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Abstract

We consider jointly modelling a finite collection of quantiles over time. Formal Bayesian

inference on quantiles is challenging since we need access to both the quantile function and

the likelihood. We propose a flexible Bayesian time-varying transformation model, which al-

lows the likelihood and the quantile function to be directly calculated. We derive conditions

for stationarity, discuss suitable priors and describe a Markov chain Monte Carlo algorithm

for inference. We illustrate the usefulness of the model for estimation and forecasting on

stock, index, and commodity returns.

Keywords: Bayesian nonparametrics; Transformation models; Stationarity; Predictive den-

sity

1 Introduction

The modelling of the conditional distribution of asset returns plays an important role in un-

derstanding the risk of financial decisions (for example, through measures such as Value at

Risk (VaR) or expected shortfall). A large literature has been developed around this prob-

lem (see Andersen, Bollerslev, and Diebold 2009 and Andersen et al. 2009 for reviews)

which has generally concentrated on estimating the time-varying conditional volatility us-
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ing either stochastic volatility or GARCH-type models in order to recover the conditional

distribution. These models usually assume that other aspects of the conditional distribution

are time-invariant, but empirical evidence shows that there is variation beyond volatility. For

example, Hansen (1994) and Harvey and Siddique (1999) studied variation in skewness and

kurtosis using time-varying skewed t distributions or non-central t distributions respectively.

Semiparametric methods can also be used to extend models in which specific higher-order

moments are allowed to be time-varying. One example is to use quantile based estimators,

which are found to be more robust to outliers compared to the empirical moment based

estimators of higher moments (see e.g. Kim and White 2004). Many authors have used

this approach including White, Kim, and Manganelli (2010) who proposed a joint model of

conditional quantiles to obtain robust estimates of conditional skewness and kurtosis for the

S&P500 daily returns. However, multiple quantiles cannot be satisfactory estimated using

separate application of single quantile models at different probability levels. This is because

these estimates do not guarantee monotonicity of the quantile function. Further work has

considered combining quantile and volatility estimates to gain a better understanding of the

conditional distribution (Taylor 2005, Xiao and Koenker 2009).

In the Bayesian literature, there have been several attempts to allow time-varying con-

ditional distributions of returns. Markov-switching or change point models are natural ap-

proaches which allow the parameters of the conditional distribution to change over time (see

e.g. So, Lam, and Li 1998; Chen, So, and Liu 2011; Bauwens, Dufays, and Rombouts 2014;

Song 2014). These approaches usually assume that the parameters of the model only change

a few points in time and so can struggle to capture small or short-term changes. Rodriguez

and Horst (2008) and Griffin and Steel (2011) introduced time-varying nonparametric priors

which allow inference about a time-varying conditional return distribution. These approaches

are based on infinite mixture models and so inference can be challenging for long time series.

In this paper, we consider jointly modelling a finite collection of quantiles over time. For-
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mal Bayesian inference on quantiles is challenging since we need access to both the quantile

function and its inverse (the distribution function). Yu and Moyeed (2001) use the check loss

function as a log-likelihood (which is equivalent to an asymmetric Laplace distribution) lead-

ing to a posterior distribution for the parameters of the quantile regression. See Cai, Stander,

and Davies (2012), Liu (2016) and Gerlach, Chen, and Chan (2011) for some application of

this approach in time series analysis. This approach has been criticised since it does not use

the correct likelihood for regressions at multiple quantiles. Several authors have discussed

this concern, for example Dunson and Taylor (2005) and Tokdar and Kadane (2012), but

there has been no work in time series to address this to our knowledge.

Conditional transformation models offer an alternative approach to flexibly model quan-

tiles. In this approach, an underlying statistical model is applied to transformed data. The pa-

rameters of the transformation are inferred with the parameters of the underlying model. The

intention is to extend the data for which a particular parametric model is suitable. Hothorn,

Kneib, and Bühlmann (2014) review previous work in this area and develop an approach to

modelling transformations of both response and explanatory variables using basis functions

in regression models. A similar idea underlies inversion copulas (see e.g. Smith and Ma-

neesoonthorn (2018)) for stationary time series. A stationary parametric model is assumed

with stationary distribution FZ . The transformed random variables Ut = FZ(Zt) form a

copula which inherits the time series structure of Zt. The copula is estimated by fitting

the model for Zt to pseudo-data F−1Z (F̂Y (Y1)), . . . , F
−1
Z (F̂Y (YT )) where F̂ is the empirical

distribution of the time series. This can be seen as a conditional time series model with a

time-invariant transformation G(·) = F−1Z (F̂Y (·)). A drawback of this approach is that the

successful modelling of the dynamics of Yt depends on an appropriate choice of the paramet-

ric model for Zt. In this paper, we will consider models which allow time-variation in the

transformation.

The paper is organised in the following way. Section 2 describes our general model for
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time-varying quantiles. Section 3 derives conditions under which the model is stationary.

Section 4 shows how these models can be “centred” over a parametric model. Section 5

describes the computational methods needed for Bayesian inference. Section 6 illustrates

the use of these methods on simulated data and some asset returns. Section 7 concludes

the paper. Proofs, further details of the computational methods, and additional results are

presented in the appendices.

2 Bayesian Joint Quantile Time Series (B-JQTS) model

Before constructing time series models for quantiles, we build a flexible distribution for

which the quantiles can be easily calculated using a parameterised transformation of a para-

metric distribution. Hothorn, Möst, and Bühlmann (2018) showed that this is an extremely

flexible framework since any continuous distribution can be represented as a transformation

of a random variable with an arbitrary continuous distribution.

Definition 2.1. F is a Linearised Transformation (LIT) distribution if F (y) = F0(G(y)),

where F0 is a univariate continuous distribution with median m and quantile function Q0(·),

and G : R → R. The transformation G has parameters 0 = a0 < a1 < · · · < aK = 0.5,

θ−1 > 0, . . . , θ−K > 0, and θ+1 > 0, . . . , θ+K > 0 and the piecewise linear form

G(x) =


m, x=m

G(x−i−1) + 1
θ−i

(x− x−i−1), x−i ≤ x < x−i−1

G(x+i−1) + 1
θ+i

(x− x+i−1), x+i−1 ≤ x < x+i ,

where x+0 = x−0 = m,

x−i = x−i−1−θ
−
i (Q0(0.5−ai)−Q0(0.5−ai−1)) =

i∑
j=1

θ−j (Q0(0.5−aj)−Q0(0.5−aj−1))
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and

x+i = x+i−1+θ+i (Q0(0.5+ai)−Q0(0.5+ai−1)) =
i∑

j=1

θ+j (Q0(0.5+aj)−Q0(0.5+aj−1)).

