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Abstract

Self-calibration can mitigate the adverse effect of array imperfections in direction-

of-arrival (DoA) estimation. In this paper, we consider self-calibration of unifor-

m linear arrays (ULAs) with unknown mutual coupling and focus on subspace-

based methods. By modeling the effect of mutual coupling through complex

symmetric Toeplitz matrices, we first analyze its influence to existing subspace

methods. Our analytical results illustrate that mutual coupling can induce false

peaks in spatial spectra of these methods, and more importantly, most of these

peaks are predictable. Based on the analytical results, we then propose new

spectra to suppress these predictable false peaks, and new self-calibration al-

gorithms for the proposed spectra. Simulations are performed to validate our

analytical results and to illustrate the advantages of the proposed algorithms.

Keywords: Direction-of-arrival (DoA) estimation, uniform linear array

(ULA), mutual coupling, array self-calibration, subspace method

1. Introduction

Direction finding (DF) with antenna arrays is widely adopted in areas of

radar, sonar, and wireless communications. In particular, high resolution DF
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techniques [1] can achieve excellent direction-of-arrival (DoA) estimation perfor-

mance when the array response is perfectly known. In a practical array, electro-5

magnetic characteristics cause sensor responses that always interfere with each

other, resulting in mutual couplings between sensors [2]. Results in the litera-

ture [3, 4] have already illustrated that ignoring the effect of mutual coupling

can seriously degrade the estimation accuracy of high-resolution algorithms.

To eliminate the effect of mutual coupling, one approach is to design the10

array structure carefully. For example, sparse arrays [5] enjoy weaker mutual

coupling than uniform linear arrays (ULAs). However, a good structure can

only relieve but not remove mutual coupling.

Another technique involves modeling and parameterizing the effect of un-

known mutual coupling, estimating the obtained parameters, and then compen-15

sating them in DF algorithms. This can be achieved by using reference sources

at known positions [6, 7]. However, these methods are usually computationally

expensive, time consuming [8], and not adaptive to ongoing changes in the en-

vironment [9]. Therefore, jointly estimating the effect of mutual coupling and

DoA, which is referred to as self-calibration, has attracted much attention.20

The goal of this paper is to design self-calibration schemes for ULAs with

unknown mutual coupling effect. In ULAs, this effect can be modeled as a

symmetric Toeplitz mutual coupling matrix (MCM) [4, 10–20]. In [10–12], the

authors illustrated that by resorting to a middle subarray (mid-array) of a ULA,

accurate DoA estimation can be obtained without mutual coupling compensa-25

tion. However, its application is limited due to the need of a large number of

auxiliary sensors. Iterative algorithms were also proposed [13–15] but the per-

formance of non-convex iterative approaches depends on their initializations.

Another method is the use of a rank reduction (RARE) estimator [16–18, 21].

But the unknowns in MCM may induce false peaks in their spatial spectra. To30

remove the influence of false peaks, a recursive-RARE (R-RARE) [19] method

and a blind method [20], which are based on multidimensional spectra, were

proposed. Unfortunately, both methods may still suffer from false peaks [22].

In general, iterative methods and RARE methods are heuristic in the sense that
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they do not rigorously analyze the impact of unknown MCM to the estimation35

performance, and thus are sensitive to initial values or false peaks.

In this paper, we aim to remove the ambiguities by false peak analysis.

We first analyze the influence of the MCM to spatial spectra of some exist-

ing subspace-based methods, such as those in [4, 17–20]. Then, based on the

analytical results, we propose new spatial spectra as well as the correspond-40

ing self-calibration algorithms. Our main contributions, both theoretical and

technical, are summarized as follows:

1. We analyze a widely employed one-dimensional multiple signal classi-

fication (MUSIC) type spatial spectrum. The analytical result indicates that

the MCM can cause serious false peaks, which are divided into two categories:45

predictable and unpredictable. Predictable ones are those independent of true

DoAs and MCM coefficients and only induced by special structures of MCM,

while unpredictable peaks are caused by special values of true DoAs or MCM

coefficients. So the former may be predicted by analyzing the properties of M-

CM. According to the rule whether their value is affected by noise, predictable50

peaks can be further classified into noise independent and dependent ones. The

sufficient and necessary conditions for noise independent peaks are given out.

To suppress these peaks, almost all existing methods restrict the number of un-

knowns in MCM, by assuming that the mutual coupling between sensors spaced

by a certain distance is negligible. However, this distance is often chosen heuris-55

tically and small, and truncating the effects of mutual coupling will inevitably

give rise to modeling errors and estimation errors. Fortunately, our conditions

provide a theoretical bound for choosing the distance in these methods.

2. The multidimensional spectra based calibration methods are considered.

We first introduce a dimension-scalable spectrum to reduce computational com-60

plexity of a widely used multidimensional spatial spectrum. Then we analyze

sufficient and necessary conditions for noise independent false peaks and provide

some sufficient conditions for noise dependent peaks and unpredictable peaks.

3. Moreover, we propose a one-dimensional spectrum and a multidimensional

spectrum by utilizing the conditions for false peaks. Both spectra are improve-65
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ments of existing ones and can automatically suppress predictable false peaks

without affecting peaks of true DoAs. Two complexity scalable self-calibration

algorithms are proposed, respectively, for the two spectra. A key difference

between our work and existing methods is that ours is based on rigorous false

peak analysis, which leads to advantages such as higher estimation reliability,70

wider application range, low and scalable computational complexity, and that

truncation of the effect of mutual coupling is not essential in many situations.

In the rest of paper, section 2 introduces the signal model and reviews exist-

ing methods. Sections 3 and 4 analyze the influence of MCM to one-dimensional

and multidimensional spectra, respectively. Section 5 proposes new algorithms.75

Sections 6 and 7 present numerical results and conclusion, respectively.

Notations—For a given matrix X, we use XT , XH , rank(X), and λi(X)

to denote its transpose, conjugate transpose, rank, and the i-th eigenvalue in

ascending order, respectively. In addition, ‖x‖ and ‖X‖ denote the l2-norm

and Frobenius norm of x and X, respectively. The diagonalization and block80

diagonalization operators are diag(·) and blkdg{·}, respectively. Also, dxe (resp.

bxc) rounds x to the nearest integer greater (resp. smaller) than itself. For an

integer N , [N ] , {1, 2, . . . , N}. The notations X [i,j] and X [N ] denote the (i, j)-

th element of X and the first N columns of X, respectively. Also, x[N ] denotes

first N entries of x. Moreover, IN is an N -dimensional identity matrix and85

JN is a row-reversed version of IN . Also, I
(k)
N is a matrix with ones on the

k-th diagonal below the main diagonal and zeros elsewhere. Z and C stand for

the sets of integers and complex numbers, respectively. Finally, Toeplitz(c) is

a symmetric Toeplitz matrix with the first column c.

