Title.
Spectral X-ray phase contrast imaging with a CdTe photon-counting detector

Author name and affiliations.
Carlos Navarretea, Simon Proczb, Michael Kilian Schützb, Gerardo Roquea, Julian Feyb, Carlos Avilaa, Alessandro Olivoc and Michael Fiederleb

a Universidad de Los Andes, Departamento de Física, Cra 1 N° 18A – 12, 111711, Bogotá, Colombia
b Freiburg Materials Research Center (FMF), Stefan-Meier-Str. 21, 79104 Freiburg, Germany
c Department of Medical Physics and Biomedical engineering, University College London, Malet Place, Gower Street, WC1E 6BT London, United Kingdom

Corresponding author.
Carlos Navarrete
Phone: +57 321-3439998
Mail: cf.navarrete969@uniandes.edu.co
Postal address: Universidad de Los Andes, Departamento de Física, Cra 1 N° 18A – 12, 111711, Bogotá, Colombia

Abstract.
The present study focuses on the implementation of two X-ray phase contrast imaging (XPCI) techniques: free-space propagation (FSP) and single mask edge illumination (SM-EI) with a microfocus polychromatic X-ray source and a Timepix3 photon-counting detector with a CdTe sensor. This detector offers high spatial resolution, high detection efficiency and it is able to simultaneously record information about Time-over-Threshold (ToT) and Time-of-Arrival (ToA) for each X-ray photon. All these features play a key role in enabling an improvement of XPCI image quality, especially through spectral analysis, since it is possible to measure the energy of each incident X-ray photon. Measurements of phase contrast and contrast-to-noise ratio (CNR) are presented for different energy bins within the typical spectrum of soft X-ray imaging. It is shown that a significant enhancement of XPCI image quality can be obtained, for both implemented techniques, by performing pixel clustering to correct for charge sharing and by introducing some degree of energy-weighting.

Keywords.
X-ray imaging; Phase-contrast; Photon-counting detector; Timepix; Image quality.
1. Introduction

1.1. X-ray Phase Contrast Imaging

X-ray Phase Contrast Imaging (XPCI) is a well-established tool for the nondestructive examination of diverse types of samples. It relies on the phase shift suffered by X-rays when traversing a sample, which is driven by the unit decrement of the real part of the complex refractive index δ. Conversely, attenuation properties are related to the imaginary term β. Depending on the incident X-ray spectrum and the material being examined, δ can be up to three orders of magnitude greater than β, consequently, XPCI techniques allow the visualization of low contrast details previously invisible to conventional absorption methods [1].

XPCI can be exploited for several applications, including biomedical imaging [2-5], material science [6, 7], security [8] and industrial quality inspection [9, 10]. For such purposes, different methods have been developed to record the phase shift. Among them, Free-space Propagation and Single Mask Edge Illumination (SM-EI) XPCI are two approaches suitable for laboratory implementation.

1.1.1. Free-space Propagation (FSP) XPCI

Free-space propagation XPCI was introduced by Snigirev et al. [11] with monochromatic synchrotron radiation. They demonstrated that image effects due to phase shifts can be observed with a source of sufficient spatial coherence and by increasing the distance between the sample and the detector. As shown in Fig. 1a, after being shifted, the wavefronts propagate until they form an interference pattern, which in the near field can be seen as an edge enhancement. The principle was extended to polychromatic laboratory sources by Wilkins et al. [12] and later its potential for imaging low attenuation samples was demonstrated [13, 14]. FSP XPCI has been extensively implemented with both synchrotron [15, 16] and polychromatic [17, 18] radiation; however, due to its high lateral spatial coherence requirements, X-ray laboratory sources with a very small focal spot (on the order of 10 µm) are required.

Since both absorption and phase signals contribute to the image formation in FSP XPCI, the quantitative phase-retrieval problem has been extensively studied. Until now, homogeneity assumptions or a priori information on the sample are required for single image phase-retrieval [19-21]. Therefore, multiple images acquired at different propagation distances are necessary to obtain a quantitative separation of phase and attenuation [22].

