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Abstract
Following stringent social distancing measures, someBackground: 

European countries are beginning to report a slowed or negative rate of
growth of daily case numbers testing positive for the novel coronavirus. The
notion that the first wave of infection is close to its peak begs the question
of whether future peaks or ‘second waves’ are likely. We sought to
determine the current size of the effective (i.e. susceptible) population for
seven European countries—to estimate immunity levels following this first
wave.

We used Bayesian model inversion to estimate epidemicMethods: 
parameters from the reported case and death rates from seven countries
using data from late January 2020 to April 5  2020. Two distinct generative
model types were employed: first a continuous time dynamical-systems
implementation of a Susceptible-Exposed-Infectious-Recovered (SEIR)
model, and second a partially observable Markov Decision Process or
hidden Markov model (HMM) implementation of an SEIR model. Both
models parameterise the size of the initial susceptible population (‘S0’), as
well as epidemic parameters.

Both models recapitulated the dynamics of transmissions andResults: 
disease as given by case and death rates. Crucially, maximum a posteriori
estimates of S0 for each country indicated effective population sizes of
below 20% (of total population size), under both the continuous time and
HMM models. Using a Bayesian weighted average across all seven
countries and both models, we estimated that 6.4% of the total population
would be immune. From the two models, the maximum percentage of the
effective population was estimated at 19.6% of the total population for the
UK, 16.7% for Ireland, 11.4% for Italy, 12.8% for Spain, 18.8% for France,

4.7% for Germany and 12.9% for Switzerland.
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4.7% for Germany and 12.9% for Switzerland.
Our results indicate that after the current wave, a largeConclusion: 

proportion of the total population will remain without immunity.
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Introduction
As of early April 2020, the Coronavirus pandemic has reached 
different epidemic stages across the world. France was the earli-
est affected country in Europe with its first reported cases on 
24th January 2020 (Reusken et al., 2020) with cases reported 
shortly after in Germany, then the United Kingdom, Italy, 
Spain, Switzerland and in Ireland on February 29th. Subse-
quently outbreaks have emerged across the European continent. 
The daily rates of new confirmed cases of the Covid-19 virus 
(SARS-CoV-2) have begun to decrease in some of these coun-
tries; in particular, in Italy and Spain, with promising signs that 
extensive social distancing measures have been effective and 
that these countries have reached or are past ‘the peak’ of infec-
tions. Epidemiological models that predict the progression of 
populations from Susceptible (S) to Exposed (E), Infected (I) 
and Recovered (R) (SEIR models (Kermack & McKendrick,  
1927)) can be used to investigate the properties of these peaks, 
given the initial susceptibility of a population. For SARS-CoV-2,  
no (or limited) immunity can be assumed a priori in humans  
and thus the majority of the entire population is deemed susceptible 
(Eurosurveillance Editorial Team Team, 2020).

Several studies have developed and simulated SEIR models using 
epidemic parameters to ‘nowcast’ and forecast transmission  
(Wu et al., 2020). Parameters of the model are being continu-
ously improved and modified, such as reduced serial interval esti-
mates (Nishiura et al., 2020; Yang et al., 2020), initially derived 
from observed cases in the initial outbreak in Wuhan, China  
(Sun et al., 2020; Wang et al., 2020a; Wang et al., 2020b). In 
most studies, these compartmental models are applied as dynamic 
generative (i.e., causal or mechanistic) models that assume a set 
of parameters and predict cases or clinical resources (Moghadas 
et al., 2020) and intervention effects (Prem et al., 2020; Wells  
et al., 2020). The (initial) susceptible size of a population (termed 
‘S0’) is assumed to be the size of a particular city, e.g. 10 million  
in Wuhan (Prem et al., 2020) or—for a country—is assumed 
to comprise of multiples of smaller city sized outbreaks,  
e.g. 100k (Ferguson et al., 2020). Such models have lent impor-
tant insight into the likely disease and clinical trajectories 
of countries as a whole, enabling planning and management  
for predicted numbers of cases requiring hospitalization and  
ventilation (Moghadas et al., 2020).