If Y follows an LIT distribution we write Y ∼ LIT(θ−, θ+, F0, a),where θ− = (θ−1 , . . . , θ
−
K)T ,

θ+ = (θ+1 , . . . , θ
+
K)T and a = (a0, a1, . . . , aK)T . It is sometimes convenient to write

θ = (θ−K , . . . , θ
−
1 , θ

+
1 , . . . , θ

+
K)T .

An LIT distribution with the same quantiles at probability levels τ = (0.5−aK , . . . , 0.5−

a1, 0.5 + a1, . . . , 0.5 + ak) as a continuous distribution F ? is defined by choosing

θ−i =
Q?(0.5− ai+1)−Q?(0.5− ai)
Q0(0.5− ai+1)−Q0(0.5− ai)

and θ+i =
Q?(0.5 + ai)−Q?(0.5 + ai−1)

Q0(0.5 + ai)−Q0(0.5 + ai−1)
.

where Q?(τ) is the quantile function of F ?. Figure 1 shows plots of θ against τ for different
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Figure 1: Plots of the value of θ against τ for different F0 and F ? (F0 is named first and F ? is
named second) and τ = (0.125, 0.25, 0.375, 0.625, 0.75, 0.875).

choices of F0 and F ?. If F0 is a standard normal then a heavier tailed F ? is associated

with values of θ−i and θ+i that increase with i. If F0 is a Laplace then the relationship is

less straightforward. The values of θ−i and θ+i decrease with i when F ? is a t distribution

with 10 degrees of freedom, whereas the values of θ−i and θ+i do not decrease or increase

monotonically with i when F ? is a t distribution with 2 degrees of freedom.

The LIT distribution has some useful properties. Firstly, the density function f of an LIT
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distribution is

f(x) =


1
θ−i
f0

(
G
(
x−i−1

)
+ 1

θ−i

(
x− x−i−1

))
, x−i ≤ x < x−i−1

1
θ+i
f0

(
G
(
x+i−1

)
+ 1

θ+i

(
x− x+i−1

))
, x+i−1 ≤ x < x+i ,

(2.1)

where f0(x) is the density of F0(x). The density f(x) will have the shape of f0 with scale

parameter θ−i for x−i ≤ x < x−i−1 and θ+i for x+i−1 ≤ x < x+i . we refer to θ−i and θ+i as

local scales and F0 as the centring distribution. Secondly, the quantile function, is available

analytically as Q(τ) = G−1
(
Q−10 (τ)

)
and has the form

Q(τ) =


m, τ = 0.5

x−i−1 − θ
−
i (Q0(τ)−Q0(0.5 + ai−1)), 0.5− ai ≤ τ < 0.5− ai−1

x+i−1 + θ+i (Q0(τ)−Q0(0.5 + ai−1)), 0.5 + ai−1 ≤ τ < 0.5 + ai.

(2.2)

Clearly, x−i and x+i are the quantiles of F at probability levels (0.5 − ai) and (0.5 + ai)

respectively and the support points of the transformation G are distributed according to F .

The moments of an LIT distribution and its absolute values can be expressed in terms of

the moments of truncated versions of F0.

Theorem 2.1. The `-th moment of an LIT(θ−, θ+, F0, a) distribution is

K∑
i=1

∑̀
j=0

 `

j

[(α−i )`−j (θ−i )jI−i,j +
(
α+
i

)`−j
(θ+i )jI+i,j

]
,

whereα−i = x−i−1−θ
−
i Q0(1/2−ai−1), α+

i = x+i−1−θ
−
i Q0(1/2+ai−1), I−i,j =

∫ Q0(1/2−ai−1)
Q0(1/2−ai) zjf0(z) dz

and I+i,j =
∫ Q0(1/2+ai)
Q0(1/2+ai−1)

zjf0(z) dz.

Theorem 2.2. If Y ∼ LIT(θ−, θ+, F0, a) then E[|y|] = Φθ, where Φ is a (1 × 2K)-
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dimensional vector with terms

Φi =

 −(1/2− ai)Q0(1/2− ai) + (1/2− ai−1)Q0(1/2− ai−1)− I−i,1, 1 ≤ i ≤ K

(1/2− ai)Q0(1/2 + ai)− (1/2− ai−1)Q0(1/2 + ai−1) + I+i,1, K + 1 ≤ i ≤ 2K.

The LIT distribution construction allows us to build time-varying models for quantiles.

We assume that the centring distribution F0 is parameterised by ψ and define a model with

θ−1 , . . . , θ
−
K , θ+1 , . . . , θ

+
K and ψ as time-varying parameters.

Definition 2.2 (B-JQTS model). Let Y1, . . . , YT be a time series of univariate observations

and 0 = a0 < a1 < · · · < aK = 1/2, the time series follows a Bayesian Joint Quantile Time

Series (B-JQTS) model if Yt
ind.∼ Ft, where Ft = LIT(θ−t , θ

+
t , F0(·;ψt), a),

θ−i,t = H(θ−i,t−N , . . . , θ
−
i,t−1, yt−L, . . . , yt−1;λ

−
i ), Q0(0.5− ai) < y < Q0(0.5− ai−1),

θ+i,t = H(θ+i,t−N , . . . , θ
+
i,t−1, yt−L, . . . , yt−1;λ

+
i ), Q0(0.5 + ai−1) < y < Q0(0.5 + ai),

H(·, ·;λ) is a function parameterised by λ, and N and L are the orders of the model.

The processes θ−t and θ+t are specified directly as functions of the previous lags of the

parameters and the data (rather than as stochastic processes) to allow faster posterior infer-

ence. The model can be interpreted as inducing a time-varying transformation Gt defined

using the piecewise linear from in Definition 3.1 and allows departures from the paramet-

ric model F0(·;ψt). The B-JQTS model is very general and requires further restrictions for

identifiability (for example, fixing the stationary mean of ψt).