Fig. 1. a) Schematic set up of free-space propagation XPCI. The incoming wave front is perturbed by the sample and an interference pattern is created at the detector, which is placed at a distance R_2. b) Schematic set up of single mask edge illumination XPCI. The mask apertures create beamlets which are aligned with the pixel edge s. Odd and even pixels can be separated to obtain two images with inversed phase signals, as shown in the bottom panel.
1.1.2. Single Mask Edge Illumination (SM-EI) XPCI

SM-EI is based on the Edge-Illumination principle, originally described by Olivo et al. [23]. In the original set-up, two periodic masks are used: the sample mask, placed before the sample, and the detector mask, located in front of the detector. The sample mask reshapes the incoming beam into smaller beamlets that hit the apertures of the detector mask to create the Edge-Illumination condition, in which only a fraction of the beamlets impinges on the pixel active surface. The detector mask also serves to reduce the smoothing of the phase signal caused by non-ideal pixel Point Spread Functions (PSF) [24]. However, with recent photon-counting devices with a more defined PSF, such as those from the Medipix and Timepix families, the detector mask can be removed and the beamlets aligned with the boundary between two pixels columns (or rows, depending on the mask orientation). This allows for the detection of beam displacement after it traverses the sample, as shown in Fig. 1b [25].

By separating the odd and even pixel columns (or rows), this set-up allows for phase and attenuation signal separation with a single acquisition, since it gives two images with equivalent absorption information but opposite differential phase contrast signals. So long as the PSF is sufficiently sharp [26], the single mask arrangement can provide comparable phase sensitivity to the double-mask configuration, with a tradeoff between resolution and image: the spatial resolution is halved, and the image statistics is doubled. Besides, with a mask design like the one proposed by Krejci et al. [27], in which the beamlets are shaped so they hit the region between four pixels instead of two, the system can be extended to provide 2D sensitivity, even in CT [28].

1.1.3. XPCI with spectral photon-counting detectors

The development of photon-counting detectors with energy-resolving capabilities has motivated the study of spectral X-ray imaging for different applications. Recently, it was combined with XPCI to improve the image quality of various phase-sensitive methods. The Medipix detector was used by Das et al. [29, 30], to separate the photons into multiple energy bins, which allows for single-shot phase and absorption retrieval. The approach was developed with both the Free-space propagation and the Double Mask Edge Illumination techniques. Later, the same concept was derived and applied to simulated data by Wang et al. with the Grating Interferometric method [31].

An additional advantage of spectral photon-counting devices is the possibility of image quality improvements obtained by employing energy weighting factors. The concept of energy-weighting was first introduced for conventional X-ray imaging by Giersch et al. with a Medipix2 detector [32, 33], by showing that it can be used to significantly improve image quality. In XPCI, the concept was used for the Grating Interferometric technique, motivated by the fact that interferometers are designed for specific energy [34]. In contrast, SM-EI XPCI was demonstrated to be fully achromatic by Endrizzi et al. [35]. This lack of increased weighting of specific spectral channels, shared with FSP XPCI, means that a statistical approach to weighting factors can be implemented to increase image quality.

1.2. The Timepix3 detector

The Timepix3 is a hybrid pixel photon-counting detector, fabricated in a CMOS 130 nm process. The detector has 256x256 pixels with a pixel pitch of 55 μm. It allows the acquisition of time and energy information for each incident photon by simultaneously measuring the time-of-arrival (ToA) and time-over-threshold (ToT) of each X-ray photon [36]. The electronics of the Timepix3 chip can be bump bonded to diverse sensor materials such as Si, CdTe, CdZnTe, Ge, or GaAs. In particular, its high atomic number, high density, wide energy bandgap and high resistivity, make the CdTe semiconductor suitable for room temperature operation with high detection efficiency for X-rays [37]. The energy-resolving properties of the detector, along with the good spatial resolution and high detection efficiency (when used with CdTe), have been exploited for several applications including medical imaging [38, 39], space sciences [40] and gamma camera imaging [41].