2. Preliminaries90

2.1. Signal Model and Assumptions

Consider M narrowband far-field sources impinging on an N -element ULA

from directions θ̃m, for m ∈ [M ]. The received signals can be modeled as

x(k) = CAs(k) + n(k), k = 1, . . . , NT , (1)
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where x(k) ∈ CN , s(k) ∈ CM , and n(k) ∈ CN denote the vectors of observation-

s, source signals, and observation noise, respectively, A = [a(θ̃1), · · · ,a(θ̃M )],

a(θ̃m) = [1, ejπβ sin(θ̃m), · · · , ej(N−1)πβ sin(θ̃m)]T is the steering vector of the m-th

source. For the uniqueness of estimation, the domain of DoA is Ωθ = {θ|θ ∈

[−π2 ,
π
2 ), |β sin(θ)| < 1}. The MCM C = Toeplitz(c) with c = [c1, c2, . . . , cN ]T

[4, 13]. Since the mutual coupling between two antennas is inversely propor-

tional to their distance, we assume that c1 = 1 ≥ |cl|, ∀l ∈ [N ] and there exists

an L(≤ N) such that for arbitrary l > L, cl = 0. Under these assumptions, a

transformation holds between C and c [13]:

Ca(θ) = Q(θ)c = Q[L](θ)c[L], (2)

where Q(θ) = Q1(θ) + Q2(θ), Q1[p,q](θ) = a(θ)p+q−1 if p + q − 1 ≤ N ,

Q2[p,q](θ) = a(θ)p−q+1 if p ≥ q ≥ 2, otherwise, the entries equal 0.

Some standard assumptions pertaining to subspace methods are used.

(A1) M < N and the columns of CA are linearly independent.95

(A2) The signals are not perfectly correlated and are uncorrelated with noise.

(A3) The noise is Gaussian distributed with zero mean and covariance σ2
nIN .

2.2. Existing Subspace-based Self-Calibration Methods

Denote Rx = E
[
x(k)xH(k)

]
. Then the matrix of singular vectors of Rx

can be partitioned as [U s,Un], where the N × M matrix U s is referred to

as “signal subspace” and Un is “noise subspace” [4]. Using the principle of

subspace methods [13], we have

UH
n Ca(θ̃m) = UH

n Q[L](θ̃m)c[L] = 0, m ∈ [M ]. (3)

Based on (3), an extension of the MUSIC spectrum is given by [4]

P1(v,θ) =

M∑
m=1

‖V a(θm)‖2/‖UH
n V a(θm)‖2, (4)

where θ = [θ1, . . . , θM ]T , V = Toeplitz(v), and v = [v1, · · · , vN ]T . Then

P1(v,θ) attains its maximum when v1 is a scaled version of c and θ = θ̃, where

1To guarantee unique solution, the constraint ‖v‖ = 1 or v1 = 1 can be used [4, 17, 19].
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θ̃ denotes the vector of true DoAs. However, searching this maximum can be

computationally prohibitive even if M is small. Hence, another spectrum is

proposed for self-calibration in [4, 19, 20]

P2(θ) = max
v[L],‖v[L]‖=1

1∑M
m=1 ‖U

H
n Q[L](θm)v[L]‖2

= 1/λ1(WH(θ)W (θ)), (5)

where W (θ) = [QH
[L](θ1)Un, . . . ,Q

H
[L](θM )Un]H is an NM×L matrix. Accord-

ing to (3), P2(θ) attains its maximum if θ = θ̃. The advantage of P2(θ) is that

λ1 can be easily calculated given θ. But searching the maximum of P2(θ) is

still costly. Hence, a one-dimensional spectrum [10, 13, 16–19] is proposed

P3(θ) = 1/λ1(WH(θ)W (θ)), (6)

where W (θ) = UH
n Q[L](θ).

If coupling is not considered, spectra P3(θ) and P2(θ) degenerate into the100

MUSIC spectrum, which is statistically consistent [1]. However, if unknown

mutual coupling exists, problems arise. Are the DoA estimates still statistically

consistent? Will the mutual coupling induce false peaks? If so, how to remove

their impact? We will focus on these problems in subsequent sections.

3. False Peak Analysis in One-Dimensional Spectrum105

Consider the spectrum P3(θ), which goes to infinity when θ = θ̃m, ∀m ∈ [M ],

according to (3). Hence, the DoA estimates based on P3(θ) is statistically

consistent if only the spectrum is not polluted by false peaks. Unfortunately,

our analysis will show that the unknown MCM can cause severe false peaks.

For accuracy of expression, we consider the point in a spectrum as a peak

if and only if its value goes to infinity in the noiseless case, since the peaks,

whose values are upper bounded, will not affect the calibration performance

when the signal-to-noise ratio (SNR) is large enough. In spectrum P3(θ), peaks

will appear at θ if and only if

∃v[L] 6= 0 and UH
n Q[L](θ)v[L] = 0. (7)

By linear algebra, (7) holds if and only if any of the two conditions is satisfied:110

6



(C1) Q[L](θ) has full column rank but UH
n Q[L](θ) ∈ C(N−M)×L does not.

(C2) Q[L](θ) ∈ CN×L is rank deficient.

To prevent trivial solutions, assume N ≥ M + L. Then, the peaks caused

by condition (C1), which include peaks of real DoAs, depend on Un. So the

corresponding false peaks, if exist, are noise dependent or unpredictable. While115

these false peaks are interesting, we want to focus on false peaks caused by

condition (C2), which depend only on Q[L](θ), and thus are predictable and

noise independent. A naive method to identify these peaks would be to calculate

the rank of Q[L](θ) at each peak. However, this is inefficient and numerically

unstable for large N . Luckily, Lemma 3.1 shows that the rank of Q(θ) can be120

obtained by using its special structure. The proof is given in Appendix A.

Lemma 3.1. Define the set Ωβ = {θ|θ = arcsin( k
Nβ ), k ∈ Z, |k| ≤ βN}. Denote

Ω
(o)
β and Ω

(e)
β as subsets of Ωβ with k = 2l + 1 and k = 2l, respectively, where

l ∈ Z. For N ≥ 3, L ≤ N , θ ∈ Ωθ, and n ∈ Z, Q(θ) has the following properties:

(P1) a necessary condition for (C2) is θ ∈ Ωβ;125

(P2) if N = 2n+ 1, then rank(Q[L](θ)) = min(n+ 1, L),∀θ ∈ Ωβ;

(P3) if N = 2n, then rank(Q[L](θ)) = min(n+ 1, L),∀θ ∈ Ω
(o)
β ;

(P4) if N = 2n, then rank(Q[L](θ)) = min(n,L),∀θ ∈ Ω
(e)
β .

Then sufficient and necessary conditions for predictable peaks are available.