Given the lockdowns around Europe, which likely averted larger 
case surges (Wang et al., 2020a), we sought to investigate the 
current effective population size in seven European countries. 
Therefore, we used the SEIR model to determine the initial 
population size (S0) that was susceptible (i.e., would eventually 
become infected) at the beginning of the first wave and thus deter-
mine the levels of immunity that might exist in these countries 
after this wave (by assuming the susceptible population will even-
tually become infected and develop immunity). One approach, 
to perform this inverse modelling, is to apply dynamic causal 
modelling (Friston et al., 2007)—enabling the incorporation 
of prior values for parameters (e.g. the serial interval, incuba-
tion period or number of daily contacts) and prior uncertainty 
about these values.

Quarantine and social isolation are often explicitly accounted 
for in SEIR models (Feng, 2007; Ridenhour et al., 2018;  
Wearing et al., 2005) making them appropriate for the current 
Government advised social distancing. Importantly, two particular 
forms of this SEIR model (with social distancing) have recently 
been developed (Friston et al., 2020; Moghadas et al., 2020) that 
also account for deaths following hospitalization or treatment via 
ventilation within an Intensive Care Unit (ICU). Specifi-
cally, they account for a potential time lag between becoming 
infected and developing acute respiratory distress. This makes 
these models putatively ‘fit for purpose’, when using death as 
well as case reporting data to fit or invert the models to recover 
(posterior) parameter values—and estimate their uncertainty.

We aimed to apply these two models to data from seven  
countries: Ireland, the United Kingdom, Italy, Spain, France,  
Germany and Switzerland. Our goal was to estimate S0. One 
model, (the ‘ODE model’—see Methods and (Moghadas et al., 
2020)) is based on a classical compartment model where a 
person in an epidemic can occupy only one compartment 
or ‘state’ and moves from state to state: from Susceptible to 
eventually (through intermediate states) either Recovery or 
Death. The other model—the ‘hidden Markov model’ (HMM; 
(Friston et al., 2020))—features several factors that change 
together; including where a person is located (out of the home 
vs. in the home, for example), as well as their infectious, test-
ing and clinical status. We apply both models to daily case 
and death reports to assess whether there is convergence 
on estimates of the initially susceptible (i.e., effective) population 
sizes.

Methods
Data
Data from a repository for the 2019 Novel Coronavirus at John’s 
Hopkins University Center for Systems Science and Engineering  
were used (Dong et al., 2020). Using these date-stamped 
entries of daily reported cases and reported deaths, we extracted 
seven timeseries pairs for the countries (including all territo-
ries) of Ireland, the United Kingdom, Italy, Spain, Germany, 
France and Switzerland. Data records from January 22nd to April 
5th, 2020 were modelled. For the ordinary differential equation 
(ODE) model, daily cases and daily accumulated deaths were fit-
ted, while for the HMM model, daily cases and daily deaths were 
fitted, corresponding to the state equations (see (Friston et al., 
2020)).

Models
ODE model. A dynamic transmission model comprising a 
set of 12 coupled ordinary differential equations was adapted 
from Moghadas et al. (2020, #4) The original model included 
12 states for four different age categories. We simplified 
the model structure by collapsing across age (see Extended 
data (Moran et al., 2020)). The 12 states or compartments 
in this simplified model (flow function, Figure 1) described sus-
ceptible (S) individuals who became infected with the disease 
through exposure (E) to other infected individuals. Infected 
individuals comprised three categories, an asymptomatic or 
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subclinical state (A), a symptomatic state who would not require 
hospitalization (InH) and a symptomatic state who would require 
hospitalization (IH). Each of these infected categories could also 
self-isolate – representing three more states defined by lower 
a priori contacts. People in states InH and A were assumed to 
recover, while those in states (IH) would transition to either 
hospitalized (H) or ICU states (ICU). From these states peo-
ple would recover (R) or die (D) (Figure 1). Time constants 
of the mode included the incubation period, recovery period, 
time to self-isolate, time from symptom onset to hospitaliza-
tion, time from ICU admission to death, time from non-ICU 
admission to death, length of stay in ICU and length of hospital 
stay. Parameters controlling proportions that entered branch-
ing states (e.g. proportion of all hospitalised cases admitted to 
ICU were also included (see Extended data for full parameter list 
(Moran et al., 2020)), as well as the transmission rate and con-
tact per day either within or without self-isolation. Parameters 
were equipped with a priori values and optimisation was per-
formed on log scale factors to ensure positivity (Extended data 