In this work, the time and energy information of the Timepix3 detector are used to study phase contrast and Contrast-to-Noise Ratio (CNR) in the FSP and SM-EI XPCI methods. The relevance of pixel clustering methods to correct for charge sharing effects (see section 2.4) is presented, and energy-weighting methods are implemented to increase image quality.

2. Materials and Methods

2.1. The experimental set-up
The FSP XPCI set-up consists of a Hamamatsu L10321 X-ray source (W-anode, 500 μm thick beryllium output window and a nominal focal spot FWHM of 5 μm), a 1 mm thick CdTe-Timepix3 detector and a set of high-precision stepper motors with an accuracy of 1 μm, to position the sample. For the SM-EI XPCI configuration, a sample mask with a period of 79 μm and an aperture size of 10 μm is also included. The mask consists of a patterned gold layer with a nominal thickness of 100 μm, electroplated on a 500 μm thick graphite substrate. In order to create the Edge Illumination condition for every other pixel column, an additional set of high precision stepper motors (accuracy of 0.2 μm and 0.001 degrees for translation across and rotation around the beam axis, respectively) is required to match the projected mask to twice the detector period (110 μm). Since the sample mask absorbs part of the incoming beam, the sample is scanned laterally so as to expose all its parts to radiation (sample "dithering"). Frames were acquired at eight dithering steps, i.e. eight different sample positions spaced by approximately 10 μm. Since only a small fraction of the pixel and an even smaller fraction of the sample is illuminated at each frame, due to the small aperture of the mask and the line-skipping nature of the SM XPCI working principle, this leads to a recombined image with 4x more resolution compared to the FSP XPCI case [42].

2.2 Verification of Timepix3 energy calibration

The Timepix3 detector was manufactured and calibrated by Advacam, as described in [43]. To verify the calibration, the global energy response of the detector was checked through X-ray fluorescence and radioactivity measurements. The X-ray fluorescence peaks of Zn, Rh and Sn were measured, along with the radioactivity spectrum of Fe-55 for low energies. Only single-pixel clusters were used for the calibration to avoid charge sharing effects. The result of the energy calibration verification is shown in Fig. 2. The curve shows high linearity, with a slope of 0.95 and an offset of 3.1 keV between the nominal and measured peak energies. All measurements have been corrected by this offset.

Fig. 2. Linear fit of nominal vs pre-calibrated energy position. X-ray fluorescence and radioactive (Fe-55) spectrums were measured for the verification.

2.3 Measurements

Images were acquired at both 30 kVp and 50 kVp for FSP XPCI, and at 30 kVp only for SM-EI XPCI, to verify the relevance of the method over different XPCI techniques. The tube current was operated below 30 μA in all cases to avoid charge pile-up or pixel front-end saturation. The resulting milliamper-second values were 9.4 mAs and 3 mAs for FSP XPCI at 30 kVp and 50 kVp, respectively. For SM-EI XPCI at 30 kVp, this value was 1.2 mAs for each of the eight dithering steps, i.e., 9.4 mAs in total. The sample used was a nylon fiber with a diameter of 900 μm. The clustering and energy bin analysis discussed in the following sections was carried out in full on the FSP XPCI measurements at 30 kVp, and some of it was repeated on the FSP XPCI at 50 kVp and SM-EI XPCI at 30 kVp measurements to prove the generality of the presented approach. The source-to-detector distance was 1.8 m for both XPCI methods. The magnification (M) for the FSP-XPCI was set at 5x to avoid blurring caused by the focal spot. Conversely, for the SM-EI XPCI method, the fiber was placed very close to the sample mask at a magnification of 1.3x. All images were flat-field corrected to account for detector imperfections and beam non-uniformities.
2.4. **Pixel clustering methods**

Charge sharing is a common effect in pixelated detectors such as Timepix3. This is caused by the spread of the charge carriers, generated by a single high-energy event, across multiple pixels. The spread is caused by diffusion and electrostatic repulsion between the charges generated in the semiconductor crystal. The charge is shared between adjacent pixels generating signals in more than one pixel, for a single incoming photon. Such a phenomenon reduces both the spatial and energy resolution of the detector. Previous studies have demonstrated that it increases with smaller pixel pitch, thicker sensor material, and lower bias voltage [44]. Since the Timepix3 detector allows for energy and time-of-arrival information of each event, charge sharing can be accounted for by forming clusters of events that initially belonged to a single high-energy photon. Such clusters are created by considering events that are close both in space and time-of-arrival. The total energy of the original event is then reconstructed by adding together the energy of the cluster and the count is allocated to the pixel closer to the cluster centroid. Some imprecisions are expected since part of the charge could go undetected if it does not exceed the counting threshold for some of the involved pixels.

