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Abstract

We address the problem of randomized learning and generalization of fair
and private classifiers. From one side we want to ensure that sensitive in-
formation does not unfairly influence the outcome of a classifier. From the
other side we have to learn from data while preserving the privacy of indi-
vidual observations. We initially face this issue in the PAC-Bayes framework
presenting an approach which trades off and bounds the risk and the fairness
of the randomized (Gibbs) classifier. Our new approach is able to handle
several different state-of-the-art fairness measures. For this purpose, we fur-
ther develop the idea that the PAC-Bayes prior can be defined based on the
data-generating distribution without actually knowing it. In particular, we
define a prior and a posterior which give more weight to functions with good
generalization and fairness properties. Furthermore, we will show that this
randomized classifier possesses interesting stability properties using the al-
gorithmic distribution stability theory. Finally, we will show that the new
posterior can be exploited to define a randomized accurate and fair algorithm.
Differential privacy theory will allow us to derive that the latter algorithm
has interesting privacy preserving properties ensuring our threefold goal of
good generalization, fairness, and privacy of the final model.
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1. Introduction

Randomized models and learning algorithms are nowadays becoming a
trending research interest because of their effectiveness in many real world
applications [I} 2]. From the Deep and Shallow Neural Networks [3, 4] to the
Extreme Learning Machine [5] and the Ensemble Methods [6], randomness
plays a crucial role in improving the effectiveness of a learning paradigm.
The idea of using randomness to enrich the set of models [7], to improve the
optimization techniques [8], or to improve the generalization capabilities of a
model [9] has been a breakthrough which allowed to develop techniques such
as Dropout [10] or Random Forest [11], [12].

At the same time, it is becoming increasingly important to construct
models able to exhibit privacy and fairness properties, namely to ensure the
ability to learn from data while preserving the privacy of individual observa-
tions and to ensure that sensitive information (e.g. knowledge about gender
of an individual) does not unfairly influence the outcome of a learning algo-
rithm.

The problem of learning from data while preserving the privacy of individ-
ual observations has a long history and spans over multiple disciplines [13-15].
One way to preserve privacy is to corrupt the learning procedure with noise
without destroying the information that we want to extract. Differential
Privacy (DP) is one of the most powerful tools in this context [15], 16]. DP
addresses the problem of keeping private the information about an individual
observation while learning useful information about a population. In partic-
ular, a procedure is DP if and only if its output is almost independent from
any of the individual observations. In other words, the probability of a cer-
tain output should not change significantly if one individual is present or not,
where the probabilities are taken over the noise introduced by the procedure.
In the last years, DP has been deeply studied from a theoretical point of
view [I7H28] and exploited to develop new learning strategies for solving real
world problems [29H36]. Another way to preserve privacy is to federate the
learning procedure in order to keep the data decentralized and not distribute
sensitive information [37H41]. Although this approach sounds plausible, it is



not supported by statistical or privacy guarantees if no additional privacy
preserving layers are added [42, [43].

Another problem which lately received a lot of attention is algorithmic
fairness [44H58]. The central question is how to enhance learning algo-
rithms with fairness requirements, namely ensuring that sensitive information
(e.g. knowledge about the ethnic group of an individual) does not ‘unfairly’
influence the outcome of a learning algorithm. For example if the learning
problem is to decide whether a person should be offered a loan based on the
previous credit card scores, we would like to build a model which does not
unfairly use additional sensitive information such as race or sex. Several mea-
sures of fairness of a classifier have been studied in the literature [59, 60] like
the Demographic Parity (DPa) [61], the Equal Odds (EOd) and the Equal
Opportunity (EOp) [47], the Disparate Treatment, Impact, and Mistreat-
ment [48], among others. Works on algorithmic fairness can be divided in
three families. Methods in the first family modify a pre-trained classifier in
order to increase its fairness properties while maintaining as much as possi-
ble the classification performance [47, [62H64]. Methods in the second family
enforce fairness directly during the training step [45, 60, [65, 66]. The third
family of methods implements fairness by modifying the data representation
and then employs standard machine learning methods [45, [49] 52 67-70].
All methods in the previous families have in common the goal of creating a
fair model from scratch on the specific task at hand. This solution may work
well in specific cases, but in a large number of real world applications it is
common to perform a fine tuning over pre-trained models [71], keeping the
internal representation fixed. Indeed, most modern machine learning frame-
works (especially the deep learning ones) offer a set of pre-trained models
that are distributed in so-called model zood'] Unfortunately, fine tuning pre-
trained models on novel previously unseen tasks could lead to unexpected
unfairness behavior, even starting from an apparently fair model for pre-
vious tasks (e.g. discriminatory transfer [72], or negative legacy [73]), due
to missing generalization guarantees concerning the fairness property of the
model. For this reason many recent methods try to address the problem of
learning a fair representation not just a fair model [49] 63] [74-81].

In this paper, we address the problem of randomized learning and gener-
alization of fair and private classifiers. From one side we want to ensure that

1See for example the Caffe Model Zoo: github.com/BVLC/caffe/wiki/Model-Zoo
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sensitive information does not unfairly influence the outcome of a classifier.
From the other side we want to ensure to be able to learn from data while
preserving the privacy of individual observations. We first face this issue in
the PAC-Bayes (PB) framework and we present an approach which trades
off and bounds the risk and the fairness of the Randomized (Gibbs) Classi-
fier (RC), together with the Bayes Classifier (BC) which is its deterministic
counterpart, measured with respect to different state-of-the-art fairness mea-
sures (e.g. EOp, EOd, and DPa). For this purpose, we exploit further the
idea that the PB prior can be defined based on the data-generating distri-
bution without actually needing to know it. In this sense, we define a prior
and a posterior with the goal of giving more weight to functions with good
generalization and fairness properties. Furthermore, we will show that this
randomized classifier possesses interesting stability properties using the Al-
gorithmic (Distribution) Stability (AS) theory. Finally, we will show that
the new posterior introduced for building an accurate and fair RC can be
exploited to define an accurate and fair Randomized Learning Algorithm
(RLA). The latter will also show to possess interesting privacy preserving
properties ensuring generalization, fairness, and privacy of the final model.
DP theory will allow us to derive such results.