We first consider models where ψt = 1 and both θ−i,t and θ+i,t follow GARCH-like pro-

cesses. In this case, the model simplifies if λ−1 = · · · = λ−K = λ+1 = · · · = λ+K = λ and

θ−1,1 = · · · = θ−K,1 = θ+1,1 = · · · = θ+K,1 = θ1, to a time series model Yt/θt ∼ F0(·;ψt) and

θt = H(θt−N , . . . , θt−1, yt−L, . . . , yt−1;λ). Therefore, the B-JQTS model with ψt = 1 can

be understood as a relaxation of this simpler model, where the values of λ−i and λ+i allow

7



different time series properties for different parts of the return distribution. Some specific

examples of B-JQTS models (with ψt = 1) are given in the following definition.

Definition 2.3. A B-JQTS model is called:

1. Bayesian Joint Absolute Value Leverage (B-JAVL) model if

H(θ, y; (µ, β, γ, δ)) = µ+
N∑
j=1

βjθt−j +
L∑
k=1

γk|yt−k|+
L∑
k=1

I(yt−k < 0)δk|yt−k|

(2.3)

2. Bayesian Joint GJR (B-JGJR) model if

H(θ, y; (µ, β, γ, δ)) =

√√√√µ+

N∑
j=1

βjθ2t−j +

L∑
k=1

γky
2
t−k +

L∑
k=1

I(yt−k < 0)δky
2
t−k

(2.4)

Both processes have standard recursions of GARCH-type models (the Taylor-Schwert

model and the GJR model). They allow a leverage effect if any δ−i,k’s or δ+i,k’s are non-

zero. If all δ−i,k’s and δ+i,k’s are zero, these models simplify and will be called the Bayesian

Joint Symmetric Absolute Value (B-JSAV) model and the Bayesian Joint Symmetric Squared

Value (B-JSSV) model respectively.

Figure 2 shows realisations of 4000 time points of a B-JSAV(1,1) model and a B-JSSV(1,1)

model with L = N = 1 and a normal centring distribution. The parameter values are given

in the appendix. The graphs show the 1%, 2.5%, 5%, 12.5%, 25%, 37.5%, 62.5%, 75%,

87.5%, 95%, 97.5% and 99% quantiles as well as θ−i,t, θ
+
i,t and robust measures of scale,

skewness and kurtosis defined in Section 6.2.3. The realisation of the B-JSAV(1,1) model

is shown in panels (a) and (b). The process generates a symmetric conditional return distri-

bution with considerable variation in both the scale and the kurtosis. Symmetry arises from

choosing β+i = β−i , µ−i = µ+i and γ−i = γ+i and θ−i,0 = θ+i,0. The heavy tails arise from

µ−i increasing with i. There is less dependence in the tails of the distribution since the value

of β+i is decreasing with i. The realisation of the B-JSSV(1,1) model is shown in panel (c)
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Figure 2: Simulations of a B-JSAV(1,1) process (panels (a) and (b)) and a B-JSSV(1,1) process
(panels (c) and (d)). The quantiles are simulated at 1% and 99% (blue), 2.5% and 97.5% (yellow),
5% and 95% (pink), 12.5% and 87.5% (light blue), 25% and 75% (green) and 37.5% and 62.5
(black) probability levels. The θ−i,t and θ+i,t are shown as: i = 1 (blue), i = 2 (yellow), i = 3
(pink), i = 4 (light blue), i = 5 (black), i = 6 (red) and i = 7 (green).

and (d). This process generates substantial variation in the scale and some variation in the

skewness and the kurtosis with lighter tails than the B-JSAV(1,1) realisation. The process

shows greater dependence in the left-hand tail of the distribution (since β−i ≥ β
+
i ).

The B-JQTS model leads to analytic expressions for the important financial concepts of

VaR and expected shortfall. VaR is defined as the conditional quantile usually at level 1%,

2.5%, or 5%. This can be calculated as a function of θ−t and θ+t using the expression in

Equation (2.2). The expected shortfall is the (negative) expectation of the returns below a

specific quantile. Using an obvious extension of the notation in Theorem 2.1, the expected
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shortfall for the B-JQTS model (for τ < 0.5) is

ESt,τ =− E(Yt|Yt ≤ Qt(τ))

=− 1

τ

[
K∑

i=ι(τ)+1

[
α−i,tI

−
i,0 + θ−i,tI

−
i,1

]
+ θ−ι(τ),t

∫ Q0(τ)

Q0(1/2−aι(τ))
zf0(z) dz+

(x−ι(τ)−1,t − θ
−
ι(τ),tQ0(1/2− aι(τ)−1))(τ − 1/2 + aι(τ))

]

where ι(τ) = inf{j|aj ≥ 1/2− τ}.

3 Properties of some B-JQTS models

The B-JAVL can be expressed as a generalised autoregressive model with i.i.d. coefficients

(Bougerol and Picard 1992) and this can be used to understand the properties of the process.

More general models, such as the B-JGJR and B-JSSV, cannot be expressed in this way but

the approach of Cline (2007) can often be used for models with L = N = 1. We will

demonstrate this approach by showing that the first order B-JGJR model can be stationary.

We define 0a×b to represent an (a × b)-dimensional matrix of 0’s. It is convenient to

express the B-JAVL model in terms of a vector θt =
(
θ−K,t, . . . , θ

−
1,t, θ

+
1,t, . . . , θ

+
K,t

)T
, which

leads to the updating equation

θt = µ+
N∑
j=1

Bj θt−j +
L∑
k=1

Γk|yt−k|+
L∑
k=1

∆kI(yt−k < 0)|yt−k|, (3.1)

where µ =
(
µ−K , . . . , µ

−
1 , µ

+
1 , . . . , µ

+
K

)T ,Bj =

 diag(β−K,j , . . . , β
−
1,j) 0K×K

0K×K diag(β+1,j , . . . , β
+
K,j)

,

Γk =
(
γ−k,K , . . . , γ

−
k,1, γ

+
k,1, . . . , γ

+
k,K

)T
and ∆k =

(
δ−k,K , . . . , δ

−
k,1, δ

+
k,1, . . . , δ

+
k,K

)T
. The

following theorem establishes conditions for weak stationarity.