In this work, the unclustered and clustered cases are compared. Note that an unclustered image is, in practice, the image that would be acquired by any small-pixel photon-counting detector without energy and time information.

2.5. **Energy bins analysis and energy weighting**

The energy information was grouped in 3-keV energy bin images, i.e., for the 30-kVp acquisition, these bins were: 4-7 keV, 7-10 keV, 10-13 keV, 13-16 keV, 16-19 keV, 19-22 keV, 22-25 keV, 25-28 keV and 28-31 keV. This was done to study the energy dependence of phase contrast and contrast-to-noise ratio, and the effect of pixel clustering on different parts of the spectrum. XPCI techniques usually generate a pair of bright and dark fringes along the sample edges, and thus the contrast and CNR are calculated as follows:

\[
\text{Contrast} = \frac{l_{\text{max}} - l_{\text{min}}}{l_{\text{background}}} \quad (1)
\]

\[
\text{CNR} = \frac{l_{\text{max}} - l_{\text{min}}}{\sigma(l_{\text{background}})} \quad (2)
\]

where \(l_{\text{max}}\) and \(l_{\text{min}}\) are the maximum and minimum signals across the nylon fiber profile, respectively, and \(\sigma(l_{\text{background}})\) is the standard deviation of the image in the background region.

With non-spectroscopic photon-counting detectors, the energy bins are weighted by the X-ray source spectrum. However, when spectroscopic information is incorporated and images at different energy bins are extracted, the weights can be modified to maximise the CNR in the image. In this work, the energy weighting formulation derived by Schmidt [45] was employed, although while using the contrast in each energy bin as the weighting factor:

\[
w_n = \frac{c_n}{\sum c_i} \quad (3)
\]

Later, the images are recombined to give a final image which is referred to as ‘energy-weighted image’:

\[
l_{\text{combined}} = \sum w_i l_i \quad (4)
\]

While Schmidt introduced energy weighting for conventional attenuation-based X-ray imaging it is shown here that the same approach leads to higher image quality also for the FSP and SM-El XPCI methods. The energy-weighted image is compared with the ‘unclustered image’ and the ‘clustered image’. The former is the case where neither clustering nor energy-weighting are applied, while only clustering (but no energy-weighting) is applied to the latter.

3. **Results**

3.1. **Energy spectrum**

Full spectra at both 30 and 50 kVp were acquired using the Timepix3 spectral capability, and the unclustered and clustered cases were compared (see Fig. 3). The unclustered spectra show a significantly stronger low-energy peak which is caused by charge sharing events. Such counts correspond to approximately 40% and 50% for the 30 kVp and 50 kVp cases, respectively. The clustered spectra show that clustering methods are key to reconstruct high-energy events (above 15 keV), and that without them, limited spectroscopic information can be retrieved above 25 keV. As presented in the following sections, this spectrum correction is relevant to exploit the information carried by all photons for both XPCI methods, which leads to higher phase contrast.
Fig. 3. Histograms of experimental spectra for unclustered and clustered cases for 30 kVp (top) and 50 kVp (bottom).

3.2. Clustering and spectral analysis

In Fig. 4, the images obtained at each energy bin are presented, and the unclustered (Fig. 4a) and clustered (Fig. 4b) cases are compared. In both cases, the energy dependence of the attenuation and phase signals is clearly noticeable. Due to the low attenuation and phase coefficients of the nylon fiber, contrast is stronger in the low-energy bins. However, it should be noted that, despite the negligible absorption of the fibers at the highest energies, the phase signal still permits to distinguish the fiber shape. This is significantly improved by the reconstruction of events with the clustering method, which reduces the noise substantially in the three highest energy bins.

