Running of the top quark mass from proton-proton collisions at √s = 13 TeV

The CMS Collaboration *

CERN, Switzerland

A R T I C L E I N F O

Article history:
Received 19 September 2019
Received in revised form 26 January 2020
Accepted 27 January 2020
Available online 10 February 2020
Editor: M. Doser

Keywords:
CMS
Physics
Top quark mass
QCD
Renormalization

A B S T R A C T

The running of the top quark mass is experimentally investigated for the first time. The mass of the top quark in the modified minimal subtraction (MS) renormalization scheme is extracted from a comparison of the differential top quark-antiquark (t¯t) cross section as a function of the invariant mass of the t¯t system to next-to-leading-order theoretical predictions. The differential cross section is determined at the parton level by means of a maximum-likelihood fit to distributions of final-state observables. The analysis is performed using t¯t candidate events in the e+μ− channel in proton-proton collision data at a centre-of-mass energy of 13 TeV recorded by the CMS detector at the CERN LHC in 2016, corresponding to an integrated luminosity of 35.9 fb−1. The extracted running is found to be compatible with the scale dependence predicted by the corresponding renormalization group equation. In this analysis, the running is probed up to a scale of the order of 1 TeV.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Beyond leading order in perturbation theory, the fundamental parameters of the quantum chromodynamics (QCD) Lagrangian, i.e. the strong coupling constant αS and the quark masses, are subject to renormalization. As a result, these parameters depend on the scale at which they are evaluated. The evolution of αS and of the quark masses as a function of the scale, commonly referred to as “running”, is described by renormalization group equations (RGEs). The running of αS was experimentally verified on a wide range of scales using jet production in electron-proton, positron-proton, electron-positron, proton-antiproton, and proton-proton (pp) collisions, as summarized, e.g. in Refs. [1,2]. To determine the running, the value of αS evaluated at an arbitrary reference scale is extracted in bins of a physical energy scale Q and then converted to αS(Q) using the corresponding RGE [2]. The validity of this procedure lies in the fact that, in a calculation, the renormalization scale is normally identified with the physical energy scale of the process. The same procedure can be used to determine the running of the mass of a quark. In the modified minimal subtraction (MS) renormalization scheme, the dependence of a quark mass m on the scale μ is described by the RGE

\[
\frac{d m(\mu)}{d \mu^2} = - \gamma(\alpha_S(\mu)) m(\mu),
\]

where γ(αS(μ)) is the mass anomalous dimension, which is known up to five-loop order in perturbative QCD [3,4]. The solution of Eq. (1) can be used to obtain the quark mass at any scale μ from the mass evaluated at an initial scale μ0. The running of the b quark mass was demonstrated [5] using data from various experiments at the CERN LEP [6–9], SLAC SLC [10], and DESY HERA [11] colliders. Measurements of charm quark pair production in deep inelastic scattering at the DESY HERA were used to determine the running of the charm quark mass [12]. These measurements represent a powerful test of the validity of perturbative QCD. Furthermore, RGEs can be modified by contributions from physics beyond the standard model, e.g. in the context of supersymmetric theories [13].

This Letter describes the first experimental investigation of the running of the top quark mass, mt, as defined in the MS scheme. The running of mt is extracted from a measurement of the differential top quark-antiquark pair production cross section, σt−t, as a function of the invariant mass of the t¯t system, mt. The differential cross section, dσt−t/dm, is determined at the parton level by means of a maximum-likelihood fit to distributions of final-state observables using t¯t candidate events in the e+μ− final state, extending the method described in Ref. [14] to the case of a differential measurement. This method allows the differential cross section to be constrained simultaneously with the systematic uncertain-
ties. In this analysis, the parton level is defined before radiation from the parton shower, which allows for a direct comparison with fixed-order theoretical predictions. The measurement is performed using pp collision data at $\sqrt{s} = 13$ TeV recorded by the CMS detector at the CERN LHC in 2016, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The running mass, $m_\text{t}\bar{\text{t}}$, is extracted at next-to-leading order (NLO) in QCD as a function of $m_\text{t}\bar{\text{t}}$ by comparing fixed-order theoretical predictions at NLO to the measured $d\sigma_T/dm_\text{t}\bar{\text{t}}$. The running of m_t is probed up to a scale of the order of 1 TeV.

2. The CMS detector and Monte Carlo simulation

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. A two-level trigger system selects events of interest for analysis [15]. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [16].

The particle-flow (PF) algorithm [17] aims to reconstruct and identify electrons, muons, photons, charged and neutral hadrons in an event, with an optimized combination of information from the various elements of the CMS detector. The energy of electrons is determined from a combination of the electron momentum at the primary interaction vertex as determined by the tracker, the energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with originating from the electron track [18]. The momentum of muons is obtained from the curvature of the corresponding track [19]. Jets are reconstructed from the PF candidates using the anti-k_T clustering algorithm with a distance parameter of 0.4 [20,21], and the jet momentum is determined as the vectorial sum of all particle momenta in the jet. The missing transverse momentum vector is computed as the negative vector sum of the transverse momenta (p_T) of all the PF candidates in an event. Jets originating from the hadronization of b quarks (b jets) are identified (b tagged) using the combined secondary vertex [22] algorithm, using a working point that corresponds to an average b tagging efficiency of 41% for simulated $t\bar{t}$ events, and an average misidentification probability of 0.1% and 2.2% for light-flavour jets and c jets, respectively [22].

In this analysis, the same Monte Carlo (MC) simulations as in Ref. [14] are used. In particular, $t\bar{t}$, WW, and Drell-Yan (DY) events are simulated using the POWHEG v2 [23–28] NLO MC generator interfaced to PYTHIA 8.202 [29] for the modelling of the parton shower and using the CUEP8M2T4 underlying event tune [30,31]. In the simulation, the proton structure is described by means of the NNPDF3.0 [32] parton distribution function (PDF) set. The largest background contributions are represented by $t\bar{t}$ and DY production. Other background processes include W+jets production and diboson events, while the contribution from QCD multijet production is found to be negligible. Contributions from all background processes are estimated from simulation and are normalized to their predicted cross section. Further details on the MC simulation of the backgrounds can be found in Ref. [14].

3. Event selection and systematic uncertainties

Events are collected using a combination of triggers which require either one electron with $p_T > 12$ GeV and one muon with $p_T > 23$ GeV, or one electron with $p_T > 23$ GeV and one muon with $p_T > 8$ GeV, or one electron with $p_T > 27$ GeV, or one muon with $p_T > 24$ GeV. In the analysis, tight isolation requirements are applied to electrons and muons based on the ratio of the scalar sum of the p_T of neighbouring PF candidates to the p_T of the lepton candidate. Events are then required to contain at least one electron and one muon of opposite electric charge with $p_T > 25$ GeV for the leading and $p_T > 20$ GeV for the subleading lepton, and $|\eta| < 2.4$. This kinematic selection defines the visible phase space. In events with more than two leptons, the two leptons of opposite charge with the highest p_T are used. Jets with $p_T > 30$ GeV and $|\eta| < 2.4$ are considered, but no requirement on the number of reconstructed jets or b-tagged jets is imposed. Further details on the event selection can be found in Ref. [14].