To the best of our knowledge, our approach is the first one that is able to
face the problem of learning from data under fairness and privacy properties,
backed up by three different theoretical frameworks. The only paper which
addresses a similar problem is [82] — but with several differences with respect
to ours. First, [82] is able to deal with a single notion of fairness, while our
approach is able to deal with a large family of them, and also with different
kind of sensitive attributes. Secondly, the theoretical analysis of [82] is based
on classical statistical learning theory, characterized by loose constants and
rates of convergence. Our work, instead, is backed up by three different state-
of-the-art tools (PB, AS, and DP theories) and shows optimal constants and
rates of convergence. Thirdly, the post processing technique proposed in
[82] — as also stated by the authors — is suboptimal with respect to the in
processing techniques (like the one we propose in this paper). Moreover, the
method in [82] requires the knowledge of a subroutine that can optimally
solve classification problems absent from fairness constraint and even of the
protected attribute at test time. Our method instead does not require any
of these constraints. Finally, [82] introduces privacy with a simple Laplacian
mechanism of perturbation of the outputs of the non-private counterparts
of the algorithms (previously developed by [47, [65]) while our method is
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intrinsically fair and private by construction.

In order to better understand our results, let us clarify the difference be-
tween deterministic and randomized models and learning algorithms in the
context of classification. A Deterministic Classifier (DC) assigns always the
same label given an input, while an RC may assigns different labels to the
same input if we repeat the labelling process. Analogously, a Determinis-
tic Learning Algorithm (DLA) learns the same DC (or RC) if we keep the
training set fixed, while an RLA may learn a different DC (or RC) even if
we keep fixed the training set repeating the learning process. In order to
estimate the generalization performance of an RC the PB theory is one of
the sharpest analysis frameworks, since it can provide tight bounds on the
risk of the RC and BC [83]. The RC chooses a classifier in the set of classi-
fiers according to a posterior distribution each time a new sample has to be
classified [84] while the BC takes the decision based on the expected value
of the RC over the posterior distribution [83]. In particular, in the PB the-
ory a prior distribution over the different classifiers must be defined before
seeing the data, then, based on the available data, a posterior distribution
can be chosen, and the risk of the associate RC and BC is computed, based
on the empirical risk and the divergence between the prior and posterior
distributions [85]. The PB theory bounds the risk of the RC [85], while the
C-bound bounds the error of the BC based on the properties of the RC [86].
The first result of this work is to derive a PB-based bound on the fairness
(measured with the EOd or EOp or the DPa) of a RC model. Then we focus
on the problem of choosing the right posterior and prior distributions since
the divergence between prior and posterior distributions forms part of the
bound. This choice is critical: in some cases this choice proves to be too
generic and not suited for the particular problem [84], other times some data
are kept apart from the learning process and exploited to derive a generally
good prior [87, B8]. Consequently, in the first case the divergence term in
the PB analysis can typically be large, while in the second case the bound
tends to be loose since some data are wasted in order to design the prior. In
order to address this issue in [89] a localized PB analysis is proposed, which
uses a Boltzmann prior distribution defined in terms of the distribution that
generated the data. Note that, since the prior depends on the distribution,
the PB analysis is still valid because the prior is defined before observing the
data [84], 89, [00]. By tuning the prior to the distribution, Catoni was able to
remove the divergence term from the bound, hence significantly reducing the
complexity penalty. Note that other approaches for removing the divergence



exist. One approach is to design a prior and a posterior such that they are
aligned [83, O], [92]. The second one is to design a so called expectation-prior
which does not require any separate set of data to build a prior which will be
probably close to the posterior [88]. Every approach has its own strengths
and weaknesses but the approach of Catoni seems to be the most promising
one [84] 89, 90] even if using Boltzmann distributions in some contexts can
be seen as a limitation [84]. In fact, keeping the divergence term allowed
many researchers to design new model selection methods and learning algo-
rithms [93-H05]. Nevertheless, in this work we exploit the idea of Catoni and
we define a Boltzmann prior and posterior which give more weight to func-
tions which exhibit good generalization and fairness properties and we show
that it is possible to remove the divergence term from the bound on the risk
and the fairness of the corresponding RC. Then we analyze the RC induced
by the newly defined fair and accurate posterior through the use of the AS
theory originally developed in [90, [06HI05] and then further refined in [90), O]
to deal with the RC. AS allows to give an answer to a fundamental question
in learning theory, namely what are the general conditions for predictivity.
AS answers this question in a very intuitive way: if the algorithm selects
similar hypothesis, even if the training data are (slightly) modified, then we
can be confident that the learning algorithm is stable [97]. For RC the AS
theory proves that, if the criteria used to define the posterior distribution
based on the available data do not change too much when the training data
are (slightly) modified, then the associated RC will have good generalization
performance [106]. In this work we show that the newly posterior fair and
accurate distribution inspired by the works of [84) 89, 00] has the AS prop-
erty, which allows us to bound the risk and the fairness of the RC in a new
way. By exploiting the C-bound it is also possible to bound the risk of the
associated BC [83] [86]. Finally, we will show how to use the newly intro-
duced fair and accurate posterior in order to develop a RLA algorithm which
exploits the same randomness introduced by this posterior distribution. In
particular, we will show that this RLA may possess better generalization,
fairness, and privacy properties than the RC which exploits the fair and ac-
curate newly introduced posterior, even if they are both based on the same
data dependent posterior distribution. For this purpose we will use the DP
theory. DP addresses the problem of keeping private the information about
an individual observation while learning useful information about a popula-
tion [I5]. In particular, a procedure is DP if and only if its output is almost
independent from any of the individual observations. DP allowed to reach
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Table 1: Abbreviations and Symbols
Abbreviation \ Description

DLA Deterministic Learning Algorithms
RLA Randomized Learning Algorithms
DC Deterministic Classifier

RC Randomized (Gibbs) Classifier

BC Bayes Classifier

PB PAC-Bayes

AS Algorithmic (Distribution) Stability
DP Differential Privacy

EOp Equal Opportunity

EOd Equal Odds

DPa Demographic Parity

KLD Kullback-Leibler Divergence

a milestone result by connecting the field of privacy preserving data analy-
sis and the generalization capability of a randomized learning algorithm. In
particular DP allows to prove that a RLA which shows DP properties also
generalizes [I07HI09], namely we can effectively bound the risk of the selected
model. In this work, we will derive a DP-based bound on both the risk and
the fairness of the model selected with the RLA which exploits the fair and
accurate newly introduced posterior.