(Moran et al., 2020)) of these proportions and rate constants. To 
link these ODEs to the observed data we employed an observer 
function which assumed a variable rate of case reporting 
for symptomatic (without requiring hospitalization) and asymp-
tomatic individuals. A priori we assumed that only 1% of indi-
viduals infected who were asymptomatic received tests. We 
assumed that 20% of symptomatic cases who do not require 
hospitalization receive tests, and that 100% of infected indi-
viduals who are hospitalised receive tests. The levels of 1% and 
20% testing were free parameters in our model. The 100% for 
hospitalised tests was fixed. Finally, 100% of deaths were 
assumed to be recorded. Finally, we placed a priori on the ini-
tial number of individuals in each state. A priori, we assume 
100 individuals in infected states. We tested two alternatives 
for S0:

In the ODE model (Model: ODE) we initialised S0 to 1 Million 
× θ_S0 individuals, where θ_S0 = 1. This parameter would be 
optimised for each individual dataset and so could accommodate 

Figure 1. Models. Left: Flow function, or population dynamics. From the susceptible state (where initially at time t= 0S = S0), the infected 
population will enter one of three categories: IH (infected requiring hospitalization), InH (infected NOT requiring Hospitalization), or A 
(asymptomatic). From the IH state, subjects transfer either to H (Hospital) or ICU, from which subjects transfer either to R or D. Both the InH 
and A states lead to Recovery (R). The observer function evaluates the dependent variable at each iteration of the integration process of the 
flow function. The resultant model-based data is compared against empirical John’s Hopkins University data. Right: Network showing the 
transition between states for the HMM model. The ODE model is a 12-compartmental model—with one factor with 12 states). The HMM model 
is a 256-compartment model—with four factors (location, infection and clinical) each with four levels, giving 44 = 256 states. The structural 
difference between the ODE and HMM model rests upon the allowable combination of factors that describe the state of an individual in a 
population. For example, in the factorial (HMM) model it is possible to die from acute respiratory distress at (e.g. a care) home. Conversely, 
in the ODE model, one can only die after being in hospital. Certain transitions among these states are allowable. For example, in the ‘testing’ 
factor, an individual could transit from untested to waiting to a positive result. Or an individual could transition from untested to untested—
where they remain untested even if they are infected (see Friston et al., 2020 for a priori probability values).
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total sizes; e.g. if θ_S0 = 4.9 a posteriori then the total 
population of Ireland would be considered initially susceptible.

We also tested a ‘cities’-based version of the ODE model 
(Model: ODE_City) that might recapitulate the death and case 
rates for each country. For this, we altered the observer func-
tion and imposed a prior of 1 Million × θ_S0 individuals, where 
θ_S0 = 1. Then we scaled the case and death rates by the popu-
lation in millions (see Extended data for equations (Moran 
et al. 2020)). For this if we obtained θ_N0 = 1 a posteriori then 
the total initial susceptible population would also correspond to 
the total population of Ireland, but the epidemic dynamic would 
comprise 4.9 distinct outbreaks.

HMM model. Our second model of the cases and death rates was 
a Dynamic Causal Model of Covid-19. See (Friston et al., 2020) 
for a complete description of the model. In brief, the model rep-
resents four factors describing location, infection status, test 
status and clinical status. Within each factor people may tran-
sition among four states probabilistically. The transitions gen-
erate predicted outcomes; for example, the number of people 
newly infected who have tested positive or the number of people 
newly infected who will remain untested. The location fac-
tor describes if an individual is at home, at work, in a criti-
cal care unit or deceased. Similar to the early states in the ODE 
model, the HMM has a second factor describing infection status 
susceptible, infected, infectious or immune, where it is assumed 
that there is a progression from a state of susceptibility to immu-
nity—through a period of (pre-contagious) infection to an 
infectious (contagious) status. The clinical status factor com-
prises asymptomatic, symptomatic, acute respiratory distress 
syndrome or deceased. Finally, the fourth factor represents diag-
nostic status where an individual can be untested or waiting for 
the results of a test that can either be positive or negative. As 
with the ODE model, transitions amongst states are control-
led by rate constants (inverse time constants) and non-negative 
probabilities. Similar to the ODE model above, we initialised 
(and set as priors) S0 to 1 Million × θ_S0 individuals, where θ_S0 
= 1.

For the HMM and both ODE models (ODE model and ODE_
City) to estimate the model parameters, we employed a standard 
(variational Laplace) Bayesian scheme to optimise parameters 
of corresponding DCM (spm_NLSI_GN) (Friston et al., 2007).