In events with at least two jets, the invariant mass of the $t\bar{t}$ system is estimated by means of the kinematic reconstruction algorithm described in Ref. [33]. The reconstructed invariant mass is indicated with $m_{t\bar{t}}^{\text{MC}}$. The kinematic reconstruction algorithm examines all possible combinations of reconstructed jets and leptons and solves a system of equations under the assumptions that the invariant mass of the reconstructed W boson is 80.4 GeV and that the missing transverse momentum originates solely from the two neutrinos coming from the leptonic decays of the W bosons. In addition, the kinematic reconstruction algorithm requires an assumption on the value of the top quark mass, m_t^{kin}. Any possible bias due to the choice of this value is avoided by incorporating the dependence on m_t^{kin} in the fit described in Section 4. To estimate this dependence, the kinematic reconstruction and the event selection are repeated with three different choices of m_t^{kin}, corresponding to 169.5, 172.5, and 175.5 GeV, and the top quark mass used in the MC simulation, m_t^{MC}, is varied accordingly. The parameter $m_t^{\text{kin}} = m_t^{\text{MC}}$ is then treated as a free parameter of the fit.

The sources of systematic uncertainties are classified as experimental and modelling uncertainties. Experimental uncertainties are related to the corrections applied to the MC simulation. These include uncertainties associated with trigger and lepton identification efficiencies, jet energy scale [34] and resolution [35], lepton energy scales, b tagging efficiencies [22], and the uncertainty in the integrated luminosity [36]. Modelling uncertainties are related to the simulation of the $t\bar{t}$ signal, and include matrix-element scale variations in the POWHEG simulation [37,38], scale variations in the parton shower [31], variations in the matching scale between the matrix element and the parton shower [30], uncertainties in the underlying event tune [30], the PDFs [39], the b hadron branching fraction and fragmentation function [40,41], and uncertainties related to the choice of the colour reconnection model [42,43]. Furthermore, as in previous CMS analyses, e.g. [14,44,45], an uncertainty that accounts for the observed difference in the shape of the top quark p_T distribution between data and simulation [33,46,47] is applied. The dependence on the top quark width has been investigated and was found to be negligible. Other sources of uncertainty include the modelling of the additional pp interactions within the same or nearby bunch crossings and the normalization of background processes. For the latter, an uncertainty of 30% is assigned to the normalization of each background process. Further details on the sources of systematic uncertainties and the considered variations can be found in Ref. [14].

The simulated $t\bar{t}$ sample is split into four subsamples corresponding to bins of $m_\text{t}\bar{\text{t}}$ at the parton level. Each subsample is treated as an independent signal process, representing the $t\bar{t}$ production at the scale μ_F, which is chosen to be the centre-of-gravity of bins defined as the mean value of $m_\text{t}\bar{\text{t}}$ in that bin. The subsample corresponding to the bin k is denoted with “Signal (μ_k)”. The $m_\text{t}\bar{\text{t}}$ bin boundaries, the corresponding fraction of simulated events in each bin, and the representative scales μ_k are summarized in
Table 1

<table>
<thead>
<tr>
<th>Bin</th>
<th>$m_{\tilde{t}}$ [GeV]</th>
<th>Fraction [%]</th>
<th>μ_0 [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><420</td>
<td>30</td>
<td>384</td>
</tr>
<tr>
<td>2</td>
<td>420–550</td>
<td>39</td>
<td>476</td>
</tr>
<tr>
<td>3</td>
<td>550–810</td>
<td>24</td>
<td>644</td>
</tr>
<tr>
<td>4</td>
<td>>810</td>
<td>7</td>
<td>1024</td>
</tr>
</tbody>
</table>

Fig. 1. Distribution of $m_{\tilde{t}}^{\text{rec}}$ after the fit to the data, with the same binning as used in the fit. The hatched band corresponds to the total uncertainty in the predicted yields, including the contribution from $m_{\tilde{t}}^{\text{rec}}$ (Δμ_0^{MC}) and all correlations. The $t\bar{t}$ MC sample is split into four subsamples, denoted with “Signal (μ_0);” corresponding to bins of $m_{\tilde{t}}$ at the parton level. The first and last bins contain all events with $m_{\tilde{t}}^{\text{rec}} < 420$ GeV and $m_{\tilde{t}}^{\text{rec}} > 810$ GeV, respectively.

Table 1, where the values are estimated from the nominal POWHEG simulation. The width of each bin, Δμ_0^{MC}, is chosen taking into account the resolution in $m_{\tilde{t}}^{\text{rec}}$. Fig. 1 shows the distribution of $m_{\tilde{t}}^{\text{rec}}$ after the fit to the data, which is described in the next section.

4. Fit procedure and cross section results

The differential $t\bar{t}$ cross section at the parton level is measured by means of a maximum-likelihood fit to distributions of final-state observables where the systematic uncertainties are treated as nuisance parameters. In the likelihood, the number of events in each bin of any distribution of final-state observables is assumed to follow a Poisson distribution. With $\sigma_{\tilde{t}}^{(i)} = \langle d\sigma_{\tilde{t}} / dm_{\tilde{t}} \rangle \Delta m_{\tilde{t}}^{\text{MC}}$, being the total $t\bar{t}$ cross section in the bin k of $m_{\tilde{t}}$, the expected number of events in the bin i of any of the considered final-state distributions, denoted with ν_i, can be written as

$$\nu_i = \sum_{k=1}^{4} s_k^i (\sigma_{\tilde{t}}^{(i)} (\tilde{t}), m_{\tilde{t}}^{\text{MC}}, \tilde{\lambda}) + \sum_j b_j^i (m_{\tilde{t}}^{\text{MC}}, \tilde{\lambda}).$$

Here, s_k^i indicates the expected number of $t\bar{t}$ events in the bin k of $m_{\tilde{t}}$ and depends on $\sigma_{\tilde{t}}^{(i)}$, $m_{\tilde{t}}^{\text{MC}}$, and the nuisance parameters $\tilde{\lambda}$. Similarly, b_j^i represents the expected number of background events from a source j and depends on $m_{\tilde{t}}^{\text{MC}}$ and the nuisance parameters $\tilde{\lambda}$. The dependence of the background processes on $m_{\tilde{t}}^{\text{MC}}$ is introduced not only by the contribution of $t\bar{t}$ and semileptonic $t\bar{t}$ events, but also by the choice of $m_{\tilde{t}}^{\text{min}}$ in the kinematic reconstruction. Equation (2), which relates the various $\sigma_{\tilde{t}}^{(i)}$ (and hence the parton-level differential cross section) to distributions of final-state observables, embeds the detector response and its parametrized dependence on the systematic uncertainties. Therefore, the maximization of the likelihood function provides results for $\sigma_{\tilde{t}}^{(i)}$ that are automatically unfolded to the parton level. This method (described, e.g., in Ref. [48]) is also referred to as maximum-likelihood unfolding and, unlike other unfolding techniques, allows the nuisance parameters to be constrained simultaneously with the differential cross section. The unfolding problem was found to be well-conditioned, and therefore no regularization is needed. The expected signal and background distributions contributing to the fit are modelled with templates constructed using simulated samples.