Theorem 3.1. Suppose that Yt follows a B-JAVL process and define (s1, c1), . . . , (sT , cT ) to
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be i.i.d. with p(st = k) = |a|k−K−1| − a|k−K||, 1 ≤ k ≤ 2K and

p(ct|st) ∝

 f0(ct), Q0(1/2− aK−st) < ct < Q0(1/2− aK+1−st), st ≤ K

f0(ct), Q0(1/2 + ast−K−1) < ct < Q0(1/2 + ast−K), st > K
.

Let Dt and D̃t be (1× 2K)-dimensional vectors for which

(Dt)i =

 ct i = st

0 i 6= st

and (D̃t)i =

 1 i = st, i ≤ K

0 otherwise

If L = 1, define

At =


B1 + Γ1Dt + ∆1D̃t B? BN

I2K 02K×2K(N−2) 02K×2K

02K(N−2)×2K I2K(N−2)×2K(N−2) 02K(N−2)×2K



where B? = ( B2 · · · BN−1 ) or, if L > 1, define

At =



B1 + Γ1Dt + ∆1D̃t B? BN C? ΓL + ∆LD̃t−L+1

I2K×2K 02K×2K(N−2) 02K×2K 02K×(L−2) 02K×1

02K(N−2)×2K I2K(N−2)×2K(N−2) 02K(N−2)×2K 02K(N−2)×(L−2) 02K(N−2)×1

Dt 01×2K(N−2) 01×2K 01×(L−2) 0

0(L−2)×2K 0(L−2)×2K(N−2) 0(L−2)×2K I(L−2)×(L−2) 0(L−2)×1



where C? = ( Γ2 + ∆2D̃t−1 · · · ΓL−1 + ∆L−1D̃t−L+2 ). The process Yt is weakly

stationary if the eigenvalues of E[At] are all less than 1 and the stationary mean of θt is
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ξ = L(I − E[At]))
−1µ where

L =

 I2K×2K 02K×2K(N+L−1)

02K(N+L−1)×2K 02K(N+L−1)×2K(N+L−1)

 .

This result can also be used to derive the stationary mean of the quantiles at time t as these

are a linear function of θt. Simpler sufficient conditions can be derived for the B-JAVL(1, 1)

model.

Corollary 3.1. Let βmax = max{β−1 , . . . , β
−
K , β

+
1 , . . . , β

+
K} , then a B-JAVL(1,1) model is

weakly stationary if βmax + E[Dt]Γ1 + E[D̃t]∆1 < 1.

More generally, the characteristic function of a B-JAVL(N, 1) can be represented as the

determinant of a matrix polynomial.

Corollary 3.2. The characteristic function of a B-JAVL(N,1) is

det(BN + λBN−1 + · · ·+ λN−1
(
B1 + Γ1E[Dt] + ∆1E[D̃t]

)
− λNI) = 0

The previous results concern weak stationarity but the results of Bougerol and Picard

(1992) can be used to find conditions for the strong stationarity of B-JAVL processes.

The following result establishes condition for the stationarity of the B-JGJR model.

Theorem 3.2. Suppose that F0 has finite ν-th moment for some ν > 0 and βj+γj+ 1
2δj < 1

for 1 ≤ j ≤ 2K, then the B-JGJR(1, 1) process is stationary.

4 Models with a global scale

Many models for financial time series have the form Yt/ψt ∼ F, where F is a distribution

without parameters (such as a standard normal or t distribution) and ψt is a time-varying

scale. This suggests considering models of this form, where a time-varying distribution Ft
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replaces F . This separates changes in the shape of the conditional distribution (modelled

through the dynamics in Ft) from the global scale ψt and is a natural competitor to the models

developed previously. Generalised Autoregressive Score (GAS) model (Creal, Koopman,

and Lucas 2013) (see also the Dynamic Conditional Score (DCS) models of Harvey and

Chakravarty 2008) is a simple way to define the recursion for ψt. If the transformation

Gt is known, the GAS model for ψt in the B-JQTS framework is given by the recursion

ψt+1 = ω + φψt + ηS̃(ψt)
[
∂ log f0(Gt(yt);ψt)

∂ψt

]
, since the score function is ∂ log p(yt|ψt)

∂ψt
=

∂ log f0(Gt(yt);ψt)
∂ψt

. Therefore, the GAS model for the parameters of F0 in the B-JQTS model

is just the GAS model for the parameters of F0 applied to the transformed data Gt(yt). For

example, if F0(·;ψt) = N(·|0, ψ2
t ), the GAS model is a GARCH(1, 1) model applied to

the transformed Gt(yt) rather than yt. This suggests using either GAS models for the time-

varying parameters of F0 or more general parametric models (such as EGARCH or t-GJR)

applied to the transformed data.

The transformation Gt is unknown and we suggest the following scheme for updating ψt

and θt. Firstly, calculate ψt+1 using a GARCH-type model with the transformed data Gt(yt)

and, secondly, calculate θt+1 using the recursion of the B-JQTS model with yt replaced by

yt/ψt. We will refer to these models as a B-JQTS models with time-varying global scale

(B-JQTS with GS). We identify this model by fixing the stationary mean of ψt to 1.

5 Bayesian inference

The B-JQTS model has 2K sets of λ−i or λ+i parameters and so is richly parameterised.

As with any flexible model, there is potential of overfitting data which can lead to poor in-

ference and out-of-sample predictive performance. The parameters λ−i and λ−i+1 refer to

continuous parts of the distribution (and similarly for λ+i and λ+i+1) which suggests shrink-

ing λ−i towards λ−i−1 and λ−i+1 (and similarly for λ+i , λ+i−1 and λ+i+1). A similar argument

can be made for θ−i and θ+i . As we have discussed if all λ−i and λ+i take the same val-
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ues and all θ−i and θ+i take the same value then the model reduces to a simpler time se-

ries model defined by the recursion H . This suggests also shrinking λ−i and λ+i towards

a constant. We will use a Bayesian approach with a Gaussian process priors (Rasmussen

and Williams 2005) to smooth each dimension of λ−i and λ+i , and θ−i and θ+i . If we con-

sider the B-JSAV model, the priors are logµ ∼ N(µ012K ,Σ
µ), log β ∼ N(β012K ,Σ

β), and

log γ ∼ N(γ012K ,Σ
γ) where 12K represents a 2K-dimensional column vector of 1’s and,

for ν ∈ {µ, β, γ}, Σν
i,j = σ2ν exp{−(mi−mj)

2/l2ν}, σ2ν is the signal variance, lν is the length

scale, mi = (a?i + a?i+1)/2 for i = 1, . . . , 2K and a? = (0.5 − aK , 0.5 − aK−1, . . . , 0.5 −

a1, 0.5, 0.5 + a1, . . . , 0.5 + aK−1, 0.5 + aK). The length scale controls the correlation be-

tween different elements of the vector with a larger length scale implying weaker correlation

between consecutive elements. The correlation is controlled by the differences in the prob-

ability levels which are independent of the data being analysed. This allows us to define a

default choice and we use lν = 0.1.

