs *);
double alpha3 (struct abs *), alpha4d (struct abs *);
double miu_r, ct, nr, dsp, rtl, rt2l, rt3l, rt4dl;
double y1, y21, y31, vy41l, X1, Xm = 1.0;
double m_min, dsp_min, ne_min, m_max, dsp_max, ne_max;
double dm, dd, dn, ymin = 1.0, nc = 0;
strcpy(data, argv[l]);
strcat (data, "41.dat");
strcpy (absorption, argv(l]});
strcat (absorption, ".abs");

strcpy (search, argv([1l]);
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strcat(search, ".src");
strcpy (output, argv[l]);
strcat (output, "6.out");

stream = fopen(data, "r");

miu_r = atof (fgets(string, 10, stream));

nr = atof (fgets(string, 10, stream));
a->ni = atof(fgets(string, 10, stream));

vl = atof (fgets(string, 10, stream));
y21 = atof (fgets(string, 10, stream))/yl;
y31 = atof (fgets(string, 10, stream))/yl;
v4l = atof (fgets(string, 10, stream))/vyl;

ct (-0.0002435574) * sgrt(miu_r * nr);

fclose(stream) ;

stream = fopen(absorption, "r");
a->n = atoi(fgets(string, 20, stream)) - 1;
for (i = 0; 1 <= a->n; i++) |

a->x[i] = atof(fgets(string, 20, stream));

a->y[i] = atof(fgets(string, 20, stream));
if (ymin >= a->y[i]) vymin = a->y[i];

}
for (i = 0; i < a->n; 1++)
nc = nc + (a->y[i+l] + a->y[i]) *
(a->x[1i+1] - a->x[1i]) / 2;
nc = nc - ymin * (a->x[a->n] - a->x[0]);
for (i = 0; 1 <= a->n; i++)
a->y[i] = a->yl[il/a->x[il/nc;

fclose(stream) ;

stream = fopen(search, "r"):;

m_min = atof (fgets(string, 9, stream));

dsp_min = atof (fgets(string, 9, stream)) + 0.00001;
ne_min = atof (fgets(string, 9, stream)) + 0.00001;
m_max = atof (fgets(string, 9, stream));

dsp_max = atof (fgets(string, 9, stream));

ne_max = atof (fgets(string, 9, stream));

dm = atof (fgets(string, 9, stream));

dd = atof (fgets(string, 9, stream));

dn = atof (fgets(string, 9, stream));

fclose(stream) ;
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stream = fopen(output, "a"):

getdate (&d) ;

gettime (&t) ;

fprintf (stream, "\t%d. %d. %d\t%d:%02d\n",
d.da_day,d.da_mon,d.da_year,t.ti_hour,t.ti_min);

fprintf(stream, "n0 = %.1f\tnmax = %$.1f\tdn = %.1f\n",
ne_min, ne_max, dn);
fprintf (stream, "d0 = %.2f\tdmax = %.2f\tdd = %.2f\n",
'dsp_min, dsp_max, dd);
fprintf (stream, "m0 = %.3f\tmmax = %$.3f\tdm = %.3f\n",
m_min, m_max, dm);
puts("calculating...");
char *outformat = "%.1f\t%.1E\t%.3£\t%.7f\n";
a->ne = ne_min;
while (a->ne <= ne_max) {
a->dfr = (a->ne - nr)/(a->ne + nr);
trans(a);
dsp = dsp_min;
while (dsp <= dsp_max) {
a->xi = ct * dsp * a->ne/(a->ne + nr);
a->xi2 = a->x1i * a->xi;
a->dxi2 = a->dfr * a->xi2;

a->m = m_min;

while (a->m <= m_max) {
a->mx = a->m * a->xi;
rtl = alphal(a);

rt21 = alpha2(a)/rtl - y21;
rt31l = alpha3(a)/rtl - y31;
rt4l = alphad(a)/rtl - y41l;

X1l = rt21 * rt2l + rt3l * rt3l +
rtdl * rt4dl;
if (X1 < Xm) {
Xm = X1;
printf("%.5£\t", X1);
fprintf (stream, outformat,
a->ne,dsp,a->m,X1);
}
a->m = a->m + dm;
}
dsp = dsp + dd;
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}

a->ne = a->ne + dn;

gettime (&t);
fprintf (stream, "\t------- $d:%02d-------—- \n",

t.ti_hour,t.ti_min);

fclose(stream) ;

return 0;