Selected events are categorized according to the number of b-tagged jets, as events with 1 b-tagged jet, 2 b-tagged jets, or a different number of b-tagged jets (zero or more than two). The effect of the systematic uncertainties on the normalization of the different signals in each of these categories is parametrized using multinomial probabilities. In particular, based on the $t\bar{t}$ topology, the number of events with one (S_1^{tk}), two (S_2^{tk}), or a different number of b-tagged jets (S_{other}^{k}) in each bin of $m_{\tilde{t}}$ is expressed as:

\begin{align*}
S_{1b}^{k} &= L_{1b}^{(tk)} A_{1sel}^{k} \epsilon_{b1}^{k} \left(1 - C_{b1}^{k} \epsilon_{b1}^{k}\right), \quad (3) \\
S_{2b}^{k} &= L_{2b}^{(tk)} A_{2sel}^{k} \epsilon_{b2}^{k} C_{b2}^{k} \epsilon_{b2}^{k}, \quad (4) \\
S_{\text{other}}^{k} &= L_{\text{other}}^{(tk)} A_{\text{other}}^{k} \epsilon_{\text{other}}^{k} \left[1 - 2\epsilon_{b1}^{k} \left(1 - C_{b1}^{k} \epsilon_{b1}^{k}\right) - C_{b2}^{k} \epsilon_{b2}^{k}\right]. \quad (5)
\end{align*}

Here, L is the integrated luminosity, A_{sel}^{k} is the acceptance of the event selection in the $m_{\tilde{t}}$ bin k, and $\epsilon_{\text{sel}}^{k}$ represents the efficiency for an event in the visible phase space to pass the full event selection. The acceptance A_{sel}^{k} is defined as the fraction of $t\bar{t}$ events in the bin k that, at the generator (particle) level, enter the visible phase space described in Section 3, while $\epsilon_{\text{sel}}^{k}$ includes experimental selection criteria, e.g., isolation and trigger requirements. Furthermore, ϵ_{b}^{k} represents the b tagging probability and the parameter C_{b}^{k} accounts for any residual correlation between the tagging of two b jets in a $t\bar{t}$ event. The quantities A_{sel}^{k}, $\epsilon_{\text{sel}}^{k}$, ϵ_{b}^{k}, and C_{b}^{k} are determined from the signal simulation and, although they are not free parameters of the fit, they vary according to the parameters λ and $m_{\tilde{t}}^{\text{MC}}$. In each category, the remaining effects of the systematic uncertainties on signal processes are treated as shape uncertainties. The quantities $s_{\tilde{t}}^{i}$ in Eq. (2) are then derived from the signal shape and normalization in the corresponding category. In this way, a precise parametrization of the dependence of signal normalizations on the nuisance parameters and $m_{\tilde{t}}^{\text{MC}}$ is obtained. In fact, the parameters in Eqs. (3)–(5) are less subject to statistical fluctuations than the $s_{\tilde{t}}^{i}$.

In order to constrain each individual $\sigma_{\tilde{t}}^{(i)}$, events with at least two jets are further divided into subcategories of $m_{\tilde{t}}^{\text{rec}}$, using the same binning as for $m_{\tilde{t}}$ (Table 1). The choice of the input distributions to the fit in the different event categories is summarized in Table 2. The total number of events is chosen as input to the fit for all subcategories with zero or more than two b-tagged jets, where the contribution of the background processes is the largest, in order to mitigate the sensitivity of the measurement to the shape of the distributions of background processes. The same choice is made for the subcategories corresponding to the last bin in $m_{\tilde{t}}^{\text{rec}}$, where the statistical uncertainty in both data and simulation is large, and for events with less than two jets, where the kinematic reconstruction cannot be performed. In the remaining subcategories with one b-tagged jet, the minimum invariant mass found when combining the reconstructed b jet and a lepton, referred to as the $m_{\text{bb}}^{\text{min}}$ distribution, is fitted. This distribution provides the
sensitivity to constrain m_{t}^{MC} [49]. In the remaining subcategories with two b-tagged jets, the p_T spectrum of the softest selected jet in the event is used to constrain jet energy scale uncertainties at small values of p_T. The kinematic range where systematic uncertainties are the largest. The distributions used in the fit are compared to the data after the fit in the supplemental material.

The efficiencies of the kinematic reconstruction in data and simulation have been investigated in Ref. [33] and they were found to differ by 0.2%. Therefore, the efficiency in the simulation is corrected to match the one in data. An uncertainty of 0.2% is assigned to each bin of m_{t}. Independently. The same uncertainty is also assigned to $t\bar{t}$ events with one or two b-tagged jets, independently. For $t\bar{t}$ events with zero or more than two b-tagged jets, where the combinatorial background is larger, an uncertainty of 0.5% is conservatively assigned. These uncertainties are treated as uncorrelated to account for possible differences between the different m_{t} bins and categories of b-tagged jet multiplicity. Similarly, an additional uncertainty of 1% is assigned to the sum of the background processes, independently for each bin of m_{t}^{MC}, in order to reduce the correlation between the signal and the background templates. The impact of these uncertainties on the final results is found to be small compared to the total uncertainty.

The dependence of the signal shapes, of the parameters $A_{t\bar{t}}^{k}$, $\epsilon_{t\bar{t}}^{k}$, and $C_{t\bar{t}}^{k}$, and of the background contributions on m_{t}^{MC} and on the nuisance parameters λ is modelled using second-order polynomials [14]. In the fit, Gaussian priors are assumed for all the nuisance parameters. The negative log-likelihood is then minimized, using the Minuit program [50], with respect to $\sigma_{t\bar{t}}^{(\mu_{t})}$, m_{t}^{MC}, and λ. Finally, the fit uncertainties in the various $\sigma_{t\bar{t}}^{(\mu_{t})}$ are determined using Minos [50]. Additional extrapolation uncertainties, which reflect the impact of modelling uncertainties on $A_{t\bar{t}}^{k}$, are estimated without taking into account the constraints obtained in the visible phase space [14]. Moreover, an additional uncertainty arising from the limited statistical precision of the simulation is estimated using MC pseudo-experiments [14], where templates are varied within their statistical uncertainties taking into account the correlations between the nominal templates and the templates corresponding to the systematic variations. The template dependencies are then reestimated and the fit to the data is repeated more than ten thousand times. For each parameter of interest, the root-mean-square of the best fit values obtained with this procedure is taken as an additional uncertainty and added in quadrature to the total uncertainty from the fit.