The paper is organized as follows. Section [2]introduces the notation while
reports the state-of-the-art results needed for taking into ac-
count fairness and privacy issues for both RC (Appendix A.l)) and/or RLA
(Appendix A.2)) in the framework of the PB (Appendix A.1.1), AS (Ap
pendix A.1.2)), and DP (Appendix A.2) theories. Section [3| presents our
proposal by first defining a RC, in the PB theory framework, where the prior
and the posterior give more weight to functions which exhibit good general-
ization and fairness properties and then by showing that this RC possesses
interesting properties in the AS theory framework (Section . Then, in
Section (3.2, we will show that the proposed posterior can be exploited to
define an accurate and fair RLA which is shown to possess interesting pri-
vacy preserving properties ensuring generalization, fairness, and privacy of
the final model. reports the proofs not reported in Section [3]
Finally, Section [4 concludes the paper. In order to improve the readability
of our work, Tables [1| and [2] report, respectively, the abbreviation and the
symbols used in the paper.




Table 2: Abbreviations and Symbols

’ Symbols \ Description

X Input space

S Group membership {1,-- -, k}

y Set of binary output labels {—1,+1}

Z XxSxY

n Number of samples

D Zzn

P, Ps, By, Bz | Unknown probability distributions over X, S, Y, and Z
respectively

Bp Distribution of probability induced by Bz over D

X,S8,Y, Z D Random variables sampled from X, S, )Y, Z, and D accord-
ing to P, BLs, By, Pz, and Pp respectively

x, 8, Y, 2z, d Element in X, S, YV, Z, and D respectively

o Placeholder for one of the following symbols {—, 4+, —V +}

dgo {(z,8,9): (z,8,y) €d,s =g,y =1}

Ng,o |dg,o]

d\i d \ Z

di d\' U %

d d® where i in {1,--- ,n} and 2; from Z according to Pz

H Set of DC

h DC in H

Q Probability distribution over H

Gy RC

By BC

o A DLA or a RLA that maps a dataset d into an DC or a
RC

Lo Probability  distribution  that  encapsulates  non-
deterministic rules behind the RLA

4 A loss function such that ¢ : H x Z — [0, 1]

RY(- Risk of a DC or an RC measured according to ¢

Eg(- Empirical Risk of a DC or an RC measured according to ¢
over d

kl KLD function

KL KLD

F'() Fariness of a DC or an RC measured according to ¢

F ‘() Empirical Fairness of a DC or an RC measured according

to £ over d




2. Preliminaries

Let us consider the binary classification problem [I10] and the nota-
tion needed for taking into account fairness [45, 47] and privacy issues [15]
107, 111, 112] for both RLA and/or RC [1I3] in the framework of the
PB [84, 00, 95], AS [90, 98], and DP [107, 112] theories [9]. Let d =
{z1,-+ ,zn} = {(x1,81,91), -+, (Tn,Sn,yn)} be a sequence of n samples
drawn independently from an unknown probability distribution Bz over
Z =X x8xY, where Y = {—1,+1} is the set of binary output labels,
S ={1,- - k} represents group membership, and X" is the input space. We
indicate with Py, Ps, and Py respectively the distributions over X', S, and
Y. We indicate with X, S, Y, and Z the random variable sampled respec-
tively from X, S, Y, and Z according respectively to B, Bs, Py, and Poz.
In this new perspective, d is a dataset inside the space of all the possible
datasets D = Z", *Pp is the distribution of probability generated by Pz over
D and D is a random variable sampled from D according to Bp.

For every g € § and operator ¢ € {—,+, — V +}, we define the subset of
training points negatively or positively labeled which belongs to the group g
as dygo = {(z,s,y) : (x,s5,y) € d,s = g,y = o1} where ny, = |d,o|, noting
that dy _vy+ = {(z,s,y) : (z,s,y) €d,s = g}.

We denote a series of auxiliary datasets with d\ = d\ z;, with d* = dViUZ
and with d = d* where i may assume any value in {1,--- ,n} and Z; is sampled
from Z according to Pz.

Let us consider a DC h belonging to a set H of possible ones, whose
functional form may h : X x & — R or may not A : X — R, consider the
sensitive feature.

A RC, instead, draws an h € H, according to a probability distribution
Q over H, each time a label for an input x € X is required. We will call Gy
this RC.

A DLA & maps a dataset d into a classifier (which can be both a DC
or a RC). A RLA, instead, maps a dataset into a classifier (which can be,
again, both a DC or a RC but for the purpose of this paper it will be always
a DC) with non-deterministic rules that can be encapsulated in a probability
distribution ., over the whole possible set of classifiers (in our case over H)
given the dataset at hand (in our case d).

The accuracy of h € H in representing the unknown relation between
input and output space is measured with reference to a prescribed [0, 1]-
bounded loss function ¢ : H x Z — [0, 1]. Hence, we can define the true risk



(or generalization error) of h, namely generalization error, as
R'(h) = Ez{((h, Z)}, (1)

Since Bz is unknown, R‘(h) cannot be computed. Therefore, we have to
resort to its empirical estimator, the empirical error

R4(h MZMZ (2)

z€d

Also for G, we can define its risk together with its empirical counterpart,
respectively

R!(Gg) = Ena{ (W)} and  Ry(Go) = EnaRi(h). (3)
The deterministic counterpart of Gjg, namely the BC By, is defined as
Bq(2(; 5)) = En~gh(2(, 5)) (4)

and, consequently, its true and empirical error are, respectively

R!(By) = Egl(B, Z) and Ri(By) = | d|2 (Ba. 2) (5)

Let us recall, in the PB theory framework, the definitions of the Kullback-
Leibler Divergence (KLD) function [IT14] of two real numbers in the interval
(0,1) as

q l—gq
qup:qln[—]+1—qln[ ], (6
lallp] | T dinie— )
and the KLD between two distributions [114] Q and P over F as KL[Q||P].
The fairness of the mode]ﬂ h € H, instead, can be measured with respect
to many notions of fairness [45], 47, 60]. For a deterministic model we can
use the EOp constraint defined as EOp® for ¢ € {—,+} as