}
double alphal (struct abs *a)
{ double re, im, c0, cl, c2;
c0 = a->m - a->xi;
cl = a->xi * (1 - a->dfr) + a->m;
c2 = a->dfr * a->xi;
re = a->ral[2] * c2 + a->ral[l] * cl + a->ra[0] * cO;
im = a->ia[2] * c2 + a->iall] * cl + a->ial0] * cO0;
return (re * re + im * im);
}
double alpha2 (struct abs *a)
{ double re, im, c0, cl, c2, c3;
c0 = a->x1i2 - 2 * a->mx - a->dfr;
cl = 2 * (a->dxi2 - a->xi2);
c2 = a->xi2 - 4 * a->dxi2 + 2 * a->mx + a->dfr;
c3 = 2 * a->dxi2;
re = a->ra[3] * ¢3 + a->ra[2] * ¢2 + a->ra[l] * cl +
a->ra[0] * cO0;
im = a->ia[3] * ¢3 + a->ia[2] * c2 + a->ial[l] * cl +
a->ial[0] * cO0;
return ((re * re + im * im)/2);
}
double alpha3(struct abs *a)
{ double re, im, c0, cl, c2, c3, c4;
c0 =3 * (a->mx + a->dfr) - a->x12;
cl =3 * (a->xi2 - a->dxi2 - a->mx - a->dfr);
c2 = -3 * (a->x12 - 3 * a->dxi2 + a->mx + a->dfr);
c3 = a->xi2 - 9 * a->dxi2 + 3 * (a->mx + a->dfr);
cd = 3 * a->dxi2;
re = a->ral[4] * c4 + a->ra[3] * c3 + a->ral[2] * c2 +
a->ral[l] * ¢l + a->ral[0] * cO;
im = a->ia[4] * c4 + a->ia[3] * ¢3 + a->ia[2] * c2 +

a->ial[l] * cl + a->ia[0] * cO;
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return (a->xi2 * (re * re + im * im)/6);

}
double alphad (struct abs *a)
{ double re, im, cO0, cl, c2, c3, c4, c5;
c0 = a->xi2 - 4 * a->mx - 6 * a->dfr;
¢l = - 4 * (a->xi2 - a->dxi2 - 2 * a->mx - 3 * a->dfr);
c2 = 6 * a->xi2 - 16 * a->dxi2;
c3 = -4 * (a->xi2 - 6 * a->dxi2 + 2 * a->mx + 3 * a->dfr);
cd = a->xi2 - 16 * a->dxi2 + 4 * a->mx + 3 * a->dfr;
ch = 4 * a->dxi2;
re = a->ra([5] * ¢5 + a->ra[4] * c4 + a->ra[3] * c3 +
a->ra[2] * ¢c2 + a->ra[l] * cl + a->ra[0] * <O;
im = a->ia[5] * ¢5 + a->ia[4] * c4 + a->ia[3] * c3 +
a->iaf[2] * c2 + a->iall] * cl + a->ial0] * cO;
return (a->xi2 * a->xi2 * (re * re + im * im)/24);
}
void trans(struct abs *a)
{ int i, 3, 3ji1, j2, 33;
double ac, bc, cc, en;
for (i = 0; i <= 5; i++)
{ j = 0;
a->ral[i] = 0;
en = a->ni - i * a->ne;

while (a->x[j+2] < en) ({
jl =3 + 1;
a->rali] = a->rali] + (a->y[jl] * (en - a->x[3j])
+ a->y[j] * (a->x[jl] - en))/
(a->x[jl] - a->x[j]) *

log((en - a->x[jl])/(en - a->x[j1));

j = 3l;

}

j2 =3 + 2;

j3 =3 + 3;

ac = ((a->y[33] - a->y[3])/(a->x[33] - a->x[3j]) -
(a->y[32] - a->y[jl)/(a->x[32] - a->x[j1))}/

(a->x[33] - a->x[j2]);

bc = (a->y[33] - a->yl[3j])/(a->x[33] - a->x[3j]) -
ac * (a->x[3j3] + a->x[jl);

cc = a->y[j] - bc * a->x[j] - ac * a->x[j] * a->x[]j];

a->ia[i] = ac * en * en + bc * en + cc;

a->ral[i] = a->rali] + ac * (a->x[3j3] * a->x[j3] -
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a->x[j] * a->x[j])/2 +
(ac * en + bc) * (a->x[j3] - a->x[31);
a->ral[i] = a->ral[i] + a->y[a->n] - a->y[j3] + a->y([j]
- a->y[0] + a->iali] *
log((a->x[j3] - en)/(en - a->x[3jl));
j = 33:;
while (j < a->n) {
jl =3 + 1;
a->rali] = a->ra[i] + (a->y[Jjl] * (en - a->x[j])
+ a->y[j] * (a->x[jl] - en))/
(a->x[j1] - a->xI[3j])
* log((en - a->x[3j1])/(en - a->x[3]));
j o= 31;
}

a->rali] = a->ra[i]/3.14;
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