Proposition 3.2. 2 Suppose M + L ≤ N , θ ∈ Ωθ, and n ∈ Z. Then condition130

(C2) induces false peaks in spectrum P3(θ) if and only if one of the following

conditions is satisfied

(C3) N = 2n+ 1, L > n+ 1, and θ ∈ Ωβ,

(C4) N = 2n, L > n+ 1, and θ ∈ Ωβ,

(C5) N = 2n, L = n+ 1, and θ ∈ Ω
(e)
β .135

Proposition 3.2 implies that choosing L can be a trade-off between MCM

modeling errors and false peaks. In particular, too small an L will induce severe

2This result was presented in part in the conference paper [22], where we discussed the

“only if” direction.
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modeling errors, while too large an L may cause severe false peaks. A reasonable

bound for truncating is L ≤ dN2 e, such that false peaks induced by condition

(C2) are avoided. Interestingly, the choices of L are upper bounded by this140

value in almost all existing literature for ULA self-calibration. Here, a possible

reason based on critical analysis is given, albeit only for subspace methods.

4. False Peak Analysis in Multi-Dimensional Spectrum

As the application of a one-dimensional spectrum is limited by the necessary

condition L + M ≤ N , here we study the self-calibration process based on the145

multidimensional spectra, where the necessary condition can be relaxed.

4.1. A Dimension-Scalable Spectrum

Since the workload of finding the maximum of spectrum P2(θ) grows expo-

nentially with M , we simplify the spectrum to a dimension scalable one:

P4(θ[K]) = 1/λ1([W (θ[K])]
HW (θ[K])), (8)

where K(≤M) is an integer, θ[K] = [θ1, . . . , θK ]T , and

W (θ[K]) = [QH
[L](θ1)Un, . . . ,Q

H
[L](θK)Un]H ∈ CKN×L. (9)

This dimension scalable spectrum has been proposed in [23] for array gain cali-

bration, but our problem is more difficult, as the unknowns of MCM may incur

severe false peaks. Our aim is to identify these false peaks.150

According to (9), a peak appears at θ[K] in P4(θ[K]) if and only if ∃v[L] 6= 0

such that UH
n Q[L](θl)v[L] = 0, ∀l ∈ [K], which is further equivalent to

∃v[L] 6= 0 such that HE(θ[K])h = 0, (10)

where h = [vT[L],k]T , k = [kT1 , . . . ,k
T
K ]T , “⊗” is the Kronecker product, and

HE(θ[K]) = [H(θ[K]), IK ⊗CA], (11a)

H(θ[K]) = [QT
[L](θ1), . . . ,QT

[L](θK)]T ∈ CKN×L, (11b)

Assume N ≥ L/K+M to avoid trivial solutions in (10). Since IK ⊗CA is full

rank, condition (10) holds if and only if any of the two conditions is satisfied

8



(C6) k = 0, ∃v[L] 6= 0 such that HE(θ[K])h = 0 (or H(θ[K]) is rank deficient).

(C7) ∃k 6= 0 and v[L] 6= 0 such that HE(θ[K])h = 0.

Condition (C6) only depends on the structure of MCM, and thus the correspond-155

ing peaks are predictable, while condition (C7) may cause both unpredictable

and noise dependent peaks. Next, we will analyze conditions of predictable

peaks in both cases. For ease of expression, we will first analyze these false

peaks with K = 2, and then extend the discussion to the K > 2 case.

4.2. K = 2160

To find out false peaks satisfying (C6), we define the set Ω2
β = {θ[2]|θm ∈

Ωβ ,m ∈ [2], sin(θ2) − sin(θ1) = 2k
Nβ , k ∈ Z} and then introduce the following

properties of H(θ[2]). Formal arguments are given in Appendix B.

Lemma 4.1. When L ≤ N , N ≥ 3, and θm ∈ Ωθ, ∀m ∈ [2], H(θ[2]) has the

following properties:165

(P5) A necessary condition for (C6) is θ[2] ∈ Ω2
β;

(P6) Denote rH = rank([QT
[L](θ1),a[L](θ2)]), then rank(H(θ[2])) = min(rH , L),

∀θ[2] ∈ Ω2
β, where rH = rank(Q[L](θ1)) if a[L](θ2) is in the column space

of QT
[L](θ1); otherwise, rH = rank(Q[L](θ1)) + 1.

Then necessary and sufficient conditions for peaks of (C6) can be obtained.170

Proposition 4.2. When L ≤ N , L ≤ 2N − 2M , and θm ∈ Ωθ, ∀m ∈ [2],

condition (C6) induces peaks in spectrum P4(θ[2]) if and only if

(C8) θ[2] ∈ Ω2
β and L > rank(H(θ[2]), where rank(H(θ[2]) is obtained by (P6).

To analyze the predictable false peaks satisfying condition (C7), we define

the set ∆2
β = {θ[2]|θm ∈ Ωθ,m ∈ [2], sin(θ1) − sin(θ2) = 2k

Nβ , k ∈ Z} and have175

the results in Lemma 4.3, whose proof is given in Appendix C.

Lemma 4.3. Given L ≤ N , L ≤ 2N − 2M , θm ∈ Ωθ,∀m ∈ [2], and θ1 6= θ2. If

θ[2] ∈ ∆2
β, then rank(HE(θ[2])) ≤ N +M + 3.

Then, a sufficient condition for predictable peaks caused by (C7) is obtained.
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Proposition 4.4. Given L ≤ N , L ≤ 2N − 2M , θm ∈ Ωθ,∀m ∈ [2], and180

θ1 6= θ2. Condition (C7) induces peaks in spectrum P4(θ[2]) if

(C9) θ[2] ∈ ∆2
β and L+M > N + 3.

Note that the number of false peaks in Proposition 4.4 is infinite, and thus

this will severely contaminate spectrum P4(θ[K]).

4.3. K > 2185

Let us denote J = {K0,K1, . . . ,KJ} as a partition of the index set [K] and

define sets of θ[K] in Table 1, where Kj is a set of indices with size Kj and∑J
j=1Kj = K. Then, Lemma 4.1 can be extended to the K > 2 case.

Table 1: A List Of Sets Of θ[K]

ΩKβ = p{θ[K]|θk ∈ Ωβ , sin(θk)− sin(θ1) = 2ik1
Nβ , ik1 ∈ Z, forallk ∈ [K]}

∆K
β = {θ[K]|θk ∈ Ωθ, sin(θk)− sin(θ1) = 2ik1

Nβ , ik1 ∈ Z,∀k ∈ [K]}

∆̃K
β,J = {θ[K]|θKj ∈ ∆

Kj
β ,∀j ∈ [J ], (θk, θl) /∈ ∆2

β ,∀k, l ∈ K0, k 6= l}

∆K
β,J = {θ[K]|θ[K] ∈ ∆̃K

β,J , (θk, θl) /∈ ∆2
β ,∀k ∈ Kp,∀l ∈ Kq, p 6= q}

Lemma 4.5. When L ≤ N , 3 ≤ N , K < N , and θm ∈ Ωθ, ∀m ∈ [K], H(θ[K])

has the following properties: 1. a necessary condition for (C6) is θ[K] ∈ ΩKβ ; 2.