PL{W(X(,8))>0|S=1,Y =0l}=--- =P {h(X(,S))>0|S=k, Y =01}, (7)

2Remember that the functional form of the model may depend or not on the sensitive
feature and so we will write h(z(, s)).
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since we can define the EOp of the positively (EOp™) or negatively (EOp™)
labeled samples, or the EOd constraint defined as the concurrent verification
of the EOp™ and EOp~, or also the DPa constraint defined as

Pz{n(X(,8))>0[8=1} = --- = Pz{h(X(, §))>0|5=k}, (8)

which is equivalent to the EOp~V*. Since h, in general, will not be able to
exactly fulfill the EOp® constraint with ¢ € {—, 4}, nor the EOd constraints,
nor the DPa constraints we define the Difference of EOp®, namely DEOp®(h),
with o € {—,+} as

LS Pa{h(X(,8))>018=g, ¥ =01} — P(h)]. )
geS
where
kZPZ{h S))>0|8=g,, Y =01}, (10)
g2€S

the Difference of EOd, namely DEOd(h), which is defined as the average
value between the DEOp*(h) and DEOp~ (h), and the Difference of DPa,
namely DDPa(h), as

kz Pz{h(X(,8))>0[S= 91}——sz{h S))>0[S=g.}|. (11)
g1E€S g2€S8

Note that all these fairness measures can be reformulated as difference of
risks [45] [60]. In particular, let us define the Hard loss function ¢, namely
the function which detects a classification

Cu(h, z) = Kyh(z(,s)) < 0}. (12)
Then the EOp® constraint for o € {—, +} can be defined agJ]

R (h) == Ry (h), (13)

*Note that, Ry (h) = Ez{((h,Z)|S =i,Y =ol}
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and consequently the DEOp®(h) for ¢ € {—,+} can be defined as

T Z () =) R (). (14)

91 €S g2€S

Analogously it is possible to reformulate the EOd and the DPa together with
the DEOd(h) and the DDPa(h). In order to simplify the presentation from
now on we will focus on the EOp™ and the DEOp™(h) which we will call
respectively, for brevity, EOp and F'(h) and to the case when k = 2 since the
extension to the more general case is conceptually trivial but rather technical.
Then the EOp constraint can be be defined respectively as

Ry

di 4

(h) = Ryl (h), (15)
and the F'(h) can be be defined respectively as

F(h) = |R"

di 4

(h) = Refl ()] - (16)

As we did for the risk we can also define the empirical EOp constraint, namely
EOp

Ry (h) = Ryt (h), (17)
and the empirical F(h), namely Fy(h), as
Falh) = |l () = Bz (). (18)

Analogously, it is possible to define the EOp constraint and the F(Gy) for a
RC respectively as

Rl (Go) = R (Go) and  F(Gq) = |Rif (Ga) = R (Ga)|,  (19)

together with their empirical counterparts
Rl (Go) = R (Go) and  Fa(Ga) = |RY (Ga) = R (Go)| . (20)

reports the state-of-the-art results needed for taking into ac-
count fairness and privacy issues for both RC (Appendix A.l)) and/or RLA

(Appendix A.2)) in the framework of the PB (Appendix A.1.1), AS (Ap-
pendix A.1.2), and DP (Appendix A.2)) theories.
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3. Fair and Private Randomized Learning

In this section we will extend the state-of-the-art results on Randomized
Learning and generalization (see Section [2| and to the problem
of learning accurate and fair models without compromising the privacy of
the individual observations. For this purpose, we further develop the idea
that the PB prior can be defined based on the data-generating distribution
without actually needing to know it. In particular, we define a prior and a
posterior giving more weight to functions which exhibit good generalization
and fairness properties. Furthermore, we will show that this RC possesses
interesting stability properties using the AS theory. Finally, we will show
that the new posterior introduced for building a randomized accurate and
fair classifier can be exploited to define accurate and fair RLA. Exploiting DP
theory, we will also show that the accurate and fair RLA possesses interesting
privacy preserving properties ensuring generalization, fairness, and privacy
of the final model. In order to improve the readability of this section, we
have included a summary our results in Table [3]

3.1. Fair Randomized Classifiers

With respect to what is described in [Appendix A.1.1], our scope is not
to simply fit the data minimizing the risk of the RC, but we require also the
fairness of the solution (measured with respect to distance from the equal
opportunity). In other words we want to simultaneously minimize the risk
and the fairness of the RC, respectively the R(Gy,) and the F(Gy,). In order
to achieve this goal, first we have to bound the F'(Gyg,) analogously to what
has been done with R(Gg,) in Theorem ; then we will have to define a P
and an Qg able to both reduce the risk, the fairness, and the KLD. Let us
start with the first objective with the following theorem.

Theorem 1. For any probability distribution P over H, chosen before seeing
d, we have that

~ 1 2./n
P {aad | Bo(Cap) — F(Gap)| \/ T [KL[QDHP] +1n (T)]

+\/2n127+ [KL[QD”P] +1n (2 ?“)H <26, (21)
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Posterior of Eq. and Prior of Eq.

v — 0 uniform probability over all functions, v — oo probability one of the risk minimizer

A = 0 no fairness constraint, A = oo strong fairness constraint

Theory PB AS Dp
Algorithm / RC & BC RC & BC RLA
Classifier Eqns. & Eq. Eq.
Accurate
Accurate Accurate .
Property . . Fair
Fair Fair .
Private
Bounds
Theorem Theorem @ Theorem E]

Risk & Fairness

Convergence

Risk © (\/%) % (\/mnwiw) o (\/g)

Convergence o In(min(ny, 4,m2,4)) 19 ( / 1 ) 1) ( / 1 )
Fairness min(ny 1,n2 1) min(ny 1,n2 1) min(ni 4 ,n2 1)
ol Slower than
O(y/min[ny, 4, n2 4]) O(y/min[n1 4, n2,4])
max speed O(y/min[ni 4+,n2,+])

Fairness & Risk A <L

O(y/min[ni 4+,n2,+])

Table 3: Summary of the results of Section

YA <

O(y/min[ny,4,n2,4]) | O(

YA <

Tension min[ni 4+,n2,+])

The proof can be retrieved in [Appendix B.1}

After this first result, analogously to what is described in[Appendix A.1.1]
we have to define a P and a Qg able to give more importance to functions
with good accuracy and fairness. In particular, exploiting the idea developed
in [45, 60], a good function should minimize the risk subject to fairness
constraints such that

* . ¢
h* : arg min R°(h) (22)
st. F(h) <A,

where A € (0, 1] is necessary since for A = 0 some problems may arise [62].