Results
The key aim of our analysis was to estimate the likely immu-
nity after the current set of cases and deaths. To ascertain the 
initial susceptibility S0, we examined the posterior estimate 
from both model types and its Bayesian credible intervals. How-
ever, first we examined the evidence for each model, relative 
to the worst performing model. We used two ODE models, with 
different constructs for epidemic sizes/meta-populations. The 
first ODE model (ODE) assumed a prior of 1 million suscep-
tible individuals (S0). The second ODE model accounted for 
several effective populations of size 1 million (ODE_City). 
The third model was the HMM model, which also assumed a 
prior of 1 million initial susceptible individuals. Of all three 

models, ODE_City was the worst performing model for all countries 
data (Figure 2A).

From the two better performing models, we then estimated 
the effective population size of S0=S(t=0) as a proportion 
of the total population (Figure 2B). Taking a Bayesian aver-
age—across all models and countries—the estimated proportion 
of people that were initially susceptible at the start of this out-
break—and thus immune at the end of the outbreak—was 6.4% 
of the total population of each country.

The ODE model produced consistently higher estimates of 
S0 at the end of the wave than the HMM. These values sug-
gest that after the current wave of cases, between 3 (lowest esti-
mates for Ireland and the UK) and 12 (highest estimate for 
Germany) more cycles (with identical dynamics to those from 
Jan 22nd) would be required to bring the total population to prob-
able herd immunity levels (we assume herd immunity of 60%; 
Figure 2B). We plot this fall in susceptibility state S (increase 
in immunity) over time, from the initial size S0 in Figure 2C for 
the ODE and HMM models separately for Ireland and the UK.

Our model inversion procedure produced fits to the data that 
recapitulated the rates up to April 5th for both models (Figure 3).  
Systematic differences in future predictions were observed 
however between the ODE and HMM models (though predic-
tions were of similar orders of magnitude). For all countries 
the peak date and peak number of cases was higher for the 
ODE model. However, both models exhibited peaks for dates 
in the past for four countries (Italy, Spain, Germany and Swit-
zerland). For France the models were discrepant with the 
ODE model predicted a peak in the future on April 20th and the 
HMM model estimating a peak had already occurred on April 7th.

Peaks in the future were expected for Ireland and the UK. For 
Ireland, the peak reported case rate predictions were estimated 
at April 9th for the HMM and April 23rd for the ODE. The esti-
mate of the number of daily cases at the peak were 720 cases 
and 392 cases for the ODE and HMM models. For the UK, the 
peak case rate predictions were estimated at April 11th for the 
HMM and April 17th for the ODE model. The peak case rates 
(i.e. tested cases) were estimated at 9304 daily cases for the 
ODE and 5411 daily cases for the HMM models (Figure 3).

The cumulative deaths (Figure 4) evinced relatively small  
discrepancies between the models, with the ODE model predicting  
a larger cumulative death toll, of 1250 for Ireland compared  
with 1008 deaths in Ireland given by the HMM model. For 
the UK, the ODE and HMM were remarkably consistent, 
predicting a cumulative death toll of 49296 and 49785, respec-
tively1 (Figure 4). In other European countries, however, the 
discrepancies between the model predictions were greater in 

1These predictions fall to substantially lower levels, when empirical priors 
from a hierarchical or parametric empirical Bayes analysis that incorporates 
data from all countries are used.
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Bayesian Model Evidence relative to worst performing ‘Cites’ Model
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Factor) for different models across countries. This shows that the models with a prior of 1 million S0 outperform the (multiple outbreak ODE_
Cities) model, with priors of initial susceptible S0 equal to the total population of the country. (B) From the two better performing models, we 
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Figure 3. Model predictions of daily reported case rates across countries. Note both models assume that many infected individuals will 
not be tested or reported in the daily case rates.

Figure 4. Model predictions of cumulative deaths across countries.
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some countries, such as France, Spain and Switzerland, with the 
HMM suggesting considerably lower cumulative deaths.

Finally, to test the assumption that low S0 proportions of the 
population may be indicative of a ‘next wave’ or several ‘next 
waves’, we estimated the initial susceptible size from the 
initial peak of the Spanish Flu pandemic of 1918-1919 using 
data collated from approximately half of the United Kingdom, 
i.e. a population of approximately 22 million. Using the 
HMM model and variational Laplace, we see fits to the data 
that capture the falling peak. Here, we estimated the effec-
tive or susceptible population size was S0 = 4.03% of the total 
population size (Figure 5). Though dramatically different in 
terms of hospital care, the general picture remains – large waves 
may be possible after low S0.