Let rH = rank([QT
[L](θ1),a[L](θ2), . . . ,a[L](θK)]), then

rank(H(θ[K])) = min(rH , L), ∀θ[K] ∈ ΩKβ . (12)

Proof of Lemma 4.5 is similar to that of Lemma 4.1 and omitted. Similarly,

predictable peaks satisfying condition (C6) can be obtained in proposition 4.6.190

Proposition 4.6. When L ≤ N , K ≤M ≤ N , L ≤ K(N −M), and θm ∈ Ωθ,

∀m ∈ [K], condition (C6) induces peaks in spectrum P4(θ[K]) if and only if

(C10) θ[K] ∈ ΩKβ and L > rank(H(θ[K])) with rank(H(θ[K])) given by (12).

Next, Lemma 4.7 extends Lemma 4.3 to the K > 2 case.
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Lemma 4.7. Given L ≤ N , K ≤M , L ≤ K(N −M), θk ∈ Ωθ, ∀k ∈ [K], and

θk 6= θl,∀k 6= l. If θ[K] ∈ ∆̃K
β,J , then rank(HE(θ[K])) ≤ r(N,M,J ), where

r(N,M,J ) = K + (K0 + J)(N − 1) +

J∑
j=1

rank(D(Kj)), (13)

rank(D(Kj)) is defined in (C.2) and Lemma Appendix C.1, respectively.195

Proof of Lemma 4.7 is divided into two parts, for points in ∆K
β,J and ∆̃K

β,J ,

respectively, where the details are similar to those of Lemma 4.3 and omitted.

Based on Lemma 4.7, a sufficient condition for peaks in (C7) can be obtained.

Proposition 4.8. Given L ≤ N , K ≤M , L ≤ K(N −M), θk ∈ Ωθ,∀k ∈ [K],

and θk 6= θl,∀k 6= l. Condition (C7) cause peaks in spectrum P4(θ[K]) if200

(C11) θ[K] ∈ ∆̃K
β,J and L+KM > r(N,M,J ) with r(N,M,J ) given by (13).

Note that if ∃k 6= l such that θk = θl, then P4(θ[K]) degenerate to P4(θ[K−1]).

In practical DoA estimation problems, a small K and a large L is a more

attractive setting, for lower computational workload and less modeling errors.

Unfortunately, our analyses show that P4(θ[K]) suffers from severe false peaks205

in this case. As a result, efficient methods robust to false peaks are necessary.

5. Self-Calibration Methods

5.1. Methods Based on One-Dimensional Spectrum

According to the analysis in Section 3, false peaks will appear in the spectrum

P3(θ) when L > dN2 e. To avoid them, a naive method is to ignore the peaks

satisfying Proposition 3.2. However, a peak of true DoA will also be missed if

it happens to satisfy the proposition. We thus propose a normalized spectrum

P3N (θ) = max
v[L],v1=1

‖Q[L](θ)v[L]‖2/‖W (θ)v[L]‖2. (14)

According to Lemma 3.1, QH
[L](θ)Q[L](θ) is positive-definite ∀θ /∈ Ωβ and there-

fore the optimal v[L] is the eigenvector corresponding to the minimum general-210

ized eigenvalue of the matrix pencil (WHW ,QH
[L]Q[L]) [24]. If θ ∈ Ωβ , P3N (θ)
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in (14) is not well defined. Fortunately, it can be defined by the optimal ob-

jective function value of problem (D.1), which can be solved by interior point

methods [25]. The virtues of spectrum P3N (θ) are listed in Proposition 5.1,

which is proved in Appendix D.215

Proposition 5.1. Assume that N ≥M +L and the number of snapshot NT is

large enough, then spectrum P3N (θ) has the following properties:

(P7) False peaks in Proposition 3.2, i.e., caused by Q[L](θ)v[L] = 0, are avoided;

(P8) Peaks of true DoA in P3(θ) will not be missed in P3N (θ);

(P9) If the optimal solution of problem (14), i.e., v[L], is unique3 at the peak220

of a true DoA, then it is a complex scaled version of c[L].

The normalized spectrum can be applied directly in algorithms based on

P3(θ), such as RARE [16, 17] or R-RARE [19], by replacing P3(θ) with P3N (θ).

We here propose a new method in Algorithm 1, where the T largest peaks in

the spectrum P3N (θ) are investigated, and the corresponding estimates of MCM225

and DoAs, i.e., V t and θt, ∀t ∈ [T ], are calculated. The estimation of V t in

Steps 4 is based on the property (P9). While the estimation of DoAs θt in Step

5 is based on the fact that the spectrum is actually the MUSIC type if V t = C.

In Step 7, the final estimate is determined by a normalized multidimensional

spectrum
‖H(θ)v[L]‖2

‖W (θ)v[L]‖2
, which is maximized when θ = θ̃ and v[L] = c[L].230

The reasons for investigating T > 1 peaks are twofold. First, when the

SNR is small, peaks of true DoA may be buried within spectrum fluctuations

caused by noise. Second, if the maximum peak happens to be in Ωβ , then the

corresponding Q[L](θ) is rank deficient and the optimal solution of v[L] is not

unique. In this case, a false calibration will be obtained if T = 1.235

5.2. Methods Based on Multi-Dimensional Spectrum

To suppress peaks satisfying (C10), we extend spectrum P3N (θ) to

P4N (θ[K]) = max
v[L]

(‖H(θ[K])v[L]‖2/‖W (θ[K])v[L]‖2). (15)

3The optimal solution of (D.1) is not unique when θ ∈ Ωβ .
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Algorithm 1 A Self-Calibration Algorithm based on Spectrum P3N (θ)

1: Set L ≤ N −M and T > 0, and construct the spectrum P3N (θ);

2: Denote v[L],t, t ∈ [T ] as the optimal solution of (14) at t-th largest peak;

3: for each t ∈ [T ] do

4: Construct a spectrum ‖V ta(θ)‖2
‖UHn V ta(θ)‖2 with V t = Toeplitz([vT[L],t,0

T ]T );

5: Obtain DoA estimates θt based on the largest M peaks in the spectrum;

6: end for

7: Find t∗ = arg maxt
‖H(θt)v[L],t‖2

‖W (θt)v[L],t‖2
, and obtain final estimates (θt∗ ,v[L],t∗).

and introduce a penalty parameter d(θ[K]) for false peaks in (C11) and obtain

P5(θ[K]) = d(θ[K])P4N (θ[K]). (16)

We design d(θ[K]) in two steps. To suppress peaks caused by θk = θl, set

d(θ[K]) = d̃c13 = min
k,l∈[K],k 6=l

|bk − bl|2, (17)

where bk = ejπβ sin(θk). Note that d̃c13 may harm the array resolution capability,

since a desirable peak of true DoAs may be diminished if two of the DoAs are

close to each other. To reduce this risk, we modify (17) to

d(θ[K]) = dc13 = min(d̃c13/εe, 1), (18)

where εe is a small positive constant. Then the peak will not be diminished

unless d̃c13 < εe. Second, to suppress the false peaks satisfying (C11), i.e., in

set ∆̃K
β,J whenever r(N,M,J ) < L+KM , we define

d(θ[K]) = d̃J ,K =

J∑
j=1

(
max
k,l∈Kj

|bNk − bNl |2
)
. (19)

It is seen that d̃J ,K = 0 if and only if a point is in a set ∆̃K
β,J . Hence, the values

of P4N (θ[K]) will be suppressed to 0 for all θ[K] in ∆̃K
β,J .