Equivalently, for a particular value of A € [0, 00) [115]
.. : ¢
h* : arg min R°(h) + AF(h). (23)

Consequently A and X regulate the trade off between accuracy and fairness of
the solution. Note that, for small A, or equivalently for large A, we relax the
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fairness constraint and we just care about minimizing the error. Contrarily,
for large A, or equivalently for small A, we strongly enforce the fairness
constraint giving less importance to the accuracy of the model. This tension
is a classical result in fairness which shows that, in many cases, it is not
possible to simultaneously achieve accuracy and fairness [62]. Consequently,
as we will see later, A (or equivalently A), cannot be arbitrarily set if we want
to maintain certain generalization properties of the algorithm. In [45] 60] it
is proved that, if the empirical counterpart of the above mentioned problem
without the fairness constraint is consistent, it is also consistent the following
fair empirical risk minimization problem

-~

* : Y4 -
h* :arg min Ry(h) + AFy(h). (24)

Then, following the ideas in [84 [89] we propose to use the following proba-
bility density function for Qq

Qu(h) = Zg e~ [Falh+AR0] (25)
where

Zq—dl :/ e—’y[ﬁﬁ(h)—}-)\ﬁd(h)]dh’ (26)
H

and consequently the following probability density function for P
p(h) — Zpef’y[Rs(h)*F)\F(h)], (27)

where
ZP—I — / e—’y[Rg(h)-‘r/\F(h)]dh‘ (28)
H

Basically our posterior distribution weights more the optimal solution of the
Problem ([24]) and exponentially less the other ones based on their distance,
in terms of cost function, from the optimal one. The distribution of these
weights is regulated by ~. The larger is 7 the more weight is associated
to functions characterized by small error. As a consequence, our desiderata
would be to have v as large as possible but this, as we will see later, will not
be allowed if we want to maintain certain generalization properties of the
algorithm.
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Note that, the proposed algorithm does not necessarily require the knowl-
edge of the sensitive attribute at test time [45], [60, [82] and this is a very
important property of our method (in order to satisfy practical and/or legal
requirements).

Note also that, from a computational point of view, the proposed model
of Eq. has the same applicability and computational efficiency of the
one proposed in [84] 89]. In fact, in order to sample h € H according to this
particular Qg, there are two main cases. In the first case the cardinality of H
is finite and reasonably small to compute exactly qq(h). In the second case H
contains too many functions (or even an infinite number), and consequently
we have to resort to a subsampling of H via Monte Carlo estimationﬁ in order
to make the problem treatable and then compute g4(h). Note that this last
approach may produce numerical problems when + is large, but, as we will
see later, v is never too big in order to keep the algorithm consistent, stable,
and privacy preserving.

If the Q4 and P defined respectively in Eqns. and are exploited
we can prove the following theorem.

Theorem 2. Given the prior P and the posterior Qg defined in Eqns. (27))
and , we can state that

Pp {KL[Qp|[P] > KLa(d, n, n1,+,m2 4 )} < 60, (29)
where
KLy(8,7,n1 4, 191) = a® 4 2aVb + b, (30)

_ 1 1 1
a=r ( %—i_)\ < 2n1,++ 2n2,+>) )

b= 2y ( %ln <¥>—|—/\ <\/2n;+ In <2x/gﬁ>+\/2n;+ In (%/;W>)) .

The proof is reported in [Appendix B.2|

By plugging the results of Theorem [2]into Theorems[10]and [T]it is possible
to obtain a fully empirical bound on the risk and the fairness of the RC
where the prior P and the posterior Q; are defined respectively in Eqns. (27)

and (25).

4And, in this case, a further problem would be to control the additional estimation
gap, but this is in practice often negligible and out of the scope of this paper.
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Theorem 3. Given the prior P and the posterior Qg defined in Eqns. (27))
and , we can simultaneously bound the risk and the fairness of the cor-
responding RC

PD{)EQ(GQD)—R@(GQD)‘Z\/% {KLQ(é,n,n1,+,n2,+)+ln (@)] }§75,
(31)

pD{)ﬁD(GQD)—F(GQD))z\/ ! {KLQ(é,n,n1,+,n2,+)+1n(2‘/:;17)}

2ny 4

1 2,/
—i-\/ [KL2(5, n,n1 4, N2 )+ In < n2’+)] } <84, (32)
27’1/274’_ ’ ’ 0

using the same notation of Theorem [J

The prove is not reported since it comes trivially from the application of
the union bound [116].

The final rate of the bound is O(y/mmin(m1+.n2.4)) /min(n, 4,n2+)), which
is optimal in the general case [84], [I17] (see the state-of-the-art bound of
Theorem since we are simultaneously controlling the risk and the fair-
ness based on three empirical estimators ﬁg(GQd), ng (Gy,), and }A%§2}+ (Gq,)
which exploit respectively n, n; 4, and ny samples (note also that n >
max(ny 4,n24)). In order to ensure the consistency of the bound, v can in-
crease at maximum with a rate which is O(y/min(ni 4, no4))), that is again
similar to what has been obtained in [84] [I17] since we are exploiting the
estimators mentioned above. Since larger 7 means more weight to function
close to the f* and the less to the others, we would like that v is as large as
possible so the maximum rate of increase of 7y is a very important parameter.
Instead, for what concerns A, it is important to note that this parameter
regulates the trade-off between accuracy and fairness, and for this reason it
is usually considered constant and depends on the particular application.