The measured $\sigma_{t\bar{t}}^{(\mu_{t})}$ are shown in Fig. 2 and compared to fixed-order theoretical predictions in the $\overline{\text{MS}}$ scheme at NLO [51] implemented for the purpose of this analysis in the MCFM v6.8 program [52,53]. In the calculation, the renormalization scale, μ_{R}, and factorization scale, μ_{F}, are both set to m_{t}. The $\overline{\text{MS}}$ mass of the top quark evaluated at the scale $\mu = m_{t}$ is denoted with $m_{t}(m_{t})$.

The calculation is interfaced with the ABMP16.5_nlo PDF set [54], which is the only available PDF set where m_{t} is treated in the $\overline{\text{MS}}$ scheme and where the correlations between the gluon PDF, α_{S}, and m_{t} are taken into account. In the calculation, the value of α_{S} at the Z boson mass, $\alpha_{S}(m_{Z})$, is set to the value determined in the ABMP16.5_nlo fit, which in the central PDF corresponds to 0.1191 [54]. In order to demonstrate the sensitivity to the top quark mass, predictions for $\sigma_{t\bar{t}}^{(\mu_{t})}$ obtained with different values of $m_{t}(m_{t})$ are shown. Furthermore, it is worth noting that this method provides a cross section result with significantly improved precision compared to measurements that perform unfolding as a separate step, e.g., as the one described in Ref. [33].

The dominant uncertainties in the measured $\sigma_{t\bar{t}}^{(\mu_{t})}$ are associated with the integrated luminosity, the lepton identification efficiencies, the jet energy scales and, at large m_{t}, the modelling of the top quark p_{T}. The two latter uncertainties are marginally constrained in the fit, while the first two are not constrained. Furthermore, the post-fit values of all nuisance parameters are found to be compatible with their pre-fit value, within one standard deviation. The numerical values of the measured $\sigma_{t\bar{t}}^{(\mu_{t})}$, their correlations, the impact of the various sources of uncertainty, and the pulls and constraints of the nuisance parameters related to the modelling uncertainties can be found in the supplemental material.

5. Extraction of the running of the top quark mass

The measured differential cross section is used to extract the running of the top quark $\overline{\text{MS}}$ mass at NLO as a function of the scale $\mu = m_{t}$. The procedure is similar to the one used to extract the running of the charm quark mass [12]. The value of $m_{t}(m_{t})$ is determined independently in each bin of m_{t} from a χ^{2} fit of fixed-order theoretical predictions at NLO to the measured $\sigma_{t\bar{t}}^{(\mu_{t})}$. The theoretical predictions are obtained as described in Section 4 for Fig. 2. The χ^{2} definition follows the one described in Ref. [55], which accounts for asymmetries in the input uncertainties. The extracted $m_{t}(m_{t})$ are then converted to $m_{t}(\mu_{t})$ using the CRUNDec v3.0 program [56], where μ_{t} is the representative scale of the process in a given bin of m_{t}, as described in Section 3. As relevant in a NLO calculation, the conversion is performed with one-loop precision, assuming five active flavours ($N_f = 5$) and $\alpha_{S}(m_{Z}) = 0.1191$ consistently with the used PDF set. This procedure is equivalent to extracting directly $m_{t}(\mu_{t})$ in each bin. Furthermore, the result does not depend on the exact choice of
μk, provided that it is representative of the physical energy scale of the process. In fact, a change in μk would correspond to a change in m(mk) according to the RGE. The extracted values of m(μk) and their uncertainties can be found in the supplemental material.

In order to benefit from the cancellation of correlated uncertainties in the measured σ^2_{H}^{μk}, the ratios of the various m(μk) to m(μk) are considered. In particular, the quantities r_{12} = m(μk)/m(μk), r_{32} = m(μk3)/m(μk2), and r_{42} = m(μk4)/m(μk2) are extracted. With this approach the running of m, i.e. the quantity predicted by the RGE (Eq. (1)), is accessed directly. The measurement at the scale μk is chosen as a reference in order to minimize the correlation between the extracted ratios.

Four different types of systematic uncertainty are considered for the ratios: the uncertainty in the various σ^2_{H}^{μk} in the visible phase space (referred to as fit uncertainty), the extrapolation uncertainties, the uncertainties in the proton PDFs, and the uncertainty in the value of α_S(m). The fit uncertainty includes experimental and modelling uncertainties described in Section 3. Scale variations in the mcfm predictions are not performed, since the scale dependence of m is being investigated at a fixed order in perturbation theory. In fact, scale variations in the hard scattering cross section are conventionally performed as a means of estimating the effect of missing higher order corrections and are therefore not applicable in this context.

Uncertainties in the proton PDFs affect the mcfm prediction and therefore the extracted values of the various m(μk). In order to estimate their impact, the calculation is repeated for each eigenvector of the PDF set and the differences in the extracted ratios are added in quadrature to yield the total PDF uncertainties. In the ABM16_5_nlo PDF set, α_S(m) is determined simultaneously with the PDFs, therefore its uncertainty is incorporated in that of the PDFs. However, the uncertainty in α_S(m) also affects the CRUNDec conversion from m(μk) to m(μk). This effect is estimated independently and is found to be negligible.

The impact of extrapolation uncertainties is estimated by varying the measured σ^2_{H}^{μk} within their extrapolation uncertainty, separately for each source and simultaneously in the different bins in m, taking the correlations into account. The various contributions are added in quadrature to yield the total extrapolation uncertainty.

The correlations between the extracted masses arising from the fit uncertainty are estimated using MC pseudo-experiments, taking the correlations between the measured σ^2_{H}^{μk} as inputs. The uncertainties are then propagated to the ratios using linear uncertainty propagation, taking the estimated correlations into account. The numerical values of the ratios are determined to be:

\[r_{12} = 1.030 \pm 0.018 \, \text{(fit)} \pm 0.003 \, \text{(PDF+αS)} \pm 0.002 \, \text{(extr)} \]
\[r_{32} = 0.982 \pm 0.025 \, \text{(fit)} \pm 0.006 \, \text{(PDF+αS)} \pm 0.004 \, \text{(extr)} \]
\[r_{42} = 0.904 \pm 0.050 \, \text{(fit)} \pm 0.019 \, \text{(PDF+αS)} \pm 0.017 \, \text{(extr)} \]

Here, the fit uncertainty (fit), the combination of PDF and αS uncertainty (PDF+αS), and the extrapolation uncertainty (extr) are given. The most relevant sources of experimental uncertainty are the integrated luminosity, the lepton identification efficiencies, and the jet energy scale and resolution. Among modelling uncertainties related to the POWHEG+PYTHIA 8 simulation of the t̅t signal, the largest contributions originate from the scale variations in the parton shower, the uncertainty in the shape of the p_T spectrum of the top quark, and the matching scale between the matrix element and the parton shower. The statistical uncertainties are found to be negligible. The correlations between the ratios arising from the fit uncertainty are investigated using a pseudo-experiment procedure which consists in repeating the extraction of the ratios using pseudo-measurements of σ^2_{H}^{μk}, generated according to the corresponding fitted values, uncertainties, and correlations. With p_h being the correlation between r_{12} and r_{32}, the results are ρ_{13} = 13%, ρ_{14} = −45%, and ρ_{34} = 11%.