In (19), for a given tuple (N,M,L,K), the partition J satisfying r(N,M,J ) <

L+KM is generally not unique. To suppress all corresponding false peaks, we

denote the set of all satisfied partitions by J̃ and define

d(θ[K]) = d̃c11 = min
J∈J̃

d̃J ,K . (20)
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Although listing all elements of J̃ is difficult when K is large, a small K is

always preferred in practice. In Table 2, we list all possible J , r(N,M,J ), and240

d̃c11 for K = 2 and K = 3, respectively. In the table, Jk = {K0,K1}, ∀k ∈ [3],

where K0 = {k} and K1 contains the rest two elements in set [3].

Table 2: A List of d̃c11 with K = 2 and K = 3

K J d̃c11 r(N,M,J ) by (13)

2 [2] |bN2 − bN1 |2 N +M + 3

3 [3] maxm,n∈[3] |bNm − bNn |2 r(N,M, [3])

3 Jk minm,n∈[3],m6=n |bNm − bNn |2 r(N,M,Jk)

On the other hand, d̃c11 may suppress a desired peak of true DoAs, if it

happens to locate nearby ∆̃K
β,J . To reduce this risk, we modify (20) to

d(θ[K]) = dc11 = min(d̃c11/εb, 1), (21)

and apply it only if r(N,M,J ) < KM+L+r0, where εb is a small positive con-

stant and r0 is a parameter to tradeoff between two risks. Since r(N,M,J ) ≥

rank(HE(θ[K])),HE(θ[K]) may be rank deficient even if r(N,M,J ) ≥ KM+L,245

and thus induce false peaks in ∆̃K
β,J . Therefore, a larger r0 means a lower risk

of detecting a false peak but a higher risk of missing a desired peak, and vice

versa. Since the probability of all desired peaks are missed is small, we choose

r0 = 2 heuristically when K ≤ 3.

Combining equations (18) and (21), we obtain

d(θ[K]) =

 dc13, if @J satisfying r(N,M,J ) ≥ L+KM + r0;

dc11, otherwise.
(22)

With this d(θ[K]), we propose Algorithm 2 based on P5(θ[K]).250

5.3. Some Remarks on Algorithm Implementation

5.3.1. Performance and complexity trade-off

In Algorithm 2, the complexity of exhaustively searching the spectrum is

proportional to GK , where G is the size of uniform grid used to cover the obser-

14



Algorithm 2 Spectrum Based Self-Calibration of ULAs

1: Set K ≤M , L ≤ KN −KM , r0 ≥ 0, and T > 0;

2: Find all J satisfying r(N,M,J ) < L+KM + r0;

3: Design d(θ[K]) according to (22) and construct the spectrum P5(θ[K]);

4: Denote v[L],t, t ∈ [T ] as the optimal solution of (15) at the t-th largest peak

in the spectrum;

5: Achieve self-calibration following Steps 3 - 7 in Algorithm 1.

vation area, e.g., [−π2 ,
π
2 ]. Clearly, too dense a grid will cause a high workload,255

while a coarse grid may impact accuracy of calibration. For an efficient tradeoff,

K should be chosen as small as possible.

5.3.2. Some unpredictable false peaks

The false peaks in Sections 3 and 4 are predicable. On the other hand, some

peaks may be caused by special patterns of real DoAs and satisfy condition260

(C1), such as those listed in Proposition 5.2. These peaks are unpredictable.

Proposition 5.2. Denote θ[2] = [θ1, θ2]T and two of the true DoAs as (θ̃1, θ̃2).

1. If θ̃1 = −θ̃2 and L > N−1
2 , a false peak appears at P3(0).

2. If θ̃1 = −θ̃2 and L ≥ N − 1, false peaks appear in P4(θ[2]) when θ1 = −θ2.

3. If θ̃1 = 0 and L = N , false peaks appear in P4(θ[2]) when θ1 = −θ2.265

Proof. The lemma can be derived by using the equationsC = JNCJN , a(−θ) =

JNa(θ)t(θ), and Ca(−θ) = t(θ)JNCa(θ), where t(θ) = ej(N−1)πβ sin(−θ).

6. Numerical Examples

The simulations are based on ULAs under three different settings: N = 7,

N = 9, and N = 16 with mutual coupling coefficients denoted by c1, c2, and c3
4,270

respectively. For a given L, observations are generated with ci(l) = 0,∀l > L.

4c1 follows from the settings in [20]. c2 = [1, 0.0459− 0.428i,−0.1157 + 0.2134i, 0.1168−

0.1185i,−0.1079+0.0655i, 0.0965−0.031i,−0.0844+0.0074i, 0.072+0.0098i,−0.0597−0.0219i]

and c3 = [1, 0.0454− 0.4282i,−0.1154 + 0.2136i, 0.1167− 0.1187i,−0.1079 + 0.0656i, 0.0964−

0.0311i,−0.0844 + 0.0075i, 0.072 + 0.0097i,−0.0598 − 0.0219i,−0.0253 + 0.0602i,−0.0363 −

15
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Figure 1: The minimum eigenvalue and rank

of QH(θ)Q(θ) versus θ with L = N .
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ifferent L, SNR= 30dB, and NT = 100.

6.1. Validity of Theoretical Analysis

Lemma 3.1: Figure 1 shows the minimum eigenvalues and ranks ofQH(θ)Q(θ)

varying with the DoA θ, when N = 7. It is seen that Q(θ) is rank deficient if

and only if θ ∈ Ωβ , and the rank of Q[L](θ) coincides with Lemma 3.1.275

Lemma 3.2: We set N = 7, the true DoAs θ̃ = [−8◦, 13◦], and SNR = 30dB.

The resulting spectra P3(θ) and P3N (θ) are plotted in Fig. 2 with L = 4 and

L = 5, respectively. We see that DoAs can be detected based on the largest

two peaks in spectrum P3N (θ) in both situations and spectrum P3(θ) fails when

L > 4, which coincides with condition (C3) in Proposition 3.2.280

Lemma 4.1: The rank of H(θ[2]) with N = 7 is shown in Fig. 3. It is

seen that H(θ[2]) is rank deficient only when θ[2] ∈ Ω2
β , rank(H(θ[2])) = 5 =

rank(Q(θ1))+1 for most points in Ω2
β , and this value decays to 4 when θ1 = ±θ2

such that a(θ2) is in the column space of QT (θ1).

The first three experiments validate our theoretical analyses in scenarios285

where N is odd. For even N , similar conclusions can be drawn and are omitted.