The RC generalization abilities can be also studied, both in terms of its
risk and its fairness, using the AS theory, analogously to what has been done
in [Appendix A.1.2l Theorem (13| allows to bound the risk of a distribution
stable algorithm. The following theorem allows to bound the fairness of a
distribution stable algorithm.
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Theorem 4. If the criteria exploited for choosing a symmetric posterior dis-
tribution satisfy the Distribution Stability property described in Theorem[13,
then we can state that

Po {|Fo(Gay) ~ F(Gay)| (33)

1 1
> 4645 + (4n1 485+ 1) In (5) + (4ns 4 By + 1) In (5) < 44.
2nq 4 2ng 4

The proof is not reported since analogous to the one of [Appendix B.1|
Furthermore, if we use the criteria described in Eq. for defining Qq
it is possible to also show the following result.

Theorem 5. The criteria described in Eq. for defining Qg shows the
Distribution Stability property, in fact
2\y

2y
t< 21 . 34
b n min(ny 4, na, 4] (34

The proof is reported in [Appendix B.3|

Note that, the result of Theorem |5 reduces to the one of [I12] (see
pendix Al) when no fairness constraint is active (namely A = 0), while the
stability decreases when A\ > 0. This phenomenon is somehow expected since
the larger is A the more importance the constraint has over the final model.

Since Theorem |5|states that the criteria described in Eq. for defining
Qg shows the Distribution Stability property, it is possible to obtain a fully
empirical bound on the risk and the fairness of the corresponding RC.

Theorem 6. The risk and the fairness of the RC which uses as Qq the prob-
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ability density function defined in Fq. can be bounded as follows

Po {| R (Gap) ~ Rip(Ga)| (35)
4 4 In (%
S TR M (. B DY L1 A P
n minfng 4, no 4| min[ng ¢, no 4] 2n
Po {|Fo(Gay) — F(Gay)| (36)
In (%
S8y B (Bmey, Smagdy ) ()
n minfng 4, no ] n min[ng 4, no 4] 2n 4

8n Sng LA
+( 2,+7 T 2,+\Y
n min{ng 4, no 4|

In (1
5é+1) M < 46.
2ng 4

The proof consists in simply plugging the result of Theorem |5 in Theo-
rems [13] and [l

The final rate of the bound is O(y/!/min(n1 1,n21)), which is optimal in the
general case since we are simultaneously controlling the risk and the fairness
based on three empirical estimators which exploit respectively n, n; 4, and
ny 4+ samples and better than the one obtained with the PB theory. In order
to ensure the consistency of the bound, v can increase with a rate slower
than O(y/min(ny 4, n2))), which is a worse result than the one obtained
with the PB theory since we would like v as large as possible.

3.2. Fair and Private Randomized Learning Algorithms

In this section we will show that the posterior distribution defined in
Eq. can be exploited to derive a RLA which simultaneously possesses
accuracy, fairness, and privacy properties thanks to the use of the DP theory.

Theorem (15 allows to bound the risk of an e-DP RLA, while the following
results allow to bound its fairness.

Theorem 7. Let &/ be an e-DP, then for any t > 0 and for

c<yfp s 7
3max([ny 4+, No 4]

we can state that

Pub {’F"(@%(D)) _ ﬁé(gf(D))‘ > t} < 6y/2e minlm el (3g)
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The proof is not reported since analogous to the one of [Appendix B.1|

At this point, analogously to what has been done in [Appendix A.2| let
us suppose that our RLA works in this particular way. o/ selects one single
h € H according to a distribution which depended on the data Q,. If we
exploit Eq. for defining Q; we can state the following result.

Theorem 8. Let us consider as o/ a RLA which, given a dataset d, selects
a function h € H according to the Qq defined in Eq. (25)). Then o is (*1/n+
Z’YA/min[n17+,n27+])-Dp.

The proof of this result is reported in [Appendix B.4]

Note that, the result of Theorem [5 reduces to the one of [112] (see
pendix Al) when no fairness constraint is active (namely A = 0), while the
privacy decreases when A > (0. This is an expected phenomenon, in fact,
the larger is A the more importance the constraint has over the final model,
and consequently the less is the ability of the algorithm to protect the single
observation given the further data-dependent constraint.

Thanks to the result of Theorem [8 we can state that the RLA which
selects a function h € H, given d, according to the Q, defined in Eq. is
a privacy preserving RLA. Moreover, exploiting Theorems [15] and [7] we can
also bound the risk and the fairness of the final model.

Theorem 9. Let us consider as &/ a RLA which, given a dataset d, selects
a function h € H according to the Qq defined in Eq. [25)). Then < is (1/n+
292 [min[ny, 4, na,4])-DP and by setting

i In (5) -]
<

< 3 ) (39)
n min[ny 4,n2 4]
we can state that
P { | R/ (D)) - (40)
While by setting
1 62 In(2)
\/min[n1y+,n2,+] |:lIl <T> B T]
v < (41)

2 2X
nt min[ny 4 ,n2,+]
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we can state that

0 (f)

min{n 4 + no 4|

< 4. (42)

Psp { |[F(/(D)) - Fh(e/(D))| 2

The proof consists in simply plugging the result of Theorem [§| in Theo-
rems [15 and

Note that, the bound on ~ of Eq. in Theorem |§| clearly shows the
tension between privacy, fairness, and accuracy of the model. In fact, if we
suppose that the model which minimizes the error also satisfies the fairness
constraint, the best option would be to choose v, A = oo since, as a conse-
quence, this would results in the deterministic selection of the best model.
Since in real world this will not happen, we will have to chose the best de-
sired trade-off between accuracy and fairness using A € (0, 00) but still select
~v = oo in order to have a deterministic selection of the model which best fits
our fairness and accuracy desires. On the other hand, if we ignore the fair-
ness constraint (namely A = 0) we cannot select the model which minimizes
the error (namely v = o), since v should be small enough to protect the
privacy of the individuals. Moreover, if we enforce the data-dependent fair-
ness constraints (namely A > 0), the more we impose this constraint (i.e. the
larger is \), the smaller should be +, in order to still protect the privacy of
the individuals.