The extracted ratios m(μk)/m(μk) are shown in Fig. 3 (upper) together with the RGE prediction (Eq. (1)) at one-loop precision. In the figure, the reference scale μk is indicated with μ_ref, and the RGE evolution is calculated from the initial scale μ_0 = μ_ref. Good agreement between the extracted running and the RGE prediction is observed.

For comparison, the t̅t mass of the top quark is also extracted from the inclusive cross section measured in Ref. [14], using HATHOR 2.0 [57] predictions at NLO interfaced with the ABM16_5_nlo PDF set, and is denoted with m^{incl}(m). Fig. 3 (lower) compares the extracted ratios m(μk)/m(μk) to the value of m^{incl}(m)/m(μk). The uncertainty in m^{incl}(m) includes fit, extrapolation, and PDF uncertainties, and is evolved to higher scales, while the value of m(μk) in the ratio m^{incl}(m)/m(μk) is taken without uncertainty. Here, the RGE evolution is calculated from the initial scale μ_0 = m^{incl}(m), which corresponds to about 163 GeV. The extracted value of m^{incl}(m) and its uncertainty can be found in the supplemental material.

Finally, the extracted running is parametrized with the function

\[f(x, μ) = x \int [r(μ) - 1] + 1 \]

where r(μ) = m(μ)/m(μ) corresponds to the RGE prediction shown in Fig. 3 (upper). In particular, f(x, μ) corresponds to

\[f(x, μ) = x \int [r(μ) - 1] + 1 \]

\[f(x, μ) = x \int [r(μ) - 1] + 1 \]
$r(\mu)$ for $x = 1$ and to 1, i.e., no running, for $x = 0$. The best fit value for x, denoted with \hat{x}, is determined via a χ^2 fit to the extracted ratios taking the correlations $\rho_{\beta \gamma}$ into account, and is found to be

$$\hat{x} = 2.05 \pm 0.61 \text{ (fit)} +^{0.31}_{-0.55} \text{ (PDF + } \alpha S) +^{0.24}_{-0.49} \text{ (extr).}$$

The result shows agreement between the extracted running and the RGE prediction at one-loop precision within 1.1 standard deviations in the Gaussian approximation and excludes the no-running hypothesis at above 95% confidence level (2.1 standard deviations) in the same approximation.

6. Summary

In this Letter, the first experimental investigation of the running of the top quark mass, m_t, is presented. The running is extracted from a measurement of the differential top quark-antiquark ($t\bar{t}$) cross section as a function of the invariant mass of the $t\bar{t}$ system, $m_{t\bar{t}}$. The differential $t\bar{t}$ cross section, $\sigma_{t\bar{t}}/d\ln m_{t\bar{t}}$, is determined at the parton level using a maximum-likelihood fit to distributions of final-state observables, using $t\bar{t}$ candidate events in the $e^+\mu^-$ channel. This technique allows the nuisance parameters to be constrained simultaneously with the differential cross section in the visible phase space and therefore provides results with significantly improved precision compared to conventional procedures in which the unfolding is performed as a separate step. The analysis is performed using proton-proton collision data at a centre-of-mass energy of 13 TeV recorded by the CMS detector at the CERN LHC in 2016, corresponding to an integrated luminosity of 35.9 fb$^{-1}$.

The running mass $m_t(x)$, as defined in the modified minimal subtraction (MS) renormalization scheme, is extracted at one-loop precision as a function of m_t by comparing fixed-order theoretical predictions at next-to-leading order to the measured $\sigma_{t\bar{t}}/d\ln m_{t\bar{t}}$. The extracted running of m_t is found to be in agreement with the prediction of the corresponding renormalization group equation, within 1.1 standard deviations, and the no-running hypothesis is excluded at above 95% confidence level. The running of m_t is probed up to a scale of the order of 1 TeV.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPESP and FAPEPE (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MOE, ERC IUT, PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MESIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); PCT (Portugal); JINR (Dubna); MON, ROSATOM, RAS, RFBR, and NRC KI (Russia); MESSTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MoSST (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 752730, and 765710 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 3082017; the Beijing Municipal Science & Technology Commission, No. Z181100004218003; The Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület (“Momentum”) Programme and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Programme ÚNKP, the NKFIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Education, grant no. 3.2989.2017 (Russia); the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EPSRC and the Greek REA; the Rachadapisek Somporn Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Nvidia Corporation; The Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.physletb.2020.135263.

References

The CMS Collaboration

A.M. Sirunyan†, A. Tumasyan

Yerevan Physics Institute, Yerevan, Armenia

Institut für Hochenergiephysik, Wien, Austria

V. Drugakov, V. Mossolov, J. Suarez Gonzalez

Institute for Nuclear Problems, Minsk, Belarus

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

C.A. Bernardes, L. Calligaris, T.R. Fernandez Perez Tomei, E.M. Gregores, D.S. Lemos, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

Universidade Estadual Paulista, São Paulo, Brazil

Universidade Federal do ABC, São Paulo, Brazil

A. Aleksandrov, G. Antchev, R. Hadjiiska, I. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
M. Bonchev, A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov
University of Sofia, Sofia, Bulgaria

W. Fang, X. Gao, L. Yuan
Beihang University, Beijing, China

Institute of High Energy Physics, Beijing, China

A. Agapitos, Y. Ban, G. Chen, A. Levin, J. Li, L. Li, Q. Li, Y. Mao, S.J. Qian, D. Wang, Q. Wang
State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

M. Ahmad, Z. Hu, Y. Wang
Tsinghua University, Beijing, China

M. Xiao
Zhejiang University, Hangzhou, China

C. Avila, A. Cabrera, C. Florez, C.F. González Hernández, M.A. Segura Delgado
Universidad de Los Andes, Bogota, Colombia

J. Mejia Guisao, J.D. Ruiz Alvarez, C.A. Salazar González, N. Vanegas Arbelaez
Universidad de Antioquia, Medellin, Colombia

D. Giljanović, N. Godinovic, D. Lelas, I. Puljak, T. Sculac
University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia

Z. Antunovic, M. Kovac
University of Split, Faculty of Science, Split, Croatia

V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, M. Roguljic, A. Starodumov, T. Susa
Institute Rudjer Boskovic, Zagreb, Croatia

University of Cyprus, Nicosia, Cyprus

M. Finger, M. Finger Jr., A. Kveton, J. Tomsa
Charles University, Prague, Czech Republic

E. Ayala
Escuela Politecnica Nacional, Quito, Ecuador

E. Carrera Jarrin
Universidad San Francisco de Quito, Quito, Ecuador

Y. Assran, S. Elgammal
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehataht, M. Kadastik, M. Raidal, C. Veelken

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

P. Eerola, L. Forthomme, H. Kirschenmann, K. Osterberg, M. Voutilainen

Department of Physics, University of Helsinki, Helsinki, Finland

Helsinki Institute of Physics, Helsinki, Finland

T. Tuuva

Lappeenranta University of Technology, Lappeenranta, Finland

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France

S. Gadrat

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

T. Toriashvili15

Georgian Technical University, Tbilisi, Georgia

Z. Tsamalaidze10

Tbilisi State University, Tbilisi, Georgia

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

Karlsruhe Institut fuer Technologie, Karlsruhe, Germany

Karlsruhe Institut fuer Technologie, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

National and Kapodistrian University of Athens, Athens, Greece

G. Bakas, K. Kousouris, I. Papakrivopoulos, G. Tsipolitis

National Technical University of Athens, Athens, Greece

University of Ioannina, Ioannina, Greece

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary

G. Bencze, C. Hajdu, D. Horvath, F. Sikler, T.Á. Vámi, V. Veszpremi, G. Vesztergombi

Wigner Research Centre for Physics, Budapest, Hungary
N. Beni, S. Czellar, J. Karancsi, A. Makovec, J. Molnar, Z. Szillasi
Institute of Nuclear Research, ATOMKI, Debrecen, Hungary

P. Raics, D. Teyssier, Z.L. Trocsanyi, B. Ujvari
Institute of Physics, University of Debrecen, Debrecen, Hungary

T. Csorgo, W.J. Metzger, F. Nemes, T. Novak
Eszterhazy Karoly University, Karoly Robert Campus, Gyongyos, Hungary

S. Choudhury, J.R. Komaragiri, P.C. Tiwari
Indian Institute of Science (IISc), Bangalore, India

National Institute of Science Education and Research, HBNI, Bhubaneswar, India

Punjab University, Chandigarh, India

A. Bhardwaj, B.C. Choudhary, R.B. Garg, M. Gola, S. Keshri, Ashok Kumar, M. Naimuddin, P. Priyanka, K. Ranjan, Aashaq Shah, R. Sharma
University of Delhi, Delhi, India

Saha Institute of Nuclear Physics, HBNI, Kolkata, India

P.K. Behera, P. Kalbhor, A. Muhammad, P.R. Pujahari, A. Sharma, A.K. Sikdar
Indian Institute of Technology Madras, Madras, India

D. Dutta, V. Jha, V. Kumar, D.K. Mishra, P.K. Netrakanti, L.M. Pant, P. Shukla
Bhabha Atomic Research Centre, Mumbai, India

Tata Institute of Fundamental Research-A, Mumbai, India

S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, N. Sahoo, S. Sawant
Tata Institute of Fundamental Research-B, Mumbai, India

S. Dube, B. Kansal, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, A. Rastogi, S. Sharma
Indian Institute of Science Education and Research (IISER), Pune, India

M. Chenarani, E. Eskandari Tadavani, S.M. Etasemi, M. Khazad, M. Mohammadi Najafabadi, M. Nasir, F. Rezaei Hosseinabadi
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

M. Felcini, M. Grunewald
University College Dublin, Dublin, Ireland
M. Abbresciaa,b, R. Alya,b,29, C. Calabriaa,b, A. Colaleoa, D. Creanzaa,c, L. Cristellaa,b, N. De Filippisa,c, M. De Palmaa,b, A. Di Florioa,b, W. Elmetenaweea,b, L. Fiorea, A. Gelmia,b, G. Iasellia,c, M. Incea,b, S. Lezkia,b, G. Maggia,c, M. Maggia, J.A. Merlin, G. Minciottaa,b, S. Mya,b, S. Nuzzoa,b, A. Pompilia,b, G. Pugliesea,c, R. Radognaa, A. Ranieria, G. Selvaggia,b, L. Silvestrisa, F.M. Simonea,b, R. Vendittia, P. Verwilligena

a INFN Sezione di Bari, Bari, Italy
b Università di Bari, Bari, Italy
c Politecnico di Bari, Bari, Italy

G. Abbiendia, C. Battilanaa,b, D. Bonacorsia,b, L. Borgonovia,b, S. Braibant-Giacomellia,b, R. Campaninia,b,p, P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa, C. Cioccaa, G. Codispotia,b, M. Cuffiania,b, G.M. Dallavallea, F. Fabbrinia, A. Fanfania,b, E. Fontanesia,b, P. Giacomellia, C. Grandia, L. Guiduccia,b, F. Iemmaa,b, S. Lo Meoa,30, S. Marcellinia, G. Masettia, F.L. Navarriaa,b, A. Perrottaa, F. Primaveraa,b, A.M. Rossia,b, T. Rovellia,b, G.P. Sirolia,b, N. Tosia

a INFN Sezione di Bologna, Bologna, Italy
b Università di Bologna, Bologna, Italy

S. Albergoa,b,31, S. Costaa,b, A. Di Mattiaa, R. Potenzaa,b, A. Tricomia,b,31, C. Tuvea,b

a INFN Sezione di Catania, Catania, Italy
b Università di Catania, Catania, Italy

G. Barbaglia, A. Cassese, R. Ceccarelli, V. Ciullia,b, C. Civininia, R. D’Alessandroa,b, F. Fioria, E. Focardia,b, G. Latinoa,b, P. Lenzia,b, M. Meschinia, S. Paolettia, G. Sguazzonia, L. Viliania

a INFN Sezione di Firenze, Firenze, Italy
b Università di Firenze, Firenze, Italy

L. Benussi, S. Bianco, D. Piccolo

\textit{INFN Laboratori Nazionali di Frascati, Frascati, Italy}

M. Bozzoa,b, F. Ferroa, R. Mulargiaa,b, E. Robuttia, S. Tosia,b

a INFN Sezione di Genova, Genova, Italy
b Università di Genova, Genova, Italy

A. Benagliaa, A. Beschia,b, F. Brivioa,b, V. Cirioloa,b,17, S. Di Guidaa,b,17, M.E. Dinardoa,b, P. Dinia, S. Gennaia, A. Ghezzia,b, P. Govonia,b, L. Guzzia,b, M. Malbertia, S. Malvezzia, D. Menascea, F. Montia,b, L. Moronia, M. Paganonia,b, D. Pedrinia, S. Ragazzia,b, T. Tabarelli de Fatisa,b, D. Zuoloa,b

a INFN Sezione di Milano-Bicocca, Milano, Italy
b Università di Milano-Bicocca, Milano, Italy