The prior for the model is completed as follows. The hyperparameters µ0, β0, γ0, σ2µ, σ2β

and σ2γ are given hyperpriors. Again, for ν ∈ {µ, β, γ}, ν0 ∼ N(0, σ20) where σ20 is given a

large value to define a vague, proper prior distribution and σ2ν ∼ Half-Cauchy(1) where the

density of a half-Cauchy distribution is proportional to x−1/2(1 + x)−1. If we also consider

a GARCH(1, 1) model for the global scale, the joint prior distribution of φ and η is chosen to

be a uniform distribution restricted so that 0 < φ < 1 and 0 < η < 1− φ (which ensure the

stationarity of the ψt process). Since the stationary mean of ψt is 1, we assume that the initial

value has the prior logψ0 ∼ N(0, 1), which implies that the prior median of ψ0 is 1. The

initial values of the local and global scales are given the priors: log θ−j,0
i.i.d.∼ Half-Cauchy(1)

for j = 1, . . . ,K and log θ+j,0
i.i.d.∼ Half-Cauchy(1) for j = 1, . . . ,K.

The likelihood function of all parameters (which are denoted ν̃) in the B-JQTS model is

L(ν̃) = f(y|ν̃) =
T∏
t=1

ft(yt)
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using the density in Equation (2.1). The posterior distribution of ν̃ can be simulated using

a Markov chain Monte Carlo (MCMC) scheme with adaptive Metropolis-Hastings updating,

adaptive parallel tempering (Miasojedow, Moulines, and Vihola 2013) and interweaving (Yu

and Meng 2011). Adaptive MCMC methods are reviewed by Griffin and Stephens (2013).

Adaptive Metropolis-Hastings updating is necessary since the full conditional distributions

of the posterior are non-standard. The adaptive parallel tempering is useful to move around

the whole parameter space (rather than becoming trapped in local modes). A full description

of the algorithm is given in Appendix B for a B-JSAV model with a GARCH(1, 1) global

scale. This approach can be easily extended to other B-JQTS models (both with and without

global time-varying scale) with larger values of L and/or N .

6 Applications

6.1 Simulated data example

We illustrate the ability of B-JQTS models to capture time-varying conditional distributions

by fitting B-JSAV(1,1), B-JSSV(1,1) and B-JGJR(1,1) models to three simulated data sets.

Each B-JQTS model is fitted with K = 10, a = (0, 0.05, . . . , 0.45, 0.5) and a normal cen-

tring distribution. We use a GJR-GARCH(1,1) model with a t error distribution (which we

will call t-GJR(1,1)) estimated using maximum likelihood as a parametric benchmark. The

models are fitted to the two data sets generated from B-JQTS processes and presented in Fig-

ure 2. Data were also generated from the parametric t-GJR(1,1) model which is specified as

yt = σtεt where σ2t = 0.995+0.91σ2t−1+0.061y2t−1+0.032 I(yt−1 < 0)y2t−1 and εt
i.i.d.∼ t6.

The MCMC algorithms were run for 20000 iterations, where the first 10000 iterations were

discarded as the burnin-in sample. We used a thinning of 5 which resulted in a total of 2000

samples. The mixing and convergence of the posterior parameter draws were checked via

trace and autocorrelation plots. Both indicated that the algorithm converged before the end
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of the burn-in period, and mixed quickly.

Conditional moments are a useful way to summarise the changing shape of the condi-

tional return distribution. Since our analysis allows for a flexible shape for this distribution,

we use robust quantile-based measures of the scale, skewness and kurtosis, we adopt the

Pearson-Tukey measure for the standard deviation SD = (qt(0.95)−qt(0.05))
(q0(0.95)−q0(0.05)) , the Bowley co-

efficient of skewness, SK = (qt(0.75)+qt(0.25)−2qt(0.50))
(qt(0.75)−qt(0.25)) , and the Crow-Siddiqui coefficient

of kurtosis KR = qt(0.95)−qt(0.05)
qt(0.75)−qt(0.25) −

q0(0.95)−q0(0.05)
q0(0.75)−q0(0.25) , where q0 is the quantile of a standard

normal distribution.

In Figure 3, we present the robust measures along with the error which we define as the

difference between the posterior median and the quantile-based measure of the scale for the

simulated data. Clearly, the B-JQTS models are able to capture the dynamics of the series

Figure 3: Inference from the B-JQTS (with K = 10 and a = (0, 0.05, . . . , 0.45, 0.5)) and GJR-GARCH
models (red: B-JSAV(1,1), blue: B-JGR(1,1), cyan: B-JSSV(1,1), green: t-GJR(1,1)) using simulated data
from B-JQTS and GJR-GARCH processes (shown in each row).
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generated using B-JQTS models and give accurate and precise inference on the scale, skew-

ness and kurtosis. They also provide good fits to the data generated from the t-GJR(1,1)

model with a fairly constant estimate of the kurtosis around the true value (0.27). To better

Simulation Model Fitted Model
B-JSAV(1,1) B-JSSV(1,1) B-JGJR(1,1) t-GJR(1,1)

B-JSAV(1,1) 0.182 0.195 0.202 0.238
B-JSSV(1,1) 0.098 0.031 0.027 0.064
t-GJR(1,1) 0.065 0.040 0.039 0.042

Table 1: RMSE of SD for the B-JSAV(1, 1), B-JSSV(1, 1), B-JGJR(1, 1) and t-GJR(1, 1) fitted
to data simulated using a B-JSAV(1, 1), B-JSSV(1, 1) or t-GJR(1, 1) model. The B-JQTS models
were fitted using K = 10 and a = (0, 0.05, . . . , 0.45, 0.5).