Note that, the final rate of the bounds is O(M) for the risk and

O(\//min[n, +,ns,+]) for the fairness, which is optimal in the general case since
we are simultaneously controlling the risk and the fairness based on three em-
pirical estimators which exploit respectively n, n; 1, and ny ; samples and
better than the ones obtained with the PB and AS theories. In order to
ensure the consistency of the bound v can increase with a maximum rate
of O(y/min[n; 4+,no]), which is better than the results obtained with the
AS theory and equivalent to the one obtained with the PB theory since we
would like v as large as possible. Moreover, the RLA shows, as mentioned
above, privacy preserving properties.

In conclusion, we were able to derive a RLA which possesses interesting

privacy preserving properties ensuring generalization, fairness, and privacy
of the final model.
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4. Discussion and Conclusions

In this paper we addressed the problem of randomized learning and gen-
eralization of fair and private classifiers where, using randomized learning
algorithms and/or randomized classifiers, we want to simultaneously ensure
that sensitive information does not unfairly influence the outcome of a clas-
sifier and to be able to learn from data while preserving the privacy of indi-
vidual observations. We first faced this issue in the PAC-Bayes framework
presenting a new approach trading off and bounding risk and fairness of
the randomized classifier by further developing the idea that the PAC-Bayes
prior can be defined based on the data-generating distribution without the
need of knowing it explicitly. In particular, we defined a prior and a pos-
terior with the purpose of giving more weight to functions which exhibit
good generalization and fairness properties. Furthermore, we showed that
this randomized classifier possesses interesting stability properties using the
algorithmic distribution stability theory. Finally, we also showed that the
newly proposed posterior can be exploited to define a randomized accurate
and fair algorithm with interesting privacy preserving properties ensuring
generalization, fairness, and privacy of the final model using the differential
privacy theory.

In this paper we also discussed the advantages and the disadvantages of
the different approaches exploiting the derived theoretical results which still
leave open questions about the most practical and effective way to learn fair
and private classifiers using randomized learning. For this reason, in the
future, it would be interesting to try to translate these theoretical results
into practical algorithms, in order to be able to compare them with other
state-of-the-art approaches that have been developed in the literature.

Appendix A. State-of-the-art results

In order to improve the readability of this appendix, a summary of the
results can be found in Table [A.4]

Appendiz A.1. Randomized Classifiers and Generalization

Thanks to the PB [83, 84, 86, 00, O3, 118, 119] and the AS [90, 06+
98, [120] theories it is possible to bound the risk of a RC selected by a RLA
or a DLA. Since the purpose of the paper is not to retrieve optimal and rates
of convergence as the extension is trivial and rather technical (see e.g. [83]

22



Posterior of Eq. and Prior of Eq.
v — 0 uniform probability over all functions, v — oo probability one of the risk minimizer
Theory PB AS DP
Algorithm/Classifier RC & BO RC & BO RELA
Eqns. & Eq. Eq.
Property Accurate Accurate %ﬁi;ize
Bounds Risk & Fairness Theorem |1 . Theorem Theorem
Convergence Risk <m O (\/%) O (\/g)
~ max speed O(y/n) Slower than O(y/n) O(y/n)

Table A.4: Summary of the results of

90, 120H122]) we will exploit basic bounds which are still rather tight and
have optimal rate in the general case (better rates can be achieved only in
the lucky case of zero empirical error).

Appendiz A.1.1. Randomized Classifiers and PAC-Bayes Theory
The PB theory [83] 84], 86, 00, 03] 118, 119] is surely one of the most
powerful tools for bounding the risk of a RC. In this section, we will recall

the PB-based risk bounds’|

Theorem 10 ([84]). For any probability distribution P over H, chosen before
seeing d we can state that

Pp {HQd : )éKD(GQD) - RE(GQD)‘ > \/% {KL[QDHP] +1In <%ﬁ)} } < 0.
(A1)

The main problem of the PB theory regards the choice of P and Q4. Qq
should fit our observations, but, at the same time, Q4 should be close to P,
in order the minimize the KLD. The milestone result of [89], later extended
by [84] [90], proposes to use a Boltzmann prior distribution P which depends
on the data generating distribution Pz. In particular, let us suppose that

SFor showing explicitly the dependency of Q from d and for clarity, we will indicate Qq
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the density function associated to P is
p(h) = Zpe "), (A.2)

where v € [0, 00) and Zp is a normalization term such that
gﬂz/kﬂﬂwwu (A.3)
H

Basically, this distribution gives more importance to functions that possess
small risk. If we choose as posterior Qg a distribution which gives more
importance to functions with small empirical risk with the following density
function

(k) = Zg,e 7T, (A1)
where v € [0, 00) and Zg, is a normalization term such that
%;—/eW%WMW (A.5)
H

it can be proved that this theorem, built on the result of Theorem [L0] holds.

Theorem 11 ([84]). Given the priorP and the posterior Qq defined in Eqns. (A.2)
and (A.4), we can state that

Pp {KL[Qp|[P] > KLy(v,8,n)} < 20, (A.6)
where
42 2 2
KLy (7,0,n) = % + 7 Eln (%) (A.7)

Consequently, we have that

PD{WQG%%JWG%WZ¢%JMM%&m+m(%@)@g%.

(A.8)

Finally, let us also recall that it is possible to bound the risk of the BC
in terms of the risk of the RC.

Theorem 12 ([83, [86]). It is possible to state that
R!(By,) < 2R'(G,). (A.9)
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Appendiz A.1.2. Randomized Classifiers and Algorithmic Distribution Sta-
bility Theory

In this section we recall how the AS theory can be exploited for bounding

the risk of a RC. We will assume in this section, analogously to [90, [96],

that the Q; does not depend on the order of the elements in the training set

(i.e. it is symmetric), that all functions are measurable and that all sets are

countable. Under these assumptions we can recall the following risk bound.

Theorem 13 ([90]). If the criteria exploited for choosing a symmetric pos-
terior distribution Qq and Qi satisfy the Distribution Stability property

Epgy 1€ (h )} = Enng,, {60, )} < B VdeDVie{l, - n},
(A.10)

where (3§ is a constant that goes to zero at least as O(Y/n), then we can state
that

~ In (1
Pb RZ(GQD)—Rg(GQD)’22554—(471534—1) %ﬂf) <25 (A.11)

Furthermore, if we use the criteria described in Eq. (A.4]) for defining Qq

is is possible to also recall the following result.