S. Buontempoa, N. Cavalloa,c, A. De Iorioa,b, A. Di Crescenzoa,b, F. Fabozzia,c, F. Fiengaa, G. Galatia, A.O.M. Iorioa,b, L. Listaa,b, S. Meolaa,d,17, P. Paoluccia,17, B. Rossia, C. Sciaccaa,b, E. Voevodinaa,b

a INFN Sezione di Napoli, Napoli, Italy
b Università di Napoli ‘Federico II’, Napoli, Italy
c Università della Basilicata, Potenza, Italy
d Università C. Marconi, Roma, Italy

P. Azzia, N. Bacchettaa, D. Biselloa,b, A. Bolettia,b, A. Bragagnoloa,b, R. Carlina,b, P. Checchiaa, P. De Castro Manzanoa, T. Dorigoa, U. Dossellia, F. Gasparinia,b, U. Gasparinia,b, A. Gozzelinoa, S.Y. Hohaa,b, P. Lujanaa, M. Margonia,b, A.T. Meneguzzoa,b, J. Pazzinia,b, M. Presillab, P. Ronchesea,b, R. Rossinia,b, F. Simonettoa,b, A. Tikoa, M. Tosia,b, M. Zanettia,b, P. Zottoa,b, G. Zumerlea,b

a INFN Sezione di Padova, Padova, Italy
b Università di Padova, Padova, Italy
A. Braghieri a, D. Fiorina a,b, P. Montagna a,b, S.P. Ratti a, V. Re a, M. Ressegotti a,b, C. Riccardi a,b, P. Salvini a, I. Vai a, P. Vitulo a,b

a INFN Sezione di Pavia, Pavia, Italy
b Università di Pavia, Pavia, Italy

M. Biasini a,b, G.M. Bilei a, D. Ciangottini a,b, L. Fanò a,b, P. Lariccia a,b, R. Leonardi a,b, E. Manoni a, G. Mantovani a,b, V. Mariania a,b, M. Menichelli a, A. Rossi a,b, A. Santocchia a,b, D. Spiga a

a INFN Sezione di Perugia, Perugia, Italy
b Università di Perugia, Perugia, Italy

K. Androsov a, P. Azzurri a, G. Bagliesi a, V. Bertacchi a,b,c, L. Bianchini a, T. Boccali a, R. Castaldi a, M.A. Ciocci a,b, R. Dell’Orso a, S. Donato a, G. Fedi a, L. Giannini a,c, A. Giassi a, M.T. Grippo a, F. Ligabue a,c, E. Manca a,c, G. Mandorli a,c, A. Messineo a,b, F. Palla a, A. Rizzi a,b, G. Rolandi 32, S. Roy Chowdhury, A. Scribano a, P. Spagnolo a, R. Tenchini a, G. Tonelli a,b, N. Turini, A. Venturi a, P.G. Verdini a

a INFN Sezione di Pisa, Pisa, Italy
bUniversità di Pisa, Pisa, Italy
c Scuola Normale Superiore di Pisa, Pisa, Italy

F. Cavallari a, M. Cipriani a,b, D. Del Re a,b, E. Di Marco a, M. Diemoz a, E. Longo a,b, P. Meridiani a, G. Organtini a,b, F. Pandolfi a, R. Paramatti a,b, C. Quaranta a,b, S. Rahatliou a,b, C. Rovelli a, F. Santanastasio a,b, L. Soffi a,b

a INFN Sezione di Roma, Rome, Italy
bSapienza Università di Roma, Rome, Italy

N. Amapane a,b, R. Arcidiacono a,c, S. Argiro a,b, M. Arneodo a,c, N. Bartosik a, R. Bellan a,b, A. Bellora, C. Biino a, A. Cappati a,b, N. Cartiglia a, S. Cometti a, M. Costa a,b, R. Covarelli a,b, N. Demaria a, B. Kiani a,b, F. Legger, C. Mariotti a, S. Maselli a, E. Migliore a,b, V. Monaco a,b, E. Monteil a,b, M. Monteno a, M.M. Obertino a,b, G. Ortona a,b, L. Pacher a,b, N. Pastrone a, M. Pelliccioni a, G.L. Pinna Angioni a,b, A. Romero a,b, M. Ruspa a,c, R. Salvatico a,b, V. Sola a, A. Solano a,b, D. Soldi a,b, A. Staiano a, D. Trocino a,b

a INFN Sezione di Torino, Torino, Italy
bUniversità di Torino, Torino, Italy
cUniversità del Piemonte Orientale, Novara, Italy

S. Belforte a, V. Candelise a,b, M. Casarsa a, F. Cossutti a, A. Da Rold a,b, G. Della Ricca a,b, F. Vazzoler a,b, A. Zanetti a

a INFN Sezione di Trieste, Trieste, Italy
b Università di Trieste, Trieste, Italy

Kyungpook National University, Daegu, Republic of Korea

H. Kim, D.H. Moon, G. Oh

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Republic of Korea

B. Francois, T.J. Kim, J. Park

Hanyang University, Seoul, Republic of Korea

Korea University, Seoul, Republic of Korea

J. Goh

Kyung Hee University, Department of Physics, Republic of Korea

H.S. Kim

Sejong University, Seoul, Republic of Korea
Seoul National University, Seoul, Republic of Korea

University of Seoul, Seoul, Republic of Korea

Y. Choi, C. Hwang, Y. Jeong, J. Lee, Y. Lee, I. Yu
Sungkyunkwan University, Suwon, Republic of Korea

V. Veckalns
Riga Technical University, Riga, Latvia

V. Dudenas, A. Juodagalvis, A. Rinkevicius, G. Tamulaitis, J. Vaitkus
Vilnius University, Vilnius, Lithuania

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada, L. Valencia Palomo
Universidad de Sonora (UNISON), Hermosillo, Mexico

H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz, R. Lopez-Fernandez, A. Sanchez-Hernandez
Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

S. Carrillo Moreno, C. Oropeza Barrera, M. Ramirez-Garcia, F. Vazquez Valencia
Universidad Iberoamericana, Mexico City, Mexico

J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

A. Morelos Pineda
Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico

J. Mijuskovic, N. Raicevic
University of Montenegro, Podgorica, Montenegro

D. Krofcheck
University of Auckland, Auckland, New Zealand

S. Bheesette, P.H. Butler
University of Canterbury, Christchurch, New Zealand

A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

V. Avati, L. Grzanka, M. Malawski
AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland

H. Bialkowska, M. Bluj, B. Boimska, M. Górski, M. Kazana, M. Szleper, P. Zalewski
National Centre for Nuclear Research, Swierk, Poland
P. Adzic, P. Cirkovic, M. Dordevic, P. Milenovic, J. Milosevic, M. Stojanovic

