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Abstract

This thesis describes the development of a microchannel plate (MCP) based photon
counting detector using the Spiral Anode (SPAN) as a readout. This detector was one of
two being evaluated for use in the Optical Monitor for ESA’s X-ray Multi Mirror satellite.
Throughout this thesis, where possible, the underlying physical processes, particularly those
of the MCP, have been identified and studied separately.

The first chapter is an introduction to photon counting detectors and includes
a review of the various readouts used with MCPs. The second chapter provides a more
detailed review and analysis of cyclic, continuous-electrode, charge-division readouts, of
which SPAN is an example.

The next two chapters describe the technique for measuring the radial distribution
of the MCP charge cloud, which can significantly affect detector imaging performance .
Results are presented for various operating conditions. The distribution consists of two
parts and the size is dependent on the operating voltages of the MCP stack.

The fifth and sixth chapters describe the procedure for operating a SPAN read-
out and the decoding necessary for converting the ADC readings into a two dimensional
coordinate. Various methods are described and their limitations evaluated. The cause of
problems associated with the SPAN readout, such as “ghosting” and fixed patterning and
methods of reducing them are discussed in detail. Results are presented which demonstrate
the performance of the anode.

The seventh chapter discusses and evaluates the interaction between channels in
MCPs and the long range effects an active pore has on the surrounding quiescent pores.
This represents the first time that these effects have been measured. The importance of
this phenomenon for imaging detectors is discussed and possible mechanisms evaluated.

The last chapter presents the conclusions of this work and discusses the suitability
of SPAN detectors for use on satellites.
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Chapter 1

Review of Two Dimensional

Photon Counting Detectors

Figure 1.1 summarizes the performance characteristics of various two dimensional,
photon counting, X-ray detectors. Rear illuminated charge coupled devices (CCDs) can
be used directly as  imaging, X-ray, photon counting detector:without the need of any
photon conversion or electron multiplying device. The microcalorimeter also detects an
X-ray photon directly, by detecting its thermal energy in a similar manner to an infrared
bolometer. At present, these detectors can only be used for photon energies greater than
~ 500 eV (Culhane, 1992 and references therein).

In the most widely used types of photon counting detectors, the incoming photon
produces at least one electron by either interacting with a gas, in gas proportional counters,
or a photocathode in photomultipliers. In the later case, this photo-electron is then multi-
plied by a cascade of processes producing secondary electrons. If the gain is ~ 10% e~ or
larger, a current or light pulse large enough to be measured individually is produced when
the secondary electrons are collected by an anode or phosphor.

In the position sensitive gas-filled proportional counter (PSPC), electron multipli-
cation takes place in the gas, such as either a Xe/CH, or Ar/CH4 mixture, in the region of
a high electric field near an anode wire. The generation of a cloud of positive ions near the
anode wire induces charge on one or two cathodes which allows the centre of gravity of the

resulting charge cloud to be determined.
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