Theorem 14 ([90]). The criteria described in Eq. (A.4) for defining Qg shows
the Distribution Stability property, in fact

2y
By < —. (A.12)

Consequently if we exploit Eq. (A.4) for defining Qg we can state that

¢ e 4y In (%)
Pp ¢ |RY(Gyy) — Rd(GQD)‘ >y p <2 (A1)

n

Appendiz A.2. Randomized Learning Algorithms and Generalization: Dif-
ferential Privacy Theory

Thanks to the DP [15, 107, 1T1], 112] theory it is possible to bound the
true risk of both a DC or a RC chosen by a RLA. Analogously to what
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stated in [Appendix A.l| we will not focus on optimal constants and rates
(see e.g. [112] for the technical details on this) and moreover, as stated in
Section [2, we will deal just with the case of RLA which selects DC since the
optimal way of bounding the generalization ability of RC selected with RLA
is again the PB or the AS theories.

In order to recall the DP-based bound of the risk of a function selected
by a RLA we first have to recall the notion of DP.

Definitions 1 ([I5, 112]). A RLA <f is e-DP if and only if
P, {e(d)=h} <eP,{«(d) =h}, VheF,VdeD, (A.14)
where € is the Nepero’s number and € > 0 is a constant.

Basically, this definition states that the smaller (large €) is the ability to
understand if a sample in the dataset has been changed based on h the more
private is the RLA, namely the RLA is able to preserve the privacy of the
individual samples in the dataset.

Given this definition we can state the following DP-based risk bound.

Theorem 15 ([107, [112]). Let <7 be an e-DP, then for any t > 0 and for

c e In(2)

A15
< e (A1)

we can state that
P D {‘RZ(M(D)) - ﬁ%(%(D))‘ > t} < 3v2e (A.16)

Let us now suppose that the RLA works in this particular way. o7 selects
one single h € H according to a distribution which depended on the data Q.
If we exploit Eq. (A.4]) for defining Q; we can state the following result.

Theorem 16 ([112]). Let us consider as o/ a RLA which, given a dataset
d, selects a function h € ‘H according to the Qg defined in Eq. (A.4)). Then
o/ is 2/n-DP. Consequently if we set

v < % n [ln <3}/§> — lné?)]’ (A.17)
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we can state that

~

Pyp1 |R(o (D)) — R

Appendix B. Proofs
Appendiz B.1. Proof of Theorem[]]

Proof. In order to prove our statement we have to note that, thanks to the
reverse triangle inequality, we have that

’ﬁd(GQd) - F(GQd)

= HEEH (Ga,) — §§§+(G°d)

- | Rl (Ga)) - RE, (Ga)

< | (Go)- R (Ga)) . @B

+ ‘EEH (GQd) - RflI;+(GQd)

d2,+

and by exploiting the Theorem [10| and the union bound [116] the statement
of the theorem is proved. ]

Appendiz B.2. Proof of Theorem |3

Proof. The proof consists in noting that:
KL[Q][P]
= Eia,y (B() = Ri(R) + A (F(h) = Eu(f)) ) —n ( Z >
=7 (R(Ga,) = BiGa,)+A (F(Ga,)~Fu(Ga,)) )
i ( / p(h)e—va<h>—ﬁ§<h>+A(F<h>—ﬁd(h))dh)
H

< (R'(Ga,) = Ri(Ga,) + A (F(Ga,) — FalGa,)) )
+ (LX(Go) = T(Go) + A (F(Go) = FulGr) ) ) (B.2)

where the last step follows from the Jensen’s inequality [123]. By exploiting
this last result, Theorems [10] and (1, and the union bound [I16], we have that
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the following inequality holds with probability at least (1 — 60)

KL[Qql[P]
KL[Qq||P]+ In (%’7)
=7 2n
KL[Qq|[P]+ In (2—V’;”> KL[Qq||P]+ In (2—@“)
+A +
2n1’+ 2n2’+
In (%) In <—2*/F> In (—2*/?>
VAT B.3
+ ,y 2n + 2n1,+ 277,27_,_ ( )

The statement of the theorem is obtained by solving with respect to KL[Qg||P].
O

Appendiz  B.3. Proof of Theorem [
Proof. Let us note that the probability density function associated to Qg is

|

e—W {ﬁ > cat(h2)+A

1 1
@ 41 2zedy 4 tH (D)~ 3 e, | L (h2)

Qu(h)=—— 1 1 . (BA)
e [ Seca o1 iy Sy, 010 Sy , a2 I
while the one associated to Qg is
efv [ﬁz X cavi AN i Zzed}ifH(hvz)*Wl,H Zzed;ifH(h’z) }
1 1 1
fe {d' Zecart AN 37 2y (1) 7T 7 2 () ] dh
Consequently:
B = [Bnmaa £ ()} = Ennay {000} (B.6)
< gl + 2\ (B.7)

n - min[ng 4,94
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The last upper bound is retrieved, with few technical steps, by substituting
Eqns. (B.4)) and (B.5]) in Eq. and then by adding and subtracting the

missing term, therefore the statement is proved. O

Appendiz  B.4. Proof of Theorem|[§
Proof. In order to prove the statement of the theorem let us note that

PoAe(d) = f} (B.8)

e—'y[ﬁ S aeallh,2)+A }

1 1
7|d17+\ Zz€d17+ éH(h’Z)_4|d2,+‘ ZZGdQ,-F Ly (h,z)

e’ |1 Seea VA iy ey 009~y e )|
P {e(d) = f} (B.9)
effy |:|d12 Zzedi E(hvz)+)‘ WlﬂLl Zzed§’+ ZH(hrz)fﬁ Zzedé,Jr EH(hvz) :|
Y p(h) 4N L . 2L . -
fH e 7|:d1| Zzed’b Z(hv )+)‘ ‘d11,+‘ Zzed1,+ eH(h ) \d%7+| Zz€d2’+ ZH(h ) :|dh
where ¢ may assume any value in {1,--- ;n}. Then let us exploit Definition
P{d/(s) =
e = P17 (s) =/} (B.10)
P{e(5) = [}
2,2y
S en minfny 4 ,n9 4] (Bll)

The last upper bound is retrieved, with few technical steps, by substituting

Eqns. and in Eq. . O
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