Fig. 4. Images retrieved for each 3-keV energy bin at 30 kVp a) without clustering and b) with clustering. The averaged horizontal profile along five rows is also shown for 3 different energy bins: 4-7 keV, 16-19 keV and 28-31 keV; c) without clustering and d) with clustering.
The effect of pixel clustering and of the energy dependence of the signal can be appreciated more clearly from Fig. 5 in which phase contrast and CNR are calculated for each bin. In the low-energy part of the spectrum (4-20 keV), clustering methods increase phase contrast by suppressing the strong, spurious low-energy peak due to the charge sharing counts. The CNR results show that most of the CNR contribution is located near the tungsten emission lines due to both greater contrast and to the higher number of counts. An improvement in the statistics of the high-energy events is also noticed, which leads to higher CNR above 20 keV. This improvement would be beneficial in the imaging of materials with higher atomic number, for which the highest contribution to contrast and CNR may not arise from the low-energy part of the spectrum.

![Figure 5](image)

Fig. 5. Contrast (left) and CNR (right) as a function of the energy bin for the 30 kVp image with FSP XPCI.

3.3. Image comparison and energy-weighting

Finally, Fig. 6 compares unclustered and the energy-weighted images for FSP XPCI at 50 kVp and SM-EI XPCI at 30 kVp. The full unclustered images correspond to the unweighted sum of all energy channels without clustering (the ones in Fig. 4a for FSP at 30 kVp), whereas the energy-weighted images are the weighted sum of all energy channels with clustering (Fig. 4b for FSP at 30kVp), using the weighting factors presented in eq. 3. The increase in attenuation contrast due to clustering and energy weighting is apparent, as it is the increased edge enhancement due to phase effects which is more clearly noticeable in the horizontal profiles reported below each corresponding image. These allow observing that the contrast is significantly higher in SM-EI XPCI than in FSP XPCI (64% when comparing the energy-weighted images at 30 kVp), despite the significantly reduced magnification employed. However, this does not translate directly into a CNR increase due to reduced statistics per pixel and additional image noise caused by mask vibrations and/or focal spot instabilities. With regards to statistics, since the use of dithering in the SM-EI XPCI acquisitions produced an image with 4 times higher resolution than in the FSP case, and the overall exposure has been kept the same for the full image, the statistics per pixel are substantially reduced by a factor of 4 in the SM-EI case, which should be multiplied by the factor of approximately 8 due to the limited open fraction of the mask. With respect to set-up instabilities, system geometry variations over time due to vibrations or temperature fluctuations have been previously studied for other edge illumination configurations, and their influence on the set-up sensitivity was demonstrated [46]. We expect these effects to be relevant to our set-up because the low power microfocus X-ray source imposes relatively long exposure times, which increases the possible impact of such environmental changes. Although a detailed analysis of the effects of such time-dependent variations would become key for a possible commercial translation of the developed technique, at present time we considered it to lie beyond the scope of this initial explorative work.

![Figure 6](image)

Fig. 6. Image comparison between the unclustered image and the energy-weighted image with clustering for FSP XPCI at 50 kVp (a) and SM-EI XPCI at 30 kVp (b). The averaged horizontal profiles along the five indicated rows are also shown for each of the measurements (c)-(d).
Contrast and CNR calculations for the three experimental measurements are presented in Tables 1 and 2. In all cases, it is found that greater levels of contrast and CNR can be achieved by using spectral methods. This is first observed with pixel clustering, and further improved by energy-weighting. When comparing the energy-weighted images with the unclustered images, contrast is increased by 36%, 70% and 53% for the FSP XPCI at 30 kVp, FSP XPCI at 50 kVp and SM-EI XPCI at 30 kVp measurements, respectively.