University of Belgrade, Faculty of Physics and VINCA Institute of Nuclear Sciences, Serbia

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

C. Albajar, J.F. de Trocóniz, R. Reyes-Almanza

Universidad Autónoma de Madrid, Madrid, Spain

Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

K. Malagalage

University of Colombo, Colombo, Sri Lanka

W.G.D. Dharmaratna, N. Wickramage

University of Ruhuna, Department of Physics, Matara, Sri Lanka

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Imperial College, London, United Kingdom

J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, I.D. Reid, L. Teodorescu, S. Zahid

Brunel University, Uxbridge, United Kingdom

Baylor University, Waco, USA

R. Bartek, A. Dominguez, R. Uniyal, A.M. Vargas Hernandez

Catholic University of America, Washington, DC, USA

A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West

The University of Alabama, Tuscaloosa, USA

Boston University, Boston, USA

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara – Department of Physics, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA

F. Rebassoo, D. Wright

Lawrence Livermore National Laboratory, Livermore, USA

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

J.G. Acosta, S. Oliveros

University of Mississippi, Oxford, USA

K. Bloom, S. Chauhan, D.R. Claes, C. Fangmeier, L. Finco, F. Golf, R. Kamalieddin, I. Kravchenko, J.E. Siado, G.R. Snow, B. Stieger, W. Tabb

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

J. Alimena, B. Bylsma, L.S. Durkin, B. Francis, C. Hill, W. Ji, A. Lefeld, T.Y. Ling, B.L. Winer

The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

S. Malik, S. Norberg

University of Puerto Rico, Mayaguez, USA

Purdue University, West Lafayette, USA

T. Cheng, J. Dolen, N. Parashar

Purdue University Northwest, Hammond, USA

Rice University, Houston, USA

University of Rochester, Rochester, USA

Rutgers, The State University of New Jersey, Piscataway, USA

H. Acharya, A.G. Delannoy, S. Spanier

University of Tennessee, Knoxville, USA

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA

M.W. Arenton, P. Barria, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovskoy, C. Neu, B. Tannenwald, Y. Wang, E. Wolfe, F. Xia

University of Virginia, Charlottesville, USA

R. Harr, P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa

Wayne State University, Detroit, USA

University of Wisconsin – Madison, Madison, WI, USA

1 Deceased.
2 Also at Vienna University of Technology, Vienna, Austria.
3 Also at IFPU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
4 Also at Universidade Estadual de Campinas, Campinas, Brazil.
5 Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
6 Also at UFMS, Nova Andradina, Brazil.
7 Also at Universidade Federal de Pelotas, Pelotas, Brazil.
8 Also at Université Libre de Bruxelles, Bruxelles, Belgium.
9 Also at University of Chinese Academy of Sciences, Beijing, China.
10 Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia.
11 Also at Joint Institute for Nuclear Research, Dubna, Russia.
12 Also at Suez University, Suez, Egypt.
13 Now at British University in Egypt, Cairo, Egypt.
14 Also at Purdue University, West Lafayette, USA.
15 Also at Université de Haute Alsace, Mulhouse, France.
16 Also at Tbilisi State University, Tbilisi, Georgia.
17 Also at Erzincan Binali Yildirim University, Erzincan, Turkey.
18 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
19 Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
20 Also at University of Hamburg, Hamburg, Germany.
21 Also at Brandenburg University of Technology, Cottbus, Germany.
22 Also at Institute of Physics, University of Debrecen, Debrecen, Hungary, Debrecen, Hungary.
23 Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
24 Also at IIT Bhubaneswar, Bhubaneswar, India.
25 Also at Institute of Physics, Bhubaneswar, India.
26 Also at Shoolini University, Solan, India.
27 Also at University of Hyderabad, Hyderabad, India.
28 Also at University of Visva-Bharati, Santiniketan, India.
29 Also at Isfahan University of Technology, Isfahan, Iran.
30 Also at INFN Sezione di Bari 1, Università di Bari 2, Politecnico di Bari 3, Bari, Italy.
31 Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy.
32 Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy.
33 Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.
34 Also at Riga Technical University, Riga, Latvia, Riga, Latvia.
35 Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia.
36 Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico.
37 Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.
38 Also at Institute for Nuclear Research, Moscow, Russia.
39 Also at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.
40 Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
41 Also at University of Florida, Gainesville, USA.
42 Also at Imperial College, London, United Kingdom.
43 Also at P.N. Lebedev Physical Institute, Moscow, Russia.
44 Also at California Institute of Technology, Pasadena, USA.
45 Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia.
46 Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
47 Also at Università degli Studi di Siena, Siena, Italy.
48 Also at INFN Sezione di Pavia 4, Università di Pavia 4, Pavia, Italy, Pavia, Italy.
49 Also at National and Kapodistrian University of Athens, Athens, Greece.
50 Also at Universität Zürich, Zurich, Switzerland.
51 Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria, Vienna, Austria.
52 Also at Burdur Mehmet Akif Ersoy University, BURDUR, Turkey.
53 Also at Adiyaman University, Adiyaman, Turkey.
54 Also at Şırnak University, Şırnak, Turkey.
55 Also at Tsinghua University, Beijing, China.
56 Also at Beykent University, Istanbul, Turkey, Istanbul, Turkey.
57 Also at Istanbul Aydin University, Istanbul, Turkey.
58 Also at Mersin University, Mersin, Turkey.
59 Also at Piri Reis University, Istanbul, Turkey.
60 Also at Gaziosmanpasa University, Tokat, Turkey.
61 Also at Ozyegin University, Istanbul, Turkey.
62 Also at Izmir Institute of Technology, Izmir, Turkey.
62 Also at Marmara University, Istanbul, Turkey.
63 Also at Kafkas University, Kars, Turkey.
64 Also at Istanbul Bilgi University, Istanbul, Turkey.
65 Also at Hacettepe University, Ankara, Turkey.
66 Also at Vrije Universiteit Brussel, Brussel, Belgium.
67 Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
68 Also at IPPP Durham University, Durham, United Kingdom.
69 Also at Monash University, Faculty of Science, Clayton, Australia.
70 Also at Bethel University, St. Paul, Minneapolis, USA, St. Paul, USA.
71 Also at Karamanoğlu Mehmetbey University, Karaman, Turkey.
72 Also at Bingöl University, Bingöl, Turkey.
73 Also at Georgian Technical University, Tbilisi, Georgia.
74 Also at Sinop University, Sinop, Turkey.
75 Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
76 Also at Texas A&M University at Qatar, Doha, Qatar.
77 Also at Kyungpook National University, Daegu, Korea, Daegu, Republic of Korea.