understand the performance of these models, we calculated the Root Mean Squared Errors

(RMSEs) of the estimated SD for the various models and simulated data sets and we pre-

sented them in Table 1. The SD estimates from the B-JQTS models are generally better or

similar to the estimates from the t-GJR(1,1) in the presence of both time-varying and time-

invariant kurtosis (the only exception is the B-JSAV(1,1) model applied to the data simulated

from the B-JSSV(1,1) and t-GJR(1,1) models). The B-JSAV(1,1) model gives the best per-

formance when the data is generated from a B-JSAV(1,1) model but performs poorly when

the data is generated from a model whose recursion involves squared returns (B-JSSV(1,1)

and t-GJR(1,1)). This suggests that B-JQTS models can result in good performance if the

observables which enter into the B-JQTS model are carefully chosen.

6.2 Real data examples

The fit and the predictive performance of various B-JQTS models with and without GS is

assessed using three long time series of returns. Our data sets consist of the daily log-

returns of IBM (1986/01/07–2015/12/31), S&P500 (1975/12/01–2015/12/31) and the West

Texas Intermediate (WTI) price (per Barrel, in Dollars per Gallon) of crude oil (1986/01/03–
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2015/12/31). The IBM and S&P500 data were obtained from the Center for Research in Se-

curity Prices (CRSP), while the WTI data were obtained from the FRED data base (DCOILWTICO

series). Figure 4 (panel (a)) shows the evolution of each time series.

Figure 4: (a) Daily equity returns and posterior median of the conditional quantiles for (b) B-JSAV(1,1),
and (c) B-JSSV(1,1) for IBM, S&P500, and WTI. We use different colours to depict the various quantiles
for K = 10 and a = (0, 0.05, . . . , 0.45, 0.5).

6.2.1 Fitting exercise

We fitted the B-JSAV(1,1), B-JSSV(1,1), B-JGJR(1,1), and B-JAVL(1,1) models with a nor-

mal centring distribution to the three time series forK = 10 and a = (0, 0.05, . . . , 0.45, 0.5).

The posterior medians of the conditional quantiles for the B-JSAV(1,1) and B-JSSV(1,1)

models are shown in Figure 4. The results for B-JGJR(1,1) and B-JAVL(1,1) models are

shown in Appendix D. The B-JQTS model is able to describe the changing conditional dis-

tribution of returns (by construction, the model leads to no quantile crossings). We find that
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the inner quantiles (25% and 75%) are less volatile over time than the outer quantiles (5%,

10%, 90% and 95%) for all assets. This is in line with the stylised facts of asset returns. The

largest differences in the fitted quantiles between different models occur after large shocks.

The models where the dynamics are driven by the squared returns (B-JSSV and B-JGJR)

have larger responses to the most extreme returns than the models which consider absolute

returns (B-JSAV and B-JAVL).

6.2.2 Comparing forecasting performance

We compare the forecasting performance of the different versions of the B-JQTS model us-

ing K = 4, 10 and 20 (with ai = 0.5i/K for i = 0, 1, . . . ,K). We included the GARCH(1,

1) and GJR-GARCH(1, 1) (with t errors) estimated using maximum likelihood as parametric

benchmarks, and two more flexible specifications: a Dirichlet process mixture GARCH(1,1)

(DPM-GARCH) model and a Most Likely Transformations model (MLT1) (Hothorn, Kneib,

and Bühlmann 2014). The DPM-GARCH model assumes that yt/σt ∼ F, where F is a

Dirichlet process mixture of normals and σ2t follows a GARCH(1,1) process. This model al-

lows for time-varying volatility and unknown (time-invariant) return distribution. The MLT1

model uses the approach of Hothorn, Kneib, and Bühlmann (2014) to nonparametrically es-

timate the conditional distribution of yt|yt−1 using f1(yt) ∼ f2(yt−1) + εt, where f1 and f2

are defined using Bernstein polynomials and εt are independent logistic distributed random

variables. The number of knots are estimated using cross-validation on the training sample.

The density forecasting performance of the models was assessed using the log predic-

tive scores (LPS) (Kim, Shephard, and Chib 1998). We use the following version of the

LPS, LPS = − 1
T−T0

∑T
t=T0+1 log ft(yt+1|FYt , θ̂, f0(·; ψ̂), a), where θ̂ and ψ̂ are parame-

ter estimates calculated using the first T0 observations y1, . . . , yT0 and FYs represents the

history of the times series Yt up to (and including) time s. The posterior mean is used

as the parameter estimate in the Bayesian models. Under this criterion, models provid-
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ing better forecasts have smaller LPS values. In financial time series data, it is common

to find that many models give similar LPS values, but show differences in their ability to

forecast extreme returns (which, by definition, are relatively rare and only make a small

contribution to the LPS). In these cases, the log predictive tail score (LPTS) for one-step

ahead predictions (Delatola and Griffin 2011) can be used to distinguish models with good

predictive performance for extreme events. The LPTS at τ probability level is calculated

as LPTSτ = − 1∑T
t=T0+1 I(yt+1>zτ )

∑T
t=T0+1 I(yt+1 > zτ ) log ft(yt+1|FYt , θ̂, f0(·; ψ̂), , a),

where zτ represents the upper 100τ% point of the empirical distribution of the data and I is

an indicator function. It is important to note that this measure can only offer an insight in the

differences between various models and cannot be used for formal model selection.

The findings are presented in Table 2. Overall, we find that for most specifications, pre-

dictive performance improves as K increases with only a small improvement for K = 20

over K = 10. Models without a global scale have similar or better LPS than the corre-

sponding models with a global scale. It is striking that the models without global scale give

typically better forecasting performance than the models with global scale. This is due to the

extra parameters in the models with global scale leading to overfitting of the data.

More specifically, models without global scale tend to perform better in terms of the LPS

in the S&P500 and to perform similarly for the IBM and WTI data. Models without global

scale tend to perform better in terms of the LPTS in the S&P500, WTI data, and IBM data

withK = 4, but the advantages for the IBM data is not clear whenK = 10. We also find that

models allowing for the leverage effect can often provide better predictive performance. The

models which account for the leverage effect tend to be better than the non-leverage models

(particularly in the tails) with the S&P500 data. The B-JAVL(1,1) is found to perform well

when K = 10 with the WTI data. B-JAVL(1,1) outperforms others in LPS and in the tails

for the IBM data.