Discussion
We used a variational Bayesian scheme (Friston et al., 2007) 
to optimise the parameters of two distinctly constructed mod-
els of viral transmission (Friston et al., 2020; Moghadas et al., 
2020). We optimised the parameters of these models based on 

daily reported cases and daily reports of death due to Covid-19. 
We optimised the model from data acquired for seven European 
countries. Both models were able to predict (i.e. fit) the current 
epidemic dynamics with plausible estimated trajectories. The 
models differed in their exact case rate predictions but predicted 
commensurate figures for the deaths in the United Kingdom  
and Ireland. How do these estimates relate to previous 
predictions of Covid-19 deaths in the UK? It was predicted 
(Ferguson et al., 2020) that without interventions 510,000 
deaths could occur in the UK due to Covid-19. This analysis 
(Ferguson et al., 2020) also predicted, that even with an opti-
mal mitigation scenario, these death rates would reduce only 
by one half, i.e. to 255,000. Thus, the predicted death cases of 
our models ~50,000 in the current cycle are in line with the pre-
dictions of mitigation effects, if we assume that several more 
cycles are possible.

Importantly, both models predicted that we are currently near-
ing or past the peak of daily case rates in all seven countries. 
However, the estimates suggest that after this cycle more than 
80% of each country’s total population in all countries studied 
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Figure 5. Spanish flu pandemic of 1918-1919 from regions of England and Wales. Initial S0 estimates from the first peak have a similar 
size (S0 Spanish Flu = 4.03%) to those estimated for the current coronavirus pandemic (S0 Corona = 6.4%).
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remain susceptible. Therefore, we assume that future cycles will 
occur.

The predicted S0 was higher for the ODE model relative to the 
HMM model. In turn, the ODE model predicted a more pro-
longed cycle in the current period relative to the HMM model. 
This speaks to a trade-off between S0 and cycle times. Assum-
ing herd immunity requires 60% of the susceptible population to 
be immune (Cohen & Kupferschmidt, 2020), one may con-
clude that further cycles are possible. However, that is not to say 
that populations within current outbreak areas may not reach 
herd immunity after the current cycle. Yet, if this is the case 
(immunity is clustered in geographic or some other organisation  
of communities), then parts of the country—particularly those 
communities with high contact numbers that have not ‘been 
involved’ in the current cycle – may be more likely to par-
ticipate in future cycles. And while it is obviously unrealis-
tic to suppose that an additive linear effect of populations will 
emerge (Eubank et al., 2004; Sirakoulis et al., 2000) (i.e., iden-
tically shaped cycles), given the complexity of contacts and 
population movement, our analysis may offer a rough guide to 
cycle immunity numbers.

As with most scientific research at this time, the model-
ling described above was conducted with haste. In line 
with the sentiments of the World Health Organization’s  
Dr Mike Ryan “Perfection is the enemy of the good when it comes 
to emergency management. Speed trumps perfection. And the 
problem in society we have at the moment is everyone is afraid 
of making a mistake. Everyone is afraid of the consequence of 
error, but the greatest error is not to move, the greatest error is 
to be paralyzed by the fear of failure.” Therefore, we are grate-
ful to the coding repositories listed in our Underlying data, where 
interested researchers can reproduce or nuance our analyses.

Data availability
Underlying data
John’s Hopkins University Center for Systems Science and 
Engineering 2019 Novel Coronavirus data available from 
(data in this analysis used up to April 5th): https://github.com/
CSSEGISandData/COVID-19 

Code to reproduce analyses available from: https://github.com/ 
RosalynMoran/Covid-19.git 

Archived code as at time of publication: https://doi.org/10.5281/
zenodo.3766243 (Moran et al., 2020).

License: GNU Affero General Public License v3.0

Extended data
Zenodo: RosalynMoran/Covid-19:Covid-19, https://doi.
org/10.5281/zenodo.3766243 (Moran et al., 2020).

This project contains the following extended data:

- ODE FLOW FUNCTION

- ODE Observer FUNCTION

- ODE CITY Observer FUNCTION

These data are under a GNU Affero General Public License 
v3.0.
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