Lemma 4.3: Consider the 16-element ULA and denote differences between

0.0359i, 0.0252+0.039i,−0.0151−0.0399i, 0.0058+0.0389i, 0.0023−0.0363i,−0.0092+0.0329i]

are generated according to electromagnetic theory [2]
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theoretical upper bounds of rank(HE(θ[K])) and its numerical value by

δ1(N,M,L,J ) = r(N,M,J )− rmax, (23)

δ2(N,M,L,J ) = min(KN,KM + L)− rmax, (24)

where rmax = maxθ[K]∈∆̃K
β,J

rank(HE(θ[K])). When K = 2, J = [2] and

r(N,M, [2]) = N+M+3. In Fig. 4, we plot δ1(N,M,L,J ) and δ2(N,M,L,J )

for various L and M , respectively. The lines, where r(N,M,J ) = KM +L and

KN = KM + L, are also marked out.290

At the top of Fig. 4, we observe that rank(HE(θ[2])) ≤ r(N,M, [2]), ∀θ[K] ∈

∆2
β , whenever KN ≥ KM + L and M ≤ N − 3. This result coincides with

Lemma 4.3. As such, in the area between the dashed and solid lines, where

r(N,M, [2]) < KM + L, we can expect that HE(θ[2]) (∈ CKN×KM+L) is rank

deficient for all θ[K] ∈ ∆2
β , which is observed at the bottom of this figure.295

Moreover, when HE(θ[2]) is rank deficient, false peaks will appear according to

condition (C7). Hence, condition (C9) in Proposition 4.4 is also verified.

Lemma 4.7 can also be validated in a similar setting and omitted here.
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6.2. Simulations for the Proposed Algorithms

This part evaluates performance of the proposed methods. The benchmarks300

include those based on one-dimensional spectra: MUSIC, the mid-array method

[11], R-RARE [19], and Algorithm 1 (“Alg-1”); those based on multidimensional

spectra: blind method [20], Algorithm 2 (“Alg-2”), and Alg-2 with P5(θ[K])

substituted by P4(θ[K]) (“Alg-P4”); and an online method [14]. All methods

consider cl as 0 whenever l > min(B,L), such that their necessary conditions305

can be satisfied, e.g., B = N−M+2
2 in mid-array method [11] and B = KN−KM

for the rest subspace methods. We use T = 1, εe = 0.01, and εb = 1 as default

values in Alg-1 and Alg-2. For the multidimensional spectrum based methods,

we set K = 2 and the step length for exhaustive search to be 0.1◦. Each point

in the figures of simulation results is based on averaging 300 experiments.310

6.2.1. Probability of resolution (PoR)

As a sanity check, the PoR is inspected in noise-free cases with the 16-

element ULA. Sources are considered to be resolved successfully if the biases of

all DoA estimates are smaller than 2◦. The DoAs of independent sources are

generated randomly in a range [−60◦, 60◦] with a minimum interval 1
10N radian315

between any pair of DoAs. The number of snapshots is NT = 500. We vary M

from 2 to N − 1 and L from 2 to N and plot the results in Fig. 5.

We see that MUSIC is robust to mutual coupling when M is small, since it

sets C = I and thus avoids ambiguities induced by additional unknowns in C.

The cost is a lower estimation accuracy and resolution capability, as M becomes320

large. The online method is similarly to MUSIC, since it it initialized by C = I.

The working area of mid-array is bounded by its necessary condition.

The application ranges of the rest methods can be explained by analytical

results in the paper. Overall, they are restricted by the necessary condition

L ≤ B as well as conditions of false peaks. In particular, ranges of R-RARE325

and Alg-P4 are limited by L < 9, which are based on conditions (C4) and (C5) in

Proposition 3.2 and (C8) in Proposition 4.2, respectively. It is interesting to see

that blind method may fail when 9 ≤ L < 11 or r(N,M, [2]) = 2M +L−1. The
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Figure 5: PoR varies with M and L, where white and black colors indicate complete success

and complete failure: (a) MUSIC (top left), mid-array (top right), R-RARE (bottom left),

Alg-1 (bottom right), (b) online algorithm (top left), blind method (top right), Alg-P4 (bottom

left), Alg-2 (bottom right)

reason is that blind method is based on a spectrum
λ2(WH(θ[2])W (θ[2]))

λ1(WH(θ[2])W (θ[2]))
, which

can suppress predictable false peaks if λ1 and λ2 approach to 0, simultaneously.330

However, by utilizing Lemma 4.1 and Lemma 4.3, it can be easily derived that

this property fails when 9 ≤ L ≤ 11 or r(N,M, [2]) = 2M +L− 1, respectively.

Alg-1 and Alg-2 apply most broadly. We see that Alg-1 works perfectly when

L + M ≤ N , and the same is true for Alg-2 when L < min (2N − 2M,N − 1).

This implies that the analysis for predictable peaks in spectrum P3(θ) and335

P4(θ[2]) is exhaustive. If not, the remaining predictable false peaks will cause

the PoR to go to 0. Alg-2 may be affected by unpredictable false peaks when

L ≥ N − 1 (which agrees with Lemma 5.2) or 2M + L ≥ 2N . To the best

of our knowledge, truncation of the effect of mutual coupling (i.e., setting

cl = 0,∀l > L) is required in all existing self-calibration methods. Our an-340

alytical results and the corresponding simulation give reasonable bounds for

choosing L in these methods. Moreover, truncation is not required in Alg-2

when M < 8 in the simulation.

Next, we investigate the impact of parameters εe in (18) and εb in (21) to

Alg-2. Note that d(θ[K]) can suppress false peaks, but also induces risks of345
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missing peaks of true DoAs. Especially, when M = K = 2, missing the only

peak of true DoAs means a failure of estimation. Hence, M = 2 with L varying

from 13 to 15 are very difficult settings. In Fig. 6, we see that Alg-2 is insensitive

to εe and εb, and εe = 0.01 and εb = 1 are good choices.

Next, we investigate the asymptotic performance of different algorithms.350

The results of one-dimensional spectrum based methods and the other methods

are illustrated in Fig. 7a and 7b, respectively. When L = 4 and M = 2, we

see that all methods work well. The PoRs of Alg-2, Alg-P4, blind, and online

method are always equal to 1 and their curves are omitted. In a more difficult

situation, where L = 10 and M = 5, we see that Alg-1 and Alg-2 perform better355

than the other methods, and the PoR of Alg-2 approaches 1 when NT ≥ 100.

When L = 10 and M = 10, only Alg-2 can work.

6.2.2. Accuracy of self-calibration

First, consider the 9-element array which is illuminated by M = 3 sources

located at θ̃ = [−20◦,−1◦, 5◦]T . The first two sources are correlated with360

correlation coefficient [4] ρ = 0.5. We first compare Alg-1 to existing algorithms

with L = 6, and then Alg-2 to existing algorithms with L = 8. The simulation

results, including PoR and root mean square error (RMSE) of DoA estimation

of successful detections, are plotted in Fig. 8 and 9, respectively. In the figures,

“T = t” denotes implementing Alg-1 or Alg-2 with T = t.365
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Figure 7: PoR versus NT with N = 16 and SNR = 20dB. (a) Left: L = 4, M = 2; right:

L = 10, M = 5; (b) Left: L = 10, M = 5; right: L = 10, M = 10.