The forecasting performance of the B-JQTS model is found to be superior to that of the
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non-Bayesian parametric GARCH-type models and the DPM-GARCH as we would expect

given the properties of B-JQTS. More specifically, B-JQTS allows for a time-varying scale

as well as a time-varying shape of the conditional distribution. This extra flexibility offers

better out-of-sample forecasts as the model predicts extreme returns more accurately. As for

the performance of the different B-JQTS specifications it seems that this varies among the

assets. MLT1 outperforms our model only in LPS for IBM but our model performs much

better in the tails.

Figure 5: B-JAVL(1,1) robust quantile-based measures of the (a) scale, (b) skewness, and (c) kurtosis
for IBM for K = 10, S&P500 for K = 4, and WTI for K = 20. We colour with red the 95% credible
intervals.

To better understand the effect of the centring distribution on predictive performance, we

have looked at the predictive performance of some B-JQTS models with a t centring distribu-

tion. For each value of K, we chose the B-JQTS model (with a normal centring distribution)

which gave the best predictive performance (under the LPS and LPTS criteria). The results
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are presented in Table 3. We find that the specification with the t distribution outperforms the

normal distribution for IBM and WTI under LPS, while the normal distribution outperforms

the t distribution for IBM and S&P500 under LPTS. However, there is evidence that the dif-

ference becomes smaller as K becomes larger. This is not surprising since the time-varying

distribution can adapt more easily to a heavier tailed distribution for larger values of K. This

suggests that B-JQTS models with a sufficiently large value of K are not sensitive to the

choice of the centring distribution.

6.2.3 Time-varying conditional moments

The B-JQTS model provides a description of the time-varying distribution of returns. In this

section, we look in more detail at the results for each asset using the B-JQTS model with

the best performance under LPS and LPTS criteria (combined) in each case (detailed results

for the B-JSAV(1, 1) model are presented in Appendix C and for other B-JQTS models in

Appendix D). The best specification is B-JAVL(1,1) with K = 10 for IBM, K = 4 for

S&P500 and K = 20 for WTI.

Figure 5 shows plots of the robust quantile-based measures of the scale (panel (a)), skew-

ness (panel (b)), and kurtosis (panel (c)). The model is able to capture the time-varying

volatility with some short periods in which volatility increases rapidly. The volatility of the

S&P500 index is more stable when compared to the other two assets. The skewness and the

kurtosis are relatively constant for all the assets with some evidence of more time-varying

skewness for WTI and kurtosis for S&P500.

Figure 6 shows the inference about the conditional moments in 1996, during the Great

Moderation, and 2009, following the global financial crisis. These are periods with very

different financial market conditions. Here, we present results for IBM and S&P500, but we

did the exercise for WTI too.

We find that the results for 2009 were characterised by larger and more rapid short-term
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Figure 6: Robust quantile-based measures of the (a) scale, (b) skewness, and (c) kurtosis for B-
JAVL(1,1) at K = 10 for IBM, K = 4 for S&P500 and K = 20 for WTI. We colour with red the
95% credible intervals.

changes in the higher moments compared to that of 1996. More specifically, we find that

there is strong evidence of time-varying volatility for all 3 assets during 2009. The skewness

(panel (b)) for both years is relatively constant. As for the kurtosis (panel (c)), we find that

IBM and WTI show more changes than S&P500 for both periods under study.

6.2.4 VaR

As we discuss in Section 2, the B-JQTS model can be used to forecast the VaR. We consider

forecasting VaR at the 1%, 2.5%, and 5% probability to measure its out-of-sample perfor-

mance for estimating quantile in the tail of the conditional return distribution. We look at

the three assets under study and compare the forecasting performance of our B-JQTS models
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against the non-Bayesian parametric GARCH(1,1) and GJR-GARCH(1,1) with t distribu-

tion, for which we ran a rolling out-of-sample exercise.

In Table 4, we examine the out-of-sample violation ratios (the proportion of actual VaR

exceedances relative to the expected proportion) along with the Dynamic Quantile (DQ) test

(Engle and Manganelli 2004). We find that our model provides better out-of-sample violation

ratios for all three data sets. The quantile score provides a measure of performance at a

particular probability level. The quantile score is given byQS(qt, yt) = (yt−qt)(τ−I(yt ≤

qt)), and it is a strictly consistent measure where a lower value indicates superior accuracy.

In Table 5, we present the the sum of the quantile score and we find that our models perform

better when compared against the benchmark parametric GARCH-type models for all three

data sets.

7 Discussion

The B-JQTS model is a flexible model for time-varying conditional distributions. The model

is very general and the structure allows us to derive sufficient conditions for stationarity of

some important sub-models. The application of the model to simulated and real data shows

that the B-JQTS model (with suitable regularisation) can outperform state-of-the-art methods

for density forecasts and VaR evaluation.

The model is defined for a finite number of quantiles but it is interesting to think about

how the model limits as K → ∞. Intuitively, the limit will exist if the Gaussian process

priors for the parameters generate continuous sample paths, which illustrates the importance

of using a smoothing prior for these parameters. The existence of a limiting process would

define a Bayesian nonparametric time series model and would allow us to choose K, the

number of quantile, to be “sufficiently large” to adequately approximate the infinite dimen-

sional process rather than choosing K using model selection methods. However, a more

formal study of these properties is beyond the scope of this paper.
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IBM S&P500 WTI
LPS LPTS LPTS LPS LPTS LPTS LPS LPTS LPTS

