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Abstract

An aircraft in low-level flight experiences a large increase in lift and a marked re-
duction in drag, compared with flight at altitude. This phenomenon is termed the
‘wing-in-ground’ effect. In these circumstances a region of high pressure is created
beneath the aerofoil, and a pressure difference is set up between its upper and lower
surfaces. A pressure difference is not permitted at the trailing edge and therefore a
mechanism must exist which allows the pressures above and below to adjust them-
selves to produce a continuous pressure field in the wake. It is the study of this
mechanism and its role in the aerodynamics of low-level flight that forms the basis
of our investigation. We begin in Chapter 2 by considering the flow past a thin aero-
foil moving at moderate distances from the ground, the typical ground clearance «
being of order unity. The aforementioned mechanism is introduced and described in
detail in the context of this inviscid problem. Chapter 3 considers the same flow for
large and small ground clearances and in the later case shows that the flow solution
beneath the aerofoil takes on a particularly simple form. In this case the lift is shown
to increase as a!. In Chapter 4 we focus on the flow past the trailing edge of an
aerofoil moving even nearer the ground, with the ground just outside the boundary
layer. We show that in this case our asymptotic theory for small o is consistent
with a ‘triple-deck’ approach to the problem which incorporates ground effects via
a new pressure-displacement law. The triple-deck ground-interference problem is
stated and solved. In Chapter 5 we investigate the case where the aerofoil is so near
the ground that the ground is inside the boundary layer. Here the moving ground
interacts with the aerofoil in a fully viscous way and the non-linear boundary layer
equations hold along the entire length of the aerofoil. Again a pressure difference at
the trailing edge is not permitted and this produces upstream adjustment back to
the leading edge. Regions of reversed flow can occur and their effects, with regard to
downforce production and racing car undertray design, are considered. In Chapter

6 we consider ‘wing-in-tunnel’ effects.
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Chapter 1

Introduction

[s it a boat? Isit a plane? Is it a car? No, it’s a WIG. This is the term given to wing-
in-ground effect vehicles which are designed to exploit the aerodynamic efficiency

gains associated with low level flight.

Ever since the beginning of manned flight, pilots have experienced something strange
when landing aircraft. Just before touchdown it feels as if the aircraft doesn’t want
to land, as if it is floating on a cushion of air; this phenomenon is termed ‘wing-in-

ground effect’ or simply, ‘ground effect’.

Aerodynamically speaking, two things happen as an aircraft approaches the ground
and these two phenomena are termed span-dominated and chord-dominated ground
effect. The former results in a reduction in the induced drag, D, and the latter

results in an increase in the lift, L, experienced by the aircraft.

The two main sources of drag experienced by aircraft in flight are referred to as
the skin drag and the induced drag. As the name suggests the first is caused by
friction of the air on the skin of the aircraft, whilst the second is produced as a
direct result of the wing’s ability to generate lift and is sometimes called the ‘lift
induced drag’. When a wing generates lift the high pressure air, created beneath the

wing, leaks around the wing tip to meet the low pressure air on top of the wing and

15



CHAPTER 1. INTRODUCTION 16

causes a wing-tip vortex. These vortices are sometimes visible when water in the
air condenses in the low pressure vortex core and appear as spiral lines extending
backwards from the wing tips. The energy that is stored in these vortices is lost and

is experienced by the aircraft as drag. Hence the term ‘lift induced drag’.

When the aircraft approaches the ground these wing-tip vortices become weaker
due to destructive interference between the vortices themselves and their counter-
rotating image vortices beneath the ground. This leads to a corresponding reduction

in the induced drag on the aircraft.

As mentioned earlier chord dominated ground effect increases lift. When in ground
effect, the air passing beneath the wing is slowed down so that the pressure there
rises causing a large increase in lift; this is sometimes referred to as ‘ram effect’. In
some circumstances the fluid beneath the aerofoil can be made to stagnate producing

large pressures, leading to large lift.

The combined result of the two phenomena described above is to increase the ratio
L/D, which is commonly used to measure the efficiency of aircraft since when in
steady flight weight is equal to lift and thrust is equal to drag and so L/D is an
expression of how much weight can be carried for a given amount of thrust. In
fact, lift-to-drag ratios for wings in ground effect are roughly twice as good as those
for wings in free flight, making wing-in-ground effect flight one of the most energy

efficient methods of transportation available.