In Fig. 8a, we see that Alg-1 may fail in the low SNR region, since it

is impacted by unpredictable fluctuations. This phenomenon is alleviated by

using a larger T or a higher SNR. R-RARE does not work, since its spectrum is

polluted by the false peaks in Ωβ . The curves of mid-array and online methods

are close to 0 and omitted. Online method is for independent sources only[14].370

In Fig. 8b, it is seen that RMSE curves of Alg-1 decrease with the increase of

SNR, while that of MUSIC is bounded because of modeling mismatch in MCM.

The gap between Cramer-Rao bound (CRB) and the RMSE of Alg-1 is caused

by the performance loss of subspace method when sources are correlated.

In Fig. 9, we see that Alg-2 and blind method perform well, which coincides375

with the results in Fig. 5. The floor effect of Alg-2 is caused by a coarse searching

grid. The PoR of Alg-P4 and online method are close to 0 and omitted.

Finally, asymptotic performance of different methods are investigated with

N = 16 and L = 10. M = 5 independent signal sources are equally spaced

between 1◦ and 16◦. The results are shown in Fig. 10 and 11, where curves380

of methods with PoR approaching zero are omitted and RMSE are based on

successful detections. It is seen that only Alg-1, Alg-2, and blind algorithm can

work reliably. Their calibration performance improve as Nt or T becomes large.

The gap between RMSE and CRB can be reduced by substituting the obtained
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Figure 8: Calibration performance of different algorithms with N = 9 and L = 6: (a) The PoR

versus SNR, (b) RMSE of DoA (left) and mutual coupling (right) estimations of successful

resolution versus SNR,
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Figure 9: Calibration performance of different algorithms with N = 9 and L = 8: (a) The

PoR versus SNR, (b) RMSE of DoA (left) and mutual coupling (right) estimation of successful

resolutions versus SNR.

estimates into a local search scheme, e.g., those proposed in [13] and [14].385

7. Conclusions

This paper has investigated the effect of mutual coupling to DoA estimation

in ULAs. We considered subspace methods and found that the unknown MCM

can cause false peaks in their spatial spectra, giving rise to ambiguous DoA
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Figure 10: PoR versus Nt with N = 16, L = 10, M = 5, and SNR = 20dB.
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Figure 11: Accuracy of calibration corresponding to Fig. 10: (a) RMSE of DoA estimation,

(b) RMSE of mutual coupling calibration.

estimation. The conditions for these false peaks have been analyzed. By utilizing390

which, we proposed new spectra and algorithms for self-calibration. Simulation

results have shown that proposed algorithms are robust to unknown MCM.
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Appendix A. Proof of Lemma 3.1

To prove the lemma, we first introduce the following notations and lemmas.

Denote b = ejπβ sin(θ). Then Q[L](b) = Q[L](θ). Define b = [b1, . . . , bN ]T and

EN (b) = IN − bJN , (A.1)

F (b) = IN − bI(1)
N . (A.2)

Obviously, F (b) is a full rank matrix and |F (b)| = 1.

Lemma Appendix A.1. The eigenvalue decomposition of EN (b) is

EN (b) = UEDEU
H
E , (A.3)

where DE = blkdg[(1−b)In, (1+b)In] if N = 2n, DE = blkdg[(1−b)In+1, (1+

b)In] if N = 2n+ 1, and

UE =
1√
2

In −Jn
Jn In

 , if N = 2n; UE =
1√
2


In 0 −Jn
0T

√
2 0T

Jn 0 In

 , otherwise.

Proof. WhenN = 2n, there are IN = UEU
H
E and JN = UEblkdg[In,−In]UH

E .395

Inserting them into (A.1) leads to (A.3). The proof is similar for N = 2n+1.

Corollary Appendix A.2. If N and k are both odd, rank[EN ((−1)k)] =

bN2 c+ 1; otherwise, rank[EN ((−1)k)] = bN2 c.

Then we prove the first two properties of Lemma 3.1. The rest can be derived

similarly. Property (P1) is equivalent to the solution set of |Q(θ)| = 0 is Ωβ .

According to definitions of Q(b) in (2) and F (b) in (A.2), we obtain

F (b)Q(b) =

1 bT[N−1]

0 EN−1(bN )

 . (A.4)

By using Lemma Appendix A.1, |Q(b)| = |F (b)Q(b)| = |EN−1(bN )| = (1 −

bN )d
N−1

2 e(1+bN )b
N−1

2 c. Hence, |Q(b)| = 0 if and only if bN = ejNπβ sin(θ) = ±1.400

Obviously, the solution set of θ is Ωβ for |θ| ∈ Ωθ.
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Property (P2) are proved in three steps: the first two show that rank(Q[n+1](b))

= n+1 and rank(Q(b)) = n+1 if θ ∈ Ωβ , and the last one derives rank(Q[L](b)).

Step 1: When L = n+ 1, inserting (A.1) into (A.4), one can easily find that

rank(Q[n+1](b)) = rank(F (b)Q[n+1](b)) = 1 + n.405

Step 2: When θ ∈ Ωβ , there is bN = ejNπβ sin(θ) = (−1)k, k ∈ Z, |k| ≤ βN .

Substituting this into (A.4) and making use of Corollary Appendix A.2, we can

get rank(Q(b)) = rank(F (b)Q(b)) = rank(EN−1((−1)k)) +1 = n+ 1.

Step 3: According to Step 1, rank(Q[L](θ)) = L = min (L, n+ 1) for any θ

when 1 ≤ L < n + 1, and rank(Q[L](θ)) ≥ n + 1 when L ≥ n + 1. According410

to Step 2, if θ ∈ Ωβ , rank(Q[L](θ)) ≤ rank(Q(θ)) = n + 1. Therefore, when

n+1 ≤ L ≤ N and θ ∈ Ωβ , we also have rank(Q[L](θ)) = n+1 = min (L, n+ 1).