(0.01) (0.05) (0.01) (0.05) (0.01) (0.05)
K = 4

B-JSAV(1,1) 1.701 5.463 4.200 1.428 5.067 3.936 2.318 5.909 4.549
B-JSSV(1,1) 1.731 5.446 4.182 1.430 4.993 3.935 2.173 5.870 4.577
B-JGJR(1,1) 1.744 5.297 4.092 1.420 4.868 3.892 2.204 5.854 4.575
B-JAVL(1,1) 1.700 5.401 4.199 1.417 4.902 3.853 2.171 5.937 4.562
With GS
B-JSAV(1,1) 1.707 5.677 4.251 1.435 5.780 4.329 2.165 5.986 4.565
B-JSSV(1,1) 1.717 5.686 4.205 1.449 6.716 4.692 2.233 5.781 4.550
B-JGJR(1,1) 1.771 5.932 4.373 1.451 6.331 4.589 2.601 6.328 5.188
B-JAVL(1,1) 1.772 5.926 4.421 1.445 6.410 4.602 2.342 5.860 4.538

K = 10

B-JSAV(1,1) 1.686 5.541 4.345 1.427 5.035 3.987 2.176 5.842 4.579
B-JSSV(1,1) 1.716 5.385 4.261 1.426 4.895 3.903 2.237 5.799 4.574
B-JGJR(1,1) 1.725 5.278 4.212 1.423 4.816 3.913 2.177 5.806 4.589
B-JAVL(1,1) 1.689 5.249 4.197 1.419 4.914 3.943 2.168 5.877 4.610
With GS
B-JSAV(1,1) 1.711 5.351 4.280 1.457 6.685 4.780 2.163 5.899 4.631
B-JSSV(1,1) 1.707 5.414 4.272 1.457 6.744 4.790 2.220 6.001 4.743
B-JGJR(1,1) 1.717 5.505 4.366 1.450 6.335 4.672 2.348 5.752 4.614
B-JAVL(1,1) 1.703 5.481 4.324 1.446 6.379 4.642 2.243 5.788 4.552

K = 20

B-JSAV(1,1) 1.680 5.743 4.419 1.429 5.022 3.994 2.172 5.866 4.632
B-JSSV(1,1) 1.720 5.692 4.461 1.427 4.912 3.938 2.195 5.815 4.630
B-JGJR(1,1) 1.719 5.312 4.294 1.425 4.739 3.911 2.166 5.830 4.636
B-JAVL(1,1) 1.677 5.291 4.239 1.421 4.809 3.921 2.159 5.773 4.600
With GS
B-JSAV(1,1) 1.711 5.584 4.387 1.463 6.818 4.883 2.170 6.076 4.805
B-JSSV(1,1) 1.713 5.593 4.371 1.460 6.729 4.854 2.176 5.887 4.701
B-JGJR(1,1) 1.709 5.602 4.420 1.455 6.654 4.784 2.175 6.353 4.869
B-JAVL(1,1) 1.695 5.527 4.392 1.449 6.342 4.689 2.166 5.743 4.606

DPM-GARCH 1.831 8.353 6.604 1.531 7.578 4.939 2.554 11.423 8.107

MLT1 1.595 12.923 8.175 1.667 11.661 7.646 3.061 18.428 12.759
GARCH(1,1) 8.876 8.936 8.933 8.787 8.876 8.867 8.975 9.010 9.009
GJR GARCH(1,1) 8.902 8.961 8.958 8.781 8.861 8.852 8.974 9.010 9.009

Table 2: The LPS and LPTS for different models applied to the three real data sets (bold type
indicates the best performing model on each criterion per asset).
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IBM S&P500 WTI
LPS LPTS LPTS LPS LPTS LPTS LPS LPTS LPTS

(0.01) (0.05) (0.01) (0.05) (0.01) (0.05)
K = 4

B-JGJR(1,1) B-JAVL(1,1) B-JSSV(1,1) with GS
t 1.715 5.566 4.303 1.424 5.034 3.982 2.156 5.650 4.625
normal 1.744 5.297 4.092 1.417 4.902 3.853 2.233 5.781 4.550

K = 10

B-JAVL(1,1) B-JGJR(1,1) B-JAVL(1,1) with GS
t 1.675 5.678 4.367 1.421 4.825 3.946 2.161 5.959 4.791
normal 1.689 5.249 4.197 1.423 4.816 3.913 2.243 5.788 4.552

K = 20

B-JAVL(1,1) B-JGJR(1,1) B-JAVL(1,1)
t 1.665 5.710 4.421 1.427 4.858 3.950 2.155 5.665 4.597
normal 1.677 5.291 4.239 1.425 4.739 3.911 2.159 5.773 4.600

Table 3: The LPS and LPTS for different models applied to the three data sets when F0 is a t or
a normal distribution (bold type indicates the best performing model on each criterion per asset).

IBM S&P500 COIL
5% 2.5% 1% 5% 2.5% 1% 5% 2.5% 1%

B-JSAV(1,1) 0.039∗ 0.021∗ 0.006 0.066∗ 0.038∗ 0.014 0.049 0.019 0.007
B-JGJR(1,1) 0.038∗ 0.018 0.005∗ 0.066∗ 0.039∗ 0.011 0.051 0.021∗ 0.007
GARCH(1,1) 0.020∗ 0.010∗ 0.003∗ 0.031∗ 0.012∗ 0.003∗ 0.023∗ 0.009∗ 0.003∗

GJR GARCH(1,1) 0.017∗ 0.010∗ 0.004∗ 0.032∗ 0.011∗ 0.003∗ 0.021∗ 0.009∗ 0.003∗

Table 4: Out-of-sample violation ratios for B-JSAV(1,1), B-JGJR(1,1), GARCH(1,1),
and GJR GARCH(1,1). The B-JQTS models were fitted using K = 6 and a =
(0, 0.25, 0.4, 0.45, 0.475, 0.49, 0.5). ∗ denotes rejection from the DQ test (Engle and Manganelli
2004) at 1% significance level.

IBM S&P500 COIL
5% 2.5% 1% 5% 2.5% 1% 5% 2.5% 1%

B-JSAV(1,1) 284 240 224 525 410 306 578 459 387
B-JGJR(1,1) 296 251 238 534 427 327 588 468 396
GARCH(1,1) 662 777 975 661 761 956 940 1104 1396
GJR GARCH(1,1) 629 745 937 650 753 947 939 1105 1399

Table 5: Out-of-sample QS for B-JSAV(1,1), B-JGJR(1,1), GARCH(1,1), and
GJR GARCH(1,1). The B-JQTS models were fitted using K = 6 and a =
(0, 0.25, 0.4, 0.45, 0.475, 0.49, 0.5). Bold type indicates the best performing model at each
probability level per asset.
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