This thesis is concerned with identifying and understanding the underlying aerody-
namic mechanisms which give rise to chord-dominated ground effects for the entire

range of possible ground clearances from flight at altitude to surface skimming.

The phenomenon of wing-in-ground effect has been known since 1920, in fact the
Wright Brothers unknowingly used ground effects in their first attempts to fly in the
1900’s and the first theoretical investigation of ground effect was made by Wiesels-

berger (1922). In the Second World War pilots flying twin engined bombers were
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well aware that if one of their engines was damaged, making sustained flight at al-
titude impossible, an alternative to ditching in the ocean was to descend almost to
sea level and use wing-in-ground effect to get home on their one remaining engine.
Large birds, such as the Albatross, are also known to utilise wing-in-ground effect

to conserve energy on long flights.

In 1935 the Finnish engineer Kaario (1959a,b) was the first to build a vehicle specifi-
cally designed to take advantage of ground effects. However it wasn’t until the 1960’s
that independent research in many countries including the USSR, USA, Japan, and
Germany began to take off.

In the USSR the major developments took place at the Central Hydrofoil Design
Bureau, led by Rotislav Alexiev. The need for faster transportation over water led
Alexiev to consider wing-in-ground effect vehicles as an improvement upon his earlier
invention, the hydrofoil. His work eventually led to the development of the 540
tonne KM Ekranoplan dubbed the ‘Caspian Sea Monster’ by American intelligence
officers after they spotted its peculiar planform-shape in satellite images. The KM is
characterised by its relatively short stubby wings and its huge Y-shaped tail, which
operates out of ground effect and gives the craft stability. It was approximately
100 metres long and travelled at an altitude of 20 metres above the Caspian Sea at

around 300 mph! See Figures 1.1 and 1.2.

Around the same time the German aerodynamiscist Lippisch (1964), inventor of
the delta-wing, designed a revolutionary new WIG; the X-112. It had a reversed
delta-wing planform with negative dihedral at the leading edge and a large T-shaped
tail, again for stability. This configuration proved to be inherently stable in ground
effect and many recent designs have been based on the original Lippisch concept.

See Figures 1.3 and 1.4

More recently, further development in the USA, Japan, Germany, and Australia
have lead to many weird and wonderful WIG designs. For example, the Amphistar

designed by Dimitri Sinitsyn (Sinitsyn (1996), Sinitsyn and Maskalik (1996)) who
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CHAPTER 1. INTRODUCTION 20

worked with Alexiev on the Caspian Sea Monster project; the Flairboat designed by
Gunther Jorg (Jorg (1987, 1997)) with its tandem wing configuration; the Airfisch 3
designed by Hanno Fischer (Fischer (1989, 1988)), the most modern re-incarnation
of the Lippisch; and the Hoverwing also designed by Hanno Fischer (Fischer and
Matjasic (1996, 1997)), which combines catamaran and hovercraft technology to
aid take off; this being important since initially getting free of the water, and into
ground effect, efficiently is one of the major practical difficulties associated with

wing-in-ground effect flight. See Figures 1.5, 1.6, 1.7, and 1.8.

It is our aim throughout this thesis to gain an understanding of the physical mech-
anisms involved in producing aerodynamic ground effects, these being the fluid dy-
namical phenomena that are introduced when one forces an aerofoil to perform
in close proximity to the ground. In fact we will only consider the lift enhancing

properties of wing-in-ground effect flight.

As mentioned earlier, in ground effect a region of high pressure is created beneath
the aerofoil and a pressure difference is set up between its upper and lower surfaces;
this pressure-difference is responsible for the increased lift experienced by aircraft
when travelling near the ground. For thin two-dimensional aerofoils the lift, L, per

unit length is given by

L= [(-@)—ps@)dz+--, (1)

to leading order, where the leading and trailing edges of the aerofoil are at z = 0
and 1 for convenience and the functions p, (z) and p_ (z) denote the pressures on
the upper and lower surfaces of the aerofoil respectively. As one can clearly see it is

the difference in the pressures py (z) and p_ (z) that creates the lift.

However, a difference in pressure is not permitted at the trailing edge, due to the fact
that the pressure may not vary across the aerofoil’s thin viscous wake, and therefore

a mechanism must exist which allows the pressures above and below the aerofoil
















































































































































































































































































































































































































































































































