Appendix B. Proof of Lemma 4.1

Property (P5): According to (11b), H(θ[2]) is rank deficient only if both

Q[L](θ1) and Q[L](θ2) are. This implies that θm ∈ Ωβ ,m = 1, 2, according

to Lemma 3.1. Moreover, following the definition of Ωβ , sin(θ2) − sin(θ1) =

k2−k1
Nβ = i

Nβ , i ∈ Z and |i| ≤ 2Nβ. Comparing this with the definition of Ω2
β , we

only need to prove that H(θ[2]) is full column rank when i = 2k+ 1. Moreover,

since H(θ[2]) with L < N is the first L columns of the H(θ[2]) with L = N . we

only need to consider the L = N case. Use notations in Appendix A and let

F (2) = blkdg[F (b1),F (b2)]. (B.1)

Obviously, |F (2)| = 1. When L = N , we can obtain

F (2)H(θ[2]) =

 1 0T 1 0T

b1,[N−1] ET
N−1(bN1 ) b2,[N−1] ET

N−1(bN2 )

T . (B.2)

Since θ1, θ2 ∈ Ωβ and i = k2 − k1 = 2k + 1, then bN1 = −bN2 = ±1. W.l.o.g.,

suppose bN1 = −bN2 = −1. Then EN−1(bN1 ) = EN−1(−1) and EN−1(bN2 ) =

EN−1(1). By using Lemma Appendix A.1, simply derivations will lead to

rank([(EN−1(−1))T , (EN−1(1))T ]) = N − 1. (B.3)
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Based on (B.2) and (B.3), rank(F (2)H(θ[2])) = rank(H(θ[2])) = N .

Property (P6): When θ[2] ∈ Ω2
β , bN1 = bN2 . Inserting it into (B.2) and using415

linear algebra, we can obtain (P6).

Appendix C. Proof of Lemma 4.3

We first introduce the following lemma.

Lemma Appendix C.1. Denote bk = ejπβ sin(θk),

F (bk)CA = [dk,D
T
k ]T ∈ CN×M , (C.1)

D(K) = [−blkdg(D1,D2, . . . ,DK−1),1K−1 ⊗DK ], (C.2)

where F (bk) is defined in (A.2). Note that D(K) ∈ C(N−1)(K−1)×KM , then

rank(D(K)) ≤ min[(N − 1)(K − 1),MK, (M + 2)(K − 1)].420

Proof. We only need to prove rank(D(K)) ≤ (M + 2)(K − 1), which is achieved

by finding a full rank TK ∈ CKM such that rank(D(K)TK) ≤ (M + 2)(K − 1).

First, we show the relations between columns of Dk and Dl. According to

the definition of F (bk), then ∀k, l ∈ [K], k 6= l, and ∀m ∈ [M ], there is

(am − bk)F (bl)− (am − bl)F (bk) = (bl − bk)F (am), (C.3)

where am = ejπβ sin(θ̃m). Denote cf = [c2, . . . , cN ]T and cb = [cN , . . . , c2]T .

Using (A.4) and (A.1), we have

[(am − bk)F (bl)− (am − bl)F (bk)]Ca(θ̃m) = (bl − bk)[cTa(θ̃m), cTf − cTb aNm]T .

(C.4)

Denoting dk,m as the m-th column of Dk and substituting it into (C.4), we have

(am − bk)dl,m − (am − bl)dk,m = (bl − bk)[cb, cf ][−aNm, 1]T . (C.5)

Second, we find TK in scenarios where θk 6= θ̃m. Since bk − am 6= 0, for

arbitrary k ∈ [K − 1] and m ∈ [M ], define

TK =

I(K−1)M [TK1, . . . ,TK(K−1)]
T

0 IM

 , (C.6)
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where TKk = diag
(
a1−bK
a1−bk , . . . ,

aM−bK
aM−bk

)
. Clearly, TK is a full rank matrix and

D(K)TK = [−blkdg(D1,D2, . . . ,DK−1), D̃K−1], (C.7)

where D̃K−1 = [(DK −D1TK1)T , . . . , (DK −DK−1TK(K−1))
T ]T and

DK −DkTKk = [cb, cf ]GMDKk, k ∈ [K − 1] (C.8)

GM =

−aN1 −aN2 · · · −aNM
1 1 · · · 1

 , (C.9)

DKk = (bK − bk)(diag(a1 − bk, . . . , aM − bk))−1 (C.10)

according to (C.5). Inserting (C.8) into D̃K−1 leads to

D̃K−1 = (IK−1 ⊗ ([cb, cf ]GM ))[DT
K1, . . . ,D

T
K(K−1)]

T . (C.11)

Since rank of IK−1⊗([cb, cf ]GM ) is 2(K−1) in general, rank(D̃K−1) ≤ 2(K−1).

According to (C.7), we have rank(D(K)) ≤ (K − 1)(M + 2).

Finally, we find TK , when ∃M1 ≥ 1 such that θm = θ̃m,∀m ∈ [M1]. Let

TKk = diag

(
0TM1

,
aM1+1 − bK
aM1+1 − bk

, . . . ,
aM − bK
aM − bk

)
. (C.12)

Define TK as in (C.6) and then switch its ((m−1)M+m)-th and ((K−1)M+m)-425

th columns ∀m ∈ [M1]. Then simple derivations will show that rank(D(K)) =

rank(D(K)TK) ≤ (M + 2)(K − 1). The lemma is thus proved.

Define an elementary matrix TE which substitutes the (m + N)-th row of

a matrix by the difference between the (m + N)-th and the m-th rows, ∀m =

2, . . . , N . Substituting (B.2) and (C.1) into FE = TEF
(2)HE(θ[2]) and then430

making use of EN−1,[L−1](b
N
2 ) − EN−1,[L−1](b

N
1 ) = 0, ∀θ[2] ∈ ∆2

β . One can

obtain rank(HE(θ[2])) = rank(FE) ≤ N+1+rank(D(2)). According to Lemma

Appendix C.1, rank(D(2)) ≤M + 2. Hence, Lemma 4.3 is obtained.

Appendix D. Proof of Lemma 5.1

The first property is because that P3N (θ) equals the optimal value of problem

max
v[L]

1/‖W (θ)v[L]‖2, s.t. ‖Q[L](θ)v[L]‖2 = 1. (D.1)

27



Denote a true DoA as θ̃ and θ̃ /∈ Ωβ (whose probability is 1 in practice),435

then λ̃ = λ1(QH
[L](θ̃)Q[L](θ̃)) > 0 based on Lemma 3.1. Assume that a peak at

θ̃ is detected in spectrum P3(θ) with a mutual coupling estimate ṽ and ‖ṽ‖ = 1.

Then ‖Q[L](θ̃)ṽ‖2 ≥ λ̃ and ‖UH
n Q[L](θ̃)ṽ‖2 ≈ 0 if NT is large enough. Their

ratio will cause a peak at θ̃ in spectrum P3N (θ).

Finally, denote the optimal solution by ṽ and assume ṽ 6= ζc[L], where ζ 6= 0440

is a complex. Then
‖Q[L](θ̃)ṽ‖

2

‖W (θ̃)ṽ‖2 >
‖Q[L](θ̃)c[L]‖2

‖W (θ̃)c[L]‖2
. Since λ̃ > 0, rescaling ṽ (such

that ‖Q[L](θ̃)ṽ‖ = ‖Q[L](θ̃)c[L]‖) leads to ‖W (θ̃)ṽ‖2 < ‖W (θ̃)c[L]‖2. When Nt

is large enough, ‖W (θ̃)c[L]‖ ≈ 0 and hence ‖W (θ̃)ṽ‖2 ≈ 0, which means that

the optimal solution, obtained by eigenvalue decomposition, is not unique.
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