Likewise, CNR is increased by 7%, 19% and 12% with energy-weighting and pixel clustering with respect to the unclustered images, for the same three measurements. The smaller changes on the CNR are due to compensation between higher contrast and reduced statistics due to clustering, seen as an increment in noise. Finally, note that X-ray energy being equal, clustering leads to a larger relative improvement for the SM-EI XPCI technique, due to the high sensitivity of its working principle to charge sharing. Pixel clustering in SM-EI generates larger error bars for both clustered images, since photons impinging close to a pixel edge can be erroneously allocated to the adjacent pixel, leading to variations in the position of the maximum peak of the phase signal.

<table>
<thead>
<tr>
<th></th>
<th>Full image (unclustered)</th>
<th>Full image (clustered)</th>
<th>Energy-weighted (clustered)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSP XPCI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 kVp</td>
<td>0.33 ± 0.03</td>
<td>0.35 ± 0.03</td>
<td>0.42 ± 0.03</td>
</tr>
<tr>
<td>50 kVp</td>
<td>0.27 ± 0.03</td>
<td>0.32 ± 0.03</td>
<td>0.41 ± 0.05</td>
</tr>
<tr>
<td>SM-EI XPCI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 kVp</td>
<td>0.45 ± 0.05</td>
<td>0.65 ± 0.10</td>
<td>0.69 ± 0.11</td>
</tr>
</tbody>
</table>

Table 1. Contrast results for unclustered images, clustered images without weighting and energy weighted images for the three experimental measurements.

<table>
<thead>
<tr>
<th></th>
<th>Full image (unclustered)</th>
<th>Full image (clustered)</th>
<th>Energy-weighted (clustered)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSP XPCI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 kVp</td>
<td>23 ± 2</td>
<td>23 ± 2</td>
<td>25 ± 2</td>
</tr>
<tr>
<td>50 kVp</td>
<td>18 ± 2</td>
<td>19 ± 2</td>
<td>22 ± 2</td>
</tr>
<tr>
<td>SM-EI XPCI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 kVp</td>
<td>11 ± 1</td>
<td>12 ± 2</td>
<td>12 ± 2</td>
</tr>
</tbody>
</table>

Table 2. CNR results for unclustered images, clustered images without energy weighting and energy-weighted images for the three experimental measurements.

4. **Summary**

The present work demonstrates that the spectroscopic capabilities of the Timepix3 detector can improve image quality in the two XPCI techniques studied. Also, that the small pixel pitch of the Timepix3 favors the FSP XPCI principle and that the sharp pixel PSF of the detector allows the implementation of SM-EI XPCI. The effect of pixel clustering and energy weighting in phase contrast and CNR was quantified for both the FSP and SM-EI XPCI techniques. The relevance of clustering methods to exploit the information carried by all photons and the energy dependence of phase contrast and CNR in XPCI was studied.

In all cases, an enhancement of image quality with respect to single-threshold photon-counting detectors was observed; this allows to assume that, in comparison, any non-counting detector would be penalized at least to the same extent as a single threshold counter, if not worse. A higher improvement in phase contrast is obtained for FSP XPCI at 50 kVp as compared to 30 kVp, because spectral corrections become more relevant at higher X-ray energies due to charge sharing. A significant contrast enhancement is achieved (over 20% for both voltage settings: 30 kVp and 50 kVp) for FSP XPCI with a weighted average over all nine energy windows considered (4-7 keV through 28-31 keV for the 30 kV case), with the calculated phase contrast as weighting factor. The SM-EI XPCI technique shows a much higher contrast than FSP XPCI, and the difference in contrast between the two methods gets further enhanced by pixel clustering and energy-weighting. These results confirm that the coupling of phase-sensitive methods with single photon
energy measurement technologies could boost the potential of X-ray phase contrast imaging for a wide variety of applications.

Acknowledgement

The authors acknowledge financial support from the Physics Department and the Faculty of Science of Universidad de los Andes, Colombia, under project number INV-2018-50-1423, from COLCIENCIAS under contract number 80740-055-2019, from the German Ministry of Research and Education (BMBF) under project MAMMOSECUR (Förderkennzeichen 01DN19002). AO is supported by the Royal Academy of Engineering under the “Chairs in Emerging Technologies” scheme.

References